
Drawn Tree Decomposition: New Approach for
Graph Drawing Problems
Siddharth Gupta #

BITS Pilani, Goa Campus, India

Guy Sa’ar #

Ben Gurion University of the Negev, Beersheba, Israel

Meirav Zehavi #

Ben Gurion University of the Negev, Beersheba, Israel

Abstract
Over the past decade, we witness an increasing amount of interest in the design of exact exponential-
time and parameterized algorithms for problems in Graph Drawing. Unfortunately, we still lack
knowledge of general methods to develop such algorithms. An even more serious issue is that, here,
“standard” parameters very often yield intractability. In particular, for the most common structural
parameter, namely, treewidth, we frequently observe NP-hardness already when the input graphs
are restricted to have constant (often, being just 1 or 2) treewidth.

Our work deals with both drawbacks simultaneously. We introduce a novel form of tree
decomposition that, roughly speaking, does not decompose (only) a graph, but an entire drawing.
As such, its bags and separators are of geometric (rather than only combinatorial) nature. While the
corresponding parameter – like treewidth – can be arbitrarily smaller than the height (and width) of
the drawing, we show that – unlike treewidth – it gives rise to efficient algorithms. Specifically, we get
slice-wise polynomial (XP) time algorithms parameterized by our parameter. We present a general
scheme for the design of such algorithms, and apply it to several central problems in Graph Drawing,
including the recognition of grid graphs, minimization of crossings and bends, and compaction.
Other than for the class of problems we discussed in the paper, we believe that our decomposition
and scheme are of independent interest and can be further extended or generalized to suit even a
wider class of problems. Additionally, we discuss classes of drawings where our parameter is bounded
by O(

√
n) (where n is the number of vertices of the graph), yielding subexponential-time algorithms.

Lastly, we prove which relations exist between drawn treewidth and other width measures, including
treewidth, pathwidth, (dual) carving-width and embedded-width.

2012 ACM Subject Classification Theory of computation → Fixed parameter tractability; Human-
centered computing → Graph drawings; Theory of computation → Computational geometry

Keywords and phrases Graph Drawing, Parameterized Complexity, Tree decomposition

Digital Object Identifier 10.4230/LIPIcs.IPEC.2023.23

Related Version Full Version: https://arxiv.org/abs/2310.05471 [33]

Funding Siddharth Gupta: Supported by Engineering and Physical Sciences Research Council
(EPSRC) grant EP/V007793/1.
Guy Sa’ar : Supported in part by the Israeli Smart Transportation Research Center and by the
Lynne and William Frankel Center for Computing Science at Ben-Gurion University.
Meirav Zehavi: Supported by the European Research Council (ERC) grant titled PARAPATH.

© Siddharth Gupta, Guy Sa’ar, and Meirav Zehavi;
licensed under Creative Commons License CC-BY 4.0

18th International Symposium on Parameterized and Exact Computation (IPEC 2023).
Editors: Neeldhara Misra and Magnus Wahlström; Article No. 23; pp. 23:1–23:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:siddharthg@goa.bits-pilani.ac.in
https://orcid.org/0000-0003-4671-9822
mailto:saag@post.bgu.ac.il
mailto:meiravze@bgu.ac.il
https://orcid.org/0000-0002-3636-5322
https://doi.org/10.4230/LIPIcs.IPEC.2023.23
https://arxiv.org/abs/2310.05471
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2 Drawn Tree Decomposition: New Approach for Graph Drawing Problems

1 Introduction

Over the past decade, we witness an increasing amount of interest in the design of exact
exponential-time and parameterized algorithms for problems in Graph Drawing. For a few
illustrative examples, let us mention that this includes studies of crossing minimization [32,
37, 38], recognition of planar graph families such as upward planarity testing [16, 35] and
grid graph recognition [34], as well as recognition of beyond planar graph families [4], turn-
minimization [27], linear layouts such as books embeddings [5, 8], clustered planarity and
hybrid planarity [19, 40, 20], and bend minimization [24, 22]. For more information on
recent progress on these and other topics, we refer to the report [28] and surveys such as [48].
Unfortunately, still, we have very limited knowledge of general methods to develop exact
exponential-time and parameterized algorithms for problems in Graph Drawing.

An even more serious issue is that, for Graph Drawing problems, “standard” parameters
very often yield intractability. In particular, for the most common structural parameter,
namely, treewidth,1 we frequently observe NP-hardness already when the input graphs are
restricted to have constant (often, being just 1 or 2) treewidth. The same result holds even
for the larger parameter pathwidth. For example, Grid Recognition is NP-hard on graphs
of treewidth 1 (being trees) [7] or pathwidth 2 [34], Orthogonal Compaction is NP-hard
even on cycles [26] and hence on graphs of pathwidth (and treewidth) 2, Min-Area Planar
Straight-line Drawing is NP-complete on outerplanar graphs and hence on graphs of
treewidth 2 [9, 39], and Grid Upward Drawing is NP-complete on graphs of treewidth
1 (being trees) [1, 10]. In light of this, we must seek parameterizations that are larger (or
incomparable) to treewidth. Due to the nature of the problems at hand, it is natural to
seek parameters of geometric flavors. Here, perhaps, the first choice that comes to mind is
the height (or, rather, the minimum among the height and width) of the sought (or given)
drawing. In particular, we can easily observe that this parameter for planar orthogonal grid
drawings is bounded by Ω(tw), where tw is the treewidth of the drawn graph, and that it
gives rise to the use of dynamic programming. However, denoting the number of vertices by
n, we can also easily observe that this parameter can be as large as Ω(n) for ridiculously
simple planar orthogonal grid drawings (and graphs)! For example, consider the path drawn
in Figure 1a – here, already, both height and width are equal to (roughly) n/2.

Our work deals with both drawbacks mentioned above simultaneously. We introduce a
novel form of tree decomposition that, roughly speaking, does not decompose (only) a graph,
but an entire drawing. As such, its bags and separators are of geometric (rather than only
combinatorial) nature. We further discuss this concept (still informally but in more detail) in
Section 1.1 ahead. While the corresponding parameter – like treewidth – can be arbitrarily
smaller than the height (and width) of the drawing (e.g., for the aforementioned example
in Figure 1a, our parameter is a fixed constant), we show that – unlike treewidth – it gives
rise to efficient (that is, XP) algorithms. Specifically, we present a general scheme for the
design of such algorithms (described in Section 1.3), and apply it to several central problems
in Graph Drawing, including the recognition of grid graphs, minimization of crossings and
bends, and compaction (see Section 1.4). We believe that our new concept of geometric tree
decomposition is interesting on its own, and exploring the connections between it and notions
concerning (classical) tree decompositions is a promising research direction. Furthermore,
we believe that this concept and our scheme can be further extended or generalized to be
applicable to problems other than those discussed in this paper. Due to lack of space, several
concepts and proofs are deferred to the full version of this paper [33].

1 Definitions of standard terms and notations used in the Introduction can be found in Section A.

S. Gupta, G. Sa’ar, and M. Zehavi 23:3

(a) (b)

Figure 1 (a) A drawing of a path on n vertices with height and width (n − 1)/2. However, the
drawn treewidth is 16. (b) An illustration of a frame shown in orange with width 16.

1.1 The Concept of Drawn Tree Decomposition

Here, we discuss (informally) our main conceptual contribution: the introduction and study
of the concepts of drawn tree decomposition and drawn treewidth, which we believe to be
of independent interest. Then, in Section 1.2, we compare our parameter with several
seemingly related graph parameters. Later, in Sections 1.3 and 1.4, we discuss our main
technical contribution (which has been our initial motivation for these concepts): our general
algorithmic scheme and its applications to problems in Graph Drawing. Our focus is on a
class of rather general drawings of graphs on the Euclidean plane (allowing drawings of edges
to have both crossings and bends, as well as to consist of segments that are not necessarily
parallel to the axes), called polyline grid drawings. Roughly speaking, a polyline grid drawing
d of a graph G is a mapping of the vertices of G to distinct grid points (being points of the
form (i, j) where i, j ∈ Z) and edges to straight-line paths between their endpoints. That is,
the drawing of an edge is a simple curve that is the concatenation of straight-line segments
(e.g, see Figure 11e in Section A.2). Towards the (informal) definition of a drawn tree
decomposition ahead, we first introduce three critical terms: frame, cutter, and rectangular.

Frame. A frame is, simply, a straight-line cycle (defined analogously to a straight-line path
above) whose segments are axis-parallel (see the orange polygon in Figure 2). In other words,
it is a simple rectilinear polygon whose vertices lie on grid points.

For the definition of the width of our decomposition (presented later), we define the
width of a frame. Roughly speaking, the width of a frame f , denoted by width(f), is the
sum of measures of the complexities of (i) the frame itself, and (ii) the “way” in which the
drawing “traverses” the frame. For (i), we simply count the number of vertices of the frame
(ignoring “superfluous” vertices, being those where the angle between incident edges is of
180 degrees). For (ii), we regard the drawings of vertices and edges separately (and sum up
the two corresponding numbers). Specifically, for vertices, we simple count the number of
vertices drawn on the frame. However, for edges, the measure is somewhat more complex,
based on the notion of turning points (defined immediately); for each edge, we count the
number of its turning points on the frame, and, then, the measure is the sum (over all edges)
of these counters. We remark that some points on the plane might be counted multiple times
– at the extreme case, the same point might be (a) a vertex of the frame, (b) a point on which
a vertex of the graph is drawn, and (c) a turning point for one (or more) edges. We find this
multi-count to be justified: the more complicated the frame and the drawing are at a certain
point, the more that point “contributes” to the complexity of the measure.

IPEC 2023

23:4 Drawn Tree Decomposition: New Approach for Graph Drawing Problems

u1

u2

u3

u4

p1
p2

p3

p4
p5

p6

p7

Figure 2 The turning points of the black edge e = {u1, u2} in the orange frame f are
(p1, e), (p3, e), (p4, e), (p6, e) and (p7, e). Note that, (p2, e) and (p5, e) are not turning points in
f . Similarly, the turning points of the blue edge e′ = {u3, u4} in the frame f are (d(u3), e′), (p5, e′)
and (p6, e′). Note that (p5, e′) is a turning point in f , but (p5, e) is not a turning point in f .

Now, let us define the notion of a turning point. For this purpose, consider some edge
e = {u, v} of the graph and some point p on the frame. Then, roughly speaking, we refer to
(p, e) as a turning point if, when we traverse the drawing of e from u to v or from v to u,
we encounter p, and “immediately” before this encounter, we were in the strict interior or
exterior of the frame. Additionally, we refer to (p, e) as a turning point if u or v themselves
are drawn on p. An illustrative example is given in Figure 2.

For an example of the definition of the width of a frame, we refer to Figure 1b. Here,
the frame itself (being a rectangle) consists of exactly 4 vertices. Second, the path contains
exactly 4 vertices that are drawn on the frame. Third, every point on which one of these
vertices, say, v, is drawn is a turning point of 2 edges, being the two edges incident to v. So,
the width of the frame is 4 + 4 + 4 · 2 = 16.

Cutter. A cutter of a frame is, simply, a straight-line path whose segments are axis-parallel
and which intersects the frame in exactly two points, which are the endpoints of the cutter.
Later, we discuss the “futility” of two simpler definitions for a cutter. The utility of a cutter
of a frame f is, as its name suggests, in “cutting” f into (exactly) two frames f1 and f2.
Roughly speaking, we obtain one of f1 and f2 by the concatenation of the cutter with one
path among the two subpaths of f between the endpoints of the cutter, and we obtain the
other of f1 and f2 by the concatenation of the cutter with the other path among the two
subpaths of f between the endpoints of the cutter. For more intuition, we refer the reader to
Figure 3.

Rectangular. For the sake of intuition, the construction of a drawn tree decomposition may
be thought of as a recursive process where, for a given frame, we compute a cutter that cuts
it into two, and then proceed (recursively) with each of these two resulting frames. Then,
two questions arise: What is the initial frame, and when does this process terminate? For
the first question, the answer is simply the rectangular of the drawing (defined immediately).
For the second question, the answer is even simpler – we stop when the current frame does
not contain any grid point in its strict interior. Roughly speaking, the rectangular of a
drawing is the (unique) frame whose interior is minimized among all frames whose “shape”
is a rectangle and which contain the given drawing in their strict interior (see Figure 4).

S. Gupta, G. Sa’ar, and M. Zehavi 23:5

f1(c) f2(c)

c

f

Figure 3 An illustration for a cutter c, shown in blue, of a frame f , shown in orange, and its
associated frames f1(c) and f2(c).

Figure 4 The frame shown in purple is Rd where d is the drawing inside the frame.

Drawn Tree Decomposition. At the heart of the concept of a drawn tree decomposition,
lies our definition of a frame-tree (abbreviation for tree of frames). Informally, for a graph
G and a polyline grid drawing d of G, a frame-tree is a pair (T , α) where T is a binary
rooted tree and α maps each vertex of T to a frame, such that: (i) the root is mapped to
the rectangular of d; (ii) for every internal vertex v of T , there exists a (unique) cutter cv of
α(v) so that the frames mapped to the children of v are those obtained by cutting α(v) by
cv; (iii) the leaves of T (and none of the internal vertices of T) are mapped to frames whose
strict interior does not contain any grid point. For an illustrative example, see Figure 5.

Now, for the definition of a drawn tree decomposition, we consider a frame-tree (T , α).
Then, we “enrich” the frame-tree by the introduction of an additional mapping, β, from
the vertex set of T to subsets of vertices of G. In particular, we define β so that we can:
(P1) prove that (T , β) is a tree decomposition (this proof is slightly technical, based on case
analysis); (P2) prove that, for every vertex v of T , |β(v)| is at most twice the sum of the
widths of the frames of v and its two children (if they exist). For the definition of β, we
(next) define the set of vertices associated with a frame, and the set of vertices associated
with a cutter of a frame. Then, for a vertex v of T , β(v) is simply the union of the set of
vertices associated with α(v), and the set of vertices associated with the cutter cv of α(v).
Correspondingly, the triple (T , α, β) is a drawn tree decomposition.

So, consider a graph G, a polyline grid drawing d of G, a frame f and a cutter c of f .
Then, the set of vertices associated with f is the union of the set of vertices of G that d

draws on f and the set of endpoints of edges of G whose drawing (by d) is separated by f –
that is, edges having one endpoint in the strict interior of f and the other endpoint in the
strict exterior of f (see Figure 6a). Similarly, the set of vertices associated with c is the union
of the set of vertices of G that d draws on c and the set of endpoints of edges of G whose
drawing (by d) is separated by c – that is, edges having one endpoint in the strict interior of
one of the frames obtained by cutting f by c, and the other endpoint in the strict interior of
the other frame obtained by cutting f by c (see Figure 6b).

IPEC 2023

23:6 Drawn Tree Decomposition: New Approach for Graph Drawing Problems

r

a1 a2

v′b

v

a

(a) A frame-tree T .

fa

ca

fa
1 (ca) fa

2 (ca)

(b) The frame fa, the cutter ca

and the sub-frames fa
1 (ca) and

fa
2 (ca) associated with the ver-

tex a of T .

fa

ca

ca2

ca1

(c) The cutters ca1 and ca2 asso-
ciated with the children a1 and
a2 of a in T , respectively.

fa

ca

cb
ca2

ca1

(d) The cutter cb associated
with the child b of a1 in T .

fa

ca

cb
ca2

ca1

fv fv′

(e) The frames fv (bound-
ing the brown region) and
fv′

(bounding the pink region)
associated with the vertices v
and v′ of T , respectively.

fa

ca

cv
cv′

fv fv′

(f) The cutters cv and cv′ asso-
ciated with the vertices v and v′

in T , respectively.

Figure 5 Example of frames and cutters of a frame-tree. For clarity, the polyline grid drawing is
not shown.

Drawn Treewidth. The width of a drawn tree decomposition (T = (VT , ET), α, β) is
the maximum width of its frames, that is, maxv∈VT

width(α(v)). Accordingly, the drawn
treewidth of a polyline grid drawing d of a graph G is the minimum width of a drawn tree
decomposition of d. Notably, due to (P1) and (P2) mentioned above, we can easily conclude
that the treewidth of G is at most 6 times its drawn treewidth.

We remark that the usage of frames bears similarity to that of cycle separators of planar
graphs (being a central player in proofs of the planar separator theorem; see, e.g., [3, 42]).
However, the corresponding widths (drawn treewidth versus treewidth) can be critically
different: While treewidth is bounded from above by the order of drawn treewidth, we have
already pointed out that for various problems where treewidth yields intractability, drawn
treewidth does not – this, of course, implies that treewidth can, often, be arbitrarily smaller
than drawn treewidth; for a concrete example, see Figure 7. Further, treewidth depends
only on the graph, while drawn treewidth depends (as desired) on the drawing; for example,
notice that Figures 1a and 7a depict the same graph, but the corresponding drawings have
radically different drawn treewidths.

Besides its above-mentioned relation to treewidth, drawn treewidth for planar orthogonal
grid drawings can also be related to height (and width). On the one hand, we prove the
desirable property that – like treewidth – drawn treewidth is bounded from above by the order

S. Gupta, G. Sa’ar, and M. Zehavi 23:7

u3

u4

u5 u6

u1

u2

u7

u8

(a)

u1 u2

u3

u4

u5

u6

u7 u8

u9
u10

(b)

Figure 6 Example of vertices associated with a frame and a cutter. (a) The edge {u5, u6} is the
only edge separated by the orange frame. The vertices associated with the orange frame are u3, u5

and u6. (b) The vertices associated with the blue cutter of the orange frame are u1, u2 and u9.

(a) (b)

Figure 7 (a) A path P on n vertices and a frame f shown in orange. (b) A grid graph G on the
same set of vertices and the frame f shown in orange. Consider a frame, say f , in P with width w.
Observe that f is also a frame in G. Moreover, the width of f in G is at most 3w as every vertex
has exactly 2 more edges in G compared to P so the vertex may be counted 2 more times in the
width of f in G as the turning points of those 2 extra edges. As treewidth is a lower bound for
drawn treewidth and the treewidth of a grid graph is

√
n, the drawn treewidth of P is Ω(

√
n) (while

its treewidth is 1).

of the minimum among the height and width of the drawing. Notably, various central graph
width measures do not have this property. For example, one of the most commonly used
relaxations of pathwidth is treedepth (see, e.g., [18] for information on treedepth); however,
the treedepth of an n-vertex path is ⌈log2(n + 1)⌉, while it can be easily drawn so that the
height (or, symmetrically, width) of the drawing is 1. On the other hand, we have already
observed that the drawn treewidth can be arbitrarily smaller than the minimum among the
height and width of a drawing (see Figure 1a).

Bounds for Specific Types of Drawings. For some classes of drawings (being subclasses of
polyline grid drawings), we are able to prove that drawn treewidth is bounded by a sublinear
function of n (the number of vertices of the graph). For example, for grid drawings – which
are mappings of vertices to distinct grid points and of edges to unit-length straight lines
between their endpoints (see Figure 11b in Section A.2) – we prove that the drawn treewidth
(and even the straight-line drawn treewidth, defined ahead) is bounded by O(

√
n). More

generally, we prove that given a graph G and an orthogonal grid drawing d of G, drawn
treewidth of d is O(∆ ·

√
∆ · ℓ · n · maxInt), where (i) ∆ is the maximum degree in G, (ii) ℓ is

the average length of the edges of G in d, and (iii) maxInt is the maximum number of edges
and vertices intersected in a grid point in d.

IPEC 2023

23:8 Drawn Tree Decomposition: New Approach for Graph Drawing Problems

t

t

t

t

Figure 8 Example of a rectilinear drawing of a graph on n vertices with t = Ω(n). The
horizontal/vertical drawn treewidth of this drawing is Ω(n).

At this point, a short discussion is in order. One of the most well-known results in graph
theory about planar graphs is that every n-vertex planar graph has pathwidth (and hence
treewidth) bounded by O(

√
n) [13]. In particular, this result and generalizations thereof

have found impactful applications in algorithm design, particularly of parameterized and
approximation algorithms. In fact, (almost) all subexponential-time algorithms for problems
on planar graphs rely on it. Here, a central component in several proofs is the planar
separator theorem [3, 41, 42] (briefly mentioned earlier), which states that every n-vertex
planar graph contains an O(

√
n)-sized subset of vertices (called separator) whose removal

from the graph yields connected components that are each of size at most 2n/3. Thus,
due to the above-mentioned sub-quadratic bound on drawn treewidth for grid drawings,
the following conjecture seems tempting: the drawn treewidth of any planar polyline grid
drawing is O(

√
n). However, we observe that the statement analogous to the planar separator

theorem does not hold in our case, where our notion of a separator is that of a cutter and
their sizes is, in particular, bounded from below by the size of the set of vertices associated
with the cutter.

Drawbacks of Simpler Definitions for a Cutter. Lastly, we present and discuss two
alternative restricted forms of cutters: horizontal (or vertical) cutters and straight-line
cutters. A horizontal cutter (resp., vertical cutter) of a frame is a cutter of that frame
where all vertices have the same y-coordinate (resp., x-coordinate). Then, a straight-
line cutter is a cutter that is either horizontal or vertical. The replacement of cutters
by horizontal/vertical cutters or straight-line cutters yields corresponding definitions of
horizontal/vertical drawn tree decompositions and straight-line drawn tree decompositions,
and, accordingly, of horizontal/vertical drawn treewidth and straight-line drawn treewidth.
In particular, when we use these restricted forms of cutters, every frame has the shape of a
rectangle. In turn, this significantly simplifies the visualization (and, possibly, also the use)
of these concepts.

Unfortunately, horizontal/vertical drawn treewidth and even straight-line drawn treewidth
can be arbitrarily larger than drawn treewidth. To see this, let us first consider horizontal
cutters (or, symmetrically, vertical cutters), and the graph depicted in Figure 8. Notably,
this graph, in fact, admits exactly one grid drawing (up to isomorphism) – the one depicted
in the figure. Now, notice that the horizontal drawn treewidth of this drawing is Ω(n). To see

S. Gupta, G. Sa’ar, and M. Zehavi 23:9

t t

t

t

(a)

t t

t

t

(b)

Figure 9 (a) Example of a rectilinear drawing of a graph on n vertices with t = Ω(n). The
straight-line drawn treewidth of this drawing is Ω(n). (b) Example of a cutter used in the drawn
tree decomposition of width O(1).

this, notice that, for any horizontal tree decomposition and for each of the three horizontal
straight lines in the “middle” of the drawing, the rooted tree will have to contain a vertex
whose associate cutter “coincides” with that line. However, the drawn treewidth of this
drawing is only O(1), and, more generally, recall that we prove that for any grid drawing,
the straight-line drawn treewidth (and hence also the drawn treewidth) is O(

√
n). So, for

example, by using only horizontal (or vertical) cutters, we will not be able to attain the
subexponential-time algorithm for Grid Recognition mentioned in Section 1.3.

Nevertheless, the straight-line treewidth of the drawing in Figure 8 can be seen to
be bounded by O(1) as well. However, regarding straight-line cutters, we consider the
graph depicted in Figure 9a. Notably, every rectilinear grid drawing of this graph (being a
generalization of a grid drawing, where edges are straight-lines of arbitrary lengths) can be
obtained from the one depicted in the figure by “stretching” the drawings of some of its edges
(and up to isomorphism). Now, notice that the straight-line drawn treewidth of this drawing
is Ω(n). To see this, notice that every axis-parallel straight-line that intersects this graph,
intersects the drawings of at least Ω(n) distinct vertices and edges of this graph. However,
the drawn treewidth of this drawing is only O(1). To see this, consider the usage of cutters
as the one depicted in Figure 9b.

1.2 Comparison with Other Graph Width Parameters
Recall that, drawn tree decomposition is based on decomposing a given polyline grid drawing
of a graph. Therefore, the drawn treewidth is dependent on the polyline grid drawing of
the graph. For e.g., Figures 1a and 7a depicts two different drawings of the same path
which have different drawn treewidth. As path has a unique embedding, this also shows
that different drawings of the same embedded graph may have different drawn
treewidth. To the best of our knowledge, our parameter is the only one that
depends on the drawing (rather than the embedding or just the graph). Thus,
we compare and discuss the differences between the drawn treewidth of a given polyline
drawing of the graph and some seemingly related graph width parameters, namely: treewidth,
pathwidth, carving-width, dual carving-width and embedded-width. Note that, the dual
carving-width and the embedded-width is only defined when the given graph is a plane graph.
Specifically, we prove the following theorem.

IPEC 2023

23:10 Drawn Tree Decomposition: New Approach for Graph Drawing Problems

▶ Theorem 1.1. Given a graph G and a polyline drawing d of G, we have the following.
(a) The treewidth of G is at most 6 times the drawn treewidth of d. Moreover, the drawn

treewidth of d might be arbitrary larger than the treewidth of G.
(b) The pathwidth of G and the drawn treewidth of d are incomparable.
(c) The drawn treewidth of d might be arbitrary larger than the carving-width of G.
(d) If G is a plane graph, the dual carving-width and the embedded-width of G might be

arbitrary larger than the drawn treewidth of d.

We now give the proof of the above theorem. Let ∆, tw, pw, and cw be the maximum
degree, treewidth, pathwidth and the carving-width of G, respectively. Further, if G is a
plane graph, let ℓ, dcw and emw be the maximum face size, the dual carving-width (the
carving width of the dual graph), and the embedded-width of G, respectively.

Comparison with Treewidth. As mentioned earlier in Section 1.1, we prove that given a
graph and a polyline drawing of it, tw is at most 6 times the drawn treewidth. Moreover,
we also show that given a graph and a polyline drawing of it, the drawn treewidth of the
drawing might be arbitrary larger than the treewidth of the graph (see Figure 7).

Comparison with Pathwidth. In Figure 10, we have a rectilinear grid drawing of a binary
tree. By using cutters as illustrated in the figure (in orange), we can get a drawn tree
decomposition of constant width. In particular, one can see that each cutter intersects a
constant number of edges and vertices. Since we use only straight cutters, and the maximum
degree of the graph is 3, we conclude that the width of each frame in such a drawn tree frame
is bounded by a constant. Therefore, we get that the drawn treewidth of the drawing is
bounded by a constant. Observe that this example can be expanded to a binary tree of any
size. Furthermore, the pathwidth of a binary tree with n vertices is Ω(log2(n)). So, given a
graph and a polyline drawing of it, the pathwidth of the graph might be arbitrary larger
than the drawn treewidth of the drawing.

On the other hand, Grid Recognition is NP-hard on graphs of pathwidth 2, and we
show in this paper that the problem is XP with respect to drawn treewidth. So, given a graph
and a polyline drawing of it, the drawn treewidth of the drawing might be arbitrary larger
than the pathwidth of the graph. Thus, we conclude that the two parameters, pathwidth
and drawn treewidth, are incomparable.

Comparison with Carving-width, Dual Carving-width and Embedded-width. It is known
that cw ≤ ∆(tw + 1) [11]. As the Grid Recognition problem is NP-hard even for binary
trees, we get that it is NP-hard even for graphs of carving-width at most 6. In this paper,
we show that the problem is XP with respect to drawn treewidth. So, given a graph and a
polyline drawing of it, the drawn treewidth of the drawing might be arbitrary larger than
the carving-width of the graph.

If the given graph is plane, it is known that ℓ ≤ dcw and ℓ ≤ emw [20]. Therefore, we get
that both the dual carving-width and the embedded-width of a path are at least the size of
its vertex set. In this paper, we show that there exists a drawing of any path with drawn
treewidth at most 16 (see Figure 1b). So, given a plane graph and a polyline drawing of it,
the dual carving-width and the embedded-width of the graph might be arbitrary larger than
the drawn treewidth of the drawing. Thus, we conclude that drawn treewidth differs from
carving-width, dual carving-width and embedded-width.

S. Gupta, G. Sa’ar, and M. Zehavi 23:11

(a) (b)

(c) (d)

Figure 10 Example of a rectilinear drawing (in black) of a binary tree on n vertices. The
rectangular is shown in orange. Examples of cutters are shown in blue, green, pink, yellow, grey and
brown. Each one of them intersects O(1) vertices and edges. Overall, the pathwidth of the tree is
Ω(log n), while the drawn treewidth of this drawing is O(1).

1.3 Our Scheme

Here, we present (informally) our general scheme for the design of algorithms for problems in
Graph Drawing parameterized by the drawn treewidth of the sought drawing (that should be,
in particular, a polyline grid drawing), based on dynamic programming. For the clarity of the
discussion, we first introduce the four main definitions required for the scheme and its proof
of correctness. Then, we discuss the usage of our scheme – specifically, which two procedures
the user should design in order to apply the scheme as a black box. Afterwards, we specify
the properties that a problem should satisfy so that our scheme will solve it correctly, and
the running time that will be attained. Lastly, we present some technical details concerning
the scheme itself, that is, how it is executed.

IPEC 2023

23:12 Drawn Tree Decomposition: New Approach for Graph Drawing Problems

Key Players: Info-Frames, Info-Cutters, Splitting and Glueing.
Info-Frames. The most basic definition required for our scheme is that of an info-frame.
Briefly, an info-frame encodes information about the “behaviour” of the restriction of some
drawing d to the interior of some particular frame f . For that purpose, the info-frame consists
of five components, where the first one is, simply, the frame f . The second component is
a drawing df that specifies the drawings of the vertices and edges (by d) of the graph on
f itself. More precisely, df specifies which vertices of the graph are drawn on f and where
are they drawn on f . Additionally, for every edge e of the graph, it specifies which are the
turning points of e on f and where are these turning points drawn on f . Moreover, for the
aforementioned turning points, it specifies the order in which they are encountered (when we
“walk” along the drawing of e from one end to the other), and for each maximal subcurve of
the drawing of e that does not contain a turning point internally, it specifies whether this
subcurve is drawn on f (i.e., being a subcurve of f as well), and if yes, then it specifies the
drawing of this subcurve (for which, knowing the drawings of its endpoints, we have only
two options).

The third and fourth components, denoted by Uf and Ef , concern the strict interior of
f . Specifically, Uf specifies which vertices of the graph are drawn strictly inside f . As for
Ef , for every edge e of the graph and for each maximal subcurve of the drawing of e that
does not contain a turning point internally, it specifies whether this subcurve is drawn in
the strict interior of f (except for, possibly, the endpoints of the curve). We remark that
the number of “sensible” choices for Uf and Ef is much smaller than it might appear to
be at first glance, supposing that the graph at hand is connected. The fifth component,
roughly speaking, describes the “angles” in which drawings of edges cross f using straight
line segments attached to turning points. Such information is necessary, for example, to
ensure that some subcurves corresponding to the drawings of the same edge lie in a single
straight line, so that no bend – if forbidden by the problem at hand – occurs.

Importantly, the definition of an info-frame is independent of a specific drawing, being an
“abstract” tuple of five components. Every drawing that can be described by the tuple (as
discussed above) is said to be a drawing of the info-frame. So, one info-frame may describe
multiple drawings, or none at all. We note that for an “abstract” five-component tuple
to be an info-frame, it should satisfy various (considerably technical) properties, which, in
particular, any info-frame that does describe at least one drawing must satisfy. On the one
hand, these properties bound the number of possible info-frames, and, on the other hand,
they are also used in the proof of correctness of our scheme.

Lastly, observe that the restriction of some drawing d to the interior of some particular
frame f is not a drawing of a graph. Indeed, some edges are drawn (by d) partially in the
interior of f and partially in the strict exterior of f . However, if we “enrich” the graph by
placing “virtual” vertices on turning points, then the restriction of d to the interior of f will
be a drawing of a graph (being a subgraph of the enriched graph). So, for technical reasons,
this is exactly what we do. For this purpose, we define and work with so-called G⋆-drawings;
however, to keep the overview short and simple, we will not discuss G⋆-drawings and related
technical terms in this overview.

Info-Cutters. Just as we use an info-frame to encode information about the “behaviour”
of a drawing d with respect to a frame f , we use an info-cutter of an info-frame to encode
information about the “behaviour” of d with respect to a cutter c of f . Rather than directly
describing how d is drawn on c and how d is “split” by c inside f , we find it easier to indirectly
describe this information by defining an info-cutter based on two info-frames corresponding to
the frames obtained by cutting f with c (later, for the dynamic programming implementation,

S. Gupta, G. Sa’ar, and M. Zehavi 23:13

we can thus immediately know to which already computed entries to refer). Observe that, in
particular, the two frames being part of these two info-frames contain c, and, thus, these two
info-frames capture the aforementioned information.

To be more precise, an info-cutter C of an info-frame F , where the first component of
F is some frame f , is a triple (c, F1, F2), where, in particular, c is a cutter of f , and F1
and F2 are info-frames for the two frames obtained by cutting f with c. Additionally, for
such a triple to be an info-cutter, it should satisfy (considerably technical) properties, which,
in particular, any info-cutter that does describe at least one drawing must satisfy. Very
briefly, these properties validate consistency between the information described by F , F1 and
F2. This is more complicated than it might appear to be at first glance, since, even on the
cutter c, F1 and F2 might describe the existence of different virtual vertices (having different
turning points). For the sake of simplicity, we do not discuss these details in the overview.

Splitting and Glueing. First, let us consider the splitter function, which, for our scheme,
is used only for the proof of correctness (where its input is assumed to contain a subdrawing
of a hypothetical solution drawing). Given an info-frame F whose first component (being a
frame) is f , a drawing d restricted to the interior of f that is compatible with the description
encoded by F , and a cutter c of f , the splitter function returns an info-cutter C = (c, F1, F2)
and two drawings, d1 and d2. Let f1 (f2) be the first component of F1 (F2). Briefly, we define
the output such that d1 and d2 would be the subdrawings of d restricted to the interiors of
f1 and f2, respectively, and F1 and F2 would be the info-frames that describe d1 and d2,
respectively.

The glue function is, intuitively, the “inverse” of the split function, and it is used
algorithmically in our scheme. Its input consists of an info-frame F , an info-cutter C =
(c, F1, F2) of F , a drawing d1 of F1 and a drawing d2 of F2. Roughly speaking, this function
aims to “glue” d1 and d2 into a single drawing d that is restricted to the interior of f , being
the first component of F , and that should be compatible with the description encoded by F ;
of course, this operation might be impossible, and then the function simply announces that.
Among other proofs concerning these functions, we show, in particular, that the specific way
in which we define the splitter and glue functions (not described in the overview) ensures
that, if we apply the glue function on an output of the splitter function, we are able to
reconstruct the drawing given as input to the splitter function.

The User’s Point of View. For the execution of the scheme, we expect the user to provide
four components: some universe denoted by INF, and three algorithmic procedures (that will
be defined immediately). All of these components are problem-dependent.

The first procedure, termed classifier and denoted by Classifer, is given an info-frame
F and a corresponding drawing d, and it returns an element from INF. Intuitively, this
element describes the equivalence class of d. So, we say that two drawings corresponding
to the same info-frame are equivalent if the classifier associates them with the same
element.
The second procedure, termed classifier algorithm, is given an info-frame F , an info-cutter
C = (c, F1, F2) of F and I1, I2 ∈ INF, and it returns I ′ ∈ INF such that: For any two
drawings d1 and d2 corresponding to F1 and F2, respectively, such that Classifier(F1, d1) =
I1 and Classifier(F2, d2) = I2, we have Classifier(F, d) = I ′ where d = Glue(F, C, d1, d2).
In particular, notice that any two drawings of the same two equivalence classes always
yield (when being glued) a drawing of the same equivalence class – this justifies our usage
of the term equivalence in this context.

IPEC 2023

23:14 Drawn Tree Decomposition: New Approach for Graph Drawing Problems

The third procedure, termed leaf solver, is given an info-frame F whose frame does not
contain any grid point in its strict interior, and for every I ′ ∈ INF, it returns “yes” if
and only if there exists a drawing d corresponding to F such that Classifier(F, d) = I ′.
Practically, we require this procedure to solve the basis of our dynamic programming
computation, corresponding to info-frames whose frames do not contain any grid point in
their strict interiors.

The scheme, once given these components, can be executed in a black box fashion. For
the sake of simplicity of the overview, we do not discuss the technical details of the execution
itself (as a white box) here.

To Which Type of Problems Does Our Scheme Apply? Roughly speaking, we prove that
our scheme can be applied to any graph drawing problem Π such that:
1. Every instance of Π contains, in particular, a connected graph G, dimensions h and w for

the sought drawing (which are, usually, bounded from above by the number of vertices n

of G), and the parameter k (being any non-negative integer).
2. The objective is to determine whether G admits a polyline grid drawing bounded by

rectangle of dimensions h × w, whose drawn treewidth is at most k, and that satisfies
various problem-specific properties (for some examples, see Section 1.4).

3. The user can design the three algorithmic procedures discussed above.

For any such problem Π, we prove that the runtime of the scheme is bounded by

O(k · h · w · n)O(k) · |INF|O(1) ·
(

2O(∆·k) · T2 + T3
)

,

where T2 and T3 bound the runtimes of the second and third procedures provided by the
user, and ∆ is the maximum degree of G. In particular, if h, w, |INF|, T2 and T3 can be
bounded by nO(1) (which is the case for many applications, such as grid recognition and
orthogonal compaction), then the runtime above simplifies to nO(k), that is, we obtain an
XP-algorithm.

1.4 Applications of Our Scheme to Problems in Graph Drawing
For most of the problems considered in this paper, the time complexity of our scheme can be
bounded by nO(k), where k is the input parameter that upper bounds the drawn treewidth
of the output drawing. We remark that the formal definitions of these problems are relegated
to Section A.3.

Grid Recognition. We first consider the relatively simple Grid Recognition problem in
order to demonstrate the application of our scheme. Here, given a (connected) graph G, the
objective is to determine whether G is a grid graph, that is, whether it admits a grid drawing.
The Grid Recognition problem was first proved to be NP-hard in 1987, on ternary trees
of pathwidth 3 [7]. Two years later in 1989, the problem was proved to be NP-hard even on
binary trees [31]. Recently in 2021, the problem was proved to be NP-hard even on trees of
pathwidth 2 [34]. In the same paper, it was also proved that the problem is polynomial time
solvable on graphs of pathwidth 1. A year later in 2022, it was proved that even if we require
all the internal faces of the drawing to be rectangles, the problem is still NP-hard even for
biconnected graphs [2]. In the same paper, it was also proved that if we require all the faces
of the drawing to be rectangles (including outer face), the problem is cubic time solvable.

S. Gupta, G. Sa’ar, and M. Zehavi 23:15

As we deal with the parameterized version of this problem where the parameter is the
drawn treewidth of the sought drawing (or, more precisely, an upper bound on it), we are
also given k as input. We prove the following result.

▶ Theorem 1.2. There exists an algorithm that solves the Grid Recognition problem in
time nO(k).

Since for grid drawings, we also prove that k ≤ O(
√

n), we get the following corollary.

▶ Corollary 1.3. There exists an algorithm that solves the Grid Recognition problem in
time nO(

√
n).

Thus, we obtain a subexponential-time algorithm for Grid Recognition, matching the
running time of the current best known algorithm for this problem [21].

Crossing and Bend Minimization. For our second application, we study a variant of the
Crossing Minimization problem. The Crossing Minimization problem is one of the
most fundamental graph layout problems. It was shown to be NP-complete by Garey and
Johnson in 1983 [29]. Later, it was proved to be NP-complete even on graph of maximum
degree 3 [36] and also on almost planar graphs which are graphs that can be made planar by
removing a single edge [15]. It was also shown that the problem remains NP-hard even if the
cyclic order of the neighbours around each vertex is fixed and to be respected by the resulting
drawing [44]. On the positive side, it is known the problem is FPT with respect to the
number of crossings [32, 38] and also with respect to the vertex cover [37]. There are many
other variants of this problem which are studied in the literature. One of them concerns
with minimizing the number of pairwise crossing edges in any straight-line drawing of the
graph. This problem is known to be NP-hard [12] (and even ∃R-complete [46]). For more
information about the crossing minimization and its variants, we refer to the survey [48].

A related problem is the Bend Minimization problem. Given a graph G, the Bend
Minimization problem asks for an orthogonal grid drawing of G with minimum number
of total bends. The problem was proved to be NP-complete in 2001, even when there are
no bends [30]. On the positive side, if the input graph is plane, the problem can be solved
in polynomial time [47]. When the input graph is not planar, there are polynomial time
algorithms for subclasses of planar graphs, namely planar graphs with maximum degree
3 [17, 6, 25, 45] and series-parallel graphs [49].

We study the Straight-line Grid Crossing Minimization problem where the sought
drawing should be a straight-line grid drawing. Here, given a (connected) graph G and
h, w ∈ N, the objective is to determine a straight-line grid drawing of G bounded by a
rectangle of dimension h × w with minimum number of crossings, if one exists. Similar to
the previous example, as we study the parameterized version of this problem, we are also
given k as input. We prove the following result.

▶ Theorem 1.4. There exists an algorithm that solves Straight-line Grid Crossing
Minimization problem in time O((k · h · w · n)O(k) · 2O(∆·k)), where ∆ is the maximum degree
of the input graph.

More generally, our scheme can be applied to a very wide class of problems of such flavor;
in particular, every problem where:

The input consists of (some or all of) the following: a graph G; cross : E(G) → N0 ∪ ∞;
bend : E(G) → N0 ∪ ∞, and C, B, k ∈ N0 ∪ {∞}. Here, E(G) is the edge set of G, and
N0 = N ∪ {0}.

IPEC 2023

23:16 Drawn Tree Decomposition: New Approach for Graph Drawing Problems

The objective is to determine whether G admits a drawing that is (i) a grid drawing, or
(ii) a rectilinear drawing, or (iii) an orthogonal grid drawing, or (iv) a straight-line grid
drawing, or (v) a polyline grid drawing, such that:

For every edge e ∈ E(G), the drawing of e has at most cross(e) crossings and at most
bend(e) bends.
In total, we have at most C crossings and at most B bends.

Further, the scheme can be applied to various variants of the above generic problem that
were studied in the literature. For example, we can specify, for every edge, whether it should
be crossed an even or odd number of times. Similarly, we can also consider the weighted
crossing number.

Orthogonal Compaction. Lastly, we note that our scheme can also be applied to problems
of flavors quite different than the above. As an example, we consider the Orthogonal
Compaction problem. Here, given a planar orthogonal representation H of a connected
planar graph G, the objective is to compute a minimum-area drawing of H. The Orthogonal
Compaction problem was first proved to be NP-hard on general graphs in 2001 [43]. Later,
it was shown that the problem is NP-hard even on cycles [26], ruling out an FPT algorithm
with respect to treewidth, unless P=NP. On the positive side, it was proved that the problem
is linear time solvable for a restricted class of planar orthogonal representation [14]. Recently,
it was also shown that the problem is FPT with respect to number of “kitty corner vertices”,
a parameter central to the problem [23].

Similar to the previous examples, as we study the parameterized version of this problem,
we are also given k as input. We prove the following result.

▶ Theorem 1.5. There exists an algorithm that solves the Orthogonal Compaction
problem in time nO(k).

References
1 Hugo A. Akitaya, Maarten Löffler, and Irene Parada. How to fit a tree in a box. Graphs

Comb., 38(5):155, 2022. doi:10.1007/s00373-022-02558-z.
2 Carlos Alegría, Giordano Da Lozzo, Giuseppe Di Battista, Fabrizio Frati, Fabrizio Grosso,

and Maurizio Patrignani. Unit-length rectangular drawings of graphs. In Patrizio Angelini
and Reinhard von Hanxleden, editors, Graph Drawing and Network Visualization - 30th
International Symposium, GD 2022, Tokyo, Japan, September 13-16, 2022, Revised Selected
Papers, volume 13764 of Lecture Notes in Computer Science, pages 127–143. Springer, 2022.
doi:10.1007/978-3-031-22203-0_10.

3 Noga Alon, Paul D. Seymour, and Robin Thomas. Planar separators. SIAM J. Discret. Math.,
7(2):184–193, 1994. doi:10.1137/S0895480191198768.

4 Michael J. Bannister, Sergio Cabello, and David Eppstein. Parameterized complexity of
1-planarity. Journal of Graph Algorithms and Applications, 22(1):23–49, 2018.

5 Michael J. Bannister and David Eppstein. Crossing minimization for 1-page and 2-page
drawings of graphs with bounded treewidth. Journal of Graph Algorithms and Applications,
22(4):577–606, 2018.

6 Giuseppe Di Battista, Giuseppe Liotta, and Francesco Vargiu. Spirality and optimal orthogonal
drawings. SIAM J. Comput., 27(6):1764–1811, 1998. doi:10.1137/S0097539794262847.

7 Sandeep N. Bhatt and Stavros S. Cosmadakis. The complexity of minimizing wire lengths in
VLSI layouts. Inf. Process. Lett., 25(4):263–267, 1987. doi:10.1016/0020-0190(87)90173-6.

8 Sujoy Bhore, Robert Ganian, Fabrizio Montecchiani, and Martin Nöllenburg. Parameterized
algorithms for book embedding problems. Journal of Graph Algorithms and Applications,
24(4):603–620, 2020.

https://doi.org/10.1007/s00373-022-02558-z
https://doi.org/10.1007/978-3-031-22203-0_10
https://doi.org/10.1137/S0895480191198768
https://doi.org/10.1137/S0097539794262847
https://doi.org/10.1016/0020-0190(87)90173-6

S. Gupta, G. Sa’ar, and M. Zehavi 23:17

9 Therese Biedl. On area-optimal planar graph drawings. In Javier Esparza, Pierre Fraigniaud,
Thore Husfeldt, and Elias Koutsoupias, editors, Automata, Languages, and Programming - 41st
International Colloquium, ICALP 2014, Copenhagen, Denmark, July 8-11, 2014, Proceedings,
Part I, volume 8572 of Lecture Notes in Computer Science, pages 198–210. Springer, 2014.
doi:10.1007/978-3-662-43948-7_17.

10 Therese Biedl and Debajyoti Mondal. On upward drawings of trees on a given grid. In Fabrizio
Frati and Kwan-Liu Ma, editors, Proc. 25th International Symposium on Graph Drawing
and Network Visualization (GD), volume 10692 of LNCS, pages 318–325. Springer, 2017.
doi:10.1007/978-3-319-73915-1_25.

11 Therese Biedl and Martin Vatshelle. The point-set embeddability problem for plane graphs.
Int. J. Comput. Geom. Appl., 23(4-5):357–396, 2013. doi:10.1142/S0218195913600091.

12 Daniel Bienstock. Some provably hard crossing number problems. Discrete & Computational
Geometry, 6(3):443–459, 1991.

13 Hans L. Bodlaender. A partial k-arboretum of graphs with bounded treewidth. Theor. Comput.
Sci., 209(1-2):1–45, 1998. doi:10.1016/S0304-3975(97)00228-4.

14 Stina S Bridgeman, Giuseppe Di Battista, Walter Didimo, Giuseppe Liotta, Roberto Tamassia,
and Luca Vismara. Turn-regularity and optimal area drawings of orthogonal representations.
Computational Geometry, 16(1):53–93, 2000.

15 Sergio Cabello and Bojan Mohar. Adding one edge to planar graphs makes crossing number
and 1-planarity hard. SIAM Journal on Computing, 42(5):1803–1829, 2013.

16 Hubert Chan. A parameterized algorithm for upward planarity testing. In European Symposium
on Algorithms, ESA, pages 157–168. Springer, 2004.

17 Yi-Jun Chang and Hsu-Chun Yen. On bend-minimized orthogonal drawings of planar 3-
graphs. In Boris Aronov and Matthew J. Katz, editors, 33rd International Symposium on
Computational Geometry, SoCG 2017, July 4-7, 2017, Brisbane, Australia, volume 77 of
LIPIcs, pages 29:1–29:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017. doi:
10.4230/LIPIcs.SoCG.2017.29.

18 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.

19 Giordano Da Lozzo, David Eppstein, Michael T. Goodrich, and Siddharth Gupta.
Subexponential-time and FPT algorithms for embedded flat clustered planarity. In
Graph-Theoretic Concepts in Computer Science - 44th International Workshop, WG 2018,
Cottbus, Germany, June 27-29, 2018, Proceedings, pages 111–124, 2018. doi:10.1007/
978-3-030-00256-5_10.

20 Giordano Da Lozzo, David Eppstein, Michael T. Goodrich, and Siddharth Gupta. C-
planarity testing of embedded clustered graphs with bounded dual carving-width. Algorithmica,
83(8):2471–2502, 2021. doi:10.1007/s00453-021-00839-2.

21 Peter Damaschke. Enumerating grid layouts of graphs. J. Graph Algorithms Appl., 24(3):433–
460, 2020.

22 Emilio Di Giacomo, Giuseppe Liotta, and Fabrizio Montecchiani. Orthogonal planarity testing
of bounded treewidth graphs. Journal of Computer and System Sciences, 125:129–148, 2022.
doi:10.1016/j.jcss.2021.11.004.

23 Walter Didimo, Siddharth Gupta, Philipp Kindermann, Giuseppe Liotta, Alexander Wolff,
and Meirav Zehavi. Parameterized approaches to orthogonal compaction. In Leszek Gasi-
eniec, editor, SOFSEM 2023: Theory and Practice of Computer Science - 48th International
Conference on Current Trends in Theory and Practice of Computer Science, SOFSEM 2023,
Nový Smokovec, Slovakia, January 15-18, 2023, Proceedings, volume 13878 of Lecture Notes
in Computer Science, pages 111–125. Springer, 2023. doi:10.1007/978-3-031-23101-8_8.

24 Walter Didimo and Giuseppe Liotta. Computing orthogonal drawings in a variable embedding
setting. In Proceedings of the 9th International Symposium on Algorithms and Computation,
ISAAC, pages 80–89. Springer, 1998.

IPEC 2023

https://doi.org/10.1007/978-3-662-43948-7_17
https://doi.org/10.1007/978-3-319-73915-1_25
https://doi.org/10.1142/S0218195913600091
https://doi.org/10.1016/S0304-3975(97)00228-4
https://doi.org/10.4230/LIPIcs.SoCG.2017.29
https://doi.org/10.4230/LIPIcs.SoCG.2017.29
https://doi.org/10.1007/978-3-030-00256-5_10
https://doi.org/10.1007/978-3-030-00256-5_10
https://doi.org/10.1007/s00453-021-00839-2
https://doi.org/10.1016/j.jcss.2021.11.004
https://doi.org/10.1007/978-3-031-23101-8_8

23:18 Drawn Tree Decomposition: New Approach for Graph Drawing Problems

25 Walter Didimo, Giuseppe Liotta, and Maurizio Patrignani. Bend-minimum orthogonal drawings
in quadratic time. In Therese Biedl and Andreas Kerren, editors, Graph Drawing and Network
Visualization - 26th International Symposium, GD 2018, Barcelona, Spain, September 26-
28, 2018, Proceedings, volume 11282 of Lecture Notes in Computer Science, pages 481–494.
Springer, 2018. doi:10.1007/978-3-030-04414-5_34.

26 William S. Evans, Krzysztof Fleszar, Philipp Kindermann, Noushin Saeedi, Chan-Su Shin, and
Alexander Wolff. Minimum rectilinear polygons for given angle sequences. Comput. Geom.,
100:101820, 2022. doi:10.1016/j.comgeo.2021.101820.

27 Mike Fellows, Panos Giannopoulos, Christian Knauer, Christophe Paul, Frances A. Rosamond,
Sue Whitesides, and Nathan Yu. Milling a graph with turn costs: A parameterized complexity
perspective. In Proceedings of the 36th International Workshop on Graph Theoretic Concepts
in Computer Science, WG, pages 123–134, 2010.

28 Robert Ganian, Fabrizio Montecchiani, Martin Nöllenburg, and Meirav Zehavi. Parameterized
complexity in graph drawing (dagstuhl seminar 21293). Dagstuhl Reports, 11(6):82–123, 2021.

29 Michael R Garey and David S Johnson. Crossing number is np-complete. SIAM Journal on
Algebraic Discrete Methods, 4(3):312–316, 1983.

30 Ashim Garg and Roberto Tamassia. On the computational complexity of upward and rectilinear
planarity testing. SIAM J. Comput., 31(2):601–625, 2001. doi:10.1137/S0097539794277123.

31 Angelo Gregori. Unit-length embedding of binary trees on a square grid. Information Processing
Letters, 31(4):167–173, 1989.

32 Martin Grohe. Computing crossing numbers in quadratic time. Journal of Computer and
System Sciences, 68(2):285–302, 2004.

33 Siddharth Gupta, Guy Sa’ar, and Meirav Zehavi. Drawn tree decomposition: New approach
for graph drawing problems, 2023. arXiv:2310.05471.

34 Siddharth Gupta, Guy Sa’ar, and Meirav Zehavi. Grid recognition: Classical and parameterized
computational perspectives. Journal of Computer and System Sciences, 136:17–62, 2023.
doi:10.1016/j.jcss.2023.02.008.

35 Patrick Healy and Karol Lynch. Two fixed-parameter tractable algorithms for testing upward
planarity. International Journal of Foundations of Computer Science, 17(05):1095–1114, 2006.

36 Petr Hliněný. Crossing number is hard for cubic graphs. Journal of Combinatorial Theory,
Series B, 96(4):455–471, 2006.

37 Petr Hliněný and Abhisekh Sankaran. Exact crossing number parameterized by vertex cover. In
Proceedings of the 27th International Symposium on Graph Drawing and Network Visualization,
GD, pages 307–319, 2019.

38 Ken-ichi Kawarabayashi and Buce Reed. Computing crossing number in linear time. In
Proceedings of the 39th Annual ACM Symposium on Theory of Computing, STOC, pages
382–390, 2007.

39 Marcus Krug and Dorothea Wagner. Minimizing the area for planar straight-line grid drawings.
In Seok-Hee Hong, Takao Nishizeki, and Wu Quan, editors, Graph Drawing, 15th International
Symposium, GD 2007, Sydney, Australia, September 24-26, 2007. Revised Papers, volume
4875 of Lecture Notes in Computer Science, pages 207–212. Springer, 2007. doi:10.1007/
978-3-540-77537-9_21.

40 Giuseppe Liotta, Ignaz Rutter, and Alessandra Tappini. Parameterized complexity of graph
planarity with restricted cyclic orders. J. Comput. Syst. Sci., 135:125–144, 2023. doi:
10.1016/j.jcss.2023.02.007.

41 Richard J Lipton and Robert Endre Tarjan. A separator theorem for planar graphs. SIAM
Journal on Applied Mathematics, 36(2):177–189, 1979.

42 Gary L. Miller. Finding small simple cycle separators for 2-connected planar graphs. J.
Comput. Syst. Sci., 32(3):265–279, 1986. doi:10.1016/0022-0000(86)90030-9.

43 Maurizio Patrignani. On the complexity of orthogonal compaction. Computational Geometry,
19(1):47–67, 2001.

https://doi.org/10.1007/978-3-030-04414-5_34
https://doi.org/10.1016/j.comgeo.2021.101820
https://doi.org/10.1137/S0097539794277123
https://arxiv.org/abs/2310.05471
https://doi.org/10.1016/j.jcss.2023.02.008
https://doi.org/10.1007/978-3-540-77537-9_21
https://doi.org/10.1007/978-3-540-77537-9_21
https://doi.org/10.1016/j.jcss.2023.02.007
https://doi.org/10.1016/j.jcss.2023.02.007
https://doi.org/10.1016/0022-0000(86)90030-9

S. Gupta, G. Sa’ar, and M. Zehavi 23:19

44 Michael J. Pelsmajer, Marcus Schaefer, and Daniel Stefankovic. Crossing numbers of graphs
with rotation systems. Algorithmica, 60(3):679–702, 2011.

45 Md. Saidur Rahman, Noritsugu Egi, and Takao Nishizeki. No-bend orthogonal drawings
of subdivisions of planar triconnected cubic graphs. IEICE Trans. Inf. Syst., 88-D(1):23–
30, 2005. URL: http://search.ieice.org/bin/summary.php?id=e88-d_1_23&category=D&
year=2005&lang=E&abst=.

46 Marcus Schaefer. Complexity of some geometric and topological problems. In Proceedings of
the 18th International Symposium on Graph Drawing and Network Visualization, GD, pages
334–344. Springer, 2009.

47 Roberto Tamassia. On embedding a graph in the grid with the minimum number of bends.
SIAM J. Comput., 16(3):421–444, 1987. doi:10.1137/0216030.

48 Meirav Zehavi. Parameterized analysis and crossing minimization problems. Computer Science
Review, 45:100490, 2022. doi:10.1016/j.cosrev.2022.100490.

49 Xiao Zhou and Takao Nishizeki. Orthogonal drawings of series-parallel graphs with minimum
bends. SIAM J. Discret. Math., 22(4):1570–1604, 2008. doi:10.1137/060667621.

A Preliminaries

In this paper, we only consider finite simple undirected graphs, unless stated otherwise.
Moreover, we refer to straight line segments as line segments, unless stated otherwise. Let
N0 = N ∪ {0}. For k, i, j ∈ N, we denote [k] = {1, 2, . . . k} and [i, j] = {i, i + 1, . . . , j}.

A.1 Graph Notation and Decompositions

For a graph G = (V, E) and a subset of vertices U ⊆ V , we denote by G[U] the subgraph of
G induced by U . For a given subset V ′ ⊆ V of vertices, we define the boundary of V ′ as the
set of vertices in V ′ that are adjacent to a vertex in V \ V ′:

▶ Definition A.1 (Boundary). Let G = (V, E) be a graph. Let V ′ ⊆ V . Then the boundary
of V ′ in G, denoted by BG(V ′), is the set of vertices of V ′ that have a neighbor in V \ V ′,
i.e., BG(V ′) = {v′ ∈ V ′ | there exists v ∈ V \ V ′ such that {v, v′} ∈ E}.

When the graph G is clear from the context, we drop it from the subscript. Given a path
P , we represent P as a sequence of vertices v1, v2, . . . , vk, such that {vi, vi+1} is an edge in P

for every 1 ≤ i ≤ k − 1. Similarly, given a cycle C, we represent C as a sequence of vertices
v1, v2, . . . , vk, such that v1 = vk and {vi, vi+1} is an edge in C for every 1 ≤ i ≤ k − 1. Note
that we use the terms path and cycle to refer to simple path and cycles. We now define the
concepts of a tree decomposition and a path decomposition.

▶ Definition A.2 (Tree Decomposition). A tree decomposition of a graph G = (V, E) is a
pair (T = (VT , ET), β : VT → 2V) where T is a tree such that:
1. For every v ∈ V , the subgraph of T induced by {x ∈ VT | v ∈ β(x)} is non-empty and

connected.
2. For every {u, v} ∈ E, there exists x ∈ VT such that {u, v} ⊆ β(x).

The width of (T , β) is defined to be maxx∈VT
|β(x)| − 1. For every x ∈ VT , β(x) is called a

bag. The treewidth of a graph G is the minimum width of any tree decomposition of G.

IPEC 2023

http://search.ieice.org/bin/summary.php?id=e88-d_1_23&category=D&year=2005&lang=E&abst=
http://search.ieice.org/bin/summary.php?id=e88-d_1_23&category=D&year=2005&lang=E&abst=
https://doi.org/10.1137/0216030
https://doi.org/10.1016/j.cosrev.2022.100490
https://doi.org/10.1137/060667621

23:20 Drawn Tree Decomposition: New Approach for Graph Drawing Problems

▶ Definition A.3 (Path Decomposition). A path decomposition of a graph G = (V, E) is a
pair (P = (VP , EP), β : VP → 2V) where P is a path such that:
1. For every v ∈ V , the subgraph of P induced by {x ∈ VP | v ∈ β(x)} is non-empty and

connected.
2. For every {u, v} ∈ E, there exists x ∈ VP such that {u, v} ⊆ β(x).

The width of (P, β) is defined to be maxx∈VP
|β(x)| − 1. For every x ∈ VP , β(x) is called a

bag. The pathwidth of a graph G is the minimum width of any path decomposition of G.

A.2 Graph Drawing
For a given graph G, a drawing of G on the plane is a mapping of the vertices to distinct
points of R2 and of the edges to simple curves in R2, connecting the images of their endpoints.
A drawing of a graph is planar if no pair of edges, or an edge and a vertex, cross except at a
common endpoint. Two planar drawings of the same graph are equivalent if they determine
the same rotation at each vertex, that is, the same circular ordering for the edges around
each vertex. An embedding is an equivalence class of planar drawings.

Given a drawing d of G, we represent d as a pair of functions (dV , dE) as follows. The
function dV : V → R × R is an injection, which maps each vertex v of G to a point
(i, j) in the plane; then, i and j are also denoted as dx(v) and dy(v), respectively, that is,
dV (v) = (dx(v), dy(v)). The function dE : E → C, where C is the set of all simple curves in
the plane, maps each edge {u, v} ∈ E to a simple curve c ∈ C between dV (u) and dV (v).
For simplicity, we refer to (dV , dE) as one function, d : V ∪ E → {R × R} ∪ C, such that
d(v) = dV (v) for every v ∈ V , and d({u, v}) = dE({u, v}) for every {u, v} ∈ E. We call V

and E the vertex set and the edge set associated with d, respectively. Let d be a drawing of a
graph G, and let p ∈ R2 be a point. We say that p is on d if p is on the image of an edge of
G in d or p is the image of a vertex of G in d. We denote by PlanePoints(d) the set of points
on d.

For two points p1 = (x1, y1) and p2 = (x2, y2) in the plane, we denote the line segment
joining the points by ℓ(p1, p2). For four points, pi = (xi, yi) ∈ R2 for every 1 ≤ i ≤ 4, we
say that ℓ(p1, p2) crosses ℓ(p3, p4) if the line segments ℓ(p1, p2) and ℓ(p3, p4) cross except
at pi = (xi, yi) for every 1 ≤ i ≤ 4. Let a and b be two points in R2 and let ϵ > 0. We
denote ℓ(a, aϵ) by lineϵ(a, b), where aϵ is the point on the line ℓ(a, b) at distance ϵ from a if it
exists. For a pair of points (p1, p2), and a point p′, where p1, p2, p′ ∈ R2, we say that ℓ(p1, p2)
intersects p′ if p′ is on the line ℓ(p1, p2), including its endpoints. We use the term grid points
to refer to the infinite set of points (x, y) ∈ R2 where x, y ∈ N0. Given two distinct grid
points p1 = (x1, y1) and p2 = (x2, y2), we say that p1 < p2 if x1 < x2 or x1 = x2 and y1 < y2.

A drawn graph is a graph with a prescribed drawing. A plane graph is a drawn graph
whose prescribed drawing is planar. A drawing of a graph is called a straight-line drawing if
the edges are mapped to line segments, connecting the images of their endpoints. We define
a straight-line path (cycle) as a plane path (cycle), where the vertices are mapped to grid
points and edges are mapped to line segments connecting the images of their endpoints. We
denote by P ⊂ C the (infinite) set of straight-line paths in R2. Moreover, we alternatively
denote any path P = (v1, . . . , vk) ∈ P by the sequence (p1, . . . , pk), where pi ∈ R2 is the
image of the vertex vi in P , for every 1 ≤ i ≤ k. We define an axis-parallel path (cycle) as a
straight-line path (cycle), where every edge of the path is parallel to the X- or Y - axis. For
an axis-parallel path P = (p1, . . . , pk), we denote by |P | the (Euclidean) length of P , that is,
|P | = |p2 − p1| + |p3 − p2| + . . . + |pk − pk−1|. Next, we define a grid drawing of a graph G

as a straight-line drawing of G where the vertices are mapped to grid points and the edges
are mapped to (axis-parallel) unit length line segments (e.g., see Figure 11b):

S. Gupta, G. Sa’ar, and M. Zehavi 23:21

▶ Definition A.4 (Straight-Line Grid Drawing). Let G be a graph. A straight-line grid
drawing d of G is a straight-line drawing d of G such that (i) for every u ∈ V , d(u) is a grid
point (ii) For every {u, v}, {u′, v′} ∈ E, d({u, v}) and d({u′, v′}) are intersected in at most
one point.

▶ Definition A.5 (Grid Drawing). Let G = (V, E) be a graph. A grid drawing d of G is a
drawing d : V ∪E → N0×N0∪P such that if {u, v} ∈ E then |dx(u)−dx(v)|+|dy(u)−dy(v)| = 1.

We now extend the concept of a grid drawing to a rectilinear grid drawing, where the
edges are mapped to variable length line segments parallel to the axes (e.g., see Figure 11c):

▶ Definition A.6 (Rectilinear Grid Drawing). Let G = (V, E) be a graph. A rectilinear
grid drawing d of G is a drawing d : V ∪ E → N0 × N0 ∪ P of G, such that for every edge
{u, v} ∈ E, d({u, v}) is a line segment between d(u) and d(v) such that dx(u) = dx(v) or
dy(u) = dy(v).

Further, we extend the concept of a rectilinear grid drawing to an orthogonal grid drawing,
where the edges are mapped to straight-line paths, such that the edges of these paths are
mapped to line segments parallel to the axes (e.g., see Figure 11d):

▶ Definition A.7 (Orthogonal Grid Drawing). Let G = (V, E) be a graph. An orthogonal
grid drawing d of G is a drawing d : V ∪ E → N0 × N0 ∪ P of G, such that for every edge
{u, v} ∈ E, d({u, v}) is an axis-parallel path between d(u) and d(v).

Finally, we extend the concept of an orthogonal grid drawing to a polyline grid drawing,
where the edges are mapped to straight-line paths instead of axis-parallel paths (e.g., see
Figure 11e).

▶ Definition A.8 (Polyline Grid Drawing). Let G = (V, E) be a graph. A polyline grid
drawing d of G is a drawing d : V ∪ E → N0 × N0 ∪ P of G.

A.3 Problem Definitions
In this subsection, we give the definitions for the problems we will solve using our new
concept.

▶ Definition A.9 (Grid Recognition Problem). The Grid Recognition problem is, given
a graph G, to determine whether G has a grid drawing.

▶ Definition A.10 (Crossing Minimization Problem on Straight-Line Grid Drawings). The
Straight-line Grid Crossing Minimization problem is, given a graph G and h, w ∈ N,
to construct a straight-line grid drawing d of G (if one exists) such that: (i) d is strictly
bounded by Rh,w,(ii) d has minimum number of crossings out of all the straight-line grid
drawings of G which are strictly bounded by Rh,w. If such a drawing does not exists, return
“no-instance”.

In the Orthogonal Compaction problem we get a connected graph G. We assume to
have an order on the vertices, that is, for every u, v ∈ V such that u ̸= v, either u > v or
v < u. In addition to G, we have, for every {u, v} ∈ E where u > v, the relative position of
v compered to u, that is, the direction of the {u, v} from u to v. We denote these directions
by U, D, L and R; this stands for “up”, “down”, “left” and “right”, respectively. We assume
that there exists a planar rectilinear grid drawing of G such that for every {u, v} ∈ E, the
relative position of v compered to u is as given as input. Our goal is to find such a drawing
of minimum area. We start by defining the problem formally. For this purpose, we first have
the following definition:

IPEC 2023

23:22 Drawn Tree Decomposition: New Approach for Graph Drawing Problems

v1

v2

v3

v4

v5
v6

v7

(a)

v1

v2 v3

v4 v5

v6 v7

(b)

v1

v2 v3

v4 v5

v6v7

(c)

v1

v2 v3

v4

v6

v7

v5

(d)

v1

v2

v3

v4

v5

v6

v7

(e)

Figure 11 Different drawings (defined in Definitions A.5-A.8) of the graph G shown in (a). A
grid, a rectilinear grid, an orthogonal grid and a polyline grid drawings of G are shown in (b), (c),
(d) and (e), respectively.

▶ Definition A.11 (Drawing Respects an Edge Direction). Let G be a connected graph, let
{u, v} ∈ E such that u > v, and let dir{u,v} ∈ {U, D, L, R}. Let d be a rectilinear grid drawing
of G. We say that d respects dir{u,v} if the following conditions are satisfied
1. If dir{u,v} = U, then dx(v) = dx(u) and dy(v) > dy(u).
2. If dir{u,v} = D, then dx(v) = dx(u) and dy(v) < dy(u).
3. If dir{u,v} = L, then dy(v) = dy(u) and dx(v) < dx(u).
4. If dir{u,v} = R, then dy(v) = dy(u) and dx(v) > dx(u).

Now, we define the problem Orthogonal Compaction as follows:

▶ Definition A.12 (Orthogonal Compaction Problem). Let G be a connected graph. For
every {u, v} ∈ E let dir{u,v} ∈ {U, D, L, R}. The Orthogonal Compaction problem is to
find a planar rectilinear grid drawing d of G such that (i) for every {u, v} ∈ E, d respects
dir{u,v}, and (ii) d is strictly bounded by Rh,w such that (h − 1) · (w − 1) is minimum.

	1 Introduction
	1.1 The Concept of Drawn Tree Decomposition
	1.2 Comparison with Other Graph Width Parameters
	1.3 Our Scheme
	1.4 Applications of Our Scheme to Problems in Graph Drawing

	A Preliminaries
	A.1 Graph Notation and Decompositions
	A.2 Graph Drawing
	A.3 Problem Definitions

