
Single Machine Scheduling with Few Deadlines
Klaus Heeger #

Department of Industrial Engineering and Management, Ben-Gurion University of the Negev,
Beer-Sheva, Israel

Danny Hermelin #

Department of Industrial Engineering and Management, Ben-Gurion University of the Negev,
Beer-Sheva, Israel

Dvir Shabtay #

Department of Industrial Engineering and Management, Ben-Gurion University of the Negev,
Beer-Sheva, Israel

Abstract
We study single-machine scheduling problems with few deadlines. We focus on two classical
objectives, namely minimizing the weighted number of tardy jobs and the total weighted completion
time. For both problems, we give a pseudopolynomial-time algorithm for a constant number of
different deadlines. This algorithm is complemented with an ETH-based, almost tight lower bound.
Furthermore, we study the case where the number of jobs with a nontrivial deadline is taken as
parameter. For this case, the complexity of our two problems differ: Minimizing the total number of
tardy jobs becomes fixed-parameter tractable, while minimizing the total weighted completion time
is W[1]-hard.
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1 Introduction

Already since the 1950s, scheduling has been an important area of combinatorial optimiza-
tion, with various applications coming from a broad range of areas such as manufacturing,
management, and healthcare [2, 19]. This lead to a wide variety of different scheduling
problems, depending on the targeted applications. What almost all scheduling problems have
in common is that there is a set of jobs {1, . . . , n} with different characteristics that need to
be processed on one or several machines, subject to some feasibility constraints, and with
the objective of optimizing a predefined objective function. Usually, the objective function is
based on the completion times of the jobs in the proposed solution schedule.

One very basic scheduling setting is the following: We are given a set of n jobs, all
available to be non-preemptively processed on a single machine at time zero. Each job j

has a processing time pj , a weight wj (corresponding to its importance), and a due date dj .
The jobs must be processed one after another on a single machine. In this setting, the
completion time Cj of a job j is simply the sum of processing times of all jobs scheduled
before j (including j itself). A job is tardy if its completion time is larger than its due date.
The tardiness of a job can also be expressed using the unit-penalty function Uj which is one
if job j is tardy and zero otherwise.
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24:2 Single Machine Scheduling with Few Deadlines

Two of the most-common objective functions in single-machine scheduling are the total
weighted completion time

∑
wjCj , and the total weighted number of tardy jobs

∑
wjUj . In

the classic 3-field notation by Graham et al. [8], these two problems are denoted by 1||
∑

wjCj

and 1||
∑

wjUj .
A less well-studied generalization of these two problems is when the jobs also have dead-

lines d1, . . . , dn. Deadlines differ from due dates in that they must be met, and so scheduling
problems with deadlines require solution schedules to have all jobs complete before their dead-
line. Adding job deadlines to 1||

∑
wjCj and 1||

∑
wjUj results in problems 1|dj |

∑
wjCj and

1|dj |
∑

wjUj . Both these problems have natural applications in practice: In the 1|dj |
∑

wjCj

problem we wish to minimize the total completion time (or equivalently average completion
time) under the additional deadline constraints, while in 1|dj |

∑
wjUj we can interpret the

weight of a job as a premium for early completion of the job (before its due date instead of
before its deadline) [9].

Note that the two problems above have quite efficient solutions when the jobs have no
deadlines. The 1||

∑
wjCj problem can be solved in O(n log n) time [22] by scheduling all jobs

according to the weighted shortest processing time (WSPT) order. The 1||
∑

wjUj problem
is weakly NP-hard [14], but it admits an O(Pn) pseudo-polynomial time algorithm [16],
where P =

∑
pj is the total sum of processing times of all input jobs, and an O(n log n)

time algorithm [18] when all jobs have unit weight (i.e. wj = 1 for any job j). Thus, it is
natural to ask whether these results can be generalized to the case where there are only a
few different deadlines among all n jobs, or when only a few jobs have nontrivial deadlines
(i.e., jobs j with deadline dj < P ). This question is the starting point of this paper.

Our Contribution. We investigate the parameterized complexity of 1|dj |
∑

wjUj and
1|dj |

∑
wjCj with respect to two different parameters: The first is the number of dif-

ferent deadlines among all n jobs, and the second is the number of jobs with a nontrivial
deadline, i.e. the number of jobs j with dj < P . Note that the latter parameter upper
bounds the former. For the number of different deadlines parameter, both problems behave
similarly: They are weakly NP-hard already for two different deadlines (one of which is a
“trivial” deadline equaling the total processing time). When considering the case where all
numbers (processing times and weights) are encoded in unary, both problems are W[1]-hard
but admit XP-time algorithms.

For the number of jobs with nontrivial deadline parameter, the complexity of both
problems diverge: For 1|dj |

∑
wjCj , the hardness results for the number of different deadlines

carry over. For 1|dj |
∑

wjUj , however, there is an O(2k · P · n)-time algorithm. For the
special case of unit weights (i.e. wj = 1 for all j), this algorithm can be improved to an
O(2k · n log n)-time algorithm. We refer to Table 1 for an overview of our results.

Table 1 Overview of our results. We use n to denote the number of jobs, and P to denote the
total processing time of all jobs.

k =# different deadlines k =# jobs with deadline

1|dj |
∑

wjUj

weakly NP-hard even if k = 2 and wj = 1 (3.1) weakly NP-hard if k = 0 [14]
W[1]-hard with unary input even if wj = 1 (3.1) O(2kn log n) if wj = 1 (3.6)

P O(k)-time algorithm (3.4) O(2kP n) (3.5)

1|dj |
∑

wjCj

weakly NP-hard even if k = 2 [17]
W[1]-hard even with unary input (4.2)

P O(k)-time algorithm (4.4)
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Related Work. While there are numerous papers on single-machine scheduling, rather few
consider deadlines. Regarding the first problem we study, 1|dj |

∑
wjUj , Lawler [15] showed

that 1|dj |
∑

Uj (the unit weight special case of 1|dj |
∑

wjUj) is weakly NP-hard. This result
was strengthened by Yuan [24] who showed that 1|dj |

∑
Uj is strongly NP-hard. Huo et

al. [12] showed that 1|dj |
∑

Uj can be solved in polynomial time if either di ≤ dj implies
di ≤ dj and pi ≤ pj , or if pi ≤ pj implies di − pi ≥ dj − pj . The running times of some
of these algorithms were improved later [11]. The problem 1|dj |

∑
wjUj was also studied

from a practical point of view: Hariri and Potts [9] designed a branch-and-bound based
algorithm for it, while Baptiste et al. [1] designed an ILP-formulation with n variables and
2n constraints for the problem.

Concerning the second problem we study, 1|dj |
∑

wjCj , Lenstra et al. [17] proved that the
problem is weakly NP-hard even if only one job has a nontrivial deadline. A related problem
is 1|rj , dj , pmtn|

∑
Cj . Here, the jobs additionally have release dates (that is, a job cannot be

scheduled before its release date) and preemption is allowed (that is, it is possibly to process
a job j partially, then schedule other jobs, and later continue processing job j). Further,
all jobs have weight 1. Wan et al. [23] showed weak NP-hardness of 1|rj , dj , pmtn|

∑
Cj .

Recently, strong NP-hardness was shown [4]. In case of “agreeable” processing times and
deadlines (that is, whenever the deadline of job j is larger than the one of job j′, then also
the processing time of j is larger than the processing time of j′), the problem is solvable in
polynomial time [10].

Chen and Yuan [3] studied the problem of minimizing the total tardiness
∑

Tj on a
single machine with deadlines (the tardiness of a job j is Tj = max{0, Cj − dj}). Chen
and Yuan [3] showed that this problem (denoted 1|dj |

∑
Tj) is strongly NP-hard. A similar

problem is that of minimizing the total late work
∑

Yj of all jobs, where the late work of a
job j is Yj = min{pj , Tj}. Chen et al. [5] showed 1|dj |

∑
Yj is strongly NP-hard. However,

if all jobs share a common due date, then the problem is weakly NP-hard and admits a
pseudopolynomial-time algorithm. Chen et al. also showed that a few special cases of the
problem become polynomial-time solvable.

2 Preliminaries

We consider non-preemptive scheduling problems on a single machine. Here, the input
consists of n jobs {1, . . . , n} which are all available to be processed at time zero. We
denote by [n] := {1, 2, . . . , n}. Each job j is characterized by its processing time pj ∈ N, its
weight wj ∈ N, and its deadline dj ∈ N. In one of the problems we consider below, each job j

will also have a due date dj ∈ N. We assume without loss of generality that dj ≤ dj holds
for every job j ∈ [n]. We denote the total processing time of all jobs by P =

∑
j∈[n] pj , and

their total weight by W =
∑

j∈[n] wj .
A schedule is a permutation σ : [n] → [n] of the jobs. Given a schedule σ, the completion

time Cj(σ) of job j is Cj(σ) :=
∑

i∈[n]:σ(i)≤σ(j) pi; that is, it is the total processing times of
all jobs preceding j in the schedule (including j itself). A schedule σ is feasible if Cj(σ) ≤ dj

for all j ∈ [n]. A job j is early in σ if Cj(σ) ≤ dj , and otherwise it is tardy in σ. We use U(σ)
to denote the set of all jobs that are tardy in σ. We call a deadline dj trivial if dj ≥ P (that
is, any schedule fulfills this deadline). We assume without loss of generality that dj = P is
the only occurring trivial deadline.

IPEC 2023



24:4 Single Machine Scheduling with Few Deadlines

We focus on instances with few different deadlines. Thus, we set d
(1) to be the smallest

appearing deadline, d
(2) to be the second-smallest appearing deadline (different from d

(1)),
and so on. Note that the largest deadline d

(k) will always be P . For each i ∈ [k], we denote
by J (i) the set of jobs with deadline d

(i), and by P (i) the total processing time of all jobs
in J (i).

We study two problems in this paper that differ according to the objective function used
to evaluate feasible schedules:

1|dj |
∑

wjUj

Input: A set of n jobs with due dates, a number b.
Question: Is there a feasible schedule σ such that

∑
j∈U(σ) wj ≤ b?

1|dj |
∑

wjCj

Input: A set of n jobs, a number b.
Question: Is there a feasible schedule σ such that

∑
j∈[n] wjCj(σ) ≤ b?

The problem names are derived from the classical 3-field notation by Graham et al. [8],
where the first field encodes the machine setting (in our case, “1” represents a single machine),
the second field contains constraints (in our setting, dj indicates the existence of deadlines),
and the third field containing the objective function (in our case either the weighted completion
time

∑
wjCj or the weighted number of late jobs

∑
wjUj).

3 The 1|dj| ∑
wjUj problem

In this section, we study the problem of minimizing the weighted number of tardy jobs.
We start by showing some hardness results for 1|dj |

∑
wjUj in Section 3.1. Afterwards,

we give a pseudopolynomial-time algorithm for constant number of different deadlines in
Section 3.2. Finally, in Section 3.3, we design efficient algorithms for the case of few jobs
having a nontrivial deadline.

3.1 Hardness results
Recently, Yuan [24] showed that 1|dj |

∑
Uj is strongly NP-hard via a reduction from 3-

Partition. This NP-hard problem is a special case of the following Multiway Number
Partitioning partition problem:

Multiway Number Partitioning
Input: Integers m and k, and t := m · k numbers a1, . . . , at.
Question: Is there a partition (A1, . . . , Ak) of {a1, . . . , at} such that |Ai| = m for each

i ∈ [k] and
∑

a∈Ai
a =

∑
a∈Aj

a for all i, j ∈ [k]?

Observe that Multiway Number Partitioning with k = 2 is known as the weakly NP-hard
Equal Cardinality Partition problem [7]. Furthermore, the classical Bin Packing
problem naturally reduces to Multiway Number Partitioning by adding items of zero
size in order to obtain an instance with t = m · k numbers.

Yuan [24] presented a reduction from Multiway Number Partitioning with m = 3
to 1|dj |

∑
Uj . His reduction uses in its construction the sum of all input numbers B :=∑t

ℓ=1 aℓ and a sufficiently large number M = 3
2 t(t + 1)B + 1. It creates a job (i, j) for

each i ∈ [k] and j ∈ [t] with processing time pi,j = M2 + i · (M + aj). For each i ∈ [k],
the jobs (i, j) share the same deadline di,j = d

(i) =
∑i−1

ℓ=1 P (ℓ) + t ·
∑m

ℓ=1 P (ℓ), where
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P (ℓ) = 3M2 + 3ℓM + 3ℓB. Furthermore, for each j ∈ [t], the jobs (i, j) share the same due
date di,j = d(j) = j · M2 + 3

2 Mt(t + 1)B. Yuan [24] proved that if the input Multiway
Number Partitioning instance (3, k, a1, . . . , at) is a yes-instance then the constructed job
set has a feasible schedule with at most b = 3t2 − t tardy jobs.

Note that the reduction from Multiway Number Partitioning of Yuan [24] described
above works for any value of m ≥ 3 and k ≥ 2. Setting m = t/2 and k = 2 results in a
reduction from Equal Cardinality Partition to 1|dj |

∑
Uj with two different deadlines.

Using arbitrary m and k results in a reduction from Bin Packing with k bins to 1|dj |
∑

Uj

with k different deadlines. It is known that Bin Packing with unary encoded numbers is
W[1]-hard parameterized by the number k of bins, and assuming ETH it cannot be solved in
f(k) · no(k/ log k) time [13]. Thus, we directly get the following hardness result for 1|dj |

∑
Uj :

▶ Theorem 3.1. Let k denote the number of different deadlines in a 1|dj |
∑

Uj instance.
Then the 1|dj |

∑
Uj problem is

weakly NP-hard even when k = 2,
W[1]-hard with respect to k even when all numbers are encoded in unary, and
admits no f(k) · P o(k/ log k)-time algorithm assuming ETH.

3.2 Constant number of deadlines
Let k = |{dj : 1 ≤ j ≤ n}| denote the number of different deadlines in the job instance.
By Theorem 3.1, we know that 1|dj |

∑
wjUj is W[1]-hard with respect to k even if wj = 1

for each job j, and all processing times are encoded in unary. Complementing this result,
we will show that if k = O(1), then we can solve 1|dj |

∑
wjUj in pseudo-polynomial time.

Throughout the subsection we will assume that the input jobs are ordered by ascending due
dates, i.e. d1 ≤ · · · ≤ dn. Furthermore, we denote by J (i) the set of jobs with deadline d

(i)

and by P (i) the total processing time of all jobs from J (i).
Our algorithm for 1|dj |

∑
wjUj is based on dynamic programming. Our algorithm

processes the jobs from job 1 to n (i.e. according to increasing due date), and creates a table
τj for each j ∈ [n]. The table τj is associated with the job set {1, . . . , j}, and it contains
an entry τj [x1, . . . , xk] for each (x1, . . . , xk) ∈ {0, . . . , P (1)} × · · · × {0, . . . , P (k)}. The entry
τj [x1, . . . , xk] shall equal υj [x1, . . . , xk], where we define υj [x1, . . . , xk] to be the maximum
number w∗ such that there is a feasible schedule of all n jobs fulfilling that
1. the set S of early jobs from {1, . . . , j} has weight w∗, and
2. for each i ∈ [k], the total processing time of early jobs from S ∩ J (i) equals xi.
We stress that all considered schedules schedule all n jobs, even if they correspond to
some entry τj [x1, . . . , xk] with j < n. The minimum value W − υn[x1, . . . , xk] over all
(x1, . . . , xk) ∈ {0, . . . , P (1)} × · · · × {0, . . . , P (k)} is the minimum weighted number of tardy
jobs of any feasible schedule for our instance. We call a feasible schedule fulfilling the second
condition above a (j; x1, . . . , xk)-compatible schedule.

Our dynamic program needs to be able to compute υj [x1, . . . , xk], given υj−1[y1, . . . , yk]
for all y1, . . . , yk. There are two cases: First, job j is late in a schedule witnessing the
value of υj [x1, . . . , xk]. In this case, we have υj [x1, . . . , xk] = υj−1[x1, . . . , xk]. Second,
job j is early in a schedule witnessing the value of υj [x1, . . . , xk]. In this case, we have
υj [x1, . . . , xk] = wj + υj−1[x1, . . . , xi−1, xi − pj , xi+1, . . . , xk] where i ∈ [k] such that the
deadline of j is d

(i). However, we do not have υj [x1, . . . , xk] = max{υj−1[x1, . . . , xk], wj +
υj−1[x1, . . . , xi−1, xi −pj , xi+1, . . . , xk]} because it is not always possible to modify a schedule
corresponding to υj−1[x1, . . . , xi−1, xi −pj , xi+1, . . . , xk] in such a way that also job j is early.

IPEC 2023



24:6 Single Machine Scheduling with Few Deadlines

This is the major difficulty in the design of the dynamic program: Finding a criterion where
we can modify the schedule corresponding to τj−1[x1, . . . , xi−1, xi − pj , xi+1, . . . , xk] so we
can additionally schedule job j early.

To derive such a criterion, we first observe that if we knew the set of early jobs (from [n],
not only from [j]), then we can easily compute an optimal schedule: As we have a strict
upper bound for the completion time of each job (either its due date if the job is early, or
its deadline if the job is late), it is optimal to schedule the jobs ordered by this strict upper
bound.

▶ Observation 3.2. For a given subset S ⊆ {1, . . . , n} of jobs, there is a feasible schedule
in which each job from S is early if and only if ordering the jobs according to increasing
modified due dates

d∗
j =

{
dj if j ∈ S

dj if j /∈ S

results in a schedule where all jobs are early.

Using Observation 3.2, we now basically know how scheduling job j as well as a given
set S ⊆ [j − 1] of jobs early looks like: Before j, the early jobs from [j − 1] and all jobs whose
deadline is smaller than dj are scheduled. After j, all jobs with deadline larger than dj (and
which are not contained in S) are scheduled, according to increasing deadline. This implies
the following criterion on when a schedule witnessing the value of υj [x1, . . . , xk] can also
additionally schedule j early.

▶ Lemma 3.3. Let j ∈ [n] be a job with deadline d
(i1) and x1, . . . , xk ∈ {0, 1, . . . , P}. Let

i0 ∈ [k] be minimum such that dj ≤ d
(i0). Let σj−1 be a (j − 1; x1, . . . , xk)-compatible

schedule where S ⊆ [j − 1] is the set of early jobs from [j − 1]. Then there exists a
(j; x1, . . . , xi1−1, xi1 + pj , xi1+1, . . . , xk)-compatible schedule σj where S ∪ {j} is early if and
only if
1.

∑i0−1
ℓ=1 P (ℓ) +

∑k
ℓ=i0

xℓ + pj ≤ dj, and
2. for each i ≥ i0, we have

∑i
ℓ=1 P (ℓ) +

∑k
ℓ=i+1 xℓ ≤ d

(i).

Proof. (⇐=:) We begin with the reverse direction. Assume that there is a
(j; x1, . . . , xi1−1, xi1 + pj , xi1+1, . . . , xk)-compatible schedule σj where S ∪ {j} is early. By
Observation 3.2, we may assume that σ schedules the jobs in non-decreasing order of modified
due dates d∗

j (which are set according to the early set of jobs S ∪ {j}).
We first show Item 1. Before job j, all jobs with deadline smaller than dj and all early

jobs with due date smaller than dj are scheduled. The processing time of jobs with deadline
smaller than dj is precisely

∑i0−1
ℓ=1 P (ℓ). All jobs from S have due date at most dj (as we

ordered the jobs according to increasing due date). Thus, the total processing time of all
early jobs with due date at most dj but deadline at least dj equals pj +

∑k
ℓ=i0

xℓ. As j is
early, we have

∑i0−1
ℓ=1 P (ℓ) + pj +

∑k
ℓ=i0

xℓ ≤ dj , i.e. Item 1 holds.
We continue by showing Item 2, so fix i ≥ i0. The last job with deadline d

(i) is processed
after all jobs with deadline at most d

(i), as well as all early jobs with due date at most d
(i).

The processing time of jobs with deadline at most d
(i) is

∑i
ℓ=1 P (ℓ). Each job j′ ∈ S ∪ {j}

satisfies dj′ ≤ dj ≤ d
(i0) ≤ d

(i). Thus, it follows that the processing time of the early jobs
with due date at most d

(i) and deadline larger than d
(i) equals

∑k
ℓ=i+1 xℓ. Because σ is

feasible, it follows that
∑i

ℓ=1 P (ℓ) +
∑k

ℓ=i+1 xℓ ≤ d
(i), i.e. Item 2 holds.
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(=⇒:) It remains to show the forward direction. We construct a schedule σj with the
jobs from S as well as j being early as follows: We start with jobs from S and the jobs
with deadline at most d

(i0−1) (in the same relative order as they are in σ). Afterwards, we
schedule job j, followed by the remaining jobs sorted according to increasing deadline.

First, we show that σj is a feasible schedule. Note that for each job from S as well as the
jobs with deadline at most d

(i0−1), their completion time can only decrease. Consequently,
the feasibility of σ implies that these jobs are completed before their deadline. Next, consider
a job j′ with deadline d

(i) for some i ≥ i0. Before j′, all jobs with deadline d
(ℓ) with ℓ < i,

potentially other jobs with deadline d
(i), and all early jobs from 1, . . . , j are scheduled. Thus,

job j′ is completed at time
∑i

ℓ=1 P (i) +
∑k

ℓ=i+1 xℓ ≤ d
(i) where the inequality holds by

Item 2. This implies that σj is a feasible schedule.
Next, we show that S ∪ {j} are early. All jobs from S are early as their completion time

can only decrease. Job j is completed at time
∑i0−1

ℓ=1 P (ℓ) +
∑k

ℓ=i0
xℓ + pj ≤ dj by Item 1.

Therefore, job j is early. ◀

Note that the criterion from Lemma 3.3 is independent from the set of early jobs S,
so indeed the dynamic program does not need to store the early jobs. We finally give the
dynamic program and show its correctness in the theorem below.

▶ Theorem 3.4. 1|dj |
∑

wjUj can be solved in O(P k · k · n) time, where k is the number of
different deadlines.

Proof. We give the following dynamic program computing a solution. First, we order
the jobs according to ascending due date (we assume that d1 ≤ d2 ≤ . . . ≤ dn). For
each j ∈ [n], the dynamic programming table τj contains an entry τj [x1, . . . , xk] for each
(x1, . . . , xk) ∈ {0, . . . , P (1)}×· · ·×{0, . . . , P (k)}. This entry shall equal υj [x1, . . . , xk]; that is,
the maximum number w such that there exists a (j; x1, . . . , xk)-compatible schedule σ which
schedules a subset S ⊆ [j] of total weight w early; if no (j; x1, . . . , xk)-compatible schedule
exists, then τj [x1, . . . , xk] = −∞. The maximum of τn[x1, . . . , xk] over all (x1, . . . , xk) ∈
{0, . . . , P (1)} × · · · × {0, . . . , P (k)} will then yield the value of an optimal schedule.

Initialization. We check whether there is a feasible schedule (this can be done e.g. using
Observation 3.2). If so, then we set τ0[0, . . . , 0] := 0 while otherwise we set τ0[0, . . . , 0] := −∞.
For all (x1, . . . , xk) ̸= (0, . . . , 0), we set τ0[x1, . . . , xk] := −∞.

Update. Let j ∈ [n] and assume that job j has deadline d
(i). Fix (x1, . . . , xk) ∈

{0, . . . , P (1)} × · · · × {0, . . . , P (k)}. First, we check whether Items 1 and 2 of Lemma 3.3 are
satisfied. If yes, then we set

τj [x1, . . . , xk] := max
{

τj−1[x1, . . . , xk], wj + τj−1[x1, . . . , xi−1, xi − pj , xi+1, . . . , xk]
}

.

Otherwise, we set τj [x1, . . . , xk] := τj−1[x1, . . . , xk].

Optimal Solution. The minimum weighted number of tardy jobs in an optimal schedule is
given by taking the minimum of W − τn[x1, . . . , xk] over all (x1, . . . , xk) ∈ {0, . . . , P (1)} ×
· · · × {0, . . . , P (k)}. An optimal schedule can be found by using backtracking to compute the
set of early jobs and then applying Observation 3.2.
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Correctness. Clearly, τ0[x1, . . . , xk] = υ0[x1, . . . , xk] for every (x1, . . . , xk) ∈ {0, . . . , P (1)}×
· · · × {0, . . . , P (k)}. Consider τj [x1, . . . , xk], where job j has deadline d

(i). First, we show
τj [x1, . . . , xk] ≥ υj [x1, . . . , xk]. Let σ be a schedule witnessing the value of τj [x1, . . . , xk]
and S the corresponding set of early jobs from [j]. If j /∈ S, then we have υj [x1, . . . , xk] =
υj−1[x1, . . . , xk] = τj−1[x1, . . . , xk] ≤ τj [x1, . . . , xk]. Otherwise, we have υj [x1, . . . , xk] =
wj + υj−1[x1, . . . , xi−1, xi − pj , xi+1, . . . , xk] = wj + τj−1[x1, . . . , xi−1, xi − pj , xi+1, . . . , xk]
and Lemma 3.3 implies that Items 1 and 2 of Lemma 3.3 are satisfied. Thus, τj [x1, . . . , xk] ≥
wj + τj−1[x1, . . . , xk] = υj [x1, . . . , xk].

We finish the proof of correctness by showing that τj [x1, . . . , xk] ≤ υj [x1, . . . , xk].
If τj [x1, . . . , xk] = −∞, then there is nothing to show, so assume τj [x1, . . . , xk] >

−∞. If we have τj [x1, . . . , xk] = τj−1[x1, . . . , xk], then we have τj [x1, . . . , xk] =
τj−1[x1, . . . , xk] = υj−1[x1, . . . , xk] ≤ υj [x1, . . . , xk]. So assume that we set τj [x1, . . . , xk] =
wj +τj−1[x1, . . . , xi−1, xi −pj , xi+1, . . . , xk]. This implies that Items 1 and 2 from Lemma 3.3
are satisfied. Because τj−1[x1, . . . , xi−1, xi − pj , xi+1, . . . , xk] = υj−1[x1, . . . , xi−1, xi −
pj , xi+1, . . . , xk] ̸= −∞, Lemma 3.3 implies that we can take the schedule correspond-
ing to υj−1[x1, . . . , xi−1, xi − pj , xi+1, . . . , xk] and additionally schedule job j early. Thus,
we have υj [x1, . . . , xk] ≥ wj + υj−1[x1, . . . , xi−1, xi − pj , xi+1, . . . , xk] = τj [x1, . . . , xk].

Running Time. The dynamic programming table contains P k · n entries, each of which can
be computed in O(k) time. The claimed running time follows. ◀

We remark that the ETH-based lower bound from Theorem 3.1 implies that the exponent
is optimal up to a factor of O(log k).

3.3 Few jobs with nontrivial deadlines
Having the intractability results from Theorem 3.1 in mind, we now consider a larger
parameter, namely the number of jobs with a nontrivial deadline. Throughout this section,
we denote the set of jobs having a nontrivial deadline by J , and we set k = |J |. We show
that 1|dj |

∑
wjUj can be solved in O(2k · P · n) time.

The basic idea is that for each job with a deadline, we can guess whether the job is early
or tardy. Then, we adapt the due dates of these jobs according to Observation 3.2, resulting
in modified due dates d∗

j . Finally, we significantly increase the weight of each job in J and
then call a known algorithm for 1||

∑
wjUj with respect to the modified due dates d∗

j and
weights w∗

j .

▶ Theorem 3.5. 1|dj |
∑

wjUj can be solved in O(2k · P · n) time, where k is the number of
jobs with nontrivial deadline.

Proof. Let J be the set of jobs with a nontrivial deadline. First, we guess the subset of
tardy jobs U ⊆ J with nontrivial deadlines. We then set modified deadlines for all jobs
according to Observation 3.2 and using the set S = J \ U as the set of early jobs. Thus, we
have d∗

j = dj if j ∈ S, and d∗
j = dj if j ∈ U . Moreover, we set w∗

j = W + 1 for all jobs j ∈ J ,
and w∗

j = wj for all other jobs j ∈ {1, . . . , n} \ J .
For these modified due dates d∗

j and weights w∗
j , we run the O(Pn)-time algorithm for

1||
∑

wjUj [16]. If the algorithm returns a schedule σ where the total weight of tardy jobs is
at most W , then we store this schedule as a potential solution for the unmodified instance.
Otherwise, we conclude that there is no feasible schedule with respect to our guess of the
tardy jobs U ⊆ J . Our algorithm finally outputs the potential solution with the minimum
weight of tardy jobs.
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By Observation 3.2, the set of feasible schedules where each job from J \ U is early is the
set of schedules where each job from J is early with respect to the modified due dates. This
corresponds to schedules where the total weight of tardy jobs with respect to the modified
weights is at most W . Thus, the potential solution corresponding to the current guess U ⊆ J

is a schedule minimizing the total weighted number of tardy jobs under the additional
constraint that precisely the U jobs of J are tardy. It follows that for the guess U = U(σ∗)
for some optimal schedule σ∗, the algorithm returns an optimal schedule. ◀

For the unweighted case (i.e., wj = 1 for each j ∈ J), we can get an FPT-algorithm (even
for binary encoded numbers) by following the same approach of guessing which of the jobs
with nontrivial deadlines are tardy.

▶ Theorem 3.6. 1|dj |
∑

Uj can be solved in O(2k · n log n) time where k is the number of
jobs with a nontrivial deadline.

Proof. Let J be the set of jobs with a nontrivial deadline. First, we guess the subset S ⊆ J

of early jobs with nontrivial deadlines. Observation 3.2 now reduces 1|dj |
∑

Uj together with
the guess S to a variation of 1||

∑
Uj where we are additionally given a set J of jobs which

have to be early. This problem is known to be solvable in O(n log n) time [21]. As there
are 2k possible guesses for S, the running time follows. ◀

4 The 1|dj| ∑
wjCj problem

We next examine the objective of minimizing the total weighted completion time. We remark
that the unweighted variant of 1|dj |

∑
wjCj , the 1|dj |

∑
Cj problem, is solvable in O(n log n)

time [22]. Weak NP-hardness of 1|dj |
∑

wjCj was shown by Lenstra et al. [17], using only
a single job with a nontrivial deadline. Therefore, unless P=NP, there is no XP-algorithm
for 1|dj |

∑
wjCj with binary encoding parameterized by the number of jobs with nontrivial

deadlines.
Below we strengthen Lenstra’s reduction, and show that 1|dj |

∑
wjCj is W[1]-hard when

parameterized by the number of jobs with nontrivial deadlines even if all numbers are encoded
in unary. Note that this implies also W[1]-hardness for the problem when the number of
different deadlines is taken as a parameter. To compliment our hardness result, we present
algorithm running in O(k · n · P 2k−2) time, where k is the number of different deadlines.

4.1 Hardness
We adapt the reduction from Lenstra et al. [17] to show strong NP-hardness and W[1]-
hardness parameterized by the number of jobs with nontrivial deadline (also for unary
encoding). We will reduce from Bin Packing restricted to instances where each bin must
be filled exactly.

Exact Bin Packing
Input: t items with sizes a1, . . . , at, a bin size B, and the number K of bins.
Question: Is there an assignment of the items to the bins such that each bin contains

items of total size exactly B?

Exact Bin Packing is strongly NP-hard [6] and W[1]-hard parameterized by the number
of bins, even if all numbers are encoded in unary [13]. Let (a1, . . . , at; B; K) be an instance
of Exact Bin Packing. We create an instance of 1|dj |

∑
wjCj with t + K − 1 jobs as

follows:
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For j ∈ [t], job j has processing time and weight pj = aj = wj and trivial deadline
dj = K · B + K − 1.
For ℓ ∈ [K − 1], job t + ℓ has processing time pt+ℓ = 1, weight wt+ℓ = 0, and deadline
dt+ℓ = ℓ · (B + 1).
We set the bound on the total weighted completion time to

b :=
∑

i1,i2∈[t]

ai1ai2 +
K−1∑
ℓ=1

(K − ℓ) · B.

Note that the total processing time of all jobs is K · B + K − 1 = dj for all j ∈ [t], so
only jobs t + 1, . . . , t + K − 1 have a nontrivial deadline. The idea behind the reduction
is as follows: Because wj = pj for all j ∈ [t], the relative order of jobs j1 and j2 does not
matter: if j1 is before j2, then this contributes wj2 · pj1 = aj1 · aj2 to the total completion
time (as this increases the completion time of j2 by pj1), while otherwise this contributes
wj1 · pj2 = aj1 · aj2 to the total processing time. Consequently, the total completion time
of a schedule only depends on the completion times of the jobs t + ℓ for ℓ ∈ [K − 1]. As
their weight is 0 but they have nonzero processing time, they should be scheduled as late as
possible (since they only increase the processing times of other jobs), i.e., directly before their
deadline. In any such schedule, the processing time of the jobs between t + ℓ and t + ℓ + 1
equals dt+ℓ+1 − dt+ℓ − pt+ℓ+1 = B, implying a solution to the Exact Bin Packing instance.

▶ Lemma 4.1. The t items can be packed into K bins iff the t + K + 1 jobs constructed have
a feasible schedule with at most b total weighted completion time.

Proof. (=⇒): Assume that there is a solution to the Exact Bin Packing instance and
that the set of items contained in ℓ-th bin is Aℓ. We denote the set of jobs corresponding to
the items from Aℓ by Jℓ, i.e. Jℓ := {j : aj ∈ Aℓ}. We construct a schedule σ as follows: We
start with the jobs from J1 in arbitrary order, followed by job t + 1. Afterwards, we schedule
the jobs from J2 followed by t + 2. We continue scheduling Jℓ followed by job t + ℓ until
we schedule job t + K − 1. Finally, we schedule all jobs from JK in arbitrary order. This
finishes the construction of σ. It remains to show that σ is feasible and has total weighted
completion time at most b.

We start with the feasibility of σ. The only jobs with nontrivial deadline are t + ℓ for
ℓ ∈ [K −1]. Job t+ℓ is completed after the jobs from A1 ∪A2 ∪ . . .∪Aℓ and jobs t+1, . . . , t+ℓ.
The processing time of jobs t + 1, . . . , t + ℓ is ℓ. Since

∑
a∈Ai

a = B, the processing time of
jobs from A1 ∪ . . . Aℓ is ℓ · B. Thus, t + ℓ is completed at time ℓ + ℓ · B = dt+ℓ. Consequently,
σ is feasible.

We continue by showing that the weighted completion time of σ is at most b. In order to
analyze the total completion time, we split it into three parts: First, jobs t1, . . . , t + K − 1
have weight 0 and thus their weighted completion time is 0. Second, we consider the weighted
completion time caused by some job j being scheduled after some job t + ℓ for j ∈ [t]
and ℓ ∈ [K − 1]. The jobs scheduled after t + ℓ are Jℓ+1 ∪ Jℓ+2 ∪ . . . ∪ JK as well as
t + ℓ + 1, . . . , t + K − 1. Thus, the weight of all jobs scheduled after t + ℓ is

K∑
i=ℓ+1

∑
j∈Ji

wj =
K∑

i=ℓ+1

∑
a∈Ai

a =
K∑

i=ℓ+1
B = (K − ℓ) · B.

Finally, we consider the weighted completion time caused by some job j1 being scheduled
before some job j2 for j1, j2 ∈ [t]. For each j1, j2 ∈ [t], job j1 is either scheduled before j2,
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job j2 is scheduled before j1, or j1 = j2. In all cases, this contributes aj1 · aj2 = wj1 · pj2 =
wj2 · pj1 to the total weighted completion time. Summing all three parts together, the total
weighted completion time is

K−1∑
ℓ=1

(K − ℓ) · B +
∑

j1,j2∈[t]

aj1aj2 = b.

(⇐=): In the converse direction, assume that there is a feasible schedule σ with total
weighted completion time at most b. As argued in the forward direction, for each j1, j2 ∈ [t]
there is a contribution of aj1 · aj2 to the total weighted completion time. We may assume
without loss of generality that σ schedules job t + ℓ before job t + ℓ′ for all ℓ < ℓ′ as jobs
t + ℓ and t + ℓ′ have the same weight and processing time, but dt+ℓ < dt+ℓ′ .

Job t + ℓ contributes 1 to the completion time of all jobs scheduled after t + ℓ. Let J>t+ℓ

be the set of jobs from [t] which are scheduled after t + ℓ, and let J t+ℓ be the jobs from [t]
which are scheduled before t + ℓ. The total processing time of J t+ℓ cannot exceed ℓ · B as
dt+ℓ = ℓ · (B + 1), and jobs t + 1, . . . , t + ℓ − 1 are scheduled before t + ℓ. Consequently, we
have ∑

j∈J>t+ℓ

wj =
∑

j∈J>t+ℓ

aj =
∑
j∈[t]

aj −
∑

j∈[t]\J>t+ℓ

aj = K · B −
∑

j∈J<t+ℓ

pj ≥ K · B − ℓ · B

where equality holds if and only if job t + ℓ is completed precisely at time dt+ℓ. Because
b =

∑
i1,i2∈[t] ai1ai2 +

∑K−1
i=ℓ (K − ℓ) · B, this implies that each job t + ℓ is completed precisely

at time dt+ℓ. Thus, between jobs t + ℓ and t + ℓ + 1, jobs of processing time exactly B are
scheduled.

Consequently, we construct a solution to the Bin Packing instance as follows: If job j is
scheduled after t + ℓ − 1 but before t + ℓ for some ℓ ∈ {2, 3, . . . , K − 1}, then we assign aj to
the ℓ-th bin. If j is scheduled before t + 1, then we assign aj to the first bin. If j is scheduled
after t + K − 1, then we assign aj to the K-th bin. Thus, the t items can all be packed into
K bins of size B each. ◀

Recall that Exact Bin Packing is strongly NP-hard, W[1]-hard when parameterized
by K, and does not admit an f(K) · no(K/ log K)-time algorithm assuming ETH even if all
numbers are encoded in unary [13]. Thus, as the construction above constructs K − 1 jobs
with nontrivial deadlines, we get the following Theorem directly from Lemma 4.1:

▶ Theorem 4.2. Let k denote the number of jobs with nontrivial deadline in a 1|dj |
∑

wjCj

instance. Then the 1|dj |
∑

wjCj problem
1. is strongly NP-hard,
2. is W[1]-hard parameterized by k even when all numbers are encoded in unary, and
3. admits no f(k) · P o(k/ log k)-time algorithm assuming ETH.

4.2 Constant number of deadlines
We complement the W[1]-hardness in case of unary encoding shown in the previous subsection
by presenting a pseudo-polynomial time algorithm for a constant number of different deadlines.
Similar to Section 3.2, the first step of the dynamic program consists of sorting the jobs in a
favorable manner. Further, the dynamic program contains a table τj for each j ∈ [n], and
these tables contain entries τj [x1, . . . , xk] where xi encodes the total processing time of the
jobs scheduled between di−1 and di (where d0 := 0). However, in contrast to Section 3.2,
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a schedule corresponding to τj [x1, . . . , xk] now only schedules jobs 1, . . . , j instead of all
jobs, and it may be that the schedule cannot be extended to a feasible schedule for all jobs.
Furthermore, the xi now measure the processing times of jobs scheduled between the (i−1)th
and ith deadline. Another difference is that we “guess” certain characteristics of an optimal
schedule and adapt the instance to these characteristics before starting the dynamic program.

Our dynamic programming processes the jobs from 1, . . . , n, and computes a table τj

for each j ∈ [n]. This table has an entry τj [x1, . . . , xk] which stores the minimum weighted
completion time of a schedule of jobs {1, . . . , j} such that
1. the schedule is feasible for 1, . . . , j, i.e. each job from 1, . . . , j is completed not after its

deadline, and
2. the total processing time of jobs being completed between d

(i−1) and d
(i) equals xi, for

every i ∈ [k] (where we set d
(0) := 0).

We call a schedule fulfilling these two conditions (j; x1, . . . , xk)-obeying ((j; x1, . . . , xk)-
obeying is the counterpart to (j; x1, . . . , xk)-compatible from Section 3.2 in the sense that it
determines whether a schedule fulfills the conditions for τj [x1, . . . , xk]).

To compute the above dynamic program, we need to be able to, given an oracle which
tells us the set Si of jobs being completed between d

(i−1) and d
(i) for each i ∈ [k], find

an optimal schedule. This can be done easily: As the relative order of the jobs from Si

does not influence the completion times of jobs from Sℓ for i ≠ ℓ, we can schedule the jobs
from Si independently from the rest. In this subinstance consisting of the jobs from Si,
the deadlines of jobs from Si are trivial, and so we can use the structure of an optimal
schedule for 1||

∑
wjCj : An optimal schedule for 1||

∑
wjCj schedules the jobs according

to WSPT [22], that is, according to non-decreasing ratio pj/wj . Thus, we want to schedule
each set Si according to WSPT. We formalize this argument in the following lemma:

▶ Lemma 4.3. Let σ be an optimal schedule for a 1|dj |
∑

wjCj instance. For i ∈ [k], let Si

be the set of jobs which are completed after d
(i−1) but not later than d

(i) (using d
(0) := 0).

Then the jobs from Si are ordered according to WSPT in σ.

Proof. Assume towards a contradiction that they are not ordered according to WSPT. Then
there is a job j1 ∈ Si directly followed (in σ) by a job j2 ∈ Si with pj1/wj1 > pj2/wj2 . We
claim that the schedule σ2,1 arising from σ by exchanging jobs j1 and j2 is a feasible schedule
with smaller total weighted completion time, contradicting the optimality of σ. First, we
show the feasibility of σ2,1. All jobs but j1 and j2 are completed at the same time and
thus are completed by their deadline by the feasibility of σ. For jobs j1 and j2, we have
min{dj1 , dj2} ≥ d

(i) as σ was a feasible schedule. Further, as j1 and j2 are contained in Si,
both jobs are completed not later than d

(i) in both σ and σ2,1. Thus, σ2,1 is feasible. It
remains to consider the total weighted completion time of σ2,1. All jobs except for j1 and j2
are completed at the same time and therefore have the same contribution to the weighted
completion time. Let t be the starting time of job j1 in σ. The weighted completion time
of j1 and j2 in σ is C := wj1 · (t + pj1) + wj2(t + pj1 + pj2), while the weighted completion
time of j1 and j2 in σ2,1 is C2,1 := wj2 · (t + pj2) + wj1(t + pj2 + pj1). Thus, we have
C − C2,1 = wj2pj1 − wj1pj2 > 0 using wj1/pj1 < wj2/pj2 for the inequality. Therefore, σ2,1
has a smaller total weighted completion time than σ, contradicting the optimality of σ. ◀

Using Lemma 4.3, the basic idea of the dynamic program is the following: We order
the jobs according to WSPT, i.e. pj/wj ≤ pj+1/wj+1 for all j ∈ {1, . . . , n − 1}. For
each i ∈ [k −1], we guess when the first job which is completed after d

(i) starts (there are only
P k−1 possible guesses). For the sake of simplicity, assume that for each i ∈ [k − 1] the guess
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is d
(i), i.e. for each i ∈ [k − 1] there is one job starting at time d

(i). Recall that the dynamic
program τj−1[x1, . . . , xk] contains a (j − 1; x1, . . . , xk)-obeying schedule of 1, . . . , j − 1 of
minimum weighted processing time. There are now up to k possibilities how j is scheduled,
namely between d

(i−1) and d
(i) for every i ∈ [k] such that dj ≤ d

(i). Assuming that j is
completed between d

(i−1) and d
(i), we know how job j is scheduled: As we ordered the jobs

according to WSPT, Lemma 4.3 implies that j will be the last job from 1, . . . , j which is
completed d

(i−1) and d
(i). Thus, it is completed at time d

(i−1) + xi + pj . Consequently, this
results in a (j; x1, . . . , xi−1, xi + pj , xi+1, . . . , xk)-obeying schedule with weighted completion
time τj−1[x1, . . . , xk] + wj · (d(i−1) + xi + wj) if xi + pj ≤ d

(i) − d
(i−1). Therefore, we set

τj [x1, . . . , xk] := min
i∈[k]:dj≤d

(i) τj−1[x1, . . . , xi−1, xi − pj , xi+1, . . . , xk] + wj · (d(i−1) + xi).

▶ Theorem 4.4. 1|dj |
∑

wjCj can be solved in O(P 2k−2 · k · n) time, where k is the number
of different deadlines.

Proof. First, we guess for each i ∈ [k − 1] the time ti when the first job which is completed
after d

(i) starts. Afterwards, we reduce the deadline d
(i) to ti. This ensures that there will

be no job starting before d
(i) and being completed after d

(i).
We order the jobs according to WSPT. The dynamic program contains a table τj for

each j ∈ {0, . . . , n}. Each such table contains an entry τj [x1, . . . , xn] for xi ∈ {0, 1, . . . , d
(i) −

d
(i−1)} (where d

(0) := 0). This entry contains the minimum weighted completion time
of a (j; x1, . . . , xk)-obeying schedule. We now formally describe how these values can be
computed.

Initialization. We set τ0[0, . . . , 0] := 0 and τ0[x1, . . . , xk] := ∞ otherwise.

Update. Let j ∈ [n] and assume that job j has deadline d
(i). Then

τj [x1, . . . , xk] := min
ℓ∈[i]

{
τj−1[x1, . . . , xℓ−1, xℓ − pj , xℓ+1, . . . , xk] + wj · (d(ℓ−1) + xℓ)

}

Optimal Solution. The optimal solution value is τn[d(1)
, d

(2) − d
(1)

, d
(3) − d

(2)
, d

(4) −
d

(3)
, . . . , d

(k) − d
(k−1)]. An optimal schedule can be found using backtracking.

Correctness. Clearly, τ0[x1, . . . , xk] equals the minimum weighted processing time of a
(0; x1, . . . , xk)-feasible schedule. Recall that we assume d

(k) = P , so we have
∑k

i=1(d(i) −
d

(i−1)) = P . Because an optimal schedule has no idle time, the total processing time of jobs
between d

(ℓ−1) and d
(ℓ) is precisely d

(ℓ) − d
(ℓ−1). Thus, τn[d(1)

, d
(2) − d

(1)
, d

(3) − d
(2)

, d
(4) −

d
(3)

, . . . , d
(k) − d

(k−1)] contains the value of an optimal solution (assuming correctness of the
update step).

It remains to show that the update step is correct. Let σ be a (j; x1, . . . , xk)-obeying
schedule of minimum weighted processing time. Because no job starts before d

(i) and is
completed after d

(i) as we adapted the deadlines to our initial guess, each job which is
completed between d

(ℓ−1) and d
(ℓ) also starts between d

(ℓ−1) and d
(ℓ). Fix ℓ ∈ [k] such

that job j is completed in σ between d
(ℓ−1) and d

(ℓ). Note that ℓ ≤ i as σ is feasible. As
we process the jobs in WSPT order, we may assume by Lemma 4.3 that j is the last job
from [j] which starts between d

(ℓ−1) and d
(ℓ). Then removing job j results in a schedule
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of jobs 1, . . . , j − 1 where the processing time of jobs starting between d
(ℓ′−1) and d

(ℓ′) is
exactly xℓ′ for ℓ′ ̸= ℓ and xℓ − pj for ℓ′ = ℓ. Scheduling j after all other jobs starting
between d

(ℓ−1) and d
(ℓ) then results in a completion time of d

(ℓ) + xℓ for job j. The total
weighted completion time of jobs 1, . . . , j−1 is at least τj−1[x1, . . . , xℓ−1, xℓ−pj , xℓ+1, . . . , xk].
Consequently, a (j; x1, . . . , xk)-obeying schedule has weighted completion time at least
wj(d(ℓ) + xℓ) + τj−1[x1, . . . , xℓ−1, xℓ − pj , xℓ+1, . . . , xk] ≥ τj [x1, . . . , xk].

It remains to show that an (j; x1, . . . , xk)-obeying schedule has weighted completion time
at most τj [x1, . . . , xk]. For each ℓ ≤ i, combining the schedule from τj [x1, . . . , xℓ−1, xℓ −
pj , xℓ+1, xk] with job j scheduled at time d

(ℓ−1) + xℓ results in a schedule σℓ with total
weighted completion time τj [x1, . . . , xℓ−1, xℓ − pj , xℓ+1, xk] + wj · (d(ℓ−1) + xℓ). Schedule σℓ

completes j before its deadline as ℓ ≤ i and xℓ ≤ d
(ℓ) − d

(ℓ−1). Thus, σℓ is (j; x1, . . . , xk)-
obeying. Therefore, there is a (j; x1, . . . , xk)-obeying schedule with weighted completion
time at most τj [x1, . . . , xk].

Running Time. There are O(P k−1) many different guesses (for each i ∈ [k − 1], we guess
one time ti). For each guess, the dynamic programming table as described above contains
O(n · P k) many entries, each of which can be computed in O(k) time. However, note that
we only need to consider entries τj [x1, . . . , xk] with

∑k
ℓ=1 xℓ =

∑j
j′=1 pj′ . Thus, for each

combination of j and x1, . . . , xk−1, there is only one value of xk which we need to consider.
This implies that it suffices to compute O(n ·P k−1) many entries of the dynamic programming
table. Thus, the total running time is O(k · n · P 2k−2). ◀

We remark that the ETH-based lower bound from Theorem 4.2 implies that the exponent
is optimal up to a factor of O(log k).

5 Conclusion

We initiated the study of the parameterized complexity of scheduling problems with deadlines.
While we arrived at a complete FPT-vs.-W[1]-hardness-vs.-XP-classification of 1|dj |

∑
wjUj

and 1|dj |
∑

wjCj with respect to the number of different deadlines and the number of jobs
with nontrivial deadline, there is still ample room for future work: For example, one might
study other parameterizations not focusing on the deadlines such as the number of different
processing times. Another direction would be to extend our study to further problems such
as 1|dj |

∑
Tj . For this problem, one likely gets similar in Theorem 3.1 by modifying the

reduction from [3] similar to Theorem 3.1, but it is unclear on whether a pseudopolynomial-
time algorithm for a constant number of different deadlines exists. Lastly, we left open
the approximability of both 1|dj |

∑
wjCj and 1|dj |

∑
wjUj (note that 1||

∑
wjUj admits

an FPTAS [20]). Due to the strong NP-hardness of 1|dj |
∑

wjCj and 1|dj |
∑

wjUj , both
problems do not admit an FPTAS unless P=NP. However, the existence of a PTAS or a
constant-factor approximation algorithm is open.
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