From Data Completion to Problems on Hypercubes: A Parameterized Analysis of the Independent Set Problem

Eduard Eiben \square (ㅁ)
Department of Computer Science, Royal Holloway, University of London, Egham, UK
Robert Ganian \square (
Algorithms and Complexity Group, TU Wien, Austria
Iyad Kanj \boxtimes (
School of Computing, DePaul University, Chicago, IL, USA
Sebastian Ordyniak \square (
School of Computing, University of Leeds, UK

Stefan Szeider \square (

Algorithms and Complexity Group, TU Wien, Austria

Abstract

Several works have recently investigated the parameterized complexity of data completion problems, motivated by their applications in machine learning, and clustering in particular. Interestingly, these problems can be equivalently formulated as classical graph problems on induced subgraphs of powers of partially-defined hypercubes.

In this paper, we follow up on this recent direction by investigating the Independent Set problem on this graph class, which has been studied in the data science setting under the name Diversity. We obtain a comprehensive picture of the problem's parameterized complexity and establish its fixed-parameter tractability w.r.t. the solution size plus the power of the hypercube.

Given that several such FO-definable problems have been shown to be fixed-parameter tractable on the considered graph class, one may ask whether fixed-parameter tractability could be extended to capture all FO-definable problems. We answer this question in the negative by showing that FO model checking on induced subgraphs of hypercubes is as difficult as FO model checking on general graphs.

2012 ACM Subject Classification Theory of computation \rightarrow Parameterized complexity and exact algorithms

Keywords and phrases Independent Set, Powers of Hypercubes, Diversity, Parameterized Complexity, Incomplete Data

Digital Object Identifier 10.4230/LIPIcs.IPEC.2023.16
Funding Robert Ganian: Robert Ganian acknowledges support from Project No. Y1329 of the Austrian Science Fund (FWF).
Iyad Kanj: Iyad Kanj acknowledges support from DePaul University through URC grant 602061.
Sebastian Ordyniak: Project EP/V00252X/1 of the Engineering and Physical Sciences Research Council (EPSRC).
Stefan Szeider: Stefan Szeider acknowledges support from Project No. P36420 of the Austrian Science Fund (FWF).

1 Introduction

Recently, there has been an increasing interest in studying the parameterized complexity of clustering problems motivated by their applications in machine learning [2, 3, 4, 5, 6, $17,19,20,25,26,29,39,40]$, particularly their applications to fundamental clustering problems [1, 28, 41, 44]. In many of these clustering problems, we are given a set of d dimensional vectors over the Boolean/binary domain, where the vectors are regarded as rows of a matrix. It is worth noting that due to the applications of such problems in incompletedata settings, a number of past works on the topic also studied settings where some of the entries in these vectors are unknown $[30,19,20,29,17,8,9,10,21,37]$. The objective is to determine if these vectors (or, in the incomplete-data setting, their completions) satisfy some desirable clustering properties. Examples of such properties include admitting a partitioning into k clusters each of diameter (or radius) at most r (for some given $k, r \in \mathbb{N}$), or admitting a k-cluster of diameter (or radius) at most r, where the distance under consideration is typically the Hamming distance $[12,16,19,20,23,32,33,34,35]$; here, a k-cluster of diameter r is a set of k points which have pairwise distance of at most r.

As it turns out, many of these well-studied clustering problems can be formulated as classical graph problems on induced subgraphs of powers of the hypercube graph. For instance, finding a cluster of diameter at most $r \in \mathbb{N}$, for a given r, is equivalent to the Clique problem defined on the subgraph of the r-th power of the hypercube that is induced by the subset of hypercube vertices corresponding to the given input vectors. Similarly, partitioning the set of vectors into k clusters each of diameter at most r, for some given $r, k \in \mathbb{N}$, is equivalent to the partitioning into k cliques problem on the same graph class, whereas partitioning the set of vectors into clusters, each of radius at most r with respect to some vector in the set, is equivalent to the k-dominating set problem on the same graph class described above. We remark that, to the best of our knowledge, this graph class is not a subclass of commonly studied graph classes and has not been considered in previous works pertaining to algorithmic upper or lower bounds for graph-theoretic problems.

Contribution. In this paper, we study the parameterized complexity of another classical graph problem defined on induced subgraphs of powers of the hypercube: the Independent SET problem. In the context of data analytics, the problem arises when studying the "diversity" of a given set of vectors, a notion that can be viewed as the opposite of minimising the number of clusters in a cluster partitioning of the set of vectors (in fact, in the area of data analytics this is studied directly under the nomenclature diversity or dispersion [11, 31, 45]). More precisely, motivated by the aforementioned extensive interest in the analysis of incomplete data, we focus on the more general incomplete data setting. We refer to this problem as Pow-Hyp-IS-Completion: given a set of Boolean vectors with some missing entries and integers k and r, the goal is to complete the missing entries so that the resulting set of vectors contains a subset S of k vectors such that the Hamming distance between each pair is at least $r+1$ (or to correctly determine that such a set does not exist).

The main contribution of this paper is a complete characterisation of the parameterized complexity of Pow-Hyp-IS-Completion w.r.t. the two parameters k and r : we provide a fixed-parameter algorithm for Pow-Hyp-IS-Completion when parameterized by $k+r$, and complement this positive result with intractability results for the cases where any of these two parameters is dropped. In particular, we show that the problem is NP-complete already for $r=2$ - that is, the problem is paraNP-hard parameterized by r, and $\mathrm{W}[1]$-hard parameterized by k alone. Interestingly, the FPT result shows that the parameterized complexity of the
problem is independent of any restrictions on the number or the structure of the missing entries in the input vectors - contrasting many of the previous results on clustering incomplete data [30, 19, 20, 29]. We remark that even the fixed-parameter tractability of the problem in the complete data setting (i.e., where all entries are known) is non-obvious, but follows as an immediate corollary of our result.

For our final contribution, we revisit the observation that several of the complete-data clustering problems recently considered in the literature (e.g., see [19, 20]) reduce to wellknown graph problems on the class of induced subgraphs of powers of the hypercube. Since it was shown that all of these graph problems are fixed-parameter tractable when restricted to this graph class and the graph problems are expressible in First Order Logic (FO), a natural question to ask is whether these FPT results can be generalised to any graph problem expressible in FO logic. We resolve this question in the negative.

Related Work. The problem of computing the diversity of a data set, which forms the underpinning of our study of Pow-Hyp-IS-Completion, has been studied in a variety of different contexts and settings. For instance, Ceccarello, Pietracaprina, Pucci and Upfal studied approximation algorithms for the problem [11]. Gawrychowski, Krasnopolsky, Mozes, and Weimann obtained a linear-time algorithm for the problem when the data set is represented as a tree [31], improving upon the previous polynomial-time algorithm of Bhattacharya and Houle [7]. Sacharidis, Mehta, Skoutas, Patroumpas and Voisard provided heuristics for dynamic versions of the problem [45].

More broadly, there is extensive work on problems arising in the context of incomplete data. Hermelin and Rozenberg [38] studied the Closest String with Wildcards problem, which can be seen as the problem of finding a data completion and a center to a minimumradius cluster containing all the data points. Koana, Froese and Niedermeier [39] recently revisited the earlier work of Hermelin and Rozenberg [38] and obtained, among other results, a fixed-parameter algorithm for that problem parameterized by the radius plus the maximum number of missing entries per row; see also the related work of the same authors [40]. Eiben et al. considered a number of different clustering problems in the presence of incomplete data $[18,19]$, and a subset of these authors previously investigated the fundamental MATRIX Completion problem in the same setting [30]. The parameterized complexity of k-means clustering on incomplete data was investigated by Eiben et al. [17] and Ganian et al. [29].

2 Preliminaries

Problem Terminology and Definition

Let \vec{a} and \vec{b} be two vectors in $\{0,1, \square\}^{d}$, where \square is used to represent coordinates whose value is unknown (i.e., missing entries). We denote by $\Delta(\vec{a}, \vec{b})$ the set of coordinates in which \vec{a} and \vec{b} are guaranteed to differ, i.e., $\Delta(\vec{a}, \vec{b})=\{i \mid(\vec{a}[i]=1 \wedge \vec{b}[i]=0) \vee(\vec{a}[i]=0 \wedge \vec{b}[i]=1)\}$, and we denote by $\delta(\vec{a}, \vec{b})$ the Hamming distance between \vec{a} and \vec{b} measured only between known entries, i.e., $|\Delta(\vec{a}, \vec{b})|$. Moreover, for a subset $D^{\prime} \subseteq[d]$ of coordinates, we denote by $\vec{a}\left[D^{\prime}\right]$ the vector \vec{a} restricted to the coordinates in D^{\prime}.

Let $M \subseteq\{0,1\}^{d}$ and let $[d]=\{1, \ldots, d\}$. For a vector $\vec{a} \in M$ and $t \in \mathbb{N}$, we denote by $N_{t}(\vec{a})$ the t-Hamming neighbourhood of \vec{a}, i.e., the set $\{\vec{b} \in M \mid \delta(\vec{a}, \vec{b}) \leq t\}$ and by $N_{t}(M)$ the set $\bigcup_{\vec{a} \in M} N_{t}(\vec{a})$. We say that $M^{*} \subseteq\{0,1\}^{d}$ is a completion of $M \subseteq\{0,1, \square\}^{d}$ if there is a bijection $\alpha: M \rightarrow M^{*}$ such that for all $\vec{a} \in M$ and all $i \in[d]$ it holds that either $\vec{a}[i]=\square$ or $\alpha(\vec{a})[i]=\vec{a}[i]$.

We now proceed to give the formal definition of the problem under consideration:

```
Pow-Hyp-IS-ComPlEtION
    Input: A set M with elements from {0,1,\square} d}\mathrm{ and }k,r\in\mathbb{N}\mathrm{ .
    Question: Is there a completion M* of M and a subset S of M* with |S| =k such that,
        for any two vectors }a,b\inS\mathrm{ , we have }\delta(a,b)\geqr+1\mathrm{ ?
```

Observe that in a matrix representation of the above problem, we can represent the input matrix as a set of vectors where each row of the matrix corresponds to one element in our set.

We remark that even though the statements are given in the form of decision problems, all tractability results presented in this paper are constructive and the associated algorithms can also output a solution (when it exists) as a witness, along with the decision. In the case where we restrict the input to vectors over $\{0,1\}^{d}$ (i.e., where all entries are known), we omit "-Completion" from the problem name.

Parameterized Complexity

The basic motivation behind parameterized complexity is to find a parameter that describes the structure of the problem instance such that the combinatorial explosion can be confined to this parameter. More formally, a parameterized problem Q is a subset of $\Omega^{*} \times \mathbb{N}$, where Ω is a fixed finite alphabet. Each instance of Q is a pair (I, κ), where $\kappa \in \mathbb{N}$ is called the parameter. A parameterized problem Q is fixed-parameter tractable (FPT) [24, 14, 13], if there is an algorithm, called an FPT-algorithm, that decides whether an input (I, κ) is a member of Q in time $f(\kappa) \cdot|I|^{\mathcal{O}(1)}$, where f is a computable function and $|I|$ is the input instance size. The class FPT denotes the class of all fixed-parameter tractable parameterized problems.

A parameterized problem Q is FPT-reducible to a parameterized problem Q^{\prime} if there is an algorithm, called an FPT-reduction, that transforms each instance (I, κ) of Q into an instance $\left(I^{\prime}, \kappa^{\prime}\right)$ of Q^{\prime} in time $f(\kappa) \cdot|I|^{\mathcal{O}(1)}$, such that $\kappa^{\prime} \leq g(\kappa)$ and $(I, \kappa) \in Q$ if and only if $\left(I^{\prime}, \kappa^{\prime}\right) \in Q^{\prime}$, where f and g are computable functions. Based on the notion of FPTreducibility, a hierarchy of parameterized complexity, the W -hierarchy $=\bigcup_{t \geq 0} \mathrm{~W}[t]$, where $\mathrm{W}[t] \subseteq \mathrm{W}[t+1]$ for all $t \geq 0$, has been introduced, in which the 0 -th level $\mathrm{W}[0]$ is the class FPT. The notions of hardness and completeness have been defined for each level $\mathrm{W}[i]$ of the W -hierarchy for $i \geq 1[14,13]$. It is commonly believed that $\mathrm{W}[1] \neq \mathrm{FPT}$ (see [14, 13]). The $\mathrm{W}[1]$-hardness has served as the main working hypothesis of fixed-parameter intractability. A problem is paraNP-hard if it is NP-hard for a constant value of the parameter [24].

Sunflowers

A sunflower in a set family \mathcal{F} is a subset $\mathcal{F}^{\prime} \subseteq \mathcal{F}$ such that all pairs of elements in \mathcal{F}^{\prime} have the same intersection.

- Lemma 1 ([22, 24]). Let \mathcal{F} be a family of subsets of a universe U, each of cardinality exactly b, and let $a \in \mathbb{N}$. If $|\mathcal{F}| \geq b!(a-1)^{b}$, then \mathcal{F} contains a sunflower \mathcal{F}^{\prime} of cardinality at least a. Moreover, \mathcal{F}^{\prime} can be computed in time polynomial in $|\mathcal{F}|$.

3 The Parameterized Complexity of Pow-Hyp-IS-Completion

Our aim for Pow-Hyp-IS-Completion is to establish fixed-parameter tractability parameterized by $k+r$ (i.e., regardless of the structure or number of missing entries). As our first step, we show that all rows in an arbitrary instance (M, k, r) can be, w.l.o.g., assumed to contain at most $\mathcal{O}(k \cdot r)$ many \square 's.

Next, we observe that if M is sufficiently large and the r-Hamming neighbourhood of each vector is upper-bounded by a function of $k+r$, then - since the number of \square 's is bounded - (M, k, r) is a YES-instance. The argument here is analogous to the classical argument showing that Independent Set is trivial on large bounded-degree graphs.

On a high level, we would now like to find and remove an "irrelevant vector" from $M-$ since here the number of \square 's on every row is bounded, any instance reduced in this way to only contain a bounded number of vectors can be solved via a brute-force fixed-parameter procedure. However, finding an irrelevant vector is rather challenging, primarily because the occurrence of \square 's is not restricted. Instead, we develop a more powerful set representation \mathcal{F}^{\prime} for vectors in the instance which also uses elements to keep track of the presence of \square 's in the neighbours of \vec{v}. We can then apply the Sunflower Lemma to find a sufficiently-large sunflower in \mathcal{F}^{\prime}, and in the core of the proof we argue that (1) such a sunflower consists of at most a bounded number of "important petals" (which can be identified in polynomial time), and (2) any petal that is not important represents an irrelevant vector.

3.1 Dealing with Unstructured Missing Data

In this subsection, we design an algorithm for Pow-Hyp-IS-Completion which remains efficient even when the number and placement of unknown entries is not explicitly restricted on the input.

We begin with a simple lemma that allows us to deal with vectors (i.e., rows) with a large number of missing entries. For brevity, let a k-diversity set be a set containing k vectors which have pairwise Hamming distance at least $r+1$.

- Lemma 2. Let $\mathcal{I}=(M, k, r)$ be an instance of Pow-Hyp-IS-Completion where $k \geq 1$ and let $\vec{v} \in M$ be a vector containing more than $(k-1) \cdot(r+1)$-many \square 's. Then \mathcal{I} is a YES-instance if and only if $\mathcal{I}^{\prime}=(M \backslash\{\vec{v}\}, k-1, r)$ is a YES-instance. Moreover, a completion and k-diversity set for \mathcal{I} can be computed from a completion and $(k-1)$-diversity set for \mathcal{I}^{\prime} in linear time.

Proof. The forward direction is trivial: for any completion M^{*} of M and k-diversity set S in M^{*}, we can obtain a $(k-1)$-diversity set and completion for \mathcal{I}^{\prime} by simply removing \vec{v} from M^{*} and S.

For the backward direction, consider a completion $M^{\prime *}$ of $M^{\prime}=M \backslash \vec{v}$ and a $(k-1)$ diversity set $S=\left\{\overrightarrow{s_{1}}, \ldots, s_{k-1}\right\}$ in $M^{\prime *}$. Let us choose an arbitrary set C of $(k-1) \cdot(r+1)$ coordinates in \vec{v} that all contain \square, and let us then partition C into k-many subsets $\alpha_{1}, \ldots, \alpha_{k}$ each containing precisely $r+1$ coordinates. Now consider the vector \vec{v}^{*} obtained from \vec{v} as follows:

- for each $i \in[k-1]$ and every coordinate $j \in \alpha_{i}$, set $\vec{v}^{*}[j]$ to the opposite value of $\overrightarrow{s_{i}}[j]$ (i.e., $\vec{v}^{*}[j]=1$ if and only if $\overrightarrow{s_{i}}[j]=0$);
- for every other coordinate j of \vec{v}^{*}, we set $\vec{v}^{*}[j]=\vec{v}[j]$ if $\vec{v}[j] \neq \square$ and $\vec{v}^{*}[j]=0$ otherwise.

Clearly, $M^{*}=M^{*} \cup\left\{\vec{v}^{*}\right\}$ is a completion of M. Moreover, since \vec{v}^{*} differs from each vector in S in at least $r+1$ coordinates, $S \cup\left\{\vec{v}^{*}\right\}$ is a k-diversity set in M^{*}.

Next, we show that instances which are sufficiently large and where each vector only "interferes with" a bounded number of other vectors are easy to solve. For ease of presentation, let $\zeta(k, r, t)=3^{(k-1) \cdot(r+1)} \cdot t!\cdot((k-1) \cdot(3(k-1) \cdot(r+1)+r+t))^{t}$ be the exact meaning of "sufficiently large" in this case.

- Lemma 3. Let $\mathcal{I}=(M, k, r)$ be an instance of Pow-Hyp-IS-Completion. If $|M| \geq$ $k \cdot r \cdot \zeta(k, r, r)$ and $\left|N_{t}(\vec{v})\right|<\zeta(k, r, t)$ for every $\vec{v} \in M$ and $t \leq r$, then a k-diversity set in \mathcal{I} can be found in polynomial time.

Proof. One can find a solution to \mathcal{I} by iterating the following greedy procedure k times: choose an arbitrary vector \vec{v}, add it into a solution, and delete all other vectors with Hamming distance at most r from \vec{v}. By the bound on $\left|N_{t}(\vec{v})\right|$, each choice of \vec{v} will only lead to the deletion of at most $r \cdot \zeta(k, r, r)$ vectors from M. Moreover, since δ measures the Hamming distance only between known entries, any completion of the missing entries can only increase (and never decrease) the Hamming distance between vectors. Hence, the size of M together with the bounded size of the Hamming neighbourhood of \vec{v} guarantee that this procedure will find a solution of cardinality k in \mathcal{I} which will remain valid for every completion of M.

We can now move on to the main part of the proof: a procedure which either outputs a solution outright or finds an irrelevant vector.

- Lemma 4. Let $\mathcal{I}=(M, k, r)$ be an instance of Pow-Hyp-IS-Completion such that $\left|N_{t}(\vec{v})\right| \geq \zeta(k, r, t)$ for some vector $\vec{v} \in M$ and $t \leq r$ and such that each vector in M contains at most $(k-1) \cdot(r+1) \square$'s. There is a polynomial-time procedure that finds a vector $\vec{f} \in M$ satisfying the following properties:
- (M, k, r) is a YES-instance if and only if $\mathcal{I}^{\prime}=(M \backslash\{\vec{f}\}, k, r)$ is a YES-instance, and
- A completion and diversity set for \mathcal{I} can be computed from a solution and diversity set for \mathcal{I}^{\prime} in linear time.

Proof. We will begin by constructing a set system over the neighbourhood of \vec{v}. Let $Z=\{z \in[d] \mid \vec{v}[z]=\square\}$ be the set of coordinates where \vec{v} is incomplete. Clearly, since
 a subset $N \subseteq N_{t}(\vec{v})$ of vectors whose cardinality is at least $t!\cdot((k-1) \cdot(3(k-1) \cdot(r+1)+r+t))^{t}$ such that all vectors in N are the same on the coordinates in Z, i.e., $\forall \vec{x}, \vec{y} \in N: \forall z \in Z$: $\vec{x}[z]=\vec{y}[z]$.

Now, let F be a set containing 2 elements for each coordinate $j \in[d] \backslash Z$ of vectors in M : the element \square_{j} and the element D_{j}. We construct a set system \mathcal{F} over F as follows: for each vector $\vec{x} \in N$, we add a set \hat{x} to \mathcal{F} that contains:

- \square_{j} if and only if $\vec{x}[j]=\square$, and
- D_{j} if and only if $\vec{x}[j] \neq \vec{v}[i]$.

Observe that, since \vec{x} contains at most $(k-1) \cdot(r+1) \square$'s by assumption and since \vec{x} differs from \vec{v} in at most t-many completed coordinates, every set in \mathcal{F} has cardinality at most $(k-1) \cdot(r+1)+t$. This means we can apply Lemma 1 to find a sunflower \mathcal{F}^{\prime} in \mathcal{F} of cardinality at least $(k-1) \cdot(3(k-1) \cdot(r+1)+r+t)+1$; for ease of presentation, we will identify the elements of \mathcal{F}^{\prime} with the vectors they represent. Let \vec{f} be an arbitrarily chosen vector from \mathcal{F}^{\prime}; we claim that \vec{f} satisfies the properties claimed in the lemma, and to complete the proof it suffices to establish this claim.

The backward direction is trivial: if \mathcal{I}^{\prime} is a YES-instance then clearly \mathcal{I} is a YES-instance as well. It is also easy to observe that a completion and diversity set for \mathcal{I} can be computed from a solution and diversity set for \mathcal{I}^{\prime} in linear time (adding a vector does not change the validity of a solution). What we need to show is that if \mathcal{I} is a YES-instance, then so is \mathcal{I}^{\prime} (i.e., $(M \backslash\{\vec{f}\}, k, r)$); moreover, this final claim clearly holds if \mathcal{I} admits a solution that does not contain \vec{f}.

So, assume that M admits a completion M^{*} which contains a k-diversity set $S=$ $\left\{\vec{f}, \overrightarrow{s_{1}}, \ldots, s_{k-1}\right\}$. Let C be the core of the sunflower \mathcal{F}^{\prime}, and note that all vectors in \mathcal{F}^{\prime} have precisely the same content in the coordinates in C.

Finding a replacement for \vec{f}. We would now like to argue that, for some completion which we will define later, \mathcal{F}^{\prime} contains a vector that can be used to replace \vec{f} in the solution.

Let $\overrightarrow{s_{i}} \in S$ be an arbitrary vector. First, let us consider the case that, in $M, \overrightarrow{s_{i}}$ differs from \vec{v} in more than $3(k-1) \cdot(r+1)+r+t$ coordinates (i.e., $\vec{v}[j] \neq \overrightarrow{s_{i}}[j]$ in M for at least $3(k-1) \cdot(r+1)+r+t$ choices of j). Then every vector in \mathcal{F}^{\prime} will have Hamming distance greater than r from $\overrightarrow{s_{i}}$ regardless of the completion.

Indeed, for every vector $f^{\prime} \in \mathcal{F}^{\prime}$ there are at most $3(k-1) \cdot(r+1)$ coordinates j such that at least one of $\vec{v}[j], \overrightarrow{s_{i}}[j], \vec{f}^{\prime}$, meaning that there are at least $r+t$ other coordinates where \vec{v} differs from $\overrightarrow{s_{i}}$ and which are guaranteed to be complete - and since $\delta\left(\overrightarrow{f^{\prime}}, \vec{v}\right)=t, \vec{f}^{\prime}$ it must hold that $\delta\left(\overrightarrow{f^{\prime}}, \overrightarrow{s_{i}}\right)>r$ (by the triangle inequality). Hence indeed every vector in \mathcal{F}^{\prime} must have distance at least $r+1$ from $\overrightarrow{s_{i}}$, and in this case we will create a set $S_{i}=\emptyset$ (the meaning of this will become clear later).

Now, consider the converse case, i.e., that $\overrightarrow{s_{i}}$ differs from \vec{v} in at most $3(k-1) \cdot(r+1)+r+t$ coordinates. We may now extend the sunflower \mathcal{F}^{\prime} by adding a set representation of $\overrightarrow{s_{i}}$, i.e., a set Q_{i} which contains \square_{j} if and only if $\overrightarrow{s_{i}}[j]=\square$ and D_{j} if and only if $\overrightarrow{s_{i}}[j] \neq \vec{v}[i]$ (for all $j \in[d] \backslash Z)$. Observe that $\left|Q_{i}\right| \leq 3(k-1) \cdot(r+1)+r+t$, and in particular $Q_{i} \backslash C$ intersects with at most $3(k-1) \cdot(r+1)+r+t$ elements of \mathcal{F}^{\prime}. Let S_{i} be the set of all such elements, i.e., elements of \mathcal{F}^{\prime} which have a non-empty intersection with Q_{i} outside of the core (formally, with $\left.Q_{i} \backslash C\right)$.

To conclude the proof, we will show that there is a completion $M^{\prime *}$ of M^{\prime} such that any arbitrarily chosen vector \vec{f}^{\prime} in the non-empty set $\mathcal{F}^{\prime} \backslash\left(\{\vec{f}\} \cup \bigcup_{i \in[k-1]} S_{i}\right)$ can replace \vec{f} in the k-diversity set S.

Arguing Replaceability. Consider a new completion $M^{\prime *}$ of $M \backslash \vec{f}$ obtained as follows:

- For each vector $\vec{w} \in \mathcal{F}^{\prime} \backslash S$, we complete

1. the \square 's in $C \cup Z$ precisely in the same way as \vec{f}, and
2. for every other \square at coordinate j, we set $\vec{w}[j]=-(\vec{v}[j]-1)$ (i.e., to the opposite of \vec{v}; recall that $\vec{v}[j] \neq \square$ since $j \notin Z)$;

- all other \square 's in all other vectors in $M \backslash \vec{f}$ are completed in precisely the same way as in M^{*}.

Since $M^{* *}$ precisely matches M^{*} on all vectors in $S \backslash \vec{f}$, it follows that $S \backslash \vec{f}$ is a $(k-1)$ diversity set in $M^{\prime *}$. Moreover, consider for a contradiction that $\delta\left(\overrightarrow{f^{\prime}}, \overrightarrow{s_{i}}\right) \leq r$ for some $\overrightarrow{s_{i}} \in S$ after completion, i.e., in $M^{* *}$. Then clearly $\overrightarrow{s_{i}}$ could not differ from \vec{v} in more than $3(k-1) \cdot(r+1)+r+t$ coordinates in M^{\prime}, since - as we already argued - in this case every vector in \mathcal{F}^{\prime} will have Hamming distance greater than r from $\overrightarrow{s_{i}}$ regardless of the completion.

Hence, we must be in the case where $\overrightarrow{s_{i}}$ differed from \vec{v} in at most $3(k-1) \cdot(r+1)+r+t$ coordinates in M^{\prime}. Now consider how $\delta\left(\overrightarrow{f^{\prime}}, \overrightarrow{s_{i}}\right)$ differs from $\delta\left(\vec{f}, \overrightarrow{s_{i}}\right)$. First of all, there is no difference between these two distances on the coordinates in $Z \cup C$ due to our construction of $M^{\prime *}$ and choice of N. For the remaining coordinates, we will consider separately the set X of coordinates in the petals of \vec{f} and \vec{f}^{\prime} (i.e., the set $\left\{j \in[d] \backslash(Z \cup C) \mid \vec{f}[j] \neq \vec{v}[j] \vee \overrightarrow{f^{\prime}}[j] \neq \vec{v}[j]\right\}$), and the set $Y=[d] \backslash(C \cup Z \cup X)$ of all remaining coordinates. It follows that $\vec{v}[j]=\vec{f}[j]=\vec{f}^{\prime}[j]$ for all coordinates $j \in Y$, and hence there is no difference between the two distances on these coordinates either.

So, all that is left is to consider the difference between $\delta\left(\overrightarrow{f^{\prime}}, \overrightarrow{s_{i}}\right)$ and $\delta\left(\vec{f}, \overrightarrow{s_{i}}\right)$ on the coordinates in X. Among these coordinates, \vec{f} can only differ from $\overrightarrow{s_{i}}$ in at most $t-|C|$ many coordinates - notably in the coordinates of its own petal - because the coordinates in the petal of $\overrightarrow{f^{\prime}}$ do not intersect with Q_{i}. On the other hand, our construction guarantees that $\overrightarrow{f^{\prime}}$ differs from $\overrightarrow{s_{i}}$ in at least $t-|C|$ coordinates in X; more precisely, on all coordinates in the petal of $\overrightarrow{f^{\prime}}$, since on these coordinates (1) $\overrightarrow{s_{i}}$ is equal to \vec{v} and (2) $\overrightarrow{f^{\prime}}$ differs from \vec{v}.

In summary, we conclude that $\delta\left(\overrightarrow{f^{\prime}}, \overrightarrow{s_{i}}\right) \geq \delta\left(\vec{f}, \overrightarrow{s_{i}}\right)$ and hence $(S \backslash\{\vec{f}\}) \cup\left\{\overrightarrow{f^{\prime}}\right\}$ is a k-diversity set in $M^{\prime *}$, as claimed.

We can now establish our main result for Pow-Hyp-IS-Completion.

- Theorem 5. Pow-Hyp-IS-Completion is fixed-parameter tractable parameterized by $k+r$.

Proof. The algorithm proceeds as follows. Given an instance $\mathcal{I}=(M, k, r)$ of Pow-Hyp-ISCompletion, it first checks whether M contains a vector with more than $(k-1) \cdot(r+1) \square$'s; if yes, it applies Lemma 2 and restarts on the reduced instance. Second, it checks whether $|M| \geq k \cdot r \cdot \zeta(k, r, r)$; if not, it uses the fact that the number of \square 's and the number of rows is bounded by a function of the parameter to find a completion and a k-diversity set in \mathcal{I} (or determine that one does not exist) by brute force.

Third, it checks whether each vector \vec{v} satisfies $\left|N_{t}(\vec{v})\right|<\zeta(k, r, t)$ for every $t \in[r]$; if yes, then it solves \mathcal{I} by invoking Lemma 3. Otherwise, it invokes Lemma 4 to reduce the cardinality of M by 1 and restarts. If the algorithm eventually terminates with a "NO", then we know that the initial input was a NO-instance; otherwise, it will output a solution which can be transformed into a solution for the original input by the used lemmas.

3.2 Lower Bounds

- Theorem 6. Pow-Hyp-IS is NP-complete and $\mathrm{W}[1]$-hard parameterized by k.

Proof. We prove both NP-hardness and W[1]-hardness results by giving a polynomial-time FPT reduction from Independent SEt (IS), which is W[1]-hard [14].

Let (G, k) be an instance of IS, where $V(G)=\left\{v_{1}, \ldots, v_{n}\right\}$, and let $m=E(G)$. Fix an arbitrary ordering $\mathcal{O}=\left(e_{1}, \ldots, e_{m}\right)$ of the edges in $E(G)$.

For each vertex $v_{i} \in V(G)$, define a vector $\overrightarrow{a_{i}} \in\{0,1\}^{m}$ by setting $\overrightarrow{a_{i}}[j]=1$ if v_{i} is incident to e_{j} and $\overrightarrow{a_{i}}[j]=0$ otherwise. Now expand the set of coordinates of these vectors by adding to each of them $n(n-1)$ new coordinates, $n-1$ coordinates for each $v_{i}, i \in[n]$; we refer to the $n-1$ (extra) coordinates of v_{i} as the "private" coordinates of v_{i}. For each v_{i}, $i \in[n]$, set $n-1-\operatorname{deg}\left(v_{i}\right)$ many coordinates among the private coordinates of v_{i} to 1 , and all other new coordinates of v_{i} to 0 . Let $M=\left\{\overrightarrow{a_{i}} \mid i \in[n]\right\}$ be the set of expanded vectors, where $\overrightarrow{a_{i}} \in\{0,1\}^{m+n(n-1)}$, for $i \in[n]$. The reduction from IS to Pow-Hyp-IS produces the instance $\mathcal{I}=(M, k, 2 n-4)$ of Pow-HYp-IS; clearly, this reduction is a polynomial-time FPT-reduction.

Observe that, for any two distinct vertices $v_{i}, v_{j} \in V(G), \delta\left(\overrightarrow{a_{i}}, \overrightarrow{a_{j}}\right)=2 n-2$ if v_{i} and v_{j} are nonadjacent and $\delta\left(\overrightarrow{a_{i}}, \overrightarrow{a_{j}}\right)=2 n-4$ if v_{i} and v_{j} are adjacent.

The proof that (G, k) is a Yes-instance of IS iff $(M, k, 2 n-4)$ is a YES-instance of Pow-Hyp-IS is now straightforward.

- Theorem 7. Pow-Hyp-IS is NP-complete even when $r=2$.

Proof. We reduce from the Independent Set problem (which is NP-complete). Let (G, k) be an instance of Independent Set and let G^{\prime} be the graph obtained from G after subdividing every edge exactly twice. We first observe that G has an independent set of size at least k if and only if G^{\prime} has an independent set of size at least $|E(G)|+k$. This is because if $I \subseteq V(G)$ is an independent set of G, then we can add one of the subdivision vertices for every edge of G because I does not contain both endpoints of an edge. On the other hand, if $I \subseteq V\left(G^{\prime}\right)$ is an independent set of G^{\prime}, then we can assume without loss of generality that I does not contain both endpoints of an edge in G because we could easily transform I into an independent set of the same size by replacing one of the endpoints of such an edge with a subdivided vertex.

Next we construct an instance $\mathcal{I}=(M,|E(G)|+k, 2)$ of Pow-HyP-IS in polynomial-time such that G^{\prime} has an independent set of size at least $|E(G)|-k$ if and only if \mathcal{I} is a Yesinstance. We set $d=2|V(G)|$ and obtain M as follows. Let $V(G)=\left\{v_{1}, \ldots, v_{n}\right\}$. For every $v_{i} \in V(G)$, we add the vector \vec{v}_{i} that is 1 at the two coordinates i and $i+1$ and otherwise 0 . Moreover, for every $e=v_{i} v_{j} \in E(G)$, we add the vector e^{1} that is 1 at the coordinates i, $i+1$, and j and the vector e^{2} that is 1 at the coordinates $j, j+1$, and i. This completes the construction of \mathcal{I}. The equivalence now follows because two vectors in M have distance at most $r=2$ if and only if their corresponding vertices in G^{\prime} are adjacent; here e^{1} and e^{2} correspond to the two subdivision vertices on the edge e.

4 On Graph Problems on Induced Subgraphs of the Hypercubes

In this section, we discuss the implications of the results in the previous section for fundamental problems defined on induced subgraphs of powers of the hypercube graph.

In particular, the d-dimensional hypercube graph is the graph Q_{d} whose vertex set is the set of all Boolean d-dimensional vectors, and two vertices are adjacent if and only if their two vectors differ in precisely 1 coordinate. We can then define the class \mathcal{Q}_{d}^{r} as the class of all graphs that are induced subgraphs of the r-th power of Q_{d}. We note that, in line with the commonly used definition of hypercube graphs [15, 27], we consider the vertices in \mathcal{Q}_{d}^{r} to be vectors and hence every graph $G \in \mathcal{Q}_{d}^{r}$ contains an explicit characterisation of its vertices as vectors.

In this setting, it is straightforward to observe that Pow-Hyp-IS is precisely the Independent Set problem on \mathcal{Q}_{d}^{r}. Moreover, the clustering problems In-Clustering, Diam-Clustering, and Large Diam-Cluster considered in [19, 20] are precisely the Dominating Set, Partition Into Cliques, and Clique problems, respectively, on \mathcal{Q}_{d}^{r}. Therefore, all the upper and lower bound results derived in this paper and in [19, 20] pertaining to these clustering problems hold true for their corresponding graph problems on \mathcal{Q}_{d}^{r}.

- Corollary 8. Given $r, d, k \in \mathbb{N}$ and a graph $G \in \mathcal{Q}_{d}^{r}$, determining whether G has a:
- dominating set of size k is FPT parameterized by $k+r$;
- partition into k cliques is FPT parameterized by $k+r$;
- independent set of size k is FPT parameterized by $k+r$;
- clique of size k is FPT parameterized by r.

We note that all the tractability results outlined in Corollary 8 are tight, which follows from the lower-bound results obtained in Section 3.2 and in [19, 20], in the sense that dropping any parameter from our parameterizations leads to an intractable problem.

Observing that three of the graph properties in the problems discussed above are expressible in First Order Logic (FO) and result in FO formulas whose length is a function of the parameter k, an interesting question that ensues from the above discussion is whether these positive results can be extended to the generic problem of First-Order Model Checking $[43,36]$, formalised below. We will show next that the answer to this question is negative - and, in fact, remains negative even when we restrict ourselves to induced subgraphs of hypercubes (i.e., for $r=1$).

```
\(\mathcal{Q}\)-FO-Model-Checking
Input: \(\quad\) A first-order (FO) formula \(\phi\), integers \(d, r\), and a graph \(G \in \mathcal{Q}_{d}^{r}\).
Parameter: \(|\Phi|\)
Question: \(\quad\) Does \(G \models \Phi\) ?
```

We denote by FO-Model-Checking the general FO Model Checking problem on graphs, i.e., \mathcal{C}-FO-Model-Checking with \mathcal{C} being the class of all graphs.

- Lemma 9. Let H be an arbitrary graph. There is a graph $G \in \mathcal{Q}_{|V(H)|+|E(H)|}^{1}$ such that G is isomorphic to the graph H^{\prime} obtained from H after subdividing every edge of H exactly once and attaching a leaf to every vertex resulting from a subdivision. Moreover, G can be computed from H in polynomial time.

Proof. Let $n=|V(H)|$ and $m=|E(H)|$. To prove the lemma, we construct a matrix representation $M \in\{0,1\}^{n+m}$ of H^{\prime} which has one row (vector) for every vertex in H and where two vertices in H^{\prime} are adjacent if and only if their corresponding rows in M have Hamming distance at most 1. Let v_{1}, \ldots, v_{n} be an arbitrary ordering of the vertices of H, and e_{1}, \ldots, e_{m} be an arbitrary ordering of its edges. Then, M contains one row r_{i} for every $i \in[n]$ that is 1 at its i-th entry and 0 at all other entries. Moreover, for every edge $e_{\ell}=\left\{v_{i}, v_{j}\right\} \in E(H), M$ contains the following two rows:

- the row r_{e} (corresponding to the degree-3 vertex in H^{\prime} obtained from e) that is 1 at the i-th and j-th entries, and 0 at all other entries; and
- the row r_{e}^{\prime} (corresponding to the leaf in H^{\prime} obtained from $\left.e\right)$ that is 1 at the i-th, j-th, and $(n+\ell)$-th entries, and 0 at all other entries.
This completes the construction of M. Clearly, two rows in M have Hamming distance at most one if and only if their corresponding vertices in H^{\prime} are adjacent, as required.
- Theorem 10. \mathcal{Q}-FO-model-checking is $\mathrm{W}[\mathrm{t}]$-hard for every $t \in \mathbb{N}^{*}$.

Proof. We give a parameterized reduction from FO Model Checking, which is $\mathrm{W}[t]$-hard for every $t \in \mathbb{N}^{*}$. Let $\mathcal{I}:=(\Phi, H)$ be an instance of FO Model Checking. We will show the theorem by constructing the equivalent instance $\mathcal{I}^{\prime}:=\left(\Phi^{\prime}, G\right)$ such that $G \in \mathcal{Q}_{d}^{1}$ and $|\Phi| \leq f\left(\left|\Phi^{\prime}\right|\right)$ for some computable function f and value d that is polynomially bounded in the input size. G is obtained from H in the same manner as in Lemma 9. Moreover, Φ^{\prime} is obtained from Φ as follows:

- Let $\phi_{V}(x)$ be the formula that holds for a variable x if and only if x corresponds to one of the original vertices in G, i.e., $\phi_{V}(x):=\forall y E(x, y) \exists z \neq x \wedge E(y, z)$;
- replace every subformula of the form $\exists x \phi$ (for some variable x and some subformula ϕ of Φ) with the formula $\exists x \phi_{V}(x) \wedge \phi$;
- replace every subformula of the form $\forall x \phi$ (for some variable x and some subformula ϕ of $\Phi)$ with the formula $\forall x \phi_{V}(x) \rightarrow \phi$; and
- replace every atom $E(x, y)$, where E is the adjacency predicate and x and y are variables, with the formula $\exists s E(x, s) \wedge E(s, y) \wedge x \neq y$.
It is straightforward now to show that $H \models \Phi$ if and only if $G \models \Phi^{\prime}$, and that $\left|\Phi^{\prime}\right| \leq 20|\Phi|$. Moreover, because of Lemma $9, G^{\prime} \in \mathcal{Q}_{d}^{1}$, as required.

5 Conclusion

In this paper, we studied the parameterized complexity of the classical Independent SET problem on induced subgraphs of powers of hypercubes, but with the additional complication that the "positions" of the vertices in the hypercube representation may be partially unknown. We considered the two most natural parameters for the problem: the size k of the independent set and the power r of the hypercube, and provided a complete characterisation of the problem's complexity w.r.t. k and r. We also performed a metainvestigation of the parameterized complexity of graph problems on this graph class that are expressible in FO logic and showed the existence of such problems that are parameterized intractable.

A natural future direction of our work is to study the parameterized complexity of other graph problems on this class, in particular those that have applications in clustering. One famous open problem that comes to mind is the p-center problem [16, 32]. The problem can be formulated similarly to the above setting, with the exception of allowing the selection of vertices to be from the whole hypercube, as opposed to restricting them to the input subgraph. In particular, the well-known p-centers problem reduces to the k-dominating set problem in the r-th power of the hypercube graph, but where the k vertices in the dominating set are not restricted to the input subgraph, but can be chosen from \mathcal{Q}_{d}. This problem was shown to be FPT parameterized by $k+r$ [20]. An intriguing NP-hard restriction of the problem is the problem slice corresponding to $p=1$, or what is known as the 1 -center problem, or equivalently, the Closest String problem [32, 42]. The parameterized complexity of the problem paramertized by each of k and r alone remain important open questions.

1 Charu C. Aggarwal and Chandan K. Reddy. Data Clustering: Algorithms and Applications. Chapman \& Hall/CRC, 1st edition, 2013.
2 Sayan Bandyapadhyay, Fedor V. Fomin, Petr A. Golovach, William Lochet, Nidhi Purohit, and Kirill Simonov. How to find a good explanation for clustering? In Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI 2022, Thirty-Fourth Conference on Innovative Applications of Artificial Intelligence, IAAI 2022, The Twelveth Symposium on Educational Advances in Artificial Intelligence, EAAI 2022 Virtual Event, February 22 - March 1, 2022, pages 3904-3912. AAAI Press, 2022.
3 Sayan Bandyapadhyay, Fedor V. Fomin, Petr A. Golovach, Nidhi Purohit, and Kirill Simonov. FPT approximation for fair minimum-load clustering. In Holger Dell and Jesper Nederlof, editors, 1^{7} th International Symposium on Parameterized and Exact Computation, IPEC 2022, September 7-9, 2022, Potsdam, Germany, volume 249 of LIPIcs, pages 4:1-4:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022.
4 Sayan Bandyapadhyay, Fedor V. Fomin, Petr A. Golovach, Nidhi Purohit, and Kirill Simonov. Lossy kernelization of same-size clustering. In Alexander S. Kulikov and Sofya Raskhodnikova, editors, Computer Science - Theory and Applications - 17th International Computer Science Symposium in Russia, CSR 2022, Virtual Event, June 29 - July 1, 2022, Proceedings, volume 13296 of Lecture Notes in Computer Science, pages 96-114. Springer, 2022.
5 Sayan Bandyapadhyay, Fedor V. Fomin, Petr A. Golovach, and Kirill Simonov. Parameterized complexity of feature selection for categorical data clustering. In Filippo Bonchi and Simon J. Puglisi, editors, 46th International Symposium on Mathematical Foundations of Computer Science, MFCS 2021, August 23-27, 2021, Tallinn, Estonia, volume 202 of LIPIcs, pages 14:1-14:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.

6 Sayan Bandyapadhyay, Fedor V. Fomin, and Kirill Simonov. On coresets for fair clustering in metric and Euclidean spaces and their applications. In Nikhil Bansal, Emanuela Merelli, and James Worrell, editors, 48th International Colloquium on Automata, Languages, and Programming, ICALP 2021, July 12-16, 2021, Glasgow, Scotland (Virtual Conference), volume 198 of LIPIcs, pages 23:1-23:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.
7 Binay K. Bhattacharya and Michael E. Houle. Generalized maximum independent sets for trees in subquadratic time. In Alok Aggarwal and C. Pandu Rangan, editors, Algorithms and Computation, 10th International Symposium, ISAAC '99, Chennai, India, December 16-18, 1999, Proceedings, volume 1741 of Lecture Notes in Computer Science, pages 435-445. Springer, 1999.

8 Emmanuel J. Candès and Yaniv Plan. Matrix completion with noise. Proceedings of the IEEE, 98(6):925-936, 2010.
9 Emmanuel J. Candès and Benjamin Recht. Exact matrix completion via convex optimization. Foundations of Computational Mathematics, 9(6):717-772, 2009.
10 Emmanuel J. Candès and Terence Tao. The power of convex relaxation: near-optimal matrix completion. IEEE Trans. Information Theory, 56(5):2053-2080, 2010.
11 Matteo Ceccarello, Andrea Pietracaprina, Geppino Pucci, and Eli Upfal. MapReduce and streaming algorithms for diversity maximization in metric spaces of bounded doubling dimension. $P V L D B, 10(5): 469-480,2017$.
12 Moses Charikar and Rina Panigrahy. Clustering to minimize the sum of cluster diameters. Journal of Computer and System Sciences, 68(2):417-441, 2004.
13 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
14 Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity. Texts in Computer Science. Springer, 2013. doi:10.1007/978-1-4471-5559-1.
15 Tomáš Dvořák and Petr Gregor. Hamiltonian paths with prescribed edges in hypercubes. Discrete Mathematics, 307(16):1982-1998, 2007.
16 M.E Dyer and A.M Frieze. A simple heuristic for the p-centre problem. Oper. Res. Lett., 3(6):285-288, 1985.
17 Eduard Eiben, Fedor V. Fomin, Petr A. Golovach, William Lochet, Fahad Panolan, and Kirill Simonov. EPTAS for k-means clustering of affine subspaces. In Dániel Marx, editor, Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms, SODA 2021, Virtual Conference, January 10-13, 2021, pages 2649-2659. SIAM, 2021.
18 Eduard Eiben, Robert Ganian, Iyad Kanj, Sebastian Ordyniak, and Stefan Szeider. The parameterized complexity of clustering incomplete data. In Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, pages 7296-7304. AAAI Press, 2021. URL: https: //ojs.aaai.org/index.php/AAAI/article/view/16896, doi:10.1609/aaai.v35i8.16896.
19 Eduard Eiben, Robert Ganian, Iyad Kanj, Sebastian Ordyniak, and Stefan Szeider. Finding a cluster in incomplete data. In Shiri Chechik, Gonzalo Navarro, Eva Rotenberg, and Grzegorz Herman, editors, 30th Annual European Symposium on Algorithms, ESA 2022, September 5-9, 2022, Berlin/Potsdam, Germany, volume 244 of LIPIcs, pages 47:1-47:14. Schloss Dagstuhl -Leibniz-Zentrum für Informatik, 2022.
20 Eduard Eiben, Robert Ganian, Iyad Kanj, Sebastian Ordyniak, and Stefan Szeider. On the parameterized complexity of clustering problems for incomplete data. Journal of Computer and System Sciences, 134:1-19, 2023.
21 Ehsan Elhamifar and René Vidal. Sparse subspace clustering: Algorithm, theory, and applications. IEEE Trans. Pattern Anal. Mach. Intell., 35(11):2765-2781, 2013.
22 Paul Erdös and Richard Rado. Intersection theorems for systems of sets. Journal of the London Mathematical Society, 1(1):85-90, 1960.
23 Tomás Feder and Daniel Greene. Optimal algorithms for approximate clustering. In Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing, STOC '88, pages 434-444. ACM, 1988.

24 Jörg Flum and Martin Grohe. Parameterized Complexity Theory, volume XIV of Texts in Theoretical Computer Science. An EATCS Series. Springer, Berlin, 2006.
25 Fedor V. Fomin, Petr A. Golovach, Tanmay Inamdar, Nidhi Purohit, and Saket Saurabh. Exact exponential algorithms for clustering problems. In Holger Dell and Jesper Nederlof, editors, $1^{\text {17th }}$ International Symposium on Parameterized and Exact Computation, IPEC 2022, September 7-9, 2022, Potsdam, Germany, volume 249 of LIPIcs, pages 13:1-13:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022.
26 Fedor V. Fomin, Petr A. Golovach, and Kirill Simonov. Parameterized k-clustering: Tractability island. J. Comput. Syst. Sci., 117:50-74, 2021.
27 John P. Hayes Frank Harary and Horng-Jyh Wu. A survey of the theory of hypercube graphs. Comput. Math. Appl., 15(4):277-289, 1988.
28 Guojun Gan, Chaoqun Ma, and Jianhong Wu. Data clustering - theory, algorithms, and applications. SIAM, 2007.
29 Robert Ganian, Thekla Hamm, Viktoriia Korchemna, Karolina Okrasa, and Kirill Simonov. The complexity of k-means clustering when little is known. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato, editors, Proceedings of the 39th International Conference on Machine Learning, volume 162 of Proceedings of Machine Learning Research, pages 6960-6987, 2022.
30 Robert Ganian, Iyad Kanj, Sebastian Ordyniak, and Stefan Szeider. Parameterized algorithms for the matrix completion problem. In ICML, volume 80 of JMLR Workshop and Conference Proceedings, pages 1642-1651, 2018.
31 Pawel Gawrychowski, Nadav Krasnopolsky, Shay Mozes, and Oren Weimann. Dispersion on Trees. In Kirk Pruhs and Christian Sohler, editors, 25th Annual European Symposium on Algorithms (ESA 2017), volume 87 of Leibniz International Proceedings in Informatics (LIPIcs), pages 40:1-40:13. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.
32 Leszek Gąsieniec, Jesper Jansson, and Andrzej Lingas. Efficient approximation algorithms for the Hamming center problem. In Proceedings of the Tenth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 905-906, 1999.
33 Leszek Gąsieniec, Jesper Jansson, and Andrzej Lingas. Approximation algorithms for Hamming clustering problems. Journal of Discrete Algorithms, 2(2):289-301, 2004.
34 Teofilo F. Gonzalez. Clustering to minimize the maximum intercluster distance. Theoretical Computer Science, 38:293-306, 1985.
35 Jens Gramm, Rolf Niedermeier, and Peter Rossmanith. Fixed-parameter algorithms for CLOSEST STRING and related problems. Algorithmica, 37(1):25-42, 2003.
36 Martin Grohe, Stephan Kreutzer, and Sebastian Siebertz. Deciding first-order properties of nowhere dense graphs. J. ACM, 64(3):17:1-17:32, 2017.
37 Moritz Hardt, Raghu Meka, Prasad Raghavendra, and Benjamin Weitz. Computational limits for matrix completion. In Proceedings of The 27th Conference on Learning Theory, volume 35 of JMLR Workshop and Conference Proceedings, pages 703-725. JMLR.org, 2014.
38 Danny Hermelin and Liat Rozenberg. Parameterized complexity analysis for the closest string with wildcards problem. Theoretical Computer Science, 600:11-18, 2015.
39 Tomohiro Koana, Vincent Froese, and Rolf Niedermeier. Parameterized algorithms for matrix completion with radius constraints. In Inge Li Gørtz and Oren Weimann, editors, 31st Annual Symposium on Combinatorial Pattern Matching, CPM 2020, June 17-19, 2020, Copenhagen, Denmark, volume 161 of LIPIcs, pages 20:1-20:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.
40 Tomohiro Koana, Vincent Froese, and Rolf Niedermeier. The complexity of binary matrix completion under diameter constraints. J. Comput. Syst. Sci., 132:45-67, 2023.
41 Jure Leskovec, Anand Rajaraman, and Jeffrey David Ullman. Mining of Massive Datasets. Cambridge University Press, New York, NY, USA, 2nd edition, 2014.

42 Ming Li, Bin Ma, and Lusheng Wang. On the closest string and substring problems. J. ACM, 49(2):157-171, 2002.

43 Leonid Libkin. Elements of Finite Model Theory. Texts in Theoretical Computer Science. An EATCS Series. Springer, 2004.
44 Boris Mirkin. Clustering For Data Mining: A Data Recovery Approach. Chapman \& Hall/CRC, 2005.

45 Dimitris Sacharidis, Paras Mehta, Dimitrios Skoutas, Kostas Patroumpas, and Agnès Voisard. Selecting representative and diverse spatio-textual posts over sliding windows. In Proceedings of the 30th International Conference on Scientific and Statistical Database Management, SSDBM 2018, Bozen-Bolzano, Italy, July 09-11, 2018, pages 17:1-17:12, 2018.

