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Abstract
In a recent work, Esmer et al. describe a simple method – Approximate Monotone Local Search
– to obtain exponential approximation algorithms from existing parameterized exact algorithms,
polynomial-time approximation algorithms and, more generally, parameterized approximation
algorithms. In this work, we generalize those results to the weighted setting.

More formally, we consider monotone subset minimization problems over a weighted universe of
size n (e.g., Vertex Cover, d-Hitting Set and Feedback Vertex Set). We consider a model
where the algorithm is only given access to a subroutine that finds a solution of weight at most
α · W (and of arbitrary cardinality) in time ck · nO(1) where W is the minimum weight of a solution
of cardinality at most k. In the unweighted setting, Esmer et al. determine the smallest value d

for which a β-approximation algorithm running in time dn · nO(1) can be obtained in this model.
We show that the same dependencies also hold in a weighted setting in this model: for every fixed
ε > 0 we obtain a β-approximation algorithm running in time O ((d + ε)n), for the same d as in the
unweighted setting.

Similarly, we also extend a β-approximate brute-force search (in a model which only provides
access to a membership oracle) to the weighted setting. Using existing approximation algorithms
and exact parameterized algorithms for weighted problems, we obtain the first exponential-time
β-approximation algorithms that are better than brute force for a variety of problems including
Weighted Vertex Cover, Weighted d-Hitting Set, Weighted Feedback Vertex Set and
Weighted Multicut.
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17:2 Approximate Monotone Local Search for Weighted Problems

1 Introduction

In this work, we are interested in subset problems, where the goal is to find a subset of a
given n-sized universe U that satisfies some property Π (e.g., Vertex Cover, Hitting
Set, Feedback Vertex Set, Mulitcut). Such problems can trivially be solved in time
O∗(2n)1, and in the past decades there has been great interest in designing algorithms that
beat this exhaustive search and run in time O∗ (dn) for as small 1 < d < 2 as possible
(see, e.g., [16]). On the other hand, many of the considered problems admit polynomial-
time α-approximation algorithms for some constant α > 1 (e.g., Vertex Cover admits a
polynomial-time 2-approximation [5]). To bridge the gap between exact exponential-time
algorithms and polynomial-time α-approximation algorithms for some possibly large constant
α, there has been recent interest in exponential-time approximation algorithms [2,4,6,9–12,19]
to obtain approximation ratios that are better than what is considered possible in polynomial
time.

In a recent work, Esmer et al. [12] describe a simple method – Approximate Monotone
Local Search – to obtain exponential-time approximation algorithms for certain subset
problems from existing parameterized exact algorithms, polynomial-time approximation
algorithms and, more generally, parameterized approximation algorithms. More precisely,
the focus in [12] lies on subset minimization problems where, given a universe U with n

elements, we are aiming to find a set S ⊆ U of minimum cardinality satisfying some property
Π. To allow for approximation algorithms, we restrict to monotone problems, i.e., the
family F of solution sets is closed under taking supersets. In this setting, a β-approximation
algorithm is asked to return a solution set S ∈ F such that |S| ≤ β · |OPT| where OPT
denotes a solution of minimum size. Given access to a parameterized α-approximation
algorithm running in time O∗(ck) (where the parameter k denotes the size of the desired
optimal solution), Esmer et al. [12] determine the best possible value d = amls(α, c, β)
such that a β-approximation algorithm running in time O∗(dn) can be obtained. Using
existing parameterized approximation algorithms, which in particular include polynomial-time
approximation and exact parameterized algorithms, this leads to the fastest exponential-time
approximation algorithms for a variety of problems including Vertex Cover, d-Hitting
Set, Feedback Vertex Set and Odd Cycle Transversal.

In this work, we are interested in weighted monotone subset minimization problems.
Here, the universe U is additionally equipped with a weight function w : U → N and we are
asking for a solution set S ∈ F of minimum weight w(S) :=

∑
u∈S w(u). Accordingly, in a

β-approximation algorithm, we are seeking a solution set S ∈ F such that w(S) ≤ β · w(OPT)
where OPT denotes a solution of minimum weight. Looking at [12], it can be observed that
the obtained algorithms only extend to the weighted setting for the special case α = β = 1.
Indeed, in this particular case Fomin, Gaspers, Lokshtanov and Saurabh [15] already show in
an earlier work that an exact parameterized algorithm running in time O∗(ck) can be turned
into an exact exponential-time algorithm running time O∗((2 − 1

c )n). As already pointed
out in [15], the result also holds in a weighted setting and implies exact exponential-time
algorithms for, e.g., d-Hitting Set and Feedback Vertex Set. On the other hand, for
β > 1, the algorithm presented in [12] does not work in a weighted setting. In a nutshell, the
main idea in [12] is to randomly sample a set of vertices X and to bound the probability that
it contains a sufficiently large portion of an optimum solution OPT. However, in a weighted
setting, such an approach is destined to fail since even adding a single element of large weight
to an optimum solution may lead to an unbounded approximation factor.

1 The O∗ notation hides polynomial factors in the expression.
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The main contribution of this work is to adapt the tools from [12] to the weighted setting.
Given a parameterized α-approximation algorithm running in time O∗(ck) for a weighted
subset minimization problem (where the parameter k still denotes the size of the desired
optimal solution, we give additional details in the next paragraph), for every fixed ε > 0 we
obtain a β-approximation algorithm running in time O ((amls(α, c, β) + ε)n). Note that this
matches the corresponding bound in the unweighted setting up to the additive ε in the base
of the exponent in the running time.

To state our main result more precisely, let us formalize the requirements for the parame-
terized α-approximation algorithm. Similar to [12], we require an α-approximate extension
algorithm. Such an algorithm receives as input a set X ⊆ U and a number k ≥ 0. If
there is an extension S ⊆ U to a solution set (i.e., X ∪ S ∈ F) of size at most k, then
the algorithm outputs a set T ⊆ U such that X ∪ T ∈ F and w(T ) ≤ α · w(S∗) where S∗

is a minimum-weight extension of X of size at most k. Note that the size of T does not
need to be bounded in k; the parameter k only restricts the size of an “optimum solution”
which we compare against. For example, the polynomial-time 2-approximation algorithm for
Weighted Vertex Cover [5] immediately results in a 2-approximate extension algorithm:
given a graph G, X ⊆ V (G) and k ≥ 0, we apply the 2-approximation algorithm to G − X

and return the output T ⊆ V (G) (this algorithm behaves independently of k). With this,
our main result can informally be stated as follows.

Suppose a weighted monotone subset minimization problem admits an α-approximate
extension algorithm running in time O∗(ck). Then there is a β-approximation algorithm
running in time O∗((amls(α, c, β) + ε)n) for every ε > 0.

The basic idea to achieve this result is to partition the universe U into subsets Ui of
elements of roughly the same weight. We apply the results from [12] to each of the sets Ui

separately which results in a “query set” for Ui, i.e., a set of queries made by the algorithm
from [12] to the α-approximate extension algorithm. The crucial observation is that these
queries are made in a non-adaptive way, i.e., the “query set” only depends on the set Ui. We
then combine the “query sets” for the blocks Ui into a query set for the whole weighted set
U . In particular, the results from [12] are only used in a black-box manner.

For many problems such as Vertex Cover [5], d-Hitting Set [5] and Feedback
Vertex Set [3], polynomial-time approximation algorithms directly extend to the weighted
setting, and provide α-approximate extension algorithms as discussed above. On the other
hand, while many parameterized exact algorithms do not directly extend to the weighted
setting, several problems have been studied in the weighted setting. For example, for
Weighted Vertex Cover [21] provides a O∗(1.363k) algorithm that, given a vertex-
weighted graph and a number k ≥ 0, returns a vertex cover of weight at most W where
W is the minimum weight of a vertex cover of size at most k (if there is no vertex cover
of size at most k, the algorithm reports failure). As before, to obtain a 1-approximate
extension subroutine, we apply the algorithm to the graph G − X (where X is the input set
for the extension subroutine). Similar results are also available for Weighted d-Hitting
Set [14, 21] and Weighted Feedback Vertex Set [1]. Also, some simple branching
algorithms immediately extend to the weighted setting (e.g., deletion to H-free graphs where
H is a finite set of forbidden induced subgraphs). Finally, we can also rely on parameterized
approximation algorithms. For example, [18] provides such algorithms for several problems
including Weighted Directed FVS and Weighted Multicut.

IPEC 2023
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We remark that there are also FPT algorithms for other parameterizations in the weighted
setting. For example, Niedermeier and Rossmanith [20] show that Weighted Vertex
Cover is fixed-parameter tractable parameterized by the weight W of a minimum-weight
vertex cover. However, such subroutines are not useful in our setting since we aim to bound
the running time of our approximation algorithms with respect to the number of vertices.

Similar to [12], we compare our algorithms to a brute-force search. Here, we consider
a setting where the weighted monotone subset minimization problem can only be accessed
via a membership oracle, i.e., given a set X ⊆ U , we can test (in polynomial time) whether
X is a solution set. For every β ≥ 1 we define brute(β) := 1 + exp

(
−β · H

(
1
β

))
where

H(β) := −β ln β − (1 − β) ln(1 − β) denotes the entropy function. In [11] it has been
shown that, in the unweighted setting, there is a β-approximation algorithm running in time
O∗((brute(β))n) that only exploits a membership test. We also extend this result to the
weighted setting, i.e., we show that any weighted monotone subset minimization problem
can be solved in time (brute(β))n+o(n) given only a membership oracle.

Esmer et al. [12] show that amls(α, c, β) < brute(β) for all α, c ≥ 1 and β > 1. Since
the same bounds are achieved in the weighted setting, all algorithms obtained above are
strictly faster than the brute-force β-approximation algorithm. In particular, we obtain
exponential-time approximation algorithms that are faster than the approximate brute-force
search for the weighted versions of Vertex Cover, d-Hitting Set, Feedback Vertex
Set, Tournament FVS, Subset FVS, Cluster Graph Vertex Deletion, Cograph
Vertex Deletion, Split Vertex Deletion, Partial Vertex Cover, Directed
Feedback Vertex Set, Directed Subset FVS, Directed Odd Cycle Transversal
and Multicut (all problems are defined in Appendix B).

Organization
The paper is organized as follows. In Section 2 we state the problems we want to address,
provide the necessary definitions and notation, and formally state our main results. In
Section 3, we demonstrate how our methods can be applied to specific problems to obtain
exponential-time approximation algorithms. Section 4 contains the proof of Theorem 3, our
result on exponential-time approximation algorithms for the WeightedSM problem in the
membership model. Similarly, Section 5 contains the proof of Theorem 8, our result on
exponential-time approximation algorithms for the WeightedSM problem in the extension
model. Finally, in Section 6 we conclude the paper by summarizing our main contributions
and key findings.

2 Our Results

To formally state our results we use an abstract notion of a problem and oracle-based
computational models. Let U be a finite set of elements. We use n to denote the cardinality
of U . A set system F of U is a family F ⊆ 2U of subsets of U . We say the set system F is
monotone if (i) U ∈ F and (ii) for all T ⊆ S ⊆ U , if T ∈ F then S ∈ F as well.

An instance of the Weighted Monotone Subset Minimization problem (WeightedSM)
is a triplet (U, w, F) where U is a finite set, w : U → N is a weight function over the
elements of U , and F is a monotone set system of U . The set of solutions is F and
the objective is to find S ∈ F with minimum total weight w(S) :=

∑
u∈S w(u). We use

opt(U, w, F) := min{w(S) | S ∈ F} to denote the optimum value of a solution to the
WeightedSM instance (U, w, F). We refer to the special case in which w(u) = 1 for all
u ∈ U as the Unweighted Monotone Subset Minimization problem (UnweightedSM).
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The Weighted Monotone Subset Minimization problem is a meta-problem which captures
multiple well studied problems as special cases, e.g., Weighted Vertex Cover, Weighted
Feedback Vertex Set and Weighted Multicut. We study the problem using two
computational models. In both models the set U and the weight function w are given as
part of the input. The set F can only be accessed using an oracle, and the models differ in
the type of supported oracle queries.

2.1 Membership Oracles and Weighted Approximate Brute Force
In the membership model the input to the algorithm is a universe U and a weight func-
tion w : U → N. Additionally, the algorithm has access to a membership oracle for a monotone
set system F of U , that is, the algorithm can check if a subset S ⊆ U satisfies S ∈ F in a
single step. For every α ≥ 1, we say an algorithm is an α-approximation for WeightedSM
(UnweightedSM) in the membership model if for every WeightedSM (UnweightedSM)
instance (U, w, F) the algorithm returns a set S ∈ F such that w(S) ≤ α · opt(U, w, F).

One can easily attain a 1-approximation algorithm for WeightedSM in the membership
model by iterating over all subsets of U and querying the oracle for each. This leads to
an algorithm with running time O∗(2n). Moreover, it can be easily shown there is no
1-approximation algorithm for WeightedSM (or for UnweightedSM) in the membership
model which runs in time O ((2 − ε)n). We refer to this algorithm as the (exact) brute force.

Intuitively, for every α > 1, it should be possible to design an α-approximation algorithm
for WeightedSM and UnweightedSM in the membership model which runs in time O(cn)
for some c < 2. However, the value of the optimal c in this setting is not obvious. In [11] the
authors studied UnweightedSM in the membership model and pinpointed the right value
of c. For every α ≥ 1 we define

brute(α) = 1 + exp
(

−α · H
(

1
α

))
, (1)

where H(x) = −x ln(x) − (1 − x) ln(1 − x) is the entropy function.

▶ Lemma 1 ([11, Theorem 5.1]). For every α ≥ 1 the following holds.
1. There is a deterministic α-approximation algorithm for UnweightedSM in the member-

ship model which runs in time (brute(α))n · nO(1).
2. Let ε > 0. There is no α-approximation algorithm for UnweightedSM in the member-

ship model which runs in time (brute(α) − ε)n · nO(1).

As the algorithmic result in Lemma 1 can be viewed as an approximate analogue of the
brute-force algorithm, it is commonly referred as α-approximate brute force. The lower bound
given in [11] also holds if the algorithm is allowed to use randomization. As WeightedSM
is a generalization of UnweightedSM, the following corollary is an immediate consequence
of Lemma 1.

▶ Corollary 2. For every α ≥ 1 and ε > 0 there is no α-approximation algorithm for
WeightedSM in the membership model which runs in time (brute(α) − ε)n · nO(1).

As the bound in Lemma 1 also holds if randomization is allowed, the same holds true for
the bound in Corollary 2. Our first result is a generalization of the approximate brute-force
algorithm of [11] for the weighted setting. That is, we provide an algorithm which matches
the lower bound in Corollary 2 up to a sub-exponential factor.

IPEC 2023



17:6 Approximate Monotone Local Search for Weighted Problems

▶ Theorem 3 (Weighted Approximate Brute Force). For every α > 1 there is an α-
approximation algorithm for WeightedSM in the membership model which runs in time
(brute(α))n+o(n).

The proof of Theorem 3 is based on a rounding of the weight function w and utilizes a
construction from [11] which is applied to each of the rounded weight classes.

2.2 Extension Oracles and Weighted Approximate Monotone Local
Search

Our second computational model deals with extension oracles. The input for these oracles is
a set S ⊆ U and a number ℓ ∈ N≥0 and the output is an extension of S, that is, a set X ⊆ U

such that S ∪ X ∈ F . Furthermore, the returned set X is guaranteed to have a small weight
in comparison to the minimum-weight extension of S which contains at most ℓ elements. For
multiple problems, such as Vertex Cover and Feedback Vertex Set, these oracles can
be implemented using existing parameterized algorithms which have a running time of the
form cℓ · nO(1). We therefore associate a running time of cℓ with the query (S, ℓ). The formal
definition of extension oracles is as follows.

▶ Definition 4 (Extension Oracle). Let (U, w, F) be a WeightedSM instance and let α ≥ 1.
An α-extension oracle for (U, w, F) is a function Ext : 2U × N≥0 → 2U such that for every
S ⊆ U and ℓ ∈ N≥0 the following holds:
1. Ext(S, ℓ) ∪ S ∈ F .
2. w (Ext(S, ℓ)) ≤ α · min{w(X) | X ⊆ U, |X| ≤ ℓ, X ∪ S ∈ F} (we set min ∅ = ∞).

In the (α, c)-extension model the input for the algorithm is a finite set U and a weight
function w : U → N. Furthermore, the algorithm is given oracle access to an α-extension oracle
Ext of (U, w, F) for some monotone set system F of U . For every β ≥ 1, we say an algorithm
is a β-approximation algorithm for WeightedSM (UnweightedSM) in the (α, c)-extension
model if for every WeightedSM (UnweightedSM) instance (U, w, F) and α-extension
oracle Ext of the instance, the algorithm returns T ∈ F such that w(T ) ≤ β · opt(U, w, F).
The running time of an algorithm in this model is the number of computations steps plus cℓ

for every query (S, ℓ) issued to the oracle during the execution. Following the standard worst-
case analysis convention, we say an algorithm runs in time f(n) if for every WeightedSM
instance (U, w, F) and α-extension oracle Ext of the instance the algorithm runs in time at
most f (|U |).

The (α, c)-extension model is studied in [12] for the special case of UnweightedSM.
The authors of [12] provide a deterministic β-approximation algorithm in the (α, c)-extension
model, known as deterministic approximate monotone local search, which runs in time
(amls(α, c, β))n+o(n), where amls(α, c, β) is defined as the optimal value of a continuous
optimization problem. Throughout the paper we use amls to denote this function. We
provide the formal definition of amls in the full version of the paper for completeness. We
note that this formal definition is not required for the understanding of the results in this
paper. It is also shown in [12] that the value of amls(α, c, β) can be computed up to precision
of ε in time polynomial in the encoding length of α, c, β and ε.

This algorithmic result is complemented in [12] with a matching lower bound.

▶ Lemma 5 ([12]). For every α, β, c ≥ 1 and ε > 0 there is no deterministic β-approximation
for UnweightedSM in the (α, c)-extension model which runs in time (amls(α, c, β) − ε)n ·
nO(1).
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Furthermore, it is shown that the running time of the deterministic approximate monotone
local search is better than brute force for every β > 1.

▶ Lemma 6 ([12]). For all α, c ≥ 1 and β > 1 it holds that amls(α, c, β) < brute(β).

The results of [12] also include a randomized algorithm which omits the subexponential
factor in the running time and the lower bound also holds for randomized algorithms. In [12]
the authors use the deterministic approximate monotone local search algorithm to obtain
exponential-time approximation algorithms for multiple unweighted problems such as Vertex
Cover and Feedback Vertex Set. We generalize the algorithmic results of [12] to the
weighted setting and similarly use it to obtain exponential-time approximation algorithms
for weighted variants of the mentioned problems (see Section 3).

Since UnweightedSM is a special case of WeightedSM, Lemma 5 immediately implies
the following

▶ Corollary 7. For every α, c, β ≥ 1 and ε > 0 there is no deterministic β-approximation for
WeightedSM in the (α, c)-extension model which runs in time (amls(α, c, β) − ε)n · nO(1).

Our second result is an algorithm which matches the running time in Corollary 7 up to
an additive term of ε in the base of the running time.

▶ Theorem 8 (Weighted Approximate Monotone Local Search). For every α, c ≥ 1, β > 1 and
ε > 0 there is a deterministic β-approximation for WeightedSM in the (α, c)-extension
model which runs in time O ((amls(α, c, β) + ε)n).

The proof of Theorem 8 is similar to the one of Theorem 3. It applies rounding to the
weights on the elements, and then utilizes a construction from [12] for each of the weight
classes.

The result of Theorem 8 only applies for β > 1. If α = β = 1 the result of [15] can be used
to obtain an exact algorithm with running time nO(1) ·

(
2 − 1

c

)n. For α > β = 1 Corollary 7
implies that the best possible running time is O∗(2n) which can be attained by brute force.

3 Applications

Our results provide exponential-time approximation algorithms for a variety of weighted
vertex-deletions problems. For illustration purposes, let us first focus on the Weighted
Vertex Cover problem where we are given a graph G with vertex weights w : V (G) → N,
and we ask for a vertex cover S ⊆ V (G) of minimum weight w(S) =

∑
v∈S w(v). It is

well-known that Weighted Vertex Cover admits a polynomial-time 2-approximation
algorithm [5]. Also, the problem can be solved exactly in time O∗(1.238n) [22].

For the unweighted version Unweighted Vertex Cover, Bourgeois, Escoffier and
Paschos [6] designed several exponential-time approximation algorithms for approximation
ratios in the range (1, 2). For example, they obtain a 1.1-approximation algorithm running in
time O∗(1.127n) where n denotes the number of vertices of the input graph. These running
times are further improved in [11,12] using the framework of Approximate Monotone Local
Search. Indeed, the fastest known 1.1-approximation algorithm for Unweighted Vertex
Cover runs in time O∗(1.113n) [12].

For the weighted version, no such results have been obtained so far. We use Theorem 8
to design the first exponential β-approximation algorithms for Weighted Vertex Cover
for all β ∈ (1, 2). For the extension oracle, we can rely on the well-known polynomial-time
2-approximation algorithm. Given a set S ⊆ V (G), we delete all vertices in S and apply the

IPEC 2023
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Figure 1 The left figure shows running times for Weighted Vertex Cover and the right side
provides a comparison to Unweighted Vertex Cover. A dot at (β, d) means that the respective
algorithm outputs an β-approximation in time O∗(dn).

Table 1 The table shows the running times for Weighted Vertex Cover (second and third row)
and Unweighted Vertex Cover (last row). An entry d in column β means that the respective
algorithm outputs a β-approximation in time O∗(dn).

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9
brute 1.716 1.583 1.496 1.433 1.385 1.347 1.317 1.291 1.269

(α = 1, c = 1.363) 1.158 1.123 1.103 1.089 1.078 1.07 1.064 1.058 1.054
(α = 2, c = 1) 1.659 1.485 1.366 1.277 1.208 1.151 1.104 1.064 1.03

Unweighted VC 1.113 1.062 1.036 1.02 1.01 1.005 1.002 1.0004 1.00005

2-approximation algorithm to the graph G − S which outputs a vertex cover X such that
w(X) ≤ 2 · w(OPT) where OPT denotes a minimum vertex cover of G − S. As a result, we
can implement a 2-extension oracle in polynomial time which corresponds (up to polynomial
factors) to cost c = 1. So Theorem 8 results in a β-approximation algorithm for Weighted
Vertex Cover which runs in time O∗((amls(α, c, β) + ε)n) for every β > 1, where α = 2
and c = 1. A visualization is given in Figure 1.

Instead of using a polynomial-time 2-approximation algorithm, we can also rely on
existing FPT algorithms for Weighted Vertex Cover to simulate the extension oracle.
Let us point out that different parameterizations have been considered for Weighted
Vertex Cover in the literature. For example, Niedermeier and Rossmanith [20] give FPT
algorithms for Weighted Vertex Cover parameterized by the weight of the optimal
solution. However, in light of the computational model introduced above, we require FPT
algorithms parameterized by the size of the solution. Given a graph G with vertex weights
w : V (G) → N and an integer k ≥ 0, we ask for a vertex cover of weight at most W where W

is the minimum weight of a vertex cover of size at most k. The best known FPT algorithm
(parameterized by k) for this problem runs in time 1.363k · nO(1) [21]. This algorithm
provides an extension algorithm with parameters α = 1 and c = 1.363. Using Theorem 8,
we obtain a β-approximation algorithm for Weighted Vertex Cover running in time
O∗((amls(α, c, β) + ε)n). For β = 1.1, we obtain a running time of O∗(1.158n).
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Table 2 List of weighted deletion problems admitting a single-exponential parameterized algorithm
running in time O∗(ck

1) and/or a polynomial-time α2-approximation algorithm. The problems
Tournament FVS, Cluster Graph Vertex Deletion, Cograph Vertex Deletion and Split
Vertex Deletion can be easily reduced to d-Hitting Set for appropriate values of d by exploiting
known characterizations in terms of forbidden induced subgraphs. Additionally, for Tournament
FVS we can rely on iterative compression to obtain a O∗(2k) algorithm (see, e.g., [8]).

Problem c1 det. α2 det.
Vertex Cover 1.363 [21] ✓ 2 [5] ✓

FVS 3.618 [1] ✓ 2 [3] ✓

Tournament FVS 2.0 ✓ 3 ✓

Subset FVS - ✓ 8 [13] ✓

3-Hitting Set 2.168 [21] ✓ 3 [5] ✓

d-Hitting Set (d ≥ 4) d − 0.832 [14] ✓ d [5] ✓

Cluster Graph Vertex Deletion 2.168 ✓ 3 ✓

Cograph Vertex Deletion 3.168 ✓ 4 ✓

Split Vertex Deletion 4.168 ✓ 5 ✓

Partial Vertex Cover - ✓ 2 [7] ✓

We provide running times for selected approximation ratios for both algorithms in Table
1 and a graphical comparison in Figure 1. We also compare the running times to the
approximate brute-force search and the best algorithms in the unweighted setting [12]. It can
be observed that the second algorithm (using the FPT algorithm as an extension subroutine)
is faster for β ≲ 1.82. Also, there is still a noticeable gap to the unweighted setting. This
can be mainly explained by the fact that the approximation algorithm for the unweighted
setting [12] relies on parameterized approximation algorithms for Unweighted Vertex
Cover [17] which are currently unavailable in the weighted setting.

We stress that our results are not limited to Weighted Vertex Cover, but they are
applicable to various vertex-deletion problems including Weighted Feedback Vertex
Set and Weighted d-Hitting Set (see Figure 2). Table 2 gives an overview on problems
for which we obtain exponential approximation algorithms by simulating the extension
oracle by an FPT algorithm (parameterized by solution size) running in time ck

1 · nO(1) or
a polynomial-time α2-approximation algorithm. For all the problems listed in Table 2, we
obtain the first exponential β-approximation algorithms for all β ∈ (1, α2). Observe that
these algorithms always outperform the approximate brute-force search by Lemma 6. We
provide data on the running times of these algorithms in the full version of the paper.

Finally, let us point out that our methods are also applicable if there is a parameterized
approximation algorithm for a weighted vertex deletion problem, i.e., an α-approximation
algorithm running time ck ·nO(1). In [18], such algorithms have been obtained for Weighted
Directed Feedback Vertex Set, Weighted Directed Subset FVS, Weighted
Directed Odd Cycle Transversal and Weighted Multicut. As a result, we also
obtain exponential β-approximation algorithms for these problems that outperform the
approximate brute-force search.

4 Weighted Approximate Brute Force

In this section we prove Theorem 3. The algorithm is based on the notion of covering families.

▶ Definition 9 (Covering Family). Let U be a finite set, w : U → N be a weight function and
α ≥ 1. We say C ⊆ 2U is an α-covering family of U and w if for every S ⊆ U there exists
T ∈ C such that S ⊆ T and w(T ) ≤ α · w(S).
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(a) Feedback Vertex Set.
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(b) 3-Hitting Set.

Figure 2 The figure shows running times for Feedback Vertex Set and 3-Hitting Set. A
dot at (β, d) means that the respective algorithm outputs an β-approximation in time O∗(dn).

An α-covering family C can be easily used to attain an α-approximation algorithm in the
membership model as follows. The algorithm constructs the covering family C and uses the
membership oracle to compute C ∩ F using |C| queries. The algorithm then returns the
set Q ∈ C ∩ F of minimum weight. To show correctness, consider a set S ∈ F such that
w(S) = opt(U, w, F). Since C is an α-covering family there is T ∈ C such that S ⊆ T and
w(T ) ≤ α ·w(S) = α ·opt(U, w, F). Since F is monotone it holds that T ∈ F , thus T ∈ C ∩F ,
and we conclude that the algorithm returns a set of weight at most α · opt(U, w, F). The
running time of the algorithm, up to polynomial factors, is the construction time of C plus |C|.

By the above argument, the proof of Theorem 3 boils down to the construction of α-
covering families. To this end, we show the next result. Recall that n denotes the size of the
universe U .

▶ Lemma 10. There exists an algorithm which given a finite set U , a weight function
w : U → N and α > 1, constructs an α-covering family C of U and w such that |C| ≤
(brute(α))n+o(n). Furthermore, the running time of the algorithm is (brute(α))n+o(n).

Using the argument above, Theorem 3 is an immediate consequence of Lemma 10. The
construction of the covering family in Lemma 10 is based on a rounding of the weight function
and a reduction to covering families in the unweighted case. The construction of such families
is implicitly given in [11].

▶ Lemma 11 ( [11]). There exists an algorithm which given a finite set U and α > 1
returns an α-covering family C of U and the uniform weight function w : U → {1} such that
|C| ≤ (brute(α))n · nO(1). Furthermore, the algorithm runs in time (brute(α))n · nO(1).

The proof of Lemma 10 is based on the following seemingly weaker version of Lemma 10.

▶ Lemma 12. There exists an algorithm A which given a finite set U , a weight function
w : U → N, β > 1 and 0 < δ < 1, constructs a (1 + δ) · β-covering family C of U and w
such that |C| ≤ (brute(β))n · nO( 1

δ log( n
δ )). Furthermore, the running time of the algorithm is

(brute(β))n · nO( 1
δ log( n

δ )).
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Proof. The algorithm A works as follows:
Define γ := 1 + δ

2 > 1. For i ≥ 0 let

Ui := {u ∈ U | γi ≤ w(u) < γi+1} (2)

and ni := |Ui|. Let I := {i ∈ Z≥0 | Ui ̸= ∅} denote the set of indices i ≥ 0 for which Ui is
non-empty. Note that |I| ≤ n.
For each i ∈ I construct a β-covering family Ci of the universe Ui and the uniform weight
function using Lemma 11.
Define d := ⌈(2/δ) · log(2n/δ)⌉ and for each k ∈ I, let Ik := {i ∈ I | k − d ≤ i ≤ k} denote
the indices in I between k − d and k.
For every k ∈ I, let rk := |Ik| and define

Wk :=
⋃

i∈ I : 1≤i<k−d

Ui and

Qk :=
{

Wk ∪ E1 ∪ . . . ∪ Erk

∣∣∣∣∣ (E1, . . . , Erk
) ∈

∏
i∈Ik

Ci

}
.

Return the set C :=
⋃

k∈I Qk.

▷ Claim 13. The algorithm A returns a (1 + δ) · β-covering family of U and w.

Proof. Let us pick a set S ⊆ U . We show that there exists T ∈ C such that S ⊆ T and
w(T ) ≤ (1 + δ) · β · w(S).

By the definition of γ and d, it holds that

γd ≥
(

1 + δ

2

)(2/δ)·log(2n/δ)
≥ 2log(2n/δ) = 2n

δ
(3)

using that (1 + 1
x )x ≥ 2 for all x ≥ 1. Let k ∈ I be the largest index such that S ∩ Uk ≠ ∅.

It holds that

w(Wk) < n · γk−d ≤ δ

2 · γk ≤ δ

2 · w(S) (4)

where the first inequality follows from the fact that |Wk| ≤ n and each u ∈ Wk belongs to
a set Ui where i ≤ k − d − 1 and therefore w(u) < γk−d−1+1 = γk−d by (2). The second
inequality follows from (3) and finally the last inequality holds because by definition of k,
there exists u ∈ S ∩ Uk such that w(u) ≥ γk by (2).

For every i ∈ Ik define Si := S ∩ Ui. Since Ci is a β-covering family of Ui and the uniform
weight function, for each i ∈ Ik there exists Ti ∈ Ci such that Si ⊆ Ti and |Ti| ≤ β · |Si|.
Hence, for all i ∈ Ik it holds that

w(Ti) ≤ γi+1 · |Ti| ≤ γi+1 · β · |Si| ≤ γ · β · w(Si) (5)

where the first inequality follows from the fact that Ti ⊆ Ui and (2), the second inequality
follows from the definition of Ti and finally the last one again follows from the fact that
Si ⊆ Ui and (2).

Let T :=
⋃

i∈Ik
Ti and define

T :=
(

Wk ∪ T

)
∈ Qk ⊆ C.
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Then we have

S = S ∩ U = S ∩

(⋃
i∈I

Ui

)
=
(

S ∩
(

∪i∈I:i<k−dUi

))
∪
(

S ∩
(

∪i∈Ik
Ui

))

= (S ∩ Wk) ∪

(⋃
i∈Ik

(S ∩ Ui)
)

⊆ Wk ∪

(⋃
i∈Ik

Ti

)
= T.

Finally, it also holds that

w(T ) = w(Wk) +
∑
i∈Ik

w(Ti)

≤ δ

2 · w(S) +
∑
i∈Ik

γ · β · w(Si) by (4) and (5)

≤ δ

2 · β · w(S) + γ · β · w(S)

≤ (1 + δ) · β · w(S).

This shows that C is a (1 + δ) · β-covering family of U and w. ◁

▷ Claim 14.

|C| ≤ (brute(β))n · nO( 1
δ ·log( n

δ )).

Proof. By Lemma 11, for each i ∈ I it holds that

|Ci| ≤ (brute(β))ni · nc
i (6)

for some c > 0. Thus, for every k ∈ I,

|Qk| ≤

∣∣∣∣∣∏
i∈Ik

Ci

∣∣∣∣∣ =
∏
i∈Ik

|Ci| ≤
∏
i∈Ik

(brute(β))ni · nc
i

= (brute(β))
∑

i∈Ik
ni · n

c·|Ik|
i

≤ (brute(β))n · nc·(d+1)

= (brute(β))n · nO( 1
δ ·log( n

δ )).

Finally, we have that

|C| =

∣∣∣∣∣⋃
k∈I

Qk

∣∣∣∣∣ ≤
∑
k∈I

|Qk| = (brute(β))n · nO( 1
δ ·log( n

δ ))

since |I| ≤ n. ◁

▷ Claim 15. The running time of A is (brute(β))n · nO( 1
δ ·log( n

δ )).
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Proof. The construction of {Ci}i∈I takes∑
i∈I

(brute(β))ni · n
O(1)
i ≤ (brute(β))n · nO(1) (7)

which follows from Lemma 11. Finally, the construction of C takes time proportional to the
size of C where we have

|C| = (brute(β))n · nO( 1
δ ·log( n

δ ))

by Claim 14. All in all, the running time of A is upper bounded by (brute(β))n ·nO( 1
δ ·log( n

δ )).

◁

The lemma follows from Claims 13–15. ◀

To prove Lemma 10, we combine Lemma 12 with the following technical lemma.

▶ Lemma 16. Let f : I → R be a continuous function on an open interval I ⊆ R and let
α > 1 such that α ∈ I. Define β(n) := α − 1

log(n) and δ(n) := α
β(n) − 1 for all n ∈ N. Then it

holds that

f
(
β(n)

)n · n
O
(

1
δ(n) ·log

(
n

δ(n)

))
= f(α)n+o(n).

The proof of Lemma 16 is given in the full version of the paper.

Proof of Lemma 10. We claim that the algorithm A from Lemma 12 with β := α − 1
log(n)

and δ := α
β − 1 satisfies the properties listed in Lemma 10. Note that β and δ are functions

of n, but we write β and δ instead of β(n) and δ(n) for the sake of readability.
Observe that we have (1 + δ) · β = α

β · β = α. Hence, by Lemma 12, the set returned
by A is an α-covering family C of U and w such that |C| ≤ (brute(β))n · nO( 1

δ log( n
δ )). The

running time of the algorithm is also bounded by (brute(β))n · nO( 1
δ ·log( n

δ )).
By (1), brute(x) is a continuous function of x because the entropy function is continuous.

Therefore by Lemma 16 it holds that (brute(β))n · nO( 1
δ log( n

δ )) = (brute(α))n+o(n) which
proves the lemma. ◀

5 Weighted Monotone Local Search

In this section we prove Theorem 8. The proof presented here follows the outline of the proof
of Theorem 3 in Section 4, using the concept of an (α, β)-extension family, an adaptation of
the term α-covering family presented in Section 4 to the setting of extension oracles. While
the items in a covering family are queries to a membership oracle, and hence are subsets
of U , the items in an extension family represent queries to the extension oracle, and thus are
pairs (T, ℓ) of a subset T of U and a non-negative integer ℓ. A reduction to a construction
from [12] is used to build the extension family, and the extension family itself can be trivially
used to attain a β-approximation algorithm for WeightedSM.

▶ Definition 17 (Extension Family). Let U be a finite set and w : U → N be a weight function.
Furthermore, let α, β ≥ 1. We say E ⊆ 2U × N is an (α, β)-extension family of U and w if
for every S ⊆ U there exists (T, ℓ) ∈ E which satisfies the following:
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|S \ T | ≤ ℓ,

w(T ) + α · w(S \ T ) ≤ β · w(S). (8)

Let c ≥ 1. The c-cost of an (α, β)-extension family E of U and w is defined as costc(E) :=∑
(T,ℓ)∈E cℓ. The proof of Theorem 8 relies on the following lemma.

▶ Lemma 18. Let α, c ≥ 1, β > 1 and ε > 0. Then there is an algorithm which given a
finite set U and a weight function w : U → N returns an (α, β)-extension family E of U

and w such that costc(E) = O
((

amls(α, c, β) + ε
)n)

. Furthermore, the running time of

the algorithm is O
((

amls(α, c, β) + ε
)n)

.

Before heading to the proof of Lemma 18, we show how the lemma can be used to prove
Theorem 8.

Proof of Theorem 8. Let α, c ≥ 1, β > 1 and ε > 0. Consider the following algorithm A :
Given the input (U, w, F), use Lemma 18 with α, β, c and ε to construct an (α, β)-extension
family E of U and w.
Let Ext be the α-extension oracle. For each (Ti, ℓi) ∈ E , use Ext to compute Xi :=
Ext(Ti, ℓi).
Define T := {Ti ∪ Xi | (Ti, ℓi) ∈ E} and return a set in T with the minimum weight, i.e.,
a set T ∈ T such that w(T ) = min{w(Y ) | Y ∈ T }.

The algorithm A first creates an (α, β)-extension family E . Then it goes over all elements
(Ti, ℓi) ∈ E and queries the oracle with (Ti, ℓi). So the running time of this algorithm in the
(α, c)-extension model is equal to the running time of the algorithm from Lemma 18 plus cℓi

for every query (Ti, ℓi), i.e., the cost of the extension family E . By Lemma 18 this value is at
most

(amls(α, c, β) + ε)n + costc(E) = O
(

(amls(α, c, β) + ε)n
)

+ O
(

(amls(α, c, β) + ε)n
)

= O
(

(amls(α, c, β) + ε)n
)

▷ Claim 19. The algorithm A is a deterministic β-approximation for WeightedSM in the
(α, c)-extension model.

Proof. Let R ∈ T be the set returned by the algorithm. Note that by definition of T ,
R = Tj ∪ Xj for some (Tj , ℓj) ∈ E and Xj = Ext(Tj , ℓj). In particular, R = Tj ∪ Xj =
Tj ∪ Ext(Tj , ℓj) ∈ F (see Definition 4).

Let S ∈ F be a set with minimum weight in F , i.e., w(S) = min{w(Y ) | Y ∈ F} =
opt(U, w, F). Since E is an (α, β)-extension family, there exists (Ti, ℓi) ∈ E such that S, Ti

and ℓi satisfy (8) for T = Ti and ℓ = ℓi. Moreover, observe that

S \ Ti ∈ {X ⊆ U | |X| ≤ ℓi, X ∪ Ti ∈ F}

because S ⊆ (S \ Ti) ∪ Ti ∈ F . Hence, by the definition of Ext and (Ti, ℓi), it follows that

w(Xi) = w (Ext(Ti, ℓi)) ≤ α · min {w(X) | X ⊆ U, |X| ≤ ℓi, X ∪ Ti ∈ F}
≤ α · w (S \ Ti)
≤ β · w(S) − w(Ti).
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Finally, we have

w(R) = min{w(Y ) | Y ∈ T }
≤ w(Ti ∪ Xi)
≤ w(Ti) + w(Xi)
≤ β · w(S)
= β · opt(U, w, F)

which proves the claim. ◁

This shows that the algorithm A is a deterministic β-approximation for WeightedSM
in the (α, c)-extension model with the running time given in Theorem 8. ◀

The proof of Lemma 18 relies on the following construction for extension families in the
unweighted case which is implicitly given in [12].

▶ Lemma 20 ( [12]). Let α, c ≥ 1 and β > 1. Then there is a deterministic algorithm
which given a finite set U , returns an (α, β)-extension family E of U and the uniform weight

function w : U → {1} such that costc(E) ≤
(

amls(α, c, β)
)n+o(n)

. Furthermore, the running

time of the algorithm is
(

amls(α, c, β)
)n+o(n)

.

In a manner analogous to Section 4, we begin by introducing Lemma 21, which presents
a slightly weaker form of Lemma 18. Within Lemma 21, ζ takes the place of the previously
mentioned β from Lemma 18. Subsequently, in the proof of Lemma 18, we set the value of ζ

as a function of β.

▶ Lemma 21. Let α, c ≥ 1, ζ > 1 and 0 < δ < 1. Then there is an algorithm which given a
finite set U and a weight function w : U → N returns an (α, (1 + δ) · ζ)-extension family E

of U and w such that costc(E) ≤
(

amls(α, c, ζ)
)n+o(n)

. Furthermore, the running time of

the algorithm is
(

amls(α, c, ζ)
)n+o(n)

.

As already indicated above, the proof of Lemma 21 is similar to the proof of Lemma 12.
The algorithm used to compute the desired extension family is given in Algorithm 1. The
full proof of Lemma 21 can be found in Appendix A. Lastly, we use the following property of
the function amls.

▶ Lemma 22. For every fixed α > 1 and c > 1, amls(α, c, x) is a continuous function of x

on the interval (1, ∞).

The proof of Lemma 22 is given in the full version of the paper.

Proof of Lemma 18. Let α, c ≥ 1, β > 1 and ε > 0. Since amls(α, c, ζ) is continuous in
ζ by Lemma 22, there exists a ζ ′ ∈ (1, β) such that amls(α, c, ζ ′) < amls(α, c, β) + ε

2 . To
prove the lemma, we use the algorithm from Lemma 21 (i.e., Algorithm 1) with ζ := ζ ′ and
δ := β/ζ − 1.

Note that we have (1 + δ) · ζ = (β/ζ) · ζ = β. Hence, by Lemma 21, the set E returned
by Algorithm 1 is an

(
α, β

)
-extension family of U and w such that

costc(E) ≤
(

amls(α, c, ζ ′)
)n+o(n)

≤
(

amls(α, c, β) + ε

2

)n+o(n)
= O

(
(amls(α, c, β) + ε)n

)
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Algorithm 1 Extension Family for Arbitrary Weight Functions.
Configuration: α ≥ 1, c ≥ 1, ζ > 1 and 0 < δ < 1
Input: A universe U , weight function w : U → N

1: Define γ := 1 + δ
2 > 1. For i ≥ 0 let

Ui := {u ∈ U | γi ≤ w(u) < γi+1} (9)

and ni := |Ui|. Let I := {i ∈ Z≥0 | Ui ≠ ∅} denote the set of indices i ≥ 0 for which Ui is
non-empty. Note that |I| ≤ n.

2: For each i ∈ I construct an
(

α, ζ
)

-extension family Ei of the universe Ui and the uniform
weight function using Lemma 20 with respect to α, c and ζ.

3: Define d := ⌈(2/δ) · log(2n/δ)⌉ and for each k ∈ I, let Ik := {i ∈ I | k − d ≤ i ≤ k} denote
the indices in I between k − d and k.

4: For every k ∈ I, let rk := |Ik| and define

Wk :=
⋃

i∈I : 1≤i<k−d

Ui and

Qk :=

{(
Wk ∪ E1 ∪ . . . ∪ Erk , ℓ1 + . . . + ℓrk

) ∣∣∣∣∣ ((E1, ℓ1) , . . . , (Erk , ℓrk )
)

∈
∏
i∈Ik

Ei

}
.

5: Return the set E :=
⋃

k∈I Qk.

Finally, the running time of the algorithm is also bounded by(
amls(α, c, ζ ′)

)n+o(n)
= O

(
(amls(α, c, β) + ε)n

)
which proves the lemma. ◀

6 Discussion

In this paper, we study weighted monotone subset minimization problems, where given a
universe U with n elements and a weight function w : U → N, the goal is to find a subset
S ⊆ U which satisfies a certain fixed property and has a minimum weight. For such problems,
we show that the Approximate Monotone Local Search framework of Esmer et al. [12] can
be extended to the weighted setting. In particular, given a parameterized α-approximate
extension algorithm, that runs in time ck · nO(1) and outputs a solution whose weight is
at most β · w(OPT) where OPT is a solution of size at most k and minimum weight, one
can design an exponential β-approximation algorithm that runs faster than the proposed
(natural) brute-force algorithm.

Note that for most of our applications, the parameterized approximation algorithms that
are available in the literature [1,14,18,21] provide bi-objective guarantees which are stronger
than the requirements from the α-approximate extension algorithm. In particular, these
algorithms run in time ck · nO(1) and output a solution of size at most γ · k and weight
at most β · W , if a solution of size at most k and weight at most W exists. That is, they
(approximately) optimize the size and weight of the output solution simultaneously.

This leads to the following natural question. Consider more restrictive weighted monotone
subset minimization problems where given a universe U on n vertices, a weight function w
on the elements of the universe, the goal is to find a subset of the universe of size at most k
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that minimizes the weight and satisfies a certain fixed property. What is the analogue of
brute-force in this setting? Can bi-objective parameterized approximation algorithms for
weighted monotone subset minimization problems be used to design faster (than brute force)
exponential approximation algorithms in this restrictive setting? What happens if we extend
this setting to a bi-criteria optimization setting?
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Proof. Let S ⊆ U be a set. We argue that there exists (T, ℓ) ∈ E such that S, T and ℓ satisfy
(8). By the definition of γ and d, it holds that

γd ≥
(

1 + δ

2

)(2/δ)·log(2n/δ)
≥ 2log(2n/δ) = 2n

δ
(10)

using that (1 + 1
x )x ≥ 2 for all x ≥ 1. Let k ∈ I be the largest index such that S ∩ Uk ≠ ∅.

It holds that

w(Wk) < n · γk−d ≤ δ

2 · γk ≤ δ

2 · w(S) (11)

where the first inequality follows from the fact that |Wk| ≤ n and each u ∈ Wk belongs to
a set Ui where i ≤ k − d − 1 and therefore w(u) < γk−d−1+1 = γk−d by (9). The second
inequality follows from (10) and finally the last inequality holds because by the definition of
k, there exists u ∈ S ∩ Uk such that w(S) ≥ w(u) ≥ γk by (9).

For i ∈ Ik let Si := S ∩ Ui. Since Ei is an (α, ζ)-extension family of Ui and the uniform
weight function, for each i ∈ Ik there exists (Ti, ℓi) ∈ Ei such that

|Si \ Ti| ≤ ℓi

|Ti| + α · |Si \ Ti| ≤ ζ · |Si|. (12)

Let T :=
⋃

i∈Ik
Ti and define

T := Wk ∪ T

ℓ :=
∑
i∈Ik

ℓi.

By definition of Qk in Algorithm 1 it holds that (T, ℓ) ∈ Qk ⊆ E . Observe that

S \ T = (S \ T ) ∩ U

= (S \ T ) ∩

(
Wk ∪

( ⋃
i∈Ik

Ui

))

=
(

(S \ T ) ∩ Wk

)
∪

(
(S \ T ) ∩

( ⋃
i∈Ik

Ui

))

= (S \ T ) ∩
( ⋃

i∈Ik

Ui

)
=
⋃

i∈Ik

(Ui ∩ (S \ T ))

=
⋃

i∈Ik

Si \ Ti (13)

where the second equality follows from S ⊆
⋃

1≤i≤k Ui = Wk ∪
(⋃

k−d≤i≤k Ui

)
and the fourth

inequality holds because Wk ⊆ T which further implies (S \ T ) ∩ Wk = ∅. Therefore it holds
that

|S \ T | =

∣∣∣∣∣ ⋃
i∈Ik

Si \ Ti

∣∣∣∣∣ ≤
∑
i∈Ik

|Si \ Ti| ≤
∑
i∈Ik

ℓi = ℓ.

where the second inequality follows from (12).

IPEC 2023



17:20 Approximate Monotone Local Search for Weighted Problems

For all i ∈ Ik we also have that

w(Ti) + α · w(Si \ Ti) ≤ |Ti| · γi+1 + α · γi+1 · |Si \ Ti|
≤ γi+1 · (|Ti| + α · |Si \ Ti|)
≤ γi+1 · ζ · |Si|
≤ ζ · γ · w(Si) (14)

where the third inequality follows from (12). Therefore we have that

w(T ) + α · w(S \ T ) = w(Wk) + w
(⋃

i∈Ik

Ti

)
+ α · w (S \ T )

≤ w(Wk) +
∑
i∈Ik

(
w(Ti) + α · w(Si \ Ti)

)
by (13)

<
δ

2 · w(S) +
∑
i∈Ik

(
w(Ti) + α · w(Si \ Ti)

)
by (11)

≤ δ

2 · w(S) +
∑
i∈Ik

ζ · γ · w(Si) by (14)

< ζ · δ

2 · w(S) +
∑
i∈Ik

ζ · γ · w(Si) since ζ > 1

≤ ζ · δ

2 · w(S) + ζ · γ · w(S)

≤ (1 + δ) · ζ · w(S)

which proves the claim. ◁

▷ Claim 25.

costc(E) ≤
(

amls(α, c, ζ)
)n+o(n)

.

Proof. By Lemma 20, for each i ∈ I it holds that

costc(Ei) ≤
(

amls(α, c, ζ)
)ni+o(ni)

. (15)

For i ∈ Z≥0 \I we define Ei = {(∅, 0)}. By doing so, we can make the assumption, without
loss of generality, that Ei is nonempty for all i ∈ Z≥0. Note that this assumption does not
have any effect on the value of costc and it simplifies the following analysis. Also let E
denote the Cartesian product of Ek−d up to Ek, i.e., E :=

∏
i∈{k−d,...,k} Ei.

With this assumption, for all k ∈ I, we have

costc(Qk) =
∑(

(Ek−d,ℓk−d),...,(Ek−1,ℓk−1),(Ek,ℓk)
)

∈E

cℓk−d+...+ℓk−1+ℓk

=
∑(

(Ek−d,ℓk−d),...,(Ek−1,ℓk−1),(Ek,ℓk)
)

∈E

cℓk−d · . . . · cℓk−1 · cℓk

=
k∏

j=k−d

∑
(E,ℓ)∈Ej

cℓ
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=
k∏

j=k−d

costc(Ej)

=
∏

j∈Ik

costc(Ej)

By (15) we obtain

costc(Qk) =
∏
i∈Ik

costc (Ei)

≤
∏
i∈Ik

(
amls(α, c, ζ)

)ni+o(ni)

=
(

amls(α, c, ζ)
)n+o(n)

where the last step follows from Lemma 23.
Finally, it holds that

costc(E) = costc

(⋃
k∈I

Qk

)
≤
∑
k∈I

costc (Qk) =
(

amls(α, c, ζ)
)n+o(n)

since |I| ≤ n. ◁

▷ Claim 26. The running time of Algorithm 1 is
(

amls(α, c, ζ)
)n+o(n)

.

Proof. The construction of {Ei}i∈I takes time∑
i∈I

(
amls(α, c, ζ)

)ni+o(ni)
≤
(

amls(α, c, ζ)
)n+o(n)

by Lemma 20.
Finally, the construction of each Qk takes time proportional to its size, which is upper

bounded by costc(Qk). Then, the construction of E takes at most time O(costc(E)), where
we have

costc(E) ≤
(

amls(α, c, ζ)
)n+o(n)

by Claim 25. All in all, the running time of Algorithm 1 is upper bounded by(
amls(α, c, ζ)

)n+o(n)
. ◁

The lemma follows from Claims 24–26. ◀

B Problem Definitions

In this section, we give the problem definitions of all the problems discussed in the paper. For
simplicity, we define the problems in their unweighted version. In the weighted version, the
vertices are equipped with weights and we are looking for a solution S of minimum weight.

Vertex Cover (VC)
Input: An undirected graph G.
Question: Find a minimum set S of vertices of G such that G − S has no edges.
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Partial Vertex Cover (PVC)
Input: An undirected graph G and an integer t ≥ 0.
Question: Find a minimum set S of vertices of G such that G−S has at most |E(G)|− t

many edges.

d-Hitting Set (d-HS)
Input: A universe U and set family F ⊆

(
U

≤d

)
.

Question: Find a minimum set S ⊆ U such that for each F ∈ F , S ∩ F ̸= ∅.

Feedback Vertex Set (FVS)
Input: An undirected graph G.
Question: Find a minimum set S of vertices of G such that G − S is an acyclic graph.

Subset Feedback Vertex Set (Subset FVS)
Input: An undirected graph G and a set T ⊆ V (G).
Question: Find a minimum set S of vertices of G such that G − S has no cycle that
contains at least one vertex of T .

Tournament Feedback Vertex Set (TFVS)
Input: A tournament graph G.
Question: Find a minimum set S of vertices of G such that G − S is an acyclic
tournament.

Directed Feedback Vertex Set (DFVS)
Input: A directed graph G.
Question: Find a minimum set S of vertices of G such that G − S is a directed acyclic
graph.

Directed Subset Feedback Vertex Set (Subset DFVS)
Input: A directed graph G and a set T ⊆ V (G).
Question: Find a minimum set S of vertices of G such that G − S has no directed cycle
that contains at least one vertex of T .

Directed Odd Cycle Transversal (DOCT)
Input: A directed graph G.
Question: Find a minimum set S of vertices of G such that G − S has no directed cycle
of odd length.

Multicut
Input: An undirected graph G and a set P ⊆ V (G) × V (G).
Question: Find a minimum set S of vertices of G such that G − S has no path from u

to v for any (u, v) ∈ P

For the next problems, we require some additional definitions. A graph G is cluster graph
if every connected component of G is a complete graph. A cograph is a graph G which does
not contain P4 (a path on 4 vertices) is an induced subgraph. Finally, a graph G is a split
graph if the vertex set can be partitioned into two sets V (G) = I ⊎ C such that I is an
independent set and C is a clique in G.
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Cluster Graph Vertex Deletion
Input: An undirected graph G.
Question: Find a minimum set S of vertices of G such that G − S is a cluster graph.

Cograph Vertex Deletion
Input: An undirected graph G.
Question: Find a minimum set S of vertices of G such that G − S is a cograph.

Split Vertex Deletion
Input: An undirected graph G.
Question: Find a minimum set S of vertices of G such that G − S is a split graph.
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