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Abstract
We consider the question of polynomial kernelization of a generalization of the classical Vertex
Cover problem parameterized by a parameter that is provably smaller than the solution size. In
particular, we focus on the c-Component Order Connectivity problem (c-COC) where given an
undirected graph G and a non-negative integer t, the objective is to test whether there exists a set
S of size at most t such that every component of G − S contains at most c vertices. Such a set S is
called a c-coc set. It is known that c-COC admits a kernel with O(ct) vertices. Observe that for
c = 1, this corresponds to the Vertex Cover problem.

We study the c-Component Order Connectivity problem parameterized by the size of a
d-coc set (c-COC/d-COC), where c, d ∈ N with c ≤ d. In particular, the input is an undirected
graph G, a positive integer t and a set M of at most k vertices of G, such that the size of each
connected component in G − M is at most d. The question is to find a set S of vertices of size at
most t, such that the size of each connected component in G − S is at most c. In this paper, we
give a kernel for c-COC/d-COC with O(kd−c+1) vertices and O(kd−c+2) edges. Our result exhibits
that the difference in d and c, and not their absolute values, determines the exact degree of the
polynomial in the kernel size.

When c = d = 1, the c-COC/d-COC problem is exactly the Vertex Cover problem para-
meterized by the solution size, which has a kernel with O(k) vertices and O(k2) edges, and this is
asymptotically tight [Dell & Melkebeek, JACM 2014]. We also show that the dependence of d − c in
the exponent of the kernel size cannot be avoided under reasonable complexity assumptions.

2012 ACM Subject Classification Theory of computation → Fixed parameter tractability

Keywords and phrases Kernelization, Component Order Connectivity, Vertex Cover, Structural
Parameterizations

Digital Object Identifier 10.4230/LIPIcs.IPEC.2023.5

Funding Sriram Bhyravarapu: Supported by the SERB-DST via grant PDF/2021/003452.
Saket Saurabh: Supported by the European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme (grant agreement No. 819416), and Swarnajayanti
Fellowship (No. DST/SJF/MSA01/2017-18).

1 Introduction

The design of parameterized algorithms and kernelization has traditionally relied on the
size of the solution as a crucial parameter. Nonetheless, when a problem is established
as fixed-parameter tractable based on the solution size, it becomes natural to explore the
problem using a parameter that is provably smaller than the solution size.
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Over the past decade, several interesting papers have explored these inquiries, particularly
in the realm of kernelization [2,7,9–12,15]. Notable contributions in this area include polyno-
mial kernels for the Vertex Cover problem parameterized by the feedback vertex set [10]
and the odd cycle transversal [12]. Hols, Kratsch, and Pieterse [9] provide a comprehensive
perspective on most of the aforementioned structural kernelization of Vertex Cover.
Additionally, kernelization of Vertex Cover with respect to above-guarantee parameters
has also been studied [11]. More recently, in another direction of work, Bougeret, Jansen &
Sau, gave a characterization for which structural parameters, that serve as modulators of
minor-closed graph classes, Vertex Cover admits polynomial kernels [1].

In this paper, we consider a generalized version of the Vertex Cover problem known
as the c-Component Order Connectivity (c-COC) problem. In the c-COC problem,
we are given a graph G and an integer t, and the objective is to identify a set of at most t

vertices, say S, such that the size of each connected component of G − S is at most c. Such
a set S is referred to as a c-coc set. It is worth noting that when c equals 1, the c-COC
problem is equivalent to the Vertex Cover problem. The current best-known kernel for the
Vertex Cover problem parametrized by solution size (t) consists of 2t − c log t vertices [14]
for all c > 0. Although previously there was a kernel for Vertex Cover with O(t) vertices
and O(t2) edges [4] which is asymptotically best. For c-COC we can obtain a simple kernel
with O((t + c)t) vertices by deleting vertices of degree at least t + c, iteratively. Kumar and
Lokshtanov [13] designed a kernel with 2ct vertices running in time nO(c). Finally, Xiao [18]
obtained a kernel with 9ct vertices running in time nO(1). Here, the polynomial in the
running time does not depend on c.

Observe that when d ≥ c, the size of a d-coc set is at most the size of a c-coc set. This
observation leads us to a natural hierarchy of parameterized problems known as c-COC
parameterized by a d-coc set, where c and d are positive integers satisfying c ≤ d. We refer
to these parameterized problems as c-COC/d-COC.

c-COC/d-COC Parameter: k

Input: An undirected graph G, an integer t, a set M ⊆ V (G) such that |M | ≤ k and for
each connected component C of G − M , |C| ≤ d

Question: Does there exist a set S ⊆ V (G) such that |S| ≤ t and for each connected
component C ′ of G − S, |C ′| ≤ c?

It is natural to ask how do we get the modulator. Either, we can assume that it is given
as part of the input or we can obtain a set M of size at most (d + 1)opt, where opt is the
size of a smallest d-coc set. Indeed, start with an empty M , and while M is not a d-coc set,
greedily select a arbitrary connected subgraph with d + 1 vertices and include each of these
d + 1 vertices into M and remove them from the graph. Thus, from now onwards we assume
that M is given as part of the input.

Our main result shows that c-COC/d-COC admits a polynomial kernel with O(kd−c+1)
vertices and O(kd−c+2) edges, where k is the size of M , a d-coc set. Notably, our result
establishes that the degree of the polynomial in the kernel size is solely determined by the
difference between d and c, rather than the specific values of d and c. To illustrate, both
5-COC/7-COC and 23-COC/25-COC exhibit kernels of size O(k3). The formal statement
of our main result is presented in Theorem 1.

▶ Theorem 1. c-COC/d-COC admits a kernel with O(kd−c+1) vertices and O(kd−c+2)
edges.
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Figure 1 A summary of the main steps of our kernelization.

Note that when c = d = 1, the c-COC/d-COC problem corresponds to the Vertex
Cover problem parameterized by the size of the solution. In this scenario, our result is
asymptotically consistent with the best-known bounds for Vertex Cover.

In the light of Theorem 1, the subsequent question arises as to whether the exponent of
k in the kernel size can be made a constant value and be independent of d − c. Specifically,
does c-COC/d-COC admit a uniform kernel of size f(d, c)kO(1), where f is a function that
only depends on d and c? However, we demonstrate that this is not possible. In particular,
we establish that Vertex Cover/d-COC does not admit a kernel of size O(kd−ϵ) for any
ϵ > 0 and positive integer d. This result is precisely formalized in Theorem 2. Vertex
Cover therefore does not admit a kernel that is uniformly polynomial in the value of d. The
phenomenon that the degree of the kernel size for Vertex Cover has to increase when
using smaller and smaller structural parameterization is well-known [8].

▶ Theorem 2. For every ϵ > 0 and every positive integer d, Vertex Cover/d-COC has
no compression of vertex size O(kd−ϵ) unless co-NP ⊆ NP/poly.

Our methods

In order to construct a kernel for c-COC/d-COC, our algorithm employs the Expansion
Lemma, a combinatorial tool that played a crucial role in developing a quadratic kernel for the
Feedback Vertex Set problem. Given an input instance (G, M, k, t) of c-COC/d-COC,
we generate sets of “certifying families” for every subset T ⊆ M that correspond to certain
components in G − M . In particular, the idea is to understand the following. Suppose
we do not include any vertex from T in our solution. Then for which components C of
G − M do we need to select a strictly larger number of vertices than what is required to
locally solve the problem in C. These components (in fact, a subset of these) are part of
a certifying family corresponding to T . By utilizing these certifying families, we construct
a bipartite graph and apply the Expansion Lemma to identify an irrelevant component in
G − M . Through repeated applications of the Expansion Lemma, we can upper bound the
number of components in G − M by O(kd−c+1). Since the size of M is at most k, and each
component in G − M contains at most d vertices, we can bound the number of vertices in
the kernel to O(d · kd−c+1 + k) and the number of edges to O(d2 · kd−c+2 + k2). A summary
of the key steps in our kernelization algorithm is provided in Figure 1. Moreover, our lower
bound results are established through a parameter-preserving reduction from the d-SAT
problem.

IPEC 2023
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2 Preliminaries

In this paper, we consider finite, undirected graphs. For a graph G, we use V (G) and
E(G) to refer to its vertex and edge sets, respectively. By |G| we denote the number of
vertices in G. We use comp(G) to denote the size of the largest component in G, defined as
comp(G) = max{|V (C)| : C is a component of G}. Thus, an n-vertex graph G is connected
if and only if comp(G) = n. Given two vertex-disjoint sets X and Y from V (G), the set
NX(Y ) = N(Y ) ∩ X represents the subset of vertices in X that has at least one neighbour
in Y . For any positive integer ℓ and a subgraph H ⊆ G, the ℓ-component order connectivity
of H, denoted as cocℓ(H), is defined as the size of the minimum set X ⊆ V (H) such that
comp(H − X) ≤ ℓ. In other words, we have cocℓ(H) = min{|X| : comp(H − X) ≤ ℓ, X ⊆
V (H)}. We use [q] to denote the set {1, . . . , q}. For details on parameterized complexity,
kernelization, and compression we refer to the textbooks [3] and [6].

3 Kernelization

We represent an instance of c-COC/d-COC as (G, M, k, t), where G is a graph, M ⊆ V (G) is
a subset of vertices with size at most k, and comp(G−M) ≤ d. Recall that the problem seeks
to determine whether there exists a set S ⊆ V (G) of size at most t such that comp(G−S) ≤ c.
We use C to denote the set of all components in G − M . For any component C in C, since
|C| ≤ d, we have cocc(C) ≤ d − c, where cocc(C) denotes the size of the smallest vertex
set X ⊆ V (C) such that comp(C − X) ≤ c. Let Cℓ = {C | C ∈ C and cocc(C) = ℓ} denote
the set of components C in G − M for which the size of a smallest c-coc is ℓ. It is possible
for the set Cℓ to be empty. Note that for each C ∈ C, cocc(C) ≤ d − c. Consequently, for
each ℓ > d − c, we have Cℓ = ∅. In the subsequent section, we show that the number of
components in Cℓ, for any ℓ ∈ {0, 1, . . . , d − c}, can be upper bounded by O(kd−c+1) (after
the application of certain reduction rules). Once this is accomplished the bounds on the
number of vertices and edges in the kernel follow immediately, as each component has at
most d vertices. Hence, in the remaining we focus on bounding the size of each set Cℓ.

Note that the family Cℓ can be constructed in polynomial time. Indeed, for each component
C of G − M , the value of cocc(C) can be computed in 2|C| · |C|O(1) time by considering all
possible subsets of C as c-coc sets. Given that |C| ≤ d for each connected component C, the
computation of cocc(C) can be done in time that only depends on d (which is a constant).
Recall that (G, M, k, t) represents an instance of c-COC/d-COC. Consider a vertex set
T ⊆ M and a component C ∈ Cℓ. We use local(T, C) to denote the size of the smallest
set X ⊆ V (C) such that comp(C − X) ≤ c and NC(T ) ⊆ X, where NC(T ) = N(T ) ∩ V (C).
Informally, local(T, C) represents the size of the smallest solution corresponding to cocc(C)
in G[C] that must include all the neighbors of T in C. Notably, for any pair T and C, the
value of local(T, C) can be computed in 2|C| · |C|O(1) time by examining all subsets of
C that are supersets of the neighborhood of T in C, considering them as solution sets of
G[C], and determining the minimum possible set among them. Since cocc(C) = ℓ for each
component C ∈ Cℓ, we make the following observation.

▶ Observation 3. For each pair (T, C) where T ⊆ M and C ∈ Cℓ, we have local(T, C) ≥ ℓ.

Certifying family for a fixed ℓ. Let T = {T | T ⊆ M and |T | ≤ ℓ + 1} denote the set
of all subsets of M of size at most (ℓ + 1). We refer to each T ∈ T as an unordered tuple
of size |T |. For every T ∈ T , we define a set of components FT associated with T as
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FT = {C : C ∈ Cℓ, local(T, C) > ℓ}. We refer to such a family FT as a certifying family for
T . Essentially, if C ∈ FT , then there exists no solution of G[C] corresponding to cocc(C) of
size ℓ that includes all the neighbors of T in C.

Given two disjoint vertex sets V1 and V2, the boundary of V1 with respect to V2, denoted by
bdryV2

(V1), is defined as the set N(V2) ∩ V1. We present two key lemmas that are crucial
for our analysis.

▶ Lemma 4. Let C ∈ Cℓ such that |bdryM (C)| ≥ ℓ + 1. Then there exists T ∈ T satisfying
C ∈ FT .

Proof. Since C ∈ Cℓ, an optimal c-coc set in G[C] has size ℓ but each c-coc set containing
NG(T ) ∩ C has size more than ℓ because |NC(T )| > ℓ. Now consider an arbitrary set
C∗ ⊆ bdryM (C) of size (ℓ+1). Let U ⊆ NM (C) be a set containing a neighbor of each vertex
in C∗ (arbitrarily select a neighbor of each vertex in C∗). Clearly, the size of |U | ≤ ℓ + 1
and C∗ ⊆ NC(U). According to the definition of a certifying family, the component C is
associated with U .

This concludes the proof. ◀

▶ Lemma 5. Let C ∈ Cℓ be a component with the property that |bdryM (C)| ≤ ℓ. Then either
there exists a tuple T ∈ T such that C ∈ FT , or there exists a vertex set U ⊆ V (C) with
|U | = ℓ, satisfying bdryM (C) ⊆ U and comp(C − U) ≤ c.

Proof. Consider the vertex set NM (C) ⊆ M . Let X ⊆ NM (C) be a set containing a neighbor
of each vertex in bdryM (C) (arbitrarily select a neighbor of each vertex in bdryM (C)). Clearly,
the size of |X| ≤ |bdryM (C| ≤ ℓ. Furthermore, we have NC(X) = bdryM (C).

If C belongs to the certifying family FX , then our assertion is proven. So we assume
that C /∈ FX . According to the definition of FX , this implies local(X, C) = ℓ. Therefore,
there exists a solution U associated with local(X, C) such that U ⊆ V (C), |U | = ℓ,
bdryM (C) ⊆ U , and comp(C − U) ≤ c. ◀

Lemmas 4 and 5, essentially, say that a component C of G − M is not in any certifying
family if there exists a minimum size local solution for the component C that contains all
the boundary vertices (bdryM (C)). This observation leads to the following reduction rule.

▶ Reduction Rule 1. Consider a component C ∈ Cℓ for which there is no tuple T ∈ T that
satisfies that C ∈ FT . Then we remove C from the graph G and reduce the value of t by ℓ.
The resulting instance is (G − C, M, k, t − ℓ).

To apply Reduction Rule 1 finding such a component takes kℓ+1 · 2d · nO(1) time. The
correctness of the Reduction Rule 1 follows from the following Lemma 6.

▶ Lemma 6. Reduction Rule 1 is safe.

Proof. The forward direction is straightforward. Let S be a solution to the instance
(G, M, k, t). Since G − C is a subgraph of G and cocc(C) = ℓ, there are at least ℓ vertices of
C in S. Therefore, S \ C is a solution for (G − C, M, k, t − ℓ).

In the backward direction, let S1 be a solution to (G−C, M, k, t−ℓ). We aim to show that
there exists a vertex set Z ⊆ V (C) such that |Z| = ℓ and S ∪ Z is a solution to (G, M, k, t).
We consider two cases based on the size of bdryM\S1

(C).

Case 1. bdryM\S1
(C) ≥ ℓ + 1. Based on Lemma 4, there exists T ∈ T such that T ⊆ M ,

|T | ≤ (ℓ + 1), and C ∈ FT . This contradicts our assumption that there is no T ∈ T
satisfying C ∈ FT .

IPEC 2023
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Case 2. bdryM\S1
(C) ≤ ℓ. Based on Lemma 5, we have two possibilities: either there

exists T ∈ T such that |T | ⊆ M \ S1, |T | ≤ (ℓ + 1), and C ∈ FT , or there is a vertex set
U ⊆ V (C) satisfying |U | = ℓ, bdryM\S1

(C) ⊆ U , and comp(C − U) ≤ c. However, based
on our assumption, the former condition cannot occur. Therefore, there must exist a
vertex set U ⊆ V (C) satisfying |U | = ℓ, bdryM\S1

(C) ⊆ U , and comp(C − U) ≤ c. In
this case, we set Z = U .

This completes the proof. ◀

Expansion Lemma. From now onwards, we assume that we have an instance (G, M, k, t) of
c-COC/d-COC, on which we have applied Reduction Rule 1 exhaustively. Now, we bound
the number of components in Cℓ using the expansion lemma in strengthened form of [16].
Let us first recall the definition of expansion and the expansion lemma.

▶ Definition 7 (q-expansion [3]). Let H be a bipartite graph with vertex bipartition (X, Y )
and q be a positive integer. A set of edges E∗ ⊆ E(H) is called a q-expansion of X into Y

if (i) each vertex of X is incident with exactly q edges of E∗, and (ii) E∗ saturates exactly
q|X| vertices in Y .

▶ Lemma 8 (Expansion Lemma [ [3], Lemma 2.18]). Let q ∈ N and G be a bipartite graph
with vertex bipartition (P, Q) such that |Q| > q · |P | and there are no isolated vertices in Q.
Then there exist nonempty vertex sets X ⊆ P and Y ⊆ Q such that (i) X has a q-expansion
E∗ into Y , (ii) no vertex in Y has a neighbor outside X. Furthermore, two such sets X and
Y and such vertex w can be found in the time that is polynomial in the size of G.

Next we mention q–Expansion Lemma given by Fomin et al. [5] which is a generalization
of a result due to Thomass´e [ [17], Theorem 2.3].

▶ Lemma 9 (The q-Expansion Lemma [ [5], Lemma 5.1]). Let q ∈ N and G be a bipartite
graph with vertex bipartition (P, Q) such that |Q| > q · t, where t is the size of a maximum
matching in G, and there are no isolated vertices in Q. Then there exist nonempty vertex
sets X ⊆ P and Y ⊆ Q such that (i) X has a q-expansion E∗ into Y , (ii) no vertex in Y

has a neighbor outside X. Furthermore, two such sets X and Y and such vertex w can be
found in the time that is polynomial in the size of G.

For our purpose we use the expansion lemma in strengthened form given by Philip et
al. [16] which is following.

▶ Lemma 10 (Strong q-Expansion Lemma [ [16], Lemma 5]). Let q ∈ N and G be a bipartite
graph with vertex bipartition (P, Q) such that |Q| > q · t, where t is the size of a maximum
matching in G, and there are no isolated vertices in Q. Then there exist nonempty vertex
sets X ⊆ P and Y ⊆ Q such that (i) X has a q-expansion E∗ into Y , (ii) no vertex in Y

has a neighbor outside X, and (iii) there is a vertex w ∈ Y such that w is not incident to
any edge in E∗ (or, E∗ does not saturate w). Furthermore, two such sets X and Y and such
vertex w can be found in the time that is polynomial in the size of G.

Note that the statement of Lemma 10 remains valid even for |Q| > q · |P |, as |P | ≥ t.
Now, in order to apply the expansion lemma, we first construct an auxiliary bipartite graph
where this lemma is applied.
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Â

B̂

t1
t2 t3

Figure 2 An example of 4-expansion from Â into B̂. t1, t2, t3 represents vertices of corresponding
tuples in T

Â
. The red-colored vertices denote the solution vertices from the modulator.

Construction of an auxiliary bipartite graph H = (A, B). Let us recall the set T , which
consists of all subsets of M with size at most ℓ + 1, and the corresponding certifying families
{FT : T ∈ T }. We will now construct a bipartite graph H with vertex partitions A and B

using the following procedure:
For each tuple Ti ∈ T , we introduce a vertex ti in the part A.
For each component Cj ∈ Cℓ, we include a vertex cj in the part B.
For each pair of vertices ti ∈ A and cj ∈ B, we add an edge ticj in H if and only if Cj

belongs to the certifying family FTi
.

We are now ready to give the reduction rule. From this point onwards, we fix the following
value for q.

q = (ℓ + 2) + c(ℓ + 1)

Consider the bipartite graph H = (A, B) that was constructed above. It is important to
note that if the instance (G, M, k, t) is reduced using Reduction Rule 1, then there are no
isolated vertices in the vertex set B.

▶ Reduction Rule 2. If |B| > q · |A|, then call the algorithm provided by the Expansion
Lemma to compute sets Â ⊆ A and B̂ ⊆ B such that

no vertex in B̂ has a neighbor outside Â, i.e., N(B̂) ⊆ Â,
there is a q-expansion Ê from Â into B̂, and
there is a vertex b ∈ B̂ such that b is not incident with Ê.

Consider the component C ∈ Cℓ corresponding to the vertex b in B. Then we remove C from
the graph G and reduce the value of t by ℓ. The resulting instance is (G − C, M, k, t − ℓ).

Before analyzing the safeness of Reduction Rule 2, we look at the following lemma.

▶ Lemma 11. Suppose Ê represents a q-expansion from Â into B̂, and let b be a vertex in B̂

that satisfies the condition of Reduction Rule 2. Further, let S1 be a solution to the problem
(G−C, M, k, t−ℓ). Then, there exists another solution S2 of (G−C, M, k, t−ℓ) that satisfies
the following properties: (i) |S2| ≤ |S1|; (ii) for each vertex ti in Â, S2 intersects with the
corresponding vertex set Ti ⊆ M , that is S2 ∩ Ti ̸= ∅.

Proof. Let T
Â

be the set of tuples corresponding to the vertices in Â. Let T1 be a subset of
T

Â
, containing those tuples T for which T intersects with S1 (i.e., T ∩ S1 ≠ ∅). On the other

hand, let T2 be defined as the set of tuples in T
Â

that are not in T1, i.e., T2 = T
Â

\ T1. In
other words, T2 comprises all the tuples T from T

Â
that satisfy T ∩ S1 = ∅.

IPEC 2023
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For each vertex ti in Â that corresponds to a tuple in the set T2, we define two sets: C1,ti

and C2,ti
. The set C1,ti

consists of each component Cj in Cℓ such that ticj is an edge in Ê

and |V (Cj) ∩ S1| = ℓ. The set C2,ti
consists of each component Cj in Cℓ such that ticj is an

edge in Ê and |V (Cj) ∩ S1| ≥ ℓ + 1. For an illustration see Figure 2.
First we show that |C1,ti

| < c(ℓ+1). On the contrary, assume that |C1,ti
| ≥ c(ℓ+1). For any

component Cj belonging to C1,ti , we observe that cjti ∈ Ê implies Cj ∈ FTi . Consequently, it
follows that local(Ti, Cj) > ℓ. However, since Cj ∈ C1,ti

, we have |Cj ∩ S1| = ℓ. Hence, we
conclude that NCj (Ti)\S1 ̸= ∅. Thus there always exists a vertex x ∈ Ti and y ∈ (NCj (Ti)\S1)
such that xy ∈ E(G). As |C1,ti

| ≥ c(ℓ + 1), we can select a vertex each from each of the
components in C1,ti

and obtain a set Y containing c(ℓ + 1) vertices from G − M , where
Y ∩S1 = ∅ and each vertex y ∈ Y has a neighbor in T1. Since, |Ti| ≤ ℓ+1 (since Ti ∈ T ), and
Ti ∩ S1 = ∅, we can deduce, by applying the pigeon-hole principle, the existence of a vertex x

in Ti such that degG−C−S1(x) ≥ c. Consequently, we have a component of size at least c + 1
in G − S1. This contradicts the fact that S1 is a solution for the c-COC/d-COC problem on
the instance (G − C, M, k, t − ℓ). Therefore, we can conclude that |C1,ti | ≤ c(ℓ + 1).

Given that q = (ℓ + 2) + c(ℓ + 1), and |C1,ti
| ≤ c(ℓ + 1), we can deduce that |C2,ti

| ≥ ℓ + 2.
We denote the set of all vertices contained in some tuple in T2 as V (T2), defined formally as
V (T2) := {v | ∃ T ∈ T2 : v ∈ M ∩ T}. Now, we propose a new solution denoted as S2. Let
U =

⋃
i V (C2,ti

) and C′ =
⋃

i C2,ti
.

S2 =
(
S1 \ U

) ⋃
V (T2)

⋃
Cj∈C′

Zj ,

Here, Zj ⊆ V (Cj) represents a set (the exact choice of Zj is deferred to later in the proof)
that corresponds to cocc(Cj). Here we want to mention that we do not want to choose an
arbitrary ℓ-size coc in G[Cj ]: rather we want to choose one that contains the neighborhood
of (M \ (S1 ∪ V (T2)) in Cj . We define a set X to correspond to cocc(H) if |X| = cocc(H)
and comp(H − X) ≤ c. Recall that cocc(Cj) = ℓ.

Towards the proof, we need to establish two conditions: firstly, |S2| ≤ |S1|, and secondly,
that S2 is a solution of (G − C, M, k, t − ℓ).

(i) |S2| ≤ |S1|. In this comparison, we are examining the sizes of S1 and S2. Observe that
we are only editing (deleting or adding) vertices that appear in the tuples in T2 and the
components C2,ti where ti corresponds to a specific tuple Ti in T2. Let us define the size
of the solution outside T2 and C2,ti

as f . We also define r as the sum of the sizes of C2,ti

for all relevant tuples Ti ∈ T2, i.e., r =
∑

i |C2,ti |. Since |C2,ti | ≥ ℓ + 2, we can conclude
that r ≥ (ℓ + 2) · |T2|. Based on these definitions, we can establish that |S1| ≥ f + r(ℓ + 1)
and |S2| = f + |V (T2)| + rℓ. Now according to the definition of a certifying family, we
have |V (T2)| ≤ (ℓ + 1) · |T2|.
Now,

|S2| = f + rℓ + |V (T2)|
≤ f + rℓ + (ℓ + 1) · |T2|
≤ f + rℓ + (ℓ + 2) · |T2|
≤ f + rℓ + r

≤ f + r(ℓ + 1)
≤ |S1|

(ii) S2 is a solution of (G − C, M, k, t − ℓ). Next, we show that S2 serves as a solution
for (G − C, M, k, t − ℓ). We analyze a component Cj ∈ C2,ti

. There are two possible
scenarios depending on the size of bdryM\S2

(Cj).
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bdryM\S2
(Cj) ≤ ℓ.

Based on Lemma 5, we can have two possibilities. Either there exists a tuple Ti ⊆
M \ S2 such that |Ti| ≤ (ℓ + 1) and Cj belongs to the certifying family FT , or
there exists a vertex set U ⊆ V (Cj) that satisfies the following conditions: |U | = ℓ,
bdryM\S2

(Cj) ⊆ U , and comp(Cj − U) ≤ c.
If there is a Ti belonging to T such that Cj is in FTi , it and Cj ∈ C2,ti implies that
ti must be a part of Â. However, this leads to a contradiction because it means Ti

has a non-empty intersection with S2, which contradicts the fact that Ti is a subset
of M \ S2.
If there exists a subset U of the vertex set V (Cj) such that |U | = ℓ, bdryM\S2

(Cj) ⊆
U and comp(Cj − U) ≤ c, then we can define the set Zj as U , which represents the
set corresponding to cocc(Cj).

bdryM\S2
(Cj) ≥ ℓ + 1.

Lemma 4 guarantees the existence of Ti ∈ T that fulfills the following conditions:
Ti ⊆ M \ S2, |Ti| ≤ (ℓ + 1), and Cj ∈ FT . As a result, ti must belong to Â according
to Lemma 10. However, this implies that Ti ∩ S2 cannot be empty, which contradicts
the fact that Ti is a subset of M \ S2.

when Cj ∈ C1,ti
, the vertices S1 ∩ Cj ⊆ S2 and no neighbor of Cj \ S1 have been added to

S1. So we are fine for this case. Hence the proof follows. ◀

The correctness of Reduction Rule 2 follows from the lemma below.

▶ Lemma 12. Reduction Rule 2 is safe.

Proof. The forward direction is straightforward. Suppose S is a solution to the instance
(G, M, k, t). Given that G − C is a subgraph of G and cocc(C) = ℓ, we can conclude that S

contains at least ℓ vertices from C. Hence, S \ C forms a solution for (G − C, M, k, t − ℓ).
In the backward direction, let S1 represent a solution for (G − C, M, k, t − ℓ). We will

show that there exists a vertex set Z ⊆ V (C) such that S ∪Z forms a solution for (G, M, k, t).
Consider the sets Â, B̂, and Ê that satisfy the assumptions outlined in Reduction Rule 2.
Within these assumptions, there exists a vertex b ∈ B̂ associated with a vertex w ∈ Â.
Specifically, T ⊆ N(C) and local(T, C) ≥ ℓ + 1, where C represents the component in Cℓ

corresponding to the vertex b in B, and T ⊆ M is the tuple associated with the vertex w.
However, due to the property of Ê, there is no edge e ∈ Ê in which w and b are the endpoints.
At this point, we invoke the algorithm provided by Lemma 11 to compute the set S2. As per
Lemma 11, for each t′ ∈ Â, we have S2 ∩ T ′ ̸= ∅, where T ′ ⊆ M represents the vertex set
associated with the vertex t′ in Â. Depending on the size of bdryM\S2

(C), we encounter two
cases.

Case 1. bdryM\S2
(C) ≥ ℓ + 1. By applying Lemma 4, we can establish the existence

of Ti ∈ T that satisfies the following conditions: Ti ⊆ M \ S2, |Ti| ≤ (ℓ + 1), and
C ∈ FT . Consequently, ti must belong to Â (based on the Expansion Lemma, b ∈ B̂

and N(B̂) ⊆ Â). However, this implies that Ti ∩ S2 ̸= ∅, which contradicts the fact that
Ti ⊆ M \ S2.

Case 2. bdryM\S2
(C) ≤ ℓ. Using Lemma 5, we can conclude that one of the following two

cases holds: Either there exists Ti ⊆ M \ S2, where |Ti| ≤ (ℓ + 1) and C ∈ FT , or, there
exists a vertex set U ⊆ V (C) satisfying |U | = ℓ, bdryM\S2

(C) ⊆ U , and comp(C −U) ≤ c.
If there exists Ti ∈ T such that C ∈ FTi , then it follows that ti must be in Â. However,
this implies that Ti ∩ S2 ̸= ∅, which contradicts the fact that Ti ⊆ M \ S2.
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In the case where there exists a vertex set U ⊆ V (C) that satisfies the conditions
|U | = ℓ, bdryM\S2

(C) ⊆ U , and comp(C − U) ≤ c, we can set Z equal to U .

This completes the proof. ◀

Putting them all together, we get the following theorem.

▶ Theorem 1. c-COC/d-COC admits a kernel with O(kd−c+1) vertices and O(kd−c+2)
edges.

Proof. Consider the instance of the c-COC/d-COC problem denoted as (G, M, k, t). We
begin by partitioning all the components C into a maximum of d − c parts denoted as
C1, C2, . . . , Cd−c. Each part Cℓ is defined as the collection of components C in G − M

satisfying cocc(C) = ℓ, where ℓ ∈ [d − c]. In other words, Cℓ contains components C for
which the minimum-sized set X ⊆ V (C) that guarantees comp(C − X) ≤ c is exactly ℓ.
Towards solving the problem, we initially focus on each set Cℓ individually, aiming to reduce
the number of components contained within each set.

We exhaustively apply Reduction Rules 1 and 2 to the set Cℓ for each ℓ ≤ d − c. Each
reduction rule is capable of removing at least one vertex from the graph and can be executed
in polynomial time. The running time of the algorithm takes into account the time required
for applying Reduction Rule 2 as well as constructing the auxiliary bipartite graph, which
facilitates the application of the expansion lemma. The construction of the bipartite graph
can be accomplished in kd−c+1 · nO(1) time. Consequently, the entire kernelization procedure
runs within polynomial time, specifically nO(1). The output of the algorithm is the resulting
instance (G′, M ′, k′, t′), which is guaranteed to be a kernel, meaning that no further reduction
can be applied to it. The correctness of the algorithm is derived from the proofs establishing
the safeness of the reduction rules (Lemmas 6 and 12).

We now argue about the size of the kernel. When Reduction Rules 1 and 2 are not
applicable, we can establish that |B| ≤ q · |A|, where q = (ℓ + 2) + c(ℓ + 1), and A and B

represent the vertex sets of the auxiliary bipartite graph. Recall that each vertex a ∈ A

corresponds to a set of at most ℓ + 1 ≤ (d − c) + 1 vertices from M , and each vertex b ∈ B

corresponds to a set of at most d vertices. Consequently, we have |A| ≤ O(kd−c+1) and
|B| ≤ O(kd−c+1). By combining these bounds, we can deduce that the size of the vertex set
in the reduced instance (G′, M ′, k′, t′) is upper bounded by O(kd−c+1). Additionally, the
degree of each vertex in M ′ is bounded by k +(d ·O(kd−c+1)), while the degree of each vertex
in G′ − M ′ is bounded by k + d. As a result, the size of the edge set in the reduced instance
is upper bounded by O(kd−c+2). In conclusion, the size of the vertex set in the reduced
instance is upper bounded by O(kd−c+1), and the size of the edge set is upper bounded by
O(kd−c+2). Hence the proof follows. ◀

4 Kernel Lower bound

In this section, we show a lower bound for the size of the kernel of the problem we considered in
this paper, under some complexity-theoretic assumptions. We prove it by giving a parameter
preserving transformation from d-CNF-SAT to c-COC/d-COC and using the Vertex
Cover kernelization lower bound due to Dell and Van Melkebeek [4].

Given a CNF formula where each clause has at most d literals, the d-CNF-SAT problem
asks to find a boolean assignment of values to the variables such that each clause is satisfiable.
The following two theorems are known due to Dell and Van Melkebeek [4].
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▶ Theorem 13 (Lower Bound for d-CNF-SAT [4]). Let d ≥ 3 be an integer. For any ϵ > 0,
the d-CNF-SAT problem parameterized by the number of variables (n) does not admit a
polynomial compression with size O(nd−ϵ), unless co-NP ⊆ NP/poly.

▶ Theorem 14 (Lower Bound for Vertex Cover [4]). For any ϵ > 0, the Vertex Cover
problem parameterized by the solution size (k) does not admit a polynomial compression with
size O(k2−ϵ), unless co-NP ⊆ NP/poly.

▶ Definition 15 (Parameter preserving transformation (PPT)). Let Π1 and Π2 be two para-
meterized problems. We say that there exists a parameter preserving transformation from
Π1 to Π2 if there exists a polynomial time algorithm B that given an instance (x, k) of Π1,
constructs an instance (x′, k′) of Π2 such that

(x, k) ∈ Π1 if and only if (x′, k′) ∈ Π2, and
k′ ≤ O(k).

Below we provide a parameter preserving transformation from d-CNF-SAT to c-COC/d-
COC when c = 1. In particular, we prove the following lemma.

▶ Lemma 16 (Reduction from d-CNF-SAT to Vertex Cover/d-COC). There exists a
parameter preserving transformation from the d-CNF-SAT parameterized by the number of
variables to Vertex Cover/d-COC. In the Vertex Cover/d-COC problem, the size of
the modulator is twice the number of variables present in the d-CNF-SAT formula.

Proof. Let Φ be a d-CNF formula, an instance of d-CNF-SAT, consisting of n variables,
denoted as {x1, x2, . . . , xn}, and m clauses {C1, C2, . . . , Cm}. Since Φ is a d-CNF formula,
each clause contains at most d literals. We construct an instance (G, k, t) for Vertex
Cover/d-COC using the following construction:

For each variable x, we introduce two vertices denoted as x1 and x2, and connect them
with an edge (x1, x2).
For a clause Cj consisting of dj literals, we include a clique of size dj . Within the clique,
we label the vertices as follows: a vertex is named vi,j if the literal xi or xi is present in
clause Cj .
For every i ∈ [n], j ∈ [m], if xi is a literal in clause Cj , we add the edge (xi, vi,j). Similarly,
if xi is a literal in clause Cj , we add the edge (xi, vi,j).

▷ Claim 17. There exists a vertex subset S ⊆ V (G) of size 2n such that comp(G − S) ≤ d.

Proof. Let S be defined as the set containing elements xi and xi for all i ∈ [n]. Clearly
|S| = 2n. Considering the construction of graph G, it can be observed that every component
in G − S forms a clique with a maximum size of d. Therefore, we have comp(G − S) ≤ d.

◁

▷ Claim 18. Φ is satisfiable if and only if G has a vertex cover of size n − m +
∑m

i=1 |Ci|.

Proof. In the forward direction, assuming that Φ is satisfiable, we show the existence of
a vertex cover in G with a size of n − m +

∑m
i=1 |Ci|. To construct this vertex cover, we

proceed as follows:
For every variable x, we include x in the set S if it is assigned the value true in the
satisfying assignment. Otherwise, we add x to S.
For each clause Cj , assuming that variable xa makes clause Cj satisfiable, we add all
vertices from the corresponding clique to S except for the vertex va,j .
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It is evident that the set S constructed as described above forms a vertex cover. Further-
more, the size of S is bounded by n − m +

∑m
i=1 |Ci| due to the construction process.

In the backward direction, let R be a vertex cover of G with a size of n − m +
∑m

i=1 |Ci|.
Since any vertex cover in Ci must have size at least |Ci| − 1, it follows that for each i, exactly
one of xi and xi is present in R. Now, we construct an assignment β for the variables in Φ
as follows: we set xi to true if xi is in R, and we set xi to false otherwise. Our objective
is to show that β satisfies all the clauses. Consider the clique corresponding to clause Cj .
We observe that exactly dj − 1 vertices are present in R. Therefore, there exists a vertex,
denoted as va,j , which is not in R. However, since R is a vertex cover, it must contain the
vertex xa in order to cover the edge (va,j , xa). Since xa is assigned the value true, the literal
xa satisfies the clause Cj . Hence, every clause in Φ is satisfied by the assignment β. ◁

As the transformation of d-CNF-SAT to Vertex Cover/d-COC can be performed in
nO(1) time, the lemma follows from the above two claims. ◀

Now we have the following theorem.

▶ Theorem 2. For every ϵ > 0 and every positive integer d, Vertex Cover/d-COC has
no compression of vertex size O(kd−ϵ) unless co-NP ⊆ NP/poly.

Proof. Our proof is divided into three cases in order to prove that, for any ϵ > 0 and an
integer d ∈ N, there exists no polynomial time algorithm that can transform a given instance
of Vertex Cover/d-COC to an equivalent instance of any arbitrary problem with O(kd−ϵ)
bits, unless co-NP ⊆ NP/poly.

Case 1. d = 1. In the case where d = 1, the problem known as Vertex Cover/1-COC
refers to the Vertex Cover problem parameterized by solution size. In this particular
case, the result stated in Theorem 14 proves the theorem.

Case 2. d = 2. We can observe that the size of a 2-COC set is at most the size of a minimum
vertex cover of the graph. As a result, 2-COC can be considered a parameter smaller
than 1-COC (vertex cover). Therefore, if Vertex Cover/2-COC admits a compression
of O(k2−ϵ) bits, it would imply that the Vertex Cover problem parameterized by the
solution size also has a compression of O(k2−ϵ) bits. However, this contradicts the result
stated in Theorem 14.

Case 3. d ≥ 3. Suppose we have an instance (G, k, t) of Vertex Cover/d-COC, where
d ≥ 3, and there exists a polynomial time algorithm A that can transform (G, k, t)
into an equivalent instance I of an arbitrary problem L such that I can be represented
using O(kd−ϵ) bits. To demonstrate the implications of this assumption, let us consider
an instance Π of d-CNF-SAT with n variables and m clauses. First, we utilize the
polynomial time algorithm described in Lemma 16 to transform Π into an instance
(G, 2n, n +

∑m
j=1 dj − 1) of Vertex Cover/d-COC. Next, we apply the algorithm A to

this transformed instance (G, 2n, n +
∑m

j=1 dj − 1), resulting in an equivalent instance
I of problem L. Based on our assumption, we know that I can be represented using
O(2nd−ϵ) = O(nd−ϵ) bits. However, this leads to a contradiction with co-NP ⊆ NP/poly,
as stated in Theorem 13.

This completes the proof. ◀
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5 Conclusion

In this paper, we show that c-COC/d-COC admits a polynomial kernel with O(kd−c+1)
vertices and O(kd−c+2) edges, where k is the size of the minimum d-coc set. Importantly,
we observe that the degree of the polynomial in the kernel size is solely determined by the
difference between d and c, and is independent of the specific values of d and c. Furthermore,
we establish that obtaining a uniform kernel for the problem, where the exponent of k is inde-
pendent of d−c, is unlikely under reasonable complexity assumptions. This result contributes
valuable insights to the field of kernelization for Vertex Cover, particularly regarding
c-Component Order Connectivity, when considering parameterizations smaller than
the conventional solution size.
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