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Abstract
We study the kernelization complexity of the Weighted H-Packing problem on sparse graphs.
For a fixed connected graph H, in the Weighted H-Packing problem the input is a graph G,
a vertex-weight function w : V (G) → N, and positive integers k, t. The question is whether there
exist k vertex-disjoint subgraphs H1, . . . , Hk of G such that Hi is isomorphic to H for each i ∈ [k]
and the total weight of these k · |V (H)| vertices is at least t. It is known that the (unweighted)
H-Packing problem admits a kernel with O(k|V (H)|−1) vertices on general graphs, and a linear
kernel on planar graphs and graphs of bounded genus. In this work, we focus on case that H is a
clique on h ≥ 3 vertices (which captures Triangle Packing) and present a linear-vertex kernel
for Weighted Kh-Packing on graphs of bounded expansion, along with a kernel with O(k1+ε)
vertices on nowhere-dense graphs for all ε > 0. To obtain these results, we combine two powerful
ingredients in a novel way: the Erdős-Rado Sunflower lemma and the theory of sparsity.
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1 Introduction

Packing and covering problems form an important area in the study of (algorithmic) graph
theory [12, 25, 32, 35, 39, 47, 48, 56]. These problems have also been actively studied from
the kernelization viewpoint [1, 3, 9, 16, 24, 43, 44, 52]. Roughly speaking, kernelization is a
formalization of polynomial-time preprocessing aimed at compressing the instance size in
terms of a complexity parameter (see Definition 4 for a formal definition). It is well-known
that a decidable parameterized problem has a kernelization algorithm if and only if it is
fixed-parameter tractable (FPT) [15]. Having an FPT algorithm for the problem implies that
there exists a kernel, but the size of the kernel can be exponential in the parameter. Hence,
finding a polynomial (or even linear) kernel is an active area of research in parameterized
complexity [1, 2, 5, 6, 10, 11, 13, 16, 26, 27, 37, 45, 46, 53, 55].

For a fixed graph H, the H-Packing problem asks, given a graph G and a positive
integer k, whether there are k vertex-disjoint subgraphs H1, . . . , Hk of G such that Hi is
isomorphic to H for each i ∈ [k]. It is known that H-Packing is NP-hard whenever H has
a connected component on at least three vertices [42]. For H = K3 the problem is equivalent
to the well-known Triangle Packing problem. An application of the sunflower lemma due
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to Erdős and Rado [22] gives a O(k|V (H)|) vertex-kernel for H-Packing. This bound was
improved to O(k|V (H)|−1) by Abu-Khzam [1]. For restricted graph classes, such as planar
graphs and graphs of bounded genus, H-Packing is known to admit a linear kernel [11,
§8.4]. Very recently, the problem was shown to have kernels with O(k1+ε) vertices and edges
(for every ε > 0) on every class of nowhere dense graphs [4, Theorem 4.1].

When taking d := |V (H)|, the H-Packing problem is a special case of d-Set Packing.
The latter problem asks, given a family of size-d subsets of a universe U and integer k,
whether the family contains k pairwise disjoint sets. Dell and Marx [16] showed that for
d ≥ 3, there does not exist a kernel for d-Set Packing with bit-size O(kd−ε) for any ε > 0,
under the assumption that NP ̸⊆ coNP/poly. It is a long-standing open problem whether
d-Set Packing (or the related d-Hitting Set) admits a kernel with O(k) universe elements.
Even for special cases such as Triangle Packing, no kernels with O(k) vertices are
known on general graphs despite intensive research into linear-vertex kernels for packing
problems [9, 24].

In this work, our focus is on the weighted variant of H-Packing, which is defined as
follows for a fixed graph H.

Weighted H-Packing Parameter: k

Input: An undirected graph G, a vertex-weight function w : V (G) → N, and positive
integers k, t.
Question: Do there exist k vertex-disjoint subgraphs H1, . . . , Hk of G such that Hi is
isomorphic to H for each i ∈ [k] and

∑
i∈[k]

∑
v∈V (Hi) w(v) ≥ t?

The use of weights in the problem definition allows the problem to model a larger set
of applications, since the weights can be used to capture different profits associated to a
solution. Extending tractability horizons to weighted versions of problems is a natural and
often challenging direction of research [14, 23, 36, 38, 40, 41].

It is not difficult to extend the sunflower-based kernel with O(k|V (H)|) vertices and edges
to work in the weighted setting as well. However, the techniques used in previous papers
to obtain (almost) linear kernels for sparse graph classes seem incompatible with the use
of weights. For example, the meta-kernelization framework [11] does not apply to weighted
problems since they do not have the finite integer index property.

Our results

In this work, we focus on the important special case that H is a clique on h ≥ 3 vertices, which
captures the Triangle Packing problem. We prove that Weighted Kh-Packing has a
linear-vertex kernel on graph classes of bounded expansion. Classes of bounded expansion
generalize planar graphs, bounded-degree graphs, and graphs excluding any fixed graph H as
a minor or topological minor. Roughly speaking, a graph class G has bounded expansion if
there exists a function f : N → N such that for each G ∈ G, the edge density of each graph G′

that can be obtained from a subgraph of G by contracting disjoint connected vertex sets
of diameter at most r, is bounded by f(r). See [51, §5.5] for formal definitions. Our main
result reads as follows.

▶ Theorem 1. For each graph class G of bounded expansion, for each integer h ≥ 3,
Weighted Kh-Packing admits a linear-vertex kernel on graphs from G.

Our approach extends to provide almost-linear kernels for every nowhere-dense graph
class.
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▶ Theorem 2. For each nowhere-dense graph class G, integer h ≥ 3, and ε > 0, Weighted
Kh-Packing admits a kernel with O(k1+ε) vertices on graphs from G.

The main idea behind our kernel for bounded-expansion graph classes is as follows. We
start with a greedy phase that repeatedly extracts a maximum-weight Kh-subgraph. After
having collected h · k such subgraphs, we show that if a solution exists, there is a solution
in which each copy of Kh intersects one of the greedily identified subgraphs. This yields
an O(k)-sized vertex set P0 for which we can assume any solution intersects P0. Then we
apply tools of sparsity to enrich P0 into a slightly larger vertex set P of size O(k), such that
the remaining vertices in G can be partitioned into O(k) equivalence classes in such a way
that all Kh-subgraphs intersecting a class interact with the same set of O(1) vertices in P .
Having this constant bound allows us to apply the sunflower lemma separately on each family
of Kh-subgraphs intersecting a given equivalence class, in such a way that having a sunflower
of constant size suffices to guarantee that one of the corresponding Kh-subgraphs can be
avoided when making a solution. In this way, we can shrink each of the O(k) equivalence
classes to O(1) vertices, giving a linear-vertex kernel. Hence our approach exploits the
structural properties of sparse graphs to allow more efficient usage of the sunflower lemma.
It easily generalizes to the setting of nowhere dense graph classes by utilizing a different
lemma to compute the enriched set P ⊇ P0, giving a bound of O(kε) rather than O(1) on
the number of vertices from P that can interact with the copies of Kh in a given equivalence
class.

We consider the conceptual simplicity of our kernelization algorithm an appealing feature.
Unlike the meta-kernelization framework [11], it does not rely on treewidth-based argumenta-
tion and the corresponding notion of protrusion replacement. (The latter yields proofs that a
kernelization algorithm exists, without explicitly showing what the algorithm is.) Compared
to previous (kernelization) results on sparse graphs [4, 18, 54] we only require a few tools
from the sparsity theory based on neighborhood complexity and the closure lemma, and
avoid the use of the technical notion of uniform quasi-wideness.

In our argumentation, we focus on reducing the number of vertices in the instance to O(k).
Strictly speaking this does not ensure the total encoding size becomes bounded in k, as
the weights can be arbitrarily large. However, once the number of vertices is small, the
weight-compression technique of Etscheid et al. [23] can be used to get to bound the maximum
weight.

Related work

The study of kernelization on restricted graph classes began with the seminal result of Alber
et al. [5], who proved that Dominating Set on planar graphs admits a linear kernel. It was
later extended to larger graph classes [7, 28, 29, 30, 34]. The tools from sparsity have been
extensively studied in the last decades. Dvorák, Král, and Thomas gave an FPT algorithm
for deciding first-order properties in classes of graphs with bounded expansion [19], which
was later extended to nowhere dense graph classes by Grohe, Kreutzer, and Siebertz [33]. It
was also shown in [19] that if a graph class G is not nowhere dense (is somewhere dense) and
is closed under taking subgraphs, then model checking First Order formulae on G is not FPT
parameterized by the length of the formula unless FPT= W [1].

In terms of kernelization, the first systematic study using the modern sparsity framework
was started by Drange et al. [18]. They showed that for every fixed positive integer r, the r-
Dominating Set problem admits a linear kernel on bounded expansion graphs. They also
gave an almost-linear kernel for the standard Dominating Set problem on nowhere dense
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graphs. Later, Eickmeyer et al. [20] showed that r-Dominating Set admits an almost-linear
kernel on nowhere dense graphs. Pilipczuk and Siebertz [54] proved that the r-Independent
Set problem admits an almost-linear kernel on every nowhere dense graph class. The above
kernelization results were recently unified by Einarson and Reidl [21] and Ahn et al. [4].
Apart from that, the tools from sparsity have also been used by Demaine et al. [17] in
real-world graphs.

2 Preliminaries

We use standard notation for graphs and parameterized algorithms. We refer the reader to a
textbook [15] for any undefined terms. For positive integers n we define [n] := {1, . . . , n}.
We consider simple undirected graphs. A graph G has vertex set V (G) and edge set E(G).
The open neighborhood of v ∈ V (G) is NG(v) := {u | {u, v} ∈ E(G)}, where we omit the
subscript G if it is clear from context. For a vertex set S ⊆ V (G) the open neighborhood
of S, denoted NG(S), is defined as S :=

⋃
v∈S NG(v) \ S. For S ⊆ V (G), the graph

induced by S is denoted by G[S]. For two vertices x, y in a graph G, an x − y path is a
sequence (x = v1, . . . , vk = y) of vertices such that {vi, vi+1} ∈ E(G) for all i ∈ [k − 1].
Furthermore, the vertices v2. . . . , vk−1 are called the internal vertices of the x − y path. We
say that a subgraph H of G intersects a vertex set S ⊆ V (G) if V (H) ∩ S ̸= ∅.

We next state the following lemma due to Erdős-Rado [22]. Before presenting the lemma
we define the terminology used in the lemma.

A sunflower S with k sets and core X is a collection of sets S1, . . . , Sk such that Si∩Sj = X

for all i ̸= j, and such that Si \ X ̸= ∅ for all i ∈ [k]. The sets Si \ X are petals of the
sunflower S.

▶ Theorem 3 (Sunflower lemma, [15, Theorem 2.25]). Let A be a family of sets (without
duplicates) over a universe U , such that each set in A has cardinality exactly d. If |A| >

d!(k − 1)d, then A contains a sunflower with k petals and such a sunflower can be computed
in time polynomial in |A|, |U |, and k.

For completeness, we now give the formal definition of a kernelization. A parameterized
problem Q is a subset of Σ∗ × N+, where Σ is a finite alphabet.

▶ Definition 4 (Kernel). Let Q, Q′ ⊆ Σ∗ ×N+ be parameterized problems and let h : N+ → N+
be a computable function. A generalized kernel for Q into Q′ of size h(k) is an algorithm
that, on input (x, k) ∈ Σ∗ × N+, takes time polynomial in |x| + k and outputs an instance
(x′, k′) such that:
1. |x′| and k′ are bounded by h(k), and
2. (x′, k′) ∈ Q′ if and only if (x, k) ∈ Q.

The algorithm is a kernel for Q if Q = Q′. It is a polynomial (generalized) kernel if h(k) is
a polynomial.

Sparsity. The theory of sparsity was introduced by Nesetril and Ossona de Mendez [49, 50]
using the notions of bounded expansion and nowhere denseness. Many important sparse
graphs, like classes of bounded treewidth, planar graphs, graphs with bounded genus, apex-
minor-free graphs, (topological)-minor free graphs, and graphs of bounded degree have
bounded expansion. We refer the reader to the book [51] for a detailed introduction to the
topic.

We will need some basic notation and tools for sparse graphs from earlier work [18, 20, 54]
to prove our results. Let G be a graph and X ⊆ V (G) be a subset of vertices. For a
vertex v ∈ V (G) \ X and a positive integer r, we define the r-projection of v onto X as
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the set of all the vertices w ∈ X, for which there is a v − w path in G of length at most r

whose internal vertices do not belong to X. The r-projection of v onto a set X is denoted
by Mr(v, X).

Now we are ready to state the lemmas. The following lemma says that any vertex
set X ⊆ V (G) of a bounded expansion graph G can be “closed” to a set X̂ whose size is
asymptotically the same as |X|, such that the r-projection of any vertex outside X̂ onto X̂

has constant size.

▶ Lemma 5 (Closure lemma, [18] Lemma 2.2). Let G be a class of bounded expansion. There
exists a polynomial-time algorithm that, given a graph G ∈ G, a non-negative integer r, and
a set X ⊆ V (G), computes a vertex-set X̂ with the following properties.
1. X ⊆ X̂ ⊆ V (G),
2. |X̂| = O(|X|), and
3. |Mr(v, X̂)| ≤ α ∈ O(1), for each v ∈ V (G) \ X̂.

We note that in the above, the O(·) notation also hides the factors depending on r and the
graph class G.

We also cite the corresponding closure lemma for nowhere dense graphs due to Eickmeyer
et al. [20].

▶ Lemma 6 (Closure lemma for nowhere dense graphs, [20, 54]). Let G be a nowhere dense
class of graphs. There are a function fcl : N × R → N and a polynomial-time algorithm that,
given a graph G ∈ G, a non-negative integer r, a set X ⊆ V (G), and ε > 0, computes a
vertex-set X̂ with the following properties.
1. X ⊆ X̂ ⊆ V (G),
2. |X̂| = fcl(r, ε) · |X|1+ε, and
3. |Mr(v, X̂)| ≤ fcl(r, ε) · |X|ε, for each v ∈ V (G) \ X̂.

In [18], Drange et al. proved that the number of distinct r-projections on a vertex
set X ⊆ V (G) of a bounded expansion graph G is linear in the cardinality of X.

▶ Lemma 7 ([18, Lemma 2.3]). Let G be a class of bounded expansion and let r be a
non-negative integer. Let G ∈ G be a graph and X ⊆ V (G). Then

|{Y : Y = Mr(v, X) for some v ∈ V (G) \ X}| ≤ c · |X|,

for some constant c depending only on r and the graph class G.

A similar bound exists for nowhere dense graphs.

▶ Lemma 8 ([20, Theorem 3]). Let G be a nowhere dense class of graphs. There is a
function fnbr : N×R → N such that for every non-negative integer r, real ε > 0, graph G ∈ G,
and vertex set X ⊆ V (G), we have

|{Y : Y = Mr(v, X) for some v ∈ V (G) \ X}| ≤ fnbr(r, ε) · |X|1+ε,

for some constant c depending only on r and the graph class G.

3 Kernelization for Weighted Kh-Packing on Sparse Graphs

In this section we present our kernels for Weighted Kh-Packing. We start by introducing
some problem-specific terminology that will be useful to streamline our arguments.

A solution to an instance (G, w, k, t) of Weighted Kh-Packing is a sequence of vertex-
disjoint subgraphs H1, . . . , Hk of G such that Hi is isomorphic to Kh for each i ∈ [k] and∑

i∈[k]
∑

v∈V (Hi) w(v) ≥ t.

IPEC 2023



29:6 Sunflowers Meet Sparsity

▶ Definition 9 (P -bound solution and solution confined to H). Let (G, w, k, t) be an instance
of Weighted Kh-Packing. For a vertex set P ⊆ V (G), a solution H1, . . . , Hk of (G, w, k, t)
is P -bound if V (Hi) ∩ P ̸= ∅ for all i ∈ [k].

For a collection H of subgraphs isomorphic to Kh in G, a solution H1, . . . , Hk of (G, w, k, t)
is said to be confined to H if Hi ∈ H for all i ∈ [k].

We now show how the sunflower lemma can be combined with the theory of sparsity to
get a linear-vertex kernel for Weighted Kh-Packing on bounded expansion graph classes.

▶ Theorem 1. For each graph class G of bounded expansion, for each integer h ≥ 3,
Weighted Kh-Packing admits a linear-vertex kernel on graphs from G.

Proof. Let (G, w, k, t) be an instance of Weighted Kh-Packing with G ∈ G. We refer to
a subgraph Hi of G isomorphic to Kh as a copy of Kh. In the following proof, we will treat
such Hi both as a subgraph of G and as a vertex subset of G, depending on which is more
convenient. Our kernelization algorithm performs the following steps.

Algorithm.
1. Compute a greedy packing P of up to hk vertex-disjoint copies H1, . . . , Hhk of Kh in G

such that H1 is a maximum-weighted copy of Kh in G, and for each i ∈ {2, . . . , hk}, the
copy Hi is a maximum-weighted copy of Kh in the graph G −

(⋃i−1
j=1 V (Hj)

)
. While

following the above greedy procedure, if it is not possible to pack hk disjoint copies of Kh

then we obtain a maximal packing.
2. Let P0 := V (P). Invoke the algorithm of Lemma 5 with G, r = 2, and P0 ⊆ V (G) to

obtain a vertex set P such that:
a. P0 ⊆ P ⊆ V (G),
b. |P | = O(|P0|) = O(k), and
c. |M2(v, P )| ≤ α ∈ O(1) for each v ∈ V (G) \ P ,
where α is a constant depending on r and the graph class G.

3. Partition the vertices of V (G) \ P into equivalence classes C1, . . . , Cm based on their
2-projection onto the set P , i.e., for every equivalence class Ci, and for every pair
of distinct vertices x, y ∈ Ci, we have M2(x, P ) = M2(y, P ). (Due to Lemma 7, we
have m = O(|P |) = O(k).)

4. Let H be the set family containing the (vertex sets of) all copies of Kh in G.
For each equivalence class Ci of Step 3, do the following.

Let Hi ⊆ H be the (vertex sets of) copies of Kh in G that contain a vertex of Ci.
while |Hi| > h!(hα + 1)h do

Apply Theorem 3 to obtain a sunflower S ⊆ Hi with hα + 2 copies of Kh.
Let Sr ∈ S be a copy of Kh with minimum weight. Remove Sr from H and Hi.

end while
5. Let H′ ⊆ H be the (reduced) set obtained after Step 4. Define G′ := G[V (H′)] and

output (G′, w, k, t) as the result of the kernelization.
(Note that in principle, the encoding size of the weight function can be unbounded in
terms of k, which can be resolved by a standard application of the weight reduction
technique by Frank and Tardos [31] as explained by Etscheid et al. [23].)

This concludes the description of the algorithm.
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Analysis. It is easy to observe that since we treat h as a constant, the above algorithm
takes polynomial time: each step of the algorithm takes polynomial time and each step
is applied a polynomial number of times. We now prove the correctness of the algorithm.
Towards this, we first prove the following claim which says that any solution of (G, w, k, t)
which is not already P -bound can be converted to a solution where the number of copies
of Kh intersecting with P is strictly larger.

▷ Claim 10. If H∗ is a solution of (G, w, k, t) and Sf ∈ H∗ such that V (Sf ) ∩ P = ∅, then
there exists a set Sj ∈ P such that (H∗ \ {Sf }) ∪ {Sj} is a solution of (G, w, k, t).

Proof. First note that, by the construction of the packing P (in Step 1 of the algorithm),
if |P| < hk then the constructed set P is an inclusion-maximal packing, implying that all
copies of H in G intersect V (P) and therefore P . Under the stated assumptions, as Sf is a
copy of Kh which is completely contained in the graph G − P , we have |P| = hk. Moreover,
for every Sp ∈ P, it holds that w(Sp) ≥ w(Sf ) since the copy Sf was available to choose in
the iteration when the algorithm selected Sf , while the algorithm selects a maximum-weight
copy at every step.

Since H∗ is a packing of k copies of Kh, Sf ∈ H∗, and V (Sf ) ∩ P = ∅, at most h(k − 1)
vertices of H∗ can intersect with the hk copies of Kh from the packing P. Hence, there
is at least one copy of Kh say Sj ∈ P such that V (Sj) ∩ V (H∗) = ∅. Moreover, we
have w(Sj) ≥ w(Sf ) as Sj ∈ P. Thus the set (H∗ \ {Sf }) ∪ {Sj} is a solution of (G, w, k, t).

◁

Next, using the above claim we prove that if there is a solution to (G, w, k, t) then there
is a P -bound solution.

▷ Claim 11. If (G, w, k, t) has a solution, then (G, w, k, t) has a P -bound solution.

Proof. Let H∗ be a solution of (G, w, k, t). If V (Sf ) ∩ P ̸= ∅ for all Sf ∈ H∗ then by
Definition 9, the set H∗ is a P -bound solution. Otherwise, while there exists a set Sf ∈ H∗

such that V (Sf )∩P = ∅, we use Claim 10 to obtain a set Sj ∈ P such that (H∗ \{Sf })∪{Sj}
is a solution of (G, w, k, t) with strictly fewer copies of Kh (than in H∗) which are disjoint
from the set P . ◁

Finally, in the following claim we prove that if (G, w, k, t) has a P -bound solution (which
is guaranteed due to the above claim) then removal of the set Sr in Step 4 of the algorithm
is safe.

▷ Claim 12. Suppose Step 4 of the above algorithm removes the set Sr from H. If (G, w, k, t)
has a P -bound solution which is confined to H, then (G, w, k, t) has a P -bound solution
which is confined to H \ {Sr}.

Proof. Let H∗ ⊆ H be a P -bound solution of (G, w, k, t) which is confined to H. If Sr /∈ H∗,
then H∗ is also a P -bound solution which is confined to H \ {Sr}. Therefore assume
that Sr ∈ H∗. Let S := {S1, . . . , Shα+2} be the sunflower found in Step 4 of the above
algorithm when it removes Sr ∈ S from H, let X be its core, and let Ci be the equivalence
class it considered when it found the sunflower. We now show that there exists a “free”
set Sf ∈ S \ {Sr} such that the set (H∗ \ {Sr}) ∪ {Sf } is a solution of (G, w, k, t) which
is confined to H \ {Sr}. Towards this, we first derive the following: some set Sf of the
sunflower S \ {Sr} is disjoint from V (H∗ \ {Sr}).

∃Sf ∈ S \ {Sr} : V (Sf ) ∩ V (H∗ \ {Sr}) = ∅. (1)

IPEC 2023
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Assume for a contradiction that there does not exist such a set Sf . First, note that
since Sr ∈ H∗, the core X of the sunflower S is contained in Sr, and H∗ is a collection of
vertex-disjoint copies of Kh, we have X ∩ V (H∗ \ {Sr}) = ∅. Hence the copies of Kh in the
set H∗ \ {Sr} only intersect with petals of the sunflower S \ {Sr}. Moreover, as the petals of
a sunflower are pairwise disjoint, each copy of Kh from the set H∗ \ {Sr} can intersect with
at most h petals of the sunflower S \ {Sr}.

Since all the hα + 1 petals of the sunflower S \ {Sr} intersect with the set V (H∗ \ {Sr})
and a single copy of Kh from the set H∗ \ {Sr} can hit at most h petals, the number of copies
of Kh from H∗ \ {Sr} intersecting with the petals of sunflower S \ {Sr} is at least α + 1.
Let H∗

S := {Hi1 , . . . , Hiℓ
} ⊆ H∗ be the set containing copies of Kh from the set H∗ \ {Sr}

which intersect with a petal of sunflower S \ {Sr}. We have ℓ ≥ α + 1.
We will prove that for each q ∈ [ℓ], there is a path Pq in G of length at most 2 that starts

in a vertex of equivalence class Ci, ends in a vertex of P ∩ V (Hiq ), and does not intersect
any other vertex of P . Towards this end, let pq be an arbitrary vertex of V (Hiq

) ∩ P , which
exists since the solution H∗ is P -bound. By choice of H∗

S , the set V (Hiq ) intersects some
petal Sz \ X for z ̸= r of the sunflower S \ {Sr}; let xq ∈ V (Hiq

) ∩ (Sz \ X) be a vertex
at which the sets intersect, and note that {xq, pq} ∈ E(G) since they are both contained
in the common clique Hiq

. Each set Sz contains a vertex from equivalence class Ci by the
specification of Step 4, so there is a vertex cz ∈ Sz ∩ Ci. We have {cz, xq} ∈ E(G) since these
vertices are contained in the common clique Sz. Observe that cz /∈ P since the equivalence
classes partition the vertex set V (G) \ P . Now, if xq /∈ P then the path (cz, xq, pz) is the
desired path Pq; if xq ∈ P then we take (cz, xq) as the path Pq. Note that in both cases, Pq

is indeed a path in G on at most 2 edges starting in Ci and ending in a vertex of P ∩ V (Hiq
).

Hence for each Hiq ∈ H∗
S , there exists a vertex in the equivalence class Ci that can reach

a vertex of P ∩ V (Hiq
) by a path of length at most 2 whose internal vertices do not belong

to P . By definition of the equivalence classes Ci, if one vertex in Ci has such a path to P ,
then all vertices of Ci have such a path. As ℓ ≥ α + 1 and the copies in H∗

S are disjoint, for
any v ∈ Ci we have |M2(v, P )| ≥ ℓ ≥ α + 1. This contradicts that |M2(v, P )| ≤ α which was
ensured by Step 2 of the above algorithm. Hence we establish (1).

Now we continue with the remaining proof of Claim 12. As there is a set Sf ∈ S \ {Sr} of
the sunflower S \{Sr} with V (Sf )∩V (H∗ \{Sr}) = ∅ and w(Sf ) ≥ w(Sr) by our choice of Sr

in Step 4 of the above algorithm, the set H̃ := (H∗ \ {Sr}) ∪ {Sf } is a solution of (G, w, k, t).
Note that if V (Sf ) ∩ P ̸= ∅ then the set H̃ is also a P -bound solution. Otherwise we invoke
Claim 10 (with the set H̃, and Sf ∈ H̃) to obtain a Kh-copy Sj ∈ P of the packing P such
that the set (H̃ \ {Sf }) ∪ {Sj} is a P -bound solution of (G, w, k, t). Note that the latter
solution is also confined to H \ {Sr}, since the copy Sj ∈ P was added to the set H at the
initialization and can never be removed: it does not occur in any Hi since its vertex set is
fully contained in P ; it does not intersect any equivalence class of V (G) \ P . This concludes
the proof of Claim 12. ◁

It follows from the preceding two claims that the output instance (G′, t, k, w) is equivalent
to the input (G, w, k, t). Since the output is an induced subgraph of the input, one direction
is trivial. For the other direction, if the input instance has a solution, it has a P -bound
solution by Claim 11. Then by Claim 12 and induction, there is a solution confined to H′,
the final state of the variable H. Since G′ contains all copies of Kh contained in H′, this
proves the output instance also has a solution.

We conclude the proof of Theorem 1 by giving a bound on the number vertices of the
reduced graph G′.
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▷ Claim 13. |V (G′)| = O(k).

Proof. Note that |P | = O(k) by Step 2. It follows that G′ contains at most O(k) vertices
which belong to P . To prove the claim, we show that the number of vertices of V (G′) \ P is
also bounded by O(k).

For each equivalence class Ci of V (G) \ P , let H′
i denote the contents of Hi upon

termination of the algorithm. The while-loop of Step 4 ensures that |H′
i| ≤ h!(hα + 1)h.

For each v ∈ V (G′) \ P , by definition of G′ = G[V (H′)] there exists an equivalence
class Ci of V (G)\P and a copy Hj ∈ H′

i, such that v ∈ V (Hj). Hence V (G′)\P is contained
in

⋃
i

⋃
Hj∈H′

i
V (Hj). Since there are O(k) choices for i by Lemma 7, while |H′

i| ≤ h!(hα +
1)h = O(1), while each copy Hj also consists of O(1) vertices, it follows that |V (G′) \ P | =
O(k). This concludes the proof. ◁

This concludes the proof of Theorem 1. ◀

The argument for nowhere-dense graphs is almost identical.

▶ Theorem 2. For each nowhere-dense graph class G, integer h ≥ 3, and ε > 0, Weighted
Kh-Packing admits a kernel with O(k1+ε) vertices on graphs from G.

Proof. For Weighted Kh-Packing on a nowhere dense graph class C, one can use the
same approach. Let ε′ := ε

h+1 . In the algorithm, we use Lemma 6 for value ε′ instead of
Lemma 5; this means that the closure set P has size O(k1+ε′) rather than O(k), and that the
bound α on |M2(v, P )| becomes O(kε′) rather than O(1). For the analysis, we use Lemma 8
for value ε′ instead of Lemma 7, which means the number of equivalence classes of V (G) \ P

becomes O(k1+ε′) rather than O(k). The rest of the algorithm and its correctness proof is
identical.

As in the proof of Claim 13, we can bound the number of vertices in the resulting graph G′

using the insight that every vertex of G′ is either contained in P , or belongs to some copy Hj

of Kh that remains in a set H′
i for some equivalence class Ci of V (G) \ P . The key insight is

again that |H′
i| ≤ h!(hα + 1)h due to the application of the Sunflower lemma.

Hence the number of vertices in the reduced instance G′ is bounded as follows:

|V (G′)| ≤|P | + |
⋃

i

⋃
Hj∈H′

i

V (Hj)|

≤O(k1+ε′
) + O(k1+ε′

· h!(hα + 1)h · h)

≤O(k1+ε′
) + O(k1+ε′

· h!2hhhkε′·h · h) since hα + 1 ≤ 2hα

≤O(k1+ε′+ε′·h) = O(k1+ε′(h+1)). since h ∈ O(1)

Since we chose ε′ = ε
h+1 , the number of vertices in the kernel is indeed bounded by O(k1+ε),

as required. ◀

4 Conclusions

We have shown that for a fixed complete graph Kh, the Weighted Kh-Packing problem
admits a linear-vertex kernel on bounded-expansion graphs and an almost-linear kernel on
nowhere-dense graphs. Whether there is a linear-vertex kernel for the associated Weighted
Kh-Hitting problem is an interesting problem for further study. In this problem, the
input consists of a graph G, weight function w : V (G) → N, and integers k, t; the question
is whether there is a vertex set of size at most k and weight at most t that intersects all
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Kh-subgraphs of G. In the unweighted setting, the kernelization complexity of packing
problems typically matches that of the related hitting problem [8, 24]. In the weighted
setting, the situation seems different and we do not know how to extend our techniques to
Weighted Kh-Hitting.

To illustrate the difficulty of hitting over packing in the presence of weights, observe the
following. If Ci ⊆ V (G) is a vertex subset such that all copies of Kh which intersect Ci also
intersect a vertex set Pi of size O(1), then it effectively means that any packing of disjoint
copies of Kh uses O(1) vertices of Ci, so that only a limited redundancy is needed in terms
of which vertices of Ci are preserved in the kernel. But note that in the same scenario, a
solution to Weighted Kh-Hitting can contain up to k vertices from Ci: even though the
Kh-subgraphs through Ci can be intersected by the vertex set Pi of size O(1), the weight of
these vertices may be much larger than the weight of k vertices from Ci hitting the same
subgraphs. Hence solutions to the hitting problem may select more than a constant number
of vertices from Ci, which leads to having to store more vertices in the kernel.
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