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Abstract
We initiate the study of the parameterized complexity of the Collective Graph Exploration
(CGE) problem. In CGE, the input consists of an undirected connected graph G and a collection of
k robots, initially placed at the same vertex r of G, and each one of them has an energy budget of B.
The objective is to decide whether G can be explored by the k robots in B time steps, i.e., there exist
k closed walks in G, one corresponding to each robot, such that every edge is covered by at least one
walk, every walk starts and ends at the vertex r, and the maximum length of any walk is at most B.
Unfortunately, this problem is NP-hard even on trees [Fraigniaud et al., 2006]. Further, we prove
that the problem remains W[1]-hard parameterized by k even for trees of treedepth 3. Due to the
para-NP-hardness of the problem parameterized by treedepth, and motivated by real-world scenarios,
we study the parameterized complexity of the problem parameterized by the vertex cover number
(vc) of the graph, and prove that the problem is fixed-parameter tractable (FPT) parameterized by
vc. Additionally, we study the optimization version of CGE, where we want to optimize B, and
design an approximation algorithm with an additive approximation factor of O(vc).
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1 Introduction

Collective Graph Exploration (CGE) is a well-studied problem in computer science
and robotics, with various real-world applications such as network management and fault
reporting, pickup and delivery services, searching a network, and so on. The problem is
formulated as follows: given a set of robots (or agents) that are initially located at a vertex of
an undirected graph, the objective is to explore the graph as quickly as possible and return to
the initial vertex. A graph is explored if each of its edges is visited by at least one robot. In
each time step, every robot may move along an edge that is incident to the vertex it is placed
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22:2 Collective Graph Exploration Parameterized by Vertex Cover

at. The total time taken by a robot is the number of edges it traverses. The exploration
time is the maximum time taken by any robot. In many real-world scenarios, the robots
have limited energy resources, which motivates the minimization of the exploration time [6].

The CGE problem can be studied in two settings: offline and online. In the offline
setting, the graph is known to the robots beforehand, while in the online setting, the
graph is unknown and revealed incrementally as the robots explore it. While CGE has
received considerable attention in the online setting, much less is known in the offline setting
(Section 1.1). Furthermore, most of the existing results in the offline setting are restricted to
trees. Therefore, in this paper, we investigate the CGE problem in the offline setting for
general graphs, and present some approximation and parameterized algorithms with respect
to the vertex cover number of the graph.

1.1 Related Works

As previously mentioned, the CGE problem is extensively studied in the online setting, where
the input graph is unknown. As we study the problem in the offline setting in this paper, we
only give a brief overview of the results in the online setting, followed by the results in the
offline setting.

Recall that, in the online setting, the graph is unknown to the robots and the edges
are revealed to a robot once the robot reaches a vertex incident to the edge. The usual
approach to analyze any online algorithm is to compute its competitive ratio, which is the
worst-case ratio between the cost of the online and the optimal offline algorithm. Therefore,
the first algorithms for CGE focused on the competitive ratios of the algorithms. In [11],
an algorithm for CGE for trees with competitive ratio O( k

log k ) was given. Later in [14], it
was shown that this competitive ratio is tight. Another line of work studied the competitive
ratio as a function of the vertices and the depth of the input tree [4, 7, 8, 10, 14, 19]. We refer
the interested readers to a recent paper by Cosson et al. [5] and the references within for an
in-depth discussion about the results in the online setting.

We now discuss the results in the offline setting. In [1], it was shown that the CGE
problem for edge-weighted trees is NP-hard even for two robots. In [2,18], an (2 − 2/(k + 1))-
approximation was given for the optimization version of CGE for edge-weighted trees where
we want to optimize B. In [11], the NP-hardness was shown for CGE for unweighted trees as
well. In [9], a 2-approximation was given for the optimization version of CGE for unweighted
trees where we want to optimize B. In the same paper, it was shown that the optimization
version of the problem for unweighted trees is XP parameterized by the number of robots.

1.2 Our Contribution and Methods

In this paper, we initiate the study of the CGE problem for general unweighted graphs in
the offline setting and obtain the following three results. We first prove that CGE is FPT
parameterized by vc, where vc is the vertex cover number of the input graph. Specifically,
we prove the following theorem.

▶ Theorem 1.1. CGE is in FPT parameterized by vc(G), where G is the input graph.

We then study the optimization version of CGE where we want to optimize B and design
an approximation algorithm with an additive approximation factor of O(vc). Specifically, we
prove the following theorem.
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▶ Theorem 1.2. There exists an approximation algorithm for CGE that runs in time
O((|V (G)| + |E(G)|) · k), and returns a solution with an additive approximation of 8 · vc(G),
where G is the input graph and k is the number of robots.

Finally, we show a border of (in-)tractability by proving that CGE is W[1]-hard paramet-
rized by k, even for trees of treedepth 3. Specifically, we prove the following theorem.

▶ Theorem 1.3. CGE is W[1]-hard with respect to k even on trees whose treedepth is bounded
by 3.

We first give an equivalent formulation of CGE based on Eulerian cycles (see Lemma 3.4).
We obtain the FPT result by using Integer Linear Programming (ILP). By exploiting the
properties of vertex cover and the conditions given by our formulation, we show that a
potential solution can be encoded by a set of variables whose size is bounded by a function
of vertex cover.

To design the approximation algorithm, we give a greedy algorithm that satisfies the
conditions given by our formulation. Again, by exploiting the properties of vertex cover, we
show that we can satisfy the conditions of our formulation by making optimal decisions at
the independent set vertices and using approximation only at the vertex cover vertices.

To prove the W-hardness, we give a reduction from a variant of Bin Packing, called
Exact Bin Packing (defined in Section 2). We first prove that Exact Bin Packing is
W[1]-hard even when the input is given in unary. We then give a reduction from this problem
to CGE to obtain our result. Due to lack of space, several concepts and proofs are deferred
to the full version of this paper [13].

1.3 Choice of Parameter
As mentioned in the previous section, we proved that CGE is W[1]-hard parameterized
by k even on trees of treedepth 3. This implies that we cannot get an FPT algorithm
parameterized by treedepth and k even on trees, unless FPT = W[1]. Thus, we study the
problem parameterized by the vertex cover number of the input graph, a slightly weaker
parameter than the treedepth.

Our choice of parameter is also inspired by several practical applications. For instance,
consider a delivery network of a large company. The company has a few major distributors
that receive the products from the company and can exchange them among themselves.
There are also many minor distributors that obtain the products only from the major ones,
as this is more cost-effective. The company employs k delivery persons who are responsible
for delivering the products to all the distributors. The delivery persons have to start and end
their routes at the company location. Since each delivery person has a maximum working
time limit, the company wants to minimize the maximum delivery time among them. This
problem can be modeled as an instance of CGE by constructing a graph G that has a vertex
for the company and for each distributor and has an edge between every pair of vertices that
correspond to locations that can be reached by a delivery person. The k robots represent
the k delivery persons and are placed at the vertex corresponding to the company. Clearly,
G has a small vertex cover, as the number of major distributors is much smaller than the
total number of distributors.

For another real-world example where the vertex cover is small, suppose we want to cover
all the streets of the city as fast as possible using k agents that start and end at a specific
street. The city has a few long streets and many short streets that connect to them. This
situation is common in many urban areas. We can represent this problem as an instance
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of CGE by creating a graph G that has a vertex for each street and an edge between two
vertices if the corresponding streets are adjacent. The k robots correspond to the k agents.
Clearly, G has a small vertex cover, as the number of long streets is much smaller than the
total number of streets.

2 Preliminaries

For k ∈ N, let [k] denote the set {1, 2, . . . , k}. For a multigraph G, we denote the set of
vertices of G and the multiset of edges of G by V (G) and E(G), respectively. For u ∈ V (G),
the set of neighbors of u in G is NG(u) = {v ∈ V | {u, v} ∈ E(G)}. When G is clear from
the context, we refer to NG(u) as N(u). The multiset of neighbors of u in G is the multiset
N̂G(u) = {v ∈ V | {u, v} ∈ E(G)} (with repetition). When G is clear from the context,
we refer to N̂G(u) as N̂(u). The degree of u in G is |N̂G(u)| (including repetitions). Let
Ê be a multiset with elements from E(G). Let Graph(Ê) denote the multigraph (V ′, Ê),
where V ′ = {u | {u, v} ∈ Ê}. A multigraph H is a submultigraph of a multigraph G if
V (H) ⊆ V (G) and E(H) ⊆ E(G). Let V ′ ⊆ V (G). We denote the submultigraph induced
by V ′ by G[V ′], that is, V (G[V ′]) = V ′ and E(G[V ′]) = {{u, v} ∈ E(G) | u, v ∈ V ′}. Let
U ⊆ V (G). Let G \ U denote the subgraph G[V (G) \ U ] of G.

An Eulerian cycle in a multigraph Ĝ is a cycle that visits every edge in E(Ĝ) exactly once.
A vertex cover of G is V ′ ⊆ V (G) such that for every {u, v} ∈ E(G), at least one among u

and v is in V ′. The vertex cover number of G is vc(G) = min{|V ′| | V ′ is a vertex cover of
G}. When G is clear from context, we refer to vc(G) as vc. A path P in G is (v0, . . . , vℓ),
where (i) for every 0 ≤ i ≤ ℓ, vi ∈ V (G), and (ii) for every 0 ≤ i ≤ ℓ − 1, {vi, vi+1} ∈ E(G)
(we allow repeating vertices). The length of a path P = (v0, . . . , vℓ), denoted by |P |, is
the number of edges in P (including repetitions), that is, ℓ. The set of vertices of P is
V (P ) = {v0, . . . , vℓ−1}. The multiset of edges of P is E(P ) = {{vi, vi+1} | 0 ≤ i ≤ ℓ − 1}
(including repetitions). A cycle C in G is a path (v0, . . . , vℓ) such that v0 = vℓ. A simple cycle
is a cycle C = (v0, . . . , vℓ) such that for every 0 ≤ i < j ≤ ℓ − 1, vi ̸= vj . An isomorphism
of a multigraph G into a multigraph G′ is a bijection α : V (G) → V (G′), such that {u, v}
appears in E(G) ℓ times if and only if {α(u), α(v)} appears in E(G′) ℓ times, for an ℓ ∈ N.
For a multiset A, we denote by 2A the power set of A, that is, 2A = {B | B ⊆ A}. Let A

and B be two multisets. Let A \ B be the multiset D ⊆ A such that every d ∈ A appears
exactly max{0, dA − dB} times in D, where dA and dB are the numbers of times d appears
in A and B, respectively. A permutation of a multiset A is a bijection PermutA : A → [|A|].

▶ Definition 2.1 (vinit-Robot Cycle). Let G be a graph, let vinit ∈ V (G). A vinit-robot cycle
is a cycle RC = (v0 = vinit, v1, v2, . . . , vℓ = vinit) in G for some ℓ.

When vinit is clear from the context, we refer to a vinit-robot cycle as a robot cycle.

▶ Definition 2.2 (Solution). Let G be a graph, vinit ∈ V (G) and k ∈ N. A solution for
(G, vinit, k) is a set of k vinit-robot cycles {RC1, . . . , RCk} with E(G) ⊆ E(RC1) ∪ E(RC2) ∪
· · · ∪ E(RCk). Its value is val({RC1, . . . , RCk}) = max{|E(RC1)|, |E(RC2)|, . . . , |E(RCk)|}
(see Figure 1a for an illustration).

▶ Definition 2.3 (Collective Graph Exploration with k Agents). The Collective Graph
Exploration (CGE) problem with k agents is: given a connected graph G, vinit ∈ V (G)
and k ∈ N, find the minimum B such that there exists a solution {RC1, . . . , RCk} where
val({RC1, . . . , RCk}) = B.
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Figure 1 (a) An illustration of a graph G (drawn in black) and a solution for (G, vinit, k = 2).
The 2 robot cycles are shown by red and blue edges where the edge labels show the order in which
the edges were covered by the respective robots. (b) The Robot Cycle-Graph for the robot cycle
drawn in blue.

▶ Definition 2.4 (Collective Graph Exploration with k Agents and Budget B). The
Collective Graph Exploration (CGE) problem with k agents and budget B is: given
a connected graph G, vinit ∈ V (G) and k, B ∈ N, find a solution {RC1, . . . , RCk} where
val({RC1, . . . , RCk}) ≤ B, if such a solution exists; otherwise, return “no-instance”.

▶ Definition 2.5 (Bin Packing). The Bin Packing problem is: given a finite set I of items,
a size s(i) ∈ N for each i ∈ I, a positive integer B called bin capacity and a positive integer
k, decide whether there is a partition of I into disjoint sets I1, . . . , Ik such that for every
1 ≤ j ≤ k,

∑
i∈Ij

s(i) ≤ B.

▶ Definition 2.6 (Exact Bin Packing). The Exact Bin Packing problem is: given a finite
set I of items, a size s(i) ∈ N for each i ∈ I, a positive integer B called bin capacity and a
positive integer k such that

∑
i∈I s(i) = B · k, decide whether there is a partition of I into

disjoint sets I1, . . . , Ik such that for every 1 ≤ j ≤ k,
∑

i∈Ij
s(i) = B.

▶ Definition 2.7 (Integer Linear Programming). In the Integer Linear Programming
Feasibility (ILP) problem, the input consists of t variables x1, x2, . . . , xt and a set of m

inequalities of the following form:

a1,1x1 + a1,2x1 +· · ·+ a1,pxt ≤ b1
a2,1x1 + a2,2x2 +· · ·+ a2,pxt ≤ b2

...
...

...
...

am,1x1+am,2x2+· · ·+am,pxt≤bm

where all coefficients ai,j and bi are required to integers. The task is to check whether there
exist integer values for every variable xi so that all inequalities are satisfiable.

▶ Theorem 2.8 ([12, 16, 17]). An ILP instance of size m with t variables can be solved in
time tO(t) · mO(1).

IPEC 2023
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3 Reinterpretation Based on Eulerian Cycles

Our approach to CGE with k agents is as follows. Let G be a connected graph, let
vinit ∈ V (G) and let k ∈ N. Let {RC1, . . . , RCk} be a solution, let 1 ≤ i ≤ k and denote
RCi = (v0 = vinit, v1, v2, . . . , vℓ = vinit) for some ℓ ∈ N. If we define a multiset ÊRCi =
{{vj , vj+1} | 0 ≤ j ≤ ℓ − 1}, then, clearly, RCi = (v0 = vinit, v1, v2, . . . , vℓ = vinit) is an
Eulerian cycle in Graph(ÊRCi). We call this graph the RCi-graph (see Figure 1b):

▶ Definition 3.1 (Robot Cycle-Graph). Let G be a graph, let vinit ∈ V (G) and let RC =
(v0 = vinit, v1, v2, . . . , vℓ = vinit) be a robot cycle. The RC-graph, denoted by Graph(RC), is the
multigraph Graph(ÊRC), where ÊRC = {{vi, vi+1} | 0 ≤ i ≤ ℓ − 1} is a multiset.

▶ Observation 3.2. Let G be a graph, let vinit ∈ V (G) and let RC = (v0 = vinit, v1, v2, . . . , vℓ =
vinit) be a robot cycle. Then RC is an Eulerian cycle in Graph(RC).

On the opposite direction, let Ê be a multiset with elements from E(G), and assume that
vinit ∈ V (Graph(Ê)). Let RC = (v0, v1, v2, . . . , vℓ = v0) be an Eulerian cycle in Graph(Ê) and
assume, without loss of generality, that v0 = vℓ = vinit. It is easy to see that RC is a robot
cycle in G:

▶ Observation 3.3. Let G be a graph, let vinit ∈ V (G), let Ê be a multiset with elements
from E(G) and assume that vinit ∈ V (Graph(Ê)). Let RC = (v0 = vinit, v1, v2, . . . , vℓ = vinit)
be an Eulerian cycle in Graph(Ê). Then, RC is a robot cycle in G.

From Observations 3.2 and 3.3, we get that finding a solution is equal to find k multisets
Ê1, . . . , Êk such that: (i) for every 1 ≤ i ≤ k, vinit ∈ V (Graph(Êi)) (ii) for every 1 ≤ i ≤ k,
there exists an Eulerian cycle in Graph(Êi) and (iii) E(G) ⊆ Ê1 ∪ . . . ∪ Êk, that is, each
e ∈ E appears at least once in at least one of Ê1, . . . , Êk.

Recall that, in a multigraph Ĝ, there exists an Eulerian cycle if and only if Ĝ is connected
and each v ∈ V (Ĝ) has even degree in Ĝ [3]. Thus, we have the following lemma:

▶ Lemma 3.4. Let G be a connected graph, let vinit ∈ V (G) and let k, B ∈ N. Then,
(G, vinit, k, B) is a yes-instance of CGE if and only if there exist k multisets Ê1, . . . , Êk with
elements from E(G), such that the following conditions hold:
1. For every 1 ≤ i ≤ k, vinit ∈ V (Graph(Êi)).
2. For every 1 ≤ i ≤ k, Graph(Êi) is connected, and every vertex in Graph(Êi) has even

degree.
3. E(G) ⊆ Ê1 ∪ . . . ∪ Êk.
4. max{|Ê1|, . . . , |Êk|} ≤ B.

4 High-Level Overview

4.1 FPT Algorithm with Respect to Vertex Cover
Our algorithm is based on a reduction to the ILP problem. We aim to construct linear
equations that verify the conditions in Lemma 3.4.

4.1.1 Encoding Êi by a Valid Pair
First, we aim to satisfy the “local” conditions of Lemma 3.4 for each robot, that is, Conditions 1
and 2. Let us focus on the “harder” condition of the two, that is, Condition 2. We aim to
encode any potential Êi by smaller subsets whose union is Êi. In addition, we would like the
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Figure 2 An illustration of a graph G (in (a)), and its corresponding graphs G∗ (in (b)) and G

(in (c)). The vertex cover vertices and their edges are shown in orange. The 4 equivalence classes
and their vertices are shown by red, yellow, green, and blue.

“reverse” direction as well: every collection of subsets that we will be able to unite must create
some valid Êi. Note that we have two goals to achieve when uniting the subsets together:
(i) derive a connected graph, where (ii) each vertex has even degree. In the light of this,
the most natural encoding for the subsets are cycles, being the simplest graphs satisfying
both aforementioned goals. Indeed, every cycle is connected, and a graph composed only of
cycles is a graph where every vertex has even degree. Here, the difficulty is to maintain the
connectivity of the composed graph. On the positive side, observe that every cycle in the
input graph G has a non-empty intersection with any vertex cover VC of G. So, we deal with
the connectivity requirement as follows. We seek for a graph G that is essentially (but not
precisely) a subgraph of G that is (i) “small” enough, and (ii) for every valid Êi, there exists
CC ⊆ E(G) such that Graph(CC) is a “submultigraph” of Graph(Êi), Graph(CC) is connected,
and V (Graph(CC)) ∩ VC = V (Graph(Êi)) ∩ VC.

Equivalence Graph G∗. A first attempt to find such a graph is as follows. We define an
equivalence relation on V (G) \ VC based on the sets of neighbors of the vertices in V (G) \ VC
(see the 4 equivalence classes of the graph G in Figure 2a). We denote the set of equivalence
classes induced by this equivalence relation by EQ. Then G∗ is the graph defined as follows.

▶ Definition 4.1 (Equivalence Graph G∗). Let G∗ be the graph that: (i) contains VC, and
the edges having both endpoints in VC, and (ii) where every equivalence class u∗ ∈ EQ is
represented by a single vertex adjacent to the neighbors of some u ∈ u∗ in G (which belong to
VC). See Figure 2b.

Unfortunately, this attempt fails, as we might need to use more than one vertex from the
same u∗ ∈ EQ in order to maintain the connectivity. E.g., see Figure 3b. If we delete r2 and
y5, which are in the same equivalence class (in G) as r1 and y6, respectively, then the graph
is no longer connected.

The Multigraph G. So, consider the following second attempt. We use the aforementioned
graph G∗, but instead of one vertex representing each u∗ ∈ EQ, we have min{|u∗|, 2|NG∗ (u∗)|}
vertices. Observe that given a connected subgraph G′ of G, and two vertices u, u′ ∈ u∗ such
that NG′(u) = NG′(u′), it holds that G \ {u′} remains connected (e.g., see Figure 3a and
3b. The connectivity is still maintained even after deleting all but one vertex in the same
equivalence class (in G) having same neighbourhood). Therefore, we have enough vertices
for each u∗ ∈ EQ in the graph, and its size is a function of |VC|; so, we obtained the sought
graph G. Now, we would like to have an additional property for CC, which is that every
vertex in Graph(CC) has even degree in it. To this end, we add to G more vertices for each

IPEC 2023
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Figure 3 The graphs shown here are with respect to the graph G shown in Figure 2a. An
illustration of (a) a graph Graph(Ê), (b) the graph H obtained by deleting all but one vertex
from the same equivalence class in G and have the same neighbours in Graph(Ê), (c) the graph
Graph(CC) where CC is a skeleton of Ê obtained from the graph in (b) by adding four more edges
from Graph(Ê) \ H, and (d) the graph Graph(CC′) where CC′ is the skeleton in G that is derived
from the skeleton CC.

u∗ ∈ EQ. See Figure 3c. The vertex g13 having the same neighbours as g11 in H and being
in the same equivalence class (in G) as g11 is added to make the degrees of 1 and 2 even. We
have the following definition for G.

▶ Definition 4.2 (The Multigraph G). Let G be the graph that: (i) contains VC, and the
edges having both endpoints in VC, (ii) for every equivalence class u∗ ∈ EQ, there are exactly
min{|u∗|, 2|NG∗ (u∗)| + |VC|2} vertices, adjacent to the neighbors of some u ∈ u∗ in G (which
belong to VC), (iii) each edge in G appears exactly twice in E(G) (for technical reasons). See
Figure 2c.

A Skeleton of Êi. We think of Graph(CC) as a “skeleton” of a potential Êi. By adding
cycles with a vertex from V (Graph(CC)) ∩ VC, we maintain the connectivity, and since every
vertex in Graph(CC) has even degree, then by adding a cycle, this property is preserved as
well. We have the following definition for a skeleton.

▶ Definition 4.3 (A Skeleton CC). A skeleton of Êi is CC ⊆ Êi such that: (i) Graph(CC)
is a “submultigraph” of G, (ii) Graph(CC) is connected, vinit ∈ V (Graph(CC)) and every
vertex in Graph(CC) has even degree, and (iii) V (Graph(CC)) ∩ VC = V (Graph(Êi)) ∩ VC
(See Figure 3d).

An Êi-Valid Pair. We prove that we might assume that the Êi’s are nice multisets, that is,
a multiset where every element appears at most twice. We prove that every Êi (assuming
Êi is nice) can be encoded by a skeleton CC (See Figure 3c.) and a multiset C of cycles (of
length bounded by 2|VC|). We say that (CC, C) is an Ê-valid pair.

▶ Definition 4.4 (A Valid Pair). A pair (CC, C), where CC is a skeleton of Êi and C is a
multiset of cycles in Graph(Êi), is an Êi-valid pair skeleton CC if:
1. The length of each cycle in C is bounded by 2|VC|.
2. At most 2|VC|2 cycles in C have length other than 4.
3. CC ∪

⋃
C∈C E(C) = Êi (being two multisets).
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4.1.2 Robot and Cycle Types
Now, obviously, the number of different cycles in G (of length bounded by 2|VC|) is potentially
huge. Fortunately, it is suffices to look at cycles in G∗ in order to preserve Condition 2 of
Lemma 3.4: assume that we have a connected Graph(CC) such that every vertex in Graph(CC)
has even degree in it, and a multiset of cycles with a vertex from V (Graph(CC)) ∩ VC in G∗.
By replacing each vertex that represents u∗ ∈ EQ by any u ∈ u∗, the connectivity preserved,
and the degree of each vertex is even.

Thus, each robot is associated with a robot type RobTyp, which includes a skeleton CC of
the multiset Êi associated with the robot (along other information discussed later). In order
to preserve Condition 1 of Lemma 3.4, we also demand that vinit ∈ V (Graph(CC)). Generally,
for each type we define, we will have a variable that stands for the number of elements of
that type. We are now ready to present our first equation of the ILP reduction:

Equation 1: Robot Type for Each Robot. In this equation, we ensure that the total sum
of robots of the different robot types is exactly k, that is, there is exactly one robot type for
each robot:
1.

∑
RobTyp∈RobTypS

xRobTyp = k.

In addition, the other “pieces” of the “puzzle”, that is, the cycles, are also represented by
types: Each cycle C of length at most 2|VC| in G∗ is represented by a cycle type, of the form
CycTyp = (C, RobTyp) (along other information discussed later), where RobTyp is a robot
type that is “able to connect to C”, that is, V (Graph(CC))∩VC∩V (C) ̸= ∅ for RobTyp = CC.
Similarly, we will have equations for our other types.

Satisfying the Budget Restriction. Now, we aim to satisfy the budget condition (Condition 2
of Lemma 3.4), that is, for every i ∈ [k], |Êi| ≤ B. Let i ∈ [k] and let (CC, C) be an Ê-valid
pair. So, Êi = CC ∪ (

⋃
C∈C E(C)) (being a union of two multisets). Now, we prove that

“most” of the cycles in C are of length 4, that is, for every 2 ≤ j ≤ 2|VC|, j ̸= 4, the number
of cycles of length j in C is bounded by 2|VC|2. Therefore, we add to the definition of a
robot type also the number of cycles of length exactly j, encoded by a vector NumOfCyc =
(N2, N3, N5, N6, . . . , N2|VC|). So, for now, a robot type is RobTyp = (CC, NumOfCyc). Thus,
in order to satisfy the budget condition, we verify that the budget used by all the robots of
a robot type RobTyp = (CC, NumOfCyc), is as expected together. First, we ensure that the
number of cycles of each length 2 ≤ j ≤ 2|VC|, j ≠ 4, is exactly as the robot type demands,
times the number of robots associated with this type, that is, Nj · xRobTyp. So, we have the
following equation:

Equation 5: Assigning the Exact Number of Cycles of Length Other Than 4 to Each
Robot Type. We have the following notation: CycTypS(RobTyp, j) is the set of cycle types
for cycles of length j assigned to a robot of robot type RobTyp.
5. For every robot type RobTyp = (CC, NumOfCyc) and for every 2 ≤ j ≤ 2|VC|, j ̸=

4,
∑

CycTyp∈CycTypS(RobTyp,j)

xCycTyp = Nj · xRobTyp, where NumOfCyc = (N2, N3, N5, N6, . . . ,

N2|VC|).

Observe that once this equation is satisfied, we are able to arbitrary allocate Nj cycles of
length j to each robot of type RobTyp. So, in order to verify the budget limitation, we only
need to deal with the cycles of length 4. Now, notice that the budget left for a robot of type
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RobTyp = (CC, NumOfCyc) for the cycles of length 4 is B − (|CC| +
∑

2≤j≤2|VC|,j ̸=4 Nj · j),
where NumOfCyc = (N2, N3, N5, N6, . . . , N2|VC|). Now, the maximum number of cycles we
can add to a single robot of type RobTyp is the largest number which is a multiple of 4, that
is less or equal to B − Bud(RobTyp). So, for every robot type RobTyp let CycBud(RobTyp) =
⌊(B − (|CC| +

∑
2≤j≤2|VC|,j ̸=4 Nj · j)) · 1

4 ⌋ · 4. Notice that CycBud(RobTyp) is the budget left
for the cycles of length 4. Thus, we have the following equation:

Equation 6: Verifying the Budget Limitation. This equation is defined as follows.
6. For every RobTyp ∈ RobTypS,∑

CycTyp∈CycTypS(RobTyp,4)

4 · xCycTyp ≤ xRobTyp · CycBud(RobTyp).

By now, we have that there exist Ê1, . . . , Êk that satisfy Conditions 1, 2 and 4 of
Lemma 3.4 if and only if Equations 1, 5 and 6 can be satisfied.

Covering Edges with Both Endpoints in VC. Now, we aim to satisfy Condition 3 of
Lemma 3.4, that is, we need to verify that every edge is covered by at least one robot. First,
we deal with edges with both endpoints in VC. Here, for every {u, v} such that u, v ∈ VC,
we just need to verify that at least one cycle or one of the CC’s contains {u, v}. This we can
easily solve by the following equation:

Equation 4: Covering Each Edge With Both Endpoints in VC. We have the following
notations: For every {u, v} ∈ E such that u, v ∈ VC, (i) let CycTypS({u, v}) be the set of
cycle types CycTyp = (C, RobTyp) where C covers {u, v}, and (ii) let RobTypS({u, v}) be the
set of robot types RobTyp = (CC, NumOfCyc) where CC covers {u, v}. In this equation, we
ensure that each {u, v} ∈ E(G) with both endpoints in VC is covered at least once:
4. For every {u, v} ∈ E such that u, v ∈ VC,∑

CycTyp∈CycTypS({u,v})

xCycTyp +
∑

RobTyp∈RobTypS({u,v})

xRobTyp ≥ 1.

Let RobTypS be the set of the robot types, and let CycTypS be the set of cycle types.

Covering Edges with an Endpoint in V (G) \ VC. Now, we aim to cover the edges from
E(G) with (exactly) one endpoint in V (G) \ VC. Here, we need to work harder. Let xz, for
every z ∈ RobTypS ∪ CycTypS, be values that satisfy Equations 1 and 4–6. As for now, we
will arbitrary allocate cycles to robots according to their types. Then, we will replace every
u∗ ∈ V (Graph(CCi)) and u∗ ∈ V (C), for every cycle C allocated to the i-th robot, by an
arbitrary u ∈ u∗. Then, we will define Êi as the union of edge set of the cycles and CCi we
obtained. We saw that due to Equations 1, 5 and 6, Conditions 1, 2 and 4 of Lemma 3.4
are satisfied. In addition, due to Equations 4, we ensure that each {u, v} ∈ E(G) with both
endpoints in VC is covered. The change we need to do in order to cover edges with an
endpoint in V (G) \ VC is to make a smarter choices for the replacements of u∗ vertices.

4.1.3 Vertex Type
Allocation of Multisets with Elements from NG∗(u∗). Observe that each u∗

j ∈
V (Graph(CCi)) that is replaced by some u ∈ u∗, covers the multiset of edges {{u, v} | v ∈
N̂Graph(CCi)(u∗

j )}. In addition, every u∗ ∈ V (C) that is replaced by u ∈ u∗, covers the multiset
of edges {{u, v}, {u, v′}}, where v and v′ are the vertices right before and right after u in
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Figure 4 An illustration of the parts of a solution around an independent set vertex v. The three
colors represent the parts of the multisets corresponding to three robots. The solid edges belong to
the skeleton of the specific robot. The dashed edges belong to a cycle, labelled in the figure, of the
multiset of the cycles corresponding to the specific robot. The vertex type of v derived from the
solution shown in the figure is (v∗, {{1, 6, 8, 8}, {3, 4}, {7, 8}, {2, 2, 5, 6}}), where v ∈ v∗ ∈ EQ.

C, respectively. Now, in order to cover every edge with an endpoint in V (G) \ VC, we need
to cover the set {{u, v} | v ∈ NG∗(u∗)} for every u ∈ u∗ ∈ EQ. Therefore, we would like to
ensure that the union of multisets of neighbors “allocated” for each u, when we replace some
u∗ by u, contains {{u, v} | v ∈ NG∗(u∗)}.

The Set NeiSubsets of Multisets Needed to Allocate to a Vertex. Now, the reverse
direction holds as well: let Ê1, . . . , Êk be multisets satisfying the conditions of Lemma 3.4, for
every i ∈ [k], let (CCi, Ci) be an Êi-valid pair, and let u ∈ u∗ ∈ EQ. Consider the following
multisets (*): (i) for every i ∈ [k] such that u ∈ V (Graph(CCi)), the multiset N̂Graph(CCi)(u);
(ii) for every i ∈ [k] and C ∈ Ci and every appearance of u in C, the multiset {v, v′}, where v

and v′ are the vertices in C right before and right after the appearance of u. By Condition 3
of Lemma 3.4, every edge appears in at least one among Ê1, . . . , Êk. So, as for every i ∈ [k],
Êi = CCi

⋃
C∈Ci

E(C), the union of the multisets in (*) obviously contains NG∗(u∗), e.g. see
Figure 4. We would like to store the information of these potential multisets that ensures we
covered NG∗(u∗). The issue is that there might be a lot of multisets, as u might appear in
many Êi’s. Clearly, it is sufficient to store one copy of each such multiset, as we only care that
the union of the multisets contains NG∗(u∗). Now, as we assume that Ê1, . . . , Êk are nice
multisets, each element in every multiset we derived appears at most twice in that multiset.
In addition, since every edge in E(G) appears at most twice, for each skeleton CC ⊆ E(G),
each edge appears at most twice in E(Graph(CC)). So, for each u∗

j ∈ V (Graph(CC)) we
replace by some u ∈ u∗, in the multiset of neighbors that are covered, every element appears
at most twice. Moreover, since the degree is even, we have that the number of element in
each multiset is even.

For a set A we define the multiset A × 2 = {a, a | a ∈ A}. That is, each element in A

appears exactly twice in A × 2. Thus, we have the following definition for a vertex type.

▶ Definition 4.5 (Vertex Type). Let G be a connected graph and let VC be a vertex cover
of G. Let u∗ ∈ EQ and let NeiSubsets ⊆ 2NG∗ (u∗)×2. Then, VerTyp = (u∗, NeiSubsets) is a
vertex type if for every NeiSub ∈ NeiSubsets, |NeiSub| is even, and NG∗(u∗) ⊆

⋃
NeiSubsets.

Now, given Ê1, . . . , Êk satisfying the conditions of Lemma 3.4, for every i ∈ [k], an
Êi-valid pair (CCi, Ci), and u ∈ u∗ ∈ EQ, we derive the vertex type of u as follows. We take
the set NeiSubsets of multisets as described in (*). Clearly, (u∗, NeiSubsets) is a vertex type.
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For the reverse direction, we will use vertex type in order to cover the edges incident
to each u ∈ u∗ ∈ EQ. Let VerTypS be the set of vertex types. We have a variable xz

for every z ∈ VerTypS. First, each u ∈ u∗ ∈ EQ is associated with exactly one vertex
type VerTyp = (u∗, NeiSubsets), for some NeiSubsets. To achieve this, we first ensure
that for every u∗ ∈ EQ, the total sum of xz for z ∈ VerTypSu∗ , is exactly |u∗|, where
VerTypSu∗ = {(u∗, NeiSubsets) ∈ VerTypS}.

Equation 2: Vertex Type for Each Vertex. This equation is defined as follows.

2. For every u∗ ∈ EQ,
∑

VerTyp∈VerTypSu∗

xVerTyp = |u∗|

Given values for the variables that satisfy the equation, we arbitrary determine a vertex
type (u∗, NeiSubsets) for each u ∈ u∗, such that there are exactly xVerTyp vertices of type
VerTyp.

Allocation Functions of Multisets to Vertex Types. Now, let u ∈ u∗ ∈ EQ of a vertex type
(u∗, NeiSubsets). We aim that when we do the replacements of u∗’s by vertices from u∗, each
u gets an allocation of at least one of any of the multisets in NeiSubsets. This ensures that
we covered all of the edges adjacent to u. Instead of doing this for each u ∈ u∗ ∈ EQ, we will
ensure that each NeiSub ∈ NeiSubsets is allocated for vertices of type (u∗, NeiSubsets) at least
xVerTyp times. To this end, we add more information for the robot types. For a robot type
with a skeleton CC, recall that we replace each u∗

j ∈ V (Graph(CC)) by some u ∈ u∗. The
robot type also determines what is the vertex type of u that replaces u∗

j . In particular, we
add to the robot type an allocation for each of {(u∗

j , N̂Graph(CC)(u∗
j )) | u∗

j ∈ V (Graph(CC))},
that is, a function AllocGraph(CC) from this set into VerTypS (e.g., a robot of a robot type
associated with the skeleton illustrated by Figure 3d, needs to allocate the pair (r∗

1 , {1, 1}),
along with the other pairs shown in the figure). Observe that u∗

j is the vertex being replaced,
and N̂Graph(CC)(u∗

j ) is the multiset of neighbors that are covered. So, we demand that
each (u∗

j , N̂Graph(CC)(u∗
j )) is allocated to a vertex type (u∗, NeiSubsets) that “wants” to get

N̂Graph(CC)(u∗
j ), that is, N̂Graph(CC)(u∗

j ) ∈ NeiSubsets (e.g, a robot of a robot type associated
with the skeleton illustrated by Figure 3d, might allocate (r∗

1 , {1, 1}) to a vertex type
(r∗, {{1, 1}, {3, 4}})). Now, we are ready to define a robot type as follows.

▶ Definition 4.6 (Robot Type). A robot type is RobTyp = (CC, AllocGraph(CC), NumOfCyc)
such that:
1. CC ⊆ E(G).
2. Graph(CC) is connected, every vertex in Graph(CC) has even degree and

vinit ∈ V (Graph(CC)).
3. AllocGraph(CC) is an allocation of {(u∗

j , N̂Graph(CC)(u∗
j )) | u∗

j ∈ V (Graph(CC))} to vertex
types.

4. NumOfCyc = (N2, N3, N5, N6, . . . , N2|VC|), where 0 ≤ Ni ≤ 2|VC|2 for every 2 ≤ i ≤
2|VC|, i ̸= 4.

Similarly, we add to a cycle type with a cycle C in G∗ an allocation of the multiset
{{v, v′} | u∗ ∈ V (C), v and v′ are the vertices appears right before and right after u∗} to
vertex types (given by a function PaAllocC). Now, we are ready to define a cycle type as
follows.
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▶ Definition 4.7 (Cycle Type). Let C ∈ CycG∗ , let PaAllocC be an allocation of
{{v, v′} | u∗ ∈ V (C), v and v′ are the vertices appears right before and right after u∗}
to vertex types, and let RobTyp = (CC, AllocGraph(CC), NumOfCyc) be a robot type. Then,
CycTyp = (C, PaAllocC , RobTyp) is a cycle type if V (Graph(CC)) ∩ V (C) ∩ VC ̸= ∅.

We have the following notations.
For every VerTyp = (u∗, NeiSubsets) ∈ VerTypS, every NeiSub = {v, v′} ∈ NeiSubsets and

1 ≤ j ≤ 2|VC|, CycTypS(VerTyp, NeiSub, j) is the set of cycle types that assign NeiSub to
VerTyp exactly j times. For every VerTyp = (u∗, NeiSubsets) ∈ VerTypS, every NeiSub ∈
NeiSubsets and 1 ≤ j ≤ 2|VC| + |VC|2, RobTypS(VerTyp, NeiSub, j) is the set of robot types
that assign NeiSub to VerTyp exactly j times. Finally, we have the following equation:

Equation 3: Assigning Enough Subsets for Each Vertex Type. The equation is defined as
follows.
3. For every VerTyp = (u∗, NeiSubsets) ∈ VerTypS, and every NeiSub ∈ NeiSubsets,

2|VC|∑
j=1

∑
CycTyp∈CycTypS(VerTyp,NeiSub,j)

j · xCycTyp+

2|VC|+|VC|2∑
j=1

∑
RobTyp∈RobTypS(VerTyp,NeiSub,j)

j · xRobTyp ≥ xVerTyp.

4.1.4 The Correctness of The Reduction
We denote the ILP instance associated with Equations 1–6 by Reduction(G, vinit, k, B). Now,
we give a proof sketch for the correctness of the reduction:

▶ Lemma 4.8. Let G be a connected graph, let vinit ∈ V (G) and let k, B ∈ N. Then,
(G, vinit, k, B) is a yes-instance of CGE, if and only if Reduction(G, vinit, k, B) is a yes-
instance of the Integer Linear Programming.

Proof. Let xz, for every z ∈ VerTypS∪RobTypS∪CycTypS, be values satisfying Equations 1–
6. For every vertex type VerTyp = (u∗, NeiSubsets) and each NeiSub ∈ NeiSubsets, let
Alloc(VerTyp, NeiSub) be the set of every allocation of NeiSub to VerTyp by cycles or robots.
We arbitrary allocate each element in Alloc(VerTyp, NeiSub) to a vertex in u∗, such that every
vertex u ∈ u∗ of type VerTyp gets at least one allocation. Due to Equation 3, we ensure we
can do that. Then, we replace every u∗ ∈ V (Graph(CCi)) and every u∗ ∈ V (C) (for every
C ∈ Ci) by the u ∈ u∗ derived by the allocation. This ensures we covered every edge adjacent
to a vertex in V (G) \ VC. As seen in this overview, the other conditions of Lemma 3.4 hold.

For the reverse direction, let Ê1, . . . , Êk be multisets satisfying the conditions of Lemma 3.4.
For every 1 ≤ i ≤ k let (CCi, Ci) be an Êi-valid pair. Then, we first derive the vertex
type of each u ∈ V (G) \ VC, according to its equivalence class in EQ, and the set of
multisets derived from ((CCi, Ci))1≤i≤k (e.g. see Figure 4). Then, we derive the robot type
RobTyp = (CC, AllocGraph(CC), NumOfCyc) for each i ∈ [k]: (i) the skeleton CC is determined
by CCi (e.g., see Figure 3d)), (ii) NumOfCyc is determined by the number of cycle of each
length in Ci and (iii) the allocation of the multisets of Graph(CCi) is determined by the
vertex types of u ∈ V (Graph(CCi)) ∩ (V (G) \ VC) we have already computed. Then, for
every i ∈ [k] and every C ′ ∈ Ci, we determine the cycle type CycTyp = (C, PaAllocC , RobTyp)
of C ′: (i) C is determined by C ′ (we replace each u ∈ u∗ ∈ EQ in C ′ by u∗), (ii) RobTyp
is the robot type of i we have already computed, and (iii) PaAllocC is determined by the

IPEC 2023



22:14 Collective Graph Exploration Parameterized by Vertex Cover

vertex types of u ∈ V (C ′) ∩ (V (G) \ VC) we have already computed. Then, for every
z ∈ VerTypS ∪ RobTypS ∪ CycTypS, we define xz to be the number of elements of type z. As
seen in this overview, the values of the variables satisfy Equations 1–6. ◀

Observe that the number of variables is bounded by a function of |VC|, so we will get an
FPT runtime with respect to vc. Thus, we conclude the correction of Theorem 1.1.

4.2 Approximation Algorithm with Additive Error of O(vc)
Our algorithm is based on a greedy approach. Recall that, our new goal (from Lemma 3.4) is
to find k multisets Ê1, . . . , Êk such that for every 1 ≤ i ≤ k, vinit ∈ V (Graph(Êi)), Graph(Êi)
is connected and each u ∈ V (Graph(Êi)) has even degree in Graph(Êi). Now, assume that we
have a vertex cover VC of G such that G[VC] is connected and vinit ∈ VC, and let I = V \ VC.
We first make the degree of every vertex in I even in G, by duplicating an arbitrary edge for
vertices having odd degree. Observe that, after these operations, G may be a multigraph.

We initialize Ê1, . . . , Êk with k empty sets. We partition the set of edges of G with one
endpoint in I in the following manner. We choose the next multiset from Ê1, . . . , Êk in a
round-robin fashion and put a pair of edges, not considered so far, incident to some vertex
v ∈ I, in the multiset. This ensures that the degree of every vertex in I is even in each
multiset. Let Ê′

1, . . . , Ê′
k be multisets satisfying the conditions of Lemma 3.4. Then, due to

Condition 2 of Lemma 3.4, the degree of every vertex is even in every multiset Ê′
i. Thus,

the total number of edges (with repetition) incident to any vertex in Graph(Ê′
1 ∪ . . . ∪ Ê′

k)
is even. Therefore, there must be at least one additional repetition for at least one edge
of every vertex with odd degree in G. So, adding an additional edge to each vertex with
odd degree is “must” and it does not “exceed” the optimal budget. Then, we partition the
edges with both endpoints in VC, in a balanced fashion, as follows. We choose an edge, not
considered so far, and add it to a multiset with minimum size.

Observe that, after this step, we have that: i) every edge of the input graph belongs to
at least one of the multisets Êi, ii) the degree of each vertex of I in each multiset is even,
and iii) we have not exceeded the optimal budget. We still need to ensure that i) Graph(Êi)
is connected, for every i ∈ [k], ii) the degree of each vertex of VC in each multiset is even,
and iii) vinit ∈ V (Graph(Êi)) for every i ∈ [k]. Next, we add a spanning tree of G[VC] to each
of the Êi, in order to make Graph(Êi) connected and to ensure that vinit ∈ V (Graph(Êi)).
Lastly, we add at most |VC| edges, with both endpoints in VC, to every Êi in order to make
the degree of each u ∈ VC even in each of the multiset. Observe that the multisets Ê1, . . . , Êk

satisfy the conditions of Lemma 3.4. Moreover, we added at most O(|VC|) additional edges
to each Êi, comparing to an optimal solution.
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A W[1]-Hardness for CGE

In this section, we aim to prove the following theorem:

▶ Theorem 1.3. CGE is W[1]-hard with respect to k even on trees whose treedepth is bounded
by 3.
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We prove Theorem 1.3 by showing a reduction from Exact Bin Packing (see Defini-
tion 2.6).

First, we show that unary Exact Bin Packing is W[1]-hard with respect to k. It is
known that unary Bin Packing is W[1]-hard with respect to k [15]. So, we give a reduction
from Bin Packing to Exact Bin Packing in order to prove the following lemma:

▶ Lemma A.1. Unary Exact Bin Packing is W[1]-hard with respect to k.

Proof. Let (I, s, B, k) be an instance of Bin Packing problem. Let t = B ·k −
∑

i∈I s(i) and
let s′ : I ∪ {i1, . . . , it} → N be a function defined as follows. For every i ∈ I, s′(i) = s(i), and
for every iℓ ∈ {i1, . . . , it}, s′(iℓ) = 1. Observe that (I ∪ {i1, . . . , it}, s′, B, k) is an instance of
Exact Bin Packing. We show that (I, s, B, k) is a yes-instance of Bin Packing if and
only if (I ∪ {i1, . . . , it}, s′, B, k) is a yes-instance of Exact Bin Packing.

Assume that (I, s, B, k) is a yes-instance of Bin Packing. Let I1, . . . , Ik be a partition
of I into disjoint sets such that for every 1 ≤ j ≤ k,

∑
i∈Ij

s(i) ≤ B. For every 1 ≤ j ≤ k, let
tj = B −

∑
i∈Ij

s(i). Let I ′
1, . . . , I ′

k be a partition of {i1, . . . , it} into k disjoint sets such that
for every 1 ≤ j ≤ k, |I ′

j | = tj . Observe that there exists such a partition since
∑

1≤j≤k tj = t.
Clearly, I1 ∪ I ′

1, . . . , Ik ∪ I ′
k is a partition of I ∪ {i1, . . . , it} into disjoint sets such that for

every 1 ≤ j ≤ k,
∑

i∈Ij∪I′
j

s(i) = B. Therefore, (I ∪ {i1, . . . , it}, s′, B, k) is a yes-instance of
Exact Bin Packing.

Now, assume that (I ∪ {i1, . . . , it}, s′, B, k) is a yes-instance of Exact Bin Packing. Let
I1, . . . , Ik be a partition of I ∪ {i1, . . . , it} into disjoint sets such that for every 1 ≤ j ≤ k,∑

i∈Ij
s(i) = B. Observe that I1 \ {i1, . . . , it}, . . . , Ik \ {i1, . . . , it} is a partition of I into

disjoint sets such that for every 1 ≤ j ≤ k,
∑

i∈Ij
s(i) ≤ B. Therefore, (I, s, B, k) is a

yes-instance of Bin Packing.
Clearly, the reduction works in polynomial time when the input is in unary. Thus, since

unary Bin Packing is W[1]-hard with respect to k [15], unary Exact Bin Packing is
W[1]-hard with respect to k. ◀

A.1 Reduction From Exact Bin Packing to CGE
Given an instance (I, s, B, k) of Exact Bin Packing problem, denote by BinToRob(I, s, B, k)
the instance of CGE defined as follows. First, we construct the graph T as follows. For
each i ∈ I we create a star with s(i) − 1 leaves. We connect each such star with an edge
to a vertex r. Formally, V (T ) = {vi, vi

1 . . . , vi
s(i)−1 | i ∈ I} ∪ {r} and E(T ) = {{vi, vi

j} | i ∈
I, 1 ≤ j ≤ s(i) − 1} ∪ {{r, vi} | i ∈ I}. Now, we define BinToRob(I, s, B, k) = (T, r, k, 2B).
See Figure 5 for an example. Next, we prove the correctness of the reduction:

▶ Lemma A.2. Let (I, s, B, k) be an instance of Exact Bin Packing. Then, (I, s, B, k) is
a yes-instance if and only if BinToRob(I, s, B, k) is a yes-instance of CGE.

Proof. First, assume that (I, s, B, k) is a yes-instance. Let I1, . . . , Ik be a partition of
I into disjoint sets such that for every 1 ≤ j ≤ k,

∑
i∈Ij

s(i) = B. We prove that
BinToRob(I, s, B, k) = (T, r, k, 2B) is a yes-instance of CGE, by showing that there ex-
ist k multisets Ê1, . . . , Êk such that the conditions of Lemma 3.4 are satisfied. For every
1 ≤ j ≤ k, let Êj = {{vi, vi

t}, {vi, vi
t} | i ∈ Ij , 1 ≤ t ≤ s(i) − 1} ∪ {{vi, r}, {vi, r}}. Clearly,

r ∈ V (Graph(Êj)), Graph(Êj) is connected, and every vertex in Graph(Êj) has even de-
gree. Therefore, Conditions 1 and 2 are satisfied. In addition, since I = I1 ∪ . . . ∪ Ik,
we have that E ⊆ Ê1 ∪ . . . ∪ Êk, so Condition 3 is satisfied. Now, for every 1 ≤ j ≤ k,
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Figure 5 An illustration of a Exact Bin Packing instance, a solution (in sub-figure (a)) and
the equivalent instance of CGE constructed by the BinToRob function (in sub-figure (b)).

|Êj | = |{{vi, vi
t}, {vi, vi

t} | i ∈ Ij , 1 ≤ t ≤ s(i) − 1} ∪ {{vi, r}, {vi, r}}| =
∑

i∈Ij
2(s(i) − 1) +∑

i∈Ik
2 = 2

∑
i∈Ik

s(i) = 2B. Thus, Condition 4 is satisfied. Therefore, all the conditions of
Lemma 3.4 are satisfied, so BinToRob(I, s, B, k) is a yes-instance of CGE.

Now, we prove the reverse direction. Assume that BinToRob(I, s, B, k) = (T, r, k, 2B) is
a yes-instance of CGE. From Lemma 3.4, there exist k multisets Ê1, . . . , Êk such that the
conditions of Lemma 3.4 hold. Let 1 ≤ j ≤ k. We first show that every {u, v} ∈ Êj appears
at least twice in Êj . Let {u, v} ∈ Êj . We the following two cases:

Case 1: {u, v} = {vi, vi
t} for some i ∈ I and 1 ≤ t ≤ s(i) − 1. From Condition 2 of

Lemma 3.4, vi
t has even degree in Graph(Êj). Since {vi, vi

t} is the only edge having vi
t as an

endpoint in T , {vi, vi
t} appears an even number of times in Êj , and so it appears at least

twice in Êj .

Case 2: {u, v} = {vi, r} for some i ∈ I. From Condition 2 of Lemma 3.4, vi has even
degree in Graph(Êj). From Case 1, each {vi, vi

t} ∈ Êj appears an even number of times in
Êj . Therefore, since r is the only neighbor of vi other than vi

t, 1 ≤ t ≤ s(i) − 1, {vi, r}
appears an even number of times, which is greater or equal to 2, in Êj .

Now, observe that |E(T )| =
∑

i∈I s(i) = B · k, and from Condition 4 of Lemma 3.4,∑
1≤j≤k |Êj | ≤ 2B ·k. In addition, from Condition 3 of Lemma 3.4, (1): E(T ) ⊆ Ê1 ∪ . . .∪Êk.

So, since we have already proved that for every 1 ≤ j ≤ k, each {u, v} ∈ Êj appears at least
twice in Êj , we get that for every 1 ≤ j < j′ ≤ k, Êj ∩ Êj′ = ∅, and

∑
1≤ℓ≤k |Êℓ| = 2B · k;

in turn, for every 1 ≤ j ≤ k, |Êj | = 2B, and each {u, v} ∈ Êj appears exactly twice in Êj .
Moreover, from Conditions 1 and 2 of Lemma 3.4, for every 1 ≤ j ≤ k, r ∈ V (Graph(Êj))
and Graph(Êj) is connected. Therefore, for every 1 ≤ j ≤ k and i ∈ I, if vi ∈ V (Graph(Êj))
then {{vi, vi

t} | 1 ≤ t ≤ s(i) − 1} ∪ {r, vi} ⊆ Êj . Thus, for every 1 ≤ j < j′ ≤ k, (2):
V (Graph(Êj)) ∩ V (Graph(Êj′)) = {r}.

IPEC 2023
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Now, for every 1 ≤ j ≤ k, let Ij = {i ∈ I | vi ∈ V (Graph(Êj))}. By (1) and (2), I1, . . . , Ik

is a partition of I into disjoint sets. We show, that for every 1 ≤ j ≤ k,
∑

i∈Ij
s(i) = B.

Let 1 ≤ j ≤ k. Then,
∑

i∈Ij
s(i) =

∑
i∈Ij

|{{vi, vit
} | 1 ≤ t ≤ s(i) − 1} ∪ {r, vi}| = 1

2 |Ê′
j′ | =

1
2 · 2 · B = B. Therefore I1, . . . , Ik is a solution for (I, s, B, k), so (I, s, B, k) is a yes-instance
of Exact Bin Packing problem. This ends the proof. ◀

Clearly, the reduction works in polynomial time when the input is in unary. In addition,
observe that the treedepth of the tree, obtained by the reduction, is bounded by 3. Now,
recall that, by Lemma A.1, unary Exact Bin Packing is W[1]-hard with respect to k.
Thus, we conclude from Lemma A.2 the correctness of Theorem 1.3.
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