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Abstract
Recently, Brand, Ganian and Simonov introduced a parameterized refinement of the classical
PAC-learning sample complexity framework. A crucial outcome of their investigation is that for a
very wide range of learning problems, there is a direct and provable correspondence between fixed-
parameter PAC-learnability (in the sample complexity setting) and the fixed-parameter tractability of
a corresponding “consistency checking” search problem (in the setting of computational complexity).
The latter can be seen as generalizations of classical search problems where instead of receiving a
single instance, one receives multiple yes- and no-examples and is tasked with finding a solution
which is consistent with the provided examples.

Apart from a few initial results, consistency checking problems are almost entirely unexplored from
a parameterized complexity perspective. In this article, we provide an overview of these problems
and their connection to parameterized sample complexity, with the primary aim of facilitating
further research in this direction. Afterwards, we establish the fixed-parameter (in)-tractability for
some of the arguably most natural consistency checking problems on graphs, and show that their
complexity-theoretic behavior is surprisingly very different from that of classical decision problems.
Our new results cover consistency checking variants of problems as diverse as (k-)Path, Matching,
2-Coloring, Independent Set and Dominating Set, among others.

2012 ACM Subject Classification Theory of computation → Parameterized complexity and exact
algorithms

Keywords and phrases consistency checking, sample complexity, fixed-parameter tractability

Digital Object Identifier 10.4230/LIPIcs.IPEC.2023.18

Related Version Full Version: https://arxiv.org/abs/2308.11416

Funding Robert Ganian: Austrian Science Fund (FWF) [Y1329].
Liana Khazaliya: Vienna Science and Technology Fund (WWTF) [10.47379/ICT22029]; Austrian Sci-
ence Fund (FWF) [Y1329]; European Union’s Horizon 2020 COFUND programme [LogiCS@TUWien,
grant agreement No. 101034440].
Kirill Simonov: DFG Research Group ADYN via grant DFG 411362735.

1 Introduction

While the notion of time complexity is universally applicable and well studied across the
whole spectrum of theoretical computer science, on its own it cannot capture the performance
of the kinds of algorithms typically studied in the context of machine learning: learning
algorithms. That is the domain of sample complexity, and here we will focus on the notion
of (efficient) PAC learning [19, 13] – arguably the most classical, fundamental and widely
known sample complexity framework. An important trait of PAC learning is that while it
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is built on different principles than time complexity, the two frameworks are connected in
a way which allows us to translate intractability and tractability results from one domain
to another. It is precisely this connection that gave rise to famous lower bounds in the
PAC learning setting, such as the inability to efficiently and properly learn 3-term DNF and
3-clause CNF formulas [17, 2] under the assumption that P ̸= NP, and consistency checking
problems form the pillar of this connection.

Given the success of parameterized complexity as a concept generalizing classical time
complexity analysis, it would seem natural to ask whether its principles can also be used to
obtain a deeper understanding of efficient PAC-learnability. Brand, Ganian and Simonov [6]
very recently introduced the foundations for a parameterized theory of PAC learning, which
crucially also includes a bridge to parameterized complexity theory in the usual time
complexity setting. The primary goal of this article is to show how the parameterized
complexity paradigm can be used to draw new boundaries of tractability in the PAC learning
domain, and to provide the parameterized algorithms community with an understanding
of the parameterized consistency checking problems which allow us to travel between the
sample and time complexity settings in the parameterized regime. We showcase the tools
that can be used to deal with parameterized consistency checking problems and the obstacles
that await there in the domain of graph problems, where we obtain new algorithmic upper
and lower bounds for consistency checking variants of multiple natural problems on graphs.

A Gentle Introduction to PAC Learning. It will be useful to set the stage with a high-level
and informal example of the setting in which PAC learning operates1. Let us imagine we
would like to “learn” a way of labeling points in a plane as either “good” or “bad”, knowing
that the good points are precisely those contained in some unknown axis-parallel rectangle
R in the plane. A learning algorithm in the PAC regime would be allowed to ask for a
set of correctly labeled sample points, each of which would be drawn from some unknown
distribution D, and would attempt to use these to “learn” R (so that it can use it to label any
point that it looks at, even those which were not given as samples). This mental experiment
is useful since it immediately clarifies that

there is some probability that a PAC learning algorithm completely fails, since the samples
we receive could be non-representative (for instance, there is a non-zero probability that
even if D is uniform and R is small, the sample points could all be drawn from inside R),
and
even if a PAC learning algorithm intuitively “works correctly”, it is essentially guaranteed
that it will not classify some samples (i.e., the sample points) correctly (for instance,
there could be points that lie close to the exact boundary of R which are unlikely to be
drawn as samples based on D, making it impossible to obtain the exact position of R).

Given these natural limitations, we can informally explain what it means for a learning
problem to be efficiently PAC-learnable: it admits an algorithm which
1. takes as input a sample size n, a confidence measure δ and an accuracy measure ε,
2. runs in time (n + 1

δ + 1
ε )O(1) and asks for (n + 1

δ + 1
ε )O(1) samples, and then

3. outputs something which will, with probability at least 1 − δ, “work correctly” in almost
all cases (measured by ε).

It needs to be clarified that beyond the study of efficient PAC learnability, a substantial
amount of fundamental work in the PAC learning direction has also been carried out on
whether a problem is PAC learnable at all [4, 12, 1], on the distinction between so-called

1 Formal definitions are provided in Section 2.
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proper and improper learning [13, 5], and on many other aspects and considerations that lie
outside of the scope of this paper. Here, our focus lies on how the gap between efficient and
“non-efficient” PAC-learnability of learning problems can be bridged by the parameterized
PAC learning framework of Brand, Ganian and Simonov [6], and the associated study of
consistency checking problems.

To illustrate how parameterized complexity can be used here, let us turn to a different
example of a simple learning problem that is based on the idea of representing cyber-attacks
as graphs proposed, e.g., by Sheyner and Wing [18, 21]. Assume we have a network consisting
of n nodes which is protected by k hidden defense nodes. A cyberattack on this network can
be represented as a set of edges over the n nodes, and is evaluated as successful if and only if
an edge in that attack is not incident to any defense node (i.e., an attack fails if and only
if the defense nodes form a vertex cover of the attack edges). Individual samples represent
attacks made on the network, and the learning task is to identify all the defense nodes. This
problem corresponds to Vertex Cover Learning [8], which Brand, Ganian and Simonov
showed to admit a PAC learning algorithm which requires polynomially many samples but
time 2k · (n + 1

δ + 1
ε )O(1) where k is the size of the sought-after vertex cover [6]. This is a

prototypical representative of the class FPT-PACtime. We remark that in the context of PAC
learning, one explicitly distinguishes between the time required by the learning algorithm and
the number of samples it uses, as the latter may in some contexts be much more difficult to
obtain. A picture of the parameterized complexity landscape above efficient PAC learnability
is provided later together with the formal definitions (see Figure 1).

Crucially, whenever we are dealing with a learning problem Plearn where the size of the
hypothesis space (i.e., the number of “possible outputs”) is upper-bounded by a certain
function (see Theorem 11), the parameterized sample complexity of Plearn can be directly
and formally linked to the parameterized time complexity of the consistency checking variant
Pcons of the same problem [6], where the task is to compute a “solution” (a hypothesis)
which is consistent with a provided set of positive and negative examples. This motivates
the systematic study of parameterized consistency checking problems, an area which has
up to now remained almost entirely unexplored from the perspective of fixed-parameter
(in-)tractability.

The Parameterized Complexity of Consistency Checking on Graphs. A few initial examples
of parameterized consistency checking problems have been solved by the theory-building
work of Brand, Ganian and Simonov [6]; in particular, they showed that consistency checking
for vertex-deletion problems where the base class H can be characterized by a finite set of
forbidden induced subgraphs is fixed-parameter tractable (which implies the aforementioned
fact that Vertex Cover Learning is in FPT-PACtime), but no analogous result can be
obtained for all classes H characterized by a finite set of forbidden minors unless FPT ̸= W[1].

In this article, we expand on these results by establishing the fixed-parameter (in-)
tractability of consistency checking for several other classical graph problems whose decision
versions are well-known to the parameterized complexity community. The aim here is to
showcase how parameterized upper- and lower-bound techniques fare when dealing with
these new kinds of problems.

It is important to note that the tractability of consistency checking requires the tractability
of the corresponding decision/search problem (as the latter can be seen as a special case of
consistency checking), but the former can be much more algorithmically challenging than the
latter: many trivial decision problems become computationally intractable in the consistency
checking regime. We begin by illustrating this behavior on the classical 2-Coloring problem,
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i.e., the task of partitioning the vertices of the graph into two independent sets. We show
that while consistency checking for 2-Coloring is intractable (and hence a 2-coloring is
not efficiently PAC-learnable), consistency checking for Split Graph, i.e., the task of
partitioning the vertices into an independent set and a clique, is polynomial-time tractable.

Moving on to parameterized problems, we begin by considering three classical edge search
problems, notably Matching, (k-)Path and Edge Clique Cover. In the classical decision
or search settings, the first problem is polynomial-time solvable while the latter two admit
well-known fixed-parameter algorithms. Interestingly, we show that consistency checking for
the former two problems is W[2]-hard2, but is fixed-parameter tractable for the third, i.e.,
Edge Clique Cover.

Next, we turn our attention to the behavior of two classical vertex search problems,
specifically Independent Set and Dominating Set. While both problems are fixed-
parameter intractable already in the classical search regime, here we examine their behavior
on bounded-degree graphs (where they are well-known to be fixed-parameter tractable).
Again, the consistency checking variants of these problems on bounded-degree graphs exhibit
a surprising complexity-theoretic behavior: Dominating Set is FPT, but Independent
Set is W[2]-hard even on bounded-degree graphs.

As the final contribution of the paper, we show that most of the aforementioned consistency
checking lower bounds can be overcome if one additionally parameterizes by the number of
negative samples. In particular, we obtain fixed-parameter consistency checking algorithms
for 2-Coloring, Matching and (k-)Path when we additionally assume that the number of
negative samples is upper-bounded by the parameter. On the other hand, Independent Set
remains fixed-parameter intractable (at least W[1]-hard) even under this additional restriction.
As our final result, we show that Independent Set becomes fixed-parameter tractable
if we instead consider the total number of samples (i.e., both positive and negative) as an
additional parameter. The proofs of these results are more involved than those mentioned
in the previous paragraphs and rely on auxiliary graph constructions in combination with
color coding. We remark that the parameterization by the number of negative samples in
the consistency checking regime could be translated into a corresponding parameterization
of the distribution in the PAC learning framework. A summary of our individual results for
consistency checking problems is provided in Table 1.

Related Work. The connection between parameterized learning problems and parameterized
consistency checking was also hinted at in previous works that studied the (parameterized)
sample complexity of learning juntas [3] or learning first-order logic [20]. Moreover, the
problem of computing optimal decision trees, which has received a significant amount of
recent attention [16, 10], can also be seen as a consistency checking problem where the
sought-after solution is a decision tree.

For space reasons, results marked with a “⋆” are proved in the Full Version3.

2 Preliminaries

We assume familiarity with basic graph terminology [9] and parameterized complexity
theory [7]. We use [t] to denote the set {1, . . . , t}. For brevity, we will denote sets of tuples of
the form {(α1, β1), . . . , (αt, βt)} as (αi, βi)i∈[t], and the set of two-element subsets of a set Z

2 More precisely, a fixed-parameter algorithm for either of these problems would imply FPT=W[1] (see
Section 4).

3 https://arxiv.org/abs/2308.11416

https://arxiv.org/abs/2308.11416
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Table 1 An overview of the concrete results obtained for consistency checking problems in this
article, where the columns provide a comparison between the complexity of the decision/search
variant, the consistency checking variant, and the consistency checking variant where the number
of negative samples is taken as an additional parameter. Problems marked with “[degree]” are
considered over bounded-degree input graphs/samples, and the “⋆” marks that the problem becomes
fixed-parameter tractable when additionally parameterized by the total number of samples. The
lower bounds stated in the table are simplified; the precise formal statements are provided in the
appropriate theorems.

Problem Decision/Search Consistency Checking Consistency Checking[samples]
2-Coloring P NP-hard (Thm. 12) FPT (Thm. 16)
Split Graph P P (Thm. 14) —
Matching P W[2]-hard (Thm. 17) FPT (Thm. 20)
(k)-Path FPT W[2]-hard (Thm. 18) FPT (Thm. 20)
Edge Clique Cover FPT FPT (Thm. 19) —
Independent Set[degree] FPT W[2]-hard (Thm. 22) W[1]-hard⋆ (Thm. 24, 25)
Dominating Set[degree] FPT FPT (Thm. 23) —

as
(

Z
2
)
. As basic notation and terminology, we set {0, 1}∗ =

⋃
m∈N{0, 1}m. A distribution on

{0, 1}n is a mapping Dn : {0, 1}n → [0, 1] such that
∑

x∈{0,1}n Dn(x) = 1, and the support
of Dn is the set supp Dn = {x | Dn(x) > 0}.

2.1 Consistency Checking
While the original motivation for consistency checking problems originates from specific
applications in PAC learning, one can define a consistency checking version of an arbitrary
search problem.

In a search problem, we are given an instance I ∈ {0, 1}∗, and the task is to find a
solution S ∈ {0, 1}∗, where the solution is verified by a predicate ϕ(·, ·), so that ϕ(I, S) is
true if and only if S is a solution to I. Since our focus here will lie on problems which are in
NP, the predicate ϕ(·, ·) will in all cases be polynomial-time computable. In the context of
graph problems, I will typically be a graph (possibly with some auxiliary information such
as edge weights or the bound on solution size), and S could be a set of vertices, a set of
edges, a partitioning of the vertex set, etc. For example, in the search version of the Vertex
Cover problem the input is a graph G together with a bound k on the size of the target
vertex cover, potential solutions are subsets of V (G), and a subset S is a solution if and only
if the size of S is k and S covers all edges of the graph G. One can then write the verifying
predicate as

ϕ ((G, k), S) = (S ⊂ V (G)) ∧ (|S| = k) ∧ (∀{u, v} ∈ E(G), {u, v} ∩ S ̸= ∅).

For a search problem P , we define the corresponding consistency checking problem Pcons
as follows. Instead of receiving a single instance I ∈ {0, 1}∗ as input, we receive a set of
labeled samples I = {(I1, λ1), (I2, λ2), . . . , (It, λt)} where each Ii, i ∈ [t], is an element of
{0, 1}∗ and λi ∈ {0, 1}. The task is to compute a (consistent) solution S ⊂ {0, 1}∗ such that
ϕ(Ii, S) holds if and only if λi = 1, for each i ∈ [t], or to correctly determine that no such
solution exists.

IPEC 2023
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In the example of Vertex Cover, for each i ∈ [t], the instance is the pair (Gi, ki), so
that the target solution has to be a vertex subset4 of V (Gi), of size ki, and it has to cover
all edges of Gi, for each i ∈ [t]. Since vertices in all Gi’s and S are implicitly associated
with their respective counterparts in the other graphs, we can instead treat the graphs Gi

as defined over the same vertex set. Also, for instances i ∈ [t] where λi = 1, if their values
of ki mismatch, then there is clearly no solution; and for those i ∈ [t] with λi = 0, if the
value ki does not match the respective value of a positive sample, then the condition for
λi is always satisfied. Therefore, we can equivalently reformulate the consistency checking
version of Vertex Cover as follows: Given the vertex set V , a number k, and a sequence
of labeled edge sets (E1, λ1), . . . , (Et, λt), over V , is there a subset S ⊂ V of size exactly k,
so that S covers all edges of Ei if and only if λi = 1, for each i ∈ [t]?

One can immediately observe that the polynomial-time tractability of a search problem is
a prerequisite for the polynomial-time tractability of the corresponding consistency checking
problem. At the same time, the exact definition of the search problem (and in particular
the solution S) can have a significant impact on the complexity of the consistency checking
problem. We remark that there are two possible ways one can parameterize a consistency
checking problem: one either uses the parameter to restrict the sought-after solution S, or
the input I. Each of these approaches can be tied to a parameterization of the corresponding
PAC learning problem (see Subsection 2.3).

Formally, we say that (Pcons, κ, λ) is a parameterized consistency checking problem, where
Pcons is a consistency checking problem, κ maps solutions S ∈ {0, 1}∗ to natural numbers,
and λ maps lists of labeled instances ((I1, λ1), . . . , (It, λt)), Ii ∈ {0, 1}∗, λi ∈ {0, 1}, to
natural numbers. The input is then a list of labeled instances L = ((I1, λ1), . . . , (It, λt))
together with parameters k, ℓ, such that ℓ = λ(L), and the task is to find a consistent solution
S with κ(S) = k. For example, k could be a size bound on the targeted solution, and ℓ could
be the maximum degree in any of the given graphs or the number of instances with λi = 0.

2.2 PAC-Learning
The remainder of this section is dedicated to a more formal introduction of the foundations
of parameterized PAC learning theory and its connection to parameterized consistency
checking problems. We note that while the content of the following subsections is important
to establish the implications and corollaries of the results obtained in the article, readers
who are interested solely in the obtained complexity-theoretic upper and lower bounds for
consistency checking problems can safely skip them and proceed directly to Section 3.

To make the connection between consistency checking problems and parameterized
sample complexity clear, we first recall the formalization of the classical theory of PAC
learning [19, 14].

▶ Definition 1. A concept is an arbitrary Boolean function c : {0, 1}n → {0, 1}. An
assignment x ∈ {0, 1}n is called a positive sample for c if c(x) = 1, and a negative sample
otherwise. A concept class C is a set of concepts. For every m ∈ N, we write Cm = C ∩ Bm,
where Bm is the set of all m-ary Boolean functions.

▶ Definition 2. Let C be a concept class. A surjective mapping ρ : {0, 1}∗ → C is called a
representation scheme of C.

We call each r with ρ(r) = c a representation of concept c.

4 The property of being a subset is given by the implicit encoding in {0, 1}∗, e.g., vertices in all V (Gi)
and S are indexed by integers, and is defined in the same way across all instances. We thus say that S
could be a subset of all V (Gi) even though, formally speaking, these are disjoint sets.
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▶ Definition 3. A learning problem is a pair (C, ρ), where C is a concept class and ρ is a
representation scheme for C.

▶ Definition 4. A learning algorithm for a learning problem (C, ρ) is a randomized algorithm
such that:
1. It obtains the values n, ε, δ as inputs, where n is an integer and 0 < ε, δ ≤ 1 are rational

numbers.
2. It has access to a hidden representation r∗ of some concept c∗ = ρ(r∗) and a hidden

distribution Dn on {0, 1}n through an oracle that returns labeled samples (x, c∗(x)), where
x ∈ {0, 1}n is drawn at random from Dn.

3. The output of the algorithm is a representation of some concept, called its hypothesis.

When dealing with individual instances of a learning problem, we will use s = |r∗| to
denote the size of the hidden representation.

▶ Definition 5. Let A be a learning algorithm. Fix a hidden hypothesis c∗ and a distribution
on {0, 1}n. Let h be a hypothesis output by A and c = ρ(h) be the concept h represents. We
define

errh = Px∼Dn(c(x) ̸= c∗(x))

as the probability of the hypothesis and the hidden concept disagreeing on a sample drawn
from Dn, the so-called generalization error of h under Dn.

The algorithm A is called probably approximately correct (PAC) if it outputs a hypothesis
h such that errh ≤ ε with probability at least 1 − δ.

Usually, learning problems in this framework are regarded as tractable if they are PAC-
learnable within polynomial time bounds. More precisely, we say that a learning problem L

is efficiently PAC-learnable if there is a PAC algorithm for L that runs in time polynomial
in n, s, 1/ε and 1/δ.

Consider now a classical search problem P and its consistency checking version Pcons. One
can naturally define the corresponding learning problem Plearn: For a solution S ∈ {0, 1}∗,
let ϕ(·, S) be a concept and S its representation; this describes the concept class and its
representation scheme. Going back to the Vertex Cover example, for each graph size N ,
the concepts are represented by subsets of [N ] (encoded in binary). For a subset S ⊂ [N ],
the respective concept cS is a binary function that, given the encoding of an instance E,
returns 1 if and only if S is a vertex cover of G = ([N ], E) of size k, where [N ] is treated as
the respective “ground” vertex set of size N . A PAC-learning algorithm for this problem is
thus given a vertex set V = [N ], an integer k, and an oracle that will produce a sequence of
samples (E1, λ1), . . . , (Et, λt), where the instances Ei are drawn from a hidden distribution
D. With probability at least (1 − δ), the algorithm has to return a subset S ⊂ [N ] that is
consistent with an instance sampled from D with probability at least (1 − ε). In fact, for
Vertex Cover and many other problems, it is sufficient to return a hypothesis that is
consistent only with the seen samples (Ei, λi), i ∈ [t]; this is formalized in the next subsection.

Naturally, we do not expect the learning version of Vertex Cover to be efficiently
PAC-learnable, as even finding a vertex cover of a certain size in a single instance is NP-hard.
This motivates the introduction of parameters into the framework, which is presented next.
We also recall the complexity reductions between (parameterized) consistency checking
problem and its respective (parameterized) learning problem, which in particular allows to
formally transfer the hardness results such as NP-hardness above.

IPEC 2023
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Remark. A more general definition of learning problems is sometimes considered in the
literature, where the output of a learning algorithm need not necessarily be from the same
concept class C (e.g., it can be a sub- or a super-class of C). This is usually called improper
learning, as opposed to the classical setting of proper learning defined above and considered
in this article.

2.3 Parameterized PAC-Learning
We now define parameterized learning problems and recall the connection to the consistency
checking problems, as given by the framework of Brand, Ganian, and Simonov [6]. For
brevity, we omit some of the less important technical details; interested readers can find the
full technical exposition in the full description of the framework [6].

First we note that in parameterized PAC-learning, both the hidden concept and the hidden
distribution can be parameterized, which is formally represented in the next definitions. We
call a function κ from representations in {0, 1}∗ to natural numbers parameterization of
representations, and a function λ assigning a natural number to every distribution on {0, 1}n

for each n parameterization of distributions.

▶ Definition 6 (Parameterized Learning Problems). A parameterized learning problem is
a learning problem (C, ρ) together with a pair (κ, λ), called its parameters, where κ is a
parameterization of representations and λ is a parameterization of distributions.

▶ Definition 7 (Parameterized Learning Algorithm). A parameterized learning algorithm for
a parameterized learning problem (C, ρ, κ, λ) is a learning algorithm for (C, ρ) in the sense of
Definition 4. In addition to n, ε, δ, a parameterized learning algorithm obtains two inputs k

and ℓ, which are promised to satisfy k = κ(r∗) as well as ℓ = λ(Dn), and the algorithm is
required to always output a hypothesis h satisfying κ(h) ≤ k.

Let poly(·) denote the set of functions that can be bounded by non-decreasing
polynomial functions in their arguments. Furthermore, fpt(x1, . . . , xt; k1, . . . , kt) and
xp(x1, . . . , xt; k1, . . . , kt) denote those functions bounded by f(k1, . . . , kt) · p(x1, . . . , xt)
and p(x1, . . . , xt)f(k1,...,kt), respectively, for any non-decreasing computable function f in
k1, . . . , kt and p ∈ poly(x1, . . . , xt).

▶ Definition 8 ((T, S)-PAC Learnability). Let T (n, s, 1/ε, 1/δ, k, ℓ), S(n, s, 1/ε, 1/δ, k, ℓ) be
any two functions taking on integer values, and non-decreasing in all of their arguments.

A parameterized learning problem L = (C, ρ, {Rk}k∈N, λ) is (T, S)-PAC learnable if there
is a PAC learning algorithm for L that runs in time O(T (n, s, 1/ε, 1/δ, k, ℓ)) and queries the
oracle at most O(S(n, s, 1/ε, 1/δ, k, ℓ)) times.

We denote the set of parameterized learning problems that are (T, S)-PAC learnable
by PAC[T, S]. This is extended to sets of functions S, T through setting PAC[T, S] =⋃

S∈S,T ∈T PAC[T, S].

▶ Definition 9. Define the complexity classes as follows:

FPT-PACtime = PAC[fpt, poly],
FPT-PAC = PAC[fpt, fpt],

XP-PACtime = PAC[xp, poly],
XP-PAC = PAC[xp, xp],

where we fix
poly = poly(n, s, 1/ε, 1/δ, k, ℓ), fpt = fpt(n, s, 1/ε, 1/δ; k, ℓ), xp = xp(n, s, 1/ε, 1/δ; k, ℓ).
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PAC

XP-PAC

XP-PACtime FPT-PAC
FPT-PACtime

efficient PAC

Figure 1 A schematic view of the parameterized learning classes defined in Definition 9.

There are examples of natural problems falling into each of these classes [6]. In addition
to the above, there is a fifth class that may be considered here: PAC[xp, fpt]. However, we are
not aware of any natural problems residing there that are not given by the “lower” classes.

Figure 1 provides an overview of these complexity classes and their relationships.

2.4 Consistency Checking for PAC-Learning

We now recall the results tying the complexity of (parameterized) PAC-learning to (paramet-
erized) consistency checking. We have already shown that a consistency checking problem can
be transformed into a learning problem, by viewing the hidden solution as the representation
of the hidden concept; the same operation can also be done the other way around. Moreover,
this transformation can be performed while respecting the parameters. Let Pcons be a
consistency checking problem, and let Plearn be the respective learning problem. Consider a
parameterized version (Pcons, κ + λ) of Pcons, where κ maps solutions S ∈ {0, 1}∗ to natural
numbers, and λ maps lists of labeled instances ((I1, λ1), . . . , (It, λt)), Ii ∈ {0, 1}∗, λi ∈ {0, 1},
to natural numbers. The parameterized learning problem is then (Plearn, κ, λ′), where κ is
given by the same function is the parameterization of representations, as representations of
concepts are exactly the solutions in the original search problem, and λ′(D) for a distribution
D is the maximum value of λ(L), where L is any set of labeled instances produced by
sampling from D.

It is well-known that, under the assumption that the hypothesis space is not too large,
there is an equivalence between a learning problem being PAC-learnable and the corresponding
consistency checking problem being solvable in randomized polynomial time [17]. Brand,
Ganian and Simonov proved a generalization of this equivalence in the parameterized sense [6],
which we recall next

▶ Theorem 10 (Corollary of Theorem 3.17 [6]). Let Pcons be a parameterized consistency
checking problem, and Plearn = (C, ρ, κ, λ) be its matching parameterized learning problem,
where λ depends only on the support of the distribution.

If Plearn is in FPT-PAC, then Pcons is in FPT.
Similarly, if Plearn is in XP-PAC, then Pcons is in XP.

▶ Theorem 11 (Corollary of Theorem 3.19 [6]). Let Pcons be a parameterized consistency
checking problem, and Plearn = (C, ρ, κ, λ) be its matching parameterized learning problem.
Denote the set of representations of concepts in C ∈ C of arity n with κ(C) = k by Hn,k.

If Pcons is in FPT and log |Hn,k| ∈ fpt(n; k), then L is in FPT-PACtime.
Similarly, if Pcons is in XP and log |Hn,k| ∈ xp(n; k), then L is in XP-PACtime.
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t f

x1 x2 x3 xn

t f

x1 x2 x3 xn

t f

x1 x2 x3 xn

Figure 2 For the SAT instance φ = (x1 ∨ x2 ∨ x3 ∨ xn) ∧ (x1 ∨ x2 ∨ xn), n = 4 the correspondent
ConsCheck: 2-Coloring instance I = {V, {(E+, 1), (EC1 , 0), (EC2 , 0)}}, V = {t, f, x1, x2, x3, xn}.

The theorems above allow us to automatically transfer parameterized algorithmic upper
and lower bounds for the consistency checking into upper and lower bounds for parameterized
learning problems, respectively. If a parameterized consistency checking problem is efficiently
solvable by a parameterized algorithm, by Theorem 11 we get that the parameterized learning
problem is efficiently solvable. Note that in the problems considered in this paper the solution
is always a set of vertices/edges, or a partition into such sets, thus log |Hn,k| is always
polynomial.

On the other hand, Theorem 11 tells us that an efficient algorithm for a parameterized
learning problem implies an efficient algorithm for the corresponding paramerized consistency
checking problem. Turning this around, we see that lower bounds on consistency checking
imply lower bounds for learning. That is, if Pcons is W[1]-hard, then Plearn is not in
FPT-PACtime unless FPT = W[1].

3 Partitioning Problems: 2-Coloring and Split Graphs

We begin our investigation by using two basic vertex bipartition problems on graphs to
showcase some of the unexpected complexity-theoretic behavior of consistency checking
problems. Let us first consider 2-Coloring, i.e., the problem of partitioning the vertex
set into two independent sets. There are two natural ways one can formalize 2-Coloring
as a search problem: either one asks for a vertex set X such that both X and the set of
vertices outside of X are independent (i.e., they form a proper 2-coloring), or one asks for
two independent sets X, Y which form a bipartition of the vertex set. Here, we consider the
former variant since it has a slightly smaller hypothesis space5.

ConsCheck: 2-Coloring
Input: I = {V, (Ei, λi)i∈[t]} where for each i ∈ [t], Gi = (V, Ei) is a graph and λi ∈ {0, 1}.
Output: A set X ⊆ V such that for each i ∈ [t], (X, V \ X) forms
a proper 2-coloring of Gi if and only if λi = 1.

As our first result, we show that ConsCheck: 2-Coloring is NP-hard.

▶ Theorem 12. There is no polynomial-time algorithm that solves ConsCheck: 2-Coloring
unless P = NP.

Proof. We present a reduction that takes an n-variable instance φ of the Satisfability
problem (SAT) and constructs an instance I of ConsCheck: 2-Coloring which admits a
solution if and only if φ is satisfiable. Let C denote the set of clauses of φ.

5 In general, the precise definition of the sought-after object can be of great importance in the context
of consistency checking; this is related to the well-known fact that the selection of a hypothesis space
can have a fundamental impact on PAC learnability. However, in our case the proofs provided in this
section can also be used to obtain the same results for the latter variant.
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Construction. First, we set the vertex set V in I to be {f, t, x1, x2, . . . , xn}. For each clause
C ∈ C, we construct an edge set EC as follows. For each i ∈ [n], if a true (false) assignment
of xi satisfies C, then we add the edge txi (fxi) to EC . For each such edge set EC , we set
λC = 0. Finally, we add to I a positive sample (E+, 1) such that E+ = {tf}. An illustration
is provided in Figure 2.

Correctness. Suppose, given an instance φ of SAT, that the reduction described above
returns I = {V, (Ei, λi)}i∈C∪{+} as an instance of ConsCheck: 2-Coloring.

Assume that φ admits a satisfying assignment A : {xi}i∈[n] → {True, False}. Consider
the colloring χ : V → {blue, red} such that χ(t) = red, χ(f) = blue, and for each i ∈ [n],
χ(xi) = red if and only if A(xi) = True.

First, the sample (E+, 1) of I is consistent with the coloring χ, since its only edge ft was
colored properly. Then, for each C ∈ C, the sample (EC , 0) must be consistent with χ, i.e.,
there exists at least one edge in EC with same colored endpoints. Indeed, there must exist a
variable xi is such that A(xi) satisfies φ.

Then, by the construction of I instance, if xi = True (xi = False) satisfies C then
txi ∈ EC (fxi ∈ EC) and hence both xi and t are red (both xi and f are blue) under the
constructed coloring χ.

For the other direction, suppose that there is a coloring χ : V → {blue, red} that is
consistent with the instance I of ConsCheck: 2-Coloring. Then χ(t) ̸= χ(f) due to the
construction of (E+, 1) ∈ I; without loss of generality, let χ(t) = red, χ(f) = blue. We
retrieve a variable assignment A for φ in the following way. Recall that for each C ∈ C, the
coloring χ is consistent with the sample (EC , 0). Since the edge ft has a proper coloring,
at least one vertex xi has an edge to either t or f such that both its endpoints are colored
the same way. If this edge is xif (xit), then let A(xi) = False (A(xi) = True). If this only
results in a partial assignment, we extend this to a complete assignment of all variables in φ

by assigning the remaining variables arbitrarily.
We conclude by arguing that the resulting assignment A has to satisfy φ. Let us consider

an arbitrary clause C ∈ C and an edge in the corresponding edge set EC with same colored
endpoints, w.l.o.g. xif . Then, by the way we defined the assignment, A(xi) = False. But
by our construction, the edge xif ∈ EC only if xi = False satisfies the clause C. Thus, the
clause C is satisfied by the assignment A. Following the same argument, each clause C ∈ C,
and accordingly the instance φ, is satisfied. ◀

It is worth noting that the graphs constructed by the reduction underlying Theorem 12
are very simple – in fact, even the graph induced by the union of all edges occurring in
the instances of ConsCheck: 2-Coloring produced by the reduction has a vertex cover
number of 2. This essentially rules out tractability via most standard structural graph
parameters. A similar observation can also be made for most other consistency checking
lower bounds obtained within this article.

As an immediate corollary of Theorem 12, we obtain that the corresponding learning
problem is not efficiently PAC-learnable [2]. To provide a concrete example of the formal
transition from consistency checking to the corresponding learning problem described in
Section 2.2, we state the problem: In 2-Coloring Learning, we are given (1) a set V of
vertices, a confidence measure δ and an accuracy measure ε, (2) have access to an oracle
that can be queried to return labeled samples of the form (E, λ) where E is an edge set over
V and λ ∈ {0, 1} according to some hidden distribution, and (3) are asked to return a vertex
subset X ⊆ V , whereas a sample E is evaluated as positive for X if and only if (X, V \ X)
forms a 2-coloring on (V, E).
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▶ Corollary 13. 2-Coloring Learning is not efficiently PAC-learnable unless P = NP.

While the intractability of consistency checking for ConsCheck: 2-Coloring might
already be viewed as surprising, let us now consider the related problem of partitioning
the vertex set into one independent set and one clique – i.e., the Split Graph problem.
As a graph search problem, Split Graph is well-known to be polynomially tractable [11].
Following the same line of reasoning as for 2-Coloring, we formalize the corresponding
search problem below. Let a pair of vertex subsets (X ⊆ V, Y ⊆ V ) be a split in a graph
G = (V, E) if (X, Y ) is a bipartition of V such that X is a clique and Y is an independent
set.

ConsCheck: Split Graph
Input: I = {V, (Ei, λi)i∈[t]} where for each i ∈ [t], Gi = (V, Ei) is a graph and λi ∈ {0, 1}.
Output: A set X ⊆ V such that for each i ∈ [t], (X, V \ X) is a split in Gi

if and only if λi = 1.

Unlike ConsCheck: 2-Coloring, ConsCheck: Split Graph turns out to be tractable.

▶ Theorem 14 (⋆). ConsCheck: Split Graph can be solved in time O(|I|3).

Naturally, one can formalize the learning problem for ConsCheck: Split Graph in
an analogous way as was done for 2-Coloring Learning. Since the hypothesis bound of
Theorem 11 holds here as well, Theorem 14 implies:

▶ Corollary 15. Split Graph Learning is efficiently PAC-learnable.

Let us now conclude the section by revisiting the polynomial-time intractability of
ConsCheck: 2-Coloring through the lens of parameterized complexity theory. Naturally,
there are many parameterizations one may consider in the setting – as an exercise that
follows the same exhaustive-branching ideas as those used for Vertex Cover [6, Lemma
6.1], one could for instance attempt to parameterize by the size of the smaller color class
in the sought-after coloring, whereas a fixed-parameter algorithm in this setting (based on
exhaustive branching) would yield a FPT-PACtime algorithm for 2-Coloring Learning in
the corresponding parameterization of the concept. In this article, we instead showcase a less
straightforward fixed-parameter algorithm for the problem when parameterized by the number
of negative samples on the input (which in turn corresponds to a parameterization of the
distribution in the learning setting [6]). It will later turn out that the same parameterization
can be used to achieve fixed-parameter tractability for several other consistency checking
problems as well, albeit the individual techniques used vary from problem to problem.

Let t− = |{(Ei, λi)i∈[t] | λi = 0}| be the number of negative samples in an input instance I.

▶ Theorem 16 (⋆). ConsCheck: 2-Coloring is fixed-parameter tractable when paramet-
erized by the number t− of negative samples.

4 Consistency Checking for Selected Edge Search Problems

In this section, we perform a parameterized analysis of consistency checking for three natural
and extensively studied edge search problems on graphs: Matching, (k-)Path and Edge
Clique Cover. We formalize the parameterized consistency checking formulations of these
three problems below; recall that a set F = {F1, . . . , Fℓ} is an edge clique cover if each Fi,
i ∈ [ℓ] is the edge set of a clique in the graph and each edge in the graph is contained in at
least one Fi, i ∈ [ℓ] [7, Subsection 2.2.3].
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ConsCheck: Matching
Input: I = {V, (Ei, λi)i∈[t]} where for each i ∈ [t], Gi = (V, Ei) is a graph and λi ∈ {0, 1},
and an integer k.
Parameter: k.
Output: A set F ⊆

(
V
2

)
of size k such that for each i ∈ [t], F forms

a matching in Gi if and only if λi = 1.

ConsCheck: (k-)Path
Input: I = {V, (Ei, λi)i∈[t]} where for each i ∈ [t], Gi = (V, Ei) is a graph and λi ∈ {0, 1},
and an integer k.
Parameter: k.
Output: A set F ⊆

(
V
2

)
of size k such that for each i ∈ [t], F forms

a path in Gi if and only if λi = 1.

ConsCheck: Edge Clique Cover
Input: I = {V, (Ei, λi)i∈[t]} where for each i ∈ [t], Gi = (V, Ei) is a graph and λi ∈ {0, 1},
and an integer k.
Parameter: k.
Output: A set F ⊆ 2(V

2 ) of size k such that for each i ∈ [t], F forms
an edge clique cover in Gi if and only if λi = 1.

An observant reader may notice that in the first of the three problems above, we consider
solution size as a parameter even though the corresponding search problem of finding a
maximum matching in a graph is polynomial-time tractable. This is due to the fact that, as
it turns out, Matching in the consistency checking regime is not polynomial-time tractable
unless P = NP. In fact, we show an even stronger (and more surprising) result:

▶ Theorem 17. ConsCheck: Matching does not admit a fixed-parameter algorithm unless
FPT = W[2].

Proof. We present a reduction that given an instance (U , F , k′) of the classical Set Cover
problem [7], constructs an instance I of ConsCheck: Matching which admits a solution
if and only if (U , F , k′) is a yes-instance. An instance (U , F , k′) of Set Cover is a family
F = {F1, . . . , Fm} of m subsets over the n-element universe U = {u1, . . . , un}, and we are
asked whether there exists a k′-element subset of F whose union contains all of U .

Construction. We construct the instance I = {V, (Ei, λi)i∈[t]} of ConsCheck: Matching
as follows, with the parameter set to k = k′. Let the unique positive sample in I be the edge
set E1 such that the graph (V, E1) is a set of k disjoint stars, whereas for each i ∈ [k] the
graph (V, E1) contains a center si adjacent to pendants pi

1, . . . , pi
m. Next, for each element

uj ∈ U , j ∈ [n], we add a negative sample (V, Ej+1) into I which only contains non-edges
between the centers of stars and the leaves (of the same star) corresponding to the sets
containing that element; formally, Ej+1 =

(
V
2
)

\ {sipi
ℓ | i ∈ [k], uj ∈ Fℓ}. This completes the

construction of I (see also Figure 3).

Correctness. If I admits a solution Q, then Q must be a matching in (V, E1) of
size k and hence can only contain a single edge from each of the k stars. Hence,
Q = {s1pα(1), s2pα(2), . . . , skpα(k)} for some mapping α. Moreover, since Q is not a matching
in (V, Ej+1) for any j ∈ [n], the set {Fα(1), . . . , Fα(k)} is a set cover for (U , F , k). At the
same time, given a set cover {Fβ(1), . . . , Fβ(k)} (for some mapping β), we can construct a

IPEC 2023



18:14 Consistency Checking Problems: A Gateway to Parameterized Sample Complexity

si
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2 pi
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m

Figure 3 Reducing from Set Cover, the ConsCheck: Matching instance has a positive sample
with k (i ∈ [k]) stars as shown on the left; for each uj ∈ U , the correspondent No-instance is a
complete graph but excluding {sipi

ℓ | i ∈ [k], uj ∈ Fℓ}. So, as an example, if m = 4 and uj ∈ Fℓ for
any ℓ ∈ {1, 3, m}, then for all i ∈ [k], the dotted edges are out of the construction.

solution for I by taking {s1pβ(1), . . . , skpβ(k)}. This yields a reduction from Set Cover
to the problem of deciding the existence of a solution for ConsCheck: Matching; in
particular, this means that a fixed-parameter algorithm for ConsCheck: Matching would
imply FPT=W[2]. ◀

A similar reduction also allows us to establish the intractability of consistency checking
for Path.

▶ Theorem 18 (⋆). ConsCheck: (k-)Path does not admit a fixed-parameter algorithm
unless FPT = W[2].

However, we show that the third problem under consideration – Edge Clique Cover –
does not become more difficult in the consistency checking regime.

▶ Theorem 19 (⋆). ConsCheck: Edge Clique Cover admits a fixed-parameter algorithm
which runs in time O(22k · |I|).

Given the fixed-parameter intractability of ConsCheck: Matching and ConsCheck:
(k-)Path w.r.t. the solution size alone, it is natural to ask whether one could solve these
problems at least when the number of negative samples is small, similarly as was done
in Theorem 16 for 2-Coloring. We conclude this section by answering this question
positively, albeit the algorithmic techniques used here are different from Theorem 16. In fact,
it turns out that an adaptation of the classical color-coding technique suffices in this case [7,
Subsections 5.2 and 5.6]. For both problems, the task essentially boils down to intersecting
all positive samples into one, and then looking for a solution where the set of k edges is not
contained in any negative sample. After assuming that all vertices of the solution receive
distinct colors, we can perform dynamic programming to find a colorful solution, and while
doing so we also store information about which negative samples are already “dealt with”,
i.e., which negative samples do not contain the edges in the partial solution.

The proof of Theorem 20 builds on the color-coding algorithm for k-Path, but otherwise
the arguments are fairly similar for both following theorems.

▶ Theorem 20 (⋆). ConsCheck: Matching admits an algorithm which runs in time
2O(k+t−) · |I|O(1); in particular, the problem is fixed-parameter tractable when parameterized
by k + t−.

▶ Theorem 21 (⋆). ConsCheck: (k-)Path admits an algorithm which runs in time
2O(k+t−) · |I|O(1); in particular, the problem is fixed-parameter tractable when parameterized
by k + t−.
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Figure 4 ConsCheck: Independent Set[degree] instance with G1, G2 and G3; and G for the
reformulation of ConsCheck: Independent Set[degree].

5 Consistency Checking for Selected Vertex Search Problems

In the final technical section of this article, we focus our attention on consistency checking
for two prominent vertex search problems in parameterized algorithmics: Independent Set
and Dominating Set. As mentioned in the introduction, both problems are believed to be
fixed-parameter intractable (the former is W[1]-hard while the latter is W[2]-hard), and so
for the purposes of this article we restrict our attention to bounded-degree input graphs – or,
more precisely, we consider the maximum degree as an additional parameter6. We formalize
the consistency checking problems below.

ConsCheck: Independent Set[degree]
Input: Integers k, d, and I = {V, (Ei, λi)i∈[t]} where for each i ∈ [t], Gi = (V, Ei) is a graph
of degree at most d and λi ∈ {0, 1}.
Parameter: k + d.
Output: A set X ⊆ V of size k such that for each i ∈ [t], X forms
an independent set in Gi if and only if λi = 1.

ConsCheck: Dominating Set[degree]
Input: Integers k, d, and I = {V, (Ei, λi)i∈[t]} where for each i ∈ [t], Gi = (V, Ei) is a graph
of degree at most d and λi ∈ {0, 1}.
Parameter: k + d.
Output: A set X ⊆ V of size k such that for each i ∈ [t], X forms
a dominating set in Gi if and only if λi = 1.

Once again, the complexity-theoretic properties of these problems turn out to be very
different from those of their simpler graph search analogues. In particular, consistency
checking for Independent Set is fundamentally harder than for the other two problems.

▶ Theorem 22 (⋆). There is no fixed-parameter algorithm for ConsCheck: Independent
Set[degree] unless FPT = W[2].

▶ Theorem 23 (⋆). ConsCheck: Dominating Set[degree] can be solved by a fixed-
parameter algorithm running in time O(2kd) · |I|.

Similarly to Theorems 16, 20 and 20, we turn our attention to whether the lower bound
for ConsCheck: Independent Set[degree] can be overcome if the number of negative
samples is bounded by the parameter. While the W[2]-hardness reduction of Theorem 22

6 We remark that all of the obtained results and proofs carry over also to the case where the maximum
degree is considered to be an arbitrary fixed constant
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does not hold if we are given a bound on the number of samples, it turns out that – unlike
for 2-Coloring, Matching and (k-)Path – consistency checking for Independent Set
remains fixed-parameter intractable even under this additional restriction.

▶ Theorem 24 (⋆). There is no fixed-parameter algorithm for ConsCheck: Independent
Set[degree] even when the number t− of negative saimples is assumed to be an additional
parameter, unless FPT = W[1].

While restricting the number of negative samples alone is insufficient to achieve tractability,
we conclude by showing that restricting the total number of samples allows for a fixed-
parameter algorithm that solves the problem via a combination of multi-step exhaustive
branching and color coding.

▶ Theorem 25 (⋆). ConsCheck: Independent Set[degree] admits an algorithm which
runs in time (kdt)O(k2) ·nO(1); in particular, it is fixed-parameter tractable when parameterized
by k + d + t.

6 Concluding Remarks

This article can be seen as a “brief expedition into the forgotten island of consistency checking”
– a place where Split Graph and Edge Clique Cover are tractable but 2-Coloring and
Matching are not, and where on bounded-degree graphs Independent Set is W[2]-hard
while Dominating Set admits a fixed-parameter algorithm.

To conclude on a more serious note, we remark that our understanding of parameterized
consistency checking – and, more broadly, of sample complexity – is still in its infancy.
Even in the setting of PAC learning considered here, we so far know very little about which
learning problems belong to the classes FPT-PAC and XP-PAC. Still, we hope that the results
and techniques presented in this article can contribute to bridging the gap between the
parameterized (time) complexity and the sample complexity research fields. A natural target
for future work in this direction would be to further deepen our understanding of problems
such as learning CNF and DNF formulas [17, 2, 6] or juntas [15].
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