
Parameterized Complexity Classification for
Interval Constraints
Konrad K. Dabrowski #Ñ

School of Computing, Newcastle University, UK

Peter Jonsson # Ñ

Department of Computer and Information Science, Linköping University, Sweden

Sebastian Ordyniak #

School of Computing, University of Leeds, UK

George Osipov #Ñ

Department of Computer and Information Science, Linköping University, Sweden

Marcin Pilipczuk #Ñ

Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Poland
IT University Copenhagen, Denmark

Roohani Sharma #Ñ

Max Planck Institute for Informatics, Saarland Informatics Campus, Saarbrücken, Germany

Abstract
Constraint satisfaction problems form a nicely behaved class of problems that lends itself to
complexity classification results. From the point of view of parameterized complexity, a natural task
is to classify the parameterized complexity of MinCSP problems parameterized by the number of
unsatisfied constraints. In other words, we ask whether we can delete at most k constraints, where k

is the parameter, to get a satisfiable instance. In this work, we take a step towards classifying the
parameterized complexity for an important infinite-domain CSP: Allen’s interval algebra (IA). This
CSP has closed intervals with rational endpoints as domain values and employs a set A of 13 basic
comparison relations such as “precedes” or “during” for relating intervals. IA is a highly influential
and well-studied formalism within AI and qualitative reasoning that has numerous applications in,
for instance, planning, natural language processing and molecular biology. We provide an FPT vs.
W[1]-hard dichotomy for MinCSP(Γ) for all Γ ⊆ A. IA is sometimes extended with unions of the
relations in A or first-order definable relations over A, but extending our results to these cases would
require first solving the parameterized complexity of Directed Symmetric Multicut, which is a
notorious open problem. Already in this limited setting, we uncover connections to new variants of
graph cut and separation problems. This includes hardness proofs for simultaneous cuts or feedback
arc set problems in directed graphs, as well as new tractable cases with algorithms based on the
recently introduced flow augmentation technique. Given the intractability of MinCSP(A) in general,
we then consider (parameterized) approximation algorithms. We first show that MinCSP(A) cannot
be polynomial-time approximated within any constant factor and continue by presenting a factor-2
fpt-approximation algorithm. Once again, this algorithm has its roots in flow augmentation.

2012 ACM Subject Classification Theory of computation → Parameterized complexity and exact
algorithms

Keywords and phrases (minimum) constraint satisfaction problem, Allen’s interval algebra, para-
meterized complexity, cut problems

Digital Object Identifier 10.4230/LIPIcs.IPEC.2023.11

Related Version Full Version: arXiv:2305.13889

Funding Peter Jonsson: Partially supported by the Swedish Research Council (VR) under grant
2021-0437 and the Wallenberg AI, Autonomous Systems and Software Program (WASP) funded by
the Knut and Alice Wallenberg Foundation.

© Konrad K. Dabrowski, Peter Jonsson, Sebastian Ordyniak, George Osipov, Marcin Pilipczuk, and
Roohani Sharma;
licensed under Creative Commons License CC-BY 4.0

18th International Symposium on Parameterized and Exact Computation (IPEC 2023).
Editors: Neeldhara Misra and Magnus Wahlström; Article No. 11; pp. 11:1–11:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:konrad.dabrowski@newcastle.ac.uk
https://www.konraddabrowski.co.uk/
https://orcid.org/0000-0001-9515-6945
mailto:peter.jonsson@liu.se
https://www.ida.liu.se/~petjo00
https://orcid.org/0000-0002-5288-3330
mailto:sordyniak@gmail.com
https://orcid.org/0000-0003-1935-651X
mailto:george.osipov@pm.me
https://georgeosipov.me
https://orcid.org/0000-0002-2884-9837
mailto:malcin@mimuw.edu.pl
https://www.mimuw.edu.pl/~malcin/
https://orcid.org/0000-0001-5680-7397
mailto:rsharma@mpi-inf.mpg.de
https://people.mpi-inf.mpg.de/~rsharma/
https://orcid.org/0000-0003-2212-1359
https://doi.org/10.4230/LIPIcs.IPEC.2023.11
https://arxiv.org/abs/2305.13889
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

11:2 Parameterized Complexity Classification for Interval Constraints

Sebastian Ordyniak: Supported by the Engineering and Physical Sciences Research Council (EPSRC,
project EP/V00252X/1).
George Osipov: Supported by the Wallenberg AI, Autonomous Systems and Software Program
(WASP) funded by the Knut and Alice Wallenberg Foundation.
Marcin Pilipczuk: During this research Marcin was part of BARC, supported by the VILLUM
Foundation grant 16582.

1 Introduction

Background. The constraint satisfaction problem over a constraint language Γ (CSP(Γ))
is the problem of deciding whether there is a variable assignment which satisfies a set of
constraints, where each constraint is constructed from a relation in Γ. CSPs over different
constraint languages form a nicely behaved class of problems that lends itself to complex-
ity classification results. Such results are an important testbed for studying the power of
algorithmic techniques and proving their limitations – A prime example is the dichotomy
theorem for finite-domain CSPs that was conjectured by Feder and Vardi [28] and inde-
pendently proved by Bulatov [14] and Zhuk [54]. Here, all hardness results were known
since the work of Bulatov, Jeavons and Krokhin [15] and the algorithms of [14] and [54]
completed the proof of the conjecture. In between, lots of work went into studying the
problem from various algorithmic and algebraic angles, and many ideas emerging from this
project have been re-used in different contexts (such as infinite-domain CSPs [8] or promise
CSPs [42]). Optimization versions of the CSP such as MaxCSP and MinCSP (where the
goal is to find an assignment that maximises the number of satisfied constraints (MaxCSP)
or minimises the number of unsatisfied constraints (MinCSP)) and the generalization Valued
CSP (VCSP) have also been intensively studied. Some notable results include the proof
of that every finite-domain VCSP is either polynomial-time solvable or NP-complete [40],
and the optimal approximability result for finite-domain MaxCSP under the Unique Games
Conjecture [50]. One should note that even if the P/NP borderline for finite-domain VCSPs
is fully known, there are big gaps in our understanding of the corresponding FPT/W[1]
borderline (with parameter solution weight). The situation is even worse if we consider
infinite-domain optimization versions of the CSPs, since we cannot expect to get a full
picture of the P/NP borderline even for the basic CSP problem [9].

In the parameterized complexity world, MinCSP is a natural problem to study. Sub-
problems that have gained attraction include Boolean constraint languages [13, 37, 51],
Dechter et al.’s [25] simple temporal problem (STP) [22], linear inequalities [5] and linear
equations [20, 24], to list a few. Highly interesting results have emerged from studying the
parameterized complexity of problems like these. For instance, the recent dichotomy for
MinCSPs over the Boolean domain by Kim et al. [37] was obtained using a novel technique
called directed flow augmentation. Recent work has indicated temporal CSPs as a possible
next step [27, 38]. Temporal CSPs are CSPs where the relations underlying the constraints
are first-order definable in (Q; <). The computational complexity of temporal CSPs where
we fix the set of allowed constraints exhibits a dichotomy: every such problem is either
polynomial-time solvable or NP-complete [11]. The MinCSP problem for temporal CSPs
is closely related to a number of graph separation problems. For example, if we take the
rationals as the domain and allow constraints ≤ and <, the MinCSP problem is equivalent
to Directed Subset Feedback Arc Set [39], a problem known to be fixed-parameter
tractable for two different, but both quite involved reasons [17, 39]. If we allow the relations
≤ and ̸=, we obtain a problem equivalent to Directed Symmetric Multicut, whose

K. K. Dabrowski, P. Jonsson, S. Ordyniak, G. Osipov, M. Pilipczuk, and R. Sharma 11:3

parameterized complexity is identified as the main open problem in the area of directed graph
separation problems [27, 39]. Another related way forward is to analyse the MinCSP for
Allen’s interval algebra. Allen’s interval algebra is a highly influential formalism within AI
and qualitative reasoning that has numerous applications, e.g. in planning [4, 48, 49], natural
language processing [26, 52] and molecular biology [31]. This CSP uses closed intervals with
rational endpoints as domain values and employs a set A of 13 basic comparison relations
such as “precedes” (one interval finishes before the other starts) or “during” (one interval
is a strict subset of the other); see Table 1. Formally speaking, the CSP for the interval
algebra is not a temporal CSP, since the underlying domain is based on intervals instead
of points. This difference is important: complexity classifications for the interval algebra
have been harder to obtain than for temporal constraints. There are full classifications for
binary relations [41] and for first-order definable constraint languages containing all basic
relations [10]; a classification for all first-order definable constraint languages appears remote.

Our contributions. The aim in this paper is to initiate a study of MinCSP in the context of
Allen’s interval algebra. Obtaining a full parameterized complexity classification for Allen’s
interval algebra would entail resolving the status of Directed Symmetric Multicut and
we do not aim at this very ambitious task. Instead, we restrict ourselves to languages that
are subsets of A and do not consider more involved expressions (say, first-order logic) built
on top of A. Even in this limited quest, we are able to uncover new relations to graph
separation problems, and new areas of both tractability and intractability. One of the main
ingredients for both our tractability and intractability results is a particular characterization
of unsatisfiable instances of CSP(A). A combinatorial analysis of the relations in A allows
us to identify the minimal obstructions given by certain arc-labelled mixed cycles of the
instance. That is, for certain key subsets Γ ⊆ A, we provide a complete description of bad
cycles such that an instance of CSP(Γ) is satisfiable if and only if it does not contain a
bad cycle. This allows us to show that MinCSP(Γ) is equivalent to the problem of finding
a minimum set of arcs that hit every bad cycle in an arc-labelled mixed graph. We prove
that there are seven inclusion-wise maximal subsets Γ of A such that MinCSP(Γ) is in
FPT, and that MinCSP(Γ) is W[1]-hard in all other cases. We show that MinCSP(A)
is not approximable in polynomial time within any constant under the UGC. In fact, we
prove this to hold for MinCSP(r) whenever r ∈ A \ {≡}. As a response to this, we suggest
the use of fixed-parameter approximation algorithms. We show that MinCSP(A) admits
such an algorithm with approximation ratio 2 and a substantially faster algorithm with
approximation ratio 4. We describe the results in greater detail below.

Intractability results. Our intractability results are based on novel W[1]-hardness results
for a variety of natural paired and simultaneous cut and separation problems, which we
believe to be of independent interest. Here, the input consists of two (directed or undirected)
graphs and the task is to find a “generalized” cut that extends to both graphs. The two
input graphs share some arcs/edges that can be deleted simultaneously at unit cost, and
the goal is to compute a set of k arcs/edges that is a cut in both graphs. Both paired and
simultaneous problems have recently received attention from the parameterized complexity
community [1, 2, 37]. In the FPT/W[1]-hardness dichotomy for the Boolean domain [37],
the fundamental difficult problem is Paired Cut (proven to be W[1]-hard by Marx and
Razgon [47]): given an integer k and a directed graph G with two terminals s, t ∈ V (G) and
some arcs grouped into pairs, delete at most k pairs to cut all paths from s to t. An intuitive
reason why Paired Cut is difficult can be seen as follows. Assume G contains two long

IPEC 2023

11:4 Parameterized Complexity Classification for Interval Constraints

st-paths P and Q and the arcs of P are arbitrarily paired with the arcs of Q. Then, one
cuts both paths with a cost of only one pair, but the arbitrary pairing of the arcs allow us to
encode an arbitrary permutation – which is very powerful for encoding edge-choice gadgets
when reducing from Multicoloured Clique. Our strategy for proving W[1]-hardness
of paired problems elaborates upon this idea. In this case, the needed gadgets are quite
succinct and their construction is simplified by the fact that we can recycle ideas from [24].
Our hardness proofs for simultaneous problems also use the same underlying idea, but they
are much more complicated. The simultaneous setting is obviously not as versatile as the
arbitrary pairing of Paired Cut. However, the possibility of choosing common arcs/edges
while deleting them at unit costs still leaves enough freedom to encode arbitrary permutations.
Such permutations enable us to construct edge-choice gadgets by “simulating” the low-level
features that are available for free in paired problems. The resulting construction is complex
and appears to contain ideas that may be useful for proving hardness of other kinds of
simultaneous problems.

Altogether, we obtain novel W[1]-hardness results for Paired Cut Feedback Arc Set,
Simultaneous st-Separator, Simultaneous Directed st-Cut, and Simultaneous
Directed Feedback Arc Set. This allows us to identify six intractable fragments that
are subsets of basic interval relations: {m, r1} for r1 ∈ {≡, s, f}, {d, r2} for r2 ∈ {o, p} and
{p, o}. The hardness reduction for {m, r1}, is based on the hardness of Paired Cut and
Paired Cut Feedback Arc Set. The other hardness results are based on reductions
from Simultaneous Directed Feedback Arc Set, whose W[1]-hardness is shown by
a reduction from Simultaneous st-Separator. The reductions from Simultaneous
Directed Feedback Arc Set are non-trivial but both their presentation and their
correctness proofs are highly simplified by our concrete descriptions of bad cycles.

Tractability results. We identify seven maximal tractable sets of basic interval relations:
{m, p} and {r1, r2, ≡} for r1 ∈ {s, f} and r2 ∈ {p, d, o}. All problems are handled by
reductions to variants of Directed Feedback Arc Set (DFAS). DFAS and variations
are extensively studied in parameterized complexity [6, 12, 16, 17, 29, 30, 45, 46]. DFAS is
equivalent to MinCSP(<), and a variant particularly important in our work is Sub-DFAS
equivalent to MinCSP(<, ≤), where the goal is to destroy only directed cycles that have
a <-arc. To show that MinCSP(m, p) is in FPT, we use a straightforward reduction to
MinCSP(<, =) which, in turn, reduces to MinCSP(<, ≤).

For the remaining six tractable cases, we reduce them all to a new variant of DFAS called
Mixed Feedback Arc Set with Short and Long Arcs (LS-MFAS). The input is a
mixed graph with edges and long and short arcs. Forbidden cycles in this graph are of two
types: (1) cycles with at least one short arc, no long arcs, and all short arcs in the same
direction, and (2) cycles with at least one long arc, all long arcs in the same direction, but
the short arcs can be traversed in arbitrary direction. One intuitive way to think about the
problem is to observe that a graph G has no forbidden cycle if there exists a placement of
the vertices on the number line with certain distance constraints represented by the edges
and arcs. Vertices connected by edges (which correspond to ≡-constraints) should be placed
at the same point. If there is an arc (u, v), we need to place u before v. Moreover, if the arc
is long, then the distance from u to v should be big (say, greater than twice the number of
vertices), while is the arc is short, then the distance from u to v should be small (say, at
most 1). The reduction from MinCSP(r1, r2, ≡) to LS-MFAS creates a mixed graph with
edges for ≡-constraints, short arcs for r1-constraints and long arcs for r2-constraint. For
correctness, consider for example the case with r1 = s and r2 = p. Forbidden cycles of the first

K. K. Dabrowski, P. Jonsson, S. Ordyniak, G. Osipov, M. Pilipczuk, and R. Sharma 11:5

and the second kind imply an unsatisfiable order on the right and left endpoints, respectively.
On the other hand, if bad cycles are absent, we can assign intervals as follows: if two variables
are ≡-connected, they are assigned the same interval, if they are s-connected, their intervals
have the same left endpoints, left endpoints are ordered according to p-constraints, and the
right endpoints of s-connected intervals are ordered according to the s-constraints.

Our algorithm for LS-MFAS builds upon the algorithm of [39] for Sub-DFAS. By
iterative compression (see e.g. Chapter 4 in [21]) and branching, we may assume access to
k + 1 vertices that intersect all forbidden cycles, and we know their relative positions in the
graph obtained after deleting a hypothetical optimal solution. The aforementioned “placing
on a line” way of phrasing the lack of forbidden cycles is the main reason why this leads to a
complete algorithm. In the next step, we try to place all remaining vertices relative to the
terminals while breaking at most k distance constraints. Note that the number of ways in
which a vertex can relate to a terminal is constant: it may be placed at a short/long distance
before/after the terminal, or in the same position. Thus, we can define O(k) types for each
vertex, and the types determine whether distance constraints are satisfied or not. The optimal
type assignment is then obtained by a reduction to Bundled Cut with pairwise-linked
deletable arcs, a workhorse problem shown to be fixed-parameter tractable in [37]. We
remark that our algorithms also handle the weighted versions of the problems.

Approximation results. In response to the negative complexity results for MinCSP(A),
we consider approximation algorithms. We show that MinCSP(A) is not approximable in
polynomial time within any constant under the UGC. We relax the restrictions even more by
allowing our approximation algorithms to run in fixed-parameter tractable time. We show
that MinCSP(A) admits such an algorithm with c = 2 and a substantially faster algorithm
with c = 4. Hence, fpt-approximation is much more powerful than ordinary polynomial-time
approximation in this case. These results are based on the observation that every relation
in A can be defined as a conjunction of {<, =}-constraints on the endpoints. In the relaxation,
we disregard conjunctions and view all {<, =}-constraints as an instance of MinCSP(<, =),
which is then reduced to Sub-DFAS. By invoking the Sub-DFAS algorithm of [39], one
obtains a 2-approximation algorithm for the weighted variant of the problem.

Roadmap. We present the necessary preliminaries in Section 2. Section 3 is a bird’s eye
view of our results for the parameterized complexity and approximability of MinCSP(Γ)
and the technical details are collected in the following sections. We describe the minimal
obstructions to satisfiability for certain subsets of A in Section 4. These results are essential
for connecting the MinCSP(A) problem with the graph-oriented view that we use. We
complete our dichotomy result by a number of fixed-parameter algorithms in Section 5 and a
collection of W[1]-hardness results in Section 6. We conclude the paper with a discussion of
our results and future research directions in Section 7. This is a shortened version of the full
paper, which can be found on arXiv [23].

2 Preliminaries

In this section, we briefly present the rudiments of parameterized complexity, define the CSP
and MinCSP problems, and provide some basics concerning interval relations. Before we
begin, we need some terminology and notation for graphs. Let G be a (directed or undirected)
graph; we allow graphs to contain loops. We denote the set of vertices in G by V (G). If G is
undirected, then E(G) denotes the set of edges in G. If G is directed, then A(G) denotes the

IPEC 2023

11:6 Parameterized Complexity Classification for Interval Constraints

Table 1 The thirteen basic relations in Allen’s Interval Algebra. The endpoint relations I− < I+

and J− < J+ that are valid for all relations have been omitted.

Basic relation Example Endpoint Relations

I precedes J p iii I+ < J−

J preceded by I pi jjj

I meets J m iiii I+ = J−

J met-by I mi jjjj

I overlaps J o iiii I− < J− < I+ < J+

J overlapped-by I oi jjjj

I during J d iii I− > J−, I+ < J+

J includes I di jjjjjjj

I starts J s iii I− = J−, I+ < J+

J started by I si jjjjjjj

I finishes J f iii I+ = J+, I− > J−

J finished by I fi jjjjjjj

I equals J ≡ iiii I− = J−, I+ = J+

jjjj

set of arcs in G, and E(G) denotes the set of edges in the underlying undirected graph of G.
We use uv to denote an undirected edge with end-vertices u and v. We use (u, v) to denote
a directed arc from u to v; u is the tail and v is the head. For X ⊆ E(G), we write G − X to
denote the directed graph obtained by removing all edges/arcs corresponding to X from G

if G is undirected and A(G − X) = A(G) \ {(u, v), (v, u) | {u, v} ∈ X}) if G is directed. If
X ⊆ V (G), then we let G − X = G[V (G) \ X] be the subgraph induced in G by V (G) \ X.
An st-cut in G is a set of edges/arcs X such that the vertices s and t are separated in G − X.

A parameterized problem is a subset of Σ∗ × N, where Σ is the input alphabet. The
parameterized complexity class FPT contains the problems decidable in f(k)·nO(1) time, where
f is a computable function and n is the instance size. Reductions between parameterized
problems need to take the parameter into account. To this end, we use parameterized
reductions (or fpt-reductions). Consider two parameterized problems L1, L2 ⊆ Σ∗ × N. A
mapping P : Σ∗ × N → Σ∗ × N is a parameterized reduction from L1 to L2 if (1) (x, k) ∈ L1
if and only if P ((x, k)) ∈ L2, (2) the mapping can be computed in f(k) · nO(1) time for some
computable function f , and (3) there is a computable function g : N → N such that for all
(x, k) ∈ Σ∗ × N, if (x′, k′) = P ((x, k)), then k′ ≤ g(k). We will sometimes prove that certain
problems are not in FPT. The class W[1] contains all problems that are fpt-reducible to
Independent Set parameterized by the number of vertices in the independent set. Showing
W[1]-hardness (by an fpt-reduction) for a problem rules out the existence of an fpt algorithm
under the standard assumption that FPT ̸= W[1].

We continue by defining CSPs. A constraint language Γ is a set of relations over a
domain D. Each relation R ∈ Γ has an associated arity r ∈ N and R ⊆ Dr. All relations
considered in this paper are binary and all constraint languages are finite. An instance I
of CSP(Γ) consists of a set of variables V (I) and a set of constraints C(I) of the form
R(x, y), where R ∈ Γ and x, y ∈ V (I). To simplify notation, we may write R(x, y) as xRy.
An assignment φ : V (I) → D satisfies a constraint R(x, y) if (φ(x), φ(y)) ∈ R and violates
R(x, y) if (φ(x), φ(y)) /∈ R. The assignment φ is a satisfying assignment (or a solution) if it
satisfies every constraint in C(I).

K. K. Dabrowski, P. Jonsson, S. Ordyniak, G. Osipov, M. Pilipczuk, and R. Sharma 11:7

CSP(Γ)

Instance: An instance I of CSP(Γ).
Question: Does I admit a satisfying assignment?

The value of an assignment φ for I is the number of constraints in C(I) satisfied by φ.
For any subset of constraints X ⊆ C(I), let I −X denote the instance with V (I −X) = V (I)
and C(I − X) = C(I) \ X. The (parameterized) almost constraint satisfaction problem
(MinCSP(Γ)) is defined as follows:

MinCSP(Γ)

Instance: An instance I of CSP(Γ) and an integer k.
Parameter: k.
Question: Is there a set X ⊆ C(I) such that |X| ≤ k and I −X is satisfiable?

Next, we review the basics of Allen’s interval algebra [3] (IA). Its domain is the set I of
all pairs (x, y) ∈ Q2 such that x < y, i.e. I can be viewed as the set of all closed intervals
[a, b] of rational numbers. If I = [a, b] ∈ I, then we write I− for a and I+ for b. Let A
denote the set of 13 basic relations that are presented in Table 1, and let 2A denote the 8192
binary relations that can be formed by taking unions of relations in A. The complexity of
CSP(Γ) is known for every Γ ⊆ 2A [41] and in each case CSP(X) is either polynomial-time
solvable or NP-complete. In particular, CSP(A) is in P. When considering subsets Γ ⊆ A,
note that any constraint xriy is equivalent to yrx for r ∈ {p, m, o, d, s, f}, so we may assume
that r ∈ Γ if and only if ri ∈ Γ. Furthermore, for the remainder of the paper, we may assume
A = {p, m, o, d, s, f, ≡}.

When studying MinCSP and its parameterized complexity, it is convenient to allow crisp
constraints, i.e. constraints that cannot be deleted. Formally, for a language Γ ⊆ A and a
relation r ∈ Γ, we say that Γ supports crisp r-constraints if, for every value of the parameter
k ∈ N, we can construct an instance Ir of MinCSP(Γ) with variables x, y ∈ V (Ir) (and
possibly some auxiliary variables) such that the constraint xry is equivalent to Ir − X for all
X ⊆ C(I) such that |X| ≤ k. Then, if we want to enforce a constraint xry in an instance of
MinCSP(Γ), we can use Ir with fresh variables V (I) \ {x, y} in its place. Straightforward
reasoning about interval constraints readily shows that every r ∈ A supports crisp constraints,
and this also holds for the constraint language {<, =}.

3 Overview

In this section we prove the dichotomy theorem for the parameterized complexity of
MinCSP(Γ) for every subset Γ ⊆ A of interval relations. We also discuss constant-factor ap-
proximation algorithms for MinCSP(A). Some observations reduce the number of subsets of
relations that we need to consider in the classification. For the first one, we need a simplified
definition of implementations. More general definitions are used in e.g. [33] and [35].

▶ Definition 1. Let Γ be a constraint language and r be a binary relation over the same
domain. A (simple) implementation of a relation r in Γ is an instance Cr of CSP(Γ) with
primary variables x1, x2 and, possibly, auxiliary variables y1, . . . , yℓ such that:

if an assignment φ satisfies Cr, then it satisfies the constraint x1rx2;
if an assignment φ′ does not satisfy x1rx2, then it cannot be extended to the auxiliary
variables y1, . . . , yℓ so that it satisfies Cr.
if an assignment φ′ does not satisfy x1rx2, then it can be extended to the auxiliary variables
y1, . . . , yℓ so that all but one constraint in Cr are satisfied.

In this case we say that Γ implements r.

IPEC 2023

11:8 Parameterized Complexity Classification for Interval Constraints

Intuitively, we can replace every occurrence of a constraint xry with its implementation
in Γ while preserving the cost of making the instance satisfiable. This intuition is made
precise in the following lemma, and identifying the two implementations in Lemma 3 is left
to the reader.

▶ Lemma 2 (Proposition 5.2 in [35]). Let Γ be a constraint language that implements a
relation r. If MinCSP(Γ) is in FPT, then so is MinCSP(Γ ∪ {r}). If MinCSP(Γ ∪ {r}) is
W[1]-hard, then so is MinCSP(Γ).

▶ Lemma 3 (Implementations). Let Γ ⊆ A be a subset of interval relations. If Γ contains m,
then Γ implements p, and if Γ contains f and s, then Γ implements d and o.

Another observation utilizes the symmetry of interval relations. By switching the left
and the right endpoints of all intervals in an instance I of MinCSP(A) and then negating
their values, we obtain a reversed instance IR. Formally, instance IR of CSP(A) has the
same set of variables as I, and contains a constraint uf(r)v for every urv in C(I), where
f : A → A is defined as f(r) = ri for r ∈ {m, p, o}, f(≡) =≡, f(d) = d, f(s) = f and f(f) = s.

▶ Lemma 4 (Lemma 4.2 of [41]). An instance I of CSP(A) is satisfiable if and only if the
reversed instance IR is satisfiable.

To obtain our results, we use combinatorial tools and represent an instance I of CSP(A)
as an arc-labelled mixed graph GI , i.e. a graph that contains edges for symmetric constraints
and labelled arcs for asymmetric ones. More precisely, the graph GI is obtained by introducing
all variables of I as vertices, adding directed arcs (u, v) labelled with r ∈ A \ {≡} for every
constraint urv in C(I), and undirected edges uv for every constraint u ≡ v in I. Note
that GI may have parallel arcs with different labels and may contain loops. The undirected
graph underlying GI is called the primal graph of I; we allow the primal graph to contain
loops and parallel edges (in both cases, this will mean the primal graph contains a cycle).
The advantage of the graph representation is supported by the following lemma:

▶ Lemma 5 (Cycles). Let I be an inclusion-wise minimal unsatisfiable instance of CSP(A)
(i.e. removing any constraint of I results in a satisfiable instance). Then the primal graph
of I is a cycle.

The proof of the lemma is deferred to Section 4. All cycles discussed in the rest of
the section are cycles of the primal graph. From the combinatorial point of view, minimal
unsatisfiable instances are bad cycles in the labelled graph. For example, in MinCSP(p),
the bad cycles correspond to the directed cycles. For MinCSP(p, ≡), the bad cycles contain
at least one p-arc and all p-arcs in the same direction. Thus, MinCSP(Γ) can now be cast
as a certain feedback edge set problem – our goal is to find a set of k edges in the primal
graph that intersects all bad cycles. We present such a characterization for several cases in
Section 4.

Our algorithmic results can be summarized as follows.

▶ Lemma 6. MinCSP(m, p) and MinCSP(r1, r2, ≡) are in FPT for r1 ∈ {s, f} and r2 ∈
{p, o, d}.

The algorithm for MinCSP(m, p) is obtained using a simple reduction to Subset Dir-
ected Feedback Arc Set.

K. K. Dabrowski, P. Jonsson, S. Ordyniak, G. Osipov, M. Pilipczuk, and R. Sharma 11:9

Subset Directed Feedback Arc Set (Sub-DFAS)

Instance: A directed graph G, a subset of red arcs R ⊆ A(G), and an integer k.
Parameter: k.
Question: Is there a subset Z ⊆ A(G) of size at most k such that G − Z contains no

directed cycles with at least one red arc?

Chitnis et al. [17] have proved that Sub-DFAS is solvable in O∗(2O(k3)) time. The
algorithm for the remaining cases is more complicated and relies on the bad cycle characteriz-
ation in Section 4 and a sophisticated modification of the algorithm for Sub-DFAS from [39]
in Section 5.

For the negative results, we start by proving W[1]-hardness for certain paired and
simultaneous graph cut problems, and we identify Γ ⊆ A such that paired or simultaneous
problems reduce to MinCSP(Γ). For intuition, consider a constraint x ≡ y. If we consider
the left and the right endpoints separately, then ≡ implies two equalities: x− = y− and
x+ = y+. Together with another relation (e.g. m), this double-equality relation can be used
to encode the pairing of the edges of two graphs (namely, the left-endpoint graph and the
right-endpoint graph). We note that the double-equality relation is also the cornerstone of all
hardness results in the parameterized complexity classification of Boolean MinCSP [37].
Lemma 7 is based on paired problems and Lemma 8 is based on simultaneous problems.

▶ Lemma 7. MinCSP(m, ≡), MinCSP(m, s) and MinCSP(m, f) are W[1]-hard.

▶ Lemma 8. MinCSP(d, o), MinCSP(p, o) and MinCSP(d, p) are W[1]-hard.

Combining all results above, we are ready to present the full classification.

▶ Theorem 9 (Full classification). Let Γ ⊆ A be a subset of interval relations. Then
MinCSP(Γ) is in FPT if Γ ⊆ {m, p} or Γ ⊆ {r1, r2, ≡} for any r1 ∈ {s, f} and r2 ∈ {p, o, d},
and W[1]-hard otherwise.

W[1]-hardness of MinCSP(A) motivates us to look at approximation algorithms for
this problem. Our first observation is that MinCSP(r) for any r ∈ A \ {≡} is NP-hard to
approximate within any constant under the Unique Games Conjecture (UGC) of Khot [34].
This follows by combining two facts: Lemma 11, which implies that an instance I of CSP(r)
is satisfiable if and only if the arc-labelled graph GI is acyclic, and Corollary 1.2 in [32],
which states that under the UGC, Directed Feedback Arc Set (DFAS) is NP-hard to
approximate within any constant [32]. If we allow the approximation algorithm to run in fpt
time, then we obtain the following result.

▶ Theorem 10. MinCSP(A) is 2-approximable in O∗(2O(k3)) time and 4-approximable in
O∗(2O(k)) time.

Proof sketch. We obtain the algorithms by reducing the problem to Sub-DFAS and invoking
the exact algorithm of [21] and the faster O∗(2O(k)) time 2-approximation algorithm of [44],
respectively. There are straightforward reductions from MinCSP(<, =) to MinCSP(≤, =)
to Sub-DFAS, so we focus on the reduction from MinCSP(A) to MinCSP(<, =). Let (I, k)
be an instance of MinCSP(A). Replace every constraint x{o}y by its implementation in
{s, f} according to Lemma 3. By Lemma 2, this does not change the cost of the instance.
Using Table 1, we can rewrite all constraints of I ′ as conjunctions of two atomic constraints
of the form x < y or x = y. Disregarding the pairing, let S be the set of all atomic
constraints. Apply one of the MinCSP(<, =) algorithms to (S, 2k). On the one hand,

IPEC 2023

11:10 Parameterized Complexity Classification for Interval Constraints

deleting k constraints from I ′ corresponds to deleting at most 2k constraints in S. On the
other hand, if there is X ⊆ S, |X| ≤ 2k, such that S − X is satisfiable, define the set of
interval constraints X ′ such that at least one of the defining {<, =}-constraints is in X.
Noting that I − X ′ is satisfiable and |X ′| ≤ |X| ≤ 2k completes the proof. ◀

4 Bad Cycles

In this section, we sketch the proof of Lemma 5 and describe the minimal obstructions to
satisfiability for certain subsets of A, along with a brief sketch of why these are the minimal
obstructions.

▶ Lemma 5 (Cycles). Let I be an inclusion-wise minimal unsatisfiable instance of CSP(A)
(i.e. removing any constraint of I results in a satisfiable instance). Then the primal graph
of I is a cycle.

The proof of Lemma 5 starts by taking a minimal unsatisfiable instance I. Using Table 1,
we write I as an instance I ′ of the point algebra (PA) [53] CSP, which takes rationals Q as the
variable domain and we use only the basic constraint language {<, =}, where the relations
are interpreted in the obvious way. This instance I ′ must contain a minimal unsatisfiable
sub-instance I ′′ of the point algebra, which has a cycle as its primal graph. We then map
the constraints in I ′′ back to the constraints in I that implied them, and find that I must
also have a cycle as its primal graph.

▶ Lemma 11 (Bad Cycles). Let I be an instance of CSP(r1, r2) for some r1, r2 ∈ A, and
consider the arc-labelled mixed graph GI . Then I is satisfiable if and only if GI does not
contain any bad cycles described below.

1. If r1 = d and r2 = p, then the bad cycles are cycles with p-arcs in the same direction and
no d-arcs meeting head-to-head.

2. If r1 = d and r2 = o, then the bad cycles are cycles with all d-arcs in the same direction
and all o-arcs in the same direction (the direction of the d-arcs may differ from that of
the o-arcs).

3. If r1 = o and r2 = p, then the bad cycles are (a) directed cycles of o-arcs and (b) cycles
with all p-arcs in the forward direction, with every consecutive pair of o-arcs in the reverse
direction separated by a p-arc (this case includes directed cycles of p-arcs).

4. If r1 ∈ {f, s} and r2 ∈ {d, o, p}, then the bad cycles are (a) directed cycles of r1-arcs
and (b) cycles with at least one r2-arc and all r2-arcs in the same direction (and r1-arcs
directed arbitrarily).

5 FPT Algorithms

We prove Lemma 6 in this section. The fpt algorithm for {m, p} is simple and we omit the
details: it works by first reducing the problem to MinCSP(<, =) and then to Sub-DFAS.
The remaining six cases are handled by reducing them to a fairly natural generalization of
Directed Feedback Arc Set problem, and showing that this problem is in FPT.

Lemma 11.4 suggests that all six remaining fragments allow uniform treatment. Indeed,
to check whether an instance of CSP(r1, r2, ≡) is satisfiable, one can identify all variables
constrained to be equal. This corresponds exactly to contracting all edges in the graph GI .
Then I becomes an instance of CSP(r1, r2), and the criterion of Lemma 11.4 applies. This
observation allows us to formulate MinCSP(r1, r2, ≡) as a variant of feedback arc set on
mixed graphs.

K. K. Dabrowski, P. Jonsson, S. Ordyniak, G. Osipov, M. Pilipczuk, and R. Sharma 11:11

▶ Definition 12. Consider a mixed graph G with arcs of two types – short and long – and a
walk W in G from u to v that may ignore direction of the arcs. The walk W is undirected if
it only contains edges, it is short if it contains a short arc but no long arcs, and it is long
if it contains a long arc. The walk W is directed if it is either short and all short arcs are
directed from u to v or if it is long and all long arcs are directed from u to v. If W is short
or long, but not directed, it is mixed.

Note that short arcs on a long-directed walk may be directed arbitrarily.

Mixed Feedback Arc Set with Short and Long Arcs (LS-MFAS)

Instance: A mixed graph G with the arc set A(G) partitioned into short As and long Aℓ,
and an integer k.

Parameter: k.
Question: Is there a set Z ⊆ E(G) ∪A(G) with |Z| ≤ k such that G− Z contains neither

short-directed cycles nor long-directed cycles?

The main result of this section is the following theorem.

▶ Theorem 13. LS-MFAS can be solved in O∗(2O(k8 log k)) time.

We see that Lemma 11.4 and Theorem 13 imply MinCSP(r1, r2, ≡) being in FPT whenever
r1 ∈ {s, f} and r2 ∈ {p, o, d}. It is informative to understand the structure of mixed graphs
without bad cycles in the sense of LS-MFAS. The proof of the following lemma is fairly easy
with the placing-vertices-on-the-number-line intuition from the introduction.

▶ Lemma 14. Let G be a mixed graph with long and short arcs. Then G contains no
long-directed cycles nor short-directed cycles if and only if there exists a pair of mappings
σ1, σ2 : V (G) → N such that
1. for every u, v ∈ V (G), u and v are connected by an undirected walk if and only if

(σ1, σ2)(u) = (σ1, σ2)(v);
2. for every u, v ∈ V (G), there exists a short (u, v)-walk in G if and only if σ1(u) = σ1(v);
3. for every u, v ∈ V (G), if there exists a short-directed (u, v)-walk in G, then σ2(u) < σ2(v);
4. for every u, v ∈ V (G), if there exists a long-directed (u, v)-walk in G, then σ1(u) < σ1(v).

We now introduce the technical machinery used in our algorithm for LS-MFAS.
We start by using iterative compression, a standard method in parameterized al-
gorithms (see e.g. Chapter 4 in [21]). This allows us to assume access to a set of k + 1 edges
and arcs intersecting every bad cycle. The problem resulting from iterative compression
reduces to Bundled Cut with pairwise-linked deletable edges, defined in [37] and solved
using the flow-augmentation technique of [36]. To describe Bundled Cut, let G be a
directed graph with two distinguished vertices s, t ∈ V (G). Let B be a family of pairwise
disjoint subsets of E(G), which we call bundles. The edges of

⋃
B are soft and the edges of

E(G) \
⋃

B are crisp. A set Z ⊆
⋃

B violates a bundle B ∈ B if Z ∩ B ̸= ∅ and satisfies B

otherwise.

Bundled Cut
Instance: A directed graph G, two distinguished vertices s, t ∈ V (G), a family B of

pairwise disjoint subsets of E(G), and an integer k.
Parameter: k.
Question: Is there an st-cut Z ⊆

⋃
B that violates at most k bundles?

IPEC 2023

11:12 Parameterized Complexity Classification for Interval Constraints

Table 2 Correspondence between edges, short arcs and long arcs of the LS-MFAS instance and
the arcs introduced in the reduction to Bundled Cut in Theorem 13.

i odd i even, j odd i even, j even

Edge uv
(i, j)→ (i, j) (i, j)→ (i, j) (i, j)→ (i, j)
(i, j)← (i, j) (i, j)← (i, j) (i, j)← (i, j)

Short (u, v) (i, j)→ (i, j) (i, j)→ (i, j) (i, j)→ (i, j + 1)
(i, 1)← (i, j) (i, 1)← (i, j) (i, 1)← (i, j)

Long (u, v) (i, 1)→ (i, 1) (i, j)→ (i + 1, 1) (i, j)→ (i + 1, 1)

In general, Bundled Cut is W[1]-hard even if all bundles are of size 2. However, there
is a special case of Bundled Cut that is tractable. Let (G, s, t, B, k) be a Bundled Cut
instance. A soft arc e is deletable if there is no crisp copy of e in G. An instance (G, s, t, B, k)
has pairwise-linked deletable arcs if for every B ∈ B and every two deletable arcs e1, e2 ∈ B,
there exists in G a path from an endpoint of one of the arcs e1, e2 to an endpoint of the
second of those arcs that does not use any arcs of B \ {B}. The assumption of pairwise-linked
deletable arcs makes Bundled Cut tractable.

▶ Theorem 15 (Theorem 4.1 of [38]). Bundled Cut instances with pairwise-linked deletable
arcs can be solved in O∗(2O(k4d4 log(kd))) time, where d is the maximum number of deletable
arcs in a single bundle.

Armed with Lemma 14 and Theorem 15, we are ready to prove the main result.

Proof of Theorem 13. Let (G, As, Aℓ, k) be an instance of LS-MFAS. By iterative com-
pression, we may assume that we have access to a set Y ⊆ V (G) of size at most k + 1 that
intersects all bad cycles. We refer to the vertices of Y as terminals.

Fix a hypothetical solution Z ⊆ A(G) ∪ E(G). Guess which pairs of terminals are
connected by undirected paths in G−Z and identify them. Define an ordering σ : Y → N×N
that maps terminals to

{(1, 1), . . . , (1, q1), · · · , (i, 1), . . . , (i, qi), · · · , (p, 1), . . . , (p, qp)}

such that the following hold. For every pair of terminals y, y′ ∈ Y , let σ(y) = (i, j) and
σ(y′) = (i′, j′) where (1) i = i′ if y and y′ are connected by a short path in G − Z, (2)
j < j′ if y reaches y′ by a short-directed path in G − Z, and (3) i < i′ if y reaches y′ by
a long-directed path in G − Z. Note that σ exists by Lemma 14. If an ordering satisfies
the conditions above, we say that it is compatible with G − Z. In what follows, we write
(i, j) < (i′, j′) to denote that (i, j) lexicographically precedes (i′, j′), i.e. either i = i′ and
j < j′ or i < i′.

For the algorithm, proceed by guessing an ordering σ, creating 2O(k log k) branches in
total. For each σ, create an instance (H := H(G, σ), B := B(G, σ), k) of Bundled Cut
as follows. Introduce two distinguished vertices s and t in H. For every vertex v ∈ V (G),
create vertices vi

1 in H for all odd i ∈ [2p + 1] and vertices vi
j in H for all even i ∈ [2p + 1]

and all j ∈ [2qi + 1]. Connect the vertices created above by downward arcs (vi
j , vi′

j′) for all
(i, j) > (i′, j′). For every terminal y, let σ(y) = (i, j), and add arcs (s, y2i

2j) and (y2i
2j+1, t) in

H. Using the rules below, create a bundle Be in B for every e ∈ E(G) ∪ A(G), add the newly
created arcs to H.

K. K. Dabrowski, P. Jonsson, S. Ordyniak, G. Osipov, M. Pilipczuk, and R. Sharma 11:13

For an edge e = uv, let Be consist of the arcs (ui
j , vi

j) and (vi
j , ui

j) for all (i, j).
For short arcs e = (u, v), let Be consist of the arcs (ui

j , vi
j) for all i, j such that i or j is

odd, the arcs (ui
j , vi

j+1) for all even i, j, and the arcs (vi
j , ui

1) for all i, j.
For long arcs e = (u, v), let Be consist of the arcs (ui

1, vi
1) for all odd i, and arcs the arcs

(ui
j , vi+1

1) for all even i and all j.
This completes the construction. Bundle construction rules are summarized in Table 2.
Observe that the downward arcs ensure that (H, B, k) has the pairwise-linked deletable arc
property. Moreover, the bundle size is O(k), so we can solve (H, B, k) in O∗(2O(k8 log k)) time.

We now sketch the correctness argument. Fix a guessed ordering σ. For any candidate
solution W in (H := H(G, σ), B = B(G, σ), k), the existence of downward arcs imply that
for every v ∈ V (G) there is a threshold (iv, jv) such that vj

i is reachable from s in H − W if
and only if (i, j) ≤ (iv, jv). This threshold is meant to indicate that v should be placed on
the line somewhere around the terminal x for which σ(x) = (⌊iv/2⌋, ⌊jv/2⌋). A short walk
from u to v in G projects, for every even i and even j, to a walk from uj

i to vj+1
i . A long

walk from u to v in G projects, for every odd i, to a walk from u1
i to v1

i . Together with the
fact that terminals intersect all forbidden cycles in G, this gives a correspondence between
forbidden cycles in G and st-paths in H. ◀

6 W[1]-hard Problems

Here, we show Lemmas 7 and 8. As the first and most challenging step, we show W[1]-hardness
for variants of paired and simultaneous graph cut problems from which we then reduce
to the hard variants of MinCSP(Γ). Our reductions will make use of the following well-
known problem, whose W[1]-hardness follows by a simple reduction from Multicoloured
Clique (see e.g. Exercise 13.3 in [21]).

Multicoloured Biclique (MC-BiClique)

Instance: An undirected graph G with a partition V (G) = A1 ⊎ . . . ⊎Ak ⊎B1 ⊎ . . . ⊎Bk,
where |Ai| = |Bi| = n for each i ∈ [k] and both ⊎i∈[k]Ai and ⊎i∈[k]Bi form
independent sets in G.

Parameter: k.
Question: Does G contain Kk,k as a subgraph, a.k.a. a multicoloured biclique?

6.1 Paired Problems
We consider the problems Paired Cut and Paired Cut Feedback Arc Set (PCFAS)
in what follows.

Paired Cut
Instance: Undirected graphs G1 and G2, vertices si, ti ∈ V (Gi), a set of disjoint edge

pairs B ⊆ E(G1)× E(G2), and an integer k.
Parameter: k.
Question: Is there a subset X ⊆ B such that |X| ≤ k and Xi = {ei | {e1, e2} ∈ X} is an

{si, ti}-cut in Gi for both i ∈ {1, 2}?

The PCFAS problem is similar, but G2 is directed and X2 is required to be such that
G2 − X2 is acyclic (instead of being an {s2, t2}-cut). We show W[1]-hardness of both
problems. Since both reductions are from MC-BiClique and quite similar, we start to
describe the common part of both reductions. Let I = (G, A1, . . . , Ak, B1, . . . , Bk, k) be
an instance of MC-BiClique. We define two directed graphs GA and GB as follows. GA

IPEC 2023

11:14 Parameterized Complexity Classification for Interval Constraints

contains the vertices sA and tA. Moreover, for every i ∈ [k], GA contains the vertices in
P A

i = {vi,1, . . . , vi,n−1}. For convenience, we let vi,0 = sA and vi,n = tA for every i ∈ [k].
Moreover, for every vertex ai,j and every i′ ∈ [k], GA contains the directed path P A

i,j,i′ from
vi,j−1 to vi,j that has one edge (using fresh auxiliary vertices) for every edge between ai,j

and a vertex in Bi′ . Therefore, we may assume in what follows that there is a bijection
between the edges of P A

i,j,i′ and the edges between ai,j and a vertex in Bi′ . This concludes the
description of GA. GB is defined very similarly to GA with the roles of the sets A1, . . . , Ak

and B1, . . . , Bk being reversed.
Finally, define a set B ⊆ E(GA) × E(GB) of bundles as follows. For every edge e =

{ai,j , bi′,j′} ∈ E(G), B contains the pair (eA, eB), where eA is the edge corresponding to e

on the path P A
i,j,i′ and eB is the edge corresponding to e on the path P B

i′,j′,i. This concludes
the construction and the following lemma shows its main property.

▶ Lemma 16. I = (G, A1, . . . , Ak, B1, . . . , Bk, k) is a yes-instance of MC-BiClique if and
only if there is a set X ⊆ B with |X| = k2 and XA = {e | (e, e′) ∈ X} is an (sA, tA)-cut in
GA and XB = {e′ | (e, e′) ∈ X} is an (sB , tB)-cut in GB.

The lemma above makes it relatively straightforward to show W[1]-hardness for Paired
Cut and PCFAS.

▶ Lemma 17. Paired Cut and PCFAS are W[1]-hard.

6.2 Simultaneous Problems
In this section we prove W[1]-hardness of several simultaneous cut problems. Our basis is
the following problem.

Simultaneous Separator (Sim-Separator)

Instance: Two directed graphs D1 and D2 with V = V (D1) = V (D2), vertices s, t ∈ V ,
and an integer k.

Parameter: k.
Question: Is there a subset X ⊆ V \ {s, t} of size at most k such that neither D1 −X nor

D2 −X contains a path from s to t?

We begin by proving that this problem is W[1]-hard in Theorem 18. We will then prove
that simultaneous variants of Directed st-Cut and Directed Feedback Arc Set are
W[1]-hard via reductions from Sim-Separator; these results can be found in Theorems 19
and 20, respectively. It will be convenient to use the term st-separator when working with
directed graphs: given a directed graph G = (V, E) and two vertices s, t ∈ V , we say that
X ⊆ V \ {s, t} is an st-separator if the graph G − X contains no directed path from s to t

and no directed path from t to s.

▶ Theorem 18. Sim-Separator is W[1]-hard even if both input digraphs are acyclic.

We continue by using the W[1]-hardness of Sim-Separator to prove W[1]-hardness of
the following two problems.

Simultaneous Directed st-Cut (Sim-Cut)

Instance: Two directed graphs D1 and D2 with V = V (D1) = V (D2), vertices s, t ∈ V ,
and an integer k.

Parameter: k.
Question: Is there a subset X ⊆ E(D1)∪E(D2) of size at most k such that neither D1−X

nor D2 −X contains a path from s to t?

K. K. Dabrowski, P. Jonsson, S. Ordyniak, G. Osipov, M. Pilipczuk, and R. Sharma 11:15

Simultaneous Directed Feedback Arc Set (Sim-DFAS)

Instance: Directed graphs D1, D2 with V = V (D1) = V (D2), and an integer k.
Parameter: k.
Question: Is there a subset X ⊆ E(D1)∪E(D2) of size at most k such that both D1 −X

and D2 −X are acyclic?

▶ Theorem 19. Sim-Cut is W[1]-hard even if both input digraphs are acyclic.

▶ Theorem 20. Sim-DFAS is W[1]-hard.

6.3 Intractable Fragments
We begin by proving that MinCSP(m, ≡) and MinCSP(m, s) are W[1]-hard. We introduce
two binary relations: let ≡− denote the left-equals relation and ≡+ denote the right-equals
relation, which hold for any pair of intervals with matching left endpoints and right endpoints,
respectively. Both relations can be implemented using only m as follows: {zmx, zmy}
implements x ≡− y where z is a fresh variable; similarly, {xmz, ymz} implements x ≡+ y.
Thus, we may assume that the relations ≡− and ≡+ are available whenever we have access
to the m relation. We are now ready to present the reduction for MinCSP(m, ≡), which will
be from the Paired Cut problem that was shown to be W[1]-hard in Lemma 17.

▶ Theorem 21. MinCSP(m, ≡) is W[1]-hard.

We continue by showing that MinCSP(m, s) is W[1]-hard. First note even though we
no longer have access to ≡, we can add the constraints x ≡− y and x ≡+ y which imply
x ≡ y. As previously, the relations ≡− and ≡+ can be implemented using only m. We
remark that {x ≡− y, x ≡+ y} is not an implementation of ≡, so we can only use ≡ in crisp
constraints. Our reduction is based on the PCFAS problem, which was shown to be W[1]-
hard in Lemma 17. While the reduction is quite similar to the reduction for MinCSP(m, ≡),
it is non-trivial to replace the role of ≡ with s.

▶ Theorem 22. MinCSP(m, s) is W[1]-hard.

We finally show the W[1]-hardness of MinCSP(d, p), MinCSP(d, o), and MinCSP(p, o)
via parameterized reductions from Sim-DFAS (which is a W[1]-hard problem by Theorem 20).

▶ Theorem 23. MinCSP(d, p), MinCSP(d, o), and MinCSP(p, o) are W[1]-hard.

7 Discussion

We have initiated a study of the parameterized complexity of MinCSP for Allen’s interval
algebra. We prove that MinCSP restricted to the relations in A exhibits a dichotomy:
MinCSP(Γ) is either fixed-parameter tractable or W[1]-hard when Γ ⊆ A. Even though
the restriction to the relations in A may seem severe, one should keep in mind that a
CSP instance over A is sufficient for representing definite information about the relative
positions of intervals. In other words, such an instance can be viewed as a data set of interval
information and the MinCSP problem can be viewed as a way of filtering out erroneous
information (that may be the result of contradictory sources of information, noise in the
measurements, human mistakes etc.) Various ways of “repairing” unsatisfiable data sets of
qualitative information have been thoroughly discussed by many authors; see, for instance,
[7, 18, 19] and the references therein.

IPEC 2023

11:16 Parameterized Complexity Classification for Interval Constraints

Proving a full parameterized complexity classification for Allen’s interval algebra is
hindered by a barrier: such a classification would settle the parameterized complexity of
Directed Symmetric Multicut, and this problem is considered to be one of the main
open problems in the area of directed graph separation problems [27, 39]. This barrier comes
into play even in very restricted cases: as an example, it is not difficult to see that MinCSP
for the two Allen relations (f ∪ fi) and (f ∪ ≡) is equivalent to the MinCSP problem for the
two PA relations ̸= and ≤ and thus equivalent to Directed Symmetric Multicut.

One way of continuing this work without necessarily settling the parameterized complexity
of Directed Symmetric Multicut is to consider fpt approximability: it is known that
Directed Symmetric Multicut is 2-approximable in fpt time [27]. Thus, a possible
research direction is to analyse the fpt approximability for MinCSP(Γ) when Γ is a subset
of 2A or, more ambitiously, when Γ is first-order definable in A. A classification that
separates the cases that are constant-factor fpt approximable from those that are not may
very well be easier to obtain than mapping the FPT/W[1] borderline. There is at least
one technical reason for optimism here, and we introduce some definitions to outline this
idea. An n-ary relation R is said to have a primitive positive definition (pp-definition) in a
structure Γ if it can be first-order defined by only using the relations in Γ together with the
equality relation and the operators existential quantification and conjunction. If the equality
relation is not needed, then we say that R has an equality-free primitive positive definition
(efpp-definition) in Γ. Bonnet et al. [13, Lemma 10] have shown that constant-factor fpt
approximability is preserved by efpp-definitions [13], i.e. if R is efpp-definable in Γ and
MinCSP(Γ) is constant-factor fpt approximable, then MinCSP(Γ ∪ {R}) is also constant-
factor fpt approximable. Bonnet et al. focus on Boolean domains, but it is clear that their
Lemma 10 works for problems with arbitrarily large domains. Lagerkvist [43, Lemma 5] has
shown that in most cases one can use pp-definitions instead of efpp-definitions. This implies
that the standard algebraic approach via polymorphisms (that, for instance, underlies the
full complexity classification of finite-domain CSPs [14, 54]) often becomes applicable when
analysing constant-factor fpt approximability. One should note that, on the other hand, the
exact complexity of MinCSP is only preserved by much more limited constructions such as
proportional implementations (see Section 5.2. in [35]). We know from the literature that this
may be an important difference: it took several years after Bonnet et al.’s classification of
approximability before the full classification of exact parameterized complexity was obtained
using a much more complex framework [37]. It is also worth noting that parameterized
approximation results for MinCSP may have very interesting consequences, e.g. [13] resolved
the parameterized complexity of Even Set, which was a long-standing open problem.

References

1 Akanksha Agrawal, Daniel Lokshtanov, Amer E. Mouawad, and Saket Saurabh. Simultaneous
feedback vertex set: A parameterized perspective. ACM Transactions on Computation Theory,
10(4):1–25, 2018.

2 Akanksha Agrawal, Fahad Panolan, Saket Saurabh, and Meirav Zehavi. Simultaneous feedback
edge set: a parameterized perspective. Algorithmica, 83(2):753–774, 2021.

3 James F. Allen. Maintaining knowledge about temporal intervals. Communications of the
ACM, 26(11):832–843, 1983.

4 James F. Allen and Johannes A. G. M. Koomen. Planning using a temporal world model.
In Proc. 8th International Joint Conference on Artificial Intelligence (IJCAI-1983), pages
741–747, 1983.

K. K. Dabrowski, P. Jonsson, S. Ordyniak, G. Osipov, M. Pilipczuk, and R. Sharma 11:17

5 Kristóf Bérczi, Alexander Göke, Lydia Mirabel Mendoza Cadena, and Matthias Mnich.
Resolving infeasibility of linear systems: A parameterized approach. CoRR, abs/2209.02017,
2022.

6 Benjamin Bergougnoux, Eduard Eiben, Robert Ganian, Sebastian Ordyniak, and M. S.
Ramanujan. Towards a polynomial kernel for directed feedback vertex set. Algorithmica,
83(5):1201–1221, 2021.

7 Leopoldo Bertossi and Jan Chomicki. Query answering in inconsistent databases. In Logics
for Emerging Applications of Databases, pages 43–83. Springer, 2004.

8 Manuel Bodirsky. Complexity of Infinite-Domain Constraint Satisfaction. Cambridge University
Press, 2021.

9 Manuel Bodirsky and Martin Grohe. Non-dichotomies in constraint satisfaction complexity. In
Proc. 35th International Colloquium on Automata, Languages and Programming (ICALP-2008),
pages 184–196, 2008.

10 Manuel Bodirsky, Peter Jonsson, Barnaby Martin, Antoine Mottet, and Zaneta Semanisinová.
Complexity classification transfer for CSPs via algebraic products. CoRR, abs/2211.03340,
2022.

11 Manuel Bodirsky and Jan Kára. The complexity of temporal constraint satisfaction problems.
Journal of the ACM, 57(2):9:1–9:41, 2010.

12 Marthe Bonamy, Łukasz Kowalik, Jesper Nederlof, Michał Pilipczuk, Arkadiusz Socała, and
Marcin Wrochna. On directed feedback vertex set parameterized by treewidth. In Proc.
44th International Workshop on Graph-Theoretic Concepts in Computer Science (WG-2018),
volume 11159, pages 65–78, 2018.

13 Édouard Bonnet, László Egri, and Dániel Marx. Fixed-parameter approximability of Boolean
MinCSPs. In Proc. 24th Annual European Symposium on Algorithms (ESA-2016), pages
18:1–18:18, 2016.

14 Andrei A. Bulatov. A dichotomy theorem for nonuniform CSPs. In Proc. 58th IEEE Annual
Symposium on Foundations of Computer Science (FOCS-2017), pages 319–330, 2017.

15 Andrei A. Bulatov, Peter Jeavons, and Andrei A. Krokhin. Classifying the complexity of
constraints using finite algebras. SIAM Journal on Computing, 34(3):720–742, 2005.

16 Jianer Chen, Yang Liu, Songjian Lu, Barry O’Sullivan, and Igor Razgon. A fixed-parameter
algorithm for the directed feedback vertex set problem. In Proc. 40th Annual ACM Symposium
on Theory of Computing (STOC-2008), pages 177–186, 2008.

17 Rajesh Chitnis, Marek Cygan, Mohammataghi Hajiaghayi, and Dániel Marx. Directed subset
feedback vertex set is fixed-parameter tractable. ACM Transactions on Algorithms, 11(4):1–28,
2015.

18 Jan Chomicki and Jerzy Marcinkowski. Minimal-change integrity maintenance using tuple
deletions. Information and Computation, 197(1-2):90–121, 2005.

19 Jean-François Condotta, Issam Nouaouri, and Michael Sioutis. A SAT approach for maximizing
satisfiability in qualitative spatial and temporal constraint networks. In Proc. 15th International
Conference on the Principles of Knowledge Representation and Reasoning (KR-2016), 2016.

20 Robert Crowston, Gregory Gutin, Mark Jones, and Anders Yeo. Parameterized complexity of
satisfying almost all linear equations over F2. Theory of Computing Systems, 52(4):719–728,
2013.

21 Marek Cygan, Fedor V. Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized algorithms. Springer, 2015.

22 Konrad K. Dabrowski, Peter Jonsson, Sebastian Ordyniak, and George Osipov. Resolving
inconsistencies in simple temporal problems: A parameterized approach. In Proc. 36th AAAI
Conference on Artificial Intelligence, (AAAI-2022), pages 3724–3732, 2022.

23 Konrad K. Dabrowski, Peter Jonsson, Sebastian Ordyniak, George Osipov, Marcin Pilipczuk,
and Roohani Sharma. Parameterized complexity classification for interval constraints. CoRR,
abs/2305.13889, 2023.

IPEC 2023

11:18 Parameterized Complexity Classification for Interval Constraints

24 Konrad K. Dabrowski, Peter Jonsson, Sebastian Ordyniak, George Osipov, and Magnus
Wahlström. Almost consistent systems of linear equations. In Proc. 34th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA-2023), pages 3179–3217, 2023.

25 Rina Dechter, Itay Meiri, and Judea Pearl. Temporal constraint networks. Artificial Intelligence,
49(1-3):61–95, 1991.

26 Pascal Denis and Philippe Muller. Predicting globally-coherent temporal structures from texts
via endpoint inference and graph decomposition. In Proc. 22nd International Joint Conference
on Artificial Intelligence (IJCAI-2011), pages 1788–1793, 2011.

27 Eduard Eiben, Clément Rambaud, and Magnus Wahlström. On the parameterized complexity
of symmetric directed multicut. In Proc. 17th International Symposium on Parameterized and
Exact Computation (IPEC-2022), volume 249, pages 11:1–11:17, 2022.

28 Tomás Feder and Moshe Y. Vardi. The computational structure of monotone monadic SNP
and constraint satisfaction: A study through datalog and group theory. SIAM Journal on
Computing, 28(1):57–104, 1998.

29 Alexander Göke, Dániel Marx, and Matthias Mnich. Hitting long directed cycles is fixed-
parameter tractable. In Proc. 47th International Colloquium on Automata, Languages, and
Programming (ICALP-2020), volume 168, pages 59:1–59:18, 2020.

30 Alexander Göke, Dániel Marx, and Matthias Mnich. Parameterized algorithms for generaliza-
tions of directed feedback vertex set. Discrete Optimization, 46:100740, 2022.

31 Martin Charles Golumbic and Ron Shamir. Complexity and algorithms for reasoning about
time: A graph-theoretic approach. Journal of the ACM, 40(5):1108–1133, 1993.

32 Venkatesan Guruswami, Rajsekar Manokaran, and Prasad Raghavendra. Beating the random
ordering is hard: inapproximability of maximum acyclic subgraph. In Proc. 49th Annual IEEE
Symposium on Foundations of Computer Science (FOCS-2008), pages 573–582, 2008.

33 Sanjeev Khanna, Madhu Sudan, Luca Trevisan, and David P. Williamson. The approximability
of constraint satisfaction problems. SIAM Journal on Computing, 30(6):1863–1920, 2000.

34 Subhash Khot. On the power of unique 2-prover 1-round games. In Proc. 24th Annual ACM
Symposium on Theory of Computing (STOC-2002), pages 767–775, 2002.

35 Eun Jung Kim, Stefan Kratsch, Marcin Pilipczuk, and Magnus Wahlström. Solving hard
cut problems via flow-augmentation. In Proc. 32nd ACM-SIAM Symposium on Discrete
Algorithms (SODA-2021), pages 149–168, 2021.

36 Eun Jung Kim, Stefan Kratsch, Marcin Pilipczuk, and Magnus Wahlström. Directed flow-
augmentation. In Proc. 54th Annual ACM SIGACT Symposium on Theory of Computing
(STOC-2022), pages 938–947, 2022.

37 Eun Jung Kim, Stefan Kratsch, Marcin Pilipczuk, and Magnus Wahlström. Flow-augmentation
III: complexity dichotomy for Boolean CSPs parameterized by the number of unsatisfied
constraints. In Proc. 34th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA-
2023), pages 3218–3228, 2023.

38 Eun Jung Kim, Stefan Kratsch, Marcin Pilipczuk, and Magnus Wahlström. Flow-augmentation
I: directed graphs. CoRR, abs/2111.03450, 2023.

39 Eun Jung Kim, Tomáš Masařík, Marcin Pilipczuk, Roohani Sharma, and Magnus Wahlström.
On weighted graph separation problems and flow-augmentation. CoRR, abs/2208.14841, 2022.

40 Vladimir Kolmogorov, Andrei A. Krokhin, and Michal Rolínek. The complexity of general-
valued CSPs. SIAM Journal on Computing, 46(3):1087–1110, 2017.

41 Andrei A. Krokhin, Peter Jeavons, and Peter Jonsson. Reasoning about temporal relations:
The tractable subalgebras of Allen’s interval algebra. Journal of the ACM, 50(5):591–640,
2003.

42 Andrei A. Krokhin and Jakub Oprsal. An invitation to the promise constraint satisfaction
problem. ACM SIGLOG News, 9(3):30–59, 2022.

43 Victor Lagerkvist. A new characterization of restriction-closed hyperclones. In Proc. 50th
IEEE International Symposium on Multiple-Valued Logic (ISMVL-2020), pages 303–308, 2020.

K. K. Dabrowski, P. Jonsson, S. Ordyniak, G. Osipov, M. Pilipczuk, and R. Sharma 11:19

44 Daniel Lokshtanov, Pranabendu Misra, M. S. Ramanujan, Saket Saurabh, and Meirav Zehavi.
Fpt-approximation for fpt problems. In Proc. 32nd ACM-SIAM Symposium on Discrete
Algorithms (SODA-2021), pages 199–218, 2021.

45 Daniel Lokshtanov, M. S. Ramanujan, and Saket Saurabh. Linear time parameterized
algorithms for subset feedback vertex set. ACM Transactions on Algorithms, 14(1):7:1–7:37,
2018.

46 Daniel Lokshtanov, M. S. Ramanujan, and Saket Saurabh. When recursion is better than
iteration: A linear-time algorithm for acyclicity with few error vertices. In Proc. 29th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA-2018), pages 1916–1933, 2018.

47 Dániel Marx and Igor Razgon. Constant ratio fixed-parameter approximation of the edge
multicut problem. Information Processing Letters, 109(20):1161–1166, 2009.

48 Lenka Mudrová and Nick Hawes. Task scheduling for mobile robots using interval algebra. In
Proc. 2015 IEEE International Conference on Robotics and Automation (ICRA-2015), pages
383–388, 2015.

49 Richard N. Pelavin and James F. Allen. A model for concurrent actions having temporal extent.
In Proc. 6th National Conference on Artificial Intelligence (AAAI-1987), pages 246–250, 1987.

50 Prasad Raghavendra. Optimal algorithms and inapproximability results for every CSP? In
Proc. 40th Annual ACM Symposium on Theory of Computing (STOC-2008), pages 245–254,
2008.

51 Igor Razgon and Barry O’Sullivan. Almost 2-SAT is fixed-parameter tractable. Journal of
Computer and System Sciences, 75(8):435–450, 2009.

52 Fei Song and Robin Cohen. The interpretation of temporal relations in narrative. In Proc. 7th
National Conference on Artificial Intelligence (AAAI-1988), pages 745–750, 1988.

53 Marc B. Vilain and Henry A. Kautz. Constraint propagation algorithms for temporal reasoning.
In Proc. 5th National Conference on Artificial Intelligence (AAAI-1986), pages 377–382, 1986.

54 Dmitriy Zhuk. A proof of the CSP dichotomy conjecture. Journal of the ACM, 67(5):30:1–30:78,
2020.

IPEC 2023

	1 Introduction
	2 Preliminaries
	3 Overview
	4 Bad Cycles
	5 FPT Algorithms
	6 W[1]-hard Problems
	6.1 Paired Problems
	6.2 Simultaneous Problems
	6.3 Intractable Fragments

	7 Discussion

