
Graph Clustering Problems Under the Lens of
Parameterized Local Search
Jaroslav Garvardt #

Institute of Computer Science, Friedrich Schiller University Jena, Germany

Nils Morawietz #

Institute of Computer Science, Friedrich Schiller University Jena, Germany

André Nichterlein #

Technische Universität Berlin, Germany

Mathias Weller #

Technische Universität Berlin, Germany

Abstract
Cluster Editing is the problem of finding the minimum number of edge-modifications that
transform a given graph G into a cluster graph G′, that is, each connected component of G′ is a
clique. Similarly, in the Cluster Deletion problem, we further restrict the sought cluster graph G′

to contain only edges that are also present in G. In this work, we consider the parameterized
complexity of a local search variant for both problems: LS Cluster Deletion and LS Cluster
Editing. Herein, the input also comprises an integer k and a partition C of the vertex set of G that
describes an initial cluster graph G∗, and we are to decide whether the “k-move-neighborhood” of G∗

contains a cluster graph G′ that is “better” (uses less modifications) than G∗. Roughly speaking,
two cluster graphs G1 and G2 are k-move-neighbors if G1 can be obtained from G2 by moving at
most k vertices to different connected components.

We consider parameterizations by k + ℓ for some natural parameters ℓ, such as the number of
clusters in C, the size of a largest cluster in C, or the cluster-vertex-deletion number (cvd) of G.
Our main lower-bound results are that LS Cluster Editing is W[1]-hard when parameterized
by k even if C has size two and that both LS Cluster Deletion and LS Cluster Editing are
W[1]-hard when parameterized by k + ℓ, where ℓ is the size of the largest cluster of C. On the
positive side, we show that both problems admit an algorithm that runs in kO(k) · cvd3k ·nO(1) time
and either finds a better cluster graph or correctly outputs that there is no better cluster graph in
the k-move-neighborhood of the initial cluster graph.

As an intermediate result, we also obtain an algorithm that solves Cluster Deletion in
cvdcvd ·nO(1) time.

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis; Theory of
computation → Parameterized complexity and exact algorithms

Keywords and phrases parameterized local search, permissive local search, FPT, W[1]-hardness

Digital Object Identifier 10.4230/LIPIcs.IPEC.2023.20

Funding Jaroslav Garvardt: Partially supported by the Carl Zeiss Foundation within the project
“Interactive Inference”.
Nils Morawietz: Partially supported by the DFG, project OPERAH, KO 3669/5-1.

1 Introduction

Graph-based data clustering is a fundamental task with numerous applications [40]. Within
this broad setting, we focus on the approach of modfying an input graph into a cluster graph
(that is, a disjoint union of cliques) with as few edge modifications as possible. Herein, edges
may be deleted or inserted, leading to the well-known Cluster Editing or Correlation

© Jaroslav Garvardt, Nils Morawietz, André Nichterlein, and Mathias Weller;
licensed under Creative Commons License CC-BY 4.0

18th International Symposium on Parameterized and Exact Computation (IPEC 2023).
Editors: Neeldhara Misra and Magnus Wahlström; Article No. 20; pp. 20:1–20:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jaroslav.garvardt@uni-jena.de
https://orcid.org/0000-0002-8762-8567
mailto:nils.morawietz@uni-jena.de
https://orcid.org/0000-0002-7283-4982
mailto:andre.nichterlein@tu-berlin.de
https://orcid.org/0000-0001-7451-9401
mailto:mathias.weller@tu-berlin.de
https://orcid.org/0000-0002-9653-3690
https://doi.org/10.4230/LIPIcs.IPEC.2023.20
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

20:2 Graph Clustering Problems Under the Lens of Parameterized Local Search

Clustering [2, 4, 41] problem. If only edge deletions are allowed, then the problem is called
Cluster Deletion [41]. One important advantage of the graph-modification approach is
that the number of clusters is not part of the input but is determined implicitly.

Cluster Deletion and, in particular, Cluster Editing are highly relevant in practice,
with application areas ranging from bioinformatics [4] to data mining [2] and psychology [46].
Unfortunately, it is NP-hard to decide whether a given graph is at most a given number
of modifications away from being a cluster graph [41]. Therefore, efforts have been made
to circumvent this hardness. One particularly successful approach are parameterized algo-
rithms [8, 13, 18, 23, 26, 37]. Given the amount of research and the practical relevance, it is
no surprise that Cluster Editing was selected as the problem for the sixth installment
of the parameterized implementation challenge PACE 2021 [32]. The results revealed the
strength of local search for Cluster Editing: The top ten submissions in the heuristic
track all involve local search. Moreover, the top three submissions always returned a solution
less than 1.001 times larger than the best known solution, that is, the relative error is
below 10−3. This is in stark contrast to the best known polynomial-time approximation
having an approximation factor of 2.06 [12], thus having a relative error that is three orders
of magnitude larger!

In this work we complement the results of the PACE 2021 heuristic track with a theoretical
study of the local search problems associated with Cluster Editing and Cluster Dele-
tion. More precisely, we study the following question: Can we improve a given clustering1

of the input graph G by “moving” at most k vertices to different clusters? Many local search
algorithms submitted to PACE 2021 try to move vertices between clusters to improve their
solution [3, 7, 22, 32, 42]. For Cluster Editing we are free to move any vertex in any
cluster (inserting missing edges within a cluster and deleting edges between clusters) while,
for Cluster Deletion, we have to ensure that there are no missing edges within any cluster
we create. The respective local search versions of the problems are called LS-Cluster
Editing and LS-Cluster Deletion (see Section 2 for precise problem definitions).

Related Work. In the more general setting, our work fits into the theme of parameterized
local search. Unfortunately, most parameterized local search problems turn out to be W[1]-
hard with respect to their local search radius k [9, 15, 17, 21, 27, 28, 33, 39, 43]. Consequently,
one often tries to combine k with some structural parameter ℓ in the hope of obtaining an
FPT algorithm. Experimental evaluation showed that such algorithms often achieve very
good solutions quickly [19, 20, 25, 29, 31].

Dörnfelder et al. [15] already proved the W[1]-hardness of a local search version of
Cluster Editing with a different local neighborhood: they search for a better solution
by modifying at most k edges in the given solution. Recently, Luo et al. [38] considered the
closely related Dynamic Cluster Editing problem, in which a given clustering C for a
graph G has to be adapted while the graph G changes dynamically, keeping the modification
distance between them low. In this setting, the main question is whether minor changes
to C are sufficient to produce a good clustering for the (slightly) changed new graph. Since,
in this setting, the old graph G is actually irrelevant for the computational problem, there
are only minor technical differences to LS-Cluster Editing. Luo et al. [38] measure the
distance to C by the number of vertices moving to a different cluster (they call this “matching
distance”) – the same measure we use. They analyzed the parameterized complexity of

1 A clustering can be viewed as an equivalence relation (“which vertices will end up in the same cluster?”)
or, equivalently, a partition of the vertex set of G.

J. Garvardt, N. Morawietz, A. Nichterlein, and M. Weller 20:3

Dynamic Cluster Editing with respect to the solution size ℓ (number of edges to modify
in G) and the number k of changes allowed to be done to the given solution. They obtained
W[1]-hardness for each of the parameters k and ℓ individually and fixed-parameter tractability
with respect to the combined parameter k + ℓ.

Besides the work on Dynamic Cluster Editing, there are numerous works on Cluster
Editing, including search-tree based algorithms [8, 23], kernelizations [10, 13, 18, 26], and
above lower-bound parameterizations [6, 37]. For Cluster Deletion, there are search-tree
based algorithms [30, 45] and problem kernels [10, 11].

Our Results. We consider the number k of vertices allowed to be moved to different clusters,
since this number can be expected to be small (mostly one-digit values in PACE 2021 local
search submissions). We show that LS-Cluster Deletion and LS-Cluster Editing are
– like many other local search problems – W[1]-hard with respect to the local search radius k,
so we try to combine k with different structural parameters. If a parameter combination k + ℓ

allows for fixed-parameter tractability, then we aim for running times of the form ℓO(k) · nO(1)

as advocated by Komusiewicz and Morawietz [34]. The motivation is that k is expected to
be much smaller than even ℓ which, in turn, is hopefully considerably smaller than n. Thus,
the resulting algorithms are expected to be very efficient in practice, which is particularly
important since local search subroutines are called excessively in the solvers (see for example
the PACE 2021 solvers [32]).

We combine k with the maximum degree ∆, the maximum size of any clique in the
given solution, or the cluster vertex deletion number cvd, that is, the number of vertices to
remove to obtain a cluster graph. In Section 3, we present algorithms with running times of
the form (ℓ · k)O(k)nO(1) for ℓ = ∆ (see Theorem 3.3) and ℓ = cvd (see Corollary 3.8 and
Theorem 3.9). As an intermediate result, we obtain an algorithm solving Cluster Deletion
in cvdcvd ·nO(1) time (see Theorem 3.6). We complement the algorithms for LS-Cluster
Deletion and LS-Cluster Editing with lower bounds in Section 4. In particular, we show
that LS-Cluster Editing is W[1]-hard with respect to the sum of k, the maximum cluster
size, and the degeneracy of the input graph G (see Theorem 4.2) and that LS-Cluster
Editing is W[1]-hard with respect to k in the restricted case that the given clustering
consists of only two clusters (see Theorem 4.5). LS-Cluster Deletion is also W[1]-hard
with respect to the sum of k and the maximum cluster size (see Theorem 4.6). Moreover,
the employed reductions also show that neither LS-Cluster Editing nor LS-Cluster
Deletion can be solved in f(k) · no(k) time unless the ETH fails. This shows that in the
above mentioned algorithms the O(k) in the exponent cannot be replaced by o(k).

Due to space restriction, proofs of statements marked with (⋆) are deferred to a full
version.

2 Preliminaries

For details about relevant definitions of parameterized complexity such as fixed-parameter
tractability, W[1]-hardness, parameterized reductions, kernelization, and ETH, we refer to
the standard monographs [14, 16].

Let X and Y be sets. We denote by A ⊕ B := (A \ B) ∪ (B \ A) the symmetric difference
between A and B. A partition P of X is a collection of non-empty and pairwise disjoint
subsets of X such that ∪P ∈PP = X. Moreover, for an integer k, we denote by

(
X
k

)
the

collection of all size-k subsets of X. Let G = (V, E) be a graph. For a vertex set S ⊆ V , we
denote by EG(S) :=

(
S
2
)

∩ E the edges of G between the vertices of S. If G is clear from the

IPEC 2023

20:4 Graph Clustering Problems Under the Lens of Parameterized Local Search

context, we may omit the subscript. A partition C of V is called a clustering of G. Each
vertex set C of C is called a cluster. For a clustering C, we denote by E(C) :=

⋃
C∈C

(
C
2
)

the
edges inside the clusters of C.

We call a function χ : V → N a coloring of V . We say that color i ∈ N is used by χ if there
is at least one vertex v ∈ V with χ(v) = i. For a coloring χ, let Cχ denote the clustering of G

where for each color i used by χ, χ−1(i) = {v′ ∈ V | χ(v′) = i} is a cluster of Cχ. We call χ

a cluster-coloring of Cχ and we call Cχ the clustering of χ. Note that each clustering has
infinitely many cluster-colorings and that all these cluster-colorings are identical with respect
to isomorphism. Here, two colorings χ and χ′ are isomorphic if there is a bijection f : N → N
such that χ = f ◦ χ′.

Let χ and χ′ be colorings of V . We denote by Move(χ, χ′) := {v ∈ V | χ(v) ̸= χ′(v)}
the vertices that receive different colors under χ and χ′. Moreover, we set move(χ, χ′) :=
|Move(χ, χ′)|. Two colorings χ and χ′ are k-move-neighbors if move(χ, χ′) ≤ k. Analogously,
two clusterings C and C′ are k-move-neighbors if there is a cluster-coloring χ of C and a cluster-
coloring χ′ of C′ such that χ and χ′ are k-move-neighbors. We also denote by move(C, C′)
the smallest integer k such that C and C′ are k-move-neighbors. Note that move(C, C′) can
be computed in polynomial time [38]. For a clustering C we define cost(C) := |E(C) ⊕ E|. A
clustering C′ is improving over a clustering C, if cost(C′) < cost(C).

For a function f : A → B and C ⊆ A we denote by f |C the function f restricted to C.

▶ Observation 2.1. Let G be a graph and let C and C′ be clusterings of G with move(C, C′) ≤ k.
Then, |C ∩ C′| ≥ |C| − 2k.

In this work, we consider the parameterized complexity of the following problems.

LS-Cluster Deletion
Input: An undirected graph G = (V, E), an integer k and a clustering C of G

with E(C) ⊆ E.
Question: Is there an improving k-move-neighbor C′ of C for G with E(C′) ⊆ E?

LS-Cluster Editing
Input: An undirected graph G = (V, E), an integer k and a clustering C of G.
Question: Is there an improving k-move-neighbor C′ of C for G?

Further, we also analyze the permissive version of both problems, that is, the problem,
where we want to find any better solution or correctly output that the given solution has no
improving k-move-neighbor. Thus, the permissive problem variants allow to return better
clusterings even if these are not k-move-neighbors of C.

3 Algorithms for Permissive Problem variants

In this section, we present our algorithmic results. We start with the parameterization
maximum degree ∆ and k. A first observation allows us to assume that any given clustering
in our instance of LS-Cluster Editing consists exclusively of clusters that have diameter
at most two in the input graph. Note that for LS-Cluster Deletion, the input clusters in
the given clustering must all have diameter one, that is, they are cliques in the input graph.

▶ Observation 3.1. Let G be a graph and let C be a clustering of G. If there is a cluster C ∈ C
that has diameter at least three in G, then there is an improving 1-move-neighbor C′ of C.

J. Garvardt, N. Morawietz, A. Nichterlein, and M. Weller 20:5

Proof. Let u, v ∈ C be two vertices of distance at least three in G. Thus, we have N(u) ∩
N(v) = ∅. Assume without loss of generality that |N(v) ∩ C| ≤ |N(u) ∩ C|.

We show that C′ := (C \ {C}) ∪ {C \ {v}, {v}} is an improving 1-move-neighbor of C.
Clearly, C′ is a 1-move-neighbor of C as only v moves to a previously empty cluster. Moreover,
this move costs |N(v) ∩ C| edge deletions but saves at least |N(u) ∩ C| + 1 many edge
insertions. Since |N(v) ∩ C| ≤ |N(u) ∩ C|, it follows that C′ is improving over C. ◀

With the knowledge that the given clusters are connected, it is not too hard to see that
we can restrict ourselves to looking for solutions where the vertices that change clusters are
not too far apart from each other; otherwise we can simply ignore parts of the changes and
obtain a better clustering by moving even fewer vertices. The formal statement is as follows:

▶ Lemma 3.2 (⋆). Let G be a graph and C a clustering and C′ an improving clustering
for C. Let C1, . . . , Cq be the clusters in C that change in C′ (that is, {C1, . . . , Cq} :=
C \ C′). If G[C1 ∪ . . . ∪ Cq] is not connected, then there is an improving clustering C∗ of C
with move(C, C∗) < move(C, C′). Moreover, if E(C′) ⊆ E, then E(C∗) ⊆ E.

With Observation 3.1 and Lemma 3.2 we can show that checking for solutions for LS-
Cluster Editing and LS-Cluster Deletion boils down to finding subgraphs of bounded
size in graphs of bounded degrees for which we can apply an algorithm of Komusiewicz and
Sommer [35]. Overall this results in the following statement.

▶ Theorem 3.3 (⋆). LS-Cluster Editing and LS-Cluster Deletion can be solved in
∆8k(6ek)2k+1nO(1) time.

We remark that an algorithm solving LS-Cluster Editing or LS-Cluster Deletion
in f(∆) ·nO(1) time is unlikely: Setting k := n and applying this algorithm repeatedly until no
improvement is found would solve Cluster Editing or Cluster Deletion in f(∆) · nO(1)

time; this is unlikely as both problems are NP-hard for constant maximum degree [36].

Parameterization by cluster vertex deletion number and k. In the remainder of the
section we provide two algorithms exploiting small modulators to cluster graphs – one for
LS-Cluster Deletion in Section 3.1 and one for LS-Cluster Editing in Section 3.2.
For both of our algorithms, we use the following notation. We say that a vertex set M ⊆ V is
a (cluster) modulator of G if G[V \M] is a cluster graph. Let B be the connected components
of G[V \ M]. We call each clique B ∈ B a bag. We denote by cvd(G) the cluster vertex
deletion number, that is, the size of a smallest cluster modulator of G. If the graph G is
clear from the context, we may simply write cvd.

3.1 An Algorithm for LS-Cluster Deletion
Let G = (V, E) be a graph and let C be a clustering of G. Moreover, let S ⊆ V and let CS

be a clustering of G[S]. We say that C extends CS if for each cluster C ∈ CS there is a
cluster C ′ ∈ C with C ′ ∩ S = C.

▶ Lemma 3.4. Let G = (V, E) be a graph and let M be a cluster modulator of G. Moreover,
let CM be a given clustering of G[M] with E(CM) ⊆ E. In 3|CM | · nO(1) time, one can find a
best clustering C of G among all clusterings C′ of G with E(C′) ⊆ E that extend CM .

IPEC 2023

20:6 Graph Clustering Problems Under the Lens of Parameterized Local Search

Proof. Note that for each clustering C of G that extends CM , the edges between vertices
of M in both E(C) and E(CM) are equal. Consequently, the task can also be reformulated
as follows: find a clustering C∗ of G that maximizes the number of edges having at least
one endpoint in V \ M among all clusterings C of G with E(C) ⊆ E that extend CM . In the
following, we describe a dynamic program solving this reformulated task.

Fix an arbitrary ordering of the bags and let Bi denote the ith bag of B according to
this ordering. The dynamic programming table T has entries of type T [X, i] with X ⊆ CM

and i ∈ [0, |B|]. For X ⊆ CM and i ∈ [0, |B|], let VX denote the union of all clusters of X and
let V i

X denote the union of VX and the first i bags. The entry T [X, i] stores the maximal
number of edges having at least one endpoint in V i

X \ M of any clustering Ci
X of G[V i

X]
with E(C) ⊆ E that extends X. Intuitively, this entry stores the best way to distribute the
vertices of the first i bags among the clusters of X.

To compute an entry T [X, i], we iterate over all subsets X ′ of X and check for the best
way to distribute the vertices of the first i − 1 bags among the clusters of X ′ and the best
way to distribute the vertices of the ith bag among the clusters of X \ X ′.

Formally, for each X ⊆ CM , we set T [X, 0] := 0 and for each i ∈ [1, |B|], we set

T [X, i] := max
X′⊆X

T [X ′, i − 1] + gainX\X′

i .

Here, gainX\X′

i is the number of edges having at least one endpoint in bag Bi of the best
way to distribute the vertices of Bi among the clusters of X \ X ′. This recurrence is correct
because no cluster C in a clustering C of G can contain vertices of two distinct bags without
violating E(C) ⊆ E.

In the following, we describe how to compute gainY
i for each i ∈ [1, |B|] and each Y ⊆ CM .

▷ Claim 3.5. In 3|CM | · nO(1) time, the values gainY
i can be computed for all i ∈ [1, |B|] and

all Y ⊆ CM .

Proof. The computation of this value relies on the following observation: Let C be a best
clustering of G[VY ∪ Bi] with E(C) ⊆ E that extends Y . Moreover, let C be a largest cluster
of C. Then C contains all vertices of Bi that are adjacent to all vertices of C ∩ M . This is
true, since if there would be a cluster C ′ in C containing a vertex v of {v ∈ Bi | C ⊆ N(v)},
then C′ := (C \ {C, C ′}) ∪ {C ∪ {v}, C ′ \ {v}} is a clustering with E(C′) ⊆ E that improves
over C. The properties of C′ hold since C is a largest cluster of C and Bi is a clique in G.

Hence, to solve this intermediate task, we can branch which cluster C of Y ∪ {∅} will
be extended to be the largest cluster in C, add all vertices of Bi to C that may fit into this
cluster and solve the task recursively.

This can also be done by a dynamic program. We introduce the dynamic programming
table Di with entries of type Di[Y, Z] with Y ⊆ CM and Z ⊆ Y .

For each set Z ⊆ Y , we let RemainZ
Y := Bi \

(⋃
C∈Y \Z{v ∈ Bi | C ⊆ N(v)}

)
denote the

set of vertices of Bi that do not fit in any cluster of Y \ Z. The entry Di[Y, Z] stores the
maximal number of edges having at least one endpoint in RemainZ

Y of any clustering Ci
Z

of G[RemainZ
Y ∪

⋃
C∈Y C] with E(C) ⊆ E that extend Z.

For each Y ⊆ CM , we set Di[Y, ∅] :=
(|Remain∅

Y |
2

)
and for each non-empty Z ⊆ Y , we set

Di[Y, Z] := max
((

|RemainZ
Y |

2

)
, max

C∈Z

(
|FitC |

2

)
+ |FitC | · |C| + Di[Y, Z \ {C}]

)
,

where FitC := {v ∈ RemainZ
Y | C ⊆ N(v)} denotes the set of vertices of RemainZ

Y that fit
into the cluster C.

J. Garvardt, N. Morawietz, A. Nichterlein, and M. Weller 20:7

This recurrence is correct by the above observation: in each optimal clustering Ci
Z

of G[RemainZ
Y ∪

⋃
C∈Y C] with E(C) ⊆ E that extend Z, there is a largest cluster C ′ ∈ Ci

Z

that contains all vertices of FitC′∩M .
Finally, for each Y ⊆ CM , we set gainY

i := Di[Y, Y]. Since for each i ∈ [1, |B|], the
table Di contains 3|CM | entries and each such entry can be computed in nO(1) time, the
values gainY

i can be computed for all i ∈ [1, |B|] and all Y ⊆ CM in the stated running time.
Moreover, note that a corresponding clustering can be computed via traceback. ◁

Let C∗ be any best clustering of G among all clusterings C of G with E(C) ⊆ E that
extend CM . Then, the number of edges of E(C∗) having at least one endpoint in any bag is
stored in T [CM , |B|]. Moreover, a corresponding clustering can be found via traceback.

Since for each i ∈ [0, |B|] and each X ⊆ CM , the table entry T [X, i] can be computed in
2|X| · nO(1) time and there are 2|CM | choices for X, each table entry of T can be computed in
time

∑|CM |
i=1

(|CM |
i

)
· 2i · nO(1) ⊆ 3|CM | · nO(1). ◀

Note that this implies the following FPT-algorithm for Cluster Deletion when
parameterized by cvd: First, compute a minimum cluster modulator M of G in 1.811cvd ·
nO(1) time [44]. Second, iterate over all possible clusterings of G[M] and apply the algorithm
behind Lemma 3.4. This implies a running time of 1.811cvd · Bcvd · nO(1), where Bcvd is
the cvd-th Bell number which denotes the number of partitions of a set of size cvd. Since for
each n ∈ N, Bn < (n

ln(n+1))n [5], this implies the following.

▶ Theorem 3.6. Cluster Deletion can be solved in cvdcvd ·nO(1) time.

Next, we show how we can use Lemma 3.4 to obtain a permissive algorithm for LS-
Cluster Deletion when parameterized by cvd and k.

▶ Theorem 3.7. Let G be a graph and let M be a given cluster modulator of G. Moreover,
let C be a clustering of G with E(C) ⊆ E and let k ∈ N. In |M |2k ·

(|M |
k

)
· kk · 34k · nO(1) time,

one can find a clustering C′ of G with E(C′) ⊆ E that is at least as good as a best clustering C∗

of G with E(C∗) ⊆ E and move(C, C∗) ≤ k.

Proof. Let C∗ be a clustering of G that maximizes |E(C∗)| among all clusterings C′′ of G

with E(C′′) ⊆ E and move(C, C′′) ≤ k. Moreover, let M := {C ∈ C | C ∩ M ≠ ∅} and
M∗ := {C ∈ C∗ | C ∩ M ̸= ∅} denote the sets of clusters intersecting M , of C and C∗,
respectively.

Let CM := {C ∩ M | C ∈ M} denote the clusters of M restricted to the vertices of M .
Similarly, let C∗

M := {C ∩M | C ∈ M∗}. Note that move(C, C∗) ≤ k implies move(CM , C∗
M) ≤

k. Hence, to find a clustering C′ of G that is at least as good as C∗, it suffices to enumerate
all clusterings C′

M of G[M] with move(CM , C′
M) ≤ k (which includes C∗

M) and to compute, for
each such clustering C′

M , any best clustering for G that extends C′
M . As the latter task can

be done in 3|C′
M | · nO(1) time by Lemma 3.4, it remains to describe how one can enumerate

all such clusterings C′
M of G[M].

This can be done in
(|M |

k

)
·(|M|+k)k ·nO(1) time by iterating over all possible subsets M ′ ⊆

M of size k and iterating over all possible ways to move these k vertices into any of the
clusters of M (including the clusters where these vertices came from) or opening a new
cluster.

Hence, this algorithm runs in
(|M |

k

)
· (|M| + k)k · 3|M|+k · nO(1) time. Note that this is not

the desired running time since |M| occurs in the exponent of the running time and might be
much larger than k.

IPEC 2023

20:8 Graph Clustering Problems Under the Lens of Parameterized Local Search

To still obtain the desired running time, we perform some initial branching if |M| > 2k.
The idea behind this initial branching relies on Observation 2.1. Since at most k vertices
were moved to obtain M∗ from M, Observation 2.1 implies |M ∩ M∗| ≥ |M| − 2k. In other
words, there is a subset M′ ⊆ M of size at most 2k such that M \ M′ ⊆ M ∩ M∗. This
implies that all edge modifications having at least one endpoint in any cluster of M \ M′

are identical in both E(C) and E(C∗). Hence, by applying for each subset M′ ⊆ M of size
at most 2k the above described algorithm on the graph G[V \

(
∪C∈M\M′C

)
], we find a

clustering C′ with E(C′) ⊆ E which is at least as good as C∗. This initial branching can be
done in |M|2k · nO(1) ⊆ |M |2k · nO(1) time.

Since for each such branching-instance, there are at most 2k clusters containing vertices
of M , the whole running time evaluates to |M |2k ·

(|M |
k

)
· (3k)k · 33k · nO(1) = |M |2k ·

(|M |
k

)
·

kk · 34k · nO(1) time. ◀

Since a cluster modulator can be 2-approximated in polynomial time [1], Theorem 3.7
implies the following:

▶ Corollary 3.8. The permissive version of LS-Cluster Deletion can be solved in (kk +
2O(k) · cvd3k) · nO(1) time.

Proof. Let I := (G = (V, E), k, C) be an instance of LS-Cluster Deletion. First, check in
1.811k ·nO(1) time, whether G has a cluster modulator of size at most k [44]. If this is the case,
one can find an optimal clustering C′ for G with E(C′) ⊆ E in time cvdcvd ·nO(1) ⊆ kk · nO(1)

due to Theorem 3.6. Otherwise, k < cvd. In this case, one can 2-approximate a cluster
modulator M in polynomial time [1] and find a clustering C′ of G with E(C′) ⊆ E that
is at least as good as a best clustering C∗ of G with E(C∗) ⊆ E and move(C, C∗) ≤ k

in time |M |2k ·
(|M |

k

)
· kk · 34k · nO(1) due to Theorem 3.7. Since k < cvd ≤ |M |, we get

that
(|M |

k

)
· kk ≤ |M |k · kk

k! ≤ |M |k · 2O(k). Hence, the running time of the case k < cvd
evaluates to 2O(k) · |M |3k · nO(1) ⊆ 2O(k) · (2 · cvd)3k · nO(1) = 2O(k) · cvd3k ·nO(1) time. In
both cases, the running time is upper-bounded by (kk + 2O(k) · cvd3k) · nO(1) time. ◀

3.2 An Algorithm for LS-Cluster Editing
In this subsection, we present a permissive algorithm for LS-Cluster Editing with a
running time similar to the one for LS-Cluster Deletion.

▶ Theorem 3.9. Let G = (V, E) be a graph, let C be a clustering of G, and let k ∈ N. In
2O(k) · kk · cvd3k ·nO(1) time, one can find a clustering that improves over C or correctly
output that there is no clustering C′ of G with move(C, C′) ≤ k that improves over C.

To give a better intuition for the following algorithm, we switch to the interpretation
of LS-Cluster Editing where the initial solution is a cluster coloring χC of C. That
is, if the given coloring χC can be improved within the k-move-neighborhood, then we
need to find any coloring χ∗ improving over χC. This coloring χ∗ is not required to be in
the k-move-neighborhood of χC .

Let I := (G = (V, E), k, χC) be an instance of LS-Cluster Editing, let M be a cluster
modulator of G. Let α ∈ N be a color used by χC. We say that α is a modulator color
if χ−1

C (α) ∩ M ̸= ∅. Otherwise, we say that α is a bag color. In the remainder of this
section, we denote by colMod and colBag the set of modulator colors and bag colors of χC,
respectively. Note that these sets of colors are defined with respect to the initial coloring χC
of the LS-Cluster Editing-instance I. Recall that each bag B ∈ B is a clique in G and a
connected component of G[V \ M]. Fix an arbitrary ordering of the bags and let Bi denote
the ith bag of B according to this ordering.

J. Garvardt, N. Morawietz, A. Nichterlein, and M. Weller 20:9

We first show that we can improve the initial coloring in polynomial time unless it has
some properties that we will exploit in the following.

▶ Observation 3.10. If there is a bag color α such that vertices of two distinct bags receive
color α under χC, then one can find a coloring χ′ of V in polynomial time that improves
over χC.

▶ Observation 3.11. If there is a bag B ∈ B such that two vertices of B receive distinct
bag colors under χC, then one can find a coloring χ′ of V in polynomial time that improves
over χC.

Hence, we assume in the following, that for each bag color α ∈ colBag, χ−1
C (α) contains

only vertices of a single bag and that for each bag Bi ∈ B, there is at most one bag
color αi ∈ colBag with χ−1

C (αi) ⊆ Bi.
Moreover, we assume in the following that colMod has size O(k). In the final algorithm

we use an initial branching – similar to the one used in the algorithm behind Theorem 3.7 –
to ensure that this assumption is fulfilled.

Let χ′ be a coloring of V and let χint be the coloring that agrees with χC on all vertices
of V \ M and that agrees with χ′ on all vertices of M . We call χint the intermediate coloring
for χ′. The idea behind this definition is the following.

▶ Observation 3.12. Let χ′ be a coloring of V . Moreover, let χint be the intermediate
coloring for χ′. It holds that move(χC , χint) + move(χint, χ′) = move(χC , χ′).

Suppose that there is an improving k-move-neighbor χ′ of χC . Then, to find a coloring of V

that improves over χC , it is sufficient to iterate over all colorings χint with move(χC , χint) ≤ k

that agree with χC on all vertices of V \ M , and to check whether there is a coloring χ′

that improves over χC with move(χint, χ′) ≤ k such that χint and χ′ agree on all vertices
of M , that is, where χint is the intermediate coloring for χ′. Unfortunately, such an approach
exceeds the desired running time for our algorithm since there are nO(k) possibilities for the
colorings χint due to the fact that there may be up to Θ(n) many bag colors and each vertex
of M may receive any color. To obtain the desired running time, we instead only iterate over
“template colorings”. Here, a coloring χtemp of V is a template coloring if

move(χC , χtemp) ≤ k,
χtemp agrees with χC on all vertices of V \ M , and
no vertex of M receives a color of colBag under χtemp.

For a template coloring χtemp, let colMove denote the colors of N \ (colMod ∪ colBag) that are
used by χtemp. We call the colors of colMove the moving colors of χtemp. Note that only
vertices of M may receive a moving color under χtemp and that there are at most k moving
colors.

Figure 1 gives an overview over the considered types of colorings and they way we use
them to find a coloring that improves over χC .

The idea behind template colorings is that a template coloring χtemp may represent
intermediate colorings for many colorings χ′ in the following way: For a coloring χ′ of V ,
we say that a template coloring χtemp is quasi-intermediate for χ′ if there is a “template
recolor-function” f : N → N such that f ◦ χtemp is the intermediate coloring for χ′. Herein,
a function f : N → N is a template recolor-function if f preserves identity on all colors
of N \ colMove and where f |colMove

maps each color of colMove to some color of N \ colMod
injectively. Essentially, this means that each of the moving colors of χtemp may be identified
with any bag color. Informally, this is due to the fact that each vertex that receives a moving

IPEC 2023

20:10 Graph Clustering Problems Under the Lens of Parameterized Local Search

χC χtemp χint χ′
vertices of M move template recolor-function vertices of V \ M move

brute-force by Lemma 3.13 dynamic programm behind Lemma 3.14

Figure 1 An overview over the four different kinds of considered colorings. For the initial
coloring χC and an improving coloring χ′ with move(χC, χ′) ≤ k, there is a template coloring χtemp

and an intermediate coloring χint such that there is a template recolor-function between χtemp

and χint. To find a coloring at least as good as χ′, we first brute-force all possible choices of
the template coloring χtemp and afterwards search for the best coloring for which χtemp is quasi-
intermediate. This is done by a dynamic program that simultaneously finds the best template
recolor-function and the best way to distribute the bag vertices by using at most k moves.

color under χtemp already changed its color and we may move all vertices of that moving
color together to any bag color while preserving the move-distance to χC. Note that, for
each coloring χ′ of V with move(χC , χ′) ≤ k, there is a template coloring χtemp which is
quasi-intermediate for χ′. In contrast to intermediate colorings, we can show that we can
enumerate a maximal set X of pairwise non-isomorphic template colorings in the desired
running time.

▶ Lemma 3.13. One can compute a maximal set X of pairwise non-isomorphic template
colorings in time (|colMod| + k)k · |M |k · nO(1).

Proof. Recall that for each template coloring χtemp, move(χC , χtemp) ≤ k. Moreover, by the
definition of a template coloring, Move(χC , χtemp) ⊆ M . Hence, to obtain a maximal set X
of pairwise non-isomorphic template colorings, consider all possible subsets of M of size at
most k and consider all possible ways of assigning colors of colMod ∪ X to these at most k

vertices, where X is an arbitrary set of k colors from N \ (colMod ∪ colBag). Note that this
can be done in the stated running time. ◀

Lemma 3.13 implies that, in order to find a coloring χ∗ of V that improves over χC
(provided that there is such a coloring in the k-move-neighborhood of χC), it suffices to do
the following: For each template coloring χtemp in a maximal set of pairwise non-isomorphic
template colorings, find the best coloring χ′ in the k-move-neighborhood of χC such that χtemp
is quasi-intermediate for χ′.

The latter task can be solved in 2O(|colMod|+k) · nO(1) time.

▶ Lemma 3.14 (⋆). Let χtemp be a template coloring. In 2O(|colMod|+k) · nO(1) time, one can
find a coloring of V that improves over χC or correctly output that the k-move-neighborhood
of χC does not contain a coloring χ′ such that χ′ improves over χC and where χtemp is
quasi-intermediate for χ′.

We now conclude our permissive algorithm for LS-Cluster Editing. As we can switch
between clusterings and cluster colorings in polynomial time, this also proves Theorem 3.9.

▶ Theorem 3.15. Let G = (V, E) be a graph, let χC be a coloring of V , and let k ∈ N. In
2O(k) · kk · cvd3k ·nO(1) time, one can find a coloring χ∗ that improves over χ or correctly
output that there is no coloring in the k-move-neighborhood of χC that improves over χC.

J. Garvardt, N. Morawietz, A. Nichterlein, and M. Weller 20:11

Proof. First, we 2-approximate a cluster modulator M for G in polynomial time [1]. Let B
be the bags of G[V \ M], let colMod and colBag be the modulator colors and bag colors of χC ,
respectively. If the condition of Observation 3.10 or Observation 3.11 applies, then we find a
coloring χ∗ of V that improves over χ in polynomial time. Hence, assume in the following
that this is not the case.

As mentioned at the beginning of this subsection, we perform an initial branching step to
ensure that the coloring χC uses at most 2k modulator colors. Let χ′ be the best coloring in
the k-move-neighborhood of χC . Assume that χ′ improves over χC . Since move(χC , χ′) ≤ k,
Observation 2.1 implies that there is a subset S ⊆ colMod of size at least |colMod|−2k such that
for each modulator color α ∈ S, χ−1

C (α) = χ′−1(α). Hence, to find a coloring that improves
over χC it is sufficient to branch into all subsets S ⊆ colMod of size at least |colMod| − 2k and
ask for a coloring χ̂′ of V̂ := V \ (∪α∈Sχ−1

C (α)) that improves over χ̂ := χC |
V̂

with respect
to the subgraph G[V̂]. Note that this branching takes |colMod|2k · nO(1) ≤ |M |2k · nO(1) time.

Hence, in the following, we assume that colMod has size at most 2k. Next, we iterate over
a maximal set X of pairwise non-isomorphic template colorings and compute for each such
template coloring χtemp a coloring χ∗ which is at least as good as a best coloring χ′′ in the k-
move-neighborhood of χC where χtemp is quasi-intermediate for χ′′. The latter task can be
done in 2O(|colMod|+k) · nO(1) time due to Lemma 3.14 for each template coloring χtemp ∈ X .
Due to Lemma 3.13, X can be computed in (|colMod| + k)k · |M |k · nO(1) time and has
size (|colMod| + k)k · |M |k · nO(1).

This algorithm is correct, since there is a template coloring χ′
temp such that χ′

temp is
quasi-intermediate for χ′. Thus, in this way, we will find a coloring at least as good as χ′.

The whole algorithm runs in |M |2k · (|colMod| + k)k · |M |k · 2O(|colMod|+k) · nO(1) time.
Since we ensured with the initial branching, that colMod has size at most 2k, this results
in a running time of 2O(k) · kk · |M |3k · nO(1) time. Finally, since M is a 2-approximated
cluster modulator, |M | ≤ 2 · cvd(G). Hence, we obtain the stated running time of 2O(k) · kk ·
cvd(G)3k · nO(1) time. ◀

4 Lower Bounds

In this section we present several hardness results for LS-Cluster Deletion and LS-
Cluster Editing. We obtain our hardness results for LS-Cluster Editing by reductions
from restricted instances of Densest-k-Subgraph, which is defined as follows

Densest-k-Subgraph
Input: A graph G = (V, E), integers k and d.
Question: Is there a subset S ⊆ V of size exactly k such that |E(S)| ≥

(
k
2
)

− d?

Hence, we first show that Densest-k-Subgraph provides these hardness results on the
desired restricted instances.

▶ Theorem 4.1 (⋆). Even if d = k−1
2 , Densest-k-Subgraph is W[1]-hard when parame-

terized by both k and the degeneracy of G and cannot be solved in f(k) · no(k) time for any
computable function f , unless the ETH fails. This holds even on instances where |E(S)| <(

k−1
2
)

− k−1
4 for each vertex set S of size k − 1.

Based on these hardness results for Densest-k-Subgraph, we are now able to analyze
the parameterized complexity of LS-Cluster Editing for the parameter combination of k

plus the size of the largest cluster of the initial clustering C.

IPEC 2023

20:12 Graph Clustering Problems Under the Lens of Parameterized Local Search

▶ Theorem 4.2. LS-Cluster Editing is W[1]-hard when parameterized by k + ℓ + degen,
where ℓ := maxC∈C |C| and degen denotes the degeneracy of G. Moreover, unless the ETH
fails, there is no computable function f such that LS-Cluster Editing can be solved
in f(k + ℓ) · no(k+ℓ) time.

Proof. We present a parameterized reduction from Densest-k-Subgraph with the re-
strictions listed in Theorem 4.1. Let I = (G = (V, E), k, d) be an instance of Densest-
k-Subgraph with d = k−1

2 such that |E(S)| <
(

k−1
2
)

− k−1
4 for each vertex set S of

size k − 1. We define an instance I ′ := (G′ := (V ′, E′), k, C) of LS-Cluster Editing
with maxC∈C |C| ∈ O(k) as follows: We initialize G′ as G and add for each vertex v ∈ V a
set Kv of 7k + k−3

2 vertices to G′ such that {v} ∪ Kv is a clique in G′. Additionally, we add
a clique K∗ of size 7k to G′ and add edges to G′, such that each vertex of V is adjacent to
each vertex of K∗. Finally, we set C := {K∗} ∪ {{v} ∪ Kv | v ∈ V }. Note that by definition
of C, each cluster C ∈ C is a clique in G′. The correctness proof is based on the following
claim.

▷ Claim 4.3. Let C′ := {K∗ ∪ S} ∪ {{Kv} | v ∈ S} ∪ {{v} ∪ Kv | v ∈ V \ S} be a clustering
of G′ for some vertex set S ⊆ V . The improvement of C′ over C is 2 · |EG(S)|−

(|S|
2
)

−|S| · k−3
2 .

Proof. We only have to consider the edges incident with at least one vertex of S in E(C)
and E(C′). Let F := E(C) and let F ′ := E(C′). Note that the symmetric difference
between F and F ′ are the edges of F ⊕ F ′ = {{v, x} | v ∈ S, x ∈ Kv ∪ K∗} ∪

(
S
2
)
. More

precisely, F \ F ′ = {{v, x} | v ∈ S, x ∈ Kv} and F ′ \ F = {{v, x} | v ∈ S, x ∈ K∗} ∪
(

S
2
)
. By

construction, all edges of F ⊕F ′ exist in G′, except for the edges of
(

S
2
)
\EG′(S) =

(
S
2
)
\EG(S).

Hence, the improvement of C′ over C is∑
v∈S

(|K∗| − |Kv|) + |EG′ (S)| −
((

|S|
2

)
− |EG′ (S)|

)
= 2 · |EG(S)| −

(
|S|
2

)
− |S| · k − 3

2 . ◁

Next, we show that I is a yes-instance of Densest-k-Subgraph if and only if I ′ is a
yes-instance of LS-Cluster Editing.

(⇒) Let S be a set of size k in G such that |EG(S)| ≥
(

k
2
)

− d. We set C′ := {K∗ ∪ S} ∪
{{Kv} | v ∈ S} ∪ {{v} ∪ Kv | v ∈ V \ S}. Note that move(C, C′) = k. We show that C′

is improving over C. Due to Claim 4.3 and since |EG(S)| ≥
(

k
2
)

− d and d = k−1
2 , the

improvement of C′ over C is at least(
k

2

)
− 2d − k · k − 3

2 =
(

k

2

)
− k + 1 − k · k − 3

2 =
(

k

2

)
− k · k − 1

2 + 1 = 1.

Hence, I ′ is a yes-instance of LS-Cluster Editing.
(⇐) Suppose that I ′ is a yes-instance of LS-Cluster Editing. Let C′ be the best

clustering for G′ with move(C, C′) ≤ k. Since I ′ is a yes-instance of LS-Cluster Editing,
C′ ̸= C. We make some observations about the potential moves between C and C′. The goal
is to show that there is a set S ⊆ V of size at most k such that C′ = {K∗ ∪ S} ∪ {Kv | v ∈
S} ∪ {{v} ∪ Kv | v ∈ V \ S}. To this end, we show some intermediate results.

First, we show that for each vertex v ∈ V there is a cluster C ∈ C′ with Kv ⊆ C. Suppose
that this is not the case. Hence, there is a vertex v ∈ V and at least two clusters C1 and C2
in C′ containing vertices of Kv. Since Kv has size more than k, at least one vertex of Kv

is not moved. Assume without loss of generality that C1 contains this vertex. Hence, each
vertex of C2 ∩ Kv moved to C2. Thus, C2 ∩ Kv contains at most k vertices. Let x be an
arbitrary vertex of C2 ∩ Kv. Since Kv has size more than 4k, C1 contains at least 3k vertices
of Kv and at most k vertices of V ′ \ Kv. By definition of Kv, the closed neighborhood of x is

J. Garvardt, N. Morawietz, A. Nichterlein, and M. Weller 20:13

exactly Kv ∪ {v}. Hence, x has at most k neighbors in C2, at least 3k neighbors in C1 and
at most k non-neighbors in C1. Consequently, not moving x to C2 yields a better clustering.
Since C′ is the best clustering with move(C, C′) ≤ k, this is not possible.

Next, we show that there is a cluster C in C′ with K∗ ⊆ C. Suppose that this is not
the case. Hence, there are at least two clusters C1 and C2 in C′ containing vertices of K∗.
Since K∗ has size more than k, at least one vertex of K∗ is not moved. Assume without loss
of generality that C1 contains this vertex. Hence, each vertex of C2 ∩ K∗ moved to C2. Thus,
C2 ∩ K∗ contains at most k vertices. Let x be an arbitrary vertex of C2 ∩ K∗. Since K∗ has
size more than 4k, C1 contains at least 3k vertices of K∗ and at most k vertices of V ′ \ K∗.
By definition of K∗, the closed neighborhood of x is exactly K∗ ∪ V . Hence, since each
cluster in C contains at most one vertex of V , x has at most k + 1 neighbors in C2, at least 3k

neighbors in C1 and at most k non-neighbors in C1. Consequently, not moving x to C2 yields
a better clustering. Since C′ is the best clustering with move(C, C′) ≤ k, this is not possible.

The above implies that only vertices of V moved to obtain C′ from C.
Next, we show that for each vertex v ∈ V , the cluster C of C′ that contains v either

contains all vertices of K∗ or all vertices of Kv. Suppose that this is not the case and
let v be a vertex of V such that the cluster C ∈ C′ with v ∈ C is not a superset of K∗

and not a superset of Kv. Since v is only adjacent to at most one vertex in each cluster
of C \ {K∗, Kv ∪ {v}}, v has at most k neighbors in C. Let K ′

v be the cluster of C′ containing
all vertices of Kv. Since Kv has size more than 3k, K ′

v contains at most k non-neighbors of v

and at least 3k neighbors of v. Hence, not moving v from K ′
v to C yields a better clustering.

Since C′ is the best clustering with move(C, C′) ≤ k, this is not possible.
Concluding, there is a nonempty vertex set S of size at most k such that C′ = {K∗ ∪

S} ∪ {Kv | v ∈ S} ∪ {{v} ∪ Kv | v ∈ V \ S}. More precisely, the vertices of S are exactly the
vertices that are moved to obtain C′ from C.

It remains to show that S has size k and that EG(S) = EG′(S) contains at least
(

k
2
)

− d

edges. Due to Claim 4.3 and since C′ is improving over C, 2 · |EG(S)| −
(|S|

2
)

− |S| · k−3
2 ≥ 1.

▷ Claim 4.4. S has size k.

Proof. If |S| < k − 1, then 2|EG(S)| ≤ 2 ·
(|S|

2
)

< |S| · k−3
2 +

(|S|
2
)

+ 1. Since 2|EG(S)| ≥
|S| · k−3

2 +
(|S|

2
)

+ 1, we conclude |S| ≥ k − 1.
Assume towards a contradiction that S has size exactly k − 1. By assumption, |EG(S)| <(

k−1
2
)

− k−1
4 = (k − 1) · (k−2

2 − 1
4) = (k − 1) · 2k−5

4 . Hence, (k − 1) · 2k−5
2 > 2 · |ES(G)| ≥

|S| · k−3
2 +

(|S|
2
)

+ 1 = (k − 1) · k−3
2 +

((k−1)
2
)

+ 1 = (k − 1) · 2k−5
2 + 1, a contradiction.

Consequently, S contains exactly k vertices since to obtain C′ from C, each vertex of S

moved and move(C, C′) ≤ k. ◁

It remains to show that |EG(S)| ≥
(

k
2
)
−d. By Claim 4.3, 2|EG(S)| ≥ |S|· k−3

2 +
(|S|

2
)
+1 =

2k2−4k
2 +1 = k2−k−(k−1). Thus |EG(S)| ≥ k2−k

2 − k−1
2 =

(
k
2
)
−d. Hence, I is a yes-instance

of Densest-k-Subgraph.

Parameter bounds. Recall that the size ℓ := maxC∈C |C| of the largest cluster in C is O(k).
Due to Theorem 4.1, Densest-k-Subgraph cannot be solved in f(k) · no(k) time for any

computable function f , unless the ETH fails. This implies that LS-Cluster Deletion
cannot be solved in f(k + ℓ) · |V ′|o(k+ℓ) time for any computable function f , unless the ETH
fails, since |V ′| ∈ nO(1).

Next, we analyze the degeneracy degen′ of G′. Let degen denote the degeneracy of G.
Since each vertex of Kv for some vertex v ∈ V has only neighbors in Kv ∪{v}, each such vertex

IPEC 2023

20:14 Graph Clustering Problems Under the Lens of Parameterized Local Search

has degree O(k) in G′. Furthermore, each vertex of V has only |Kv|+ |K∗| ∈ O(k) additional
neighbors in G′. Hence, the degeneracy of G′ is O(k + degen). Consequently, LS-Cluster
Editing is W[1]-hard when parameterized by k + ℓ + degen′, since due to Theorem 4.1,
Densest-k-Subgraph is W[1]-hard when parameterized by k + degen. ◀

Next, we show that even when the initial clustering consists only of two clusters, LS-
Cluster Editing remains W[1]-hard when parameterized by k.

▶ Theorem 4.5 (⋆). Even when the initial clustering consists of only two clusters, LS-
Cluster Editing is W[1]-hard when parameterized by k and cannot be solved in f(k) ·
no(k) time for any computable function f , unless the ETH fails.

Hence, LS-Cluster Editing is W[1]-hard when parameterized by the arguably most
natural parameter combinations k + maxC∈C |C| and k + |C|.

Finally, we present our hardness results for LS-Cluster Deletion. As we show, these
hardness results also hold for the permissive version of LS-Cluster Deletion.

▶ Theorem 4.6. LS-Cluster Deletion
is W[1]-hard when parameterized by k + ℓ, where ℓ := maxC∈C |C| denotes the size of the
largest cluster in C,
cannot be solved in f(k + ℓ) · no(k+ℓ) time for any computable function f , unless the ETH
fails, and
does not admit a polynomial kernel when parameterized by k+vc, unless NP ⊆ coNP/poly,
where vc denotes the vertex cover number of G.

All of this holds even if there is an optimal clustering C∗ with E(C∗) ⊆ E in the k-move-
neighborhood of C.

Proof. We present a polynomial time reduction from Multicolored Clique, which is W[1]-
hard when parameterized by the size of the sought clique [14].

Multicolored Clique
Input: A graph G = (V, E) and an integer k such that G is k-partite.
Question: Is there a clique of size k in G?

Let I := (G = (V, E), k) be an instance of Multicolored Clique and let Vk be
the largest part of the k-partition (V1, . . . , Vk) of G. We define an instance I ′ := (G′ :=
(V ′, E′), k′, C) of LS-Cluster Deletion as follows: Initialize G′ as a copy of G. Then for
each i ∈ [1, k − 1], do the following:

add a vertex xi to G′ and
for each vertex v ∈ Vi, add a vertex set Kv of size z := 2k to G′ and turn Kv ∪ {v}
and Kv ∪ {xi} into cliques in G′.

Let X := {xi | 1 ≤ i ≤ k − 1}. Finally, we add two additional adjacent vertices a and b to G′

and make X ∪ {a} a clique in G′. This completes the construction of G′. We complete the
construction of I ′ by setting k′ := 2k − 1 and

C := {X ∪ {a}, {b}} ∪
⋃

v∈V \Vk

{Kv ∪ {v}} ∪
⋃

v∈Vk

{{v}}.

Note that by construction E(C) ⊆ E′ and |E(C)| = |V \ Vk| ·
(

z+1
2
)

+
(

k
2
)
.

Next, we show that there is a clique of size k in G if and only if there is a clustering C′

for G′ that improves over C. We further show that each clustering C′ for G′ that improves
over C is a k′-move-neighbor of C.

J. Garvardt, N. Morawietz, A. Nichterlein, and M. Weller 20:15

(⇒) Let S be a clique of size k in G. Since (V1, . . . , Vk) is a k-partition of G, for
each i ∈ [1, k], S contains exactly one vertex of Vi. For each i ∈ [1, k], let vi be that unique
vertex of Vi ∩ S. We set

C′ := {S, {a, b}} ∪
⋃

i∈[1,k−1]

{Kvi
∪ {xi}} ∪

⋃
v∈V \(Vk∪S)

{Kv ∪ {v}} ∪
⋃

v∈Vk\{vk}

{{v}}.

Note that by construction, E(C′) ⊆ E′ and by definition of C′, |E(C′)| =
(

k
2
)

+ |X| ·
(

z+1
2
)

+
|V \ (Vk ∪ S)| ·

(
z+1

2
)

+ 1 = |V \ Vk| ·
(

z+1
2
)

+
(

k
2
)

+ 1 = |E(C)| + 1. Hence, C′ is improving
over C. Moreover, by construction of C′, C′ and C are k′-move-neighbors.

(⇐) Let C′ be a best clustering for G′ with E(C′) ⊆ E′ and suppose that C′ improves
over C. Before we show that there is a clique of size k in G, we prove some properties of the
clustering C′.

First, we show that for each vertex v ∈ V \ Vk, there is a cluster C ′
v in C′ with Kv ⊆ C ′

v.
Suppose that there are at least two clusters C ′

v and C ′′
v in C′ with Kv ∩C ′

v ̸= ∅ and Kv ∩C ′′
v ̸= ∅

and suppose that |C ′
v| ≥ |C ′′

v | . Let v′ be an arbitrary vertex of C ′′
v ∩ Kv. Recall that

by construction of G′, v′ has the same closed neighborhood as any other vertex of Kv.
Since E(C′) ⊆ E′, each vertex of C ′

v is part of the closed neighborhood of v′. Hence, the
clustering C′′ := (C \ {C ′

v, C ′′
v }) ∪ {C ′

v ∪ {v′}, C ′′
v \ {v′}} fulfills E(C′′) ⊆ E′ and improves

over C′. Since C′ is a best clustering for G′ with E(C′) ⊆ E′, no such two clusters exist and
thus for each vertex v ∈ V \ Vk, there is a cluster C ′

v in C′ with Kv ⊆ C ′
v.

Next, we show that for each i ∈ [1, k − 1] and each vertex v ∈ Vi, the cluster C ′
v is

either Kv ∪ {v} or Kv ∪ {xi}. Suppose that this is not the case and let i ∈ [1, k − 1] and let v

be a vertex of Vi such that C ′
v /∈ {Kv ∪ {v}, Kv ∪ {xi}}. Note that this implies that C ′

v = Kv.
Furthermore, let C ′′ be the cluster of C′ that contains v. Since E(C′) ⊆ E′ and v has only
neighbors in V ∪Kv, the cluster C ′′ is a clique in G. Moreover, since G is k-partite, this implies
that C ′′ has size at most k. Hence, the clustering C′′ := (C \ {C ′

v, C ′′}) ∪ {Kv ∪ {v}, C ′′ \ {v}}
fulfills E(C′′) ⊆ E′ and improves over C′. Since C′ is a best clustering for G′ with E(C′) ⊆ E′,
this implies that for each i ∈ [1, k−1] and each vertex v ∈ Vi, the cluster C ′

v is either Kv ∪{v}
or Kv ∪ {xi}.

Note that this implies that for each i ∈ [1, k − 1], there is at most one vertex vi ∈ Vi for
which C ′

vi
̸= Kv ∪ {vi}. Intuitively, if such a vertex vi moves out of its cluster from C, then

the vertex xi has to move into the original cluster of vi.
Let S′ ⊆ V ′ be a minimal set of vertices that have to move to obtain C′ from C. Moreover,

let S := S′ ∩ (V \ Vk). By the above, for each i ∈ [1, k − 1], S contains at most one vertex
of Vi. Recall that each vertex of Vk has neighbors only in V \ Vk and can thus only be in a
cluster of C′ with a (potentially empty) subset of vertices of S. Hence, S′ contains no vertex
of Vk. In the following, we show that there is a vertex vk ∈ Vk such that S ∪ {vk} is a clique
of size k in G.

To this end, we analyze the number of edges in the clusters CS ⊆ C′ that contain vertices
of S ∪ Vk and have size at least two and the number of edges in the clusters CX ⊆ C′ that
have size at least two and contain only vertices of X ∪ {a, b}. By the above, each cluster C

of CS contains only vertices of S ∪ Vk and C contains at most one vertex of Vk, since Vk is
an independent set in G′. Note that this implies that each cluster of CS contains at least
one vertex of S. Furthermore, note that E(C′) =

⋃
v∈V \Vk

(
C′

v
2
)

∪ E(CS) ∪ E(CX). Since for
each vertex v ∈ V \ Vk, C ′

v has size z + 1, |E(C′)| = |V \ Vk| ·
(

z+1
2
)

+ |E(CS)| + |E(CX)|.
Moreover, since C′ is improving over C, |E(C′)| − |E(C)| = |E(CS)| + |E(CX)| −

(
k
2
)

≥ 1. In
the following, we show that |E(CS)| + |E(CX)| ≤

(
k
2
)

+ 1 and that |E(CS)| + |E(CX)| ≤
(

k
2
)

if there is no vertex vk ∈ Vk such that S ∪ {vk} is a clique of size k in G. To this end, we

IPEC 2023

20:16 Graph Clustering Problems Under the Lens of Parameterized Local Search

analyze the size of E(CS) and the size of E(CX) separately.
First, we show that if CS has size at least two, then |E(CS)| <

(|S|+1
2
)
. This follows

inductively by the fact that each cluster of CS has size at least two and contains at most one
vertex of Vk, and for each i ≥ 2 and each j ≥ 2,

(
i
2
)

+
(

j
2
)

<
(

i+j−1
2
)
. Hence, E(CS) has size

at least
(|S|+1

2
)

if and only if there is a vertex vk ∈ Vk such that CS = {S ∪ {vk}}. Moreover,
this implies that |E(CS)| ≤

(|S|+1
2
)
.

Second, we analyze the size of E(CX). Since for each i ∈ [1, k − 1], if there is a
vertex vi ∈ Vi ∩ S, then the vertex xi moves to the cluster containing all vertices of Kvi , that
is, xi is not contained in any cluster of CX . Hence, at most k−1−|S| vertices of X are contained
in clusters of CX . Since b is adjacent only to a, this implies that |E(CX)| ≤

(
k−|S|

2
)

+ 1.
Finally, we show that for some vertex vk ∈ Vk, S ∪ {vk} is a clique of size k in G. Assume

that |S| < k − 1. Hence, by the above |E(CS)| + |E(CX)| ≤
(|S|+1

2
)

+
(

k−|S|
2
)

+ 1 <
(

k
2
)

+ 1
and thus |E(CS)| + |E(CX)| ≤

(
k
2
)
. Since |E(C′)| > |E(C)|, this is not possible.

Consequently, |S| = k−1. Hence, by the above |E(CS)|+|E(CX)| ≤
(|S|+1

2
)
+
(

k−|S|
2
)
+1 =(

k
2
)

+ 1. Hence, |E(C′)| ≤ |E(C)| + 1. Since C′ improves over C, |E(CS)| + |E(CX)| =
(

k
2
)

+ 1.
As shown before, |E(CS)|+ |E(CX)| =

(
k
2
)

+1 only holds if CS consists of a single cluster C ′ :=
S ∪{vk} for some vertex vk ∈ Vk. Hence, there is a clique of size k in G and I is a yes-instance
of Multicolored Clique.

Moreover, note that this implies that C′ is a k′-move-neighbor of C, since only the k − 1
vertices of S, the k − 1 vertices of X, and either a or b changed their cluster.

Parameter bounds. Let ℓ := maxC∈C |C|. Recall that since z = 2k, ℓ = 2k + 1. Since Mul-
ticolored Clique is W[1]-hard when parameterized by k and cannot be solved in
f(k) · no(k) time for any computable function f , unless the ETH fails [14], this implies
that LS-Cluster Deletion is W[1]-hard when parameterized by k′ +ℓ and cannot be solved
in f(k′ + ℓ) · |V ′|o(k′+ℓ) time for any computable function f , unless the ETH fails, since |V ′| ∈
nO(k). Moreover, note that V ′ \ Vk is a vertex cover of G′ of size |V \ Vk| · (2k + 1) + k + 1.
Since Multicolored Clique does not admit a polynomial kernel when parameterized
by k + |V \ Vk|, unless NP ⊆ coNP/poly [24], this implies that LS-Cluster Deletion does
not admit a polynomial kernel when parameterized by k′+vc(G′) unless NP ⊆ coNP/poly. ◀

Note that due to the last restriction, the permissive version of LS-Cluster Deletion
shares the same W[1]-hardness and the same ETH-based lower bound, meaning that also for
permissive LS-Cluster Deletion, the algorithms in Section 3 are essentially optimal.

5 Conclusion

We analyzed the parameterized complexity for LS-Cluster Editing and LS-Cluster
Deletion, leaving some open questions for future work: First, what is the complexity of
LS-Cluster Deletion with respect to the combined parameter number |C| of clusters
and k? Second, can we show lower bounds for the permissive variant of LS-Cluster
Editing? Finally, can some of the algorithmic ideas of our work be used to improve the
local-search based heuristics for Cluster Deletion or Cluster Editing?

References
1 Manuel Aprile, Matthew Drescher, Samuel Fiorini, and Tony Huynh. A tight approximation

algorithm for the cluster vertex deletion problem. Math. Program., 197(2):1069–1091, 2023.
doi:10.1007/s10107-021-01744-w.

https://doi.org/10.1007/s10107-021-01744-w

J. Garvardt, N. Morawietz, A. Nichterlein, and M. Weller 20:17

2 Nikhil Bansal, Avrim Blum, and Shuchi Chawla. Correlation clustering. Machine Learning,
56:89–113, 2004. doi:10.1023/B:MACH.0000033116.57574.95.

3 Valentin Bartier, Gabriel Bathie, Nicolas Bousquet, Marc Heinrich, Théo Pierron, and Ulysse
Prieto. PACE solver description: µsolver - heuristic track. In Proceedings of the 16th
International Symposium on Parameterized and Exact Computation (IPEC 2021), volume
214 of LIPIcs, pages 33:1–33:3. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.
doi:10.4230/LIPIcs.IPEC.2021.33.

4 Amir Ben-Dor, Ron Shamir, and Zohar Yakhini. Clustering gene expression patterns. Journal
of Computational Biology, 6(3-4):281–297, 1999. doi:10.1089/106652799318274.

5 Daniel Berend and Tamir Tassa. Improved bounds on bell numbers and on moments of sums
of random variables. Probability and Mathematical Statistics, 30(2):185–205, 2010.

6 René van Bevern, Vincent Froese, and Christian Komusiewicz. Parameterizing edge modi-
fication problems above lower bounds. Theory of Computing Systems, 62(3):739–770, 2018.
doi:10.1007/s00224-016-9746-5.

7 Thomas Bläsius, Philipp Fischbeck, Lars Gottesbüren, Michael Hamann, Tobias Heuer, Jonas
Spinner, Christopher Weyand, and Marcus Wilhelm. PACE solver description: Kapoce: A
heuristic cluster editing algorithm. In Proceedings of the 16th International Symposium on
Parameterized and Exact Computation (IPEC 2021), volume 214 of LIPIcs, pages 31:1–31:4.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.IPEC.2021.31.

8 Sebastian Böcker. A golden ratio parameterized algorithm for cluster editing. Journal of
Discrete Algorithms, 16:79–89, 2012. doi:10.1016/j.jda.2012.04.005.

9 Édouard Bonnet, Yoichi Iwata, Bart M. P. Jansen, and Lukasz Kowalik. Fine-grained
complexity of k-OPT in bounded-degree graphs for solving TSP. In Proceedings of the 27th
Annual European Symposium on Algorithms (ESA ’19), volume 144 of LIPIcs, pages 23:1–23:14.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019.

10 Yixin Cao and Jianer Chen. Cluster Editing: Kernelization based on edge cuts. Algorithmica,
64(1):152–169, 2012.

11 Yixin Cao and Yuping Ke. Improved Kernels for Edge Modification Problems. In Proceedings
of the 16th International Symposium on Parameterized and Exact Computation (IPEC 2021),
volume 214 of Leibniz International Proceedings in Informatics (LIPIcs), pages 13:1–13:14,
Dagstuhl, Germany, 2021. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/
LIPIcs.IPEC.2021.13.

12 Shuchi Chawla, Konstantin Makarychev, Tselil Schramm, and Grigory Yaroslavtsev. Near opti-
mal LP rounding algorithm for correlation clustering on complete and complete k-partite graphs.
In Proceedings of the 47th Annual ACM Symposium on Theory of Computing (STOC ’15),
pages 219–228. ACM, 2015. doi:10.1145/2746539.2746604.

13 Jianer Chen and Jie Meng. A 2k kernel for the cluster editing problem. Journal of Computer
and System Sciences, 78(1):211–220, 2012.

14 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

15 Martin Dörnfelder, Jiong Guo, Christian Komusiewicz, and Mathias Weller. On the parame-
terized complexity of consensus clustering. Theoretical Computer Science, 542:71–82, 2014.
doi:10.1016/j.tcs.2014.05.002.

16 Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity.
Texts in Computer Science. Springer, 2013.

17 Michael R. Fellows, Fedor V. Fomin, Daniel Lokshtanov, Frances A. Rosamond, Saket Saurabh,
and Yngve Villanger. Local search: Is brute-force avoidable? Journal of Computer and System
Sciences, 78(3):707–719, 2012.

18 Michael R. Fellows, Michael A. Langston, Frances A. Rosamond, and Peter Shaw. Efficient
parameterized preprocessing for Cluster Editing. In Proceedings of the 16th International

IPEC 2023

https://doi.org/10.1023/B:MACH.0000033116.57574.95
https://doi.org/10.4230/LIPIcs.IPEC.2021.33
https://doi.org/10.1089/106652799318274
https://doi.org/10.1007/s00224-016-9746-5
https://doi.org/10.4230/LIPIcs.IPEC.2021.31
https://doi.org/10.1016/j.jda.2012.04.005
https://doi.org/10.4230/LIPIcs.IPEC.2021.13
https://doi.org/10.4230/LIPIcs.IPEC.2021.13
https://doi.org/10.1145/2746539.2746604
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1016/j.tcs.2014.05.002

20:18 Graph Clustering Problems Under the Lens of Parameterized Local Search

Symposium on Fundamentals of Computation Theory (FCT ’07), volume 4639 of LNCS, pages
312–321. Springer, 2007. doi:10.1007/978-3-540-74240-1_27.

19 Jaroslav Garvardt, Niels Grüttemeier, Christian Komusiewicz, and Nils Morawietz. Parame-
terized local search for max c-cut. In Proceedings of the Thirty-Second International Joint
Conference on Artificial Intelligence, IJCAI 2023, 19th-25th August 2023, Macao, SAR, China,
pages 5586–5594. ijcai.org, 2023. doi:10.24963/ijcai.2023/620.

20 Serge Gaspers, Joachim Gudmundsson, Mitchell Jones, Julián Mestre, and Stefan Rüm-
mele. Turbocharging treewidth heuristics. Algorithmica, 81(2):439–475, 2019. doi:
10.1007/s00453-018-0499-1.

21 Serge Gaspers, Eun Jung Kim, Sebastian Ordyniak, Saket Saurabh, and Stefan Szeider. Don’t
be strict in local search! In Proceedings of the Twenty-Sixth AAAI Conference on Artificial
Intelligence (AAAI ’12). AAAI Press, 2012.

22 Martin Josef Geiger. PACE solver description: A simplified threshold accepting approach
for the cluster editing problem. In Proceedings of the 16th International Symposium on
Parameterized and Exact Computation (IPEC 2021), volume 214 of LIPIcs, pages 34:1–34:2.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.IPEC.2021.34.

23 Jens Gramm, Jiong Guo, Falk Hüffner, and Rolf Niedermeier. Graph-modeled data clustering:
Exact algorithms for clique generation. Theory of Computing Systems, 38(4):373–392, 2005.

24 Niels Grüttemeier and Christian Komusiewicz. On the relation of strong triadic closure and
cluster deletion. Algorithmica, 82(4):853–880, 2020. doi:10.1007/s00453-019-00617-1.

25 Niels Grüttemeier, Christian Komusiewicz, and Nils Morawietz. Efficient Bayesian network
structure learning via parameterized local search on topological orderings. In Proceedings of
the Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI ’21), pages 12328–12335.
AAAI Press, 2021. Full version available at https://doi.org/10.48550/arXiv.2204.02902. URL:
https://ojs.aaai.org/index.php/AAAI/article/view/17463.

26 Jiong Guo. A more effective linear kernelization for cluster editing. Theoretical Computer
Science, 410(8-10):718–726, 2009. doi:10.1016/j.tcs.2008.10.021.

27 Jiong Guo, Sepp Hartung, Rolf Niedermeier, and Ondrej Suchý. The parameterized complexity
of local search for TSP, more refined. Algorithmica, 67(1):89–110, 2013.

28 Jiong Guo, Danny Hermelin, and Christian Komusiewicz. Local search for string problems:
Brute-force is essentially optimal. Theoretical Computer Science, 525:30–41, 2014.

29 Sepp Hartung and Rolf Niedermeier. Incremental list coloring of graphs, parameterized by
conservation. Theoretical Computer Science, 494:86–98, 2013.

30 Giuseppe F. Italiano, Athanasios L. Konstantinidis, and Charis Papadopoulos. Structural
parameterization of cluster deletion. In Chun-Cheng Lin, Bertrand M. T. Lin, and Giuseppe
Liotta, editors, Proceedings of the 17th International Conference and Workshops on Algorithms
and Computation (WALCOM 2023), volume 13973 of Lecture Notes in Computer Science,
pages 371–383. Springer, 2023. doi:10.1007/978-3-031-27051-2_31.

31 Maximilian Katzmann and Christian Komusiewicz. Systematic exploration of larger local
search neighborhoods for the minimum vertex cover problem. In Proceedings of the Thirty-First
AAAI Conference on Artificial Intelligence (AAAI ’17), pages 846–852. AAAI Press, 2017.

32 Leon Kellerhals, Tomohiro Koana, André Nichterlein, and Philipp Zschoche. The PACE
2021 parameterized algorithms and computational experiments challenge: Cluster editing. In
Proceedings of the 16th International Symposium on Parameterized and Exact Computation
(IPEC 2021), volume 214 of LIPIcs, pages 26:1–26:18. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2021. doi:10.4230/LIPIcs.IPEC.2021.26.

33 Christian Komusiewicz, Simone Linz, Nils Morawietz, and Jannik Schestag. On the complexity
of parameterized local search for the maximum parsimony problem. In Proceedings of the
34th Annual Symposium on Combinatorial Pattern Matching (CPM 2023), volume 259 of
LIPIcs, pages 18:1–18:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023. doi:
10.4230/LIPIcs.CPM.2023.18.

https://doi.org/10.1007/978-3-540-74240-1_27
https://doi.org/10.24963/ijcai.2023/620
https://doi.org/10.1007/s00453-018-0499-1
https://doi.org/10.1007/s00453-018-0499-1
https://doi.org/10.4230/LIPIcs.IPEC.2021.34
https://doi.org/10.1007/s00453-019-00617-1
https://ojs.aaai.org/index.php/AAAI/article/view/17463
https://doi.org/10.1016/j.tcs.2008.10.021
https://doi.org/10.1007/978-3-031-27051-2_31
https://doi.org/10.4230/LIPIcs.IPEC.2021.26
https://doi.org/10.4230/LIPIcs.CPM.2023.18
https://doi.org/10.4230/LIPIcs.CPM.2023.18

J. Garvardt, N. Morawietz, A. Nichterlein, and M. Weller 20:19

34 Christian Komusiewicz and Nils Morawietz. Parameterized local search for vertex cover: When
only the search radius is crucial. In Proceedings of the 17th International Symposium on
Parameterized and Exact Computation (IPEC 2022), volume 249 of LIPIcs, pages 20:1–20:18.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.IPEC.2022.20.

35 Christian Komusiewicz and Frank Sommer. Enumerating connected induced subgraphs:
Improved delay and experimental comparison. Discrete Applied Mathematics, 303:262–282,
2021.

36 Christian Komusiewicz and Johannes Uhlmann. Cluster editing with locally bounded modifi-
cations. Discrete Applied Mathematics, 160(15):2259–2270, 2012. doi:10.1016/j.dam.2012.
05.019.

37 Shaohua Li, Marcin Pilipczuk, and Manuel Sorge. Cluster editing parameterized above
modification-disjoint P3-packings. In Proceedings of the 38th International Symposium on
Theoretical Aspects of Computer Science (STACS ’21), volume 187 of LIPIcs, pages 49:1–49:16.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.STACS.2021.
49.

38 Junjie Luo, Hendrik Molter, André Nichterlein, and Rolf Niedermeier. Parameterized dynamic
cluster editing. Algorithmica, 83(1):1–44, 2021. doi:10.1007/s00453-020-00746-y.

39 Dániel Marx. Searching the k-change neighborhood for TSP is W[1]-hard. Operations Research
Letters, 36(1):31–36, 2008.

40 Satu Elisa Schaeffer. Graph clustering. Computer Science Review, 1(1):27–64, 2007. doi:
10.1016/j.cosrev.2007.05.001.

41 Ron Shamir, Roded Sharan, and Dekel Tsur. Cluster graph modification problems. Discrete
Applied Mathematics, 144(1-2):173–182, 2004. doi:10.1007/3-540-36379-3_33.

42 Sylwester Swat. PACE solver description: Clues - a heuristic solver for the cluster editing
problem. In Proceedings of the 16th International Symposium on Parameterized and Exact
Computation (IPEC 2021), volume 214 of LIPIcs, pages 32:1–32:3. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.IPEC.2021.32.

43 Stefan Szeider. The parameterized complexity of k-flip local search for SAT and MAX SAT.
Discrete Optimization, 8(1):139–145, 2011.

44 Dekel Tsur. Faster parameterized algorithm for cluster vertex deletion. Theory Comput. Syst.,
65(2):323–343, 2021. doi:10.1007/s00224-020-10005-w.

45 Dekel Tsur. Cluster deletion revisited. Information Processing Letters, 173:106171, 2022.
doi:10.1016/j.ipl.2021.106171.

46 Esther Ulitzsch, Qiwei He, Vincent Ulitzsch, Hendrik Molter, André Nichterlein, Rolf Nie-
dermeier, and Steffi Pohl. Combining clickstream analyses and graph-modeled data clus-
tering for identifying common response processes. Psychometrika, 86(1):190–214, 2021.
doi:10.1007/s11336-020-09743-0.

IPEC 2023

https://doi.org/10.4230/LIPIcs.IPEC.2022.20
https://doi.org/10.1016/j.dam.2012.05.019
https://doi.org/10.1016/j.dam.2012.05.019
https://doi.org/10.4230/LIPIcs.STACS.2021.49
https://doi.org/10.4230/LIPIcs.STACS.2021.49
https://doi.org/10.1007/s00453-020-00746-y
https://doi.org/10.1016/j.cosrev.2007.05.001
https://doi.org/10.1016/j.cosrev.2007.05.001
https://doi.org/10.1007/3-540-36379-3_33
https://doi.org/10.4230/LIPIcs.IPEC.2021.32
https://doi.org/10.1007/s00224-020-10005-w
https://doi.org/10.1016/j.ipl.2021.106171
https://doi.org/10.1007/s11336-020-09743-0

	1 Introduction
	2 Preliminaries
	3 Algorithms for Permissive Problem variants
	3.1 An Algorithm for LS-Cluster Deletion
	3.2 An Algorithm for LS-Cluster Editing

	4 Lower Bounds
	5 Conclusion

