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Abstract
We study a natural geometric variant of the classic Knapsack problem called 2D-Knapsack: we
are given a set of axis-parallel rectangles and a rectangular bounding box, and the goal is to pack as
many of these rectangles inside the box without overlap. Naturally, this problem is NP-complete.
Recently, Grandoni et al. [ESA’19] showed that it is also W[1]-hard when parameterized by the
size k of the sought packing, and they presented a parameterized approximation scheme (PAS)
for the variant where we are allowed to rotate the rectangles by 90° before packing them into the
box. Obtaining a PAS for the original 2D-Knapsack problem, without rotation, appears to be a
challenging open question.

In this work, we make progress towards this goal by showing a PAS under the following
assumptions:

both the box and all the input rectangles have integral, polynomially bounded sidelengths;
every input rectangle is wide – its width is greater than its height; and
the aspect ratio of the box is bounded by a constant.

Our approximation scheme relies on a mix of various parameterized and approximation techniques,
including color coding, rounding, and searching for a structured near-optimum packing using dynamic
programming.
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1 Introduction

We study a natural geometric variant of the classic Knapsack problem, called 2D Knapsack
and defined as follows. On input, we are given a rectangular box B and a set R of items,
each being a rectangle. The task is to place as many items from R as possible in B so that
the placed items do not overlap. Note that this problem generalizes classic Knapsack: given
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an instance of Knapsack with items of sizes a1, . . . , an and a knapsack of size K, we can
create an instance of 2D Knapsack with B being the K × 1 rectangle and R consisting of
ai × 1 rectangles, for all i ∈ {1, . . . , n}.

As in the case of Knapsack, there are two natural variants of the problem depending
on how the input is encoded. In the binary variant, both B and the rectangles of R have
integral sidelengths encoded in binary, hence these sidelengths can be exponential in the
total input size. In the unary variant the difference is that the sidelengths are encoded in
unary, or equivalently, one assumes that all the sidelengths are bounded polynomially in the
total input size. In this work we focus on the unary variant.

Again as in the case Knapsack, adopting the unary variant helps tremendously for the
design of algorithms for 2D Knapsack, for instance due to allowing to perform dynamic
programming over the dimensions of the box. While the problem remains NP-hard even
in the unary variant [10], Adamaszek and Wiese [1] gave a QPTAS for the problem in this
setting. The best approximation factor known to be achievable in polynomial time in the
unary variant is 4/3 + ε due to Galvez et al. [6]; earlier, a (2 + ε)-approximation was given
in [8] and a (558/325 + ε)-approximation was given in [5]. It is believed that the problem
should admit a PTAS, but this question remains widely open to this day.

We remark that the abovementioned works also study the weighted variant of the problem.
In this work we only consider the unweighted version, hence an interested reader is invited
to the relevant discussion in the references.

Recently, Grandoni et al. [7] proposed to approach the question about the existence of
a PTAS for 2D Knapsack by adding parameterization by the solution size to the picture.
That is, they presented a parameterized approximation scheme (PAS) with running time of
the form kO(k/ε) · nO(1/ε3) that either finds a packing of size at least (1− ε)k or correctly
concludes that there is no packing of size k. However, this result applies only to the variant
of the problem where each input rectangle can be rotated by 90◦ before packing it into the
box, and the question about the existence of a PAS for 2D Knapsack without rotation was
explicitly left open by Grandoni et al. This is in contrast with the other mentioned works on
2D Knapsack which all apply both to the variant with rotation and without rotation (for
the variant with rotation, Galvez et al. [6] reported a better approximation ratio of 5/4 + ε).

We note that the PAS of Grandoni et al. actually works in the binary variant of the
problem. Also, reliance on approximation is probably necessary: as proved in [7], the exact
version of the problem is W[1]-hard when parameterized by k.

Our contribution. In this work we approach – though not completely solve – the open
problem left by Grandoni et al. [7] by giving a parameterized approximation scheme with
running time of the form f(k, ε, δ) ·ng(ε) for 2D Knapsack under the following assumptions:

we consider the unary variant of the problem, thus the dimensions of the box are bounded
polynomially in n;
we assume that every item is wide: its width is not smaller than its height; and
we assume that the aspect ratio (ratio between the dimensions, always greater or equal to
1) of the box is at most δ.

See Theorem 1 for a formal statement of our result and an explicit formula for the running
time. Note that in the context of the variant with rotation, the second assumption can
be always achieved by rotating every input rectangle so that it is wide, while the third
assumption for δ = 1 can be obtained by scaling both the box and all rectangles on input.

Let us elaborate on our approach and how it is different from the approach of Grandoni
et al. [7]. The approach of [7] can be summarized as follows.
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Consider a hypothetical packing S of size k.
Freeing a strip: Remove a small fraction of S and shift the items slightly in order to free
up a horizontal strip of height N/kb at the bottom of the box, where N is the sidelength
of the box and b = O(1/ε) is an integer. This strip can now accommodate all thin items:
those of height at most N/kb+1.
Resource augmentation: After the previous step, we may assume that all items are large –
both dimensions are at least N/kb+1 – and there is still a considerable strip free at the
bottom of the box. Now, one can round the heights of items up to the nearest multiplicity
of, say, N/kb+2 and argue that even the rounded items can be packed, due to the free
strip at the bottom of the box. After rounding the rectangles have at most kO(1) different
heights, so keeping k narrowest rectangles of each possible height gives us a polynomial
in k number of candidate rectangles that can be reasonably used in the packing. This
easily leads to a PAS.

The possibility of rotating rectangles is crucially used in the second step, freeing a strip.
Without this assumption, thin rectangles come in two different flavors: there are wide
rectangles, of very small height and possibly large width, and symmetric tall rectangles.
The strategy of freeing a strip presented in [7] can be applied also in the setting without
rotation, but then it results in either freeing a horizontal strip at the bottom of the box, or a
vertical strip at the left side of the box; there is no control over which strip will be freed.
Consequently, only one type of thin rectangles can be disposed of as a result of freeing the
strip, and there is no control over which one it is.

In the setting of Grandoni et al., our assumptions on the problem essentially mean
that we allow the existence of wide rectangles, but not of the tall ones. The application of
the approach of Grandoni et al. could result in freeing a vertical strip, in which the wide
rectangles cannot fit. Consequently, we do not see how to fix the approach presented in [7]
to solve our case where only wide rectangles are present and no rotation is allowed. We
therefore abandon this approach and propose a completely new one.

Instead, we prove a different result about the existence of a well-structured near-optimum
solution. Our structural lemma (Lemma 9) says that at the cost of sacrificing a small fraction
of rectangles, the considered packing can be divided into regions B1, B2, . . . , Bm so that:

Every region Bi is delimited by the left side of the box, the right side of the box, and two
x-monotone axis-parallel polylines connecting the left and the right side. Moreover, each
of the polylines defining the division B1, B2, . . . , Bm consists of O(1/ε) segments.
Every region Bi is either light – contains only O(1/ε2) rectangles from the packing – or
roundable – rectangles within Bi could be packed inside Bi even after rounding them to
the nearest multiple of (roughly) N1/k2, where N1 is the width of the box.

Having such a structural lemma, a near-optimum solution can be constructed using a bottom-
up dynamic programming that guesses the regions Bi one by one. For each region Bi we
consider two cases: either Bi is light and a solution within it can be guessed (essentially) by
brute-force, or Bi is roundable and using the same trick as in [7], one can restrict attention
to kO(1) many different candidates for rectangles that will be packed into Bi.

There is a technical caveat in the plan presented above. Namely, in dynamic programming
we need to make sure that we do not reuse the same rectangle from R in two or more different
regions Bi. We resolve this issue using color-coding. Namely, by applying color-coding
upfront we may assume that all the rectangles in R are colored with k colors, and we
look for a packing consisting of rectangles of pairwise different colors. Then our dynamic
programming keeps track of the subset of colors that have already been used, which adds
only another dimension of size 2k to the dynamic programming table.

IPEC 2023
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2 Preliminaries

Basic terminology. For a positive integer N , we write [N ] = {1, 2, . . . , N}. For a pair of
reals (x, y), we call x the vertical coordinate and y the horizontal coordinate.

A rectangle is a pair of positive integers R = (w, h) ∈ Z2
+, and a placed rectangle is a set

of the form Q = [x, x + w]× [y, y + h] ⊆ R2, where R = (w, h) is a rectangle and (x, y) ∈ Z2

is the bottom-left corner of Q; we will also say that such Q is a placement of R. In the
notation, we will sometimes treat placed rectangles as their non-placed counterparts; the
meaning of this will be always clear from the context.

Both for placed and non-placed rectangles, w and h are called the width (length on the
horizontal dimension) and the height (length on the vertical dimension), respectively, and
may be denoted by w(P ) and h(P ), where P is the (placed) rectangle in question. The
interior of a placed rectangle Q = [x, x+w]× [y, y +h] is the set I(Q) = (x, x+w)× (y, y +h).
Two placed rectangles overlap if their interiors intersect.

A zone is simply a subset of R2. For a zone Z and a set of placed rectangles R, by
R[Z] = {R ∈ R | R ⊆ Z} we denote the set of all rectangles from R that are entirely
contained in Z. For a zone Z and a set of non-placed rectangles R, a packing of R in Z is a
set R′ = {R′ : R ∈ R} consisting of pairwise non-overlapping placed rectangles contained in
Z, where R′ is a placement of R for each R ∈ R.

The problem and the main result. In the (parameterized variant of) 2D Knapsack
problem, we are given a rectangular zone B = [0, N1]× [0, N2] ⊆ R2 called the box, where
N1, N2 are positive integers, a set R of rectangles called items, and an integer k. The question
is whether there exists a packing of some k items from R in the box B.

In the context of an instance (B,R, k) of 2D Knapsack, the size of the box B is
∥B∥ = N1 + N2, and the aspect ratio of B is δ(B) = max

(
N1
N2

, N2
N1

)
⩾ 1. Further, an item

R ∈ R is wide if w(R) ⩾ h(R). Note that in the variant of the problem where rotations by
90◦ are allowed, one may always rotate the items so that they are wide. When the instance
(B,R, k) is clear from the context, by a packing we mean a packing of a subset of R in B.

With these definitions in place, we can state our main result.

▶ Theorem 1. There exists an algorithm that given an accuracy parameter ε > 0 and an
instance (B,R, k) of 2D Knapsack, where R consists only of wide items, either returns a
packing of size at least (1− ε)k or correctly concludes that there is no packing of size k. The
running time of the algorithm is δ(B)O(k) · (k + 1/ε)O(k+1/ε2) · (|R|∥B∥)O(1/ε2).

Polylines and containers. In our algorithm for 2D Knapsack we will decompose the box
into zones delimited by borders of low complexity, allowing those borders to be efficiently
guessed. Formally, each border will be a polyline defined as follows.

▶ Definition 2 (Axis-parallel polyline). An axis-parallel polyline P is a union of horizontal
or vertical segments S1, S2, . . . , Sm such that for 1 ⩽ i ⩽ m− 1, the end of segment Si is the
beginning of segment Si+1. Then m is called the complexity of P.

For brevity, axis-parallel polylines will be just called polylines. We will only work with
monotone polylines, meaning that all horizontal coordinates of points on Sj will not be
smaller than the horizontal coordinates of the points on Si, whenever i < j. A polyline P

crosses a placed rectangle R if P intersects the interior of R.
Next we introduce containers. We will use them to capture the idea of decomposing the

box into zones.
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▶ Definition 3 (Container). A container C is a union of horizontal or vertical segments
S1, S2, . . . , Sm such that:

for 1 ⩽ i ⩽ m− 1, the end of segment Si is the beginning of segment Si+1, and
the end of segment Sm is the beginning of segment S1.

Furthermore, we require that C is weakly-simple (as introduced in [9, 3, 2]) in the following
sense: if S1 is the unit circle and γ : S1 → R2 is a parameterization of C, then for every
ε > 0 there exists an injective continuous γε : S1 → R2 such that maxv∈S1 ∥γ(v)− γε(v)∥ ⩽ ε

for some norm ∥ · ∥.
The inside of the container, denoted I(C), is the bounded open region delimited by the

segments. Moreover, the complexity of the container is defined as m.

Note that the inside of a container is not necessarily connected. For clarification, see Figure 1.

3 Exact algorithm

In this section, we give an exact algorithm for the problem, which will be later used as
a subroutine in the proof of Theorem 1. The point here is that we allow the box to be
delimited by an arbitrary container, and we measure the running time in the complexity of
the container. Formally, we will prove the following statement.

▶ Lemma 4. Given a set of rectangles R and a container C of complexity m, one can
determine whether there is a packing of the rectangles of R inside C in time (m + |R|)O(|R|).

The main idea of our algorithm is to push the packing bottom-left, as explained in the
next definition.

▶ Definition 5. A packing R inside a container C is said to be pushed bottom-left if for every
rectangle R ∈ R, its left (resp. bottom) side intersects either a vertical (resp. horizontal)
segment of the container, or a right (resp. top) side of another rectangle R′ ∈ R.

It is not hard to see that if a packing is pushed bottom-left, then there must be a rectangle
in the packing whose left and bottom sides rest on the perimeter of the container. This is
formally proved in the following statement. (Proofs of statements marked with (♠) can be
found in Appendix B.)

▶ Proposition 6 (♠). Suppose R is a non-empty packing of rectangles inside a container
C that is pushed bottom-left. Then there exists a rectangle R ∈ R such that its left side
intersects a vertical segment of the container and its bottom side intersects an horizontal
segment of the container.

With Proposition 6 established, we can conclude our goal using a simple branching strategy.

Proof of Lemma 4. We prove a stronger statement where we allow C to be the union of
several disjoint containers, and we let m be the sum of their complexities.

Suppose there is a packing S of the rectangles of R into C. We can assume without loss
of generality that S is pushed bottom-left within every container of C. Now by Proposition 6,
there exists a rectangle R such that its left (resp. bottom) side intersects a vertical (resp.
horizontal) segment of a container in C.

So here is a recursive procedure to solve the problem. First, guess (by trying all
possibilities) the rectangle R satisfying the condition above; there are n different possibilities
for R, where n = |R|. Second, guess which pair of segments of the containers intersect the
left and the bottom side of R; there are at most m2 possibilities. Place rectangle R according

IPEC 2023
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to the latter guess and verify that it is indeed fully contained in C. Then, “carve out” the
rectangle, i.e., define a new union of containers C′ so that the I(C′) = I(C) \R. It is easy to
see that the total complexity of the new union of containers C′ is at most m + 6 and it can
be computed in time polynomial in m. Then, recurse on R′ and C′ where R′ = R \ {R}.

It is clear that the algorithm is correct. To analyze its running time, note that the
recursion tree has depth bounded by n and branching bounded by n(m + 6n)2, hence it
consists of (m + n)O(n) nodes. The internal computation at each node take time polynomial
in n and m, so the total running time of (m + n)O(n) follows. ◀

4 Giving structure to the packing

In this section we prove structural results that can be summarized as follows: at the cost of
sacrificing a small fraction of the packing, one can apply resource augmentation – round the
packing – so that it gains a certain structure. Once this structure is achieved, we will argue
later that structured packings can be efficiently computed using dynamic programming.

Throughout this section we fix an instance (B,R, k) of 2D Knapsack, where B =
[0, N1]× [0, N2] and R consists only of wide rectangles: w(R) ⩾ h(R) for all R ∈ R.

To perform resource augmentation, we need the following notion of rounding a rectangle.
Informally, a rounded rectangle is the original rectangle with its width rounded up to the
nearest multiple of ℓ′ = ℓ2/N1; here is a formal definition.

▶ Definition 7 (Rounded rectangles). Let R = (w, h) be a rectangle and ℓ > 0 be a positive
real. Then the ℓ-rounded rectangle roundℓ(R) is the rectangle (ℓ′ ⌈w/ℓ′⌉ , h) where ℓ′ = ℓ2/N1.
For a set R of rectangles, we define similarly roundℓ(R) = {roundℓ(R) : R ∈ R}.

As mentioned, the key idea behind our algorithm is to look for a specifically structured
packing. This structure is quantified formally in the following definition. Broadly speaking,
we look for a packing that is partitioned into regions of low complexity and such that the
rectangles in each region behave well.

▶ Definition 8 (Structured packing). Fix any ε, ℓ > 0. Consider a set of pairwise non-
intersecting monotone polylines P1, P2, . . . , Pm contained in the box B, where each Pi starts
at the left side of B and finishes at the right side of B, and the polylines P1, . . . , Pm are
naturally numbered from bottom to top. We define the partition of the box B into regions
B0, B1, . . . , Bm so that each region Bi is delimited by the polylines Pi and Pi+1 and the left
and the right side of B (here we define for convenience P0 to be the bottom side of B and
Pm+1 to be the top of B).

We say that a packing of rectangles Q in B is an (ε, ℓ)-structured packing if every
rectangle in Q has width at least 2ℓ and there exist polylines P1, P2, . . . , Pm as above, each of
complexity at most 4/ε + 1, such that no rectangle of Q is crossed by any polyline Pi, i ∈ [m],
and for each i,0 ⩽ i ⩽ m at least one of the following conditions holds:
|Q[Bi]| ⩽ 2/ε2, or
roundℓ(Q[Bi]) can be packed into Bi.

The rest of the section is dedicated to proving the following structural lemma (recall that
the instance (B,R, k) is fixed in the context):

▶ Lemma 9 (structural lemma). Suppose ℓ > 0 is a positive real such that there is a packing
of size k consisting of rectangles of width at least 2ℓ each. Then for every ε > 0, there exists
also an (ε, ℓ)-structured packing of size at least (1− 3ε)k.
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This section is divided into 3 parts. In the first subsection we study the assumed packing
of size k and define an associated conflict graph, which turns out to be planar. In the second
subsection, we show that if there exists a packing of rectangles in a specific zone on the
box, then at the cost of removing a few rectangles, there exists a packing of the rounded
rectangles into a slightly bigger rounded version of the zone. In the last section, we define
the specific polylines that will divide the zones and finish the proof of the Lemma 9.

By assumption, there exists a packing S in B consisting of k rectangles from R, each of
width at least 2ℓ. Fix S for the remainder of this section.

4.1 Conflict graph
For the definition of the conflict graph, we need the following notion of horizontal visibility.

▶ Definition 10. Two different placed rectangles R, R′ ∈ S see each other if there is an
horizontal segment s intersecting the interior of the right side of R and the interior of the left
side of R′ (or vice versa) such that s does not intersect any other rectangle of S. Notice that
s may consist of a single point, if R and R′ are intersecting. For convenience, we extend this
definition to the case where R is the left side of B or R′ is the right side of B. For instance
with the left side of B we associate the placed rectangle Rleft = [−1, 0]× [0, N2] and say that
R and the left side of B see each other if Rleft and R see each other; similarly for the right
side of B. The left side of B and the right side of B do not see each other.

Note two rectangles intersecting only at their common corner do not see each other.

▶ Definition 11 (Conflict graph). For a packing S, we define the conflict graph of S to be the
graph G defined as follows: the vertex set contains all the rectangles of S, and in addition
there are two special vertices s and t identified with the left side and the right side of B,
respectively. Two vertices of G are adjacent if and only if they see each other.

It is easy to see that the conflict graph is planar; see Figure 2. We formalize this intuition
in the following lemma.

▶ Lemma 12 (♠). For any packing Q, the conflict graph of Q is planar.

4.2 Packing rounded rectangles
Next, we analyze a packing within some zone Z ⊆ R2, with the goal of understanding when
and how the rectangles of this packing can be rounded to obtain a rounded packing of
substantial size. We fix some positive real ℓ > 0 for the rest of this subsection.

First, we need some definitions about expanding zones.

▶ Definition 13. Let Z ⊆ R2. We define:
the negatively shifted zone ←−Z⟨ℓ⟩ =

(⋃
(x,y)∈Z [x− ℓ, x]× {y}

)
∩ [0, N1 − ℓ]× [0, N2],

the positively shifted zone −→Z⟨ℓ⟩ =
(⋃

(x,y)∈Z [x, x + ℓ]× {y}
)
∩ [0, N1]× [0, N2],

and the rounded zone ←→Z ⟨ℓ⟩ =
(⋃

(x,y)∈Z [x− ℓ, x + ℓ]× {y}
)
∩ [0, N1]× [0, N2].

Note that if Z ′ =←−Z⟨ℓ⟩ then←→Z ⟨ℓ⟩ =
−→
Z ′⟨ℓ⟩, and that the first two definitions are not symmetric.

Our main goal in this subsection is to prove the following lemma. It intuitively says that
at the cost of removing an st-separator in the conflict graph, one can find a packing of the
rounded rectangles into a slightly extended zone. Here, an st-separator is a set of vertices
(rectangles) that hits every s-t path.

IPEC 2023
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▶ Lemma 14. Let Q be a packing in a zone Z ⊆ B such that every rectangle of Q has width
at least 2ℓ. Further, let C be an st-separator in the conflict graph of Q. Then roundℓ(Q \ C)
can be packed inside the zone ←→Z ⟨ℓ⟩.

The first step towards the proof of Lemma 14 is to repack Q into the negatively shifted
zone Z at the cost of deleting a few rectangles.

▶ Proposition 15 (♠). Let Q be a packing in a zone Z ⊆ B such that every rectangle of
Q has width at least 2ℓ. Further, let C be an st-separator in the conflict graph of Q. Then
Q \ C can be packed inside the zone ←−Z⟨ℓ⟩.

For an illustration of the proof, see Figure 3.
Now that we have emptied a strip to the right of the zone, we can do some resource

augmentation in order to replace the original rectangles by their rounded versions, while still
being able to pack them inside the rounded zone.

▶ Proposition 16 (♠). Let Q be a packing in a zone Z ⊆ [0, N1− ℓ]× [0, N2] such that every
rectangle of Q has width at least 2ℓ. Then roundℓ(Q) can be packed inside the zone −→Z⟨ℓ⟩.

For clarification, see Figure 4. We may now combine Proposition 15 and Proposition 16 to
achieve our goal.

Proof of Lemma 14. Apply Proposition 15 and Proposition 16 to get that roundℓ(Q \ C)
can be packed in

−→
Z ′⟨ℓ⟩, where Z ′ =←−Z⟨ℓ⟩. As

−→
Z ′⟨ℓ⟩ =←→Z ⟨ℓ⟩, the proof is finished. ◀

4.3 Proof of the Structural Lemma
Finally, in this subsection we define the polylines that we are interested in and prove some
results about zones and polylines to finish the proof of Lemma 9. The main idea is to
construct some well-chosen polylines by looking at the rectangles on short s-t paths. These
polylines are then used to delimit zones in which we can find a separator of bounded size,
and apply the ideas of the previous subsections.

Recall that we are working with a packing S of size k consisting of rectangles of width
at least 2ℓ each. Let G be the conflict graph of S. For every R ∈ S, by vR we denote the
vertex of G corresponding to R. First, we need to understand how s-t paths in G can be
mapped to polylines.

▶ Definition 17 (Bottom polyline of a path). Consider an s-t path P = (s, vR1 , vR2 , . . . , vRm
, t)

in G, and suppose that for each i ∈ {0, 1, . . . , m}, that Ri and Ri+1 see each other is witnessed
by the segment si = [x(Ri) + w(Ri), x(Ri+1)]× {yi} (where R0 = s and Rm+1 = t). Then
define the bottom polyline of P as the polyline P formed by the union of the following
segments:

[x(Ri), x(Ri) + w(Ri)]× {y(Ri)} for each i ∈ [m],
{x(Ri)} × [min{y(Ri), yi−1}, max{y(Ri), yi−1}] for each i ∈ [m],
{x(Ri) + w(Ri)} × [min{y(Ri), yi}, max{y(Ri), yi}] for each i ∈ [m], and
si for each i ∈ {0, 1, . . . , m}.

Less formally, P is the union of the segments si joining the rectangles of the path, the bottom
sides of the rectangles, and parts of the left/right sides of the rectangles to join the segments
to the bottom sides.

Similarly, we define the notion of the top polyline of an s-t path in G. When defining at
the same time the top and the bottom polyline of the same path, we always use the same
segments si to define how rectangles Ri and Ri+1 should be linked. Finally, we will also
need the middle polyline.
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▶ Definition 18 (Middle polyline of a path). Consider an s-t path P = (s, vR1 , vR2 , . . . , vRm , t)
in G, and suppose that for each i ∈ {0, 1, . . . , m}, that Ri and Ri+1 see each other is witnessed
by the segment si = [x(Ri) + w(Ri), x(Ri+1)]× {yi} (where R0 = s and Rm+1 = t). Then
define the middle polyline of P as the polyline P formed by the union of the following
segments:
{x(Ri)+w(Ri)/2}×[min{y(Ri)+h(Ri)/2, yi}, max{y(Ri)+h(Ri)/2, yi}] for each i ∈ [m],
{x(Ri) + w(Ri)/2} × [min{y(Ri) + h(Ri)/2, yi+1}, max{y(Ri) + h(Ri)/2, yi+1}] for each
i ∈ [m], and
[max(x(Ri)+w(Ri)/2, 0), min(x(Ri+1)+w(Ri+1)/2, N2)]×{yi} for each i ∈ {0, 1, . . . , m}.

Less formally, P is the union of:
a vertical segment from the center of each Ri to the vertical position of si,
a vertical segment from the center of each Ri to the vertical position of si+1,
all segments si extended so that they reach the horizontal coordinates of the centers of
the corresponding rectangles.

For a visual representation, see Figure 5. The following is clear.

▶ Proposition 19. The top, bottom and middle polylines of a path P have complexity at
most 4|P |+ 1, where |P | denotes the number of vertices on P .

Moreover, the middle polyline is defined so that we have space to the left and the right
when performing resource augmentation. This will be made clear in the following definitions
and lemmas; see Figure 6.

▶ Proposition 20 (♠). Suppose P is an s-t path in the conflict graph G of the packing S.
Let P be the middle polyline of P and let Q be the packing obtained from S by removing all
the rectangles participating in P . Then P does not cross ←−Q⟨ℓ⟩. The same goes for −→Q⟨ℓ⟩, and
therefore also for ←→Q⟨ℓ⟩.

Next, we need the following graph-theoretic observation.

▶ Proposition 21. Let G be a graph containing vertices s and t. Suppose every s-t path in
G contains at least 1/ε internal vertices. Then G contains an st-separator of size at most
ε(|V (G)| − 2).

Proof. As every s-t path in G contains at least 1/ε internal vertices, one cannot find more
than ε(|V (G)| − 2) internally disjoint s-t paths in G. By Menger’s theorem, there is an
st-separator of size at most ε(|V (G)| − 2). ◀

We can now wrap up the section by proving the Structural Lemma.

Proof of Lemma 9. Based on the assumed packing S, we construct another packing S ′ and
then we prove that it is structured and has size at least (1 − 3ε)k. Let G be the conflict
graph of S. Let F be an inclusion-wise maximal family F of internally disjoint s-t paths in
G, each with at most 1/ε internal vertices. As the paths from F are internally disjoint, we
can naturally enumerate them from bottom to top: F = {P1, P2, . . . , Pm}. For convenience,
let P0 = Pm+1 = ∅.

Because the conflict graph is planar by Lemma 12, by the Jordan Curve theorem, for
each i ∈ {0, 1, . . . , m} there is a set Vi of vertices of G that lies inside the cycle Pi ∪ Pi+1.
By construction of the conflict graph, Vi is exactly the set of rectangles lying in the area Zi

delimited by the box, the top polyline of Pi and the bottom polyline of Pi+1. For each Vi we
construct a separating polyline Pi as follows:

IPEC 2023



33:10 Parameterized Approximation Scheme for Geometric Knapsack with Wide Items

If |Vi−1| ⩽ 1/ε2 and |Vi| ⩽ 1/ε2, select the bottom polyline of Pi as the separating polyline.
Otherwise, select the middle polyline of Pi as the separating polyline.

All the polylines created are of complexity at most 4/ε + 1 by Proposition 19. They partition
the box into regions B0, B1, . . . , Bm+1 ⊆ B, from the bottom to the top. Note that Bi ⊇ Zi

for each relevant i.
Notice that in G[Vi ∪ {s, t}] there is no s-t path of length at most 1/ε, because F is

maximal. Let Ci be the separator given by Proposition 21 for the graph G[Vi ∪ {s, t}]. Then
we have |Ci| ⩽ ε|Vi|.

We can now specify which rectangles we want to include in S ′. We define S ′ to be the
union of sets V ′

i for i ∈ {0, 1, . . . , m}, where

V ′
i =


Vi ∪ V (Pi) \ {s, t} if |Vi−1| ⩽ 1/ε2 and |Vi| ⩽ 1/ε2,

Vi if |Vi−1| > 1/ε2 and |Vi| ⩽ 1/ε2,

Vi \ Ci otherwise.

We now argue that for each i ∈ {0, 1, . . . , m}, either |V ′
i | ⩽ 2/ε2 and V ′

i ⊆ S[Bi], or
roundℓ(V ′

i ) can be packed in Bi.
First, observe that if |Vi| ⩽ 1/ε2, then |V ′

i | ⩽ |Vi ∪ V (Pi) \ {s, t}| ⩽ 1/ε2 + 1/ε ⩽ 2/ε2.
Further, if |Vi−1| > 1/ε2 then V ′

i = Vi and trivially S[Bi] ⊇ S[Zi] = Vi, and if |Vi−1| ⩽ 1/ε2

then Pi is the bottom polyline of Pi and we have S[Bi] ⊇ Vi ∪ V (Pi) \ {s, t} = V ′
i as well.

Second, consider the case when |Vi| > 1/ε2. Notice that then Pi is the middle polyline of
Pi and Pi+1 is the middle polyline of Pi+1, and V ′

i = Vi \Ci. Because Vi can be packed inside
Zi, we can use Lemma 14 on Vi and Zi to pack roundℓ(V ′

i ) into
←−→
(Zi)⟨ℓ⟩. By Proposition 20,

we know that
←−→
(Zi)⟨ℓ⟩ ⊆ Bi, hence we can pack roundℓ(V ′

i ) into Bi.
We conclude that indeed, S ′ is an (ε, ℓ)-structured packing, as witnessed by the polylines

Pi for i ∈ [m]. What is left to show is that |S ′| ⩾ (1 − 3ε)k. Call an index i ∈ [m] heavy
if |Vi| > 1/ε2. Observe that S ′ ⊇ S \

⋃
i : heavy(Ci ∪ V (Pi) ∪ V (Pi+1)), hence it suffices

to prove that
∣∣∣⋃i : heavy(Ci ∪ V (Pi) ∪ V (Pi+1)) \ {s, t}

∣∣∣ ⩽ 3εk. Fix a heavy index i. First,
observe that |(V (Pi) ∪ V (Pi+1)) \ {s, t}| ⩽ 2/ε ⩽ 2ε|Vi|, as each path Pi has at most 1/ε

internal vertices. Second, by construction we have |Ci| ⩽ ε|Vi|. Summing those inequalities
throughout all heavy i yields that∣∣∣∣∣∣

⋃
i : heavy

(Ci ∪ V (Pi) ∪ V (Pi+1)) \ {s, t}

∣∣∣∣∣∣ ⩽
∑

i : heavy
3ε|Vi| ⩽ 3εk,

as required. ◀

5 The algorithm

In this section we finalize the proof of Theorem 1. The section is divided into two parts. The
first subsection describes an algorithm working under the assumption that the input set R
only contains rectangles of width at least 2ℓ, for some ℓ > 0. In the second subsection, we
show how to obtain the assumption that R only contains rectangles of width at least 2ℓ for
ℓ = N1/(δ(B)k2), at the expense of deleting an ε fraction of the rectangles in the packing.
Therefore, we get a full algorithm as a corollary.

Throughout this section, fix an instance (B,R, k) of 2D Knapsack, where B = [0, N1]×
[0, N2] and R consists of wide items.
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5.1 The algorithm for rectangles of substantial width
The dynamic programming algorithm will gradually guess a good partition of the box into
regions (that we know exists by Lemma 9), and then solve the problem in each region
independently. In order to avoid repeating the use of the same rectangles in different regions,
we use color-coding.

▶ Definition 22 (Good coloring). Given a set of rectangles R and a subset S ⊆ R of size k,
a function col : R → [k] is a good coloring for S if rectangles of S have pairwise different
colors under col.

We cannot directly guess a good coloring of the rectangles, as a priori there are too many
candidates. We instead use the following classic result of Naor et al. [11], which says that
there is only an fpt-sized family of candidates for a good coloring.

▶ Proposition 23 (Naor et al. [11]). For every set R and positive integer k, there exists a
family F of colorings of R with color set [k] such that |F| ⩽ ekkO(log k) log |R| and for every
S ⊆ R of size k, in F there is a good coloring for S. Moreover, F can be computed in time
ekkO(log k)|R| log |R|.

Next, we observe that once the number of different widths in the instance has been
bounded, one can restrict attention to a small set of candidate rectangles. For this, notice
the following: if we have a colored packing (a packing of colored rectangles) of size k that
contains a rectangle R, and in the packing we did not use another rectangle R′ of the same
color and width as R, but satisfying h(R′) ⩽ h(R), then we can replace R with R′ and we
will still have a colored packing. This observation leads to defining the following operation.

▶ Definition 24 (reducek(R, col)). Suppose col : R → [k] is a coloring of a set of rectangles
R with color set [k]. Then for a positive integer w and color i ∈ [k], let Rw,i be the set of k

smallest-height rectangles among the rectangles of {R ∈ R | w(R) = w, col(R) = i}. In case
|{R ∈ R | w(R) = w, col(R) = i}| < k, we set Rw,i = {R ∈ R | w(R) = w, col(R) = i}. We
define reducek(R) =

⋃
w∈w(R),i∈[k]Rw,i.

Notice that reducek(R) contains at most k2|w(R)| elements: for every possible width and
every possible color, the at most k rectangles of this specific width and of smallest height.
Also, we have the following very simple observation.

▶ Lemma 25 (♠). Suppose R is a set of rectangles and col : R → [k] is a coloring function
such that k′ ⩽ k rectangles from R with pairwise different colors can be packed in a zone
Z ⊆ R2. Then one can also pack in Z a set of k′ rectangles from reducek(R, col) with pairwise
different colors.

Next, we use the following definitions to guess the polylines in a bottom to top order.
For two monotone polylines P,P ′ that start at the left side of B and finish at the right side
of B, we say that P ′ is below P (denoted by P ′ ⩽ P), if for every x, y, y′, (x, y) ∈ P and
(x, y′) ∈ P ′ implies y′ ⩽ y. We write P ′ < P if P ′ ⩽ P and P ′ ̸= P. Given two polylines
P ′ < P, we want to be able to solve the problem in the following sub-region:

▶ Definition 26 (container(P ′,P)). For polylines P ′ < P, container(P ′,P) is the container
(c.f. Definition 3) delimited by the box B, P ′ at the bottom and P at the top.

Notice that if P has complexity m and P ′ has complexity m′ then container(P ′,P) has
complexity m + m′ + 2.

Now we give the algorithm in the case when all rectangles in R have substantial width.
This algorithm is encapsulated in the following lemma.
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▶ Lemma 27. There is an algorithm that given ε > 0 and an instance (B,R, k) of 2D
Knapsack in which all items are wide and have width at least N1/α, either returns a packing
of size at least (1− ε)k or correctly concludes that there is no packing of size k. The running
time is (k + 1/ε)O(k+1/ε) · αO(k) · (|R|∥B∥)O(1/ε2).

Proof. Let ℓ = N1/(2α); thus every rectangle on input has width at least 2ℓ. For clarity of
presentation we allow the algorithm to output a packing of size at least (1− 3ε)k; then the
result as stated in the lemma can be obtained by rescaling ε by factor 3.

We first explain the algorithm. Compute F as given by Proposition 23. Then, guess
(by trying all choices) a coloring col ∈ F . The idea is now to use dynamic programming to
compute a maximum-size structured packing for the colored instance. More precisely, for
every monotone polyline P of complexity at most 4/ε + 1 connecting the left and the right
side of B, and for every C ⊆ [k], we shall compute the value dp[P, C] defined as follows:
dp[P, C] is a maximum-size packing that contains only rectangles with colors in C, is colored
injectively by col, and is placed entirely below P with the added constraint that it is a subset
of some (ε, ℓ)-structured packing.

To compute the value dp[P, C] for given P and C, we iterate over all polylines P ′ of
complexity at most 4/ε + 1 that are below P. Let B′ = container(P ′,P) be the container
between P and P ′. Iterate over all C ′ ⊆ C; this is the set of colors guessed to be used in B′.
Let R′ = reducek(roundℓ(R), col) be the reduced set of rounded rectangles, where colors are
naturally inherited from R during rounding. Compute the following packings:
S1 is the largest packing in B′ consisting of at most 2/ε2 rectangles with pairwise different
colors from C ′. This packing can be computed in time |R|O(1/ε2) · (1/ε)O(1/ε2) by first
guessing the set of rectangles participating in it, and then checking whether the packing
can be realized using the algorithm of Lemma 4.
S2 is the largest packing in B′ consisting of at most k rectangles from R′ with pairwise
different colors from C ′. Again, this packing can be computed in time |R′|O(k)·(k+1/ε)O(k)

by first guessing the set of rectangles participating in it, and then checking whether the
packing can be realized using the algorithm of Lemma 4.

Iterate over S ∈ {S1,S2}, and keep as dp[P, C] the set dp[P ′, C \ C ′] ∪ S of maximum size
over all the sets iterated on. Finally, as the solution to the overall problem, return dp[P, [k]]
where P is the top side of B, provided this packing has size at least (1− 3ε)k. Otherwise,
return that there is no packing of size k.

This concludes the description of the algorithm. We are left with (i) analyzing its running
time and (ii) arguing that in case there is a packing of size at least k, the algorithm will
output a packing of size at least (1− 3ε)k.

Let us start with assertion (ii). For this, suppose there exists a packing S of size k.
Since all rectangles of S have width at least 2ℓ, by Lemma 9 there exists an (ε, ℓ)-structured
packing S ′ of size at least (1− 3ε)k. Further, by the properties of F , there exists col ∈ F
such that col is injective on S ′. Now, let P1,P2, . . . ,Pm be the polylines witnessing the
structuredness of S ′, and let ∅ = C0 ⊆ C1 ⊆ C2 ⊆ . . . ⊆ Cm ⊆ Cm+1 = [k] be such that Ci

is the sets of colors used by the rectangles of S ′ lying below Pi, where P0 and Pm+1 are the
bottom and the top side of B, respectively. A straightforward inductive argument using the
structuredness of S ′ and Lemma 25 shows now that for i = 0, 1, . . . , m + 1, the cell dp[Pi, Ci]
will contain a packing of size at least as large as the number of rectangles of S ′ lying below Pi.
Hence, the algorithm will return a packing of size at least |S ′| ⩾ (1− 3ε)k, as promised.

We are left with analyzing the running time. The number of different colorings col ∈ F is
|F| ⩽ 2O(k) · log |R|. Further, observe that the number of different polylines considered by the
algorithm is bounded by ∥B∥O(1/ε) and there are 2k different subsets of colors. Hence, the
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total number of cells dp[P, C] considered by the algorithm is bounded by 2k · ∥B∥O(1/ε). As
argued, the time spent on computing a single value of dp[P, C] is bounded by 2k · ∥B∥O(1/ε)

(the number of choices for P ′ and C ′) times

|R|O(1/ε2) · (1/ε)O(1/ε2) + |R′|O(k) · (k + 1/ε)O(k).

Observe now that the rectangles of roundℓ(R) have at most O(N1/ℓ′) different widths, where
ℓ′ = ℓ2/N1. Since ℓ = N1/2α, we conclude that the total number of different widths of the
rectangles of roundℓ(R) is bounded by

O(N1/ℓ′) = O(N2
1 /ℓ2) ⩽ O(α2).

Therefore,

|R′| = |reducek(roundℓ(R, col))| ⩽ O(α2k2).

Putting everything together, we infer that the running time of the algorithm is bounded by

2O(k) · log |R| · 2O(k) · ∥B∥O(1/ε) ·
(
|R|O(1/ε2) · (1/ε)O(1/ε2) + (α2k2)O(k) · (k + 1/ε)O(k)

)
⩽(k + 1/ε)O(k+1/ε2) · αO(k) · (|R|∥B∥)O(1/ε2),

as promised. ◀

5.2 Full algorithm
We now present the complete algorithm, which essentially boils down to making a reduction
to the case when all rectangles on input have width at least 2ℓ, where ℓ = N1/(δ(B)k2).
In the next lemma, we explain how to perform this reduction at the cost of removing εk

rectangles from the packing.

▶ Lemma 28. Let ε > 0. Suppose there is an algorithm A that, given a 2D Knapsack
instance (B = [0, N1] × [0, N2],R, p) in which all items are wide and have width at least
N1/(δq2) and the aspect ratio of B is δ, returns a packing of size at least (1− ε)p or attests
that there is no packing of size p in time f(p, q, ε, δ, ∥B∥, |R|). Then there is an algorithm
B that, given a 2D Knapsack instance (B = [0, N1]× [0, N2],R, k) in which all items are
wide and the aspect ratio of B is δ, returns a packing of size (1− 2ε)k or attests that there is
no packing of size k in time f(k, k, ε, δ, ∥B∥, |R|) + (1/ε + |R|)O(1/ε).

Proof. We present the algorithm B. Without loss of generality, we can assume k > 1/ε, as
otherwise the number of rectangles in the sought packing is at most 1/ε and we can solve the
problem in time (1/ε + |R|)O(1/ε) by applying Lemma 4 to every k-tuple of rectangles in R.

Let W be the set of rectangles of R that have width at most N1/(δk2), and let w = |W|.
Note that since all rectangles are wide, the rectangles of W also have height bounded by
N1/(δk2). If w ⩾ k, then we can immediately construct a packing of size k by stacking any
k rectangles of W vertically: they fit in the vertical dimension, because k ·N1/(δk2) ⩽ N2.
Otherwise, let k′ = k − w. Run A on a modified instance where all rectangles of W are
removed, with parameter k′. If there is no packing of size k′ for this instance, then clearly
there is no packing of size k for the original instance, and this conclusion may be reported
by the algorithm. Otherwise, B returns a packing S ′ of size at least (1− ε)k′ consisting of
rectangles from R \W. If S ′ consists only of rectangles of height at most N1/(δk), then
we can again immediately obtain a packing of size k by stacking the rectangles of S ′ ∪W
vertically; again they fit in the vertical dimension, because k · N1/(δk) ⩽ N2. Otherwise,
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we modify S ′ by removing any single rectangle R present in S ′ whose height (and therefore
also width) is at least N1/(δk), and putting all the rectangles of W into the space freed
by the removal of R, by simply stacking them horizontally. They fit horizontally because
w ·N1/(δk2) ⩽ k ·N1/(δk2) = N1/(δk) ⩽ w(R), and their heights are not greater than the
height of R. The obtained modified packing S ′ is returned by the algorithm.

It is clear that the algorithm outputs a packing and that when it concludes that there is
no packing of size k, this conclusion is correct. What remains to show is that the packing
eventually output by the algorithm has always size at least (1 − 2ε)k. And indeed, the
algorithm always is able to pack all rectangles packed in S ′, except for possibly one rectangle
removed to accommodate W, and all rectangles of W. Hence, the packing output by the
algorithm has always size at least

(1− ε)k′ − 1 + w = (1− ε)k − (1− ε)w − 1 + w ⩾ (1− ε)k − 1 > (1− 2ε)k,

because εk > 1 due to k > 1/ε. ◀

Now, Theorem 1 follows immediately by combining the algorithm of Lemma 27 with the
reduction of Lemma 28. Observe that the running time is δ(B)O(k) · (k + 1/ε)O(k+1/ε2) ·
(|R|∥B∥)O(1/ε2), as promised.

6 Conclusion

The correctness of our entire algorithm heavily relies on the assumption that every input
rectangle is wide. Indeed, this assumption is used in the greedy arguments in the proof of
Lemma 28, which allows us to reduce to the case when every rectangle has a substantial
width: at least N1/poly(δ(B), k). This assumption is again heavily used later on: in the proof
of Lemma 9 it ensures that upon removing the rectangles corresponding to an st-separator in
the conflict graph, there is enough space available for vertical shifting. This eventually leads
to rounding the rectangles so that there are only poly(δ(B), k) different possible widths, and
thus effectively bounding the number of candidate rectangles to poly(δ(B), k). So while the
original problem – the existence of a parameterized approximation scheme for 2D Knapsack
– remains open, we hope that the new structural techniques proposed in this work might give
insight leading to its resolution.
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Figure 1 Left panel: an example of a container where the order of the segments is given by the
numbers, and some injective candidate γε in light blue. Right panel: an example of a non-container
(the paths cross in the middle), and some candidate γε in light red, that is not injective.
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Figure 2 Example of a conflict graph.
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←−
Z⟨ℓ⟩

Figure 3 Illustration of the proof of Proposition 15. From top to bottom: First, a blue conflict
graph of the gray packing. The packing is entirely in Z, delimited by the blue border. Secondly, we
remove the orange separator C and want to pack the leftover rectangles inside the red region ←−Z⟨ℓ⟩.
The set of rectangles referred to as Y in the proof is in light blue, and X is left gray. Finally, we
pack in ←−Z⟨ℓ⟩ by shifting the rectangles at the right of the separator by ℓ to the left.
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Z
R

−→
Z⟨ℓ⟩

R×

×(1 + ℓ/N1)

−→
Z⟨ℓ⟩

roundℓ(R)

Figure 4 Illustration of the proof of Proposition 16. From top to bottom: First, Q is packed
into Z (blue zone). Then, the rectangles in Q are scaled horizontally by a factor λ = 1 + ℓ/N1. We
argue in the proof that these scaled-up rectangles are packed in −→Z⟨ℓ⟩ (red zone). Finally, we replace
each scaled-up rectangle by its rounded version, which has smaller width.

top

R1

middle

bottom

R2

R3

R4

R5

Figure 5 In orange, the top polyline of the st-path formed by R1, R2, R3, R4 and R5. In blue, its
bottom polyline, and in green, its middle polyline. The dashed lines split their respective rectangles
into 4 equal parts.
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s

←−
Q⟨ℓ⟩

Q

P t

P

Figure 6 In green, the middle polyline P of the blue st-path P constituted of the gray rectangles.
In light orange, Q, and in orange, ←−Q⟨ℓ⟩. Notice that the green polyline does not cross any orange
rectangles.

B Omitted proofs

Proof of Proposition 6. Create a directed graph D with vertex set R, where there is an
edge (R, R′) if the bottom side of R intersects the top side of R′ on more than a single point,
or if the left side of R intersects the right side of R′ on more than a single point. Let us show
that D has no directed cycle, so for contradiction suppose R1, . . . , Rℓ is a directed cycle in
D. In what follows, all indices behave cyclically modulo ℓ.

For each i ∈ [ℓ], select an arbitrary point pi in the intersection of Ri−1 and Ri that is
neither a corner of Ri−1 nor a corner of Ri. Further, observe that one can construct a curve
γi : [0, di]→ Ri, where di is the length of γi, such that:

γi is smooth (formally, C1) and monotone in both directions,
∥γ′

i(t)∥2 = 1 for all t ∈ [0, di],
γi(0) = pi and γi(di) = pi+1, and
the tangent of γi at pi and pi−1 is perpendicular to the respective side and faces the inside
(resp. outside) of Ri. For instance if pi is on the top side of Ri, we require γ′

i(0) = (0,−1),
and if pi+1 is on the left side of Ri, we require γ′

i(di) = (−1, 0).
An example of such a construction is shown below.

a

b

a

b

a
b a

b

Concatenating all the curves γi in order yields a smooth closed curve γ : S →
⋃ℓ

i=1 Ri

without self-crossings such that ∥γ′(t)∥2 = 1 for all t ∈ S, where S is the circle of length∑ℓ
i=1 di. Here is the crucial observation: by the way we oriented the arcs in D, the vector

γ′(t) is never in the positive orthant (i.e. γ′(t) has not both coordinates positive), for any
t ∈ S.



M. Mari, T. Picavet, and M. Pilipczuk 33:19

γ

However by Theorem 2 of [4, section 5-7, page 402], a smooth closed curve in the plane
without self-crossings has rotation index ±1, where the rotation index of a curve is the number
of times its tangent vector turns around the origin. This means that by the intermediate
value theorem, for every α ∈]0, 2π[, there exists a point of the curve where the tangent
vector is at angle α with the x-axis, and hence belongs to the positive orthant. This is a
contradiction.

We conclude that D is acyclic, hence it has a sink R – a rectangle with out-degree 0.
Therefore, R is the rectangle we want: its left side intersects a vertical segment of container
and its bottom side intersects a horizontal segment of the container. ◀

Proof of Lemma 12. Let G be the conflict graph of Q. For a rectangle R ∈ Q, we denote
its associated vertex in G by vR. We define a planar embedding of G as follows. We define
the position of a vertex vR to be the center c(R) = (x(R) + w(R)/2, y(R) + h(R)/2) of the
corresponding rectangle. If there is an edge e = vRvR′ , choose y ∈ R such that the horizontal
segment s = [x(R) + w(R), x(R′)]× {y} witnesses that R and R′ that see each other, where
we assume w.l.o.g. that x(R) + w(R) ⩽ x(R′). We define the embedding γe of e as the union
of 3 internally disjoint segments:

s1
e = [c(R), (x(R) + w(R), y))],

s2
e = s,

s3
e = [(x(R′), y), c(R′)].

It is straightforward to check that all the curves γe e ∈ E(G) are pairwise internally disjoint,
hence they constitute a planar embedding of G. ◀

Proof of Proposition 15. Let G be the conflict graph of Q. Since C is an st-separator in
G, we may partition Q into three disjoint sets X, C, and Y so that vertices of X are not
connected to t, vertices of Y are not connected to s, and no vertex of X is adjacent to any
vertex of Y . Now, construct a new set of placed rectangles Q′ by removing all rectangles of
C and shifting every rectangle of Y by ℓ to the left. It remains to prove that Q′ is a packing
and that all rectangles of Q′ are entirely contained in ←−Z⟨ℓ⟩.

For the second assertion, we need to prove that (i) no R′ ∈ Q′ crosses the left side of the
box, i.e., no R′ ∈ Q′ is such that x(R′) < 0, and (ii) no rectangle R′ ∈ Q′ contains a point
with horizontal coordinate larger than N2 − ℓ, i.e. x(R′) + w(R′) > N2 − ℓ. To prove (i),
suppose for the sake of a contradiction that there exists R′ ∈ Y such that x(R′) < 0. We
must have R′ ∈ Y because R′ was shifted, and hence R′ cannot see the left side of the box.
Let R ∈ Q be R′ before shifting. We know that x(R) < ℓ, therefore as every rectangle has
width at least ℓ, there is no rectangle in Q that would be placed between R and the left
side of the box. Therefore, the R must see the left side of the box, which is a contradiction
because R ∈ Y . A symmetric argument involving the right side of the box proves (ii).
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For the first assertion, we need to prove that no two rectangles in Q′ overlap. The only
case when this could a priori happen is if R1 ∈ X and R2 ∈ Y are overlapping after the
shift. This would mean that x(R1) + w(R1) < x(R2)− ℓ. However, again in Q there cannot
be any rectangle lying in between R1 and R2, because every rectangle has width at least ℓ.
Therefore, the R1 and R2 must see each other, which is a contradiction because R1 ∈ X

and R2 ∈ Y . ◀

Proof of Proposition 16. First, scale horizontally every rectangle in Q by a factor λ =
1 + ℓ/N1, i.e., for a rectangle R = [x, x + w] × [y, y + h] we define the rectangle R× =
[λx, λ(x + w)] × [y, y + h]. These rectangles fit inside roundℓ(Z). Indeed, the maximum
possible displacement of a point is N1 · ℓ/N1 = ℓ, i.e. the image of a point under scaling
is at horizontal distance at most ℓ to the right of the original point. Next, observe that
every rectangle roundℓ(R) can be entirely placed inside the corresponding rectangle R×,
because λw = w + wℓ/N1 ⩾ w + ℓ2/N1 = ℓ′ + w = ℓ′(1 + w/ℓ′) ⩾ ℓ′ ⌈w/ℓ′⌉ . (Recall here
that we assumed all rectangles to have width at least ℓ.) Now, Q′ can be obtained from
Q by replacing each R ∈ Q′ with R×, fitting roundℓ(R) inside R×, and finally shifting all
rectangles to the left so that they have integer coordinates. The last step is always possible
as every rectangle has integer length. ◀

Proof of Proposition 20. Suppose P crosses ←−R⟨ℓ⟩ for some R ∈ Q. Then there exists
R1, R2 ∈ V (P ) (which are possibly the left or the right side of the box) such that R1 and R2
see each other through a segment s = [x(R1) + w(R1), x(R2)]× {y} and R crosses one of the
following segments:
1. {x(R1) + w(R1)/2} × [min{y(R1) + h(R1)/2, y}, max{y(R1) + h(R1)/2, y}],
2. [x(R1) + w(R1)/2, x(R2) + w(R2)/2]× {y},
3. {x(R2) + w(R2)/2} × [min{y, y(R2) + h(R2)/2}, max{y, y(R2) + h(R2)/2}].
We show that every case leads to a contradiction.
1. Assume case 1. P crosses ←−R⟨ℓ⟩ but not R so x(R) ⩾ x(R1) + w(R1)/2 and x(R)− ℓ ⩽

x(R1) + w(R1)/2. Therefore x(R1) ⩽ x(R) ⩽ x(R1) + w(R1)/2 + ℓ ⩽ x(R1) + w(R1)
because w(R1) ⩾ 2ℓ. Moreover, [min{y(R1) + h(R1)/2, y}, max{y(R1) + h(R1)/2, y}] ⊆
[y(R1), y(R1) + h(R1)] by the definition of y. This means that R and R1 intersect
at (x(R), y′) where y′ ∈ [y(R), y(R) + h(R)] ∩ [min{y(R1) + h(R1)/2, y}, max{y(R1) +
h(R1)/2, y}], which is not possible.

2. Assume case 2. This would mean that y ∈ [y(R), y(R) + h(R)], x(R) ⩾ x(R2) + w(R2)/2
and x(R)−ℓ ⩽ x(R2)+w(R2)/2 because |[x(R1)+w(R1)/2, x(R2)+w(R2)/2]| ⩾ 2ℓ and P
crosses←−R⟨ℓ⟩ but not R. Therefore x(R2) ⩽ x(R) ⩽ x(R2)+w(R2)/2+ ℓ ⩽ x(R2)+w(R2)
because w(R2) ⩾ 2ℓ. This means that R and R2 intersect at (x(R), y), which is not
possible.

3. Assume case 3. This is a similar argument as case 1, replacing R1 by R2. ◀

Proof of Lemma 25. Let Q be the assumed packing of k′ ⩽ k rectangles from R of pair-
wise different colors in the zone Z. Note that if Q contains some rectangle of R ∈ R \
reducek(R, col), then there exists another rectangle R′ ∈ reducek(R, col) with w(R′) = w(R),
col(R′) = col(R) and h(R′) ⩽ h(R) such that R′ was not used in the packing Q. Hence, we
can substitute R with R′ in the packing Q, fitting R′ within the area freed by removing R

from the packing. By applying such substitutions exhaustively, we obtain a packing in Z

consisting of k′ rectangles from reducek(R, col). ◀
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