
Dynamic Programming on Bipartite Tree
Decompositions
Lars Jaffke #

Department of Informatics, University of Bergen, Norway

Laure Morelle #

LIRMM, Université de Montpellier, CNRS, France

Ignasi Sau #

LIRMM, Université de Montpellier, CNRS, France

Dimitrios M. Thilikos #

LIRMM, Université de Montpellier, CNRS, France

Abstract
We revisit a graph width parameter that we dub bipartite treewidth, along with its associated
graph decomposition that we call bipartite tree decomposition. Bipartite treewidth can be seen
as a common generalization of treewidth and the odd cycle transversal number. Intuitively, a
bipartite tree decomposition is a tree decomposition whose bags induce almost bipartite graphs
and whose adhesions contain at most one vertex from the bipartite part of any other bag, while
the width of such decomposition measures how far the bags are from being bipartite. Adapted
from a tree decomposition originally defined by Demaine, Hajiaghayi, and Kawarabayashi [SODA
2010] and explicitly defined by Tazari [Theor. Comput. Sci. 2012], bipartite treewidth appears
to play a crucial role for solving problems related to odd-minors, which have recently attracted
considerable attention. As a first step toward a theory for solving these problems efficiently, the
main goal of this paper is to develop dynamic programming techniques to solve problems on graphs
of small bipartite treewidth. For such graphs, we provide a number of para-NP-completeness results,
FPT-algorithms, and XP-algorithms, as well as several open problems. In particular, we show that
Kt-Subgraph-Cover, Weighted Vertex Cover/Independent Set, Odd Cycle Transversal,
and Maximum Weighted Cut are FPT parameterized by bipartite treewidth. We also provide
the following complexity dichotomy when H is a 2-connected graph, for each of the H-Subgraph-
Packing, H-Induced-Packing, H-Scattered-Packing, and H-Odd-Minor-Packing problems:
if H is bipartite, then the problem is para-NP-complete parameterized by bipartite treewidth while,
if H is non-bipartite, then the problem is solvable in XP-time. Beyond bipartite treewidth, we define
1-H-treewidth by replacing the bipartite graph class by any graph class H. Most of the technology
developed here also works for this more general parameter.

2012 ACM Subject Classification Theory of computation → Parameterized complexity and exact
algorithms

Keywords and phrases tree decomposition, bipartite graphs, dynamic programming, odd-minors,
packing, maximum cut, vertex cover, independent set, odd cycle transversal

Digital Object Identifier 10.4230/LIPIcs.IPEC.2023.26

Related Version Full Version: https://doi.org/10.48550/arXiv.2309.07754

Funding The second and the third authors were supported by the ANR project ELIT (ANR-20-CE48-
0008-01), the three last authors were supported by the French-German Collaboration ANR/DFG
Project UTMA (ANR-20-CE92-0027), and the first author was supported by the Research Council
of Norway (No 274526).

Acknowledgements We thank Sebastian Wiederrecht and the reviewers for helpful remarks.

© Lars Jaffke, Laure Morelle, Ignasi Sau, and Dimitrios M. Thilikos;
licensed under Creative Commons License CC-BY 4.0

18th International Symposium on Parameterized and Exact Computation (IPEC 2023).
Editors: Neeldhara Misra and Magnus Wahlström; Article No. 26; pp. 26:1–26:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:lars.jaffke@uib.no
mailto:laure.morelle@lirmm.fr
mailto:ignasi.sau@lirmm.fr
mailto:sedthilk@thilikos.info
https://doi.org/10.4230/LIPIcs.IPEC.2023.26
https://doi.org/10.48550/arXiv.2309.07754
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

26:2 Dynamic Programming on Bipartite Tree Decompositions

1 Introduction

A graph H is said to be an odd-minor of a graph G if it can be obtained from G by iteratively
removing vertices, edges, and contracting edge cuts. Hadwiger’s conjecture [15], which is
open since 1943, states that if a graph excludes Kt as a minor, then its chromatic number is
at most t − 1. In 1993, Gerards and Seymour [19] generalized this conjecture to odd-minors,
hence drawing attention to odd-minors: the Odd Hadwiger’s conjecture states that if a graph
excludes Kt as an odd-minor, then its chromatic number is at most t−1. Since then, a number
of papers regarding odd-minors appeared. Most of them focused to the resolution of the
Odd Hadwiger’s conjecture (see for instance [11], and [30] for a nice overview of the results),
while some others aimed at extending the results of graph minor theory to odd-minors (see
for instance [6, 16,22]). In particular, Demaine, Hajiaghayi, and Kawarabayashi [6] provided
a structure theorem which essentially states that graphs excluding an odd-minor can be
obtained by clique-sums of almost-embeddable graphs and almost bipartite graphs. To prove
this, they implicitly proved the following, which is described more explicitly by Tazari [31].

▶ Proposition 1 ([31], adapted from [6]). Let H be a fixed graph and let G be a given
H-odd-minor-free graph. There exists a fixed graph H ′, κ, µ ∈ N depending only on H, and
an explicit uniform algorithm that computes a rooted tree decomposition of G such that:

the adhesion of two nodes has size at most κ, and
the torso of each bag B either consists of a bipartite graph WB together with µ additional
vertices (bags of Type 1) or is H ′-minor-free (bags of Type 2).

Furthermore, the following properties hold:
1. Bags of Type 2 appear only in the leaves of the tree decomposition,
2. if B2 is a bag that is a child of a bag B1 in the tree decomposition, then |B2 ∩V (WB1)| ≤ 1;

and if B2 is of Type 1, then |B1 ∩ V (WB2)| ≤ 1 as well,
3. the algorithm runs in time OH(|V (G)|4), and
4. the µ additional vertices of the bags of Type 1, called apex vertices, can be computed

within the same running time.

It is worth mentioning that Condition 2 of Proposition 1 is slightly stronger than what is
stated in [31], but it follows from the proof of [6, Theorem 4.1].

The tree decomposition described in Proposition 1 seems hence adapted to study problems
related to odd-minors. As a first step toward building a theory for solving such problems,
we study in this paper a new type of tree decomposition, which we call bipartite tree
decomposition, corresponding to the tree decompositions of Proposition 1, but where all bags
are only of Type 1. We also stress that this decomposition has also been implicitly used
in [21] and is also introduced, under the same name, in [4].

Bipartite treewidth. Let B denotes the class of bipartite graphs. A bipartite tree decom-
position of a graph G is a triple (T, α, β), where T is a tree and α, β : V (T) → 2V (G), such
that

(T, α ∪ β) is a tree decomposition of G,
for every t ∈ V (T), α(t) ∩ β(t) = ∅,
for every t ∈ V (T), G[β(t)] ∈ B, and
for every tt′ ∈ E(T), |(α ∪ β)(t′) ∩ β(t)| ≤ 1.

The width of (T, α, β) is equal to max
{

|α(t)|
∣∣ t ∈ V (T)

}
. The bipartite treewidth of G,

denoted by btw(G), is the minimum width over all bipartite tree decompositions of G.

L. Jaffke, L. Morelle, I. Sau, and D. M. Thilikos 26:3

It follows easily from the definition that btw(G) = 0 if and only if G is bipartite (indeed,
to prove the sufficiency, just take a single bag containing the whole bipartite graph, with no
apex vertices). More generally, for every graph G it holds that btw(G) ≤ oct(G), where oct
denotes the size of a minimum odd cycle transversal, that is, a vertex set intersecting every
odd cycle. On the other hand, since a bipartite tree decomposition is a tree decomposition
whose width is not larger than the maximum size of a bag (in each bag, just declare all
vertices as apices), for every graph G it holds that btw(G) ≤ tw(G) + 1, where tw denotes
treewidth. Thus, bipartite treewidth can be seen as a common generalization of treewidth
and the odd cycle transversal number. Hence, an FPT-algorithm parameterized by btw
should generalize both FPT-algorithms parameterized by tw and by oct. Since our goal
is to develop a theory for solving problems related to odd-minors, the first prerequisite is
that bipartite treewidth is closed under odd-minors. Fortunately, this is indeed the case
(cf. [17, Lemma 3.2]). Interestingly, this would not be true anymore if, in Condition 2 of
Proposition 1, the considered intersections were required to be upper-bounded by some
integer larger than one (cf. [17, Lemma 3.3]).

This type of tree decomposition has been already used implicitly by Kawarabayashi and
Reed [21] in order to solve Odd Cycle Transversal parameterized by the solution size.
Independently of our work, Campbell, Gollin, Hendrey, and Wiederrecht [4] are also currently
studying bipartite tree decompositions. In particular, they provide universal obstructions
characterizing bounded btw in the form of a “grid theorem” (actually the result of [4] apply
in the much more general setting of undirected group labeled graphs). They also designed
an FPT-approximation algorithm that can construct a bipartite tree decomposition in time
g(k) · n4 log n. This FPT-approximation is an important prerequisite for our algorithmic
results as it permits us to assume that, for the implementation of our algorithms, some
(approximate) bipartite tree decomposition is provided in advance.

Our aim is to provide a general framework for the design of dynamic programming
algorithms on bipartite tree decompositions and, more generally, on a broader type of
decompositions that we call 1-H-tree decompositions. These decompositions generalize
bipartite tree decompositions, in the sense that the role of bipartite graphs is replaced by a
general graph class H.

Our results. In this article we formally introduce bipartite treewidth and bipartite tree
decompositions (noticing that they were implicitly already used before, as discussed above).
We then focus on the complexity of various problems when the bipartite treewidth of the
input graph is taken as a parameter. In particular, we show the following (cf. Table 1):

While a graph with btw at most k is (k + 2)-colorable (cf. [17, Lemma 6.1]), 3-Coloring
is NP-complete even on graphs of oct of size three (cf. [17, Lemma 6.2]), and thus btw at
most three.
Kt-Subgraph-Cover, Weighted Vertex Cover/Independent Set, Odd Cycle
Transversal, and Maximum Weighted Cut are FPT parameterized by btw (cf. [17,
Corollaries 4.3, 4.5, 4.6, 4.7]). In particular, our FPT-algorithms extend the domain where
these well-studied problems can be solved in polynomial time to graphs that are “locally
close to being bipartite”. Furthermore, as btw(G) ≤ oct(G) for any graph G, we think
that the fact that Odd Cycle Transversal is FPT parameterized by btw is relevant
by itself, as it generalizes the well-known FPT-algorithms parameterized by the solution
size [25, 28]. We would like to mention that combining in a win-win manner our dynamic
programming algorithm with the FPT-approximation and the Grid Exclusion Theorem

IPEC 2023

26:4 Dynamic Programming on Bipartite Tree Decompositions

of [4] we may derive an FPT-algorithm for Odd Cycle Transversal parameterized by
the solution size, whose running time is considerably better than the one in [4], which
has been obtained independently by using the irrelevant vertex technique (see also [21]).
Let H be a 2-connected graph. We prove that H-Minor-Packing is para-NP-complete
parameterized by btw. For each of the H-Subgraph-Packing, H-Induced-Subgraph-
Packing, H-Scattered-Packing, and H-Odd-Minor-Packing problems (cf. Ap-
pendix B for the definitions), we obtain the following complexity dichotomy: if H is
bipartite, then the problem is para-NP-complete parameterized by btw (in fact, even
for btw = 0), and if H is non-bipartite, then the problem is solvable in XP-time. The
definition of the problems and the XP-algorithms are presented in [17, Section 5] and the
hardness results in [17, Lemma 6].
In view of the definition of bipartite tree decompositions, it seems natural to consider,
instead of bipartite graphs as the “free part” of the bags, any graph class H. This
leads to the more general definition of 1-H-tree decomposition and 1-H-treewidth (cf. [17,
Section 3]), with 1-{∅}-treewidth being equivalent to the usual treewidth and 1-B-treewidth
being the bipartite treewidth if B is the class of bipartite graphs. We introduce these
more general definitions because our dynamic programming technologies easily extend
to 1-H-treewidth. It also seems natural to consider, instead of allowing at most one
“bipartite vertex” in each adhesion, allowing any number q of them. For q = 0, this
corresponds to the H-treewidth defined in [8] (see also [1,18] on the study of H-treewidth
for several instantiations of H). However, as mentioned above, while 1-B-treewidth is
closed under odd-minors (cf. [17, Lemma 3.2]), this is not the case anymore for q ≥ 2
(cf. [17, Lemma 3.3]). For q ≥ 2, some problems remain intractable even when H is
not bipartite. As an illustration of this phenomenon, we prove that H-Scattered-
Packing (where there cannot be an edge in G among the copies of H to be packed) is
para-NP-complete parameterized by q-B-treewidth for q ≥ 2 even if H is not bipartite
(cf. [17, Lemma 6.7]).

In the statements of the running time of our algorithms, we always let n (resp. m) be
the number of vertices (resp. edges) of the input graph of the considered problem.

Table 1 Summary of the results obtained in this article.

Problem Complexity Constraints on H/Running time
H(-Induced)-Subgraph/Odd-Minor

para-NP-complete, k = 0

H bipartite containing P3 as a subgraph
-Cover [32]

H-Minor-Cover [32] H containing P3 as a subgraph
H(-Induced)-Subgraph-Packing H bipartite containing P3 as a subgraph

H-Minor-Packing H 2-connected with |V (H)| ≥ 3
H-Odd-Minor-Packing H 2-connected bipartite with |V (H)| ≥ 3
H-Scattered-Packing H 2-connected bipartite with |V (H)| ≥ 2

3-Coloring para-NP-complete, k = 3
Kt-Subgraph-Cover

FPT

O(2k · (kt · (n + m) + m
√

n))
Independent Set O(2k · (k · (k + n) + m

√
n))

Weighted Independent Set O(2k · (k · (k + n) + n · m))
Odd Cycle Transversal O(3k · k · n · (m + k2))
Maximum Weighted Cut O(2k · (k · (k + n) + nO(1)))

H-Subgraph-Packing

XP
H non-bipartite 2-connected

H-Induced-Subgraph-Packing
H-Scattered-Packing

nO(k)

H-Odd-Minor-Packing

L. Jaffke, L. Morelle, I. Sau, and D. M. Thilikos 26:5

Related results. Other types of tree decompositions integrating some “free bipartite parts”
have been defined recently. As we already mentioned, Eiben, Ganian, Hamm, and Kwon [8]
defined H-treewidth for a fixed graph class H. The H-treewidth of a graph G is essentially
the minimum treewidth of the graph induced by some set X ⊆ V (G) such that the connected
components of G\X belong to H, and is equal to 0-H-treewidth minus one (cf. [17, Section 3]).
In particular, when H is the class of bipartite graphs B, Jansen and de Kroon [18] provided
an FPT-algorithm to test whether the B-treewidth of a graph is at most k.

Recently, as a first step to provide a systematic theory for odd-minors, Gollin and
Wiederrecht [12] defined the H-blind-treewidth of a graph G, where H is a property of
annotated graphs. Then the H-blind-treewidth is the smallest k such that G has a tree
decomposition where every bag β(t) such that (G, β(t)) /∈ H has size at most k. For the
case where C consists of every (G, X) where every odd cycle in H as at most one vertex in
X, we obtain the C-blind-treewidth, for which [12] gives an analogue of the Grid Exclusion
Theorem [5, 29] under the odd-minor relation. Moreover, [12] provides an FPT-algorithm for
Independent Set parameterized by C-blind-treewidth. According to [12], the bipartite-blind
treewidth of a graph G is lower-bounded by a function of the maximum treewidth over
all non-bipartite blocks of G. This immediately implies that bipartite-blind treewidth is
lower-bounded by bipartite treewidth. Hence, our FPT-algorithm for Independent Set is
more general than the one of [12]. Independently of our work, [4] presents an FPT-algorithm
to solve Odd Cycle Transversal parameterized by btw in time f(btw) · n4 log n (in
fact, they solve a more general group labeled problem). Our algorithm for Odd Cycle
Transversal (cf. [17, Corollary 4.6]) is considerably faster.

Organization of the paper. Due to space restrictions, many definitions, results and proofs
cannot be provided here, but are available in the full version of the paper [17]. In Section 2 we
provide an overview of our techniques. In Section 3 we give a general dynamic programming
algorithm to obtain FPT-algorithms, and apply it to Maximum Weighted Cut. Finally, we
present several questions for further research in Section 4. Additional necessary definitions
are provided in Appendix A.

2 Overview of our techniques

In this section we present an overview of the techniques that we use to obtain our results.

2.1 Dynamic programming algorithms

Compared to dynamic programming on classical tree decompositions, there are two main
difficulties for doing dynamic programming on (rooted) bipartite tree decompositions. The
first one is that the bags in a bipartite tree decomposition may be arbitrarily large, which
prevents us from applying typical brute-force approaches to define table entries. The second
one, and apparently more important, is the lack of an upper bound on the number of children
of each node of the decomposition. Indeed, unfortunately, a notion of “nice bipartite tree
decomposition” preserving the width (even approximately) does not exist (cf. [17, Lemma 3.4]).
We discuss separately the main challenges involved in our FPT-algorithms and in our XP-
algorithms.

IPEC 2023

26:6 Dynamic Programming on Bipartite Tree Decompositions

2.1.1 FPT-algorithms
In fact, for most of the considered problems, in order to obtain FPT-algorithms parameterized
by btw, it would be enough to bound the number of children as a function of btw, but we were
not able to come up with a general technique that achieves this property (cf. [17, Lemma 3.4]).
For particular problems, however, we can devise ad-hoc solutions. Namely, for Kt-Subgraph-
Cover, Weighted Vertex Cover/Independent Set, Odd Cycle Transversal, and
Maximum Weighted Cut parameterized by btw, we overcome the above issue by managing
to replace the children by constant-sized bipartite gadgets. More specifically, we guess an
annotation of the “apex” vertices of each bag t, whose number is bounded by btw, that
essentially tells which of these vertices go to the solution or not (with some extra information
depending on each particular problem; for instance, for Odd Cycle Transversal, we
also guess the side of the bipartition of the non-solution vertices). Having this annotation,
each adhesion of the considered node t with a child contains, by the definition of bipartite
tree decompositions, at most one vertex v that is not annotated. At this point, we crucially
observe that, for the considered problems, we can make local computation for each child,
independent from the computations at other children, depending only on the values of the
optimum solutions at that child that are required to contain or to exclude v (note that we need
to be able to keep this extra information at the tables of the children). Using the information
given by these local computations, we can replace the children of t by constant-sized bipartite
gadgets (sometimes empty) so that the newly built graph, which we call a nice reduction, is
an equivalent instance modulo some constant. If a nice reduction can be efficiently computed
for a problem Π, then we say that Π is a nice problem (cf. Appendix A, and [17, Section 4]
for additional intuition). The newly modified bag has bounded oct, so we can then use an
FPT-algorithm parameterized by oct to find the optimal solution with respect to the guessed
annotation.

An illustrative example. Before entering into some more technical details and general
definitions, let us illustrate this idea with the Weighted Vertex Cover problem. We
want to compute the dynamic programming tables at a bag associated with a node t of the
rooted tree given by the bipartite tree decomposition. Remember that the vertices of the
bag at t are partitioned into two sets: β(t) induces a bipartite graph and its complement,
denoted by α(t), corresponds to the apex vertices, whose size is bounded by the parameter,
namely btw. The first step is to guess, in time at most 2btw, which vertices in α(t) belong to
the desired minimum vertex cover. After such a guess, all the vertices in α(t) can be removed
from the graph, by also removing the neighborhood of those that were not taken into the
solution. The definition of bipartite tree decomposition implies that, in each adhesion with
a child of the current bag, there is at most one “surviving” vertex. Let v be such a vertex
belonging to the adhesion with a child t′ of t. Suppose that, inductively, we have computed
in the tables for t′ the following two values, subject to the choice that we made for α(t):
the minimum weight wv of a vertex cover in the graph below t′ that contains v, and the
minimum weight wv̄ of a vertex cover in the graph below t′ that does not contain v. Then,
the trick is to observe that, having these two values at hand, we can totally forget the graph
below t′: it is enough to delete this whole graph, except for v, and attach a new pendant
edge vu, where u is a new vertex, such that v is given weight wv and u is given weight wv̄.
It is easy to verify that this gadget mimics, with respect to the current bag, the behavior
of including vertex v or not in the solution for the child t′. Adding this gadget for every
child results in a bipartite graph, where we can just solve Weighted Vertex Cover in

L. Jaffke, L. Morelle, I. Sau, and D. M. Thilikos 26:7

polynomial time using a classic algorithm [23,27], and add the returned weight to our tables.
The running time of this whole procedure, from the leaves to the root of the decomposition,
is clearly FPT parameterized by the bipartite treewidth of the input graph.

Extensions and limitations. Note that the algorithm sketched above for Weighted Vertex
Cover is problem-dependent, in particular the choice of the gadgets for the children, and
the fact of deleting the neighborhood of the vertices chosen in the solution. Which type
of replacements and reductions can be afforded in order to obtain an FPT-algorithm for
bipartite treewidth? For instance, concerning the gadgets for the children, as far as the
considered problem can be solved in polynomial time on bipartite graphs, we could attach to
the “surviving” vertices an arbitrary bipartite graph instead of just an edge. If we assume
that the considered problem is FPT parameterized by oct (which is a reasonable assumption,
as btw generalizes oct), then one could think that it may be sufficient to devise gadgets with
bounded oct. Unfortunately, this will not work in general: even if each of the gadgets has
bounded oct (take, for instance, a triangle), since we do not have any upper bound, in terms
of btw, on the number of children (hence, the number of different adhesions), the resulting
graph after the gadget replacement may have unbounded oct. In order to formalize the type
of replacements and reductions that can be allowed, we introduce in Appendix A the notions
of nice reduction and nice problem, along with an illustration (cf. Figure 1). Additional
insights into these definitions, which are quite lengthy, are provided in [17, Section 4.1].

Another sensitive issue is that of “guessing the vertices into the solution”. While this is
quite simple for Weighted Vertex Cover (either a vertex is in the solution, or it is not),
for some other problems we may have to guess a richer structure in order to have enough
information to combine the tables of the children into the tables of the current bag. This
is the reason for which, in the general dynamic programming scheme that we present in
Section 3, we deal with annotated problems, i.e., problems that receive as input, apart from a
graph, a collection of annotated sets in the form of a partition X of some X ⊆ V (G). For
instance, for Weighted Vertex Cover, we define its annotated extension, which we call
Annotated Weighted Vertex Cover, that takes as an input a graph G and two disjoint
sets R and S of vertices of G, and asks for a minimum vertex cover S⋆ such that S ⊆ S⋆

and S⋆ ∩ R = ∅.

General dynamic programming scheme. Our general scheme essentially says that if a
problem Π has an annotated extension Π′ that is

a nice problem and
solvable in FPT-time parameterized by oct,

then Π is solvable in FPT-time parameterized by btw. More specifically, it is enough to
prove that Π′ is solvable in time f(|X|) · nO(1) on an instance (G, X) such that G \ X is
bipartite, where X is a partition of X corresponding to the annotation. This general dynamic
programming algorithm works in a wider setting, namely for a general graph class H that
plays the role of bipartite graphs, as far as the annotated extension Π′ is what we call H-nice;
cf. Lemma 2 for the details.

Applications. We then apply this general framework to give FPT-algorithms for several
problems parameterized by bipartite treewidth. For each of Maximum Weighted Cut
(Subsection 3.4), Kt-Subgraph-Cover (cf. [17, Section 4.4.1]), Weighted Vertex Cov-
er/Independent Set (cf. [17, Section 4.4.2]), and Odd Cycle Transversal (cf. [17, Sec-
tion 4.4.3]), we prove that the problem has an annotated extension that is 1) nice and 2)
solvable in FPT-time parameterized by oct, as discussed above.

IPEC 2023

26:8 Dynamic Programming on Bipartite Tree Decompositions

To prove that an annotated problem has a nice reduction, we essentially use two ingredients.
Given two compatible boundaried graphs F and G with boundary X (a boundaried graph is
essentially a graph along with some labeled vertices that form a boundary, see the formal
definition in Appendix A), an annotated problem is usually nice if the following hold:

(Gluing property) Given that we have guessed the annotation X in the boundary X, a
solution compatible with the annotation is optimal in the graph F ⊕ G obtained by gluing
F and G if and only if it is optimal in each of the two glued graphs. In this case, it
means that the optimum on (F ⊕ G, X) is equal to the optimum on (F, X) modulo some
constant depending only on G and X .
(Gadgetization) Given that we have guessed the annotation in the boundary X \ {v}
for some vertex v in X, there is a small boundaried graph G′, that is bipartite (maybe
empty), such that the optimum on (F ⊕ G, X) is equal to the optimum on (F ⊕ G′, X)
modulo some constant depending only on G and X .

The gluing property seems critical to show that a problem is nice. This explains why
we solve H-Subgraph-Cover only when H is a clique. For any graph H, Annotated
H-Subgraph-Cover is defined similarly to Annotated Weighted Vertex Cover by
specifying vertices that must or must not be taken in the solution. If H is a clique, then we
crucially use the fact that H is a subgraph of F ⊕ G if and only if it is a subgraph of either
F or G to prove that Annotated H-Subgraph-Cover has the gluing property. However,
we observe that if H is not a clique, then Annotated H-Subgraph-Cover does not have
the gluing property (cf. [17, Lemma 4.3]). This is the main difficulty that we face to solve
H-Subgraph-Cover in the general case.

Note also that if we define the annotated extension of Odd Cycle Transversal in a
similar fashion (that is, a set S of vertices contained in the solution and a set R of vertices
that do not belong to the solution), then we can prove that this annotated extension does not
have the gluing property. However, if we define Annotated Odd Cycle Transversal as
the problem that takes as an input a graph G and three disjoint sets S, X1, X2 of vertices of
G and aims at finding an odd cycle transversal S⋆ of minimum size such that S ⊆ S⋆ and X1
and X2 are on different sides of the bipartition obtained after removing S⋆, then Annotated
Odd Cycle Transversal does have the gluing property (cf. [17, Lemma 4.9]).

For Maximum Weighted Cut, the annotation is pretty straightforward: we use two
annotation sets X1 and X2, corresponding to the vertices that will be on each side of the
cut. It is easy to see that this annotated extension has the gluing property (cf. Lemma 3).

Finding the right gadgets is the main difficulty to prove that a problem is nice. As
explained above, for Annotated Weighted Vertex Cover, we replace the boundaried
graph G by an edge that simulates the behavior of G with respect to v, which is the only
vertex that interest us (cf. [17, Lemma 4.7]). For Annotated Maximum Weighted Cut,
if X = (X1, X2), the behavior of G can be simulated by an edge between v and a vertex in X1
of weight equal to the optimum on (G, (X1, X2 ∪{v})) and an edge between v and a vertex in
X2 of weight equal to the optimum on (G, (X1 ∪ {v}, X2)) (see Lemma 4). For Annotated
Kt-Subgraph-Cover, if X = (R, S), depending on the optimum on (G, (R ∪ {v}, S)) and
the one on (G, (R, S ∪ {v})), we can show that the optimum on (F ⊕ G, X) is equal to
the optimum on (F, X) or (F \ {v}, X) modulo some constant (cf. [17, Lemma 4.4]). For
Annotated Odd Cycle Transversal, if X = (S, X1, X2), we can show that the optimum
on (F⊕G, X) is equal modulo some constant to the optimum on either (F, X), or (F \{v}, X),
or (F ′, X), where F ′ is obtained from F by adding an edge between v and either a vertex of
X1 or a vertex of X2 (cf. [17, Lemma 4.10]).

L. Jaffke, L. Morelle, I. Sau, and D. M. Thilikos 26:9

Finally, let us now mention some particular ingredients used to prove that the considered
annotated problems are solvable in time f(|X|) · nO(1) on an instance (G, X) such that G \ X

is bipartite, where X is a partition of a vertex set X corresponding to the annotation. For
Annotated Kt-Subgraph-Cover and Annotated Weighted Vertex Cover, this is
simply a reduction to (Weighted Vertex) Cover on bipartite graphs. For Odd Cycle
Transversal, we adapt the algorithm of Reed, Smith, and Vetta [28] that uses iterative
compression to solve Annotated Odd Cycle Transversal in FPT-time parameterized
by oct, so that it takes annotations into account (cf. [17, Lemma 4.12]). As for Maximum
Weighted Cut parameterized by oct, the most important trick is to reduce to a K5-
odd-minor-free graph, and then use known results of Grötschel and Pulleyblank [13] and
Guenin [14] to solve the problem in polynomial time (Proposition 6).

2.1.2 XP-algorithms

We now sketch some of the basic ingredients of the XP-algorithms that we present in [17,
Section 5] for H(-Induced)-Subgraph/Scattered/Odd-Minor-Packing. The main
observation is that, if H is 2-connected and non-bipartite, since the “non-apex” part of each
bag is bipartite and H is non-bipartite, in any H-subgraph/induced/scattered/odd-minor-
packing and every bag of the decomposition, there are at most btw occurrences of H that
intersect that bag. We thus guess these occurrences, and how they intersect the children, which
allow us to reduce the number of children by just deleting those not involved in the packing.
The guess of these occurrences is the dominant term in the running time of the resulting
XP-algorithm using this method. Note that for H(-Induced)-Subgraph/Scattered-
Packing, we can indeed easily guess those occurrences in XP-time parameterized by btw, as
the total size of the elements of the packing intersecting a given bag is bounded by a function
of btw and H. However, for H-Odd-Minor-Packing, this is not the case anymore, as an
element of the packing may contain an arbitrary number of vertices in the bipartite part of a
bag. We overcome this issue as follows. As stated in [17, Lemma 3.1], the existence of an
H-odd-minor is equivalent to the existence of a so-called odd H-expansion, which is essentially
a collection of trees connected by edges preserving the appropriate parities of the resulting
cycles. In an odd H-expansion, the branch vertices are those that have degree at least three,
or that are incident to edges among different trees. Note that, in an odd H-expansion, the
number of branch vertices depends only on H (cf. [17, Lemma 5.2]). Equipped with this
property, we first guess, at a given bag, the branch vertices of the packing that intersect that
bag. Note that this indeed yields an XP number of choices, as required. Finally, for each
such a choice, we use an FPT-algorithm of Kawarabayashi, Reed, and Wollan [22] solving
the Parity k-Disjoint Paths to check whether the guessed packing exists or not. This
approach is formalized in [17, Lemma 5.3].

It is worth mentioning that, as discussed in Section 4, we leave as an open problem the
existence of FPT-algorithms for the above packing problems parameterized by btw.

2.2 Hardness results

Finally, we discuss some of the tools that we use to obtain the para-NP-completeness results
summarized in Table 1, which can be found in [17, Section 6]. We present a number of
different reductions, some of them consisting of direct simple reductions, such as the one we
provide for 3-Coloring in [17, Lemma 6.2].

IPEC 2023

26:10 Dynamic Programming on Bipartite Tree Decompositions

Except for 3-Coloring, all the considered problems fall into two categories: covering
or packing problems. For the first family (cf. [17, Section 6.2]), the para-NP-completeness
is an immediate consequence of a result of Yannakakis [32] that characterizes hereditary
graph classes G for which Vertex Deletion to G on bipartite graphs is polynomial-time
solvable and those for which Vertex Deletion to G remains NP-complete.

For the packing problems (cf. [17, Section 6.2]), we do not have such a general result as for
the covering problems, and we provide several reductions for different problems. For instance,
we prove in [17, Lemma 6.3] that if H is a bipartite graph containing P3 as a subgraph, then
H-Subgraph-Packing and H-Induced-Subgraph-Packing are NP-complete on bipartite
graphs. The proof consists in a careful analysis and a slight modification of a reduction of
Kirkpatrick and Hell [24] for the problem of partitioning the vertex set of an input graph G

into subgraphs isomorphic to a fixed graph H. The hypothesis about containing P3 is easily
seen to be tight.

For the minor version, we prove in [17, Lemma 6.4] that if H is a 2-connected graph with
at least three vertices, then H-Minor-Packing is NP-complete on bipartite graphs. The
proof uses a reduction from P3-Subgraph-Packing on bipartite graphs, which was proved
to be NP-complete by Monnot and Toulouse [26]. The 2-connectivity of H is crucially used
in the proof. Given that odd-minors preserve cycle parity (cf. [17, Lemma 3.1]), when H

is bipartite, H-Odd-Minor-Packing and H-Minor-Packing are the same problem on
bipartite graphs. Hence, the same hardness result holds for H-Odd-Minor-Packing when
H is 2-connected and bipartite (cf. [17, Lemma 6.5]).

In [17, Lemma 6.6] we prove that, if H is a 2-connected bipartite graph with at least one
edge, then H-Scattered-Packing is NP-complete on bipartite graphs, by a simple reduction
from the Induced Matching on bipartite graphs, which is known to be NP-complete [3].

Finally, in [17, Lemma 6.7] we prove that if H is a (non-necessarily bipartite) 2-connected
graph containing an edge and q ∈ N≥2, then H-Scattered-Packing is para-NP-complete
parameterized by q-B-treewidth. In fact, this reduction is exactly the same as the one when
q = 1, with the extra observation that, if G′ is the graph constructed in the reduction, then
the “bipartite” treewidth of G′ is at most the one of H for q ≥ 2.

3 General dynamic programming to obtain FPT-algorithms

In this section, we give introduce a framework for giving FPT-algorithms for problems
parameterized by the width of a given bipartite tree decomposition of the input graph. In
Subsection 3.1 we provide some preliminary definitions and notations, especially concerning
annotated problems. Due to space constraints treewidth, boundaried graphs, and nice problems
are defined in Appendix A. In Subsection 3.2 we provide a dynamic programming scheme
for nice problems, along with some generalizations of this scheme in Subsection 3.3. Finally,
we give an application to Maximum Weighted Cut in Subsection 3.4. Applications to
Kt-Vertex Cover, Weighted Vertex Cover, and Odd Cycle Transversal are
additionally given in [17].

3.1 Preliminaries
Partitions. Given p ∈ N, a p-partition of a set X is a tuple (X1, . . . , Xp) of pairwise disjoint
subsets of X such that X =

⋃
i∈[p] Xi. We denote by Pp(X) the set of all p-partitions

of X. Given a partition X ∈ Pp(X), its domain X is also denoted as ∪X . A partition
is a p-partition for some p ∈ N. Note that this corresponds to the usual definition of
an ordered near-partition, since we allow empty sets in a p-partition and since the order

L. Jaffke, L. Morelle, I. Sau, and D. M. Thilikos 26:11

matters. Given Y ⊆ X, X = (X1, . . . , Xp) ∈ Pp(X), and Y = (Y1, . . . , Yp) ∈ Pp(Y), we
say that Y ⊆ X if Yi ⊆ Xi for each i ∈ [p]. Given a set U , two subsets X, A ⊆ U , and
X = (X1, . . . , Xp) ∈ Pp(X), X ∩ A denotes the partition (X1 ∩ A, . . . , Xp ∩ A) of X ∩ A.

Optimization problems. A p-partition-evaluation function on graphs is a function f that
receives as input a graph G along with a p-partition P of its vertices and outputs a non-
negative integer. Given such a function f and some choice opt ∈ {max, min} we define the
associated graph parameter pf,opt where, for every graph G,

pf,opt(G) = opt{f(G, P) | P is a p-partition of V (G)}.

An optimization problem is a problem that can be expressed as follows.

Input: A graph G.
Objective: Compute pf,opt(G).

The annotated extension of pf,opt is the parameter p̂f,opt such that

p̂f,opt(G, X) = opt{f(G, P) | P is a p-partition of V (G) with X ⊆ P}.

Observe that pf,opt(G) = p̂f,opt(G, ∅p), for every graph G. The problem Π′ is a p-annotated
extension of the optimization problem Π if Π can be expressed by some p-partition-evaluation
function f and some choice opt ∈ {max, min}, and that Π′ can be expressed as follows.

Input: A graph G and X ∈ Pp(X) for some X ⊆ V (G).
Objective: Compute p̂f,opt(G, X).

We also say that Π′ is a p-annotated problem.

While our goal in this article is to study bipartite treewidth, defined below, we define a
more general parameter, namely 1-H-treewidth, with the hope of it finding some application
in future work. We use the term 1-H-treewidth to signify that the “H-part” of each bag
intersects each neighboring bag in at most one vertex. This also has the benefit of avoiding
confusion with H-treewidth defined in [8], which would be another natural name for this
class of parameters.

1-H-tree decompositions. Let H be a graph class. A 1-H-tree decomposition is defined
exactly like a tree decomposition, but by replacing the class B of bipartite graphs by H.

3.2 General dynamic programming scheme
We now have all the ingredients for our general scheme dynamic programming algorithm on
bipartite tree decompositions. We essentially prove that if a problem Π has an annotated
extension that is B-nice and solvable in FPT-time parameterized by oct, then Π is solvable
in FPT-time parameterized by btw. This actually holds for more general H.

▶ Lemma 2. Let p ∈ N. Let H be a graph class. Let Π be an optimization problem. Let Π′

be a problem that is:
a p-annotated extension of Π corresponding to some choice of p-partition-evaluation
function g and some opt ∈ {max, min},
H-nice, and
solvable on instances (G, X) such that G \ ∪X ∈ H in time f(| ∪ X |) · nc · md, for some
c, d ∈ N.

IPEC 2023

26:12 Dynamic Programming on Bipartite Tree Decompositions

Then, there is an algorithm that, given a graph G and a 1-H-tree decomposition of G of width
k, computes pf,opt(G) in time O(pk ·f(k+O(1))·(k·n)c ·md) (or O(pk ·f(k+O(1))·(m+k2 ·n)d)
if c = 0).

Proof. Let Alg be the algorithm that solves instances (G, X) such that G \ ∪X ∈ H in time
f(| ∪ X |) · nc · md.

Let (T, α, β, r) be a rooted 1-H-tree decomposition of G of width at most k. Let
σ : V (G) → N be an injection. For t ∈ V (T), let Gt = (Gt, δt, σ|δt

), let Xt = α(t) ∪
δt ∪

⋃
t′∈chr(t) δt′ , let Xt = (G[Xt], Xt, σ|Xt

), let Ht = Xt ⊞ (⊞t′∈chr(t)Gt′), let Ft be such
that Gt = Ft ⊕ Ht. let At = α(t) ∪ δt, and let Bt = Xt \ At = Xt ∩ β(t) \ δt. Note that
|bd(Gt′) \ At| ≤ 1 for t′ ∈ chr(t).

We proceed in a bottom-up manner to compute sX
t := p̂g,opt(Gt, X), for each t ∈ V (T),

for each X ∈ Pp(δt). Hence, given that δr = ∅, s∅
r = pg,opt(G).

Let t ∈ V (T). By induction, for each t′ ∈ chr(t) and for each Xt′ ∈ Pp(δt′), we compute
the value s

Xt′
t′ . Let X ∈ Pp(δt). Let Q be the set of all A ∈ Pp(At) such that A∩ δt = X . Let

A ∈ Q. Since Π′ is H-nice, there is an H-nice reduction (HA, A′, sA) of (Ht, A) with respect
to Π′. Hence, p̂g,opt(Gt, A) = p̂g,opt(HA ▷ Ft, A′) + sA. Let us compute p̂g,opt(HA ▷ Ft, A′).

By definition of a H-reduction, (HA ▷Ft)\(∪A′) ∈ H. Hence, we can compute p̂g,opt(HA ▷

Ft, A′), and thus p̂g,opt(Gt, A), using Alg on the instance (HA ▷ Ft, A′). Finally, sX
t =

optA∈Qp̂g,opt(Gt, A).
It remains to calculate the complexity. Throughout, we make use of the fact that p is a

fixed constant. We can assume that T has at most n nodes: for any pair of nodes t, t′ with
(α∪β)(t) ⊆ (α∪β)(t′), we can contract the edge tt′ of T to a new vertex t′′ with α(t′′) = α(t′)
and β(t′′) = β(t′). This defines a valid 1-H-tree decomposition of same width. For any leaf t

of T , there is a vertex u ∈ V (G) that only belongs to the bag of t. From this observation,
we can inductively associate each node of T to a distinct vertex of G. So this H-tree
decomposition has at most n bags. Hence, if ct = |chr(t)|, then we have

∑
t∈V (T) ct ≤ n. Let

also nt = |(α∪β)(t)| and mt = |E(G[(α∪β)(t)])|. Note that |At| = |α(t)|+ |δt ∩β(t)| ≤ k +1
and that |Bt| = |

⋃
t′∈V (T) δt′ ∩ β(t)| ≤ ct, so |Xt| ≤ k + 1 + ct. Moreover, the properties of

the tree decompositions imply that the vertices in β(t) \ Xt are only present in node t. Then,∑
t∈V (T) nt =

∑
t∈V (T)(|Xt| + |β(t) \ Xt|) = O(k · n). Also, let m̄t be the number of edges

only present in the bag of node t. The edges that are present in several bags are those in the
adhesion of t and its neighbors. t is adjacent to its |ct| children and its parent, and an adhesion
has size at most k + 1. Thus,

∑
t∈V (T) mt ≤

∑
t∈V (T)(m̄t + k2(1 + ct)) = O(m + k2 · n).

There are p|At| ≤ pk+1 = O(pk) partitions of Pp(At). For each of them, we compute in
time O(k · ct) a H-nice reduction (HA, A′, sA) with |∪A′| = |At|+O(1) = k +O(1) and with
O(|Bt|) = O(ct) additional vertices and edges. We thus solve Π′ on (HA ▷ Ft, A′) in time
f(k+O(1))·O((nt+ct)c ·(mt+ct)d). Hence, the running time is O(pk ·f(k+O(1))·(k ·n)c ·md)
(or O(pk · f(k + O(1)) · (m + k2 · n)d) if c = 0). ◀

3.3 Generalizations

For the sake of simplicity, we assumed in Lemma 2 that the problem Π under consideration
takes as input just a graph. However, a similar statement still holds if we add labels/weights
on the vertices/edges of the input graph. This is in particular the case for Maximum
Weighted Cut (Subsection 3.4) and Weighted Independent Set where the vertices or
edges are weighted.

L. Jaffke, L. Morelle, I. Sau, and D. M. Thilikos 26:13

Moreover, again for the sake of simplicity, we assumed that Π′ is solvable in FPT-
time, while other complexities such as XP-time could be considered. Similarly, in the
definition of the nice reduction, the contraints |A′| = |A| + O(1), |V (G′)| ≤ |X| + O(|B|),
|E(G′)| ≤ |E(G[X])| + O(|B|) can be modified. In both cases, the dynamic programming
algorithm still holds, but the running time of Lemma 2 changes.

To give a precise running time for Maximum Weighted Cut (Subsection 3.4), Kt-
Subgraph-Cover, and Weighted Independent Set, let us observe that, if Π′ is solvable
in time f(| ∪ X |) · n′c · m′d, where G′ = G \ ∪X , n′ = |V (G′)|, and m′ = |E(G′)|, then the
running time of Lemma 2 is better. Indeed, in the proof of the complexity of Lemma 2, we
now solve Π′ on (HA ▷F, A′) in time f(k +O(1)) ·O((n′

t + ct)c · (m′
t + ct)d), where n′

t = |β(t)|
and m′

t = |E(G[β(t)])|. We have
∑

t∈V (T) n′
t =

∑
t∈V (T)(|B| + |β(t) ∩ δt| + |β(t) \X|) = O(n)

and
∑

t∈V (T) m′
t ≤ m. Hence, the total running time is O(pk · (k · n + f(k + O(1)) · nc · md)).

3.4 Application to Maximum Cut
We now apply the above framework to give an FPT-algorithm for Maximum Weighted
Cut parameterized by bipartite treewidth. Thanks to Lemma 2, this now reverts to showing
that the problem under consideration has an B-nice annotated extension that is solvable in
FPT time when parameterized by oct, where B is the class of bipartite graphs.

The Maximum Weighted Cut problem is defined as follows.

Maximum Weighted Cut
Input: A graph G and a weight function w : E(G) → N.
Objective: Find an edge cut of maximum weight.

Let H be a graph. We define fcut as the 2-partition-evaluation function where, for every
graph G with edge weight w and for every P = (X1, X2) ∈ P2(V (G)),

fcut(G, P) = w(P) = w(E(X1, X2)).

Hence, Maximum Weighted Cut is the problem of computing pfcut,max(G). We call its
annotated extension Annotated Maximum Weighted Cut. In other words, Annotated
Maximum Weighted Cut is defined as follows.

Annotated Maximum Weighted Cut
Input: A graph G, a weight function w : E(G) → N, and two disjoint sets X1, X2 ⊆
V (G).
Objective: Find an edge cut of maximum weight such that the vertices in X1 belongs
to one side of the cut, and the vertices in X2 belong to the other side.

The following property seems critical to show that a problem is H-nice.

Gluing property. Let Π be a p-annotated problem corresponding to some choice of p-
partition-evaluation function f and some opt ∈ {max, min}. We say that Π has the gluing
property if, given two compatible boundaried graphs F and G with boundary X, X ∈ Pp(X),
and P ∈ Pp(V (F ⊕ G)) such that X ⊆ P, then p̂f,opt(F ⊕ G, X) = f(F ⊕ G, P) if and only
if p̂f,opt(F, X) = f(F, P ∩ V (F)) and p̂f,opt(G, X) = f(G, P ∩ V (G)).

We first prove that Annotated Maximum Weighted Cut has the gluing property.

IPEC 2023

26:14 Dynamic Programming on Bipartite Tree Decompositions

▶ Lemma 3 (Gluing property). Annotated Maximum Weighted Cut has the gluing
property. More precisely, given two boundaried graphs F = (F, BF , ρF) and G = (G, BG, ρG),
a weight function w : E(F ⊕ G) → N, a set X ⊆ V (F ⊕ G) such that BF ∩ BG ⊆ X, and
X = (X1, X2) ∈ P2(X), if we set w̄ = w(X ∩ BF ∩ BG), then we have

p̂fcut,max(F ⊕ G, X , w) = p̂fcut,max(F, X ∩ V (F), w) + p̂fcut,max(G, X ∩ V (G), w) − w̄.

Proof. Let P ∈ P2(V (F ⊕ G)) be such that X ⊆ P and p̂fcut,max(F ⊕ G, X , w) = fcut(F ⊕
G, P, w). Then,

p̂fcut,max(F ⊕ G, X , w) = w(P)
= w(P ∩ V (F)) + w(P ∩ V (G)) − w̄

≤ p̂fcut,max(F, X ∩ V (F), w) + p̂fcut,max(G, X ∩ V (G), w) − w̄.

Reciprocally, for H ∈ {F, G}, let PH = (XH
1 , XH

2) ∈ P2(V (H)) be such that X ∩V (H) ⊆
PH and p̂fcut,max(H, X ∩V (H), w) = foct(H, PH , w). Then, since PH ∩BF ∩BG = X ∩BF ∩BG

for H ∈ {F, G}, we have

p̂fcut,max(F ⊕ G, X , w) ≥ w(E(XF
1 ∪ XG

1 , XF
2 ∪ XG

2))
= w(E(XF

1 , XF
2)) + w(E(XG

1 , XG
2)) − w̄

= p̂fcut,max(F, X ∩ V (F), w) + p̂fcut,max(G, X ∩ V (G), w) − w̄. ◀

We now show how to reduce a graph F ⊕ G to a graph F ′ when the boundary of F and
G has a single vertex v that is not annotated.

▶ Lemma 4 (Gadgetization). Let F = (F, BF , ρF) and G = (G, BG, ρG) be two boundaried
graphs, let w : E(F ⊕ G) → N be a weight function, let X ⊆ V (F ⊕ G) be such that
BF ∩ BG ⊆ X, let v ∈ BF ∩ BG, and let X = (X1, X2) ∈ P2(X \ {v}). Suppose that there
is v1 ∈ X1 and v2 ∈ X2 adjacent to v with w(vv1) = w(vv2) = 0. Let X 1 = (X1 ∪ {v}, X2)
and X 2 = (X1, X2 ∪ {v}). For a ∈ [2], let ga = p̂fcut,max(G, X a ∩ V (G), w). Let w̄ =
w(X ∩ BF ∩ BG). Let w′ : E(F) → N be such that w′(vv1) = g2 − w̄, w′(vv2) = g1 − w̄, and
w′(e) = w(e) otherwise. Then

p̂fcut,max(F ⊕ G, X , w) = p̂fcut,max(F, X , w′).

Proof. For a ∈ [2], let fa = p̂fcut,max(F, X a ∩ V (F), w). Note that in F with partition X , if
v is on the same side as X1, then we must count the weight of the edge vv2, but not the
weight of vv1, and vice versa when exchanging 1 and 2. Thus, using Lemma 3, we have

p̂fcut,max(F ⊕ G, X , w) = max{p̂fcut,max(F ⊕ G, X 1, w), p̂fcut,max(F ⊕ G, X 2, w)}
= max{f1 + g1 − w̄, f2 + g2 − w̄}
= max{f1 + w′(vv2), f2 + w′(vv1)}
= max{p̂fcut,max(F ′, X 1, w′), p̂fcut,max(F, X 2, w′)}
= p̂fcut,max(F, X , w′). ◀

Using Lemma 3 and Lemma 4, we can prove that Annotated Maximum Weighted
Cut is H-nice. Essentially, given an instance (G = X ⊞ (⊞i∈[d]Gi), (A, B), A, w), we reduce
G to X where we add two new vertices in A and add every edges between this new vertices
and the vertices in B. We then show that if the appropriate weight is given to each new
edge, then the resulting boundaried graph is equivalent to G modulo some constant s.

L. Jaffke, L. Morelle, I. Sau, and D. M. Thilikos 26:15

▶ Lemma 5 (Nice problem). Let H be a graph class. Annotated Maximum Weighted
Cut is H-nice.

Maximum Weighted Cut is a NP-hard problem [20]. However, there exists a polynomial-
time algorithm when restricted to some graph classes. In particular, Grötschel and Pulleyblank
[13] proved that Maximum Weighted Cut is solvable in polynomial-time on weakly bipartite
graphs, and Guenin [14] proved that weakly bipartite graphs are exactly K5-odd-minor-free
graphs, which gives the following result.

▶ Proposition 6 ([13,14]). There is a constant c ∈ N and an algorithm that solves Maximum
Weighted Cut on K5-odd-minor-free graphs in time O(nc).

Moreover, we observe the following.

▶ Lemma 7. A graph G such that oct(G) ≤ 2 does not contain K5 as an odd-minor.

Proof. Let u, v ∈ V (G) be such that G′ = G \ {u, v} is bipartite. G′ does not contain K3 as
an odd-minor, so G does not contain K5 as an odd-minor. ◀

Combining Proposition 6 and Lemma 7, we have that Annotated Maximum Weighted
Cut is FPT parameterized by oct.

▶ Lemma 8. There is an algorithm that, given a graph G, a weight function w : E(G) → N,
and two disjoint sets X1, X2 ⊆ V (G), such that G′ = G \ (X1 ∪ X2) is bipartite, solves
Annotated Maximum Weighted Cut on (G, X1, X2, w) in time O(k · n′ + n′c), where
k = |X1 ∪ X2| and n′ = |V (G′)|.

Proof. Let G′′ be the graph obtained from G by identifying all vertices in X1 (resp. X2) to
a new vertex x1 (resp. x2). Let w′ : V (G′′) → N be such that w′(x1x2) =

∑
e∈E(G) w(e) + 1,

w′(xiu) =
∑

x∈Xi
w(xu) for i ∈ [2] and u ∈ NG(Xi), and w′(e) = w(e) otherwise. Let

(X⋆
1 , X⋆

2) ∈ P2(V (G)) be such that (X1, X2) ⊆ (X⋆
1 , X⋆

2). For i ∈ [2], let X ′
i = X⋆

i \Xi. Then

w(X⋆
1 , X⋆

2) = w(X1, X2) + w(X ′
1, X ′

2) +
∑

xy∈E(X1,X′
2)

w(xy) +
∑

xy∈E(X′
1,X2)

w(xy)

= w(X1, X2) + w′(X ′
1, X ′

2) +
∑

u∈X2∩NG(X1)

w′(x1u) +
∑

u∈X1∩NG(X2)

w′(x2u)

= w′(X ′
1 ∪ {x1}, X ′

2 ∪ {x2}) + w(X1, X2) − w′(x1x2)

Let w̄ be the contant w(X1, X2) − w′(x1x2). Hence, fcut(G, (X⋆
1 , X⋆

2)) = fcut(G′′, (X ′
1 ∪

{x1}, X ′
2∪{x2}))+w̄, and so p̂fcut,max(G, (X1, X2)) = p̂fcut,max(G′′, ({x1}, {x2}))+w̄. Further-

more, given that the weight of the edge x1x2 is larger than the sum of all other weights, x1 and
x2 are never on the same side of a maximum cut in G′′. Hence, p̂fcut,max(G′′, ({x1}, {x2})) =
pfcut,max(G′′), and therefore, p̂fcut,max(G, (X1, X2)) = pfcut,max(G′′) + w̄.

Constructing G′′ takes time O(k·n) and computing w̄ takes time O(k2). Since oct(G′′) = 2,
according to Proposition 6 and Lemma 7, an optimal solution to Maximum Weighted Cut
on G′′ can be found in time O(n′c), and thus, an optimal solution to Annotated Maximum
Weighted Cut on (G, X1, X2) can be found in time O(k · (k + n′) + n′c). ◀

We apply Lemma 5 and Lemma 8 to the dynamic programming algorithm of Lemma 2 to
obtain the following result.

▶ Corollary 9. Given a graph G and a bipartite tree decomposition of G of width k, there is
an algorithm that solves Maximum Weighted Cut on G in time O(2k · (k · (k + n) + nc)).

IPEC 2023

26:16 Dynamic Programming on Bipartite Tree Decompositions

4 Further research

In this paper we study the complexity of several problems parameterized by bipartite
treewidth, denoted by btw. In particular, our results extend the graph classes for which
Vertex Cover/Independent Set, Maximum Weighted Cut, and Odd Cycle Trans-
versal are polynomial-time solvable. A number of interesting questions remain open.

Except for 3-Coloring, all the problems we consider are covering and packing problems.
We are still far from a full classification of the variants that are para-NP-complete, and those
that are not (FPT or XP). For instance, concerning H-Subgraph-Cover, we provided an
FPT-algorithms when H is a clique. This case is particularly well-behaved because we know
that in a tree decomposition every clique appears in some bag. On the other hand, as an
immediate consequence of the result of Yannakakis [32], we know that H-Subgraph-Cover
is para-NP-complete for every bipartite graph H containing P3. We do not know what
happens when H is not bipartite nor a clique. An apparently simple but challenging case is
C5-Subgraph-Cover. The main difficulty seems to be that C5-Subgraph-Cover does not
have the gluing property, which is the main ingredient in this paper to show that a problem
is nice, and therefore to obtain an FPT-algorithm. We do not exclude the possibility that
the problem is para-NP-complete, as we were not even able to obtain even an XP algorithm.

Concerning the packing problems, namely H-Subgraph/Induced/Scattered/Odd-
Minor-Packing, we provide XP-algorithms for them when H is non-bipartite. Unfortunately,
we do not know whether any of them admits an FPT-algorithm, although we suspect that
it is indeed the case. We would like to mention that it is possible to apply the framework
of equivalence relations and representatives (see for instance [2, 9, 10]) to obtain an FPT-
algorithm for Kt-Subgraph-Packing parameterized by btw. However, since a number of
definitions and technical details are required to present this algorithm, we decided not to
include it in this paper (which is already quite long). However, when H is not a clique, we
do not know whether H-Subgraph-Packing admits an FPT-algorithm. A concrete case
that we do not know how to solve is when H is the paw, i.e., the 4-vertex graph consisting of
one triangle and one pendent edge.

Beyond bipartite tree decompositions, we introduce a more general type of decompositions
that we call q(-torso)-H-tree decompositions. For B being the class of bipartite graphs, we
prove that for every q ≥ 2 and every 2-connected graph H with an edge, H-Scattered-
Packing is para-NP-complete parameterized by q(-torso)-B-treewidth. It should be possible
to prove similar results for other covering and packing problems considered in this article.

Most of our para-NP-completeness results consist just in proving NP-completeness on
bipartite graph. There are two exceptions. On the one hand, the NP-completeness of 3-
Coloring on graphs with odd cycle transversal at most three and H-Scattered-Packing
parameterized by q-B-treewidth for every integer q ≥ 2. Interestingly, none of our hardness
results really exploits the structure of bipartite tree decompositions (i.e., for q = 1), beyond
being bipartite or having bounded odd cycle transversal.

Finally, as mentioned in the introduction, the goal of this article is to make a first step
toward efficient algorithms to solve problems related to odd-minors. We already show in this
paper that bipartite treewidth can be useful in this direction, by providing an XP-algorithm
for H-Odd-Minor-Packing. Bipartite treewidth, or strongly related notions, also plays a
strong role in the recent series of papers about odd-minors by Campbell, Gollin, Hendrey,
and Wiederrecht [4, 12]. This looks like an emerging topic that is worth investigating.

L. Jaffke, L. Morelle, I. Sau, and D. M. Thilikos 26:17

References
1 Akanksha Agrawal, Lawqueen Kanesh, Daniel Lokshtanov, Fahad Panolan, M. S. Ramanujan,

Saket Saurabh, and Meirav Zehavi. Deleting, eliminating and decomposing to hereditary
classes are all fpt-equivalent. In Joseph (Seffi) Naor and Niv Buchbinder, editors, Proceedings
of the 2022 ACM-SIAM Symposium on Discrete Algorithms, SODA 2022, Virtual Conference
/ Alexandria, VA, USA, January 9 - 12, 2022, pages 1976–2004. SIAM, 2022. doi:10.1137/
1.9781611977073.79.

2 Julien Baste, Ignasi Sau, and Dimitrios M. Thilikos. A complexity dichotomy for hitting
connected minors on bounded treewidth graphs: the chair and the banner draw the boundary.
In Proc. of the 31st ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 951–970,
2020. doi:10.1137/1.9781611975994.57.

3 Kathie Cameron. Induced matchings. Discrete Applied Mathematics, 24(1-3):97–102, 1989.
doi:10.1016/0166-218X(92)90275-F.

4 Rutger Campbell, J. Pascal Gollin, Kevin Hendrey, and Sebastian Wiederrecht. Odd-Minors
II: Bipartite treewidth. Manuscript under preparation (private communication), 2023.

5 Julia Chuzhoy and Zihan Tan. Towards tight(er) bounds for the Excluded Grid Theorem.
Journal of Combinatorial Theory, Series B, 146:219–265, 2021. doi:10.1016/j.jctb.2020.
09.010.

6 Erik D. Demaine, MohammadTaghi Hajiaghayi, and Ken-ichi Kawarabayashi. Decomposition,
approximation, and coloring of odd-minor-free graphs. In Proc. of the 21st Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 329–344. SIAM, 2010. doi:10.1137/1.
9781611973075.28.

7 Reinhard Diestel. Graph Theory, volume 173. Springer-Verlag, 5th edition, 2017. doi:
10.1007/978-3-662-53622-3.

8 Eduard Eiben, Robert Ganian, Thekla Hamm, and O-joung Kwon. Measuring what matters:
A hybrid approach to dynamic programming with treewidth. Journal of Computer and System
Sciences, 121:57–75, 2021. doi:10.1016/j.jcss.2021.04.005.

9 Valentin Garnero, Christophe Paul, Ignasi Sau, and Dimitrios M. Thilikos. Explicit linear
kernels via dynamic programming. SIAM Journal on Discrete Mathematics, 29(4):1864–1894,
2015. doi:10.1137/140968975.

10 Valentin Garnero, Christophe Paul, Ignasi Sau, and Dimitrios M. Thilikos. Explicit lin-
ear kernels for packing problems. Algorithmica, 81(4):1615–1656, 2019. doi:10.1007/
s00453-018-0495-5.

11 Jim Geelen, Bert Gerards, Bruce A. Reed, Paul D. Seymour, and Adrian Vetta. On the
odd-minor variant of Hadwiger’s conjecture. Journal of Combinatorial Theory, Series B,
99(1):20–29, 2009. doi:10.1016/j.jctb.2008.03.006.

12 J. Pascal Gollin and Sebastian Wiederrecht. Odd-Minors I: Excluding small parity breaks.
CoRR, abs/2304.04504, 2023. arXiv:2304.04504.

13 Martin Grötschel and William R. Pulleyblank. Weakly bipartite graphs and the max-cut prob-
lem. Operations Research Letters, 1(1):23–27, 1981. doi:10.1016/0167-6377(81)90020-1.

14 Bertrand Guenin. A characterization of weakly bipartite graphs. Journal of Combinatorial
Theory, Series B, 83(1):112–168, 2001. doi:10.1006/jctb.2001.2051.

15 Hugo Hadwiger. Über eine klassifikation der streckenkomplexe. Vierteljschr. Naturforsch. Ges.
Zürich, 88(2):133–142, 1943. URL: https://www.ngzh.ch/archiv/1943_88/88_2/88_17.pdf.

16 Huynh, Tony. The Linkage Problem for Group-labelled Graphs. PhD thesis, University of
Waterloo, 2009. URL: http://hdl.handle.net/10012/4716.

17 Lars Jaffke, Laure Morelle, Ignasi Sau, and Dimitrios M. Thilikos. Dynamic programming
on bipartite tree decompositions. CoRR, abs/2309.07754, 2023. doi:10.48550/arXiv.2309.
07754.

18 Bart M. P. Jansen and Jari J. H. de Kroon. FPT algorithms to compute the elimination
distance to bipartite graphs and more. In Proc. of the 47th International Workshop on Graph-
Theoretic Concepts in Computer Science (WG), volume 12911 of LNCS, pages 80–93, 2021.
doi:10.1007/978-3-030-86838-3_6.

IPEC 2023

https://doi.org/10.1137/1.9781611977073.79
https://doi.org/10.1137/1.9781611977073.79
https://doi.org/10.1137/1.9781611975994.57
https://doi.org/10.1016/0166-218X(92)90275-F
https://doi.org/10.1016/j.jctb.2020.09.010
https://doi.org/10.1016/j.jctb.2020.09.010
https://doi.org/10.1137/1.9781611973075.28
https://doi.org/10.1137/1.9781611973075.28
https://doi.org/10.1007/978-3-662-53622-3
https://doi.org/10.1007/978-3-662-53622-3
https://doi.org/10.1016/j.jcss.2021.04.005
https://doi.org/10.1137/140968975
https://doi.org/10.1007/s00453-018-0495-5
https://doi.org/10.1007/s00453-018-0495-5
https://doi.org/10.1016/j.jctb.2008.03.006
https://arxiv.org/abs/2304.04504
https://doi.org/10.1016/0167-6377(81)90020-1
https://doi.org/10.1006/jctb.2001.2051
https://www.ngzh.ch/archiv/1943_88/88_2/88_17.pdf
http://hdl.handle.net/10012/4716
https://doi.org/10.48550/arXiv.2309.07754
https://doi.org/10.48550/arXiv.2309.07754
https://doi.org/10.1007/978-3-030-86838-3_6

26:18 Dynamic Programming on Bipartite Tree Decompositions

19 Tommy R Jensen and Bjarne Toft. Graph coloring problems. Wiley, 2011. doi:10.1002/
9781118032497.

20 Richard M. Karp. Reducibility among combinatorial problems. In 50 Years of Integer
Programming 1958-2008 - From the Early Years to the State-of-the-Art, pages 219–241. Springer,
2010. doi:10.1007/978-3-540-68279-0_8.

21 Ken-ichi Kawarabayashi and Bruce A. Reed. An (almost) linear time algorithm for odd
cyles transversal. In Proc. of the21st Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 365–378. SIAM, 2010. doi:10.1137/1.9781611973075.31.

22 Ken-ichi Kawarabayashi, Bruce A. Reed, and Paul Wollan. The graph minor algorithm with
parity conditions. In Proc. of the 52nd Annual IEEE Symposium on Foundations of Computer
Science (FOCS), pages 27–36. IEEE Computer Society, 2011. doi:10.1109/FOCS.2011.52.

23 Valerie King, S. Rao, and Robert Endre Tarjan. A faster deterministic maximum flow algorithm.
Journal of Algorithms, 17(3):447–474, 1994. doi:10.1006/jagm.1994.1044.

24 David G. Kirkpatrick and Pavol Hell. On the complexity of general graph factor problems.
SIAM Journal on Computing, 12(3):601–609, 1983. doi:10.1137/0212040.

25 Daniel Lokshtanov, N. S. Narayanaswamy, Venkatesh Raman, M. S. Ramanujan, and Saket
Saurabh. Faster parameterized algorithms using linear programming. ACM Transactions on
Algorithms, 11(2):15:1–15:31, 2014. doi:10.1145/2566616.

26 Jérôme Monnot and Sophie Toulouse. The path partition problem and related problems in
bipartite graphs. Operations Research Letter, 35(5):677–684, 2007. doi:10.1016/j.orl.2006.
12.004.

27 James B. Orlin. Max flows in O(nm) time, or better. In Proc. of the 45th annual ACM
Symposium on Theory of Computing Conference (STOC), pages 765–774. ACM, 2013. doi:
10.1145/2488608.2488705.

28 Bruce A. Reed, Kaleigh Smith, and Adrian Vetta. Finding odd cycle transversals. Operations
Research Letters, 32(4):299–301, 2004. doi:10.1016/j.orl.2003.10.009.

29 Neil Robertson, Paul D. Seymour, and Robin Thomas. Quickly excluding a planar graph.
Journal of Combinatorial Theory, Series B, 62(2):323–348, 1994. doi:10.1006/jctb.1994.
1073.

30 Raphael Steiner. Improved bound for improper colourings of graphs with no odd clique
minor. Combinatorics, Probability and Computing, 32(2):326–333, 2023. doi:10.1017/
S0963548322000268.

31 Siamak Tazari. Faster approximation schemes and parameterized algorithms on (odd-)h-minor-
free graphs. Theoretical Computer Science, 417:95–107, 2012. doi:10.1016/j.tcs.2011.09.
014.

32 Mihalis Yannakakis. Node-deletion problems on bipartite graphs. SIAM Journal on Computing,
10(2):310–327, 1981. doi:10.1137/0210022.

A Graphs, treewidth, boundaried graphs, and nice problems

Functions. Given two sets A and B, and two functions f, g : A → 2B , we denote by f ∪g the
function that maps x ∈ A to f(x) ∪ g(x) ∈ 2B. Let f : A → B be an injection. Let K ⊆ B

be the image of f . By convention, if f is referred to as a bijection, it means that we consider
that f maps A to K. Given a function w : A → N, and A′ ⊆ A, w(A′) =

∑
x∈A′ w(x).

Basic concepts on graphs. All graphs considered in this paper are undirected, finite, and
without loops or multiple edges. We use standard graph-theoretic notation and we refer the
reader to [7] for any undefined terminology. For convenience, we use uv instead of {u, v}
to denote an edge of a graph. Let G be a graph. In the rest of this paper we always use
n for the cardinality of V (G), and m for the cardinality of E(G), where G is the input

https://doi.org/10.1002/9781118032497
https://doi.org/10.1002/9781118032497
https://doi.org/10.1007/978-3-540-68279-0_8
https://doi.org/10.1137/1.9781611973075.31
https://doi.org/10.1109/FOCS.2011.52
https://doi.org/10.1006/jagm.1994.1044
https://doi.org/10.1137/0212040
https://doi.org/10.1145/2566616
https://doi.org/10.1016/j.orl.2006.12.004
https://doi.org/10.1016/j.orl.2006.12.004
https://doi.org/10.1145/2488608.2488705
https://doi.org/10.1145/2488608.2488705
https://doi.org/10.1016/j.orl.2003.10.009
https://doi.org/10.1006/jctb.1994.1073
https://doi.org/10.1006/jctb.1994.1073
https://doi.org/10.1017/S0963548322000268
https://doi.org/10.1017/S0963548322000268
https://doi.org/10.1016/j.tcs.2011.09.014
https://doi.org/10.1016/j.tcs.2011.09.014
https://doi.org/10.1137/0210022

L. Jaffke, L. Morelle, I. Sau, and D. M. Thilikos 26:19

graph of the problem under consideration. For S ⊆ V (G), we set G[S] = (S, E ∩
(

S
2
)
) and

use the shortcut G \ S to denote G[V (G) \ S]. Given a vertex v ∈ V (G), we denote by
NG(v) the set of vertices of G that are adjacent to v in G. Moreover, given a set A ⊆ V (G),
NG(A) =

⋃
v∈A NG(v) \ A. For k ∈ N, we denote by Pk the path with k vertices, and we say

that Pk has length k − 1 (i.e., the length of a path is its number of edges). We denote by
cc(G) the set of connected components of a graph G. For A, B ⊆ V (G), E(A, B) denotes
the set of edges of G with one endpoint in A and the other in B. We say that E′ ⊆ E(G) is
an edge cut of G if there is a partition (A, B) of V (G) such that E′ = E(A, B). We say that
a pair (L, R) ∈ 2V (G) × 2V (G) is a separation of G if L ∪ R = V (G) and E(L \ R, R \ L) = ∅.
The order of (L, R) is |L ∩ R|. L ∩ G is called a |L ∩ R|-separator of G. A graph G is
k-connected if, for any separation (L, R) of G of order at most k − 1, either L ⊆ R or R ⊆ L.
A graph class H is hereditary if for any G ∈ H and v ∈ V (G), G \ {v} ∈ H.

Treewidth. A tree decomposition of a graph G is a pair (T, χ) where T is a tree and
χ : V (T) → 2V (G) such that⋃

t∈V (T) χ(t) = V (G),
for every e ∈ E(G), there is a t ∈ V (T) such that χ(t) contains both endpoints of e, and
for every v ∈ V (G), the subgraph of T induced by {t ∈ V (T) | v ∈ χ(t)} is connected.

The width of (T, χ) is equal to max
{

|χ(t)| − 1
∣∣ t ∈ V (T)

}
and the treewidth of G, denoted

by tw(G), is the minimum width over all tree decompositions of G.
For every node t ∈ V (T), χ(t) is called bag of t. Given tt′ ∈ E(T), the adhesion of t and

t′, denoted by adh(t, t′), is the set χ(t) ∩ χ(t′).
A rooted tree decomposition is a triple (T, χ, r) where (T, χ) is a tree decomposition and

(T, r) is a rooted tree (i.e., T is a tree and r ∈ V (T)). Given t ∈ V (T), we denote by chr(t) the
set of children of t and by parr(t) the parent of t (if t ̸= r). We set δr

t = adh(t, parr(t)), with
the convention that δr

r = ∅. Moreover, we denote by Gr
t the graph induced by

⋃
t′∈V (Tt) χ(t′)

where (Tt, t) is the rooted subtree of (T, r). We may use δt and Gt instead of δr
t and Gr

t

when there is no risk of confusion.

Boundaried graphs. Let t ∈ N. A t-boundaried graph is a triple G = (G, B, ρ) where
G is a graph, B ⊆ V (G), |B| = t, and ρ : B → N is an injection. We say that B is the
boundary of G and we write B = bd(G). We call G trivial if all its vertices belong to the
boundary. We say that two t-boundaried graphs G1 = (G1, B1, ρ1) and G2 = (G2, B2, ρ2)
are isomorphic if ρ1(B1) = ρ2(B2) and there is an isomorphism from G1 to G2 that extends
the bijection ρ−1

2 ◦ ρ1. A triple (G, B, ρ) is a boundaried graph if it is a t-boundaried graph
for some t ∈ N. We denote by Bt the set of all (pairwise non-isomorphic) t-boundaried
graphs. A boundaried graph F is a boundaried induced subgraph (resp. boundaried subgraph)
of G if F can be obtained from G by removing vertices (resp. and edges). A boundaried
graph F is a boundaried odd-minor of G if F can be obtained from a bounderied subgraph
G′ of G by contracting an edge cut such that every vertex in bd(G′) is on the same side
of the cut. We say that two boundaried graphs G1 = (G1, B1, ρ1) and G2 = (G2, B2, ρ2)
are compatible if ρ1(B1) = ρ2(B2) and ρ−1

2 ◦ ρ1 is an isomorphism from G1[B1] to G2[B2].
Given two boundaried graphs G1 = (G1, B1, ρ1) and G2 = (G2, B2, ρ2), we define G1 ⊕ G2
as the unboundaried graph obtained if we take the disjoint union of G1 and G2 and, for
every i ∈ ρ1(B1) ∩ ρ2(B2), we identify vertices ρ−1

1 (i) and ρ−1
2 (i). If v is the result of the

identification of v1 := ρ−1
1 (i) and v2 := ρ−1

2 (i) then we say that v is the heir of vi from
Gi, i ∈ [2]. If v is either a vertex of G1 where ρ1(v) ̸∈ ρ1(B1) ∩ ρ2(B2) (if v ∈ B1) or a vertex
of G2 where ρ2(v) ̸∈ ρ1(B1) ∩ ρ2(B2) (if v ∈ B2), then v is also a (non-identified) vertex of

IPEC 2023

26:20 Dynamic Programming on Bipartite Tree Decompositions

G1 G2

X1 X2

X∗

A

A

AB

B

B

F

G′
1

G′
2

X ′
1 X ′

2

X∗′A′

A′
F

A′A′

X ′
1

X ′
2 A′

Figure 1 Illustration of the setting of the nice problem and reduction. The shaded area on the left
is G where X = X1 ∪ X2 ∪ X⋆, and the shaded area on the right is G′ where X ′ = X ′

1 ∪ X ′
2 ∪ X⋆′.

G1 ⊕ G2 and is a heir of itself (from G1 or G2 respectively). For i ∈ [2], and given an edge
vu in G1 ⊕ G2, we say that vu is the heir of an edge v′u′ from Gi if v′ (resp. u′) is the heir
of v (resp. u) from Gi and v′u′ is an edge of Gi. If x′ is an heir of x from G = (G, B, ρ) in
G′, then we write x = heirG,G′(x′). If B′ ⊆ B, then heirG,G′(B) =

⋃
v∈B′ heirG,G′(x′). We

also define G1 ⊞ G2 as the boundaried graph (G1 ⊕ G2, B, ρ), where B is the sets of all
heirs from G1 and G2 and ρ : B → N is the union of ρ1 and ρ2 after identification. Note
that in circumstances where ⊞ is repetitively applied, the heir relation is maintained due to
its transitivity. Moreover, we define G1 ▷ G2 as the unboundaried graph G obtained from
G1 ⊕ G2 by removing all heirs from G2 that are not heirs from G1 and all heirs of edges
from G2 that are not heirs of edges from G1. Note that ▷ is not commutative. For the sake
of simplicity, with a slight abuse of notation, we sometimes identify a vertex with its heir.

Nice problem and nice reduction. Let p ∈ N, let H be a graph class, and let Π be a
p-annotated problem corresponding to some choice of p-partition-evaluation function f and
some opt ∈ {max, min}. We say that Π is a H-nice problem if there exists an algorithm that
receives as input

a boundaried graph G = (G, X, ρ),
a trivial boundaried graph X = (G[X], X, ρX) and a collection {Gi = (Gi, Xi, ρi) | i ∈ [d]}
of boundaried graphs, such that d ∈ N and G = X ⊞ (⊞i∈[d]Gi),
a partition (A, B) of X such that for all i ∈ [d], |heirGi,G(Xi) \ A| ≤ 1,
some A ∈ Pp(A), and
for every i ∈ [d] and each Xi ∈ Pp(Xi), the value p̂f,opt(Gi, Xi),

and outputs, in time O(|A| · d), a tuple (G′ = (G′, X ′, ρ′), A′, s′), called H-nice reduction of
the pair (G, A) with respect to Π, such that the following hold.

There is a set A′ ⊆ V (G′) such that |A′| = |A| + O(1), and A′ ∈ Pp(A′).
There is a trivial boundaried graph X′ = (G[X ′], X ′, ρX′) and a collection {G′

i =
(G′

i, X ′
i, ρ′

i) | i ∈ [d′]}, where d′ ∈ N, of boundaried graphs such that G′ = X′⊞(⊞i∈[d′]G′
i)

and |V (G′)| ≤ |X| + O(|B|), |E(G′)| ≤ |E(G[X])| + O(|B|).
For any boundaried graph F compatible with G, it holds that

p̂f,opt(G ⊕ F, A) = p̂f,opt(G′ ▷ F, A′) + s′.

For any boundaried graph F = (F, XF , ρF) compatible with G, if F̄ \ AF ∈ H, where
F̄ = (F ⊕ G)[heirF,G⊕F(V (F))] and AF = heirG,G⊕F(A), then (G′ ▷ F) \ A′ ∈ H.

See Figure 1 for an illustration.

L. Jaffke, L. Morelle, I. Sau, and D. M. Thilikos 26:21

B Definition of the problems and their annotated extensions

Kt-Subgraph-Cover. Let G be a graph class. We define the problem Vertex Deletion
to G as follows.

(Weighted) Vertex Deletion to G
Input: A graph G (and a weight function w : V (G) → N).
Objective: Find the set S ⊆ V (G) of minimum size (resp. weight) such that G \ S ∈ G.

If G is the class of edgeless (resp. acyclic, planar, bipartite, (proper) interval, chordal)
graphs, then we obtain the Vertex Cover (resp. Feedback Vertex Set, Vertex
Planarization, Odd Cycle Transversal, (proper) Interval Vertex Deletion,
Chordal Vertex Deletion) problem. Also, given a graph H, if G is the class of graphs
that do not contain H as a subgraph (resp. a minor/odd-minor/induced subgraph), then the
corresponding problem is called H-Subgraph-Cover (resp. H-Minor-Cover/H-Odd-
Minor-Cover/H-Induced-Subgraph-Cover).

Let H be a graph and w : V (G) → N be a weight function (constant equal to one in the
unweighted case). We define fH as the 2-partition-evaluation function where, for every graph
G, for every (R, S) ∈ P2(V (G)),

fH(G, (R, S)) =
{

+∞ if H is a subgraph of G \ S,

w(S) otherwise.

Seen as an optimization problem, (Weighted) H-Subgraph-Cover is the problem
of computing pfH ,min(G). We call its annotated extension (Weighted) Annotated H-
Subgraph-Cover. In other words, (Weighted) Annotated H-Subgraph-Cover is
defined as follows.

(Weighted) Annotated H-Subgraph-Cover
Input: A graph G, two disjoint sets R, S ⊆ V (G) (and a weight function w : V (G) → N).
Objective: Find, if it exists, the minimum size (resp. weight) of a set S⋆ ⊆ V (G) such
that R ∩ S⋆ = ∅, S ⊆ S⋆, and G \ S⋆ does not contain H as a subgraph.

Odd Cycle Transversal. Let H be a graph. We define foct as the 3-partition-evaluation
function where, for every graph G and for every (S, X1, X2) ∈ P3(V (G)),

foct(G, (S, X1, X2)) =
{

|S| if G \ S ∈ B, witnessed by the bipartition (X1, X2),
+∞ otherwise.

Hence, seen as an optimization problem, Odd Cycle Transversal is the problem of
computing pfoct,min(G). We call its annotated extension Annotated Odd Cycle Trans-
versal. In other words, Annotated Odd Cycle Transversal is defined as follows.

(Weighted) Annotated Odd Cycle Transversal
Input: A graph G, three disjoint sets S, X1, X2 ⊆ V (G) (and a weight function
w : V (G) → N).
Objective: Find, if it exists, a set S⋆ of minimum size (resp. weight) such that S ⊆ S⋆,
(X1 ∪ X2) ∩ S⋆ = ∅, and G \ S⋆ is bipartite with X1 and X2 on different sides of the
bipartition.

IPEC 2023

26:22 Dynamic Programming on Bipartite Tree Decompositions

Packing. Let G be a graph class. We define the G-Packing problem as follows.

G-Packing
Input: A graph G.
Objective: Find the maximum number k of pairwise-disjoint subgraphs

H1, . . . , Hk such that, for each i ∈ [k], Hi ∈ G.

Let H be a graph. If G = {H} (resp. G is the class of all graphs containing H as
a minor/odd-minor/induced subgraph), then we refer to the corresponding problem as
H-Subgraph-Packing (resp. H-Minor-Packing/H-Odd-Minor-Packing/H-Induced-
Subgraph-Packing). Note, in particular, that K3-Odd-Minor-Packing is exactly Odd
Cycle Packing.

If in the definition of G-Packing we add the condition that there is no edge in the input
graph between vertices of different Hi’s, then we refer to the corresponding problem as
H-Scattered-Packing, where we implicitly assume that we refer to the subgraph relation,
and where we do not specify a degree of “scatteredness”, as it is usual in the literature
when dealing, for instance, with the scattered version of Independent Set. For instance,
K2-Scattered-Packing is exactly Induced Matching.

	1 Introduction
	2 Overview of our techniques
	2.1 Dynamic programming algorithms
	2.1.1 FPT-algorithms
	2.1.2 XP-algorithms

	2.2 Hardness results

	3 General dynamic programming to obtain FPT-algorithms
	3.1 Preliminaries
	3.2 General dynamic programming scheme
	3.3 Generalizations
	3.4 Application to Maximum Cut

	4 Further research
	A Graphs, treewidth, boundaried graphs, and nice problems
	B Definition of the problems and their annotated extensions

