
Cluster Editing with Overlapping Communities
Emmanuel Arrighi #Ñ

University of Trier, Germany

Matthias Bentert #

University of Bergen, Norway

Pål Grønås Drange1 #

University of Bergen, Norway

Blair D. Sullivan #

University of Utah, Salt Lake City, UT, USA

Petra Wolf # Ñ

University of Bergen, Norway

Abstract
Cluster Editing, also known as correlation clustering, is a well-studied graph modification problem.
In this problem, one is given a graph and allowed to perform up to k edge additions and deletions to
transform it into a cluster graph, i.e., a graph consisting of a disjoint union of cliques. However, in
real-world networks, clusters are often overlapping. For example, in social networks, a person might
belong to several communities – e.g. those corresponding to work, school, or neighborhood. Another
strong motivation comes from language networks where trying to cluster words with similar usage
can be confounded by homonyms, that is, words with multiple meanings like “bat”. The recently
introduced operation of vertex splitting is one natural approach to incorporating such overlap into
Cluster Editing. First used in the context of graph drawing, this operation allows a vertex v to
be replaced by two vertices whose combined neighborhood is the neighborhood of v (and thus v can
belong to more than one cluster). The problem of transforming a graph into a cluster graph using
at most k edge additions, edge deletions, or vertex splits is called Cluster Editing with Vertex
Splitting and is known to admit a polynomial kernel with respect to k and an O(9k2

+ n + m)-time
(parameterized) algorithm. However, it was not known whether the problem is NP-hard, a question
which was originally asked by Abu-Khzam et al. [Combinatorial Optimization, 2018]. We answer
this in the affirmative. We further give an improved algorithm running in O(27k log k + n + m) time.

2012 ACM Subject Classification Mathematics of computing → Graph algorithms

Keywords and phrases graph modification, correlation clustering, vertex splitting, NP-hardness,
parameterized algorithm

Digital Object Identifier 10.4230/LIPIcs.IPEC.2023.2

Funding Matthias Bentert: European Research Council (ERC) under the European Union’s Horizon
2020 research and innovation programme (grant agreement No. 819416).
Pål Grønås Drange: Research Council of Norway under grant Parameterized Complexity for Practical
Computing (NFR, no. 274526).
Blair D. Sullivan: Gordon & Betty Moore Foundation under grant GBMF4560.

1 Introduction

Correlation clustering is a fundamental problem in data mining and machine learning that
aims to identify groups of similar objects based on their pairwise similarity or dissimilarity.
This problem arises in various domains, including social network analysis, image segmentation,

1 corresponding author

© Emmanuel Arrighi, Matthias Bentert, Pål Grønås Drange, Blair D. Sullivan, and Petra Wolf;
licensed under Creative Commons License CC-BY 4.0

18th International Symposium on Parameterized and Exact Computation (IPEC 2023).
Editors: Neeldhara Misra and Magnus Wahlström; Article No. 2; pp. 2:1–2:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:emmanuel@arrighi.eu
http://emmanuel.arrighi.eu
https://orcid.org/0000-0002-0326-1893
mailto:matthias.bentert@uib.no
mailto:pal.drange@uib.no
https://orcid.org/0000-0001-7228-6640
mailto:sullivan@cs.utah.edu
https://orcid.org/0000-0001-7720-6208
mailto:mail@wolfp.net
https://www.wolfp.net/
https://orcid.org/0000-0003-3097-3906
https://doi.org/10.4230/LIPIcs.IPEC.2023.2
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


2:2 Cluster Editing with Overlapping Communities

document classification, gene expression analysis, and many more. Broadly speaking, the
goal of correlation clustering is to partition the objects into clusters such that objects within
the same cluster are more similar to each other than to objects in different clusters.

Correlation clustering has also been studied in algorithmic graph theory [34]. In this
setting, the input is a graph and two vertices share an edge if they are similar. The goal is
then to add or remove a minimum number of edges such that the resulting graph is a cluster
graph, that is, a disjoint unions of cliques. This problem is typically known as Cluster
Editing and formally defined as follows.

Input: A graph G = (V, E) and an integer k.
Question: Does there exist a set F ⊆

(
V
2

)
of size at most k such that G = (V, E△F )

is a cluster graph?

Cluster Editing

Here, △ is the symmetric difference between two sets. Equivalently, one can ask whether
there is a sequence (σ1, σ2, . . . , σℓ) of length ℓ ≤ k where each σi describes either an edge
addition or an edge removal between two vertices such that performing all operations in the
sequence yields a cluster graph.

Cluster Editing has been extensively studied in terms of both classic and parameterized
complexity. Cai [9] showed a general result implying an O(3k ·n3)-time algorithm for Cluster
Editing. This running time has since been improved several times [23, 25, 29]. Moreover, it
is known that Cluster Editing admits a polynomial kernel with respect to k [21].

However, it has been observed that real-world data usually does not neatly conform
to such an equivalence relation [27, 36, 40]. This lead to the study of detecting so-called
overlapping communities [5, 31], with applications in categorizing videos [35], classifying
emotions in music [41] and sentiments in online posts [33], document classification [18, 32],
and protein clustering based on amino-acid sequences [8].

The overlapping clusters model we study was introduced by Abu-Khzam et al. [2], who
augmented Cluster Editing with a vertex-splitting operation which enables vertices to
belong to multiple clusters. Specifically, in addition to allowing edge modification, a vertex v

can be split into two vertices v1, v2 such that N(v1) ∪ N(v2) = N(v), where N is the (open)
neighborhood of a vertex (see Figure 1 for an example). In the same article [2], they show that
this generalized problem admits a quadratic vertex kernel and an FPT algorithm. A slightly
tighter analysis than the paper provides reveals that the algorithm runs in O(9k2 + n + m)
time. Abu-Khzam et al. [1] later provided a greedy algorithm, but it was still not known
whether the problem is actually NP-hard, a question posed by the former set of authors. We
settle this question by showing that the following problem is indeed NP-complete.

Input: A graph G = (V, E) and an integer k.
Question: Does there exist a sequence σ = (σ1, σ2, . . . , σℓ) of length ℓ ≤ k, where

each σi is an edge addition, an edge removal, or a vertex splitting, such
that performing the operations in σ turns G into a cluster graph?

Cluster Editing with Vertex Splitting (CEVS)

Related work. In addition to the aforementioned work [1, 2], overlapping clustering has
been studied from the graph-editing point of view before, but under a less natural restriction.
Fellows et al. [16] consider the problem where each vertex (and edge) is allowed to participate
in a fixed number of clusters. In real-world applications, however, there is no fixed number s

such that every vertex belongs to at most s cliques. Indeed, some vertices naturally belong
to many clusters and some to few.



E. Arrighi, M. Bentert, P. G. Drange, B. D. Sullivan, and P. Wolf 2:3

a

b

c

d

e

f g

h

i

j

(a) A graph with two overlapping clusters
that can be separated by two vertex splits.

a

b

c

d1 d2

e1 e2

f g

h

i

j

(b) The graph after splitting d into d1 and d2 and e
into e1 and e2.

Figure 1 An example of an instance where the budget needed for Cluster Editing is 8, and
where the resulting graph is quite different from the input graph (d has to be disconnected completely
from (e.g.) g, h, i, and j). In CEVS, we only need a budget of 2, and the resulting graph is very
similar to the input graph.

To the best of our knowledge, the first use of vertex splitting in graph modification
is the Planar Vertex Splitting used in graph drawing [15], a problem shown to be
FPT quite recently by Nöllenburg et al. [30]. Even more recently, an FPT algorithm was
given for obtaining a 2-layer planar drawing of a graph after at most k vertex splits [3]. In
addition, vertex splitting has also been studied in the context of reducing a graph’s pathwidth
by Baumann, Pfretzschner, and Rutter [6], who also show that the problem Π-Vertex
Splitting is definable in MSO2 (provided that Π is), making the problem FPT for graphs
of bounded treewidth.

Finally, we would also like to highlight that finding ever faster algorithms for overlapping
clustering and community detection is a major area of study in complex networks [4, 7, 11,
19, 20, 39, 43].

2 Preliminaries

For a positive integer n, we use [n] = {1, 2, . . . , n} to denote the set of all positive integers
up to n. All logarithms in this paper use 2 as their base.

We use standard graph-theoretic notation and refer the reader to the textbook by
Diestel [12] for commonly used definitions. For an introduction to parameterized complexity,
fixed-parameter tractability, and kernelization, we refer the reader to the textbooks by Flum
and Grohe [17] and Cygan et al. [10]. The only non-standard graph concept used in this
work are critical cliques as introduced by Lin et al. [28].

▶ Definition 1. A critical clique is a subset of vertices C that is maximal with the properties
that
1. C is a clique
2. there exists U ⊆ V (G) s.t. N [v] = U for all v ∈ C.

▶ Lemma 2 ([2, 28]). Every vertex appears in exactly one critical clique.

We denote the critical clique in which a vertex v appears by CC(v). The critical clique
quotient graph C of G contains a vertex for each critical clique in G and two vertices are
adjacent if and only if the two respective critical cliques C1 and C2 are adjacent, that is,

IPEC 2023



2:4 Cluster Editing with Overlapping Communities

there is an edge between each vertex in C1 and each vertex in C2. Note that by the definition
of critical cliques this is equivalent to the condition that at least one edge {u, v} with u ∈ C1
and v ∈ C2 exists. The main reason that critical cliques turn out to be useful when studying
CEVS is captured by the following lemma.

▶ Lemma 3 ([2]). Let σ be an optimal solution to CEVS. Then for each critical clique Ci and
each clique Sj in the cluster graph reached after performing the operations in σ, either Ci ⊆ Sj

or Ci ∩ Sj = ∅.

To show NP-hardness, we reduce from the well-known NP-complete problem 3-SAT.

Input: A CNF formula ϕ where each clause contains exactly three distinct literals.
Question: Is ϕ satisfiable?

3-SAT

Even stronger hardness results than NP-hardness can be achieved if one assumes the
exponential time hypothesis (ETH) to be true. The ETH, formulated by Impagliazzo, Paturi,
and Zane [24], states that there exists some positive real number s such that 3-SAT on N

variables and M clauses cannot be solved in 2s(N+M) time.

3 NP-hardness

In this section, we show that Cluster Editing with Vertex Splitting is NP-hard,
thereby resolving an open problem posed by Abu-Khzam et al. [2].

▶ Theorem 4. CEVS is NP-complete. Moreover, assuming ETH, there is no 2o(n+m)-time
or 2o(k) · poly(n)-time algorithm for it.

Proof. Since containment in NPis obvious (non-deterministically guess the sequence of
operations and check that the resulting graph is indeed a cluster graph), we focus on the
NP-hardness and present a reduction from 3-SAT. Therein, we will use two gadgets, a variable
gadget and a clause gadget. The variable gadget is a wheel graph with two (connected) center
vertices. An example of this graph is depicted on the left side of Figure 2. We call this graph
with t vertices on the outside Wt and we will only consider instances with t mod 6 = 0, that
is, t = 6a for some positive integer a. The clause gadget is a “crown graph” as depicted in
Figure 3(a).

More precisely, for each variable xi, we construct a variable gadget Gi which is a W6a

where a is the number of clauses that contain either xi or ¬xi. For each clause Cj , we
construct a clause gadget Hj , that is, a K5 with the edges of a triangle removed. We
arbitrarily assign each of the three vertices of degree two in Hj to one literal in Cj . Finally,
we connect the variable and clause gadgets as follows. If a variable xi appears in a clause Cj ,
then let u be the vertex in Hj assigned to xi (or ¬xi). Moreover, let b be the number such
that Cj is the bth clause containing either xi or ¬xi and let c = 6(b − 1). Let the vertices
on the outer cycle of Gi be v1, v2, . . . , v6a. If Cj contains the literal xi, then we add the
three edges {u, vc+1}, {u, vc+2}, {u, vc+3}. If Cj contains the literal ¬xi, then we add the
three edges {u, vc+2}, {u, vc+3}, {u, vc+4}. To complete the reduction, we set k = 35M − 2N ,
where M is the number of clauses and N is the number of variables.

We next show that the reduction is correct, that is, the constructed instance of CEVS is
a yes-instance if and only if the original formula ϕ of 3-SAT is satisfiable. To this end, first
assume that ϕ is satisfiable and let β be a satisfying assignment. For each variable xi we will



E. Arrighi, M. Bentert, P. G. Drange, B. D. Sullivan, and P. Wolf 2:5

(a) The graph W6 (variable gadget).

(b) One of the three ways of trans-
forming W6 into two K5’s using six
operations.

Figure 2 The graph W6t requires 8t − 2 edits and any solution with exactly 8t − 2 edits results
in a disjoint union of K5s.

partition Gi into K5’s as follows. Let a be the value such that Gi is isomorphic to W6a. If β

sets xi to true, then we remove the edge {v3j , v3j+1} and add the edge {v3j+1, v3j+3} for each
integer 1 ≤ j ≤ 2a (where values larger than 6a are taken modulo 6a). If β sets xi to false,
then we remove the edge {v3j+1, v3j+2} and add the edge {v3j+2, v3j+4} for each 1 ≤ j ≤ 2a.
Moreover, we split the two center vertices 2a − 1 times. In total, we use 8a − 2 modifications
to transform Gi into a collection of K5’s. Since each clause contains exactly three literals and
we add six vertices for each variable appearance, the sum of lengths of cycles in all variable
gadgets combined is 18M . Hence, in all variable gadgets combined, we perform 24M − 2N

modifications.
Next, we modify the crown graphs. To this end, let Cj be a clause and let Hj be the

constructed clause gadget. Since β is a satisfying assignment, at least one variable appearing
in Cj satisfies it. If multiple such variables exist, then we pick any one. Let xi be the selected
variable and let u be the vertex in Hj assigned to xi. We first turn Hj into a K4 and an
isolated vertex by removing the two edges incident to u in Hj and add the missing edge
between the two vertices assigned to different variables. Finally, we look at the edges between
variable gadgets and clause gadgets. For the vertex u, note that by construction the three
vertices that u is adjacent to in Gi already belong to a K5 and hence we can add two edges
to the two (split) centers of the variable gadget to get to a K6. For the two other vertices
in Hj that have edges to vertices in variable gadgets, we remove all three such edges, that is,
six edges per clause. Hence, we use 3 + 2 + 6 = 11 modifications for each clause. Since the
total number of modifications is 35M − 2N and the resulting graph is a collection of K4’s,
K5’s, and K6’s, the constructed instance of CEVS is a yes-instance.

For the other direction, suppose the constructed instance of CEVS is a yes-instance. We
first show that 24M − 2N modifications are necessary to transform all variable gadgets
into cluster graphs and that this bound can only be achieved if each time exactly three
consecutive vertices on the cycles are contained in the same K5. To this end, consider any
variable gadget Gi. By construction, Gi is isomorphic to W6a for some integer a. By the
counting argument from above, we show that at least 8a − 2 modifications are necessary.
Note first that some edge in the cycle has to be removed or some vertex on the cycle has to
be split as otherwise any solution would contain a clique with all vertices in the cycle and

IPEC 2023



2:6 Cluster Editing with Overlapping Communities

yx z

(a) The crown graph.

yx z

(b) Good solution: One added
edge and two deleted edges.

yx z

(c) Bad solution 1: three
added edges.

yx z

(d) Bad solution 2: two splits
and one added edge.

yx z

(e) Bad solution 3: one split,
one deleted edge, and one
added edge.

Figure 3 The crown graph with its four solutions of size 3. The good solution is the only solution
with three operations that creates at least one isolated vertex.

this would require at least 18a2 − 9a > 8a − 2 edge additions (since the degree of each of
the 6a vertices in the cycle would need to increase from 2 to 6a − 1). We next analyze how
many modifications are necessary to separate b vertices from the outer cycle into a clique. We
require at least two modifications for the center vertices (either splitting them or removing
the edges between them and the first vertex that we want to separate) and one operation
to separate the cycle on the other end (either splitting a vertex or removing an edge of the
cycle). For b ∈ {1, 2} these operations are enough. For b ≥ 3, we need to add

(
b
2
)

− (b − 1)
edges (all edges in a clique of size b minus the already existing edges of a path on b vertices).
Note that the “average cost” per separated vertex (number of operations divided by b) is
minimized (only) with b = 3 with a cost of 4 for three vertices. Hence, to separate all but c

vertices from the cycle, we require at least 4(6a − c)/3 operations. The cost for making the
remaining c vertices into a clique requires again

(
c
2
)

− (c − 1) edge additions. Analogously,
the optimal solution is to have c = 3 with just a single edge addition. Thus, the minimum
number of required operations is at least 4(6a − 3)/3 + 2 = 8a − 2 (where the +2 comes
from the initial edge removal and the final edge addition between the last c = 3 vertices) and
this value can only be reached by partitioning the cycle into triples which each form a K5
with the two center vertices. Note that it is always preferable to delete an edge on the outer
cycle and not split one of the two incident edges as splitting a vertex increases the number
of vertices on the cycle and thus invokes a higher average cost. Next, we analyze the clause
gadget and the edges between the different gadgets. We start with the latter. Let u be a
vertex in a clause gadget Hj with (three) incident edges to some variable gadget. The only
way to not use at least three operations to deal with the three edges is if u is an isolated
vertex or if the three neighbors do not have two more neighbors in the current solution. In
the former case, we can (possibly) add the two edges between u and the two centers of the
respective variable gadgets to build a K6. In the latter case, we have used at least three
operations more in the variable gadget than intended (either by removing edges between
neighbors of u and the center vertices or by splitting all neighbors of u). Since each vertex in
a variable gadget is only adjacent to at most one vertex in a clause gadget, this cannot lead
to an overall reduction in the number of operations and we can therefore ignore this latter
case.



E. Arrighi, M. Bentert, P. G. Drange, B. D. Sullivan, and P. Wolf 2:7

We are now in a position to argue that at least eleven modifications are necessary for
each clause gadget. First, note that at least three operations are required to transform a
crown into a cluster graph. Possible ways of achieving this are depicted in Figure 3. In each
of these possibilities at most one vertex becomes an isolated vertex. To make two vertices
independent, at least four operations are required and for three isolated vertices at least
five operations are required. As shown above, at least two operations are required for each
isolated vertex with edges to variable gadgets and at least three operations are required for
non-isolated vertices with edges to variable gadgets. Thus, at least eleven operations are
required for each clause gadget and eleven operations are sufficient if and only if the three
vertices incident to one of the vertices in Hj belong to the same K5 in the variable gadget.

By the argument above, at least 24M − 2N + 11M = k operations are necessary and
since the constructed instance is a yes-instance, there is a way to cover all variable gadgets
with K5’s such that for each clause there is at least one vertex whose three neighbors in a
variable gadget belong to the same K5. Let Cj be a clause, let u be a vertex with all three
neighbors in the same K5, and let xi be the variable corresponding to this variable gadget.
If xi appears positively in Cj , then v3i+1, v3i+2, and v3i+3 belong to the same K5 for each i

and we set xi to true. If xi appears negatively in Cj , then v3i+2, v3i+3, and v3i+4 belong to
the same K5 for each i and we set xi to false. Note that we never set a variable to both
true and false in this way. We set all remaining variables arbitrarily to true or false. By
construction, the variable xi satisfies Cj and since we do the same for all clauses, all clauses
are satisfied, that is, the original formula ϕ is satisfiable. Thus, the constructed instance is
equivalent to the original 3-SAT instance.

Since the reduction can clearly be computed in polynomial time, this concludes the proof
for the NP-hardness. For the ETH-hardness, observe that k, n, m ∈ O(N + M). This implies
that there are no 2o(n+m)-time or 2o(k) · poly n-time algorithm for CEVS unless the ETH
fails [24]. ◀

In contrast to the reduction for Cluster Editing [26], our reduction does not produce
instances with constant maximum degree. We instead observe that in our reduction, the
maximum degree of the produced instances depends only on the maximum number of times
a variable appears in a clause. Combining this with the fact that 3-SAT remains NP-hard
when restricted to instances where each variable appears in at most four clauses [37], we
obtain the following corollary.

▶ Corollary 5. CEVS remains NP-hard on bounded-degree graphs.

4 A faster algorithm

In this section, we improve upon the known O(9k2 + n + m)-time algorithm and present an
algorithm running in O(27k log k + n + m) time. The general outline of the two algorithms is
fairly similar. We first compute a kernel with O(k2) vertices as well as all critical cliques in
linear time [2]. We then guess2 which critical cliques belong to the same clique (cluster) in
the solution. The main difference between the two algorithms is how these guesses are made.

▶ Theorem 6. CEVS can be solved in O(27k log k + n + m) time.

2 Whenever we pretend to guess something, we iterate over all possibilities and assume in the presentation
that we are currently in an iteration that yields a solution.

IPEC 2023



2:8 Cluster Editing with Overlapping Communities

Proof. First, we compute the critical clique of each vertex and the critical clique quotient
graph C of G in linear time [28]. As shown by Abu-Khzam et al. [2], we may assume
that C contains at most 4k vertices. By Lemma 3, we can also assume that all vertices in a
critical clique belong to the same clique in the graph G′ reached after performing an optimal
solution σ. Let X = (S1, S2, . . . , Sℓ) be the set of cliques in G′. Note that X contains ℓ ≤ 2k

cliques as each operation can complete at most two cliques of the solution (removing an edge
between two cliques or splitting a vertex contained in both cliques). Hence, if there are more
than 2k cliques in the solution, then we cannot reach the solution with k operations. To
streamline the following argumentation, we will cover the vertices in C by cliques S1, S2, . . . , Sℓ

and assume that an optimal solution contains exactly 2k cliques by allowing some of the
cliques to be empty. Next, we iterate over all possible colorings of the vertices in C using ℓ + 1
colors 0, 1, 2, . . . , ℓ. Note that there are at most (ℓ + 1)4k ∈ O((2k + 1)4k) such colorings.

The idea behind the coloring is the following. All colors 1, 2, . . . , ℓ will correspond to the
cliques S1, S2, . . . , Sℓ, that is, we try to find a solution where all (critical cliques corresponding
to) vertices of the same color (except for color 0) belong to the same clique in the solution.
The color 0 indicates that the vertex will belong to multiple cliques in the solution, that is,
that all vertices in the respective critical clique will be split. Since each such split operation
reduces k by one, we can reject any coloring in which the number of vertices in critical
cliques corresponding to vertices with color 0 is more than k. In particular, we can reject
any coloring in which more than k vertices have color 0.

Next, we guess two indices i ∈ [k], j ∈ [ℓ] and assume that the ith vertex of color 0 belongs
to Sj or we guess that all vertices of color 0 have been assigned to all cliques they belong to.
Note that in each iteration there are kℓ + 1 possibilities and since each guess (except for the
last one) reduces k by at least one, we can make at most k guesses (after k guesses we know
that the next guess has to be that all vertices have been fully assigned). Hence, there are at
most (kℓ + 1)k = (2k2 + 1)k ∈ O((2k + 1)2k) such guesses.

It remains to compute the best solution corresponding to each possible sequence of guesses.
To this end, we first iterate over each pair of vertices and remove an existing edge between
them if we guessed that the two vertices do not appear in a common clique. Moreover, we
add an edge between them if such an edge does not already exist and we guessed that there
is a clique Si which contains both vertices. Finally, we perform all split operations. Therein,
we iteratively split one vertex v into two vertices u1 and u2 where u1 will be the vertex in
some clique Si and u2 might be split further in the future. The vertex u1 is adjacent to all
vertices that are guessed to belong to Si. The vertex u2 is adjacent to all vertices that u was
adjacent to, except for vertices that are adjacent to u1 and not guessed to also belong to
some other clique Sj which (some part of) u2 belongs to.

Since our algorithm basically performs an exhaustive search, it will find an optimal solution.
It only remains to analyze the running time. We first compute the kernel in O(n + m) time.
We then try O((2k+1)4k) possible colorings of C and for each coloring O((2k+1)2k) sequences
of guesses. Afterwards, we compute the solution in O(k3) time. Thus, the overall running
time is in O((2k + 1)6k · k3 + n + m) ⊆ O(27k log k + n + m). ◀

We mention in passing that while the constants in the running time of our algorithm
can probably be improved, a completely new approach is required if one wants a single-
exponential-time algorithm. This is due to the fact that the number of possible partitions
of O(k) critical cliques into clusters grows super-exponentially (roughly as fast as k!) even if
no vertex-splitting operations are allowed.



E. Arrighi, M. Bentert, P. G. Drange, B. D. Sullivan, and P. Wolf 2:9

5 Conclusion

On the one hand, we resolve an open question from the literature by showing that CEVS is NP-
complete. We also show that, assuming the ETH, there are no 2o(n+m)-time or 2o(k) ·poly(n)-
time algorithms for CEVS. On the other hand, we give an O(27k log k +n+m)-time algorithm,
beating the previously best O(9k2 + n + m) algorithm. This leaves the following gap.

▶ Open problem. Does there exist a 2O(k) · poly(n)-time algorithm for CEVS?

However, even resolving this question should only be seen as a starting point for a much
larger undertaking. While we do understand the parameterized complexity of CEVS with
respect to k reasonably well, there are still a lot of open questions regarding structural
parameters of the input graph. Moreover, one might also study the approximability of CEVS
as the trivial constant-factor approximation of Cluster Editing does not carry over if
we allow vertex splitting. In case CEVS turns out to be hard to approximate, one might
then continue with studying FPT-approximation (schemes) and approximation kernels (also
known as lossy kernels).

Regarding real-world applications, it has been observed that requiring communities to
be cliques is too restrictive in some settings. To circumvent this issue, many relaxations of
cliques such as s-cliques, s-clubs, s-plexes, k-cores, and γ-quasi-cliques have been proposed.
It would also be interesting to study vertex-splitting operations in the respective graph
editing problems for these relaxations.

Finally, a related area of study is clustering of bipartite data, which is modelled by
Bicluster Editing and which has received significant attention recently [13, 22, 38, 42].
Overlapping structures are also relevant in the bipartite case [14]. To the best of our
knowledge, nothing is known about Bicluster Editing with Vertex Splitting. We
mention that there are two natural versions in the bipartite case and both of them seem
worth studying. The two versions differ in whether or not one requires that all copies of
a split vertex lie on the same side of a bipartition in a solution. On the one hand, the
additional requirement makes sense if the data is inherently bipartite. This happens for
example if each vertex represents either a researcher or a paper. On the other hand, if edges
reflect something like a seller-buyer relationship, then it is plausible that a person both sells
and buys.

References
1 Faisal N. Abu-Khzam, Joseph R. Barr, Amin Fakhereldine, and Peter Shaw. A greedy heuristic

for cluster editing with vertex splitting. In Proceedings of the 4th International Conference on
Artificial Intelligence for Industries (AI4I ’21), pages 38–41. IEEE, 2021.

2 Faisal N. Abu-Khzam, Judith Egan, Serge Gaspers, Alexis Shaw, and Peter Shaw. Cluster
editing with vertex splitting. In Combinatorial optimization, pages 1–13. Springer, 2018.

3 Reyan Ahmed, Stephen Kobourov, and Myroslav Kryven. An FPT algorithm for bipartite
vertex splitting. In Proceedings of the 30th International Symposium on Graph Drawing and
Network Visualization (GD ’22), pages 261–268. Springer International Publishing, 2022.

4 Sanjeev Arora, Rong Ge, Sushant Sachdeva, and Grant Schoenebeck. Finding overlapping
communities in social networks: toward a rigorous approach. In Proceedings of the 13th
ACM Conference on Electronic Commerce (EC ’12), pages 37–54. Association for Computing
Machinery, 2012.

5 Sanghamitra Bandyopadhyay, Garisha Chowdhary, and Debarka Sengupta. FOCS: Fast
overlapped community search. IEEE Transactions on Knowledge and Data Engineering,
27(11):2974–2985, 2015.

IPEC 2023



2:10 Cluster Editing with Overlapping Communities

6 Jakob Baumann, Matthias Pfretzschner, and Ignaz Rutter. Parameterized complexity of vertex
splitting to pathwidth at most 1. CoRR, abs/2302.14725, 2023.

7 Jeffrey Baumes, Mark Goldberg, and Malik Magdon-Ismail. Efficient identification of overlap-
ping communities. In Proceedings of the 2005 IEEE International Conference on Intelligednce
and Security Informatics (ISI ’05), pages 27–36. Springer, 2005.

8 Francesco Bonchi, Aristides Gionis, and Antti Ukkonen. Overlapping correlation clustering.
Knowledge and Information Systems, 35(1):1–32, 2013.

9 Leizhen Cai. Fixed-parameter tractability of graph modification problems for hereditary
properties. Information Processing Letters, 58(4):171–176, 1996. doi:10.1016/0020-0190(96)
00050-6.

10 Marek Cygan, Fedor V. Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized algorithms. Springer, 2015.

11 George B. Davis and Kathleen M. Carley. Clearing the FOG: Fuzzy, overlapping groups for
social networks. Social Networks, 30(3):201–212, 2008. doi:10.1016/j.socnet.2008.03.001.

12 Reinhard Diestel. Graph Theory. Springer, 2005.
13 Pål Grønås Drange, Felix Reidl, Fernando S. Villaamil, and Somnath Sikdar. Fast biclustering

by dual parameterization. In Proceedings of the 10th International Symposium on Parameterized
and Exact Computation (IPEC ’15), pages 402–413. Schloss Dagstuhl — Leibniz-Zentrum für
Informatik, 2015.

14 Nan Du, Bai Wang, Bin Wu, and Yi Wang. Overlapping community detection in bipartite
networks. In Proceedings of the 2008 IEEE/WIC/ACM International Conference on Web
Intelligence and Intelligent Agent Technology (WI-IAT ’08), pages 176–179, 2008.

15 Peter Eades and Candido Ferreira Xavier de Mendonça Neto. Vertex splitting and tension-free
layout. In Proceedings of the 3rd International Symposium on Graph Drawing and Network
Visualization (GD ’95), pages 202–211. Springer, 1995.

16 Michael R. Fellows, Jiong Guo, Christian Komusiewicz, Rolf Niedermeier, and Johannes
Uhlmann. Graph-based data clustering with overlaps. In Proceedings of the 15th Annual
International Conference on Computing and Combinatorics (COCOON ’09), pages 516–526.
Springer, 2009.

17 Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Springer, 2006.
18 Reynaldo Gil-García and Aurora Pons-Porrata. Dynamic hierarchical algorithms for document

clustering. Pattern Recognition Letters, 31(6):469–477, 2010. doi:10.1016/j.patrec.2009.
11.011.

19 Mark Goldberg, Stephen Kelley, Malik Magdon-Ismail, Konstantin Mertsalov, and Al Wal-
lace. Finding overlapping communities in social networks. In Proceedings of the 2nd
IEEE International Conference on Social Computing (SC ’10), pages 104–113, 2010. doi:
10.1109/SocialCom.2010.24.

20 Steve Gregory. An algorithm to find overlapping community structure in networks. In
Proceedings of 2007 Knowledge Discovery in Databases (PKDD ’07), pages 91–102. Springer,
2007.

21 Jiong Guo. A more effective linear kernelization for cluster editing. Theoretical Computer
Science, 410(8-10):718–726, 2009. doi:10.1016/j.tcs.2008.10.021.

22 Jiong Guo, Falk Hüffner, Christian Komusiewicz, and Yong Zhang. Improved algorithms
for bicluster editing. In Proceedings of the 5th International Conference on Theory and
Applications of Models of Computation (TAMC ’08), pages 445–456. Springer, 2008.

23 Falk Hüffner, Christian Komusiewicz, Hannes Moser, and Rolf Niedermeier. Fixed-parameter
algorithms for cluster vertex deletion. Theory of Computing Systems, 47(1):196–217, 2010.
doi:10.1007/s00224-008-9150-x.

24 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity? Journal of Computer and System Sciences, 63(4):512–530, 2001.
doi:10.1006/jcss.2001.1774.

https://doi.org/10.1016/0020-0190(96)00050-6
https://doi.org/10.1016/0020-0190(96)00050-6
https://doi.org/10.1016/j.socnet.2008.03.001
https://doi.org/10.1016/j.patrec.2009.11.011
https://doi.org/10.1016/j.patrec.2009.11.011
https://doi.org/10.1109/SocialCom.2010.24
https://doi.org/10.1109/SocialCom.2010.24
https://doi.org/10.1016/j.tcs.2008.10.021
https://doi.org/10.1007/s00224-008-9150-x
https://doi.org/10.1006/jcss.2001.1774


E. Arrighi, M. Bentert, P. G. Drange, B. D. Sullivan, and P. Wolf 2:11

25 Christian Komusiewicz and Johannes Uhlmann. Alternative parameterizations for cluster
editing. In Proceedings of the 2011 Conference on Current Trends in Theory and Practice of
Computer Science (SOFSEM ’11), pages 344–355. Springer, 2011.

26 Christian Komusiewicz and Johannes Uhlmann. Cluster editing with locally bounded modifi-
cations. Discrete Applied Mathematics, 160(15):2259–2270, 2012. doi:10.1016/j.dam.2012.
05.019.

27 Jure Leskovec, Kevin J. Lang, Anirban Dasgupta, and Michael W. Mahoney. Statistical
properties of community structure in large social and information networks. In Proceedings of
the 17th International Conference on World Wide Web (WWW ’08), pages 695–704. Association
for Computing Machinery, 2008.

28 Guo-Hui Lin, Tao Jiang, and Paul E. Kearney. Phylogenetic k-root and Steiner k-root. In
Proceedings of the 11th International Symposium on Algorithms and Computation (ISAAC ’00),
pages 539–551. Springer, 2000.

29 Neeldhara Misra, Fahad Panolan, and Saket Saurabh. Subexponential algorithm for d-cluster
edge deletion: Exception or rule? Journal of Computer and System Sciences, 113:150–162,
2020.

30 Martin Nöllenburg, Manuel Sorge, Soeren Terziadis, Anaïs Villedieu, Hsiang-Yun Wu, and
Jules Wulms. Planarizing graphs and their drawings by vertex splitting. In Proceedings of the
30th International Symposium on Graph Drawing and Network Visualization (GD ’22), pages
232–246. Springer, 2022.

31 Lorenzo Orecchia, Konstantinos Ameranis, Charalampos Tsourakakis, and Kunal Talwar.
Practical almost-linear-time approximation algorithms for hybrid and overlapping graph clus-
tering. In Proceedings of the 39th International Conference on Machine Learning (ICML ’22),
pages 17071–17093. PMLR, 2022.

32 Airel Pérez-Suárez, José Fco. Martínez-Trinidad, Jesús A. Carrasco-Ochoa, and José E. Medina-
Pagola. An algorithm based on density and compactness for dynamic overlapping clustering.
Pattern Recognition, 46(11):3040–3055, 2013. doi:10.1016/j.patcog.2013.03.022.

33 Hafiz Hassaan Saeed, Khurram Shahzad, and Faisal Kamiran. Overlapping toxic sentiment
classification using deep neural architectures. In Proceedings of the 2018 IEEE International
Conference on Data Mining Workshops (ICDMW ’18), pages 1361–1366. IEEE Computer
Society, 2018. doi:10.1109/ICDMW.2018.00193.

34 Satu Elisa Schaeffer. Graph clustering. Computer Science Review, 1(1):27–64, 2007. doi:
10.1016/j.cosrev.2007.05.001.

35 Cees G. M. Snoek, Marcel Worring, Jan C. van Gemert, Jan-Mark Geusebroek, and Arnold
W. M. Smeulders. The challenge problem for automated detection of 101 semantic concepts
in multimedia. In Proceedings of the 14th ACM International Conference on Multimedia
(MM ’06), pages 421–430. Association for Computing Machinery, 2006.

36 Lei Tang and Huan Liu. Scalable learning of collective behavior based on sparse social
dimensions. In Proceedings of the 18th ACM Conference on Information and Knowledge
Management (CIKM ’09), pages 1107–1116. Association for Computing Machinery, 2009.

37 Craig A. Tovey. A simplified NP-complete satisfiability problem. Discrete Applied Mathematics,
8(1):85–89, 1984.

38 Dekel Tsur. Faster parameterized algorithm for bicluster editing. Information Processing
Letters, 168, 2021. doi:10.1016/j.ipl.2021.106095.

39 Qinna Wang and Eric Fleury. Uncovering overlapping community structure. In Proceedings
of the 2nd International Workshop on Complex Networks (COMPLEX ’10), pages 176–186.
Springer, 2010.

40 Xufei Wang, Lei Tang, Huiji Gao, and Huan Liu. Discovering overlapping groups in social
media. In Proceedings of the 2010 IEEE International Conference on Data Mining (ICDM ’10),
pages 569–578, 2010.

IPEC 2023

https://doi.org/10.1016/j.dam.2012.05.019
https://doi.org/10.1016/j.dam.2012.05.019
https://doi.org/10.1016/j.patcog.2013.03.022
https://doi.org/10.1109/ICDMW.2018.00193
https://doi.org/10.1016/j.cosrev.2007.05.001
https://doi.org/10.1016/j.cosrev.2007.05.001
https://doi.org/10.1016/j.ipl.2021.106095


2:12 Cluster Editing with Overlapping Communities

41 Alicja Wieczorkowska, Piotr Synak, and Zbigniew W. Raś. Multi-label classification of
emotions in music. In Proceedings of the 2006 Intelligent Information Processing and Web
Mining (IIPWM ‘04), pages 307–315. Springer, 2006.

42 Mingyu Xiao and Shaowei Kou. A simple and improved parameterized algorithm for bicluster
editing. Information Processing Letters, 2022.

43 Shihua Zhang, Rui-Sheng Wang, and Xiang-Sun Zhang. Identification of overlapping community
structure in complex networks using fuzzy c-means clustering. Physica A: Statistical Mechanics
and its Applications, 374(1):483–490, 2007.


	1 Introduction
	2 Preliminaries
	3 NP-hardness
	4 A faster algorithm
	5 Conclusion

