
PACE Solver Description: RedAlert - Heuristic
Track
Édouard Bonnet # Ñ

Univ Lyon, CNRS, ENS de Lyon, Université Claude Bernard Lyon 1, LIP UMR5668, France

Julien Duron #

Univ Lyon, CNRS, ENS de Lyon, Université Claude Bernard Lyon 1, LIP UMR5668, France

Abstract
We present RedAlert, a heuristic solver for twin-width, submitted to the Heuristic Track of the 2023
edition of the Parameterized Algorithms and Computational Experiments (PACE) challenge.

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis

Keywords and phrases twin-width, contraction sequences, heuristic, pair sampling, pair filtering

Digital Object Identifier 10.4230/LIPIcs.IPEC.2023.40

Related Version Full Version: https://bitbucket.org/tennobe/red-alert

Funding This work was supported by the ANR projects TWIN-WIDTH (ANR-21-CE48-0014) and
Digraphs (ANR-19-CE48-0013).

1 Twin-width and contraction sequences

To keep our description short, we refer the reader to the first two sections of [2] for the
definitions and motivations behind contraction sequences and twin-width. A trigraph has
two disjoint edge relations: red edges and black edges. Its total graph consists of the union
of these two relations. The red degree (resp. total degree) is the degree in the graph formed
by the red edges (resp. in the total graph). We aim to find a contraction sequence (that
iteratively identifies two vertices and updates the color of their incident edge, until there is
only one vertex left) with overall maximum red degree as low as possible.

2 Overview of RedAlert

In the search of contraction sequences of low width, a natural subroutine consists of finding
a good pair of vertices, that is, one whose contraction results in a trigraph with maximum
red degree as low as possible. An oracle providing the greedily best pair in 10−5s would have
likely won the competition. However, this is far from what is physically possible. In theory,
getting a best pair within the allowed 300s is already challenging, since the largest instances
had order of 107 vertices, and Closest Vector Pair –more or less the best pair problem
when starting from a graph– (like the task of finding an orthogonal pair of 0,1-vectors) has
no truly subquadratic algorithm unless the Strong Exponential-Time Hypothesis fails [3].

We thus resolve to sampling the pairs of vertices as candidates for the next contraction.
Based on the remaining time and number of vertices, we compute an integer minPairs
indicating the minimum number of pairs to be contracted from the sampled pairs (to finish
in time). We then contract at least minPairs candidate pairs according to a cost function
detailed below. Challenging instances produce denser and denser trigraphs as we contract
them. This results in a progressive increase of the time to sample and select pairs to contract.
In such cases, we may resort to faster (and rougher) subroutines to finish the contraction
sequences: totDegAlert and balancedScheme. We will briefly detail them.

© Édouard Bonnet and Julien Duron;
licensed under Creative Commons License CC-BY 4.0

18th International Symposium on Parameterized and Exact Computation (IPEC 2023).
Editors: Neeldhara Misra and Magnus Wahlström; Article No. 40; pp. 40:1–40:5

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:edouard.bonnet@ens-lyon.fr
http://perso.ens-lyon.fr/edouard.bonnet/
https://orcid.org/0000-0002-1653-5822
mailto:julien.duron@ens-lyon.fr
https://orcid.org/0009-0004-0925-9438
https://doi.org/10.4230/LIPIcs.IPEC.2023.40
https://bitbucket.org/tennobe/red-alert
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


40:2 PACE Solver Description: RedAlert - Heuristic Track

To summarize, the main loop of RedAlert is as follows:

1. Estimation of minPairs;

2. Sampling of the candidate pairs;

3. Selection of at least minPairs most favorable pairs among the candidate pairs;

4. Contraction of these pairs;

5. If running out of time, finish with increasingly cruder heuristics.
Also see Figure 1.

Parsing
Input

Computing
minPairs

Sampling
Candidates

Filtering
Candidates Contractions

One vertex remaining?zeitnot or minPairs too high

totDegAlert

balancedScheme

Output

Main Loop

Computing
minPairs

Sampling
Candidates

Filtering
Candidates Contractions

One vertex remaining?zeitnot or minPairs too high No

Yes

No

Yes

no time left

Figure 1 Sketch of RedAlert. We exit the main loop when (we have a solution or) the time
budget of 260s is depleted or we would have to contract over 40% of our sampled pairs. We then
call totDegAlert up to second 285. If by then no complete contraction sequence was found, we call
balancedScheme which takes less than a second to terminate.

3 Dense and Small vs. Sparse and Large Inputs

Before we start parsing the input graph, we decide based on its number of vertices and edges
whether we want to work with adjacency matrices or adjacency lists. Typically the former
shall be preferred on graphs with few vertices but high edge density, while it is simply not an
option when the number of vertices becomes too large. Only the first three or four instances
(below 2500 vertices) of the Heuristic Track were such that our treatment with adjacency
matrices performed better. Thus we will mainly describe the part of our algorithm using
adjacency lists. Nevertheless, let us mention one nice feature of using adjacency matrices:
one can test the quality of a pair of vertices by sampling an appropriate number of indices,
and computing the number of disagreements (potential red edges) at these indices.

In the sparse case, we represent our trigraphs with slightly-modified adjacency lists: the
neighbors of a vertex are stored in a set. Each vertex has a set for its black neighbors, and
a set for its red neighbors. While contracting the trigraph, we maintain other useful elements
such as the remaining number of vertices, edges, maximum red degree, overall maximum
red degree, list of pairs vertex/red degree, list of pairs vertex/total degree, and some arrays
to keep the conversion between local labels and global labels. The contraction operation
remains reasonably fast and takes a typical 10−4s on the large instances.



É. Bonnet and J. Duron 40:3

4 Sampling candidates

4.1 Computing minPairs

At each iteration of the main loop, we sample around 10000 pairs of vertices, and contract
minPairs pairs of them. To choose minPairs, we compute the time used in the last iteration
of the loop, say t and the remaining time say T . In the hypothesis where the next iterations
will use the same time t, we can afford T/t more iterations. In practice, not all the iterations
take the same amount of time, but the changes are sufficiently gradual for the approximation
to work.

If the current number of vertices of the graph is k, then each of those iterations should
contract k

T/t = tk/T pairs, which leads to minPairs = tk/T . Typical values of minPairs are
1 for the smallest instances, 30 for medium ones, and above 1000 for the largest, a problem
that we tackle in Section 6. When minPairs is too small (1 for example) we increase the
sampling size to better use our time. To achieve this, we increase it while minPairs is
below 30, decrease it if later minPairs gets above 70, and reset it to its minimum of 10000
when minPairs reaches 500.

4.2 Candidates distribution
In the sparse case, our distribution is biased towards pairs of vertices that are close to each
other. We pick a vertex v uniformly at random. Then with probability 1/2, we uniformly
pick a first neighbor of v (in the total graph) to complete the pair, and with probability 1/2,
we uniformly choose a second neighbor of v (still in the total graph). This performs well
on the sparsest instances. As half of our sampled pairs consist of vertices at distance 2, we
naturally find contractions that are decreasing the red degree of high-degree vertices.

We experimented a bit with favoring vertices v with low red degree or low total degree,
or adding pairs of red neighbors of a vertex with highest red degree. This did not seem to
improve the overall performance of the heuristic, so we opted for this simple distribution.

In the dense case, this distribution is not helpful: most pairs of vertices are at distance 2.
We thus used the uniform distribution.

5 Filtering candidates

We evaluate the sampled pairs based on a cost function f , defined as follows. If G is
the current trigraph, u, v two vertices of G, and G′ the resulting trigraph if u and v were
contracted into w, we set f(u, v) = (r, p, e) where

r ∈ {0, 1}, and r = 0 iff the maximum red degree of G′ is smaller than that of G;
p is the maximum red degree among vertices of G′ in the closed red neighborhood of w;
e is the total number of red edges in G′.

When comparing two pairs of vertices, we prefer the one whose image by f is lexicograph-
ically smaller. When different sampled pairs share vertices, we cannot contract both of them.
In the same way, the contraction of a pair can drastically change the evaluation of another
pair. To overcome those issues, we build a min-heap (according to f) of the candidates, and
contract them in the following way:

Pop the minimal candidate c

If one of the vertices of c does not exist anymore, we continue
We evaluate f(c) in the current trigraph
If f(c) is not worst than the previous time it was evaluated, we contract c

Otherwise we add c to the min-heap with the new value of f(c).

IPEC 2023



40:4 PACE Solver Description: RedAlert - Heuristic Track

And we loop until we contracted minPairs candidates. This procedure is particularly useful
in the case of a path: If we did not evaluate again the candidates after one contraction, then
we would contract both endpoints of the path with their neighbor, resulting in a sequence of
width 2 (instead of 1). We found out that further contracting all pairs tying with the worst
contracted pair may advantageously clear some time up, heading to an uncertain and more
complicated future.

A major issue with f is that computing f(u, v) is linear in d(u)+d(v) where d(u) and d(v)
are the degrees of u and v. This implies that increasing the density of the trigraph increases
the time taken to evaluate f . In this case, we cannot afford to be as picky as before in the
choice of candidate we contract, which is implemented by the augmentation of minPairs.

6 When time gets shorter or minPairs gets too large

It can happen that minPairs, which is computed based on the number of remaining time and
vertices (or contractions), and the time spent in the previous loop iteration per performed
contraction, steadily increases. This typically happens when the densification of the current
trigraph accelerates. This may result in a situation when, to meet its deadline, the heuristic
has to contract a large fraction of the sampled pairs, making it close to the random heuristic.

In this case, remark that the initial average degree was quite low, and as the black degree
cannot increase, the densification of the trigraph come from red edges. We can deduce from
this observation that the degree of a vertex is a good approximation of its red degree. We
thus break out of the main loop and call a faster subroutine, totDegAlert, which greedily
contracts pairs of smallest total degree. This subroutine still requires to explicitly perform
contractions, which takes some time on the largest instances. It is thus possible that we
run out of time even inside totDegAlert. Therefore, when we have only 15 seconds left, we
call balancedScheme. This subroutine is based on the O(

√
m)-sequence for m-edge graphs

(see [1] for a more precise bound). It partitions the vertex set into O(
√

m) buckets of roughly
equal sum of total degrees, plus an additional bucket with vertices of total degree Ω(

√
m)

(large degree), see Figure 2.

. . .

O(
√

m) buckets of total degree O(
√

m)

Bucket of large-degree vertices

Figure 2 Partition of the trigraph in buckets yielding an O(
√

m)-sequence.

The idea is then to contract every bucket into a single vertex, finishing with the
bucket of large-degree vertices, and end the contraction sequence arbitrarily. What makes
balancedScheme particularly fast is that we do not need to make these contractions expli-
citly. As a simple but effective optimization, we contract each bucket in such a way that
the contraction tree is a balanced binary tree rather than a caterpillar. When RedAlert
is about to output a solution for which it knows the actual width (i.e., without invoking
balancedScheme), we first compare it to some small multiple of

√
m where m is the number

of edges of the input graph. In some cases, indeed, running balancedScheme from scratch
on the original graph gives a better contraction sequence.



É. Bonnet and J. Duron 40:5

References
1 Jungho Ahn, Kevin Hendrey, Donggyu Kim, and Sang-il Oum. Bounds for the twin-width of

graphs. SIAM J. Discret. Math., 36(3):2352–2366, 2022. doi:10.1137/21m1452834.
2 Édouard Bonnet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant. Twin-width I:

tractable FO model checking. J. ACM, 69(1):3:1–3:46, 2022. doi:10.1145/3486655.
3 Ryan Williams. A new algorithm for optimal 2-constraint satisfaction and its implications.

Theor. Comput. Sci., 348(2-3):357–365, 2005. doi:10.1016/j.tcs.2005.09.023.

IPEC 2023

https://doi.org/10.1137/21m1452834
https://doi.org/10.1145/3486655
https://doi.org/10.1016/j.tcs.2005.09.023

	1 Twin-width and contraction sequences
	2 Overview of RedAlert
	3 Dense and Small vs. Sparse and Large Inputs
	4 Sampling candidates
	4.1 Computing minPairs
	4.2 Candidates distribution

	5 Filtering candidates
	6 When time gets shorter or minPairs gets too large

