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Abstract
We study a new graph separation problem called Multiway Near-Separator. Given an undirected
graph G, integer k, and terminal set T ⊆ V (G), it asks whether there is a vertex set S ⊆ V (G) \ T

of size at most k such that in graph G − S, no pair of distinct terminals can be connected by two
pairwise internally vertex-disjoint paths. Hence each terminal pair can be separated in G − S by
removing at most one vertex. The problem is therefore a generalization of (Node) Multiway
Cut, which asks for a vertex set for which each terminal is in a different component of G − S.
We develop a fixed-parameter tractable algorithm for Multiway Near-Separator running in
time 2O(k log k) · nO(1). Our algorithm is based on a new pushing lemma for solutions with respect to
important separators, along with two problem-specific ingredients. The first is a polynomial-time
subroutine to reduce the number of terminals in the instance to a polynomial in the solution size k

plus the size of a given suboptimal solution. The second is a polynomial-time algorithm that, given
a graph G and terminal set T ⊆ V (G) along with a single vertex x ∈ V (G) that forms a multiway
near-separator, computes a 14-approximation for the problem of finding a multiway near-separator
not containing x.
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1 Introduction

Graph separation problems play an important role in the study of graph algorithms. While
the problem of finding a minimum vertex set whose removal separates two terminals s and t

can be solved in polynomial-time via the Ford-Fulkerson algorithm [13], many variations of
the problem are NP-complete. They form a fruitful subject of investigation in the study
of parameterized algorithmics, where a typical goal is to develop an algorithm that finds
a suitable separator of size k in an n-vertex input graph in time f(k) · nO(1), or concludes
that no such solution exists. Landmark results in this area include the FPT algorithms for
Multiway Cut [5, 8, 15, 20, 27] (in which the goal is to find a vertex set which separates
any pair of terminals from a given set T ) and Multicut [3, 22] (in which only a specified
subset of the terminal pairs must be separated) in undirected graphs.
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28:2 On the Parameterized Complexity of Multiway Near-Separator

After the parameterized complexity of the most fundamental separation problems in this
area were settled, researchers started considering variations on the theme of graph separation,
including Steiner Multicut [4] (given a sequence of subsets of terminals T1, . . . , Tℓ, find
a vertex set separating at least one pair {ti ∈ Ti, tj ∈ Tj} for each i ̸= j), Multiway
Cut-Uncut [6, 19] (given an equivalence relation R on a set of terminal vertices, find a
vertex set whose removal leaves terminals ti, tj in the same connected component if and only
if ti ≡R tj), and Stable Multiway cut [21] (find a multiway cut that is independent).

In this paper we start to explore a new variation of the separation theme from the
parameterized perspective. Rather than asking for a vertex set which fully separates some
given terminal pairs, we are interested in nearly separating terminals: in the remaining graph,
there should not be two or more internally vertex-disjoint paths connecting a terminal pair.
We therefore study the following problem, which we believe is a natural extension in the
well-studied area of graph separation problems.

Multiway Near-Separator (mwns) Parameter: k

Input: An undirected graph G, terminal set T ⊆ V (G), and a positive integer k.
Question: Is there a set S ⊆ V (G) \ T with |S| ≤ k such that there does not exist a pair
of distinct terminals ti, tj ∈ T with two internally vertex-disjoint ti-tj paths in G − S?

Note that, by Menger’s theorem, the requirement on solutions S to mwns is equivalent
to the requirement that in the graph G − S, any terminal pair can be separated by removing
a non-terminal vertex. One could therefore imagine applications of this problem in the study
of disrupting communications between nodes in a network. While the standard Multiway
Cut problem captures the setting that all potential for communication between terminals
has to be broken, the size of a solution to the near-separation problem can be arbitrarily
much smaller while it still ensures the following property: the communication between each
terminal pair is either broken by the solution, or there is at least one non-terminal vertex
through which all communications of the pair must pass, so that it may be intercepted at
that point. A related problem of reducing connectivity between nodes by removing edges
or vertices was studied by Barman and Chawla [1], who presented various approximation
algorithms.

Using the (perhaps non-standard) view that a direct edge between two vertices ti, tj

means there are two internally vertex-disjoint paths between them (the intersection of the set
of interior vertices is empty), the requirement that in G − S there do not exist two internally
vertex-disjoint paths between any pair of distinct terminals, can alternatively be shown to be
equivalent to demanding that T is an independent set and there is no simple cycle containing
at least two vertices from T (see Proposition 2.7). Simple cycles containing two vertices
from T , henceforth called T -cycles, therefore play an important role in our arguments. Based
on this alternative characterization, the near-separator problem is related to the Subset
Feedback Vertex Set problem, which asks for a minimum vertex set intersecting all
cycles that contain at least one terminal [9], although there the solution is allowed to contain
terminal vertices.

A simple reduction (Lemma B.1) shows that Multiway Near-Separator is NP-
complete. It forms a generalization of the (Node) Multiway Cut problem with undeletable
terminals: an instance (G, T = {t1, . . . , tℓ}, k) of the latter problem can be reduced to an equiv-
alent instance (G′, T, k) of mwns by inserting |T |−1 new non-terminal vertices w1, . . . , w|T |−1
with N(wi) = {ti, ti+1}.

The Multiway Near-Separator problem can be shown to be non-uniformly fixed-
parameter tractable parameterized by k using the technique of recursive understanding [19], as
the problem can be formulated in Monadic Second-Order Logic and can be shown to become
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fixed-parameter tractable on (s(k), k + 1)-unbreakable graphs for some function s : N → N
by branching on small connected vertex sets with small neighborhoods. This only serves
as a complexity classification, however, as the resulting algorithms are non-uniform and
have a large (and unknown) parameter dependence f(k). In this paper, our goal is to
understand the structure of Multiway Near-Separator and develop an efficient (and
uniform) parameterized FPT algorithm for the problem.

Our results

The main result of our paper is the following theorem, showing that mwns has a uniform
FPT algorithm with parameter dependence 2O(k log k).

▶ Theorem 1.1 (⋆). Multiway Near-Separator can be solved in time 2O(k log k) · nO(1).

The starting point for the algorithm is the approach for solving Multiway Cut via
important separators. The pushing lemma due to Marx [20] [7, Lemma 8.53] states that
for any instance (G, T, k) of Multiway Cut and any choice of terminal t ∈ T , there is
an optimal solution which contains an important (t, T \ {t})-separator. As the number of
important separators of size at most k is bounded by 4k, we can construct a solution by
picking an arbitrary terminal which is not yet fully separated from the remaining terminals
and branching on all choices of including a (t, T \ {t})-separator in the solution.

Adapting this strategy directly for Multiway Near-Separator fails for several reasons.
Most importantly, since terminal pairs are allowed to remain in the same connected component,
it is possible that in an instance with a solution S of size k, there exists a terminal t ∈ T for
which there are no (t, T \ {t})-separators of size f(k) for any function f . This happens when
such a terminal t is located in a “central” block in the block-cut tree of G−S. However, there
always exists a terminal t′ ∈ T for which there does exist a (t′, T \ {t′})-separator of size at
most k + 1, and for which furthermore a variation of the pushing lemma can be proven: there
is an optimal solution which contains all-but-one vertex of an important (t′, T \{t′})-separator
of size at most k + 1. Intuitively, such a terminal t′ can be found in a leaf block of the
block-cut tree of G − S. Hence there exists a terminal for which branching on important
separators can make progress in identifying the solution, but not all terminals have this
property and a priori it is not clear which is the right one.

To resolve this issue, we will effectively have the algorithm try all choices for the terminal t

which is near-separated from all other terminals by an important separator. To ensure the
branching factor of the resulting algorithm is bounded in terms of the parameter k, while the
number of terminals T may initially be arbitrarily large compared to k, we therefore have to
reduce the number of terminals to kO(1) in a preprocessing phase.

For the standard Multiway Cut problem, a preprocessing step based on the linear-
programming relaxation of the problem can be used to reduce the number of terminals
to 2k [8] (cf. [23]). For the near-separation variant we consider, it seems unlikely that the
linear-programming relaxation has the same nice properties (such as half-integrality) as for
the original problem, let alone that the resulting fractional solutions are useful for a reduction
in the number of terminals. As one of our main technical ingredients, we therefore develop a
combinatorial preprocessing algorithm to reduce the number of terminals to a polynomial
in the solution size k plus the size of a given (suboptimal) near-separator S, which will be
available via the technique of iterative compression [24] [7, §4]. The preprocessing step is
based on concrete reduction rules operating in the graph.
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28:4 On the Parameterized Complexity of Multiway Near-Separator

▶ Theorem 1.2 (⋆). There is a polynomial-time algorithm that, given an instance (G, T, k)
of mwns and a multiway near-separator Ŝ for terminal set T in G, outputs an equivalent
instance (G′, T ′, k′) such that:
1. G′ is an induced subgraph of G,
2. T ′ is a subset of T of size O(k5 · |Ŝ|4), and
3. k′ ≤ k.
Moreover, there is a polynomial-time algorithm that, given a solution S′ for (G′, T ′, k′),
outputs a solution S of (G, T, k).

Note that the algorithm even runs in polynomial-time, and may therefore be a useful
ingredient to build a polynomial kernelization for this problem or variations thereof. To
obtain this terminal-reduction algorithm, it turns out to be useful to know whether the
role of a vertex x in a suboptimal near-separator S can be taken over by O(k) alternative
vertices. If not, then this immediately leads to the conclusion that such a vertex x belongs to
any optimal solution to the problem. On the other hand, knowing a small vertex set Sx for
which (S \ {x}) ∪ Sx is also a near-separator reveals a lot of structure in the instance which
can be exploited by the reduction rule. This usage is similar as the use of the blocker [7,
§9.1.3] in Thomassé’s kernelization algorithm for Feedback Vertex Set [26].

Given a suboptimal near-separator S, we are therefore interested in determining, for a
given x ∈ S, whether it is possible to obtain a near-separator S′ by replacing x by a set
of O(k) vertices. This is equivalent to finding a near-separator of size O(k) which avoids
the use of vertex x in the graph G′ := G − (S \ {x}). Hence this task effectively reduces to
finding a solution not containing x in the graph G′ for which {x} forms a near-separator.
We give a polynomial-time 14-approximation for this problem.

▶ Theorem 1.3 (⋆). There is a polynomial-time algorithm that, given a graph G, terminal
set T ⊆ V (G), and a vertex x ∈ V (G) such that {x} is a multiway near-separator for
terminal set T in G, outputs a multiway near-separator Sx ⊆ V (G) \ {x} for T in G such
that |Sx| ≤ 14|S∗

x|, where S∗
x ̸∋ x is a smallest multiway near-separator for T in G that

avoids x.

Theorem 1.3 can be compared to a result for the Chordal Deletion problem, where
the goal is to delete a minimum number of vertices to break all induced cycles of length
at least four (holes). A key step in the polynomial kernelization algorithm for the problem
due to Jansen and Pilipczuk is a subroutine ([16, Lemma 1.3]) which, given a graph G and
vertex x for which G − {x} is chordal, outputs a set of some ℓ ≥ 0 holes pairwise intersecting
only in x, together with a vertex set S of size at most 12ℓ not containing x whose removal
makes G chordal. Hence S is a 12-approximation for the problem of finding a chordal deletion
set which avoids x.

Related work

Apart from the aforementioned work on graph separation problems, the work of Golovach
and Thilikos [14] is related to our setting. They consider the problem of removing at
most k edges from a graph to split it into exactly t connected components C1, . . . , Ct such
that Ci has edge-connectivity at least λi for a given sequence (λ1, . . . , λt). Besides recursive
understanding, which only leads to non-uniform FPT classifications, another generic tool
for deriving fixed-parameter tractability of separation problems is the treewidth reduction
technique by Marx and Razgon [22]. To be able to apply the technique, the number of
terminals must be bounded in terms of the parameter k, which is not the case in general.
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Even if one uses Theorem 1.2 to bound the number of terminals first, it is not clear if the
technique can be applied since the solutions to be preserved are not minimal separators in the
graph. Furthermore, successful application of the technique would give double-exponential
algorithms at best, due to having to perform dynamic programming on a tree decomposition
of width 2Ω(k).

The problem of computing a near-separator avoiding a vertex x is related to the problem
of computing an r-fault tolerant solution to a vertex deletion problem, which is a solution
from which any r vertices may be omitted without invalidating the solution. The computation
of r-fault tolerant solutions has been studied for the Feedback Vertex Set problem [2],
which has a polynomial-time O(r)-approximation.

The FPT algorithm for Subset Feedback Vertex Set in undirected graphs due to
Cygan et al. [9] bears some similarity to ours, in that it also uses reduction rules to bound
the number of terminals followed by an algorithm which is exponential in the solution size
and the number of terminals. However, Subset Feedback Vertex Set behaves differently
from the problem we consider, since in the latter the structures to be hit always involve pairs
of terminals to be near-separated. On the other hand, a solution to Subset Feedback
Vertex Set will reduce the connectivity in the graph to the extent that there will no longer
be two internally vertex-disjoint paths between any terminal pair, but also has to ensure
that there are no cycles through a single terminal. This leads to significant differences in the
approach.

Organization

We begin with short preliminaries with the crucial definitions. We prove our main Theorem 1.1
in Section 3 by assuming Theorem 1.2. Next, in Section 4, we prove Theorem 1.3 by giving a
polynomial-time construction of a near-separator avoiding a specific vertex. The proof of
Theorem 1.2 is given in Section 5. The proofs of statements marked with (⋆) are located in
the full version [17].

2 Preliminaries

Graphs. We use standard graph-theoretic notation, and we refer the reader to Diestel [11]
for any undefined terms. We consider simple unweighted undirected graphs. A graph G

has vertex set V (G) and edge set E(G). We use shorthand n = |V (G)| and m = |E(G)|.
The set {1, . . . , ℓ} is denoted by [ℓ]. The open neighborhood of v ∈ V (G) is NG(v) := {u |
{u, v} ∈ E(G)}, where we omit the subscript G if it is clear from context. For a vertex
set S ⊆ V (G) the open neighborhood of S, denoted NG(S), is defined as S :=

⋃
v∈S NG(v)\S.

For S ⊆ V (G), the graph induced by S is denoted by G[S]. For two vertices x, y in a graph G,
an x-y path is a sequence (x = v1, . . . , vk = y) of vertices such that {vi, vi+1} ∈ E(G) for
all i ∈ [k − 1]. Furthermore, the vertices v2. . . . , vk−1 are called the internal vertices of the
x-y path. Given a path P = (v1, . . . , vk) and indices i, j ∈ [k], with j ≥ i, we use P [vi, vj ]
to denote the subpath of the path P which starts from vi and ends at vj . Moreover,
we use shorthand P (vi, vj ] = P [vi, vj ] − {vi}, P [vi, vj) = P [vi, vj ] − {vj}, and P (vi, vj) =
P [vi, vj ] − {vi, vj}. Given a p1-pk path P = (p1, . . . , pk) and a q1-qℓ path Q = (q1, . . . , qℓ)
with pk = q1 such that P and Q are internally vertex-disjoint, we use P · Q to denote the
p1-qℓ path (p1, . . . , pk, q2, . . . , qℓ) obtained by first traversing P and then Q. We say that a
path P in G intersects a vertex vi ∈ V (G) if vi ∈ V (P ), similarly, for a set S ⊆ V (G), we say
that path P intersects S if V (P )∩S ≠ ∅. For S ⊆ V (G), an x-y path in G is called an S-path
if x, y ∈ S. For S ⊆ V (G), cycles C1, C2 in G are said to be S-disjoint if V (C1) ∩ V (C2) ⊆ S.

IPEC 2023



28:6 On the Parameterized Complexity of Multiway Near-Separator

We now define a few basic notations about block-cut graphs (for completeness we define
the notion of block-cut graph in Definition A.2) that we will use henceforth. Given a graph G

with connected components C1, . . . , Cm, a rooted block-cut forest F of G is a block-cut forest
containing block-cut trees T1, . . . , Tm such that for each i ∈ [m], the tree Ti is a block-cut tree
of Ci that is rooted at an arbitrary block of Ti. Given a rooted forest F and a vertex v ∈ V (F),
we use parentF (v) to denote the parent of v (if v is a root then parentF (v) = ∅) and childF (v)
to denote the set containing all children of v (if v is a leaf then childF (v) = ∅). Given a
rooted block-cut forest F of G, and a node d of F , we use VG(Fd) to denote the vertices
of G occurring in blocks of the subtree rooted at d. Furthermore, we use Gd to denote the
graph induced by the vertex set VG(Fd), i.e., Gd := G[VG(Fd)]. We also need the following
observations.

▶ Observation 2.1. Let G be a graph, and let B1, B2 be two distinct blocks of G such
that V (B1) ∩ V (B2) = {v}. In the block-cut graph G′ of G, it holds that the distance between
blocks B1 and B2 is two with v as an intermediate vertex.

▶ Observation 2.2. Consider a graph G, terminal set T ⊆ V (G), and a MWNS S ⊆ V (G)
of (G, T ). Then each block B of G − S contains at most one terminal.

Two mwns instances (G, T, k) and (G′, T ′, k′) are said to be equivalent if it holds that (G, T, k)
is a YES-instance of mwns if and only if (G′, T ′, k′) is a YES-instance of mwns. An
instance (G, T, k) of mwns is said to be non-trivial if ∅ is not a solution of (G, T, k). A
terminal t ∈ T is said to be nearly-separated in G if there does not exist another terminal t′ ∈
T \ {t} such that there are 2 internally vertex-disjoint t-t′ paths in G.

Throughout this manuscript we use Multiway Near-Separator (mwns) to denote
the parameterized version of the multiway near-separator problem, whereas given a graph G

and terminal set T we use multiway near-separator (MWNS) to refer to the graph-theoretic
concept of nearly-separating a terminal set T in G. Formally, it is defined as follows.

▶ Definition 2.3 (Multiway near-separator (MWNS)). Given a graph G and terminal set T ⊆
V (G), a set S ⊆ V (G) is called a multiway near-separator (MWNS) of (G, T ) if S ∩ T = ∅
and there does not exist a pair of distinct terminals ti, tj ∈ T such that G − S contains two
internally vertex-disjoint ti-tj paths.

▶ Definition 2.4 (r-redundant MWNS). Given a graph G and terminal set T ⊆ V (G), a
set S∗ ⊆ V (G) \ T is an r-redundant MWNS of (G, T ) if for all R ⊆ S∗ with |R| ≤ r, the
set S∗ \ R is a MWNS of (G, T ).

▶ Definition 2.5 (x-avoiding MWNS). Given a graph G, terminal set T ⊆ V (G), and a
vertex x ∈ V (G), a set Sx ⊆ V (G) \ T is called an x-avoiding MWNS of (G, T ) if x /∈ Sx and
Sx is a MWNS of (G, T ). Among all x-avoiding MWNS of (G, T ), one with the minimum
cardinality is called a minimum x-avoiding MWNS of (G, T ).

Next, we define T -cycle and give a characterization of MWNS in terms of hitting T -cycles.

▶ Definition 2.6 (T -cycle and T -cycle on x). Given a graph G and terminal set T ⊆ V (G),
a cycle C in G is called a T -cycle if |V (C) ∩ T | ≥ 2. Moreover, if C also contains a
vertex x ∈ V (G), then C is called a T -cycle on x.

We now show that several ways of looking at a near-separator are equivalent.
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▶ Proposition 2.7 (⋆). Given a graph G, terminal set T ⊆ V (G), and a non-empty
set S ⊆ V (G) \ T , the following conditions are equivalent:
1. For each pair of distinct terminals ti, tj ∈ T , the graph G − S does not contain ti-tj

paths P1, P2 which are pairwise internally vertex-disjoint. (Note that P1 may be identical
to P2 if there are no internal vertices.)

2. For each pair of distinct terminals ti, tj ∈ T , there is a vertex v ∈ V (G) \ T such that ti

and tj belong to different connected components of G − (S ∪ {v}).
3. The set T is an independent set and G − S does not contain a simple cycle C containing

at least two terminals (i.e., a T -cycle).

Due to space constraints we defer the remaining preliminaries about graphs (including
block-cut graphs and important separators) and parameterized algorithms to Appendix A.

3 FPT algorithm for Multiway Near-Separator

In this section we prove Theorem 1.1 assuming Theorem 1.2, which we prove later in Section 5.
We use the combination of bounded search trees and iterative compression [7, §3–4] to obtain
the FPT algorithm. Towards this, we first present the following structural lemma for a MWNS
S ⊆ V (G) of (G, T ). It says that in G − S, there is a terminal that can simultaneously be
separated from all other terminals by the removal of a single non-terminal v.

▶ Lemma 3.1 (⋆). Let (G, T, k) be a non-trivial instance of mwns, and let S ⊆ V (G) \ T

be a solution. Then there exists a terminal t ∈ T and a non-terminal vertex v ∈ V (G) \ T

such that S ∪ {v} is a (t, T \ {t})-separator.

Marx [20] [7, Lemma 8.18] introduced a pushing lemma for Multiway Cut to prove that
Multiway Cut is FPT. In the following lemma, we present a pushing lemma for mwns.

▶ Lemma 3.2 (Pushing lemma for mwns (⋆)). Let (G, T, k) be a non-trivial instance of
mwns and let S ⊆ V (G) \ T be a solution. Then there exists a terminal t ∈ T and a
solution S∗ ⊆ V (G) \ T with |S∗| ≤ |S| for which one of the following holds:
1. there is an important (t, T \ {t})-separator S∗

t of size at most k such that S∗
t ⊆ S∗, or

2. there is an important (t, T \ {t})-separator St of size at most (k + 1), and there exists a
vertex v ∈ St such that (St \ {v}) ⊆ S∗.

The following lemma forms the heart of the FPT algorithm (Theorem 1.1). It says that
there exists an FPT algorithm that can compress a k + 1-sized MWNS of (G, T ) to a k-sized
MWNS if (G, T, k) is a YES-instance of mwns. This is effectively the compression step of
the iterative compression technique.

▶ Lemma 3.3 (⋆). There is an algorithm that, given an instance (G, T, k) of mwns
and a set Sk+1 ⊆ V (G) \ T of size k + 1 such that Sk+1 is a MWNS of (G, T ), runs in
time 2O(k log k) · nO(1) and outputs a solution of (G, T, k) (of size k) if it exists.

Given Lemma 3.3, the proof of Theorem 1.1 follows by applying the standard technique
of iterative compression. The formal proof can be found in the full version [17].

4 Constructing a near-separator avoiding a specified vertex

In this section we prove Theorem 1.3. Throughout the algorithm, we use the perspective
provided by Proposition 2.7 that a MWNS is a set intersecting all T -cycles. Note that
since {x} is a MWNS for (G, T ), the set T must be an independent set. Before presenting
the algorithm, we define some notations which we will use during the algorithm.

IPEC 2023
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▶ Definition 4.1 (C(v) and C≥1(v)). Given a graph G, terminal set T ⊆ V (G), and a
MWNS {x} ⊆ V (G) of (G, T ), let F be a rooted block-cut forest of G − {x}. Let v ∈ V (F)
be a cutvertex. Then we use C(v) to denote all the grandchildren (cutvertices) of v in the
subtree Fv, i.e., C(v) :=

⋃
y∈childF (v) childF (y). If v does not have a grandchild then C(v) := ∅.

We use C≥1(v) ⊆ C(v) to denote the cutvertices of C(v) such that for each vertex c ∈ C≥1(v),
the graph Gc = G[VG(Fc)] contains a vertex p ∈ NG(x) such that there is a c-p path P in Gc

which contains at least one terminal, i.e., |V (P ) ∩ T | ≥ 1.

During the construction of an approximate x-avoiding MWNS, we will often make use
of Definition 4.1 to keep track of which cutvertices have a pending subgraph attached that
can reach a neighbor of x by a simple path containing a terminal. Such subpaths can be
combined to form T -cycles. We often use the fact that, in an undirected graph G, it is
possible to test in polynomial time whether there is a simple p-q path through a specified
vertex t; for example, by constructing a vertex-capacitated flow network in which t has a
capacity of 2 and all other vertices a capacity of 1, and testing for a flow from {p, q} to {t}.

Next, we prove some properties about the sets C(t) and C≥1(t) defined above. We need
these properties during the analysis phase (Section 4.2) of the blocker algorithm.

▶ Proposition 4.2. Given a graph G, terminal set T ⊆ V (G), and a MWNS {x} ⊆ V (G)
of (G, T ), let F be a rooted block-cut forest of G − {x}. Let t ∈ T be a cutvertex of F and
let C(t) be the set of grandchildren of t in the subtree Ft as defined in Definition 4.1. Then
we have C(t) ∩ T = ∅.

Proof. Assume for a contradiction that there exists a vertex t′ ∈ C(t) ∩ T . First, note
that t′ ̸= t, as a cutvertex is present exactly once in a block-cut forest. Thus, we have t′ ∈
T \ {t}. Let B := parentF (t′). Since {t′, B} ∈ E(F), we have t′ ∈ V (B) by definition
of block-cut forest. Moreover, as B is the parent of t′ and t′ is a grandchild of t, we
have {t, B} ∈ E(F) and hence t ∈ V (B). Note that B is a block in G − {x} which contains
two distinct terminals t, t′, a contradiction to Observation 2.2. ◀

▶ Proposition 4.3. Given a graph G, terminal set T ⊆ V (G), and a MWNS {x} ⊆ V (G)
of (G, T ), let F be a rooted block-cut forest of G − {x}. Let t ∈ T be a cutvertex of F and
let C≥1(t) be the subset of grandchildren of t in Ft defined in Definition 4.1. Let B be a node
of Ft such that the graph G[VG(FB) ∪ {x}] does not contain a T -cycle. Then the number
of cutvertices below B in FB which also belong to the set C≥1(t) is at most one, i.e., we
have |VG(FB) ∩ C≥1(t)| ≤ 1.

Proof. First of all, note that if B belongs to C(t) (see Definition 4.1 for the definition
of C(t)) or below in the subtree Ft then the claim trivially holds, because in that case we
have |VG(FB)∩C≥1(t)| ≤ 1. Hence consider the case when either B ∈ childF (t) or B = t, and
assume for a contradiction that |VG(FB) ∩ C≥1(t)| ≥ 2. Let c1, c2 be two distinct cutvertices
in VG(FB) ∩ C≥1(t). By definition of the set C≥1(t) and the fact that c1, c2 ∈ C≥1(t), we
know that for each i ∈ [2], the graph Gci contains a vertex pi ∈ NG(x) such that there is
a ci-pi path Pi in Gci

containing a terminal ti. Moreover, since c1 ̸= c2, the paths P1 and P2
are vertex disjoint. Next, we do a case distinction based on whether B ∈ childF (t) or B = t.

Case 1. When B ∈ childF (t). Since B ∈ childF (t) and by definition (of C≥1(t)) c1, c2
are grandchildren of t, we have c1, c2 ∈ childF (B). Hence, we have c1, c2 ∈ VG(B). Next,
we construct a cycle C in G[VG(FB) ∪ {x}] as follows. Let C := {x, p1} · P1[p1, c1] ·
R12[c1, c2] · P2[c2, p2] · {p2, x}, where R12 is a path between cutvertices c1, c2 ∈ VG(B) inside
the block B. Note that the cycle C in G[VG(FB) ∪ {x}] is simple and contains two distinct
terminals t1, t2 ∈ T , a contradiction to the fact that there is no T -cycle in G[VG(FB) ∪ {x}].
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Case 2. When B = t. For i ∈ [2], let Bi be the parent of ci. Note that if B1 = B2 then
similarly to Case 1, we can obtain a T -cycle in G[VG(FB1) ∪ {x}], which is also a T -cycle in
the supergraph G[VG(FB) ∪ {x}], again a contradiction to the fact that there is no T -cycle
in G[VG(FB) ∪ {x}]. Hence assume that B1 ̸= B2. Next, we show that even in this case
we can obtain a T -cycle C in G[VG(FB) ∪ {x}], yielding a contradiction. Indeed, we can
use C := {x, p1} · P1[p1, c1] · R1[c1, B] · R2[B, c2] · P2[c2, p2] · {p2, x}, where for i ∈ [2], the
path Ri is a path between vertices ci, B ∈ VG(Bi) inside the block Bi.

Since both the above cases lead to a contradiction, this concludes the proof of Proposi-
tion 4.3. ◀

4.1 Algorithm
In this section we present a recursive algorithm Blocker(G, T, x) to construct a set Sx ⊆ V (G)\
(T ∪ {x}) such that Sx is a mwns of (G, T ) and |Sx| ≤ 14OPTx(G, T ), where OPTx(G, T )
is the cardinality of a minimum x-avoiding mwns of (G, T ). The algorithm effectively takes
a graph G, terminal set T , a vertex x ∈ V (G) \ T (such that {x} is a MWNS of (G, T )) as
input, and computes a vertex set Z ⊆ V (G) \ (T ∪ {x}) to hit certain types of T -cycles in G.
It combines Z with the result of recursively computing a solution for Blocker(G − Z, T, x).
For ease of understanding, we present the algorithm step by step with interleaved comments
in italic font, whenever required.

1. If the graph G does not contain a T -cycle on x then return Z = ∅.
2. Construct a rooted block-cut forest F of G − {x}.
3. Choose a deepest node d in the block cut forest F such that the graph G[VG(Fd) ∪ {x}]

contains a T -cycle.
Note that such a vertex d exists as there is a T -cycle on x in the graph G while a simple
cycle in G visits vertices from at most one tree T ∈ F .

4. Consider the following cases.
a. If d is a cutvertex and d /∈ T . Let Z := {d}. Then return (Z ∪Blocker(G−Z, T, x)).

In this case, it is easy to observe that the set Z = {d} is a MWNS of (G[VG(Fd)∪{x}], T )
because d is a deepest node satisfying the conditions of Step 3.

b. If d is a cutvertex and d ∈ T . Let C≥1(d) be the subset of grandchildren of d

defined using Definition 4.1. Let Z := C≥1(d) and return (Z ∪ Blocker(G − Z, T, x)).
The set Z is a MWNS of (G[VG(Fd) ∪ {x}], T ) by our choice of d, definition of
the set C≥1(d), the fact that a T -cycle contains at least 2 terminals, and for each
block B ∈ childF (d) we have V (B) ∩ (T \ {d}) = ∅ due to Observation 2.2.

c. If d is a block.
Let DT := d − T , i.e., DT := G[V (d) \ T ]. Note that the block d of G − {x} contains
at most 1 terminal due to Observation 2.2. In the case when V (d) ∩ T = ∅, we
have DT = d = G[V (d)]. Let Cd := childF (d) \ T and partition Cd as follows.

Let Cd
≥2 ⊆ Cd be the set such that for each (cut)vertex c ∈ Cd

≥2 the graph Gc :=
G[VG(Fc)] contains a vertex p ∈ NG(x) such that there is a c-p path P in Gc

which contains at least 2 terminals, i.e., |V (P ) ∩ T | ≥ 2.
Let Cd

1 ⊆ Cd \ Cd
≥2 be the subset of remaining vertices of Cd such that for each

vertex c ∈ Cd
1 the graph Gc contains a vertex p ∈ NG(x) such that there is a c-p

path P in Gc which contains 1 terminal, i.e., |V (P ) ∩ T | = 1.
Let Cd

0 ⊆ Cd \ (Cd
≥2 ∪ Cd

1 ) be the subset of remaining vertices of Cd such that for
each vertex c ∈ Cd

0 the graph Gc contains a vertex p ∈ NG(x) such that there is
a c-p path P in Gc.
Let Cd

∅ := Cd \ (Cd
≥2 ∪ Cd

1 ∪ Cd
0 ) be the remaining elements of Cd.
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Apply Gallai’s theorem ([7, Thm 9.2, Lemma 9.3], cf. [25, Thm 73.1]) on the
graph DT with Q = Cd

≥2 ∪ Cd
1 to obtain a maximum-cardinality family PQ of

pairwise vertex disjoint Q-paths in DT , along with a vertex set Z1 ⊆ V (DT ) of size
at most 2|PQ| such that the graph DT − Z1 has no Q-path.
Let A := Cd

≥2 and B := Cd
0 ∪ (NG(x) ∩ V (d)). Next, compute a minimum (A, B)-

separator in the graph DT using Edmonds-Karp algorithm [12] which outputs a
vertex set Z2 ⊆ V (DT ).

Next, we do a case distinction based on whether or not the block d contains a terminal.
Note that in the case when d does not contain a terminal then the set (Z1 ∪ Z2) hits
all T -cycles of G[VG(Fd) ∪ {x}]. On the other hand, when d contains a terminal there
could still be a T -cycle in the graph G[VG(Fd) ∪ {x}] − (Z1 ∪ Z2) (see the third figure
of Figure 1). So our next steps are aimed at hitting those T -cycles (if any) that are
not hit by the set (Z1 ∪ Z2).

If V (d) ∩ T = ∅, then let Z3, Z4 := ∅.
Otherwise, there is a unique terminal in block d ⊆ G − x since x is a MWNS
for (G, T ). Let t be the terminal that belongs to the block d.

Let D be the set containing connected components of DT − (Z1 ∪ Z2) that
contain at least one neighbor of t, i.e., for each connected component D ∈ D, we
have V (D) ∩ N(t) ̸= ∅.
Let D∗ ⊆ D be the set such that for each D∗ ∈ D∗, the connected component D∗

contains a vertex from Q = (Cd
≥2 ∪ Cd

1 ). More precisely, we have |V (D∗) ∩ Q| = 1
for each D∗ as the set Z1 is hitting all Q-paths.
Let V (D∗) :=

⋃
D∗∈D∗ V (D∗) and define Z3 := (Cd

≥2 ∪ Cd
1 ) ∩ V (D∗).

Note that in the case when d contains a terminal t and t ∈ childF (d), the way
we have defined Cd, it does not contain t. Hence, when t ∈ childF (d) and the
graph Gt has a vertex p ∈ NG(x) such that there is a t-p path P in Gt that
contains at least one terminal other than t, i.e, |V (P ) ∩ (T \ {t})| ≥ 1, there
could still be T -cycles in G[VG(Fd)] −

⋃3
i=1 Zi (see the last figure of Figure 1).

So our next step is to hit all T -cycles (if any) containing the t-p path P . Recall
C≥1(t) from Definition 4.1.
∗ If t ∈ childF (d) and the graph Gt has a vertex p ∈ NG(x) such that there is a

t-p path P in Gt with |V (P ) ∩ T | ≥ 2, then let Z4 := C≥1(t).
∗ Otherwise, define Z4 := ∅.

Finally, we try to break any interaction between vertices of VG(Fd) and vertices
of VG(F) \ VG(Fd) by adding the parent of d into the hitting set. But note that in the
case when parentF (d) ∈ T , we can not add it to the hitting set Z ⊆ V (G) \ (T ∪ {x}).

If parentF (d) ∈ T , then let Z5 := ∅.
Otherwise, Z5 := parentF (d).

Let Z :=
⋃5

i=1 Zi and return(Z ∪ Blocker(G − Z, T, x)).

This concludes the description of the algorithm. Summarizing, its main structure is to
define a vertex set Z ⊆ V (G) \ (T ∪ {x}) to break T -cycles which are lowest in the block-cut
tree, include that set Z in the approximate solution, and complete the solution by recursively
solving the problem on G − Z.

4.2 Analysis
The following lemma forms the heart of Theorem 1.3. It says that if the above procedure
adds a set Z during the construction of the approximate solution Sx, then the optimum
value of the remaining instance decreases by at least |Z|

14 .
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Figure 1 Illustration of Step 4c. The leftmost figure shows the original graph G where terminals
are represented by red squares and the pink vertices of block d represent the vertices of Z1. The
second figure shows the construction of the set Z2 in the graph G − (Z1 ∪ {t}) where the green
vertex represents the vertex of Z2. It also shows a T -cycle represented by thick edges. The third
figure shows a T -cycle (represented by thick edges) which appears after putting the terminal t back
and the blue vertices represent the vertices of Z3. The last figure illustrates the construction of the
set Z4 and Z5 where the cyan vertex and olive vertex represent the vertex of Z4 and Z5, respectively.

▶ Lemma 4.4. If a single iteration of the algorithm on input (G, T, x) yields the set Z,
then OPTx(G − Z, T ) ≤ OPTx(G, T ) − |Z|

14 , where OPTx(G, T ) and OPTx(G − Z, T ) are
the cardinalities of a minimum x-avoiding MWNS of (G, T ) and (G − Z, T ), respectively.

Proof. Let S∗
x ⊆ V (G) be a minimum x-avoiding MWNS of (G, T ). If the algorithm stops

before Step (3) then Z = ∅. Hence the inequality of the lemma trivially holds. Therefore
assume that the algorithm reaches Step 4. Let d be the deepest node selected by the algorithm
in Step (3) to compute Z. Let Ŝ := S∗

x \ VG(Fd). Note that Ŝ ∩ (T ∪ {x}) = ∅. Next, we
observe the following properties about the set Z computed in Step 4.

▷ Claim 4.5 (⋆). Suppose the algorithm reaches Step 4 and computes the set Z ⊆ VG(Fd)\T .
Then Z is a MWNS of (Gd + x, T ), where Gd + x = G[VG(Fd) ∪ {x}].

Proof sketch. By choice of d, each T -cycle of Gd + x contains a vertex from block d, or
the cutvertex d itself. Since x is a MWNS for (G, T ), each T -cycle also contains x. The
sets Z1, . . . , Z4 added to Z in the algorithm ensure different types of T -cycles of Gd + x are
broken: Z1 covers all T -cycles consisting of two paths between x and d, each containing at
least one terminal; Z2 covers T -cycles consisting of one path between x and d containing two
or more terminals, and another such path containing no terminals; the sets Z3 and Z4 cover
T -cycles that go through a terminal in d (if there is one), as explained in the algorithm. ◁

▷ Claim 4.6 (⋆). Suppose the algorithm reaches Step 4 and computes the set Z ⊆ VG(Fd)\T .
Then any T -cycle in G − (Z ∪ Ŝ) contains a vertex of VG(Fd) (i.e., a vertex from Gd) and a
vertex from VG(F) \ (VG(Fd)) (i.e., a vertex outside Gd + x).

Proof sketch. Since Ŝ contains all vertices of the solution S∗
x except those occurring in a

block of the subtree Fd of the block-cut tree, any T -cycle disjoint from S was intersected
by S∗

x in a vertex of VG(Fd) and therefore uses a vertex of the latter set. On the other hand,
since the previous claim shows that Z hits all the T -cycles which live in Gd + x, a T -cycle
disjoint from Z has to use a vertex outside VG(Fd). ◁

▷ Claim 4.7 (⋆). Suppose the algorithm reaches Step 4 and computes the set Z ⊆ VG(Fd)\T .
Then any minimum x-avoiding MWNS S∗

x of (G, T ) satisfies |S∗
x ∩ VG(Fd)| ≥ max{1, |Z|−2

6 }.
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Proof sketch. Any x-avoiding MWNS S∗
x contains a vertex from VG(Fd) because there is

a T -cycle in Gd + x, by choice of d, which explains why the intersection is nonempty.
The fact that S∗

x contains at least |Z|−2
6 vertices from VG(Fd) can be seen as follows. We

have |Z4|, |Z5| ≤ 1 by definition, so the largest Zi of Z1, Z2, Z3 has at least |Z|−2
3 vertices.

Any solution contains at least |Zi|/2 vertices from VG(Fd) because the covering/packing
duality for the three types of separators used to define Z1, Z2, Z3 ensures, for each of these
sets, that to hit all the T -cycles of the corresponding form, at least |Zi|/2 vertices are
needed. For example, each Q-path P in the family PQ obtained during the construction
of Z1 yields a T -cycle when combined with paths from endpoints of P (which are cutvertices
in Q) to neighbors of x in two different subtrees of the block-cut forest F , showing that
S∗

x ∩ VG(Fd) ≥ |PQ| ≥ |Z1|/2. ◁

Next, we show that if a minimum x-avoiding MWNS S∗
x of (G, T ) contains exactly 1

vertex from the subtree Fd then the set Ŝ := S∗
x \ VG(Fd) is a MWNS of (G − Z, T ).

▷ Claim 4.8 (⋆). If |S∗
x ∩ VG(Fd)| = 1 then Ŝ = S∗

x \ VG(Fd) is a MWNS of (G − Z, T ).

Proof sketch. If |S∗
x ∩ VG(Fd)| = 1, then from the T -cycle in Gd + x which we know to exist,

the set S∗
x contains at most one vertex. In the most crucial case that the d is a block whose

parent is a terminal, this means that S∗
x cannot break all paths from x through blocks in

the subtree Fd to the parent of d. The only types of connections that the set Z does not
break, and which can be part of T -cycles in G, can be shown to be precisely paths from a
neighbor of x to d in Gd that do not contain a terminal. But if |S∗

x ∩ VG(Fd)| = 1, then S∗
x

does not break all such paths either. By a rerouting argument, this allows us to show that
updating S∗ by replacing S∗

x ∩ VG(Fd) with Z gives a valid x-avoiding MWNS, which is
equivalent to saying that Ŝ is a MWNS of (G − Z, T ). ◁

The following claim shows that if the set Ŝ is not a MWNS of (G−Z, T ), then we can find
a vertex ĉ such that the set obtained after adding ĉ to the set Ŝ is a MWNS of (G − Z, T ).

▷ Claim 4.9 (⋆). If Ŝ is not a MWNS of (G − Z, T ) then there exists a vertex ĉ ∈
V (G) \ (T ∪ {x}) such that Ŝ ∪ {ĉ} is a MWNS of (G − Z, T ).

Proof sketch. The proof consists of a delicate argument which essentially says that this
situation only happens when d is a block whose parent is a terminal, and there is a cutvertex ĉ

close to block d in the block-cut forest which combines with Z to break all paths in G − {x}
from NG(x) ∩ VG(Fd) to vertices of NG(x) \ VG(Fd), and therefore breaks all T -cycles
intersecting VG(Fd). ◁

The proof of Lemma 4.4 follows from the preceding statements by formula manipulation:
whenever the approximation algorithm chooses a set Z, an optimal solution chooses at
least |Z|/14 vertices from VG(Fd). The remainder of the proof is given in the full version [17].

◀

Using Lemma 4.4, an easy induction shows that the algorithm indeed computes a 14-
approximation. As each iteration can be implemented in polynomial time, this leads to a
proof of Theorem 1.3. The details are given in the full version [17].
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5 Bounding the number of terminals

Our main goal in this section is to prove Theorem 1.2. Intuitively, there are two distinct
ways in which a connected component admitting a small solution can contain a large number
of terminals: either there can be a star-like structure of blocks containing a terminal joined
at a single cutvertex, or there exists a long path in the block-cut tree containing many
blocks with a terminal. After applying reduction rules to attack both kinds of situations,
we give a final reduction rule to bound the number of relevant connected components that
contain a terminal, which will lead to the desired bound on the number of terminals. Due to
space constraints, the safeness of the reduction rules we present here is deferred to the full
version [17].

▶ Reduction Rule 1. Let (G, T, k) be an instance of mwns, and let t ∈ T be a terminal such
that for any other terminal t′ ∈ T \ {t}, there do not exist 2 internally vertex-disjoint t-t′

paths in G, i.e., the terminal t is nearly-separated. Then remove t from the set T . The new
instance is (G, T \ {t}, k).

Next, we have the following general reduction rule.

▶ Reduction Rule 2. Let (G, T, k) be an instance of mwns. Suppose there exist 2 non-
terminal vertices x, y ∈ V (G)\T such that G−{x, y} has a connected component D satisfying
the following conditions:
(a) |V (D) ∩ T | ≥ 3,
(b) the graph G[V (D) ∪ {x, y}] has no T -cycle, and
(c) there is an x-y path in G[V (D) ∪ {x, y}] containing distinct terminals t1, t2 ∈ T .
Then turn any terminal of D which is not t1, t2 into a non-terminal. Formally, let t ∈
V (D) ∩ (T \ {t1, t2}), then (G, T \ {t}, k) is a new instance of mwns.

Next, we show that given an instance (G, T, k) of mwns and a 1-redundant MWNS S∗ ⊆
V (G) \ T of (G, T ), in polynomial-time we can obtain an equivalent instance (G, T ′, k) such
that the number of connected components of G − S∗ which contain at least one terminal
from T ′ is bounded by O(|S∗|2 · k). Towards this, we apply the following marking scheme
with respect to the set S∗ to mark O(|S∗|2 · k) connected components of G − S∗.

▶ Marking Scheme 1. Let (G, T, k) be an instance of mwns, and let S∗ ⊆ V (G) be a
1-redundant MWNS of (G, T ). For each pair of distinct vertices x, y ∈ S∗, we greedily
mark (k + 2) connected components Cx,y

i1
, . . . , Cx,y

ik+2
of G − S∗ such that for each m ∈ [k + 2],

the connected component Cx,y
im

contains two vertices (not necessarily distinct) pm ∈ NG(x)
and qm ∈ NG(y) such that there is a pm-qm path Pm (possibly of length 0) inside the connected
component Cx,y

m which contains at least one terminal, i.e., we have |V (Pm) ∩ T | ≥ 1. If there
are fewer than k + 2 such components, we simply mark all of them.

We have the following reduction rule based on the above marking scheme. It requires
a 1-redundant MWNS to be known. In the context of Theorem 1.2, where we are given
a MWNS S of (G, T, k), we can exploit Theorem 1.3 to obtain a 1-redundant MWNS of
size O(|S| ·k) in polynomial time: for each x ∈ S, if an x-avoiding MWNS Sx in G− (S \{x})
has size more than 14k then all solutions of (G, T, k) contain x and we may safely remove x

and decrease k; otherwise, we can add Sx to S to ensure all T -cycles intersecting x are hit
twice, without blowing up the size of S too much. The details are given in the full version [17].
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▶ Reduction Rule 3. Let (G, T, k) be an instance of mwns, and let S∗ ⊆ V (G) \ T be a
1-redundant MWNS of (G, T ). Let CM be the set of connected components of G − S∗ marked
by Marking Scheme 1 with respect to the set S∗. Let T ′ := T ∩ (

⋃
C∈CM

V (C)). If T \ T ′ ̸= ∅
then we convert the terminals of T \ T ′ to non-terminals. The new instance is (G, T ′, k).

A delicate analysis shows that applying these reduction rules indeed leads to an equivalent
instance with the desired bound on the number of terminals, which leads to a proof of
Theorem 1.2. The details are given in the full version [17].

6 Conclusions

In this paper we initiated the study of the Multiway Near-Separator problem, a
generalization of Multiway Cut focused on reducing the connectivity between each pair of
terminals. We developed reduction rules to reduce the number of terminals in an instance,
aided by a constant-factor approximation algorithm for the problem of finding a near-separator
avoiding a given vertex x in an instance for which {x} is a near-separator. Our work leads
to several follow-up questions. First of all, one could consider extending the notion of
near-separation to allow for larger (but bounded) connectivity between terminal pairs in the
resulting instance, for example by requiring that in the graph G − S, for each pair of distinct
terminals ti, tj there is a vertex set of size at most c whose removal separates ti and tj . The
setting we considered here is that of c = 1, which allows us to understand the structure of the
problem based on the block-cut forest of G−S. For c = 2 it may be feasible to do an analysis
based on the decomposition of G − S into triconnected components, but for larger values of c

the structure may become significantly more complicated. One could also consider a generic
setting (see [1]) where for each pair of terminals ti, tj , some threshold f(ti, tj) = f(tj , ti) is
specified such that in G − S there should be a set of at most f(ti, tj) nonterminals whose
removal separates ti from tj . Note that if the values of f are allowed to be arbitrarily large,
this generalizes Multicut. Is the resulting problem fixed-parameter tractable parameterized
by k?

Another direction for future work lies in the development of a polynomial kernel. For
the Multiway Cut problem with delectable terminals, as well as the setting with un-
deletable but constantly many terminals, a polynomial kernel is known based on matroid
techniques [18]. Does the variant of Multiway Near-Separator with deletable terminals
admit a polynomial kernel?
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A Additional preliminaries

Graphs. An x-y path P and a q-r path Q are said to be internally vertex-disjoint if they
do not share a common internal-vertex, i.e., we have (V (P ) \ {x, y}) ∩ (V (Q) \ {q, r}) = ∅.
Given X, Y ⊆ V (G), a path (v1, . . . , vk) in G is called an X − Y path if v1 ∈ X and vk ∈ Y .

▶ Theorem A.1 (Menger’s theorem, [11], Theorem 3.3.1). Let G be a graph and X, Y ⊆ V (G)
be subsets of vertices such that X ∩ Y = ∅ and there does not exist an edge {x, y} ∈ E(G)
for any x ∈ X and y ∈ Y . Then the minimum number of vertices separating X from Y is
equal to the maximum number of vertex-disjoint X − Y paths in G.

A cutvertex in a graph is a vertex v whose removal increases the number of connected
components. A graph is 2-connected if it has at least three vertices and does not contain any
cutvertex. A block of a graph G is a maximal connected subgraph B of G such that B does
not have a cutvertex. Each block of G is either a 2-connected subgraph of G, a single edge,
or an isolated vertex.

▶ Definition A.2 (Block-cut graph, [11], §3.1). Given a graph G, let A be the set of cutvertices
of G, and let B be the set of its blocks. The block-cut graph G′ of G is the bipartite graph
with partite sets A and B, and for each cut-vertex a ∈ A, for each block B ∈ B, there is an
edge {a, B} ∈ E(G′) if a ∈ V (B).

We also need the following simple but useful properties of block-cut graphs.

▶ Lemma A.3 ([11], Lemma 3.1.4). The block-cut graph of a connected graph is a tree.

▶ Observation A.4. Consider an edge e of the block-cut tree T of a connected graph G,
let v be the unique cutvertex incident on e, let T1, T2 be the two trees of T − {e}, and
let Yi := VG(Ti) be the vertices of G occurring in blocks of Ti, for i ∈ [2]. Then all paths from
a vertex of Y1 \ {v} to a vertex of Y2 \ {v} in G intersect v.

▶ Observation A.5. Let G be a graph and T ⊆ V (G) be a set of terminals such that V (G)\T ̸=
∅. If no block of G contains two or more terminals, then for each pair ti, tj ∈ T of distinct
terminals there exists a vertex v ∈ V (G) \ T such that vi and vj belong to different connected
components of G − {v}.

▶ Observation A.6. For any positive integer ℓ, if there are ℓ cycles on x which are (T ∪ {x})-
disjoint in graph G, then any x-avoiding MWNS of (G, T ) contains at least ℓ vertices: at
least one distinct non-terminal from each cycle.
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▶ Proposition A.7. Let G, be a graph, B a block in G, and consider three distinct ver-
tices p, q, t ∈ V (B). There is a p-t path P and q-t path Q inside block B such that V (P ) ∩
V (Q) = {t}.

Proof. Since B is a block containing at least three vertices, it is a 2-connected graph. We
first add a new vertex vp,q and edges {vpq, p}, {vpq, q} to block B to obtain a new graph B′.
Observe that B′ is still a 2-connected graph, as the above modification can be seen as
adding a new B-path v, vpq, q to B and adding a B-path to a 2-connected graph results
in a 2-connected graph (see [11, Proposition 3.1.1]). Next, we apply Menger’s theorem
with X = {vpq} and Y = {t} in the (2-connected) graph B′, which ensures that there are 2
internally vertex-disjoint vpq-t paths P ′ and Q′ in B′. By construction of B′ and the fact
that P ′ and Q′ are internally vertex-disjoint vpq-t paths in B′, we know that one of the vpq-t
paths (assume w.l.o.g. P ′) contains vertex p of block B, whereas the other vpq-t path Q′

contains vertex q of block B. Hence the paths P = P ′[p, t] and Q = Q′[q, t] are the desired
paths with V (P ) ∩ V (Q) = {t}. ◀

This following observation follows from Proposition A.7, as explained below.

▶ Observation A.8. Let F be the block-cut forest of a graph G. Suppose there is an x-y
path P in F between cutvertices x, y of F . Then for any distinct vertices v1, v2 ∈ V (G) from
2 distinct blocks on P, the graph G has an x-y path P12 through v1, v2, i.e., v1, v2 ∈ V (P12).

We can construct the desired path P12 by concatenating paths inside each block B on
the x-y path in F , where each path connects the cutvertex p connecting to the previous
block, with the cutvertex q connecting through the next block. If a forced vi is chosen from
block B, we can use Proposition A.7 to obtain a p-q path through t = vi.

Parameterized algorithms. A parameterized problem L is a subset of Σ∗ × N, where Σ is
a finite alphabet. A parameterized problem L ⊆ Σ∗ × N is called fixed parameter tractable
(FPT) if there exists an algorithm which for every input (x, k) ∈ Σ∗ × N correctly decides
whether (x, k) ∈ L in f(k) · |x|O(1) time, where f : N → N is a computable function. We refer
to [7] for more background on parameterized algorithms.

Given a graph G and X, Y ⊆ V (G), a set S ⊆ V (G) is called an (X, Y )-separator if there
is no x-y path in G − S for any x ∈ X \ S and y ∈ Y \ S. The notion of important separator
was defined by Marx [20] to obtain an FPT algorithm for Multiway Cut. He also derived
several useful properties.

▶ Definition A.9 (Important separator, [7], Definition 8.49). Let G be an undirected graph,
let X, Y ⊆ V (G) be two sets of vertices, and let V ∞ ⊆ V (G) be a set of undeletable vertices.
Let S ⊆ V (G) \ V ∞(G) be an (X, Y )-separator and let R be the set of vertices reachable
from X \ S in G − S. We say that S is an important (X, Y )-separator if it is inclusion-
wise minimal and there is no (X, Y )-separator S′ ⊆ V (G) \ V ∞(G) with |S′| ≤ |S| such
that R ⊂ R′, where R′ is the set of vertices reachable from X \ S′ in G − S′.

▶ Proposition A.10 ([7], Proposition 8.50). Let G be an undirected graph and X, Y ⊆ V (G) be
two sets of vertices, and let V ∞ ⊆ V (G) be a set of undeletable vertices. Let Ŝ ⊆ V (G)\V ∞(G)
be an (X, Y )-separator and let R̂ be the set of vertices reachable from X \ Ŝ in G − Ŝ. Then
there is an important (X, Y )-separator S′ = NG(R′) ⊆ V (G) \ V ∞(G) such that |S′| ≤ |Ŝ|
and R̂ ⊆ R′.

▶ Theorem A.11 ([7], Theorem 8.51). Let X, Y ⊆ V (G) be two sets of vertices in an undirected
graph G, let k ≥ 0 be an integer, and let Sk be the set of all (X, Y )-important separators of
size at most k. Then |Sk| ≤ 4k and Sk can be constructed in time O(|Sk| · k2 · (n + m)).
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B Hardness proof for Multiway Near-Separator

▶ Lemma B.1. Multiway Near-Separator is NP-hard.

Proof. We give a polynomial-time reduction from Multiway Separator to mwns.
The Multiway Separator problem is formally defined as follows.

Multiway Separator (mws) Parameter: k

Input: An undirected graph G, terminal set T ⊆ V (G), and a positive integer k.
Question: Is there a set S ⊆ V (G) \ T with |S| ≤ k such that there does not exist a
pair of distinct terminals ti, tj ∈ T for which there is a ti-tj path in G − S?

Multiway Separator is NP-hard [10]. Given an instance (G, T, k) of mws we describe
the construction of an instance (G′, T, k) of mwns; it will be easy to see that it can be carried
out in polynomial time. Consider an arbitrary ordering t1, t2, . . . , t|T | of the set T . We
construct the graph G′ such that (G′, T, k) is a YES-instance of mwns if and only if (G, T, k)
is a YES-instance of mws.

We begin with G′ := G. Then for each i ∈ [|T | − 1], we create a vertex wi in G′, and
insert edges {ti, wi} and {wi, ti+1} in G′. This completes the construction of G′.

Next, we prove that (G, T, k) is a YES-instance of mws if and only if (G′, T, k) is a
YES-instance of mwns. In the forward direction, assume that (G, T, k) is a YES-instance
of mws, and let S ⊆ V (G)\T be a mws of (G, T, k). Note that by definition of mws, for each
pair of distinct terminals ti, tj ∈ T , there is no ti-tj path in G − S. Since the transformation
into G′ consists of adding degree-2 vertices connecting consecutive terminals, any pair of
distinct terminals ti, tj ∈ T with i < j can be separated in G′ − S by removing the vertex wi.
Hence the same set S ⊆ V (G′) \ T is also a mwns of (G′, T, k).

In the reverse direction, assume that (G′, T, k) is a YES-instance of mwns and let S′ ⊆
V (G′) \ T be a solution. Let W :=

⋃
i∈[|T |−1]{wi} be the set of newly added vertices

in G′. In the case when S′ ∩ W = ∅, it is easy to see that the same set S′ is also a mws
of (G, T, k): because if S is not a mws of (G, T, k) then it implies that there is a pair of
distinct terminals ti, tj ∈ T connected by a ti-tj path say P in G − S. By construction
of G′, there is also a unique ti-tj path say P ′ in G′[W ∪ T ]. Note that the paths P and P ′

are T -disjoint, and neither P nor P ′ intersects the set S′, a contradiction to the fact that S′

is a solution of (G′, T, k) since the paths witness that ti, tj cannot be separated by removing
a single non-terminal.

Hence we need to show how to prove the case when S′ ∩ W ̸= ∅. In this case, note that
due to Lemma 3.1, there is a terminal t ∈ T and a non-terminal x ∈ V (G′) \ T such that
the set S′ ∪ {x} is a (t, T \ {t})-separator. So by applying Lemma 3.1 at most |T | − 1 times
we obtain a set S∗ ⊆ V (G′) \ T such that the set S∗ is a mws of (G′, T ). Moreover, note
that |S∗| ≤ |S′| + (|T | − 1) because in each step of Lemma 3.1 we add at most 1 additional
vertex to separate a terminal. Next, we obtain a new set Ŝ := S∗ \ W . Now, it is easy to
observe that the set Ŝ ⊆ V (G′) \ T is a solution of (G′, T, k) such that Ŝ ∩ W = ∅ thus (like
in the previous case) we have the property that the set Ŝ is also a mws of (G, T, k). Hence,
(G, T, k) is a YES-instance of mws. ◀
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