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Abstract
Given a graph G and an integer b, Bandwidth asks whether there exists a bijection π from V (G) to
{1, . . . , |V (G)|} such that max{u,v}∈E(G) |π(u) − π(v)| ≤ b. This is a classical NP-complete problem,
known to remain NP-complete even on very restricted classes of graphs, such as trees of maximum
degree 3 and caterpillars of hair length 3. In the realm of parameterized complexity, these results
imply that the problem remains NP-hard on graphs of bounded pathwidth, while it is additionally
known to be W[1]-hard when parameterized by the treedepth of the input graph. In contrast, the
problem does become FPT when parameterized by the vertex cover number of the input graph. In
this paper, we make progress towards the parameterized (in)tractability of Bandwidth. We first
show that it is FPT when parameterized by the cluster vertex deletion number cvd plus the clique
number ω of the input graph, thus generalizing the previously mentioned result for vertex cover.
On the other hand, we show that Bandwidth is W[1]-hard when parameterized only by cvd. Our
results generalize some of the previous results and narrow some of the complexity gaps.
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21:2 Bandwidth Parameterized by Cluster Vertex Deletion Number

1 Introduction

Given an undirected graph G and an integer b, Bandwidth asks whether there exists a
bijection π : V (G) → {1, . . . , |V (G)|} of the vertices of G (called an ordering) such that
max{u,v}∈E(G)|π(u) − π(v)| ≤ b. The main motivation behind its study dates back to over
half a century: a closely related problem in the field of matrix theory was first studied in
the 1950’s, while in the 1960’s it was formulated as a graph problem, finding applications
in minimizing (average) absolute error in codes, and has been extensively studied ever
since [6, 11, 12, 13, 22, 30].

Bandwidth is long known to be NP-complete [6, 43]; as a matter of fact, it remains
NP-complete even on very restricted classes of graphs, such as trees of maximum degree 3 [27],
caterpillars of hair length 3 [40] and cyclic caterpillars of hair length 1 [41]. Considering
these NP-hardness results, in this paper we focus on the parameterized complexity of
Bandwidth. When parameterized by the natural parameter b, Bandwidth is known to
be in XP [29, 44], whilst it is W[t]-hard for all positive integers t, even when the input
graph is a tree [3, 4]. In fact, Bandwidth cannot be solved in time f(b)no(b) even on trees
of pathwidth at most two, unless the Exponential Time Hypothesis fails [17]. Regarding
structural parameterizations, the previously mentioned results imply that Bandwidth is
para-NP-complete when parameterized by the pathwidth or the treewidth plus the maximum
degree of the input graph; the latter implies NP-completeness also on graphs of constant
tree-cut width [26]. Moreover, it is known to be W[1]-hard parameterized by the treedepth
of the input graph [28]. In contrast, the problem does become fixed-parameter tractable
(FPT) when parameterized by the vertex cover number [20], the neighborhood diversity [1],
or the max leaf number [19] of the input graph.

In the last few years, a plethora of structural parameters have been introduced, in
an attempt to precisely determine the limits of tractability of algorithmic problems that
are FPT by vertex cover, yet become W[1]-hard when parameterized by more general
parameters, such as treewidth or clique-width. Some of the most well-studied such parameters
are treedepth [42], twin cover number [24], cluster vertex deletion number [16], vertex
integrity [28], shrub-depth [25], neighborhood diversity [35], and modular-width [23]. The
tractability of Bandwidth with respect to those parameters has remained largely unexplored,
with the exception of treedepth [28] and neighborhood diversity [1].

Cluster vertex deletion number lies between clique-width and vertex cover number (more
precisely twin cover number), and is defined as the minimum size of a set of vertices whose
removal induces a cluster graph, i.e. all of its components are cliques. It was first considered
as a structural parameter in [16], and has been used to show parameterized (in)tractability
results in multiple occasions ever since [2, 5, 7, 8, 33, 34, 38]. Notice that Bandwidth is
trivial on cluster graphs; it suffices to check that the clique number is at most b + 1, as any
optimal ordering places the vertices of every clique consecutively, for some ordering of the
cliques. Therefore, its tractability when parameterized by the cluster vertex deletion number
of the input graph poses a very natural question.

Our contribution. In the current work, we present both tractability and intractability
results for Bandwidth when cluster vertex deletion number is a parameter of the problem
(see Figure 1 for an overview of our results and the relationships between the structural
parameters mentioned). We first prove that Bandwidth is FPT when parameterized by
cvd + ω, where cvd and ω denote the cluster vertex deletion number and clique number of
the input graph respectively. This generalizes the tractability result for vertex cover number
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vertex cover number [20]

clique-width

twin cover number + ω

twin cover number cluster vertex
deletion number + ω

[Theorem 2]

vertex integrity

treedepth [28]

bandwidth [4]

max leaf number [19]

pathwidth [40]

treewidth

treewidth + ∆ [27]

tree-cut width

cluster vertex
deletion number

[Theorem 13]

shrub-depth

neighborhood
diversity [1]

modular width

Figure 1 Our results and hierarchy of some related structural graph parameters, where ω and ∆
denote the clique number and the maximum degree of the input graph, respectively. Arrows between
parameters indicate generalization relations, that is, for any graph, if the parameter at the tail of an
arrow is a constant then the parameter at the head of the arrow is also a constant. The reverse
does not hold in this figure. The framed green, frameless orange, and double framed red rectangles
indicate fixed-parameter tractable, W[∗]-hard, and NP-complete cases, respectively.

of [20], and follows the same idea of encoding the problem as an integer linear program (ILP)
of a small number of variables. Solving said ILP, one can verify whether there exists any
ordering π of the vertices of G such that a) |π(v) − π(u)| ≤ b for all {u, v} ∈ E(G), and b)
π is “nice”, where an ordering is nice if it has some specific properties. Proving that there
exists a nice ordering π that minimizes max{u,v}∈E(G) |π(v) − π(u)| then yields the stated
result.

A natural question that arises from the previous result is whether it is necessary for both
cvd and ω to be parameters of the problem in order to assure fixed-parameter tractability.
Notice that Bandwidth is NP-complete even when ω ≤ 2, since that is the case for trees.
Therefore, we proceed by studying the problem’s tractability when parameterized only by
cvd. In this setting, we show that Bandwidth is W[1]-hard via a reduction from Unary
Bin Packing, thus positively answering the previous question. Note that the W[1]-hardness
of Bandwidth when parameterized by treedepth is also shown via a reduction from Unary
Bin Packing [28].

Related work. Bandwidth is one of the so-called graph layout problems (see the survey
of [14]). As far as the structural parameterized complexity of such problems is concerned,
Fellows, Lokshtanov, Misra, Rosamond, and Saurabh [20] were the first to prove FPT results
for a multitude of them when parameterized by the vertex cover number of the input graph,
making use of ILP formulations. Since then, not much progress has been made on that front,
with a notable exception being Imbalance, which was shown to be FPT when parameterized
by twin cover number plus ω [39], vertex integrity [28], or tree-cut width [26], while it belongs
to XP when parameterized by twin cover [39]. Minimum Linear Arrangement is known
to be FPT parameterized by max leaf number, or edge clique number of the input graph [18],
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21:4 Bandwidth Parameterized by Cluster Vertex Deletion Number

as well as by the vertex cover number [37]. Lastly, as far as Cutwidth is concerned, a
2O(vc)nO(1) time algorithm was presented in [10], improving over the ILP formulation of [20],
where vc denotes the vertex cover number of the input graph.

Organization. In Section 2 we discuss the general preliminaries, followed by the FPT
algorithm in Section 3 and the hardness result in Section 4. Lastly, in Section 5 we present
the conclusion as well as some directions for future research. Proofs marked with (⋆) are in
the full version of the paper.

2 Preliminaries

Throughout the paper we use standard graph notation [15], and we assume familiarity
with the basic notions of parameterized complexity [9]. We assume that N is the set of
all non-negative integers. All graphs considered are undirected without loops. The clique
number of a graph G, denoted by ω(G), is the size of its largest induced clique. For
x, y ∈ Z, let [x, y] = {z ∈ Z : x ≤ z ≤ y}, while [x] = [1, x]. For Ii = [ai, bi], we say that
intervals I1, . . . , Ik partition interval I = [a, b] if I =

⋃
i∈[k] Ii and Ii ∩ Ij = ∅, for any

1 ≤ i < j ≤ k. Additionally, let Ii < Ij if bi < aj . For a function f : A → B and A′ ⊆ A,
let f(A′) = {f(a) ∈ B : a ∈ A′}. Moreover, let max(f(A′)) = max{f(a) : a ∈ A′} and
min(f(A′)) defined analogously.

Let G be a graph and π : V (G) → [n] an ordering of its vertices. We define the stretch of an
edge e = {u, v} ∈ E(G) with regard to π as stretchπ(e) = |π(u)−π(v)|. We define the stretch
of π to be the maximum stretch of the edges of G, i.e. stretch(π) = maxe∈E(G) stretchπ(e).
The bandwidth of G, denoted bw(G), is the minimum stretch of any vertex ordering π :
V (G) → [n].

▶ Remark 1. Note that the stretch of a vertex ordering is invariant under isomorphism, which
means in particular that stretch(π) = stretch(π ◦ f) for any vertex ordering π : V (G) → [n]
and any automorphism f : V (G) → V (G) of G.

A cluster deletion set of a graph G is a set S ⊆ V (G) such that every component of
G − S is a clique. If S is a cluster deletion set, we call the components of G − S clusters. The
cluster vertex deletion number of a graph G, denoted by cvd(G), is the size of its minimum
cluster deletion set.

In the Unary Bin Packing problem, we are given a set of integers A = {aj : j ∈ [n]}
in unary, as well as k ∈ N, and are asked to determine whether there exists a partition
(S1, . . . , Sk) of A such that

∑
aj∈Si

aj =
∑

j∈[n] aj/k for every i ∈ [k]. Unary Bin Packing
can be solved in time nO(k) by employing dynamic programming, while it is known to be
W[1]-hard parameterized by k [31].

The feasibility variant of integer linear programming (ILP) is to decide, given a set
X of variables and a set C of linear constraints (i.e. inequalities) over the variables in
X with integer coefficients, whether there is an assignment α : X → Z of the variables
satisfying all constraints in C. It is known that the feasibility of an instance of (ILP) can
be tested in O(p2.5p+o(p) · L) time, where p is the number of variables and L is the size of
the input [21, 32, 36]. In other words, computing the feasibility of an ILP formula is FPT
parameterized by the number of variables. Moreover, a solution can be computed in the
same time if it exists.
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3 An FPT-algorithm parameterized by cluster vertex deletion number
plus clique number

In this section, we prove that Bandwidth is FPT when parameterized by the cluster vertex
deletion number plus the clique number of the input graph.

▶ Theorem 2. Bandwidth is fixed parameter tractable when parameterized by cvd + ω,
where cvd, ω denote the cluster vertex deletion number and clique number of the input graph
respectively.

Our proof is a generalization of the FPT result for vertex cover number from [20]. The
general idea for obtaining an ILP encoding of Bandwidth given a vertex cover S is to
augment S by a small number (dependent only on the vertex cover number) of representative
vertices of every neighborhood-type. It can be easily seen that we can modify any ordering
π in such a way that the leftmost and rightmost neighbor of any vertex in S is contained
in this augmented set S′ without increasing the stretch. For any ordering σ of S′ we can
decide whether we can extend σ to an ordering of V (G) of stretch at most b by encoding
how vertices of certain neighborhood-types are distributed into the gaps between the vertices
of S′ into an ILP. By ensuring that we distribute the vertices in such a way that the leftmost
and rightmost neighbor of any vertex in S is contained in S′ we can bound the stretch of
every edge by using one linear constraint for every edge in G[S′].

In our setting we can use the vertex cover approach to bound the stretch of all edges
incident to the deletion set. To gain control over the stretch of edges within clusters, we
show that we can convert any ordering into a nice ordering without increasing the stretch.
Here niceness intuitively means, that we can order the vertices in between any two vertices
of S′ in such a way that vertices of the same type appear consecutively, where the type now
depends on the isomorphism-type of the cluster union the deletion set. This will allow us to
bound the stretch of such edges by a linear constraint as well.

3.1 Types and buckets
Let G be a graph and S a cluster deletion set of G of size k. For any vertex v ∈ V (G − S),
let NS(v) = N(v) ∩ S be its S-neighborhood. Let K ⊆ N2k be the set of non-negative
integer vectors κ with 2k entries for which ∥κ∥1 ≤ ω(G). Here ∥·∥1 denotes the 1-norm,
i.e. the sum of the absolute value of the entries. We assume that the entries of the vectors
in K are indexed by the subsets of S. We say that a cluster C has cluster-type κ ∈ K if
|{v ∈ V (C) : NS(v) = N}| = (κ)N for every N ⊆ S where (κ)N denotes the entry of κ

corresponding to N . We further let #κ denote the number of clusters of cluster-type κ in G.
We say that a set C of clusters is representative if it consists of min{2|S|, #κ} distinct clusters
of type κ for every cluster-type κ. We further say that a set S′ is an extended deletion set if
S′ = S ∪

⋃
C∈C V (C) for a representative set C of clusters.

▶ Lemma 3 (⋆). For every extended deletion set S′ there is an ordering π : V (G) → [n] such
that stretch(π) = bw(G) and for every s ∈ S, the set S′ contains vertices vs

min and vs
max,

where π(vs
min) = min(π(N(s))) and π(vs

max) = max(π(N(s))), i.e. S′ contains the leftmost
and rightmost neighbor of s.

We say that an ordering π : V (G) → [n] is S′-extremal if the second property in Lemma 3
is satisfied for π.

▶ Observation 4. The size of any extended deletion set S′ is at most |S|+2|S|ω(G)·22|S|·ω(G).

IPEC 2023



21:6 Bandwidth Parameterized by Cluster Vertex Deletion Number

Let C be a representative set of clusters, S′ = S ∪
⋃

C∈C V (C) the extended deletion set
containing vertices from C and S and set k′ = |S′|. A bucket distribution of S′ is a partition
B = (B0, . . . , Bk′) of the vertices of G − S′. Fix a bucket distribution B = (B0, . . . , Bk′) of
S′. We call the subsets Bi buckets of B.

Let T ⊆ N2k×(k′+1) be the set of matrices τ with ∥τ∥1 ≤ ω(G). We assume that the rows
of matrices are indexed with subsets of S and the columns with [0, k′]. We say that a cluster
C /∈ C has distribution-type τ ∈ T in B if |{v ∈ V (C) ∩ Bi : NS(v) = N}| = (τ)N,i for every
N ⊆ S and every i ∈ [0, k′]. For every κ ∈ K, let Tκ ⊆ T denote the set of distribution-types
τ such that

∑
i∈[0,k′](τ)N,i = (κ)N for every N ⊆ S, i.e., the set of τ ∈ T such that any

cluster of distribution-type τ has cluster-type κ.

▶ Observation 5. The number of distribution-types is at most ω(G)2|S|·(|S′|+1) for any
extended deletion set S′.

Let σ : S′ → [k′] be an ordering of the vertices of S′. We say that a vertex ordering
π : V (G) → [n] is compatible with σ if for any s1, s2 ∈ S′ it holds that π(s1) < π(s2) if and
only if σ(s1) < σ(s2). We say that a vertex ordering π : V (G) → [n] is compatible with σ and
B if π is compatible with σ and B0 = {v ∈ V (G) : π(v) < π(σ−1(1))}, Bk′ = {v ∈ V (G) :
π(v) > π(σ−1(k′))} and Bi = {v ∈ V (G) : π(σ−1(i)) < π(v) < π(σ−1(i + 1))} for i ∈ [k′ − 1].

3.2 Nice orderings
Let G be a graph and S a cluster deletion set of G. Furthermore, let C be a representative
set of clusters, S′ = S ∪

⋃
C∈C V (C) the extended deletion set containing vertices from C and

S and k′ = |S′|. Additionally, we fix a bucket distribution B = (B0, . . . , Bk′) of S′ and an
ordering σ : S′ → [k′].

To obtain our nice ordering we use a series of exchange arguments that will not increase
the stretch. We call an ordering nice if it has properties (Π1), (Π2) and (Π3). We will first
give some intuition regarding the properties, before defining them formally.

Assume π : V (G) → [n] is an optimal ordering minimizing the number of edges of
maximum stretch. Furthermore, let v ∈ V (C) be a vertex which is contained in an edge of
maximum stretch with regards to π and the cluster C containing v is distributed over more
than one bucket. In this case, v must be either the leftmost or the rightmost vertex of C.
Assuming v is the leftmost vertex of C (the other case is analogous), we can observe that
every vertex v′ ∈ Bi appearing further to the right than v must have a neighbor contained
in a bucket to the right of Bi and no neighbor to the left of v. Otherwise, we can reduce the
stretch of the edge containing v without increasing the stretch of any edge incident to v′ (and
hence reducing the number of edges of maximum stretch without increasing the maximum
stretch) by exchanging v and v′. Using this observation, we can assume that each bucket is
partitioned into a left, a middle and a right part and every vertex with only neighbors to
the left of Bi appears in the left part and every vertex having only neighbors to the right of
Bi appears in the right part. Additionally, the above observation allows us to assume that
within each bucket the vertices of one cluster appear consecutively (property (Π1)).

Now assume that {v, w} is an edge of maximum stretch as before (v appears left of w

in π) and {v′, w′} is another edge such that v′ appears in the same bucket as v and w′ in
the same bucket as w. If v′ appears before v then w′ has to appear before w as {v, w} is
of maximum stretch. On the other hand, if v′ appears after v then w′ must appear after w

as otherwise exchanging w and w′ either reduces the number of edges of maximum stretch
or reduces the maximum stretch itself. Hence, we can assume that the relative order of the
leftmost vertices of a set of clusters is the same as the relative order of the rightmost vertices
of the same clusters (property (Π2)).
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Lastly, assume that C and C ′ are clusters of type τ ∈ T which are not contained in
just one bucket and appear next to each other (in their leftmost bucket). Assume Bℓ is
the bucket containing the leftmost vertex of C and C ′ and Br the bucket containing the
rightmost vertex of C and C ′. We can essentially exchange V (C) ∩ Bℓ with V (C ′) ∩ Bℓ and
at the same time V (C) ∩ Br with V (C ′) ∩ Br if certain properties about the size of these
sets hold. This allows us to order the buckets in such a way, that clusters whose intersection
with the leftmost (rightmost, respectively) bucket they intersect is of the same size, appear
consecutively (property (Π3)).

To state the three properties formally we use the following notation. For a distribution-
type τ ∈ T and i ∈ [0, k′], we write τi to denote the column of τ which is indexed by i. We
define LB(τ) to be the largest index i ∈ [0, k′] such that ∥τj∥1 = 0 for any j ∈ [0, i − 1],
i.e. Bi is the leftmost bucket containing vertices from clusters of type τ . We define RB(τ)
analogously to be the minimum index i ∈ [0, k′] such that ∥τj∥1 = 0 for any j ∈ [i + 1, k′].
Additionally, we let #L(τ) be ∥τLB(τ)∥1 and #R(τ) be ∥τRB(τ)∥1. For every ℓ ≤ r ∈ [0, k′]
and every nL, nR ∈ [0, ω(G)], we define

T (ℓ,r,nL,nR) = {τ ∈ T : LB(τ) = ℓ, RB(τ) = r, #L(τ) = nL, #R(τ) = nR}.

▶ Definition 6 (Property (Π1)). We say that an S′-extremal ordering π : V (G) → [n] which
is compatible with σ and B has property (Π1) if for every i ∈ [0, k′]
1. the vertices of V (C) ∩ Bi appear consecutively in π for every cluster C /∈ C,
2. we can partition the interval π(Bi) into three (possibly empty) intervals Ii

R < Ii
M < Ii

L

such that for every τ ∈ T and every cluster C of distribution-type τ

π(V (C) ∩ Bi) ⊆ Ii
R if LB(τ) ̸= i and RB(τ) = i,

π(V (C) ∩ Bi) ⊆ Ii
L if LB(τ) = i and RB(τ) ̸= i,

π(V (C) ∩ Bi) ⊆ Ii
M if either LB(τ) ̸= i and RB(τ) ̸= i or LB(τ) = RB(τ) = i.

Notice that while Ii
R contains the leftmost ordered vertices of Bi, we use the index R since

those vertices are the rightmost vertices of their corresponding cliques. Analogously, we use
Ii

L for the rightmost ordered vertices of Bi.

▶ Definition 7 (Property (Π2)). We say that an S′-extremal ordering π : V (G) → [n] which
is compatible with σ and B has property (Π2) if for any two distribution-types τ, τ ′ ∈ T and
any two clusters C and C ′ of distribution-type τ and τ ′ respectively, the following holds.

If either LB(τ) = LB(τ ′) or RB(τ) = RB(τ ′), then for any v ∈ V (C) ∩ BLB(τ), v′ ∈
V (C ′) ∩ BLB(τ ′), w ∈ V (C) ∩ BRB(τ), w′ ∈ V (C ′) ∩ BRB(τ ′) we have that π(v) < π(v′) if
and only if π(w) < π(w′).

Lastly, we want the buckets to be ordered by distribution-types which will enable us
to express the stretch within clusters by linear constraints. To achieve this, we define two
orderings of distribution-types, dictating in which order (in a nice, optimal vertex ordering)
cliques of a certain type will appear within a bucket. First, let T i

R =
⋃

ℓ∈[0,i−1],
nL,nR∈[ω(G)]

T (ℓ,i,nL,nR)

and define the ordering ρi : T i
R → [|T i

R|] in the following way. For any τ ∈ T (ℓ,i,nL,nR),
τ ′ ∈ T (ℓ′,i,n′

L,n′
R), we have that ρi(τ) < ρi(τ ′) if either

ℓ < ℓ′ or
ℓ = ℓ′, nL ≥ nR and n′

L < n′
R or

ℓ = ℓ′, nL ≥ nR, n′
L ≥ n′

R and nR < n′
R or

ℓ = ℓ′, nL < nR, n′
L < n′

R and nL > n′
L or

ℓ = ℓ′, nL ≥ nR, n′
L ≥ n′

R, nR = n′
R and τ ≤lex τ ′ or

ℓ = ℓ′, nL < nR, n′
L < n′

R, nL = n′
L and τ ≤lex τ ′.

IPEC 2023



21:8 Bandwidth Parameterized by Cluster Vertex Deletion Number

Here ≤lex refers to the lexicographic order on matrices in T where we read the entries by
lines top to bottom. However, we can replace this by any total ordering (≤lex is an arbitrary
choice).

Moreover, let T i
L =

⋃
r∈[i+1,k′],

nL,nR∈[ω(G)]
T (i,r,nL,nR) and define the ordering λi : T i

L → [|T i
L|] by

letting λi(τ) < λi(τ ′) for any τ ∈ T (i,r,nL,nR), τ ′ ∈ T (i,r′,n′
L,n′

R) if either
r < r′ or
r = r′ and ρi(τ) < ρi(τ ′).

▶ Remark 8. Note that we can compute all ρi and λi in time quadratic in the size of T .

▶ Definition 9 (Property (Π3)). We say that an S′-extremal ordering π : V (G) → [n] which
is compatible with σ and B has property (Π3) if for every i ∈ [0, k′] we can partition the
interval π(Bi) into (possibly empty) intervals

J
(i,1)
R < · · · < J

(i,|T i
R|)

R < J i
M < J

(i,1)
L < · · · < J

(i,|T i
L|)

L

such that for every distribution-type τ ∈ T and every cluster C of type τ and every j ∈ [|T i
R|],

j′ ∈ [|T i
L|],

π(V (C) ∩ Bi) ⊆ J
(i,j)
R if ρi(τ) = j and

π(V (C) ∩ Bi) ⊆ J
(i,j′)
L if λi(τ) = j′.

▶ Lemma 10 (⋆). Given an S′-extremal ordering π : V (G) → [n] which is compatible with
σ and B, there exists an S′-extremal ordering π′ : V (G) → [n] of stretch(π′) ≤ stretch(π)
which is compatible with σ and B and has properties (Π1), (Π2) and (Π3).

3.3 ILP formulation
Let G be a graph and S a cluster deletion set of G. Furthermore, let C be a representative
set of clusters, S′ = S ∪

⋃
C∈C V (C) the extended deletion set containing vertices from C and

S and k′ = |S′|.
For every ordering σ : S′ → k′, we will use an ILP to determine whether there is an

S′-extremal ordering π : V (G) → [n] of stretch at most b which is compatible with σ. The
ILP has two variables xτ , yτ for every distribution-type τ ∈ T . The variable xτ expresses
how many clusters of G − S′ have distribution-type τ in an optimal S′-extremal ordering
compatible with σ. The variable yτ is an indicator variable which is 1 if and only if xτ > 0
and 0 otherwise. We further use zi for i ∈ [0, k′] in our ILP formulation as a placeholder for
the expression

∑
τ∈T (xτ · ∥τi∥1) which expresses the number of vertices in bucket i. For an

assignment α : {xτ , yτ : τ ∈ T } → N of the variables of our ILP, we write α(zi) to stand for
the expression

∑
τ∈T (α(xτ ) · ∥τi∥1).

We further need the leftmost and rightmost neighbor of any vertex of S in S′, thus define
vs

min,σ, vs
max,σ ∈ S′ such that σ(vs

min,σ) = min(σ(N(s))) and σ(vs
max,σ) = max(σ(N(s))), for

every ordering σ : S′ → k′ and s ∈ S. Note that by choosing S to be minimum, we can
assume that S contains no vertex with no neighbors in G − S and hence vs

min,σ and vs
max,σ

are well defined.
For a fixed ordering σ : S′ → [k′], we can now formulate our set of linear constraints.

The first three constraints ensure that we choose the number of clusters that have a certain
distribution-type in a feasible way. That is, (T1) ensures that the quantities of distribution-
types corresponding to an assignment of the variables xτ corresponds to a valid choice of
allocating each available cluster in the input graph G a distribution-type. As for (T2), it
ensures that vs

min,σ is indeed the leftmost neighbor of s while vs
max,σ is the rightmost neighbor
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of s for every s ∈ S by ensuring that any distribution-type placing a neighbor of s in a bucket
left of vs

min,σ or right of vs
max,σ does not occur. Finally, (T3) guarantees that yτ indeed

indicates whether or not distribution-type τ is used in the solution.
(T1) For every κ ∈ K,

#κ = min{#κ, 2k} +
∑

τ∈Tκ

xτ .

(T2) For every s ∈ S and every τ ∈ T for which τN,i > 0 for some N ∋ s and i ∈
[0, σ(vs

min,σ) − 1] ∪ [σ(vs
max,σ), k′],

xτ = 0.

(T3) xτ · (1 − yτ ) = 0 and (1 − xτ ) · yτ ≤ 0 for every τ ∈ T .

The purpose of all remaining constraints is to ensure that for the assignment of variables,
which essentially corresponds to choosing a bucket distribution B, there is an S′-extremal
ordering π : V (G) → [n] which is compatible with σ and B for which stretch(π) ≤ b. (DS)
expresses that the stretch of edges in G[S′] is bounded by b.
(DS) For every s, s′ ∈ S′ with {s, s′} ∈ E(G), σ(s) < σ(s′),

b ≥ σ(s′) − σ(s) +
∑

i∈[σ(s),σ(s′)−1]

zi.

The last three constraints deal with bounding the stretch of edges within clusters. For this
we assume that the S′-extremal ordering which is consistent with σ and B is nice, i.e. has
properties (Π1), (Π2) and (Π3). The first constraint (C1) is necessary to bound the stretch of
clusters that are fully contained in one bucket. To bound the stretch of clusters contained in
multiple buckets, we have one constraint for every distribution-type τ ∈ T (ℓ,r,nL,nR) for any
ℓ < r ∈ [0, k′], nL, nR ∈ [ω(G)]. By property (Π3) we know that there are intervals J

(ℓ,λℓ(τ))
L

containing all vertices from Bℓ ∩ V (C) and J
(r,ρr(τ))
R containing all vertices Br ∩ V (C) for

every cluster C of distribution-type τ . The trick now is to observe that if nL ≥ nR then the
first cluster appearing in J

(ℓ,λℓ(τ))
L observes the maximum stretch while if nL < nR it is the

last clique. Using this we can express with constraints (C2) and (C3) that the stretch of
every cluster of distribution-type τ is bounded by b.
(C1) ( b ≥ ω(G) − 1.
(C2) For every ℓ < r ∈ [0, k′], nL ≥ nR ∈ [ω(G)] and τ ∈ T (ℓ,r,nL,nR),

b ≥ yτ ·
( ∑

τ ′∈λ−1
ℓ

(
[λℓ(τ),|T ℓ

L
|]
) #L(τ ′) · xτ ′ +

∑
ℓ<i<r

zi + (r − ℓ)

+
∑

τ ′∈ρ−1
r

(
[1,ρr(τ)−1]

) #R(τ ′) · xτ ′ + nR − 1
)

.

(C3) For every ℓ < r ∈ [0, k′], nL < nR ∈ [ω(G)] and τ ∈ T (ℓ,r,nL,nR),

b ≥ yτ ·
(

nL +
∑

τ ′∈λ−1
ℓ

(
[λℓ(τ)+1,|T ℓ

L
|]
) #L(τ ′) · xτ ′ +

∑
ℓ<i<r

zi + (r − ℓ)

+
∑

τ ′∈ρ−1
r

(
[1,ρr(τ)]

) #R(τ ′) · xτ ′ − 1
)

.
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▶ Lemma 11 (⋆). For any ordering σ : S′ → [k′], there is an S′-extremal ordering π :
V (G) → [n] of stretch at most b which is compatible with σ if and only if the system of linear
equation (T1, T2, T3, DS, C1, C2, C3) for σ admits a solution.

Using Lemma 11 we obtain an FPT-algorithm, which computes S, #κ for every cluster-
type κ and arbitrary picks an extended deletion set S′. The algorithm then for every
ordering σ : S′ → [k′] verifies whether the ILP admits a solution in which case the input is a
YES-instance of Bandwidth. Details are given in the full version of the paper.
▶ Remark 12. Using a minimization ILP, we can in fact construct an ordering of minimum
stretch (and not just argue about the existence of an ordering of stretch at most b), since all
the exchange arguments of Section 3.2 are constructive.

4 W[1]-hardness parameterized by cluster vertex deletion number

In this section, we prove that Bandwidth is W[1]-hard when parameterized by the cluster
vertex deletion number of the input graph. In order to do so, we reduce from an instance of
Unary Bin Packing. Before we present the details of the construction, we first give some
high-level intuition.

For an instance (A, k) of Unary Bin Packing we want to construct an equivalent
instance (G, b) of Bandwidth, such that cvd(G) = f(k) for some function f . Roughly, the
graph G consists of cliques representing the items of the Unary Bin Packing instance and
cliques that act as delimiters separating the items contained in some bucket from the items
contained in the next bucket. However, in order to guarantee that the entirety of every item
clique is placed in between two consecutive delimiter cliques and that the values of the items
in between two delimiter cliques add up to B (the capacity of the bins in the Unary Bin
Packing instance (A, k)), some extra structure is needed. First we introduce two cliques of
size b + 1 that will be used as boundaries. By making each item clique and each delimiter
clique of the graph adjacent to some vertex in both of the boundary cliques, it follows that
in any ordering of stretch at most b, all item cliques and all delimiter cliques of the graph
will be positioned in between the two boundary cliques.

As the size of the deletion set cannot depend on the number or values of the items, item
cliques cannot be incident to individual deletion set vertices. This makes it tricky to enforce
that every vertex of an item clique is contained in between the same two delimiter cliques
as a majority of the item cliques would not be incident to any edge of maximum stretch
and therefore allow them a lot of freedom of movement. In order to cope with this issue,
we introduce a perfect copy of the delimiter and item cliques, as well as edges between the
original cliques and their copies resulting in them becoming twice as big consisting of a left
part, the original vertices, and a right part, the copy vertices. The left part of all cliques will
be connected to the left boundary clique and will therefore appear to the left of the right
parts. The right part will be connected to the right hand boundary cliques. The item cliques
will now be kept in place by having maximum stretch between the vertices of the left part
and the vertices of the right part.

▶ Theorem 13. Bandwidth is W[1]-hard when parameterized by the cluster deletion number
of the input graph.

Construction. Let (A, k) be an instance of Unary Bin Packing, where A = {a1, . . . , an}.
Moreover, let B =

∑
j∈[n] aj/k be the capacity of every bin, where B ∈ N, since otherwise

this would have been a trivial instance. Set b = 2kB + B − 1. We will construct an equivalent
instance (G, b) of Bandwidth as follows.
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...

Xk

2B − 1

...

...

X2

2B

...

X1

2B

...

X0

B + 1

...
B

L1

...
B

Lk

Y k+1

...

Y k

2B

...

...

Y 2

2B

...

Y 1

3B − 1

...
B

R1

...

...
B

Rk

Figure 2 Part of G, showing only the boundary and the delimiter cliques. Rectangles denote
cliques, brackets denote number of vertices and black vertices compose a cluster deletion set.

Boundary cliques. First, we create two cliques X and Y , referred to as boundary cliques,
where V (X) = {x1, . . . , x2kB+B} and V (Y ) = {y1, . . . , y2kB+B}. We consider the following
partition of the vertices of X: let X0 = {x1, . . . , xB+1} and for every i ∈ [k − 1] we denote
the set {x2iB−B+2, . . . , x2iB+B+1} by Xi, while Xk = {x2kB−B+2, . . . , x2kB+B}. Note that
|X0| = B + 1, |Xk| = 2B − 1 and |Xi| = 2B, for all i ∈ [k − 1]. Moreover, we partition the
vertices of Y in a similar but slightly asymmetric way: let Y 1 = {y1, . . . , y3B−1} and for
every i ∈ [2, k] we denote the set {y2iB−B , . . . , y2iB+B−1} by Y i, while Y k+1 = {y2kB+B}.
Note that |Y 1| = 3B − 1, |Y k+1| = 1 and |Y i| = 2B, for all i ∈ [2, k].

Delimiter cliques. For every i ∈ [k] we create a clique on vertex set {ℓi
1, . . . , ℓi

B , ri
1, . . . , ri

B}
of size 2B. We denote the set {ℓi

1, . . . , ℓi
B} by Li and the set {ri

1, . . . , ri
B} by Ri. Moreover,

let L =
⋃k

i=1 Li and R =
⋃k

i=1 Ri. We add the following edges:
For every i ∈ [k], x ∈

⋃k
j=i Xj , we add the edge {ℓi

1, x}.
For every i ∈ [k − 1], ℓ ∈ Li, we add the edge {x2iB+B+1, ℓ}. Moreover, we add an edge
between x2kB+B and every vertex of Lk.
For every i ∈ [k], y ∈

⋃i
j=1 Y j , we add the edge {ri

B , y}.
For every i ∈ [2, k], r ∈ Ri, we add the edge {y2iB−B , r}. Moreover, we add an edge
between y1 and every vertex of R1.

For an illustration of the boundary and delimiter cliques, see Figure 2.

Item cliques. For element ai ∈ A, we construct a clique Ai on vertex set {ai,L
j , ai,R

j : j ∈ [ai]}
of size 2ai. We denote the set of vertices {ai,L

j : j ∈ [ai]} by Ai,L and the set of vertices
{ai,R

j : j ∈ [ai]} by Ai,R. We add edges {x2kB+B , a} for every a ∈
⋃

i∈[k] Ai,L and edges
{y1, a} for every a ∈

⋃
i∈[k] Ai,R. For an illustration, see Figure 3.

IPEC 2023
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x2kB+B y1

... an

An,L

...an

An,R

...

... a1

A1,L

...a1

A1,R

Figure 3 Rectangles denote cliques. Black vertices compose a cluster deletion set.

This concludes the construction of G. Figure 4 illustrates an example of an ordering of
stretch b obtained by a YES-instance of Unary Bin Packing. In the following, we prove
the equivalence of (G, b) to the initial instance of Unary Bin Packing.

X A1,LA3,L L1 A2,L L2 A1,RA3,R R1 A2,R R2 Y

Figure 4 For the instance ({a1, a2, a3}, 2) of Unary Bin Packing with a1 = 1, a2 = 2 and
a3 = 1 the figure shows the graph G from the corresponding instance (G, 9) of Bandwidth. Here
the ordering of the vertices of G with stretch 9 corresponds to the solution of ({a1, a2, a3}, 2) in
which a1, a3 are placed in the first bin and a2 in the second.

▶ Lemma 14 (⋆). If (A, k) is a YES-instance of Unary Bin Packing, then (G, b) is a
YES-instance of Bandwidth.

▶ Lemma 15 (⋆). If (G, b) is a YES-instance of Bandwidth, then (A, k) is a YES-instance
of Unary Bin Packing.

▶ Lemma 16 (⋆). It holds that cvd(G) = O(k).

5 Conclusion

In the current work, we extend our understanding of Bandwidth in the setting of parameter-
ized complexity. In particular, we have shown that the problem is FPT when parameterized
by the cluster vertex deletion number cvd plus the clique number ω of the input graph,
although it becomes W[1]-hard when parameterized only by cvd.

The most natural research direction would be to explore the tractability of the problem
when parameterized by twin cover, modular-width or vertex integrity, given the lack of any
relevant FPT/XP algorithms or hardness results. As a matter of fact, it is not even known
whether the problem is in XP when parameterized by cvd or treedepth.

Finally, most tractability results for the various structural parameters rely on some ILP
formulation. This raises the question of whether any other kind of approach is applicable, as
is the case for Cutwidth [10].
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