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Abstract
This article is a report by the challenge organizers on the 8th Parameterized Algorithms and
Computational Experiments Challenge (PACE 2023). As was common in previous iterations of
the competition, this year’s iteration implemented an exact and heuristic track for a parameterized
problem that has gained attention in the theory community. This year, the problem was to compute
the twinwidth of a graph, a recently introduced width parameter that measures the similarity of a
graph to a cograph. In the exact track, the competition participants were asked to develop an exact
algorithm that can solve as many instances as possible from a benchmark set of 100 instances – with
a time limit of 30 minutes per instance. The same task must be accomplished within 5 minutes in
the heuristic track. However, the result in this track is not required to be optimal.

As in previous iterations, the organizers handed out awards to the best solutions in both tracks
and to the best student submissions. New this year is a dedicated theory award that appreciates
new theoretical insights found by the participants during the development of their tools.
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1 Introduction: History and Timeline of PACE

The Parameterized Algorithms and Computational Experiments Challenge (PACE) is an
algorithm engineering competition conceived in 2015 and held annually since. Its aim is to
bridge the theory of parameterized algorithms and their use in practice. The goals are to:
1. bridge the divide between the theory of algorithm design and analysis, and the practice

of algorithm engineering,
2. inspire new theoretical developments,
3. investigate the competitiveness of theoretical algorithms from the field of parameterized

complexity analysis and related fields in practice,
4. produce universally accessible libraries of implementations and repositories of benchmark

instances, and
5. encourage the dissemination of these findings in scientific papers.
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35:2 PACE Solver Description: PACE 2023: Twinwidth

In each of the now eight iterations, the participants were asked to provide implementations
that either solved small- to medium-sized instances of an NP-complete problem optimally or
to solve large-sized instances approximately. In previous iterations, the problems were
PACE 2016 treewidth and undirected-feedback-vertex-set [14];
PACE 2017 treewidth and minimum fill-in [15];
PACE 2018 steiner-tree [12];
PACE 2019 vertex-cover and hypertreewidth [17];
PACE 2020 treedepth [22];
PACE 2021 cluster-editing [21];
PACE 2022 directed-feedback-vertex-set [18] .

Several of the previous iterations also contained more specialized tracks. Starting with
the first iteration of PACE, many participants from all over the world were interested in the
challenge and quickly established PACE as a highly competitive challenge. Over the years,
the number of PACE participants has constantly grown, as Figure 1 illustrates. Furthermore,
papers inspired by concrete implementations were published in prestigious conferences such
as ACDA, ALENEX, ESA (Track B), SEA, and WADS. The instances provided by PACE
have also often been used to showcase further algorithmic improvements by being used
as an established benchmark, ranging also to other competitions such as the famous sat
competition [5].
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Figure 1 Overview of the number of participants (y-axis) of the PACE challenge over the years.

In this article, we report on the eighth iteration of the PACE challenge. The problem
chosen for this year’s iteration was twinwidth, a relatively young but promising parameter
introduced in 2020 by Bonnet et al. [10]. The challenge featured two tracks: an exact track
and a heuristic track. In the exact track, the task was to find an optimal solution of a given
instance within 30 minutes and a memory limit of 8 GB. In the heuristic track, the task was
to compute a valid solution with a width as small as possible within a time limit of 5 minutes
and a memory limit of 8 GB.

The PACE 2023 challenge was announced with both tracks in September 2022. Details
about the input and output format were provided in October 2022 together with a tiny test
set to allow the participants to start with the challenge. One reason being, in particular,
that algorithmic lectures that eventually start in this period may integrate PACE into course
related projects. The concrete ranking methods for both tracks were published in November
2022. In January 2023, the public instances were made available to the participants, and
the public leaderboard on the optil.io platform was opened in March 2023. This allowed
the participants to test their solvers on the public instances and provided a provisional
ranking. The leaderboard was frozen in May 2023, and the final version of the submission
was due on the first of June 2023. Afterwards, the submissions were evaluated on the private
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instances, which the participants did not know. The results of this evaluation were announced
in July 2023, and the award ceremony took place during the International Symposium on
Parameterized and Exact Computation (IPEC) 2023 in Amsterdam in September 2023. The
complete timeline can be found in Figure 2.
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Figure 2 Timeline of the PACE challenge in 2023 (the diagram ranges from September 2022 to
September 2023). The next iteration of the PACE for 2024 was announced at the award ceremony.

2 The Problem of the Challenge: Twinwidth

So-called width measures are graph parameters that capture the structural complexity of a
graph in terms of the minimum cost of an associated type of decomposition of the graph.
The poster child of such a parameter is treewidth, which measures the distance of a graph to
a tree. A recently proposed parameter is twinwidth, introduced by Bonnet, Kim, Thomassé,
and Watrigant [11]. Informally, the twinwidth of a graph measures the distance to a cograph.
Cographs are the graphs that can be generated from a single-vertex graph by complementation
and disjoint union; which are precisely the P4-free graphs. In the context of twinwidth, the
crucial property of these graphs is that they always contain a pair of twins, that is, vertices
sharing the same neighborhood. The contraction of twins in a cograph results again in a
cograph. In other words, cographs can be reduced to a single vertex by a sequence of twin
contractions.

If the input graph G = (V, E) is not a cograph, this process of contracting twins will
eventually get stuck with a graph that contains more than one vertex, but does not contain
any twins. We consider the contraction of non-twins (which may or may not be adjacent) as
“error” (because the goal is to measure the distance to cographs) and record this error by
coloring mixed edges “red,” while referring to the original edges as “black edges”. Precisely,
when contracting two vertices u and v into a single fresh vertex z, we form a new graph by
removing u and v. For each x ∈ V \ {u, v} that was connected to u or v, we add a new edge
between x and z. If x was connected to both u and v and both of these edges were black, the
edge between x and z is black as well. In all other cases, the edge between x and z is colored
red. Figure 3 presents an example: When a and c are contracted in the second picture into
the fresh vertex ac, then d gets connected to ac with a black edge (as d was connected to
both a and c). In contrast, e was only connected to c but not to a and, hence, a red edge
now connects e and ac. Finally, b was not connected to a or to c and hence, no edge is drawn
between b and ac.

A contraction sequence consists of |V | − 1 contractions transforming the input graph
(which does not contain any red edges) into a single vertex (which also does not contain red
edges). However, intermediate graphs in the sequence may contain red edges. The width of a
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contraction sequence is the maximal red degree of any vertex encountered in any intermediate
graph. The twinwidth of a graph G is the minimal width any contraction sequence of G must
have. We denote it by tww(G) and derive the following computational task:

▶ Challenge Problem (twinwidth).
Instance: A undirected graph G given as list of edges.
Task: Compute a contraction sequence S of G and output it as list of pairs.
Exact Track: The width of S must equal tww(G).
Heuristic Track: Any valid sequence S can be output. The quality is the width of S.
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Figure 3 An exemplary contraction sequence of width 2 from the The sequence shows that the
input graph (most left) has twinwidth at most 2. The reason being that the third graph has a red
degree of 2.

Twinwidth has received wide attention in the three years following its inception: dblp
alone lists (at the time of writing this report) 4 papers related to twinwidth in 2020, 15 in
2021, and already 37 in 2022. One of the reasons for its success is that the class of graphs
of bounded twinwidth is one of the largest known graph classes that still allows first-order
model checking in fpt-time [11]. There is also a growing number of intractable problems
for which efficient algorithms on graphs of bounded twinwidth were found [8, 10]. However,
all these results require that a contraction sequence of small width is given along with the
input, i. e., one needs to solve the aforementioned twinwidth problem as a preprocessing
step. Most desirable would, of course, be an algorithm with polynomial running time that
computes a contraction sequence of minimal width, or at least of width α tww(G) for some
constant α. Unfortunately, the existence of an exact XP-algorithm or an approximation
algorithm with α < 5/4 was ruled out by Bergé, Bonnet, and Déprés, who proved that
deciding whether tww(G) is at most 4 is already NP-complete [7]. Nevertheless, nothing is
known about α ≥ 5/4.

This is in strong contrast to problems chosen in previous iterations of PACE, where
usually a portfolio of parameterized algorithms was available before the competition. That
is, the first aim of PACE mentioned in the introduction, i. e., to bridge the divide between
the theory of algorithm design and analysis, and the practice of algorithm engineering was
interpreted mainly as “evolving theoretical insights into practical tools”. With twinwidth
as the problem of the challenge, the direction of this reasoning is inverted in this year’s
iteration, i. e., we wondered whether “techniques commonly used in practice may lead to
new results in theory”? This is also the reason that the organizers decided to hand out a
dedicated theory award along with the usual ranking: To value and highlight theoretical
insights gained during the competition in spirit of the second aim of the competition (to
inspire new theoretical developments).

3 The Setup of PACE 2023

As already mentioned before, this year’s challenge featured two tracks: An exact track in
which a contraction sequence of minimal width needs to be computed, and a heuristic track
in which a not necessarily optimal contraction sequence must be computed very quickly.

https://dblp.uni-trier.de
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3.1 The Exact Track (Compute an Optimal Contraction Sequence)
The task of this track is to compute an optimal solution of twinwidth for 100 graphs,
which are not known by the participants (they are only presented to the solver during the
evaluation in a compartmentalized judge system). For each of the graphs, the solver has to
output a solution within a time limit of 30 minutes and a memory limit of 8 GB.

The organizers of the competition encouraged submissions that implement provably
optimal algorithms, however, this was not a formal requirement. Instead, submissions that
output an incorrect solution or a solution that is known to be non-optimal were disqualified
from the challenge. Fortunately, no submission was disqualified this year.

Submissions of this track are ranked by the number of solved instances. In case of a tie,
the winner is determined by the total time spent on the solved instances. In particular, there
was no need to abort a “hopeless” run early.

3.2 The Heuristic Track (Compute a Contraction Sequence Quickly)
In this track the solver shall compute a good solution quickly. The solver are run on each
instance for 5 minutes and receive the Unix signal sigterm afterwards. When receiving this
signal, the solver has to output a correct contraction sequence immediately to the standard
output and terminate. If the program does not halt in a reasonable time after receiving the
signal, it will be stopped via sigkill and the instance is counted as time limited exceeded.
The memory limit for this track is 8 GB as well.

For this track solutions do not have to be optimal. However, solvers that produce incorrect
solution were disqualified. Fortunately, we did not need to disqualify any solver in this track
either. Submissions were ranked by the geometric mean over all instances of

100 · width produced by the solver
smallest width known to the PC .

Note that the “smallest width known to the PC” may not be optimal, i. e., may be larger
than tww(G).

3.3 Internal Solver and the Benchmark Set
The fourth aim of the PACE challenge is to produce universally accessible libraries of
implementations and repositories of benchmark instances. While the first part of this aim is
exactly what we expect from the participants, it is the duty of the program committee to
produce the benchmark instances. A lot can be said about how to set up a good benchmarkset,
and what “good” in this context actually means. In the light of PACE, we found the following
points important:
a) the benchmarkset contains instances from various domains,
b) it contains easy, medium, hard instances,
c) it remains a challenging benchmark after the challenge.

The reason for a) being that we would like to evaluate the overall performance of the
approaches developed by the participants (and not the performance on, say, a specific graph
class). We include b) to make the challenge interesting and fun. We wanted a benchmarkset in
which every participant can solve at least a few instances, which should especially encourage
student teams to participate as well. The medium instances are the ones that are meant to
distinguish the quality of the various solvers, and the hard instances realize c). This last
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item is included, as we did not want a benchmarkset that is “completely solved” after the
competition. We expected that these hard instances are barely solvable by solvers developed
in the time span of the competition and, thus, leave room for further research.

The emerging question of course is: “What is an easy, medium, or hard instance”? This
question is not easy to answer, especially if barely anything is known about solving the
problem. The organizers used a sat-based internal solver to answer this question (the solver
was developed by André Schidler and Stefan Szeider [30], who provided the organizers with
an improved version of the tool before the competition).

The base set of graphs was generated from three sources:
Random and synthetic graphs, including: Erdős-Rényi graphs, random hyperbolic graphs,

random planar graphs, and graph products of various simple graph classes.
Instances from graph repositories, including: road networks, power grid graphs, graphs

from the UAI competition 2014, and max-flow instances from applications in computer
vision.

Instances generated by reduction from SAT, including: the instances of the sat competi-
tion 2022 Anniversary Track, reduced to vertex-cover and 3-coloring.

From this base set we generated an enhanced set by performing the following steps to
every graph multiple times: (i) sample a random vertex, (ii) perform a bfs for ℓ layers to
obtain a smaller subgraph, and (iii) add some noise to this subgraph by randomly (with a
small probability ϵ) add, remove, or contract edges. By varying ℓ and ϵ, graphs of various
sizes and difficulties can be generated. We ended up with an enhanced set of roughly 8000
graphs. To obtain the benchmarkset used in the competition, we let the internal solver run
on every instance of the enhanced set for eight hours. We classified an instance as
Easy if the internal solver solved the instance in 30 minutes;
Medium if the internal solver solved the instance;
Hard if the internal solver did not solve the instance.

For the exact track we sampled 200 instances from this set (50 easy, 50 medium, and 100
hard). We sorted these 200 instances by size. Graphs with an odd number were used as
private set to rank the participants, graphs with an even number were released in advance as
public test set. Figure 4 illustrates the number of vertices (left) and number of edges (right)
that the 200 instances of the exact track have. We used the same technique to derive the
instances for the heuristic track, but scaled them by varying (the aforementioned parameter)
ℓ after the classification into easy, medium, and hard. Figure 5 shows the distribution of
the number of vertices and edges of the benchmarkset from the heuristic track. Of course,
in the light of parameterized algorithms, not just the size of the instance, but also the
actual twinwidth is important. All instances from the exact track that were solved during
the competition have a twinwidth of at most 10 (see Figure 6 for the distribution). The
instances used in the heuristic track have a larger twinwidth, but over 50% of the instances
have a twinwidth of at most 60 (see the right plot in Figure 6). Both benchmarksets (all 200
instances per track) are publicly available at https://pacechallenge.org/2023/.

4 Participants and Results

There were 13 and 10 teams that officially submitted a solution to the exact and heuristic
track, respectively. There were four teams that submitted solutions to both tracks. Hence,
in total there were 19 distinct teams with a total number of 73 participants representing
three continents and a wide range of countries, which made this the second largest PACE
challenge. The results are listed below.

https://pacechallenge.org/2023/
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Figure 4 Distribution of the number of vertices (left) and number of edges (right) of the 200
instances of the PACE 2023 exact track. A bar at index x illustrates the number of instances that
have at most x vertices (edges), but more than the previous bar contained. That is, every instance
is counted in exactly one bar.

25
50
75

100

50
00

10
00

0
25

00
0

75
00

0
10

00
00

25
00

00
50

00
00

10
00

00
0

20
00

00
0

50
00

00
0

Distribution of the Number of Vertices.

25
50
75

100

10
00

00
20

00
00

40
00

00
60

00
00

80
00

00
12

00
00

0
16

00
00

0
32

00
00

0
64

00
00

0
12

80
00

00

Distribution of the Number of Edges.

Figure 5 Distribution of the number of vertices (left) and number of edges (right) of the 200
instances of the PACE 2023 heuristic track. A bar at index x illustrates the number of instances
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instance is counted in exactly one bar.
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Figure 6 All private instances of the exact track that were solved by any solver have a twinwidth
of at most 10. The left plot illustrates the twinwidth distribution these instances. The diagram
shows clockwise the percentage of instances that fall below a certain twinwidth threshold. The
right plot illustrates the same information for the private instances of the heuristic track (the best
twinwidth found by any submission was assigned to every instance).
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4.1 Ranking of the Exact Track
The ranking for the exact track is listed subsequently; We list the number of solved instances
from the 100 private instances. Submissions marked with “¹” are student submissions after
the following rules:

A student is someone who is not and has not been enrolled in a PhD program before the
submission deadline. A submission is eligible for a Student Submission Award if either
all its authors are students, or besides student co-author(s) there is one non-student co-
author that confirms, at the moment of submission, that a clear majority of conceptual and
implementation work was done by the student co-author(s).

The first three student submissions obtained a Student Submission Award. The submission
marked with “�” obtained the Theory Award, details follow in Section 4.5.

Rank 1 Hydra Prime solved 36 instances in 450 minutes. � [16]
Authors Yosuke Mizutani, David Dursteler, and Blair D. Sullivan
Affiliation University of Utah

Rank 2 GUTHMi solved 35 instances in 1257 minutes. [13]
Authors Alexander Leonhardt, Holger Dell, Anselm Haak, Frank Kammer, Johannes

Meintrup, Ulrich Meyer, and Manuel Penschuck
Affiliation Goethe University Frankfurt and THM, University of Applied Sciences Mittel-

hessen
Rank 3 Touiouidth solved 34 instances in 8885 minutes. [9]

Authors Gaétan Berthe, Yoann Coudert–osmont, Alexander Dobler, Laure Morelle,
Amadeus Reinald, and Mathis Rocton

Affiliation LIRMM, CNRS, Université de Montpellier and Université de Lorraine, CNRS,
Inria and Algorithms and Complexity Group, TU Wien

Rank 4 UAIC Twin Width solved 34 instances in 12781 minutes. ¹ [3]
Authors Andrei Arhire, Matei Chiriac, and Radu Timofte
Affiliation Alexandru Ioan Cuza University of Iasi, and ETH Zürich and University of

Würzburg
Rank 5 Soapen solved 33 instances in 250 minutes. [33]

Authors Christopher Weyand and Marcus Wilhelm
Affiliation KIT Karlsruhe

Rank 6 GBathie solved 31 instances in 1183 minutes. [6]
Authors Gabriel Bathie, Jérôme Boillot, Nicolas Bousquet and Théo Pierron
Affiliation DI ENS, PSL Research University and LaBRI, Université de Bordeaux and

Université Lyon
Rank 7 Zygosity solved 29 instances in 391 minutes. [23]

Authors Emmanuel Arrighi, Petra Wolf, Pål Grønas Drange, Kenneth Langedal, Farhad
Vadiee, and Martin Vatshelle

Affiliation University of Trier and University of Bergen
Rank 8 trex-ufmg solved 27 instances in 14760 minutes. ¹ [32]

Authors Alan Cabral Trindade Prado, Emanuel Juliano Morais Silva, Guilherme de
Castro Mendes Gomes, Kaio Henrique Masse Vieira and Laila Melo Vaz Lopes

Affiliation Departamento de Ciência da Computação, Universidade Federal de Minas
Gerais
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Rank 9 tuw solved 26 instances in 967 minutes. [30]
Authors André Schidler and Stefan Szeider
Affiliation Algorithms and Complexity Group, TU Wien

Rank 10 HeiTwin solved 15 instances in 1187 minutes. ¹ [26]
Authors Thomas Möller, Nikita-Nick Funk, Dennis Jakob and Ernestine Großmann
Affiliation Heidelberg University

Rank 11 A Simple Twin-width Searcher solved 14 instances in 1490 minutes. [24]
Authors Alexander Meiburg
Affiliation University of California Santa Barbara

Rank 12 GOAT solved 8 instances in 1487 minutes. [1]
Authors Adam Barla, Václav Blažej, Radovan Červený, Michal Dvořák, Dušan Knop,

Josef Koleda, Jan Pokorný, Petr Šťastný and Ondřej Suchý
Affiliation Faculty of Information Technology, Czech Technical University in Prague and

University of Warwick
Rank 13 satwin solved 8 instances in 35833 minutes. [20]

Authors Yinon Horev, Shiraz Shay, Sarel Cohen, Tobias Friedrich, Davis Issac, Lior
Kamma, Aikaterini Niklanovits and Kirill Simonov

Affiliation School of Computer Science, The Academic College of Tel Aviv-Yaffo and
Hasso Plattner Institute, University of Potsdam

4.2 Strategies Used in the Exact Track
We give a short overview on the ideas used by the top three solvers. The interested reader is
referred to the corresponding papers published in the proceedings of IPEC 2023.

Winning Team. The winning solver, Hydra Prime, first applies a modular decomposition
on the graph and then considers all of the prime graphs and the quotient graph separately.
Then, a vast number of different algorithms is applied to derive upper and lower bounds for
the twinwidth of the graphs by choosing from four algorithms for the lower bounds and three
algorithms for the upper bound. In addition, the solver also contains an optimal solver for
trees, a branch-and-bound approach, and a sat-based tool for the remaining cases. The main
contributions are the timeline encoding and the hydra decomposition. The timeline encoding
is a data structure that efficiently computes the width of a given contraction sequence by
building up a set of red intervals representing the red edges during the contraction. The
hydra decomposition is a refinement strategy that iteratively uses small vertex separators by
splitting the graph into a set of heads and tails. This allows to find separators avoiding the
heads, to contract the heads, and to join two hydras efficiently.

Runner-Up. The runner-up solver, GUTHMI, is based on the branch-and-bound paradigm,
but drastically reduces the potentially large branching vector using a number of heuristics.
The authors obtain upper bounds using a heuristic, and lower bounds by sampling carefully
chosen subgraphs that are tried to be solved exactly. Finally, to order the remaining branches,
the authors use a scoring method to evaluate pairs of vertices. The scoring method aims to
minimize the difference between the red degrees of vertices for which a new red edge will
appear when contracting the pair, and the red degrees of vertices for which a red edge will
be removed. The solver also contains several low-level optimizations such as the caching of
small infeasible subproblems, the reusing of scores, and the use of appropriate data structures
depending on the structure of the given graph.

IPEC 2023
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Third Place. The third place solver, Touiouidth, uses the first 15 minutes to find a good
lower bound by considering the twinwidth of several carefully constructed induced subgraphs.
Next, two different heuristics are run for five minutes to obtain upper bounds. Finally, the
last ten minutes are used for a branch-and-bound algorithm. To reduce the search space, the
authors use the observation that two vertices u and v can safely be contracted if the black
neighborhood of u is a subset of the black neighborhood of v and, in addition, all neighbors
(black and red) of v are contained in the red neighborhood of u (or are equal to u or v). To
sort the possible branches for different pairs {u, v}, the authors first compute the size of the
symmetric difference in the neighborhoods of u and v and then perform bucket-sort.

4.3 Ranking of the Heuristic Track
The ranking for the heuristic track is listed subsequently; We list the score for the 100 private
instances, computed as described above. The larger the score, the better. As in the exact
track, submissions marked with “¹” are student submissions of which the top three obtained
a Student Submission Award.

Rank 1 GUTHM got a score of 9103 in 30004 seconds. ¹ [13]
Authors Alexander Leonhardt, Holger Dell, Anselm Haak, Frank Kammer, Johannes

Meintrup, Ulrich Meyer and Manuel Penschuck
Affiliation Goethe University Frankfurt and THM, University of Applied Sciences Mittel-

hessen
Rank 2 Zygosity got a score of 8603 in 24924 seconds. [23]

Authors Emmanuel Arrighi, Petra Wolf, Pål Grønas Drange, Kenneth Langedal, Farhad
Vadiee, and Martin Vatshelle

Affiliation University of Trier and University of Bergen
Rank 3 Red Alert got a score of 7739 in 22924 seconds. [34]

Authors Édouard Bonnet and Julien Duron
Affiliation Université Lyon

Rank 4 HATTER got a score of 6169 in 30003 seconds. ¹ [2]
Authors Aman Jain, Sachin Agarwal, Talika Gupta, and Srinibas Swain
Affiliation Department of Computer Science and Engineering, IIIT Guwahati

Rank 5 HeiTwin got a score of 6165 in 30122 seconds. ¹ [27]
Authors Thomas Möller, Nikita-Nick Funk, Dennis Jakob, and Ernestine Großmann
Affiliation Heidelberg University

Rank 6 UAIC Twin Width got a score of 5937 in 28015 seconds. ¹ [3]
Authors Andrei Arhire, Matei Chiriac, and Radu Timofte
Affiliation Alexandru Ioan Cuza University of Iasi, and ETH Zürich and University of

Würzburg
Rank 7 Greetwin got a score of 5749 in 7265 seconds. ¹ [19]

Authors Jippe Hoogeveen
Affiliation Utrecht University

Rank 8 METATWW got a score of 4265 in 27756 seconds. ¹ [25]
Authors William Bille Meyling
Affiliation University of Copenhagen

Rank 9 twin width fmi got a score of 3231 in 16081 seconds. ¹ [31]
Authors Lucian Trepteanu, Adrian Miclaus, Alexandru Enache, and Alexandru Popa
Affiliation Faculty of Mathematics and Computer Science, University of Bucharest
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Rank 10 jbalasin got a score of 342 in 2345 seconds. [4]
Authors Jonathan Balasingham, Sebastian Wild and Viktor Zamaraev
Affiliation University of Liverpool

4.4 Strategies Used in the Heuristic Track
In the following, we give a short overview on the ideas used in the top three solvers. We
refer the interested readers to the corresponding papers in the proceedings of IPEC 2023 for
more details.

Winning Team. The winning solver, GUTHM, uses three different strategies that are
applied to the connected components of the graph separately. In the first strategy, a very
fast heuristic is used to obtain an initial contraction sequence. This strategy greedily selects
a vertex u of minimal red degree and then identifies the best partner v according to a scoring
method. The scoring method aims to minimize the difference between the red degrees of
vertices x, for which a new red edge will appear when contracting u and v, and the red degrees
of vertices y, for which a red edge will be removed. The efficiency of this approach stems
from the observation that few applications of a two-level breadth-first search can compute
this scoring function. Then, depending on the expected twinwidth of the components, one of
two possible strategies is applied to improve this first solution. If the twinwidth is sufficiently
low, the authors use a sweeping approach where all contractions that do not exceed the
width of the contraction sequence beyond a given threshold are performed. This threshold is
iteratively adapted by random sampling. If the twinwidth of the connected component is
expected to be high, the authors either contract two vertices chosen by the above heuristic
(i. e., contracting a vertex of minimal red degree) or apply MinHashing to identify near-twins
of large red degree. To speed up their computation, the authors use a data structure that
manages the deleted nodes via the union-find data structure.

Runner-Up. The runner-up solver, Zygosity, first contracts all twins and then contracts all
trees down to a single pendant vertex connected by a red edge. The remaining time is used for
multiple random contractions. Here, the quality of a contraction depends on the maximal red
degree in the graph (which should be minimized) and the size of the intersection between the
neighborhoods of the two chosen vertices. As the red degree is the more important measure,
the intersection size is only used as tiebreaker. Instead of choosing a pair of vertices randomly,
the solver chooses one vertex u randomly and then performs a random walk starting from u.
The random walk is determined by a biased coin that depends on the density of the given
graph. If the graph is sparse, the random walk takes only one step, and otherwise it takes
two. To optimize the running time, the authors only use arrays to avoid cache-faults when
iterating over the neighborhood of a vertex.

Third Place. The third place solver, Red Alert, uses a randomized approach to generate
about 10,000 possible vertex pairs for the contraction from which a certain number is chosen
later. The number of chosen pairs directly depends on the remaining time: The less available,
the rougher the subroutine to find the pairs. If t denotes the time used in the last iteration
and T the remaining time, then about n′ ·t/T pairs are chosen if the current graph contains n′

vertices. To select the vertices, the authors use different approaches based on the density of
the remaining graph. If the remaining graph is dense, the pair is chosen uniformly at random.
In the sparse case, a first vertex is chosen uniformly at random and then one or two of its

IPEC 2023
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neighbors get sampled. To evaluate a pair, the solver uses a scoring function consisting of
three parts: The most crucial part measures whether the contraction decreases the maximum
red degree; the second part determines whether the maximum red degree is close to the red
degree of the contracted vertex; and the third parts counts the total number of red edges. If
the time gets short, the authors partition the vertices of the remaining graph into equally
sized buckets, which are then contracted.

4.5 Theory Award

To bridge the gap between theory and practice, we gave out a theory award to encourage
submissions containing new theoretical insights. The theory award has been granted to the
solver Hydra Prime by Yosuke Mizutani, David Dursteler, and Blair D. Sullivan (highlighted
with a “�” in Section 4.1). The award was primarily given due to the development of two
novel ideas: the timeline encoding and hydra decompositions. The timeline encoding is an
innovative data structure that enables the efficient computation of the width of a contraction
sequence, resulting in enhanced local search capabilities. Hydra decompositions, conversely,
are a divide-and-conquer strategy that features compact vertex separators.

5 PACE Organization

The program comitee of PACE 2023 consisted of the co-chairs Max Bannach and Sebastian
Berndt. During the competition, the members of the steering committee were:

(since 2016) Holger Dell (Goethe University Frankfurt and IT University of Copenhagen)
(since 2019) Johannes Fichte (Linköping University)
(since 2019) Markus Hecher (MIT)
(since 2016) Bart M. P. Jansen (chair) (Eindhoven University of Technology)
(since 2020) Łukasz Kowalik (University of Warsaw)
(since 2021) André Nichterlein (Technical University of Berlin)
(since 2020) Marcin Pilipczuk (University of Warsaw)
(since 2022) Christian Schulz (Heidelberg Univerity)
(since 2020) Manuel Sorge (Technische Universität Wien)

6 Conclusion and Future Editions of PACE

We thank all the participants for their impressive work, vital contributions, and patience
in case of technical issues. The organizers especially thank the participants who presented
their work at IPEC 2023 in the poster session or during the award ceremony. We are pleased
about the large number of diverse participants and hope the PACE challenge will continue
to build bridges between theory and practice. We welcome anyone interested to add their
name to the mailing list on the PACE website to receive updates and join the discussion.

PACE 2024. We look forward to the next edition, which will focus on one-sided crossing
minimization and will be chaired by Philipp Kindermann. Detailed information will be
posted on the website of the competition at pacechallenge.org.

pacechallenge.org
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