Approximate Turing Kernelization and Lower
Bounds for Domination Problems
Stefan Kratsch =

Algorithm Engineering, Humboldt-Universitét zu Berlin, Germany

Pascal Kunz &=

Algorithm Engineering, Humboldt-Universitidt zu Berlin, Germany

—— Abstract

An a-approximate polynomial Turing kernelization is a polynomial-time algorithm that computes
an (ac)-approximate solution for a parameterized optimization problem when given access to an
oracle that can compute c-approximate solutions to instances with size bounded by a polynomial
in the parameter. Hols et al. [ESA 2020] showed that a wide array of graph problems admit a
(1 4 ¢)-approximate polynomial Turing kernelization when parameterized by the treewidth of the
graph and left open whether DOMINATING SET also admits such a kernelization.

We show that DOMINATING SET and several related problems parameterized by treewidth do not
admit constant-factor approximate polynomial Turing kernelizations, even with respect to the much
larger parameter vertex cover number, under certain reasonable complexity assumptions. On the
positive side, we show that all of them do have a (14 ¢)-approximate polynomial Turing kernelization
for every € > 0 for the joint parameterization by treewidth and maximum degree, a parameter which
generalizes cutwidth, for example.

2012 ACM Subject Classification Theory of computation — Parameterized complexity and exact
algorithms

Keywords and phrases Approximate Turing kernelization, approximation lower bounds, exponential-
time hypothesis, dominating set, capacitated dominating, connected dominating set, independent
dominating set, treewidth, vertex cover number

Digital Object Identifier 10.4230/LIPIcs.IPEC.2023.32

Funding Pascal Kunz: Supported by the DFG Research Training Group 2434 “Facets of Complexity”.

1 Introduction

The gold standard in kernelization is a polynomial (exact) kernelization, i.e. a compression
of input instances to a parameterized problem to a size that is polynomial in the parameter
such that an exact solution for the original instance can be recovered from the compressed
instance. Several weaker notions of kernelization have been developed for problems that
do not admit polynomial kernelizations. Turing kernelization [1, 11] does away with the
restriction that the solution must be recovered from a single compressed instance and instead
allow several small instances to be created and the solution to be extracted from solutions to
all of these instances. Lossy kernelizations [21], in turn, do away with the requirement that
the solution that can be recovered from the compressed instance be an optimum solution,
allowing the solution to the original instance to be worse than optimal by a constant factor.
Hols et al. [12] introduced lossy Turing kernelizations, which allow both multiple compressed
instances and approximate solutions, and showed that several graph problems parameterized
by treewidth admit (1 + ¢)-approximate Turing kernelizations for every € > 0. They left as
an open question whether or not the problem DOMINATING SET parameterized by treewidth
also admits a constant-factor approximate Turing kernelization.

© Stefan Kratsch and Pascal Kunz;

37 licensed under Creative Commons License CC-BY 4.0
18th International Symposium on Parameterized and Exact Computation (IPEC 2023).
Editors: Neeldhara Misra and Magnus Wahlstréom; Article No. 32; pp. 32:1-32:17

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:kratsch@informatik.hu-berlin.de
https://orcid.org/0000-0002-0193-7239
mailto:kunzpasc@informatik.hu-berlin.de
https://orcid.org/0000-0002-0787-8428
https://doi.org/10.4230/LIPIcs.IPEC.2023.32
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

32:2

Approximate Turing Kernelization and Lower Bounds for Domination Problems

Our contribution. We answer this question in the negative and show that a O(2'°8"v¢)-
approximate polynomial Turing kernelization for DOMINATING SET[vc]!, where vc refers to
the vertex cover number, would contradict the Exponential Time Hypothesis. We prove
analogous lower bounds for CAPACITATED DOMINATING SET[vc], CONNECTED DOMINATING
SET[vc] for HITTING SET[|U]|], where U is the universe, and for NODE STEINER TREE[|V \ T[]
where V' \ T is the set of non-terminal vertices. Of course, the lower bounds for the ver-
tex cover number also imply lower bounds for the smaller parameter treewidth. Using
a second approach for obtaining lower bounds for approximate Turing kernelizations, es-
sentially a gap-introducing polynomial parameter transformation (PPT), we show that
INDEPENDENT DOMINATING SET[vc] does not have an a-approximate polynomial Turing
kernelization for any constant «, unless every problem in the complexity class MK[2] has a
polynomial (exact) Turing kernelization, which would contradict a conjecture by Hermelin et
al. [11]. We then show that for the joint parameterization by treewidth and the maximum
degree, each of the aforementioned domination problems does have a (1+¢)-approximate poly-
nomial Turing kernelization for every € > 0. This generalizes, for instance, parameterization
for cutwidth or bandwidth.

Related work. For an introduction to kernelization, including brief overviews on lossy
and Turing kernelizations, we refer to the standard textbook [7]. Binkele-Raible et al. [1]
introduced the first Turing kernelization for a problem that does not admit a polynomial
kernelization. Since then numerous Turing kernelizations have been published for such
problems. Hermelin et al. [11] introduced a framework, which we will make use of in
Section 3.2, for ruling out (exact) polynomial Turing kernelizations. Fellows et al. [6] were the
first to combine the fields of kernelization and approximation. A later study by Lokshtanov
et al. [21] introduced the framework of lossy kernelization that has become more established.
Finally, Hols et al. [12] gave the first approximate Turing kernelizations.

Approximation algorithms and lower bounds for domination problems have received con-
siderable attention. They are closely related to the problems HITTING SET and SET COVER.
A classical result by Chvatal [3] implies a polynomial-time O(logn)-factor approximation for
DOMINATING SET. There are also O(logn)-factor approximations for CONNECTED DoOMI-
NATING SET [8] and CAPACITATED DOMINATING SET [23], but INDEPENDENT DOMINATING
SET does not have a O(n'~¢)-approximation for any ¢ > 0, unless P = NP [9]. Chlebik
and Chlebikovd [2] showed that DOMINATING SET, CONNECTED DOMINATING SET, and
CAPACITATED DOMINATING SET do not have constant-factor approximations even on graphs
with maximum degree bounded by a constant A and that INDEPENDENT DOMINATING SET
does not have better than a A-factor approximation.

2 Preliminaries

Graphs. We use standard graph terminology and all graphs are undirected, simple, and finite.
For a graph G = (V,E) and X CV, weuse N[X] =X U{veV|Jue X: {u,v} € E} to
denote the closed neighborhood of X and, if v € V, then we let N[v] := N[{v}]. We will use
A and vc to refer to the maximum degree and vertex cover number of a graph, respectively.

Let G = (V, E) be a graph X C V a vertex set. The set X C V is a dominating set if
N[X] =V. It is an independent set if there is no edge {u,v} € E with u,v € X. It is an
independent dominating set if it is both an independent and a dominating set. It is a connected

L We use FOO[X] to refer to the problem FOO parameterized by X.

S. Kratsch and P. Kunz

dominating set if it is a dominating set and the graph G[X] is connected. A capacitated
graph G = (V, E, cap) consists of a graph (V, E) and a capacity function cap: V. — N. A
capacitated dominating set in a capacitated graph G = (V, E, cap) is a pair (X, f) where
X CVoand f: V\ X — X such that (i) v and f(v) are adjacent for all v € V' \ X and
(i) |f~1(v)] < cap(v) for all v € X. The size of (X, f) is | X].

Let G = (V, E) be a graph. A tree decomposition of Gisapair T = (T = (W, F),{ X }tew)
where T is a tree, X; C V for allt € W, {J,cyy Xt =V, for each e € E thereisat € W
such that e C X;, and for each v € V the node set {t € W | v € X;} induces a connected
subgraph of T. The width of T is maxiew|X:| — 1. The treewidth tw(G) of G is the
minimum width of any tree decomposition of G. A rooted tree decomposition consists of a tree
decomposition T = (T’ = (W, F),{X; }1ew) along with a designated root r € W. Given this
rooted decomposition and a node t € W, we will use V; C V to denote the set of vertices v
such that v € Xy and ¢’ is a descendant (possibly ¢ itself) of ¢ in the rooted tree (T',r). The
rooted tree decomposition is nice if X, =) and X; = @ for every leaf of T and every other
node ¢ of T is of one of three types: (i) a forget node, in which case t has a single child ¢
and there is a vertex v € V such that Xy = X; U {v}, (ii) an introduce node, in which case
t has a single child ¢ and there is a vertex v € V such that X; = Xy U {v}, or (iii) a join
node, in which case ¢t has exactly two children ¢; and ¢ and X; = X3, = X4,.

Turing kernelization. A parameterized decision problem is a set L C 3* x N. A Turing
kernelization of size f: N — N for a parameterized decision problem L is a polynomial-time
algorithm that receives as input an instance (z, k) € ¥* x N and access to an oracle that, for
any instance (2, k') € ¥* x N with |2'| + ¥’ < f(k), outputs whether (2’, k') € L in a single
step, and decides whether (x,k) € L. It is a polynomial Turing kernel if f is polynomially
bounded.

A polynomial parameter transformation (PPT) from one parameterized decision problem L
to a second such problem L’ is a polynomial-time computable function f: ¥* x N — ¥* x N
such that (z,k) € L if and only (2/, k") € L’ and there is a polynomially bounded function p
such that k' < p(k) for all (z,k), (2, k') € ¥* x N with f(z,k) = («/, k).

A parameterized minimization problem is defined by a computable function P: ¥* x N x
¥* - RU {00, —0}. The optimum value for an instance (I, k) € ¥* x Nis OPTp (I, k) ==
minges- P(I, k,xz). We will say that a solution z € X* is a-approximate if P(I,k,x) <
a - OPTp(I,k). In order to simplify notation, we will allow ourselves to write P(I,x)
instead of P(I,k,z) and OPTp(I) instead of OPTp(I,k) if those values do not depend
on k. The problems (CAPACITATED/ CONNECTED/INDEPENDENT) DOMINATING SET are
defined by P(G, X) = |X| if X is a (capacitated/connected/independent) dominating set
in X and P(G,X) = oo, otherwise. The problem NODE STEINER TREE is defined by
NST((G,T),X) = |X]| if G[X UT] is connected and NST((G,T), X) := oo, otherwise.
HITTING SET is a problem whose input (U, S) consists of a set U and a family S C 2V of
nonempty sets, a solution X is a subset of U, and HS(X) := oo if there is an S € S such
that X NS = 0 and HS(X) := | X|, otherwise.

Let a € R with @ > 1 and let P be a parameterized minimization problem. An «a-
approzimate Turing kernelization of size f: N — N for P is a polynomial-time algorithm
that given an instance (I,k) computes a (ca)-approximate solution when given access
to an oracle for P which outputs a c-approximate solution to any instance (I',k’) with
|[I'| + ¥ < f(k) in a single step. It is an a-approzimate polynomial Turing kernelization if f
is polynomially bounded. Note that the algorithm is not given access to ¢, the approximation
factor of the oracle, and is not allowed to depend on c. In practice, it can also be helpful

32:3

IPEC 2023

32:4

Approximate Turing Kernelization and Lower Bounds for Domination Problems

for the approximate Turing kernelization algorithm to receive a witness for the parameter
value k as input. Similarly to Hols et al. [12], we will assume that our approximate Turing
kernelizations for the parameterization treewidth plus maximum degree are given as input a
graph G and a nice tree decomposition of width tw(G). Alternatively, one could also use
the polynomial-time algorithm due to Feige et al. [5] to compute a tree decomposition of
width O(y/logtw(G) - tw(G)) and then use this tree decomposition. We will also assume
that the given tree decomposition is nice, which is not really a restriction, because there is a
polynomial-time algorithm that converts any tree decomposition into a nice tree decomposition
without changing the width [18].

3 Lower bounds

3.1 Exponential-time hypothesis

In the following, we will show that several problems do not have an approximate Turing
kernelization assuming the exponential-time hypothesis (ETH). The proof builds on a proof
due to Lokshtanov et al. [20, Theorem 12] showing that HITTING SET parameterized by the
size of the universe does not admit a lossy (Karp) kernelization unless the ETH fails.

Let 3-CNF-SAT denote the satisfiability problem for Boolean formulas in conjunctive
normal form with at most three literals in each clause. The exponential-time hypothesis
(ETH) [13] states that there is there is a fixed ¢ > 0 such that 3-CNF-SAT is not solvable in
time 2" - (n + m)o(l), where n and m are the numbers of variables and clauses, respectively.

Let P and P’ be parameterized minimization problems and f: ¥* x N — R, a real-valued
function that takes instances of P as input. An f-approximation-preserving polynomial
parameter transformation (f-APPT) from P to P’ consists of two algorithms:

a polynomial-time algorithm A (the reduction algorithm) that receives as input an instance

(I, k) for P and outputs an instance (I, k") for P’ with k¥’ < p(k) for some polynomially

bounded function p and

a polynomial-time algorithm B (the lifting algorithm) that receives as input the instances

(I,k), (I' k'), where the latter is the output of A when given the former, as well as a

solution z for (I’, k') and outputs a solution y for (I, k) with

F(I,k)-OPTp(I, k) - P'(I', k, x)

<
P(I,k,y) < OPTp (I, k)

We will use the following lemma, which is a weaker version of a result by Nelson [22].

» Lemma 1 ([22]). If there are a constant ¢ < 1 and a polynomial-time algorithm that
computes an O(Qlogc‘m)—factor approximation for HITTING SET, then the ETH fails.

» Lemma 2. Let P be a parameterized minimization problem that satisfies the following two

conditions:

(a) There is an f-APPT from HITTING SET||U|] to P with f(U,S) € O(2'°¢" V1) for some
constant ¢; < 1.

(b) There is a constant ca < 1 and a polynomial-time algorithm that computes a O(2'°8*111)-
factor approximation for P where I is an instance for P.

Then, there is no O(2°2°° ¥)_approzimate polynomial Turing kernelization for P for any

c3 < 1, unless the ETH fails.

S. Kratsch and P. Kunz

Proof. Suppose that P satisfies conditions (a) and (b) and admits a O(2!°8" *)-approximate
polynomial Turing kernelization of size O(k?). Furthermore, assume that p(n) < O(n?)

where p is the polynomial parameter bound for the reduction algorithm of the f-APPT.

Choose any constant ¢ with max{ey,ce,c3} < ¢ < 1 and observe that for any constant « and
i € {1,2,3} we have that 2¢1°8" » < O(2'°8"). We will give a O(2!°8°IUl)-approximation
algorithm for HITTING SET. By Lemma 1, this proves the claim.

The algorithm proceeds as follows. Given an instance I = (U,S) of HITTING SET as
input, it first applies the reduction algorithm of the APPT to obtain an instance (I’ k)
of P. Then, it runs the given approximate Turing kernelization on (I’, k). Whenever this
Turing kernelization queries the oracle, this query is answered by running the approximation
algorithm given by condition (b). Once the Turing kernelization outputs a solution X, the
algorithm calls the lifting algorithm of the APPT on X, (I,|U]), and (I, k). The algorithm
outputs the solution Y given by the lifting algorithm.

It remains to show that [Y| < O(21°8IUI.OPTyg(I)). First, observe that the @(21°8 1)

factor approximation algorithm is only run on instances (.J,¢) with |.J| < O(k?), so it always
outputs a solution Z with P(J, ¢, Z) < O(2°e k" . OPTp(J,)). Hence, in the algorithm

described above the Turing kernelization is given a (9(2‘“%62 k)-approximate oracle, so it

follows that P(I’, k, X) < O(2los™ k. 2d1og™ k. OPT (I’ k)). Since k < O(|U|?), it follows

that P(I’, k, X) < O(210 [UI" . 9dlog™|UI" . OPT (', k)). Therefore:

f,k)-OPTus(I) - P(I', k, X)
OPTp (I, k)

<0 (21og°3|U\d . gdlog2|U|* F(D) - OPTHs(I))

Y] <

< O (210g'33\U‘d . 2d10gcz‘U‘d) f(I, k)) OPTHS([)>

< O (I gties I s UL 0Py (1))
< 02 IVl . OPTys(1)). <

With Lemma 2, we can prove approximate Turing kernelization lower bounds for several
parameterized minimization problems.

» Theorem 3. Unless the ETH fails, there are no O(2'°8" *)-approzimate polynomial Turing
kernels, for any ¢ < 1 and where k denotes the respective parameter, for the following
parameterized minimization problems:

(i) Hrrrine SET||U]],

(ii) DOMINATING SET][vc],

(iii) CAPACITATED DOMINATING SET(vc],

(iv) CONNECTED DOMINATING SET[vc|, and

(v) Nope STEINER TREE[V \ T].

Proof. For each problem, we will prove conditions (a) and (b) from Lemma 2.
(i) (a) Immediate.
(b) Chvétal [3] gives a O(log|S|)-factor approximation algorithm.

(ii) (a) The following folklore reduction is a 1-APPT. Let (U, S) be an instance of hitting set.

The algorithm A creates a graph G as follows. For every z € U and for every S € S,
G contains vertices v, and wg, respectively, and G also contains an additional
vertex u. The vertices {v,, | x € U}U{u} form a clique and there is an edge between
vy and wg if and only if z € S. Observe that the vertices {v, | * € U} form a
vertex cover in G, so clearly ve(G) < |U|, and that OPTyg(U,S) = OPTps(G).

Let X be a dominating set in G. Let X’ be obtained from X by removing z
and replacing any wg by an arbitrary v, with x € S (such an element u must

32:5

IPEC 2023

32:6

Approximate Turing Kernelization and Lower Bounds for Domination Problems

exist, as we assume that all S € S are non-empty). The algorithm B outputs
Y :={x €U | v, € X'}. This set is a hitting set, because for any S € S one of the
following cases applies: (i) wg ¢ X, meaning that X contains a neighbor v, of wg.
Then, also x € X’ and, hence z € Y and z € S. (ii) ws € X, meaning that wg
is replaced by v, with z € S when creating X’. Then z € Y and = € S. Finally,
V| = |X| = PGl since OPTys (U, S) = OPTps ().

(b) The O(logn)-factor approximation for HITTING SET [3] can also be used in a
straightforward manner to approximate DOMINATING SET.

(iii) (a) Any instance of DOMINATING SET can be transformed into an equivalent instance
of CAPACITATED DOMINATING SET by setting cap(v) := deg(v) for all vertices v.
The claim then follows by the same argument as for DOMINATING SET.

(b) Wolsey [23] gives a O(log|S]) factor approximation for CAPACITATED HITTING SET
which can be adapted to approximate CAPACITATED DOMINATING SET.

(iv) (a) The APPT given in (ii) for DOMINATING SET also works for CONNECTED DoOMI-
NATING SET, because, in the graphs produced by A, OPTcon(G) = OPTps(G)
and the solution output by B is always a clique and, therefore, connected.

(b) Guha and Khuller [8] give a O(log A) < O(logn)-factor approximation for CON-
NECTED DOMINATING SET.

(v) (a) The following reduction is essentially the same as the one given by Dom et al. [4]
Let (U, S) be an instance of HITTING SET. The algorithm A creates the graph G
as in the reduction for DOMINATING SET in (ii) and sets T := {w, | s € S} U {u}.
Clearly, [V \T| = |U| and it easy to show that OPTys(U,S) = OPTNsT(G,T). By
a similar argument as in (ii), the algorithm B can output {z € U | v, € X} where
X is a given solution for the NODE STEINER TREE instance (G, T).

(b) Klein and Ravi [17] give a O(logn)-factor approximation for this problem. <

If C is a hereditary class of graphs, then we may define the RESTRICTED C-DELETION
problem as follows: We are given a graph G = (V, E) and X C V such that G — X € C and
are asked to find a minimum Y C X such that G—Y € C. For RESTRICTED PERFECT DELE-
TION[| X |], RESTRICTED WEAKLY CHORDAL DELETION[| X ||, and RESTRICTED WHEEL-FREE
DELETION[| X |], reductions given by Heggernes et al. [10] and Lokshtanov [19] can be shown
to be 1-APPTs. However, it is open whether they have a O(Qlogcu ‘)—factor approximation
with ¢ < 1, so we cannot rule out an approximate polynomial Turing kernelization. However,
we can observe that, under ETH, they cannot have both an approximation algorithm with
the aforementioned guarantee and an approximate polynomial Turing kernelization.

More generally, we can deduce from the proof of Lemma 2 the following about any
parameterized minimization problem P that only satisfies the first condition in Lemma 2:
If we define an approximate polynomial Turing compression of a problem P into a problem
P’ to be essentially an approximate polynomial Turing kernelization for P, except that it
is given access to an approximate oracle for P’ rather than P, then we can rule out (under
ETH) an approximate polynomial Turing compression of any problem P that satisfies the
first condition into any problem P’ that satisfies the second condition in the same lemma.

3.2 MK]2]-hardness

The approach described in Section 3.1 is unlikely to work for the problem INDEPENDENT
DoMINATING SET. That approach requires a (9(210gC ™)-factor approximation algorithm with
¢ < 1 to answer the queries of the Turing kernelization. However, there is no O(n!~¢)-factor
approximation for this problem for any ¢ > 0 unless P = NP [9].

S. Kratsch and P. Kunz

In the following, we will prove that there is no constant-factor approximate polynomial
Turing kernelization for INDEPENDENT DOMINATING SET[vc], assuming a conjecture by
Hermelin et al. [11] stating that parameterized decision problems that are hard for the
complexity class MK[2] do not admit polynomial (exact) Turing kernelizations.

Let CNF-SAT denote the satisfiability problem for Boolean formulas in conjunctive
normal form. The class MK[2] may be defined as the set of all parameterized problems that
can be reduced with a PPT to CNF-SAT[n] where n denotes the number of variables.?

We will prove that an a-approximate polynomial Turing kernelization for INDEPENDENT
DOMINATING SET[vc| implies the existence of a polynomial Turing kernelization for CNF-
SAT[n]. For this, we will need the following lemma allowing us to translate queries between
oracles for INDEPENDENT DOMINATING SET and CNF-SAT using a standard self-reduction:

» Lemma 4. There is a polynomial-time algorithm that, given as input a graph G and access
to an oracle that decides in a single step instances of CNF-SAT whose size is polynomially
bounded in the size of G, outputs a minimum independent dominating set of G.

Proof. The decision version of INDEPENDENT DOMINATING SET, in which one is given
a graph H and an integer k and is asked to decide whether H contains an independent
dominating set of size at most k, is in NP and CNF-SAT is NP-hard, so there is a polynomial-
time many-one reduction from INDEPENDENT DOMINATING SET to CNF-SAT. For any
graph H and integer k let R(H, k) denote the instance of CNF-SAT obtained by applying
this reduction to (H, k).

Let n be the number of vertices in G. We first determine the size of a minimum
independent dominating set in G by querying the oracle for CNF-SAT on the instance
R(G, k) for each k € [n]. Observe that the size of R(G, k) is polynomially bounded in the
size of GG. Hence, we may input this instance to the oracle. Let kg be the smallest value of k
for which this query returns yes.

We must then construct an independent dominating set of size kg in G. We initially set
¢ :=ko, H:=G, and S = () and perform the following operation as long as £ > 0. For each
vertex u in H, we query the oracle on the instance R(H — NJu],¢ — 1). If this query returns
yes, then we add u to S and set H :== H — N[u] and £ := ¢ — 1. Once £ = 0, we output S.

We claim that this procedure returns an independent dominating set of size kg if kg is
the size of a minimum independent dominating set in G. Let X be a minimum independent
dominating set in G and v € X. Then, X \ {u} is a minimum dominating set of size kg — 1
in G — N[u] and the claim follows inductively. <

» Theorem 5. If, for any a > 1, there is an a-approximate polynomial Turing kernelization
for INDEPENDENT DOMINATING SET[vc], then there is a polynomial Turing kernelization for
CNF-SAT/nj.

Proof. Assume that there is an a-approximate Turing kernelization for INDEPENDENT
DOMINATING SET[vc] whose size is bounded by the polynomial p. We will give a polynomial
Turing kernelization for CNF-SAT|n].

Let the input be a formula F' in conjunctive normal form over the variables x1,...,x,
consisting of the clauses C1,...,C),. First, we compute a graph G on which we then run the
approximate Turing kernelization for INDEPENDENT DOMINATING SET. The construction of
the graph G in the following is due to Irving [14].

2 This is not directly the definition given by Hermelin et al. [11], but an equivalent characterization.

32:7

IPEC 2023

32:8

Approximate Turing Kernelization and Lower Bounds for Domination Problems

Let s :== [a-n] + 1. The graph G = (V, E) contains vertices v1,...,v, and 71,..., Ty,
representing the literals that may occur in F. Additionally, for each j € [m], there are s
vertices wjl,.
v; and v;. There is also an edge between v; and wf for all ¢ € [s] if ; € C; and an edge
between v; and w] for all £ € [s] if ~z; € C;j. The intuition behind this construction is as

follows: In G any independent dominating set may contain at most one of v; and v; for each

.., wj representing the clause C;. For each i € [n], there is an edge between

i € [n], so any such set represents a partial truth assignment of the variables 1, ..., x,. If
F is satisfiable, then G contains an independent dominating set of size n. Conversely, if F’
is not satisfiable, then any independent dominating set must contain wjl-, ..., wj for some
j € [m], so it must have size at least s > « - n, thus creating a gap of size greater than «
between yes and no instances. Moreover, {v;,7; | 7 € [n]} is a vertex cover in G, so the vertex
cover number of G is polynomially bounded in n.

The Turing kernelization for CNF-SAT proceeds in the following manner. Given the
formula F| it first computes the graph G and runs the a-approximate Turing kernelization for
INDEPENDENT DOMINATING SET on G. Whenever the a-approximate Turing kernelization
queries the oracle on an instance G’, this query is answered using the algorithm given by
Lemma 4. Observe that the size of G’ is polynomially bounded in the vertex cover number of
G, which in turn is polynomially bounded in n, so the oracle queries made by this algorithm
are possible. Let X be the independent dominating set for G output by the approximate
Turing kernelization. Since this Turing kernelization is given access to a 1-approximate oracle,
|X| < - OPTinp(G). We claim that F is satisfiable if and only if | X| < a - n. With this
claim, the Turing kernelization can return yes if and only if this condition is met.

If F is satisfiable and ¢: {z1,...,2,} — {0,1} is a satisfying truth assignment, then
Y = {v; | o(z;) = 1} U{w; | ¢(x;) = 0} is an independent dominating set in G. Hence,
|X| < a-OPTinp(G) < a-|Y| = a-n. Conversely, suppose that F' is not satisfiable. For
each i € [n], the set X may contain at most one of the vertices v; and ;. Consider the
partial truth assignment with ¢(x;) == 1 if v; € X and ¢(x;) == 0 if 7; € X. Because F'
is unsatisfiable there is a clause C; that is not satisfied by . Hence, X must contain the
vertices wj, ..., ws. Therefore, |[X| > s> a-n. <

4 Turing kernelizations for parameter tw + A

In this section, we will prove that the domination problems for which we proved lower bounds
when parameterized by the vertex cover number do have (1 + ¢)-approximate polynomial
Turing kernels when parameterized by treewidth plus maximum degree. The following lemma
is a generalization of [12, Lemma 11] and can be proved in the same way.

» Lemma 6. Let G be a graph with n vertices, T be a nice tree decomposition of G, and
s < n. Then, there is a node t of T such that s < |V;| < 2s. Moreover, such a node t can be
found in polynomial time.

4.1 Dominating Set

We start with DOMINATING SET.

» Lemma 7. Let G = (V, E) be a graph.
(i) If A is the maximum degree of G, then OPTps(G) > AL_‘_'l.
(i) If A,B,C CV with AUC =V, ANC = B, and there are no edges between A\ B and

C'\ B, then OPTpg(G) > OPTps(G[A]) + OPTps(G[C]) — 2|B|.

S. Kratsch and P. Kunz

Algorithm 1 A (1 + ¢)-approximate polynomial Turing kernelization for DOMINATING
SET parameterized by tw + A.

input :A graph G = (V, E), nice tree decomposition 7 of width tw, € > 0

s« 2- 2 (tw+1)- (A+1)

if |V] < s then
‘ Apply the c-approximate oracle to G and output the result.

else

Use Lemma 6 to find a node ¢ in T such that s < |V;| < 2s.

Apply the c-approximate oracle to G[V;] and let S; be the solution output by the
oracle.

7 Let T’ be the tree obtained by deleting the subtree rooted at ¢ except for the
node t from T .

Apply this algorithm to (G — (Vi \ X),T’,¢) and let S’ be the returned solution.

Return S; U S".

10 end

o A W N

Proof.
(i) Every vertex can only dominate its at most A neighbors and itself.
(ii) Let X be a dominating set in G of size OPTpg(G). Then Y := (X N A) U B and
Z = (X NC)U B are dominating sets in G[A] and G[C], respectively. Hence,

OPTps(G) = |X|=|XNA|+|XNC|—|XnNB|
> |Y[—[B\ X[+ |Z] - |B]|
> OPTps(G[A]) + OPTps(G[C)) — 2|B|. <

» Theorem 8. For every ¢ > 0, there is a (1 + €)-approximate Turing kernelization for
DOMINATING SET with O(+£=2 - tw - A) vertices.

Proof. Consider Algorithm 1. This algorithm always returns a dominating set of G. If
the algorithm terminates in line 3, then this is true because the oracle always outputs a
dominating set. If it terminates in line 9, then let v € V' be an arbitrary vertex. If v € V4,
then v is dominated by a vertex in S;, because S; is a dominating set in G[V;]. If v € V' \ V4,
then v is dominated by a vertex in S".

The algorithm runs in polynomial time.

Finally, we must show that the solution output by the algorithm contains at most
¢ (14¢)- OPTps(G) vertices. We prove the claim by induction on the number of recursive
calls. If there is no recursive call, the algorithm terminates in line 3 and the solution contains
at most ¢ - OPTpg(G) vertices. Otherwise, by induction:

1S, US| < S]] + 15| < ¢- OPTps(G[Vi]) + 15|

=c-(1+¢)-OPTps(G[V;]) — c-e- OPTps(G[V4]) + |9]
c-e-|Vil

;
<c-(1+¢)-OPTps(G[Vi]) — N S|
<c-(1+¢€)-OPTps(G[V4]) —2-c-(1+¢) - (tw+1)+ |9
<c-(14¢6)-OPTos(GIVi]) —2-c- (142)- |Xu| + 5]

32:9

IPEC 2023

32:10

Approximate Turing Kernelization and Lower Bounds for Domination Problems

<c-(14+¢)-OPTps(GV4]) —2-¢-(1+¢) | X¢|+c-(14+¢)-OPTps(G —V4)
¢ (14¢)- (OPTps(GVi]) — 2|X| + OPTps (G — Vi)

[A+

c-(14¢)- OPTpg(G).

Here, the inequality marked 1 follows from Lemma 7(i) and the one marked i follows from
Lemma 7(ii) with A = (V\ V) U X, B= X3, and C =V, \ X,. <

4.2 Capacitated Dominating Set

Next, we consider CAPACITATED DOMINATING SET.

» Lemma 9. Let G = (V,E,cap) be a capacitated graph with mazimum degree A and
A,B,C CV such that AUC =V, ANC = B, and there are no edges from A\ B to C'\ B.
(i) OPTcar(G) > OPTcar(G[A]) + OPTcar(G[C]) — 2|B].
(ii) Given capacitated dominating sets (X, f) and (Y,g) in G[A] and G[C], respectively,
one can in construct in polynomial time a capacitated dominating set for G of size at
most | X|+ Y|+ (A+1)-|B|.

Proof.

(i) Let (X, f) with X C V and f: V\ X — X be a capacitated dominating set of size
OPTcap(G). Then, (Y,g) withY := (XNA)UB and g(v) :== f(v) forallv € A\Y isa
capacitated dominating set in G[A] and (Z, h) with Z := (X N C) U B and h(v) = f(v)
for all v € C'\ Z is a capacitated dominating set in G[C]. Hence,

OPTcap(G) = |X| = |XNA|+|XNC|-|XNB|
=Y[—|B\ X[+ [Z| - |B| - [X N B|
> Y|+ 2| - 2/B]
> OPTcapr(G[A]) + OPTear(G[C]) — 2|B].

(i) We construct the capacitated dominating set (Z, h) for G as follows. Let Z = X U
Y U N[B]. Observe that |[N[B]| < (A + 1)|B|. Define h by setting h(v) = f(v) for
allv € A\ Z and h(v) == g(v) for all v € C'\ Z. One can easily verify that this is a
capacitated dominating set. |

» Theorem 10. For every € > 0, there is a (1 + €)-approximate Turing kernelization for
CAPACITATED DOMINATING SET with O(£< - tw - A?) vertices.

Proof. Consider Algorithm 2. This algorithm always returns a capacitated dominating set
of G. If the algorithm terminates in line 3, then this is true because the oracle always
outputs a capacitated dominating set. If it terminates in line 10, then (S, f;) and (S’, f7)
are capacitated dominating sets for G[V;] and G — (V; \ X), respectively. It follows by
Lemma 9(ii), that (S, f) is a capacitated dominating set for G.

The algorithm runs in polynomial time.

Finally, we must show that the solution output by the algorithm contains at most
¢-(1+¢)-OPTcap(G) vertices. We prove the claim by induction on the number of recursive
calls. If there is no recursive call, the algorithm terminates in line 3 and the solution contains
at most ¢+ OPTcap(G) vertices. Otherwise, by induction:

S. Kratsch and P. Kunz

Algorithm 2 A (1 + ¢)-approximate polynomial Turing kernelization for CAPACITATED

DOMINATING SET parameterized by tw + A.

o A W N

10

11

input :A graph G = (V, E), nice tree decomposition 7 of width tw, € > 0

s« 3- 1 (tw+1)- (A+1)2
if |V] < s then
‘ Apply the c-approximate oracle to G and output the result.
else
Use Lemma 6 to find a node ¢ in T such that s < |V;| < 2s.
Apply the c-approximate oracle to G[V;] and let (S, f;) be the solution output by
the oracle.
Let T’ be the tree obtained by deleting the subtree rooted at ¢ except for the
node t from T .
Apply this algorithm to (G — (V; \ Xy), T, ¢) and let (S, f’) be the returned
solution.
Apply Lemma 9(ii) with (X,) = (5", '), (Y,g) = (S0, f1), A= (V\ Vi) U Xy,
B =X;,and C =V,. Let (5, f) be the resulting solution for G.
Return (5, f).
end

The inequality marked t follows from Lemma 7(i) and the fact that OPTcap(G) > OPTps(G).

S| < 1St + 181+ (A+1) - [Xe| < c- OPToar(GVi]) + | + (A + 1) - | X

=c-(1+¢€) - OPTcar(G[Vi]) — c-e- OPTcar(G[Vi]) + |S'| + (A + 1) - | X4

c-e- |V /
N + ST+ (A+1) - [X

c-(14+¢) - OPTcap(G[Vi]) =3 -c-(14¢)-(tw+ 1) - (A+ 1)+ S|+ (A+1) - | Xy

c-(14¢)-OPTcap(G[Vi]) —

INIA—+

[A+

c-(14+¢)-OPTcapr(G[Vi]) =3 -c- (1 +¢€)-|Xe|- (A+1)+ 19

e (L+e) (A+1)- X

c-(14¢)-OPTcap(GVi]) —2-¢c- (1 +¢€)-|Xe|- (A +1)+ 15

c-(14¢) - OPTcar(GIVe]) —2-¢c-(1+¢€) - |X¢|+c-(1+¢) - OPTcar(G — W)
¢ (14¢)- (OPTcar(G[Vi]) — 2| X¢| + OPTcapr(G — V4))

VARVAN

A

c- (1 + E) . OPTCAP(G)

1 follows from the fact that ¢- (1 +¢) > 1 and q from Lemma 9(i). <

4.3

Independent Dominating Set

The next problem we consider is INDEPENDENT DOMINATING SET.

» Lemma 11. Let G = (V, E) be a graph with mazimum degree A and A, B,C CV such
that AUC =V, ANC = B, and there are no edges from A\ B to C'\ B.
(i) If X is an independent set in G, then there is an independent dominating set X' that

contains X and | X'\ X| is at most the number of vertices not dominated by X, and
such a set X' can be computed in polynomial time.

(i) OPTnp(G) > OPTnp (G[A]) + OPTnp (G[C]) — 2|B|.
(iii) Given independent dominating sets X andY in G[A] and G[C], respectively, one can

in construct in polynomial time an independent dominating set for G of size at most
I X|+ Y]+ (A+1)|B|.

32:11

IPEC 2023

32:12 Approximate Turing Kernelization and Lower Bounds for Domination Problems

Algorithm 3 A (1 + ¢)-approximate polynomial Turing kernelization for INDEPENDENT
DOMINATING SET parameterized by tw + A.

input :A graph G = (V, E), nice tree decomposition 7 of width tw, e > 0

15« V[<32 (tw+1) - (A+1)?
2 if |V] < s then
3 ‘ Apply the c-approximate oracle to G and output the result.
4 else
5 Use Lemma 6 to find a node ¢ in T such that s < |V;| < 2s.
6 Apply the c-approximate oracle to G[V;] and let S; be the solution output by the
oracle.
7 Let 7' be the tree obtained by deleting the subtree rooted at t except for the
node ¢t from T .
Apply this algorithm to (G — (Vi \ X),T’,¢) and let S’ be the returned solution.
Apply Lemma 11(iii) with X =5, Y =5;, A= (V\ W) UX;, B=X;, and
C =V,. Let S be the resulting solution for G.
10 Return S.
11 end
Proof.

(i)

(ii)

(iii)

If X is a dominating set, then X’ := X. Otherwise, there is a vertex v € V'\ N[X]. We
add v to X and continue. Observe that when v is added to X, the latter remains an
independent set.

Let X be an independent dominating set of size OPTinp(G) in G. Let Y := X N A.
Since Y C X, it follows that Y is an independent set. Moreover, ¥ dominates all
vertices in (A \ B) U (X N B), leaving at most B \ X vertices undominated. We
apply (i) to Y and obtain Y’ an independent dominating set in G[A] of size at most
|X NA|+|B|—|XNB|. We apply the same argument to G[C] to obtain an independent
dominating set Z of size at most | X N C| + |B| — |X N B|. It follows that:

OPTip(G) = |X|=|XNA|+|XNC|-|XNB|
=[Y[—[B\X|+|Z] - [B| - [X N B
> Y[+ [Z] - 2[B|
> OPTp(G[A]) + OPTinp (G[C]) — 2|B|.

Z = (X UY)\ B is an independent set in G. Since X UY is a dominating set and at
most (A + 1) - |B| vertices can be dominated by vertices in B, it follows that Z leaves
at most that many vertices in G undominated. Applying (i) to Z yields an independent
dominating set of size at most | X| +|Y|+ (A +1)-|B]|. <

» Theorem 12. For every € > 0, there is a (1 + €)-approximate Turing kernelization for
INDEPENDENT DOMINATING SET with O(= - tw - A?) vertices.

Proof. Consider Algorithm 3. This algorithm always returns an independent dominating set

of G. If the algorithm terminates in line 3, then this is true because the oracle always outputs

an independent dominating set. If it terminates in line 10, then S; and S’ are independent
dominating sets for G[V;] and G — (V; \ X¢), respectively. It follows by Lemma 11(iii), that

S is

an independent dominating set for G.

S. Kratsch and P. Kunz

The algorithm runs in polynomial time.

Finally, we must show that the solution output by the algorithm contains at most
¢-(1+4¢)-OPTinp(G) vertices. We prove the claim by induction on the number of recursive
calls. If there is no recursive call, the algorithm terminates in line 3 and the solution contains
at most ¢ - OPTnp(G) vertices. Otherwise, by induction:

1] < ISH + 18]+ (A+1) - |X¢| < ¢ OPTinn(GIVA]) + S|+ (A + 1) - [X
=c-(14+¢€)-OPTinnp(G[V4]) — ¢ e - OPTinn(G[VA]) 4 |S'| + (A + 1) - | X4]
c-e|Vil
A+1
c-(14+¢)-OPTinp(G[Vi]) =3 -c-(1+¢)- (tw+1)- (A+ 1)+ |8+ (A +1) - | Xy

IN=

c-(14¢)- OPTinp(G[VA]) — + 18+ (A+1) - | Xy

c-(14¢)-OPTiwnp(G[Vi]) =3 -¢c-(14¢e) - |X¢] - (A+1)

+18 | +c-(1+e) (A+1)-|Xe

c-(1+¢)-OPTinp(G[VA]) —2-¢c- (1 +¢&) - | Xe| - (A+1)+ |5
c-(14¢€)-OPTinp(G[Vi]) =2-¢c- (1+¢) - | X¢|+c- (1+¢)- OPTinp(G — Vi)
=c-(1+¢)- (OPTixp(G[Vi]) — 2|1 X:| + OPTixnp (G — V7))

q[
<c- (1 + E) . OPTIND(G)

The inequality marked with { follows from Lemma 7(i) and the fact that OPTinp(G) >
OPTps(G). i follows from the fact that ¢- (14 ¢) > 1 and § from Lemma 11(ii). <

4.4 Connected Dominating Set

Finally, we consider the problem CONNECTED DOMINATING SET. If S C V is a vertex set in
a graph G = (V, E), then let R(G, S) denote the graph obtained by deleting S, introducing
a new vertex z, and connecting z to any vertex in V' \ S that has a neighbor in S.

» Lemma 13. Let G = (V, E) be a connected graph and A, B,C CV such that AUC =V,
ANC = B, there are no edges from A\ B to C\ B, and A\ B and C'\ B are both non-empty.
(i) OPTcon(G) = OPTcon(R(G[4], B)) + OPTcon(R(G[C], B)) — 2.
(ii) Given connected dominating sets X and Y in R(G[A], B) and R(G[C], B), respectively,
one can in construct in polynomial time a connected dominating set for G of size at
most | X| + |Y| + 3| B|.

Proof.

(i) Let X be a connected dominating set in G of size OPTcon(G). We claim that
Y =(XN(A\B))U{z} and Z := (X N (C\ B)) U{z} are connected dominating sets
in R(G[A], B) and R(G[C], B), respectively. We only prove this for Y and R(G[A], B)),
as the case of Z and R(G]C], B) is analogous.
First, we show that Y is a dominating set. Let v be a vertex in R(G[4],B)). If
v € {z,2'}, then v is dominated by z in Y. Otherwise, v € A\ B and there is a vertex
w € X that dominates v in G. If w € B, then z is adjacent to v in R(G[A], B)) and v
is dominated by z in that graph. If w € A\ B, then w € Y and v is dominated by w in
R(G[A], B)).
We must also show that the subgraph of R(G[A], B) induced by Y is connected. Let
v,v" € Y. We must show that the subgraph of R(G[A], B) induced by Y contains a
path from v to v’. First we assume that v, v’ # z, 2/, implying that v,v’ € X. Hence,
there is a path P from v to ¢’ in G[X]. If P C A\ B, then P C Y and we are done.
Otherwise, P must pass through B. Let w be the first vertex in B on P and w’ the

32:13

IPEC 2023

32:14

Approximate Turing Kernelization and Lower Bounds for Domination Problems

final one. Obtain P’ by replacing the subpath of P between and including w and w’
with z. Then, P’ is a path from v to v’ in the subgraph of R(G[A], B) induced by Y.
Finally, suppose that v/ = 2. If v = 2z, there is nothing to show, so we assume that
v # z and, therefore, v € X N (A \ B). Because C'\ B is non-empty, X must contain a
vertex w € B. Because G[X] is connected, G[X] must also contain a path P from v to
w. Let w’ be the first vertex in B on the path P (possibly, w’ = w). We obtain P’, a
path from v to z in the subgraph of R(G[A], B) induced by Y, by taking the subpath of
P from v to w’ and replacing w’ with z. This proves that Y is a connected dominating
set in R(G[A], B). Then,

OPTcon(G) = [X] = [X N (A\ B)[+|X N (C\ B)|
>lY|-1+|Z]-1
> OPTcon(R(G[A], B)) + OPTcon(R(G[C], B)) — 2.

(ii) Let Z’ := X UY U B. Every connected component of G[Z’] contains a vertex in B, so
this graph as at most |B| connected components. We obtain a connected dominating
set Z in G as follows. We start with Z := Z’. Choose two connected components C;, Cs
in G[Z]. Because G is connected, it contains a path P starting in v; € C; and ending
in v € Cy. This path must contain a vertex that is not adjacent to any vertex in Cf,
because if every vertex in P\ C; were adjacent to a vertex in C1, then vq is adjacent to
a vertex in C, implying that Cy and Cy are not distinct connected components in G[Z]
Let w be the first vertex on P that is not adjacent to a vertex in C;. Because Z is a
dominating set in G, there must be a vertex x € Z \ C; such that w € N[z] (note that,
possible w = z). Adding w and x merges C; with the connected component of G[Z]
containing x. This process must be repeated at most | B| times to obtain a connected
dominating set. In each iteration at most two vertices are added to Z. Since Z initially
contains |X| 4 |Z| + |B| vertices, we obtain a connected dominating set containing at
most | X| 4 |Z] + 3|B| vertices. <

» Theorem 14. For every e > 0, there is a (1 + £)-approzimate Turing kernelization for
CONNECTED DOMINATING SET with O(X= - tw - A) vertices.

Proof. Consider Algorithm 4. This algorithm always returns a connected dominating set of
G. If the algorithm terminates in line 3, then this is true because the oracle always outputs a
connected dominating set. If it terminates in line 10, then S; and S’ are connected dominating
sets for R(G[V4], X¢) and R(G — (Vi \ X4)), respectively. It follows by Lemma 13(ii), that S
is a connected dominating set for G.

The algorithm runs in polynomial time.

Finally, we must show that the solution output by the algorithm contains at most
c¢-(14¢)-OPTcon(G) vertices. We prove the claim by induction on the number of recursive
calls. If there is no recursive call, the algorithm terminates in line 3 and the solution contains
at most ¢ - OPTcap(G) vertices. Otherwise, by induction:

IS| < |S;| + |S'| + 3| X:| < ¢- OPTcon(R(G[VA], X)) +|S'] + 3| Xq|
c-(14¢)-OPTcon(R(GVi], X3)) — ¢ £ - OPTcon (R(G[Vi], X1)) + |S'| + 3| X,

1 e (|Ve] = X 1

<c-(1+¢)- OPTeon(R(GIV], Xy)) — &5 “At‘ﬂ £+)+|S’|+3|Xt|

_ c-g-|Vil i, coe-(IXe +1)
=c-(1+¢) - OPTcon(R(G[V4], X)) — N + |S|+—A—|—1 + 3| Xy

S. Kratsch and P. Kunz 32:15

Algorithm 4 A (1 + ¢)-approximate polynomial Turing kernelization for CONNECTED
DOMINATING SET parameterized by tw + A.

input :A graph G = (V, E), nice tree decomposition 7 of width tw, e > 0

5 4 HEE(A £ 1) (tw 4 1) + 2852040)

if |V] < s then
‘ Apply the c-approximate oracle to G and output the result.

else

Use Lemma 6 to find a node ¢ in T such that s < |V;| < 2s.

Apply the c-approximate oracle to R(G[V¢], X;) and let Sy be the solution output
by the oracle..

7 Let T’ be the tree obtained by deleting the subtree rooted at ¢ except for the

node t from T .

8 Apply this algorithm to (R(G — (V; \ X¢), Xt),T',€) and let S’ be the returned

solution.

9 Apply Lemma 13(ii) with X =5,V =5;, A= (V\ V) UX,, B=X,, and

C =V,;. Let S be the resulting solution for G.

10 Return S.

11 end

o A W N

<c (1+¢€) OPToon(GIVi]) —4-c- (1+¢) - (tw+2) — 2¢(1 +€) + ||
coe(1X] +1)

T AT

+ 3| X4

2 (142)-OPTeon(GIVi]) —4-c- (142) - (1Xi| +1) — 2¢(1 +2) + |9
Fe-(4e) @X] +1)

¢-(1+¢)-OPToon(GVi]) —2-¢(1 +¢) + |9
c-(1+¢€)-OPTcon(G[W]) —2¢(14+¢)+c-(1+¢€) OPTcon(G — W)
¢ (14) - (OPToon(GIVi]) — 2 + OPTeon(G — Vi)

IN A

IN==

c- (1 + E) . OPTCON(G)

The inequality marked with { follows from Lemma 7(ii) and the fact that OPTcon(G)

2
OPTps(G). i follows from the fact that ¢- (14 ¢) > 1 and § from Lemma 13(i). <

5 Conclusion

We conclude by pointing out two open problems concerning approximate Turing kernelization:

Does CONNECTED FEEDBACK VERTEX SET parameterized by treewidth admit an ap-
proximate polynomial Turing kernelization? The approach employed by Hols et al. [12]
for CONNECTED VERTEX COVER and here for CONNECTED DOMINATING SET cannot be
used for CONNECTED FEEDBACK VERTEX SET, because the ratio between the size of a
minimum connected feedback vertex and the size of a minimum feedback vertex set is
unbounded.
The biggest open question in Turing kernelization is whether or not there are polynomial
Turing kernelizations for the problems LONGEST PATH and LONGEST CYCLE param-
eterized by the solution size [11]. There has been some progress on this problem by
considering the restriction to certain graph classes [15, 16]. Developing an approzimate
Turing kernelization may be another way of achieving progress in this regard.

IPEC 2023

32:16

Approximate Turing Kernelization and Lower Bounds for Domination Problems

—— References

1

10

11

12

13

14

15

16

17

18

19

Daniel Binkele-Raible, Henning Fernau, Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh,
and Yngve Villanger. Kernel(s) for problems with no kernel: On out-trees with many leaves.
ACM Transactions on Algorithms, 8(4), 2012. doi:10.1145/2344422.2344428.

M. Chlebik and J. Chlebikova. Approximation hardness of dominating set problems in
bounded degree graphs. Information and Computation, 206(11):1264-1275, 2008. doi:
10.1016/j.1ic.2008.07.003.

Vasek Chvatal. A greedy heuristic for the set-covering problem. Mathematics of Operations
Research, 4(3):233-235, 1979. doi:10.1287/moor.4.3.233.

Michael Dom, Daniel Lokshtanov, and Saket Saurabh. Kernelization lower bounds through
colors and IDs. ACM Transactions on Algorithms, 11(2):1-20, 2014. doi:10.1145/2650261.
Uriel Feige, MohammadTaghi Hajiaghayi, and James R. Lee. Improved approximation
algorithms for minimum weight vertex separators. SIAM Journal on Computing, 38(2):629—
657, 2008. doi:10.1137/05064299X.

Michael R. Fellows, Ariel Kulik, Frances Rosamond, and Hadas Shachnai. Parameterized
approximation via fidelity preserving transformations. Journal of Computer and System
Sciences, 93:30-40, 2018. doi:10.1016/j.jcss.2017.11.001.

Fedor V Fomin, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi. Kernelization:
Theory of Parameterized Preprocessing. Cambridge University Press, 2019. doi:10.1017/
9781107415157.

Sudipto Guha and Samir Khuller. Approximation algorithms for connected dominating sets.
Algorithmica, 20:374-387, 1998. doi:10.1007/PL00009201.

Magnuis M. Halldérsson. Approximating the minimum maximal independence number. Infor-
mation Processing Letters, 46(4):169-172, 1993. doi:10.1016/0020-0190(93)90022-2.
Pinar Heggernes, Pim van 't Hof, Bart M.P. Jansen, Stefan Kratsch, and Yngve Villanger.
Parameterized complexity of vertex deletion into perfect graph classes. Theoretical Computer
Science, 511:172-180, 2013. doi:10.1016/j.tcs.2012.03.013.

Danny Hermelin, Stefan Kratsch, Karolina Soltys, Magnus Wahlstrém, and Xi Wu. A
completeness theory for polynomial (Turing) kernelization. Algorithmica, 71(3):702-730, 2015.
doi:10.1007/s00453-014-9910-8.

Eva-Maria C. Hols, Stefan Kratsch, and Astrid Pieterse. Approximate Turing kernelization for
problems parameterized by treewidth. In Proceedings of the 28th Annual European Symposium
on Algorithms (ESA), pages 60:1-60:23, 2020. doi:10.4230/LIPIcs.ESA.2020.60.

Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-SAT. Journal of
Computer and System Sciences, 62(2):367-375, 2001. doi:10.1006/jcss.2000.1727.

Robert W. Irving. On approximating the minimum independent dominating set. Information
Processing Letters, 37(4):197-200, 1991. doi:10.1016/0020-0190(91)90188-N.

Bart M. P. Jansen. Turing kernelization for finding long paths and cycles in restricted graph
classes. Journal of Computer and System Sciences, 85:18-37, 2017. doi:10.1016/j.jcss.
2016.10.008.

Bart M. P. Jansen, Marcin Pilipczuk, and Marcin Wrochna. Turing kernelization for finding
long paths in graphs excluding a topological minor. In Proceedings of the 12th International
Symposium on Parameterized and Exact Computation (IPEC), pages 23:1-23:13, 2018. doi:
10.4230/LIPIcs.IPEC.2017.23.

Philip Klein and R. Ravi. A nearly best-possible approximation algorithm for node-weighted
Steiner trees. Journal of Algorithms, 19(1):104-115, 1995. doi:10.1006/jagm.1995.1029.
Ton Kloks. Treewidth: Computations and Approximations. Springer, 1994. doi:10.1007/
BFb0045375.

Daniel Lokshtanov. Wheel-free deletion is W[2]-hard. In Proceedings of the 3rd International
Symposium on Parameterized and Ezact Computation (IPEC), pages 141-147, 2008. doi:
10.1007/978-3-540-79723-4_14.

https://doi.org/10.1145/2344422.2344428
https://doi.org/10.1016/j.ic.2008.07.003
https://doi.org/10.1016/j.ic.2008.07.003
https://doi.org/10.1287/moor.4.3.233
https://doi.org/10.1145/2650261
https://doi.org/10.1137/05064299X
https://doi.org/10.1016/j.jcss.2017.11.001
https://doi.org/10.1017/9781107415157
https://doi.org/10.1017/9781107415157
https://doi.org/10.1007/PL00009201
https://doi.org/10.1016/0020-0190(93)90022-2
https://doi.org/10.1016/j.tcs.2012.03.013
https://doi.org/10.1007/s00453-014-9910-8
https://doi.org/10.4230/LIPIcs.ESA.2020.60
https://doi.org/10.1006/jcss.2000.1727
https://doi.org/10.1016/0020-0190(91)90188-N
https://doi.org/10.1016/j.jcss.2016.10.008
https://doi.org/10.1016/j.jcss.2016.10.008
https://doi.org/10.4230/LIPIcs.IPEC.2017.23
https://doi.org/10.4230/LIPIcs.IPEC.2017.23
https://doi.org/10.1006/jagm.1995.1029
https://doi.org/10.1007/BFb0045375
https://doi.org/10.1007/BFb0045375
https://doi.org/10.1007/978-3-540-79723-4_14
https://doi.org/10.1007/978-3-540-79723-4_14

S. Kratsch and P. Kunz

20

21

22

23

Daniel Lokshtanov, Fahad Panolan, M. S. Ramanujan, and Saket Saurabh. Lossy kernelization.

CoRR, abs/1604.04111, 2016. Full version of [21]. doi:10.48550/arXiv.1604.04111.

Daniel Lokshtanov, Fahad Panolan, M. S. Ramanujan, and Saket Saurabh. Lossy kernelization.

In Proceedings of the 49th Annual ACM Symposium on Theory of Computing (STOC 2017),
pages 224-237, 2017. doi:10.1145/3055399.3055456.
Jelani Nelson. A note on set cover inapproximability independent of universe size. Electronic

Colloguium on Computational Complexity, TRO7-105, 2007. URL: https://eccc.weizmann.

ac.il/eccc-reports/2007/TRO7-105/index.html.
Laurence A. Wolsey. An analysis of the greedy algorithm for the submodular set covering
problem. Combinatorica, 2(4):385-393, 1982. doi:10.1007/BF02579435.

32:17

IPEC 2023

https://doi.org/10.48550/arXiv.1604.04111
https://doi.org/10.1145/3055399.3055456
https://eccc.weizmann.ac.il/eccc-reports/2007/TR07-105/index.html
https://eccc.weizmann.ac.il/eccc-reports/2007/TR07-105/index.html
https://doi.org/10.1007/BF02579435

	1 Introduction
	2 Preliminaries
	3 Lower bounds
	3.1 Exponential-time hypothesis
	3.2 MK[2]-hardness

	4 Turing kernelizations for parameter treewidth plus maximum degree
	4.1 Dominating Set
	4.2 Capacitated Dominating Set
	4.3 Independent Dominating Set
	4.4 Connected Dominating Set

	5 Conclusion

