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Abstract
The Integer Multicommodity Flow problem has been studied extensively in the literature.
However, from a parameterised perspective, mostly special cases, such as the Disjoint Path
problem, have been considered. Therefore, we investigate the parameterised complexity of the
general Integer Multicommodity Flow problem. We show that the decision version of this
problem on directed graphs for a constant number of commodities, when the capacities are given
in unary, is XNLP-complete with pathwidth as parameter and XALP-complete with treewidth as
parameter. When the capacities are given in binary, the problem is NP-complete even for graphs of
pathwidth at most 13. We give related results for undirected graphs. These results imply that the
problem is unlikely to be fixed-parameter tractable by these parameters.

In contrast, we show that the problem does become fixed-parameter tractable when weighted
tree partition width (a variant of tree partition width for edge weighted graphs) is used as parameter.
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1 Introduction

The Multicommodity Flow problem is the generalisation of the textbook flow problem
where instead of just one commodity, multiple different commodities have to be transported
through a network. The problem models important operations research questions (see
e.g. [32]). Although several optimisation variants of this problem exist [32], we consider
only the variant where for each commodity, a given amount of flow (the demand) has to be
sent from the commodity’s source to its sink, subject to a capacity constraint on the total
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6:2 The Parameterised Complexity of Integer Multicommodity Flow

amount flow through each arc. The nature and computational complexity of the problem
is highly influenced by the graph (undirected or directed, its underlying structure) and the
capacities, demands, and flow value (integral or not, represented in unary or binary). When
the flow values are allowed to be fractional, the problem can be trivially solved through a
linear program (see e.g. [22, 25]).

We focus on Integer Multicommodity Flow, where all the given capacities and
demands are integers and the output flow must be integral. The Integer Multicommodity
Flow problem is widely studied and well known to be NP-hard even if all capacities are 1,
on both directed and undirected graphs, even when there are only two commodities [11]. On
directed graphs, it is NP-hard even for two commodities of demand 1 [14]. These strong
hardness results have led to a range of heuristic solution methods as well as a substantial
body of work on approximation algorithms. For surveys, see e.g., [1, 32, 33].

An important special case of Integer Multicommodity Flow and the main source of
its computational hardness is the Edge Disjoint Paths problem. It can be readily seen
that Integer Multicommodity Flow is equivalent to Edge Disjoint Paths when all
capacities and demands are 1. Indeed, all aforementioned hardness results stem from this
connection. The Edge Disjoint Paths problem has been studied broadly in its own right (see
e.g. the surveys by Frank [16] and Vygen [31]), including a large literature on approximation
algorithms. See, amongst others [21, 30] for further hardness and inapproximability results.
On undirected graphs, Edge Disjoint Paths is fixed-parameter tractable parameterised by
the number of source-sink pairs [28, 24].

Investigation of the parameterised complexity of Edge Disjoint Paths has recently
been continued by considering structural parameterisations. Unfortunately, the problem is
NP-hard for graphs of treewidth 2 [26] and even for graphs with a vertex cover of size 3 [13].
It is also W[1]-hard parameterised by the size of a vertex set whose removal leaves an
independent set of vertices of degree 2 [19]. From an algorithmic perspective, Ganian and
Ordyniak [19] showed that Edge Disjoint Paths is in XP parameterised by tree-cut width.
Zhou et al. [34] give two XP algorithms for Edge Disjoint Paths for graphs of bounded
treewidth: one for when the number of paths is small, and one for when a specific condition
holds on the pairs of terminals. Ganian et al. [20] give an FPT algorithm parameterised by
the treewidth and degree of the graph. Friedrich et al. [17, 18] give approximation algorithms
for multicommodity flow on graphs of bounded treewidth.

These results naturally motivate the question: What can we say about the parameterised
complexity of the general Integer Multicommodity Flow problem under structural
parameterisations? We are unaware of any explicit studies in this direction. We do note that
the result of Zhou et al. [34] implies an XP algorithm on graphs of bounded treewidth for a
bounded number of commodities if the capacities are given in unary. We are particularly
interested in whether this result can be improved to an FPT algorithm, which is hitherto
unknown.

Our Setting and Contributions
We consider the Integer Multicommodity Flow problem for a small, fixed number of
commodities. In particular, Integer ℓ-Commodity Flow is the variant in which there
are ℓ commodities. Furthermore, we study the setting where some well-known structural
parameter of the input graph, particularly its pathwidth or treewidth, is small.

Our main contribution is to show that Integer 2-Commodity Flow is unlikely to be
fixed-parameter tractable parameterised by treewidth and or by pathwidth. Instead of being
satisfied with just a W[t]-hardness result for some t or any t, we seek stronger results using
the recently defined complexity classes XNLP and XALP. An overview of our results can be
found in Table 1.
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Table 1 Overview of our results for Integer 2-Commodity Flow. para-NP-complete =
NP-complete for fixed value of parameter. (1) = capacities of arcs inside bags can be arbitrary,
capacities of arcs between bags are bounded by weighted tree partition width. (2) Approximation,
see Theorem 1.11; conjectured in FPT. For the undirected case, the same results hold, except that for
the para-NP-completeness for the parameters pathwidth and treewidth, we need a third commodity.

Parameter unary capacities binary capacities
pathwidth XNLP-complete para-NP-complete
treewidth XALP-complete para-NP-complete

weighted tree partition width FPT (1) FPT (1)
vertex cover (2); in XP (2); open

XNLP is the class of parameterised problems that can be solved on a non-deterministic
Turing machine in f(k)|x|O(1) time and f(k) log |x| memory for a computable function f ,
where |x| is the size of the input x. The class XNLP (under a different name) was first
introduced by Elberfeld et al. [9]. Bodlaender et al. [2, 5, 7] showed a number of problems to
be XNLP-complete with pathwidth as parameter. In particular, [2] gives XNLP-completeness
proofs for several flow problems with pathwidth as parameter.

In this work, we prove XNLP-completeness (and stronger) results for Integer ℓ-
Commodity Flow. These give a broad new insight into the complexity landscape of
Integer Multicommodity Flow. We distinguish how the capacities of arcs and edges
are specified: these can be given in either unary or binary. First, we consider the unary case:

▶ Theorem 1.1. Integer 2-Commodity Flow with capacities given in unary, paramet-
erised by pathwidth, is XNLP-complete.

▶ Theorem 1.2. Undirected Integer 2-Commodity Flow with capacities given in
unary, parameterised by pathwidth, is XNLP-complete.

These hardness results follow by reduction from the XNLP-complete Chained Multi-
coloured Clique problem [6], a variant of the perhaps more familiar Multicoloured
Clique problem [12]. We follow a common strategy in such reductions, using vertex selection
and edge verification gadgets. However, a major hurdle is to use flows to select vertices
and verify the existence of edges to form the sought-after cliques. To pass this hurdle, we
construct gadgets that use Sidon sets as flow values, combined with gadgets to check that a
flow value indeed belongs to such a Sidon set.

For the parameter treewidth, we are able to show a slightly stronger result. Recently,
Bodlaender et al. [6] introduced the complexity class XALP, which is the class of parameterised
problems that can be solved on a non-deterministic Turing machine that has access to an
additional stack, in f(k)|x|O(1) time and f(k) log |x| space (excluding the space used by the
stack), for a computable function f , where |x| again denotes the size of the input x. Many
problems that are XNLP-complete with pathwidth as parameter are XALP-complete with
treewidth as parameter. This also holds for the Integer Multicommodity Flow problem:

▶ Theorem 1.3 (♣). Integer 2-Commodity Flow with capacities given in unary, para-
meterised by treewidth, is XALP-complete.

The reduction is from the XALP-complete Tree-Chained Multicoloured Clique
problem [7] and follows similar ideas as the above reduction. Combining techniques of the
proofs of Theorems 1.2 and 1.3 gives the following result.

IPEC 2023
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▶ Theorem 1.4 (♣). Undirected Integer 2-Commodity Flow with capacities given in
unary, parameterised by treewidth, is XALP-complete.

Assuming the Slice-wise Polynomial Space Conjecture [27, 5], these results show that
XP-algorithms for Integer 2-Commodity Flow or Undirected Integer 2-Commodity
Flow for graphs of small pathwidth or treewidth cannot use only f(k)|x|O(1) memory.
Moreover, the results imply these problems are W [t]-hard for all positive integers t.

If the capacities are given in binary, then the problems become even harder.

▶ Theorem 1.5. Integer 2-Commodity Flow with capacities given in binary is NP-
complete for graphs of pathwidth at most 13.

▶ Theorem 1.6 (♣). Undirected Integer 3-Commodity Flow with capacities given in
binary is NP-complete for graphs of pathwidth at most 18.

Finally, we consider a variant of the Integer Multicommodity Flow problem where
the flow must be monochrome, i.e. a flow is only valid when no edge carries more than one
type of commodity. Then, we obtain hardness even for parameterisation by the vertex cover
number of the graph, for both variants of the problem.

▶ Theorem 1.7 (♣). Integer 2-Commodity Flow with Monochrome Edges is NP-
hard for binary weights and vertex cover number 6, and W[1]-hard for unary weights when
parameterised by the vertex cover number.

▶ Theorem 1.8 (♣). Undirected Integer 2-Commodity Flow with Monochrome
Edges is NP-hard for binary weights and vertex cover number 6, and W[1]-hard for unary
weights when parameterised by the vertex cover number.

To complement our hardness results, we prove two algorithmic results. Bodlaender et
al. [2] had given FPT algorithms for several flow problems, using the recently defined notion
of weighted tree partition width as parameter (see [3, 2]). Weighted tree partition width can
be seen as a variant of the notion of tree partition width for edge-weighted graphs, introduced
by Seese [29] in 1985 under the name strong treewidth. See Section 2 for formal definitions of
these parameters. The known hardness for the vertex cover number [13] implies that Edge
Disjoint Paths is NP-hard even for graphs of tree partition width 3. Here, we prove that:

▶ Theorem 1.9. The Integer ℓ-Commodity Flow problem can be solved in time
22b3ℓb

nO(1), where b is the breadth of a given tree partition of the input graph.

▶ Theorem 1.10. The Undirected Integer ℓ-Commodity Flow problem can be solved
in time 22b3ℓb

nO(1), where b is the breadth of a given tree partition of the input graph.

For the standard Integer 2-Commodity Flow problem with the vertex cover number
vc(G) of the input graph G as parameter, we conjecture that this problem is in FPT. As a
partial result, we can give the following approximation algorithms:

▶ Theorem 1.11 (♣). There is a polynomial-time algorithm that, given an instance of
Integer 2-Commodity Flow on a graph G with demands d1, d2, either outputs that
there is no flow that meets the demands or outputs a 2-commodity flow of value at least
di − O(vc(G)3) for each commodity i ∈ [2].



H. L. Bodlaender, I. Mannens, J. J. Oostveen, S. Pandey, and E. J. van Leeuwen 6:5

▶ Theorem 1.12 (♣). There is a polynomial-time algorithm that, given an instance of
Undirected Integer 2-Commodity Flow on a graph G with demands d1, d2, either
outputs that there is no flow that meets the demands or outputs a 2-commodity flow of value
at least di − O(vc(G)3) for commodity i ∈ [2].

Proofs of theorems marked by ♣ appear in the full version. For other theorems, we are
only able to provide proof sketches in the limited space.

2 Preliminaries

In this paper, we consider both directed and undirected graphs. Graphs are directed unless
explicitly stated otherwise. Arcs and edges are denoted as vw (an arc from v to w, or an
edge with v and w as endpoints).

We use the interval notation for intervals of integers, e.g., [−1, 3] = {−1, 0, 1, 2, 3}. We
simplify this notation for intervals that start at 1, i.e. [k] = [1, k]. Moreover, we use
N = {1, 2, . . .} and N0 = {0, 1, 2, . . .}.

A Sidon set is a set of positive integers {a1, a2, . . . , an} such that all pairs have a different
sum, i.e., when ai + ai′ = aj + aj′ then {i, i′} = {j, j′}. Sidon sets are also Golomb rulers
and vice versa – in a Golomb ruler, pairs of different elements have unequal differences: if
i ̸= i′ and j ̸= j′, then |ai − ai′ | = |aj − aj′ |, then {i, i′} = {j, j′}. A construction by Erdös
and Turán [10] for Sidon sets implies the following, cf. the discussion in [8].

▶ Theorem 2.1. A Sidon set of n elements in [4n2] can be found in O(n
√

n) time and
logarithmic space.

We now formally define our flow problems. A flow network is a pair (G, c) of a directed
(undirected) graph G = (V, E) and a function c : E → N0 that assigns to each arc (edge) a
non-negative integer capacity. We generally use n = |V | and m = |E|.

For a positive integer ℓ, an ℓ-commodity flow in a flow network with sources s1, . . . , sℓ ∈ V

and sinks t1, . . . , tℓ ∈ V is a ℓ-tuple of functions f1, . . . , f ℓ : E → R≥0, that fulfils the
following conditions:

Flow conservation. For all i ∈ [ℓ], v ̸∈ {si, ti},
∑

wv∈E f i(wv) =
∑

vw∈E f i(vw).
Capacity. For all vw ∈ E,

∑
i∈[ℓ] f i(vw) ≤ c(vw).

An ℓ-commodity flow is an integer ℓ-commodity flow if for all i ∈ [c], vw ∈ E, f i(vw) ∈ N0.
The value for commodity i of an ℓ-commodity flow equals

∑
siw∈E f i(siw) −

∑
wsi∈E f i(wsi).

We shorten this to “flow” when it is clear from context what the value of ℓ is and whether
we are referring to an integer or non-integer flow.

The main problem considered in the paper now is as follows:

Integer ℓ-Commodity Flow
Input: A flow network G = (V, E) with capacities c, sources s1, . . . , sℓ ∈ V , sinks
t1, . . . , tℓ ∈ V , and demands d1, . . . , dℓ ∈ N.
Question: Does there exist an integer ℓ-commodity flow in G which has value di for
each commodity i ∈ [ℓ]?

The Integer Multicommodity Flow problem is the union of all Integer ℓ-
Commodity Flow problems for all non-negative integers ℓ.

For undirected graphs, flow still has direction, but the capacity constraint changes to:
Capacity. For all vw ∈ E,

∑
i∈[ℓ] f i(vw) + f i(wv) ≤ c(vw).

IPEC 2023
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The undirected version of the Integer ℓ-Commodity Flow problem then is as follows:

Undirected Integer ℓ-Commodity Flow
Input: An undirected flow network G = (V, E) with capacities c, sources s1, . . . , sℓ ∈ V ,
sinks t1, . . . , tℓ ∈ V , and demands d1, . . . , dℓ ∈ N.
Question: Does there exist an integer ℓ-commodity flow in G which has value di for
each commodity i ∈ [ℓ]?

We use the well-known parameters treewidth and pathwidth without giving an explicit
definition. For the parameter (weighted) tree partition width, refer to [2] (see also [3]). We
also use these parameters for directed graphs. In that case, the direction of edges is ignored.

The classes XNLP and XALP were defined in the introduction. XNLP-hardness and
XALP-hardness are defined with respect to pl-reductions. The main difference with the
more standard parameterized reductions is that the computation of the reduction must be
done with logarithmic space. In most cases, existing parameterized reductions are also pl-
reductions; logarithmic space is achieved by not storing intermediate results but recomputing
these when needed.

Our hardness results stem from two variants of Multicoloured Clique (see [12]):

Chained Multicoloured Clique
Input: A graph G = (V, E), a partition of V into V1, . . . , Vr, such that |i − j| ≤ 1 for
each edge uv ∈ E(G) with u ∈ Vi and v ∈ Vj , and a function c : V → [k].
Parameter: k.
Question: Is there a set of vertices W ⊆ V such that for all i ∈ [r − 1], W ∩ (Vi ∪ Vi+1)
is a clique, and for each i ∈ [r] and j ∈ [k], there is a vertex v ∈ W ∩ Vi with c(v) = j?

Tree-Chained Multicoloured Clique
Input: A graph G = (V, E), a tree partition ({Vi | i ∈ I}, T = (I, F )) with T a tree of
maximum degree 3, and a function c : V → [k].
Parameter: k.
Question: Is there a set of vertices W ⊆ V such that for all ii′ ∈ F , W ∩ (Vi ∪ Vi′) is a
clique, and for each i ∈ I and j ∈ [k], there is a vertex v ∈ W ∩ Vi with c(v) = j?

▶ Theorem 2.2 (From [6] and [7]). Chained Multicoloured Clique is XNLP-complete,
and Tree-Chained Multicoloured Clique is XALP-complete.

3 Hardness Results – Unary Capacities

We prove our hardness results for Integer Multicommodity Flow with unary capacities,
parameterised by pathwidth. We aim to reduce from Chained Multicoloured Clique.
It is good to know that all constructions will have disjoint sources and sinks for the different
commodities. We will set the demands for each commodity equal to the total capacity of the
outgoing arcs from the sources, which is equal to the total capacity of the incoming arcs to the
sinks. Thus, the flow over such arcs will be equal to their capacity. Furthermore, throughout
this section, our constructions will have two commodities. We name the commodities 1 and 2,
with sources s1, s2 and sinks t1, t2, respectively.

We first introduce two types of gadgets: subgraphs that fulfil certain properties and that
are used in the hardness constructions. Given an integer a, the a-Gate gadget (see Figure 1)
either can move 1 unit of flow from one commodity from left to right, or at most a units
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a

a

Figure 1 The a-Gate gadget. Left: the schematic representation of the gadget, with its entry
and exit arcs. Right: the full construction for a = 4, with arcs labelled by their capacities.

a1

a1

L− a1
L− a3

1

1

1

1

1

1

1 1

1

L− a3a3

2

s1 t1
S = {a1, . . . , a|S|} 2

a3

L− a1

L

v w

x y

L− 1 L− 1

L− 1 L− 1

u
z

Figure 2 The (S, L)-Verifier gadget. Left: a schematic representation of the gadget, with its
entry and exit arcs. The value on the bottom-right of the schematic representation denotes the sum
of the incoming flows to the gadget. Right: the graph that realises the gadget for S = {a1, a2, a3},
with arcs labelled by their capacities (the unlabelled arcs have capacities a2 and L − a2 respectively;
their labels are omitted for clarity).

of flow from the other commodity from top to bottom, but not both. Hence, it models a
form of choice. This gadget will grow in size with a, and thus will only be useful if the
input values are given in unary. Given a set S of integers and a large integer L (larger than
any number in S), the (S, L)-Verifier (see Figure 2) is used to check if the flow over an arc
belongs to a number in S. The a-Gate gadget is used as a sub-gadget in this construction.
In our reduction, later, we will use appropriately constructed sets S to select vertices or to
check for the existence of edges.

Both types of gadget have constant pathwidth. The arcs incoming and outgoing of the
gadget are called the entry arcs and exit arcs respectively.

Our hardness construction will be built using only Verifier gadgets as subgadgets. The
entry arcs and exit arcs of this gadget are meant to transport solely flow of commodity 2.
Hence, in the remainder, it helps to think of only commodity 2 being transported along the
edges, to focus on the exact value of that flow. This value indicate which vertex is selected
or whether two selected vertices are adjacent.

▶ Theorem 1.1. Integer 2-Commodity Flow with capacities given in unary, paramet-
erised by pathwidth, is XNLP-complete.

IPEC 2023
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S(Vi,γ) S(Vi′,γ′)

S(E)

L L

2L

S(Vi,γ) S(Vi′,γ′)
L L

Ei′,γ′

i,γ

S(Vi,γ)

s2

L

L

(a) (b) (c)

Figure 3 (a) A Vertex selector gadget. (b) A schematic representation of an Edge check gadget
for Vi,γ and Vi′,γ′ . (c) The construction of an Edge check gadget.

Proof sketch. Proof of membership in XNLP follows immediately from a dynamic program-
ming algorith. For the hardness, we reduce from Chained Multicolour Clique (see
Theorem 2.2). Suppose we have an instance of Chained Multicolour Clique, with a
graph G = (V, E), colouring c : V → [k], and partition V1, . . . , Vr of V .

Build a Sidon set with |V | numbers by applying the algorithm of Theorem 2.1. Following
the same theorem, the numbers are in [4|V |2]. Set L = 4|V |2 + 1 to be a “large” integer. To
each vertex v ∈ V , we assign a unique element of the set S, denoted by S(v). For any subset
V ′ ⊆ V , let S(V ′) = {S(v) | v ∈ W}. For any subset E′ ⊆ E, let S(E′) = {S(u) + S(v) |
uv ∈ E′}.

We now describe several (further) gadgets that we use to build the full construction. Let
Vi,γ be the vertices in Vi with colour γ. Each set Vi,γ is called a class. For each class Vi,γ ,
we use a Vertex selector gadget (see Figure 3) to select the vertex from Vi,γ that should be
in the solution to the Chained Multicoloured Clique instance. We select some v ∈ Vi,γ

if and only if the left branch receives S(v) flow and the right branch receives L − S(v) flow.
For each pair of incident classes, we construct an Edge check gadget (see Figure 3).

That is, we have an Edge check gadget for all classes Vi,γ and Vi′,γ′ with |i − i′| ≤ 1, and
{i, γ} ≠ {i′, γ′}. An Edge check gadget will check if two incident classes have vertices selected
that are adjacent. If the entry arcs have flow (of commodity 2) of value S(v), L − S(v),
S(w), and L − S(w) consecutively, then there is a valid flow if and only if vw ∈ E. Note that
the sum S(v) + S(w) is unique, because S is a Sidon set, and thus so is 2L − (S(v) + S(w)).
Hence, the only way for the flow to split up again and leave via the exit arcs is to split into
S(v), S(w), L − S(v), and L − S(w); otherwise, it cannot pass the (S(Vi,γ), L)-Verifier or
the (S(Vi′,γ′), L)-Verifier at the bottom of the Edge check gadget. Hence, the exit arcs again
have flow of values S(v), L − S(v), S(w), and L − S(w) consecutively, just like the entry arcs.

With these gadgets in hand, we now describe the global structure of the reduction. For
each class Vi,γ , we first create a Vertex selector gadget (as in Figure 3).

We then create Edge check gadgets to check, for any i ∈ [r], that the selected vertices in
Vi,γ for all γ ∈ [k] are adjacent in G. The construction is shown in Figure 4a. We call this
the Triangle gadget for Vi.

Next, we create Edge check gadgets to check, for any i ∈ [r − 1], that the selected vertices
in Vi,γ and Vi+1,γ′ for all γ, γ′ ∈ [k] are indeed adjacent in G. The construction is shown in
Figure 4b. We call this the Square gadget for Vi and Vi+1.
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(b) The Square gadget for V1 and V2 has Edge check
gadgets to enforce the selected vertices form a clique
between V1 and V2. Here, k = 4.

Figure 4

Then, we connect the Vertex selector, Triangle and Square gadgets as in Figure 5. We
now set the demand for commodity 1 to the sum of the capacities of the outgoing arcs of s1
(which is equal to the sum of the capacities of the incoming arcs of t1). We set the demand
for commodity 2 to the sum of the capacities of the outgoing arcs of s2 (which is equal to
the sum of the capacities of the incoming arcs of t2). This completes the construction.

▷ Claim 3.1 (♣). The constructed graph has pathwidth at most 8k + O(1).

▷ Claim 3.2. The given Chained Multicolour Clique instance has a solution if and
only if the constructed instance of Integer 2-Commodity Flow has a solution.

Proof sketch. For the forward direction, assume there exists a chained multicolour clique W

in G. Recall that one vertex is picked per Vi,γ class by definition and thus W has size rk.
If v ∈ Vi,γ ∩ W for some i ∈ [r], γ ∈ [k], then in the Vertex selector gadget of Vi,γ , we send
S(v) units of flow of commodity 2 to the left and L − S(v) units of flow to the right into
the Verifier gadget (see Figure 3). In any Verifier gadget, we route the flow so that it takes
the path with capacity equal to the flow. This flow is then routed through all Edge check
gadgets of the Triangle and Square gadgets, in the manner presented above in the description
of Edge check gadgets. Since W is a chained multicolour clique, the corresponding edge exist
in E and the flow can indeed pass through the (S(E), 2L)-Verifier gadget of each Edge check
gadget. All flow of commodity 1 is routed through the unused gates in the Verifier gadgets,
which is possible as we only use one vertical path per gadget for the flow corresponding to a
vertex or edge (see Figure 2). It follows that we use all arcs from s1 and to t1 to capacity.

For the other direction, suppose there is a 2-commodity flow in the constructed graph
with all arcs from s1 and s2 and to t1 and t2 used to capacity. Since the constructed graph is
acyclic, we can apply induction on its topological ordering to show that flow of commodity 1
never leaves a Verifier gadget downwards. Then the construction of the Verifier gadget
ensures that that the amount flow of commodity 2 that passes through it always corresponds
to some α ∈ S for the associated set S of the gadget, and the left and right exit arcs carry α

and L−α units of flow of commodity 2 respectively. Now, the arc from s2 in a Vertex selector
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s2
s2

s2

s2

t2

t2

t2

t2

V1

V2

V3

V4

V1, V2

V2, V3

V3, V4

Figure 5 Overview of the complete structure of the reduction for r = 4. Triangles represent a
structure as in Figure 4a, and squares a structure as in Figure 4b. Directions are not drawn, but
clear from Figure 4a and 4b. The labels inside each block (say Vi or Vi, Vi+1) denote that flow
corresponding to vertices of this set (i.e. Vi or Vi and Vi+1) is flowing in a block. Note that all points
labelled s2, t2 are indeed the same vertex.

gadget for some class Vi,γ must have L flow of commodity 2 and this must be split in α and
L − α, with α ∈ S(Vi,γ). We place the corresponding vertex v in the chained multicoloured
clique. In any Edge check gadget, the flow of α ∈ S(Vi,γ), L − α and β ∈ S(Vi′,γ′),L − β

combines to a unique sum α + β and 2L − (α + β), and assures that the edge between the
corresponding vertices is present. The flow must split back up into α, L − α and β, L − β by
the unique sum due to the fact that S is a Sidon set. We get that the chosen vertices indeed
form a chained multicolour clique. ◁

Finally, using Theorem 2.1 and standard log-space techniques, the constructed graph with
its capacities can be built with O(f(k) + log n) space, for some computable function f . ◀

To show the XALP-hardness of the Integer 2-Commodity Flow parameterised by
treewidth, we reduce from Tree-Chained Multicolour Clique in a similar, but more
involved manner (see Figure 6 for an illustration) and obtain Theorem 1.3.

We now reduce from the case of directed graphs to the case of undirected graphs in a
general manner, by modification of a transformation by Even et al. [11, Theorem 4]. In this
way, both our hardness results (for parameter pathwidth and for parameter treewidth) can
be translated to undirected graphs.

▶ Lemma 3.3. Let G be a directed graph of an Integer 2-Commodity Flow instance
with capacities given in unary. Then in logarithmic space, we can construct an equivalent
instance of Undirected Integer 2-Commodity Flow with an undirected graph G′ with
pw(G′) ≤ pw(G) + O(1), tw(G′) ≤ tw(G) + O(1), and unit capacities.

Proof sketch. Given a directed graph G = (V, E), demands d1 and d2, and capacity function
c : E → N0, we construct an instance G′, d′

1 and d′
2, and c′ : E(G′) → {0, 1}. To the graph G,

we add four new vertices s1, s2, t1, t2 as new sources and sinks. We connect si to si and ti to
ti by di parallel undirected edges of capacity 1, for each i ∈ {1, 2}. Next, for each arc uv ∈ E

of capacity p, we create p parallel undirected edges between u and v of capacity 1 each. Then,



H. L. Bodlaender, I. Mannens, J. J. Oostveen, S. Pandey, and E. J. van Leeuwen 6:11

s2
s2

s2

t2

t2

V1

V2

V4

V1, V2

s2

V3
V2, V3

V3, V4

t2

V2, V5

s2

V5

V1

V2

V3

V4

V5

V6 V7

s2

V6

V5, V6

t2

s2

t2

V7

V5, V7

t2

t2

Figure 6 Overview of the structure of the reduction of Theorem 1.3. Left: the structure of
the input tree partition. Right: the structure of the reduction. Triangles represent a structure as
in Figure 4a, and squares a structure as in Figure 4b. Directions are not drawn, but clear from
Figure 4a and 4b. The labels inside each block (say Vi or Vi, Vi+1) denote that flow corresponding
to vertices of this set (i.e. Vi or Vi and Vi+1) is flowing in a block. Note that all points labelled s2, t2

are indeed the same vertex. Flow paths corresponding to a selected vertex in V2 (orange) and one in
V5 (purple) are drawn as an example.

we replace each of these p undirected edges by the Diamond gadget of Figure 7(a). This is
the graph G′. In G′, the demands on the two commodities are d′

1 = d1 + e∗ and d′
2 = d2 + e∗,

where e∗ is the number of edge gadgets in G′ (i.e. the sum of all capacities in c).
The pathwidth of G′ is pw(G) + O(1) and the treewidth is tw(G) + O(1). Moreover, the

demands d1 and d2 are met in G if and only if the demands d′
1 and d′

2 are met in G′. The
construction can be done in logarithmic space: while scanning G, we can output G′. ◀

Theorem 1.2 and 1.4 follow immediately from this lemma and Theorem 1.1 and 1.3.

4 Hardness Results – Binary Capacities

Our previous reduction strategy relied heavily on a-Gate gadgets, which have size linear in a,
and thus only work in the case a unary representation of the capacities is given. For the case
of binary capacities, we can prove stronger results by reducing from 2-Partition. However,
we need a completely new chain of gadgets and constructions.

We define three different types of (directed) gadgets. Since we use binary capacities, our
goal is to double flow in an effective manner. For a given integer a, the a-Doubler gadget
receives a flow and sends out 2a flow of the same commodity. This gadget is obtained by
combining two other gadgets: the a-Switch and the Doubling a-Switch. The a-Switch gadget
changes the type of flow; that is, it receives a flow from one commodity, but sends out a
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t1 s1

s2t2

(a)

vu

t1 s1

s2t2

(b)

vu

t1 s1

s2t2

(d)

vu

t1 s1

s2t2

(c)

vu

Figure 7 The transformation of Lemma 3.3 from directed to undirected graphs. Every arc uv

with capacity c is replaced by c parallel copies of gadget (a), where t1, s1, t2, s2 are the same for
every gadget, for all arcs. All capacities are 1. The remaining figures illustrate that the gadget
either transports no flow (b), a flow of commodity 1 (c), or a flow of commodity 2 (d).

flow from the other commodity. The Doubling a-Switch is similar, but sends out 2a flow.
All three types of gadgets have constant size, even in the binary setting. Moreover, any
a-Doubler gadget has pathwidth 5.

A crucial property of the a-Doubler gadget are the following. It has two (vertical) entry
arcs and two exit arcs. If the left entry arc carries a units of flow of commodity 2 and the
right entry arc carries 0 units of flow of commodity 2, then the left exit arc carries 2a units
of flow of commodity 2 and the right exit arc carries 0 units of flow of commodity 2. The
same property holds with left and right swapped.

▶ Theorem 1.5. Integer 2-Commodity Flow with capacities given in binary is NP-
complete for graphs of pathwidth at most 13.

Proof sketch. Membership in NP is trivial. To show NP-hardness, we transform from
Partition. Recall Partition problem asks, given positive integers a1, . . . , an, to decide
if there is a subset S ⊆ [n] with

∑
i∈S ai = B, where B =

∑n
i=1 ai/2. This problem is well

known to be NP-complete [23].
Create the sources s1, s2 and the sinks t1, t2. Create two vertices b1, b2, both with an arc

of capacity B to t2.
For each ai, we build a Binary gadget that either sends ai units of flow to b1 or ai units

of flow to a vertex b2, in each case of commodity 2. This will indicate whether or not ai is
in the solution set to the Partition instance. This gadget is constructed as follows (see
Figure 8 for the case when ai = 13). Consider the binary representation ap

i , . . . , a0
i of ai.

That is, ai =
∑p

j=0 2jaj
i . For each j ∈ [p] such that aj

i = 1, we create a column of chained
Doubler gadgets. For each j′ < j, create a 2j′-Doubler gadget and identify its entry arcs
with the exit arcs of the 2j′−1-Doubler gadget (see Figure 8). Then the left exit arc of the
(final) 2j−1-Doubler gadget is directed to b1, while the right exit arc is directed to b2.

Create two directed paths P 1
i , P 2

i of 2
∑p

j=0 aj
i vertices each (see Figure 8). We consider

the vertices of each of these paths in consecutive pairs, one pair for each aj
i that is equal

to 1. For each j ∈ [p] such that aj
i = 1, create a vertex vj

i with an arc from s2, an arc to
the first vertex of the pair on P 1

i corresponding to aj
i , and an arc to the first vertex of the

pair on P 2
i corresponding to aj

i . Then, add an arc from the second vertex of the pair on
P 1

i corresponding to aj
i to the left entry arc of the 1-Doubler gadget of the jth column of

gadgets and an arc from the second vertex of the pair on P 2
i corresponding to aj

i to the right
entry arc of the 1-Doubler gadget of the jth column of gadgets. Finally, create a vertex ui
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s2

2 2 2 2

4 4 4 4

8 8

b1 b2

×2 ×2

×2 ×2

×2

v3i v2i v0i

ui wi

P 2
i

P 1
i

s1 t1

Figure 8 Example of the Binary gadget for ai = 13 and its associated paths P 1
i and P 2

i and the
ends ui and wi. Since 13 = 23 + 22 + 20, we have a column with three Doubler gadgets (indicated
by the square boxes), a column with two Doubler gadgets, and one with no Doubler gadgets. The
vertices v3

i , v2
i and v0

i are also drawn. Arcs are labelled by their capacities, but unlabelled arcs have
capacity 1. If 1 unit of flow of commodity 1 is sent from s1 to t1, then it must pick one of P 1

i , P 2
i to

go through. Hence, the gadget ensures that either ai units of flow of commodity 2 are sent to b1

through the left entry and exit arcs of the Doubler gadgets, or ai units of flow of commodity 2 are
sent to b2 through the left entry and exit arcs of the Doubler gadgets.

with an arc to the first vertex of P 1
i and to the first vertex of P 2

i and create a vertex wi with
an arc from the last vertex of P 1

i and the last vertex of P 2
i . This completes the description

of the Binary gadget.
We now chain the Binary gadgets. For each i ∈ [n − 1], add an arc from wi to ui+1. Add

an arc from s1 to u1 and from wn to t1. These arcs all have capacity 1.
We set the demand for commodity 1 to the sum of the capacities of the outgoing arcs of s1

(which is equal to the sum of the capacities of the incoming arcs of t1). We set the demand
for commodity 2 to the sum of the capacities of the outgoing arcs of s2 (which is equal to
the sum of the capacities of the incoming arcs of t2). This completes the construction.

▷ Claim 4.1 (♣). The constructed graph has pathwidth at most 13.

▷ Claim 4.2. The given Partition instance has a solution if and only if the constructed
instance of Integer 2-Commodity Flow has a solution.

Proof sketch. Let S ⊆ [n] be a solution to the Partition instance. For each i ∈ [n], we do
the following. If i ∈ S, then we send flow of commodity 2 from s2 to b1, through left entry
and exit arcs of the Doubler gadgets in the Binary gadget corresponding to ai. To reach this
left side of the Doubler gadgets, the flow passes through vertices and arcs of P 1

i . We can
thus send flow of commodity 1 from ui to wi via P 2

i . Otherwise, if i ̸∈ S, we send flow of
commodity 2 from s2 to b2, through right entry and exit arcs of the Doubler gadgets in the
Binary gadget corresponding to ai. To reach this right side of the Doubler gadgets, the flow
passes through vertices and arcs of P 2

i . We send flow of commodity 1 from ui to wi via P 1
i .
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By the properties of the Doubler gadget, b1 will receive ai units of flow of commodity 2
if i ∈ S and b2 will receive ai units of flow of commodity 2 if i ̸∈ S. Since S is a solution
to Partition, both b1 and b2 receive B units of flow of commodity 2, which they can then
pass on to t2. Moreover, we observe that we can send 1 unit of flow from s1 to t1 via the
paths P 1

i and P 2
i , using i /∈ S and i ∈ S respectively.

In the other direction, we see that the flow of commodity 1 starting at u1 takes a path
which is a union of P ji

i paths, for i ∈ [n] and ji ∈ {1, 2}. In particular, this flow does not
“leak” into any Doubler gadget. Then, similar to the above, let S ⊆ [n] be the set of indices i

for which the flow of commodity 2 through the Binary gadget corresponding to ai arrives at
b1. We can see that S is a valid solution to the Partition instance. ◁

Finally, as each a-Doubler has constant size, the gadget for some ai has size O(log2(ai)),
which is polynomial in the input size. Hence, the construction as a whole has size polynomial
in the input size. Moreover, it can clearly be computed in polynomial time. ◀

We now reduce from the case of directed graphs to the case of undirected graphs in a
general manner. We define a new gadget similar to the one for the unary case. However, we
note that there we required a copies of the gadget if the capacity of an arc is a, which is not
feasible in the case of binary capacities. Also note that increasing the capacities of the gadget
by Even et al. [11, Theorem 4], here Figure 7, invalidates the gadget, as any under-capacity
edge would allow flow in the other direction. Hence, we need a different gadget, the Directed
edge gadget, which we do not describe in detail here.

▶ Lemma 4.3 (♣). Let G be a directed graph of an Integer ℓ-Commodity Flow instance
with a path decomposition of width w, such that each bag contains the sources and sinks of
commodities 1, . . . , ℓ. Then in polynomial time, we can construct an equivalent instance of
Undirected Integer ℓ + 1-Commodity Flow of pathwidth at most w + 5.

By combining Lemma 4.3 and Theorem 1.5, we obtain Theorem 1.6.

5 Algorithm for Parameter Weighted Tree Partition Width

We give an FPT-algorithm for Integer ℓ-Commodity Flow parameterised by weighted
tree partition width. This algorithm assumes that a tree partition of the input graph is given.
There is an algorithm by Bodlaender et al. [4] that for any graph G and integer w, runs in
time poly(w) · n2 and either outputs a tree partition of G of width poly(w) or outputs that
G has no tree partition of width at most w. By some simple tricks, this can be expanded
to approximate weighted tree partition width as well, at the expense of a slightly worse
polynomial in w. An approximately optimal tree partition of this form would be sufficient as
input to our algorithm.

▶ Theorem 1.9. The Integer ℓ-Commodity Flow problem can be solved in time
22b3ℓb

nO(1), where b is the breadth of a given tree partition of the input graph.

Proof. We will describe a dynamic-programming algorithm on a given tree partition
(T, (Bx)x∈V (T )). Let r ∈ V (T ) be some node, that we will designate as the root of the
tree T . For convenience, we first attach a node to every leaf, with an empty bag.

We will create a table τ , where every entry is indexed by a node x of the tree partition
and a collection fx of functions f i

x, one function for every commodity i ∈ [ℓ]. We will refer to
fx as a flow profile and use the superscript i to refer to the flow function for commodity i in
the profile. The function

f i
x : Bp(x) → [− b, b],
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where p(x) the parent node of x, indicates for every v ∈ Bp(x) the net difference between the
amount of flow of commodity i that v receives from (indicated by a positive value) or sends
to (indicated by a negative value) the vertices in the bag Bx, in the current partial solution.
That is, f i

x(v) models the value of
∑

u∈Bx
(f i(uv) − f i(vu)), where f denotes the current

partial solution. Notice that this sum has value in [− b, b], as the sum over all capacities of
edges between bags Bx and Bp(x) is at most b. The content of each table entry will be a
boolean that indicates whether there exists a partial flow on the graph considered up to x

that is consistent with the indices of the table entry.
We will build the table τ , starting at the leaves of the tree, for which we assumed the

corresponding bags to be empty sets, and working towards the root. If x is a leaf in the tree
partition, we set τ [x, {∅, . . . , ∅}] = True, where we denote by ∅, the unique function with the
empty set as domain. Otherwise, x is some node with children y1, . . . , yt. We will group
these children yi in equivalence classes ξ, defined by the equivalence relation y ∼ y′ if and
only if τ [y, fx] = τ [y′, f ] for every flow profile f . Note that there are at most 2bℓ(2 b +1) such
equivalence classes, with at most bℓ(2 b +1) possible flow profiles fyj = (f1

yj
, . . . , f ℓ

yj
) for every

child yj of x.
We will now describe an integer linear program that determines the value of τ [x, fx] for a

given flow profile fx. We define a variable Xξ,g as the number of sets in class ξ whose in- and
outflow we choose to match flow profile g1. We also define a variable Y i

e for each edge inside
the bag Bx or between Bx and its parent bag, which indicates the flow of commodity i on this
edge. We will denote by N in(v) and Nout(v) the set of in-neighbours and out-neighbours of
v, respectively, restricted to Bx ∪ Bp(x). We now add constraints for the following properties,
for every commodity i ∈ [ℓ]. Flow conservation for all vertices v in the bag Bx, that are not
a sink/source for commodity i:∑

u∈Nin(v)

Yuv +
∑
ξ,g

Xξ,g · gi(v) =
∑

u∈Nout(v)

Yuv.

The flow of commodity i from a source si (if si ∈ Bx):

−
∑

u∈Nin(si)

Yusi
+

∑
u∈Nout(si)

Yusi
−

∑
ξ,g

Xξ,g · gi(si) = di

The flow of commodity i to a sink ti (if ti ∈ Bx):∑
u∈Nin(ti)

Yuti
−

∑
u∈Nout(ti)

Yuti
+

∑
ξ,g

Xξ,g · gi(ti) = di

The desired flow to a vertex v in the parent bag:∑
u∈Nin(v)\Bp(x)

Yuv −
∑

u∈Nout(v)\Bp(x)

Yuv = f i
x(v).

Edge capacities and non-negative flow:

0 ≤
ℓ∑

i=1
Y i

e ≤ c(e)

1 Throughout the proof, if we sum over pairs ξ, g, we only sum over flow profiles that are valid for bags in
ξ. Alternatively, we can set any invalid Xξ,g to 0 beforehand.
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The number of flow profiles of each type from each class matches the number of bags in that
class: ∑

g:Bx→[− b,b]

Xξ,g = |ξ|.

Xξ,g must be a non-negative integer:

Xξ,g ∈ N0

We then use an algorithm of Frank and Tardos [15, Theorem 5.3] to solve the ILP in time
N2.5N+o(N), where N is the number of variables in the ILP. This number is dominated by
the number of variables Xξ,g, of which there are O(2bℓ(2 b +2)). We thus find a running time of
2bℓ(2 b +2)(2.5·2bℓ(2 b +2)

+o(2bℓ(2 b +2)
)). If the ILP has a feasible solution, we set τ [x, fx] = True;

otherwise, we set τ [x, fx] = False. We solve bℓ(2 b +1) such ILP’s per bag in the decomposition
and thus find a total running time of O(22b3ℓb

)
Once we reach the root bag, we use a similar ILP to compute the flow on the root bag,

finding a final solution. We find a total running time of 22b3ℓb

nO(1). ◀

Note that with some minor changes to the ILP (flow variables can be negative and there
is no distinction between in/out edges), this proof also works in the undirected case, proving
Theorem 1.10

6 Conclusions

The parameterised complexity analysis of integer multicommodity flow shows that the
problem is already hard for several natural parameterisations, e.g., treewidth and pathwidth,
even when there are only two commodities. The XNLP- and XALP-completeness imply
that the problems have XP algorithms but which are likely also to use Ω(nf(k)) space by
the Slice-wise Polynomial Space Conjecture. Moreover, the XNLP- and XALP-completeness
results imply that the problems are W[t]-hard.

We end the paper with some open problems. A number of cases for undirected graphs
remain unresolved. We conjecture that for several such cases, the complexity results will be
analogue to the directed case. A notable open case is Undirected Integer 2-Commodity
Flow, which we conjecture is NP-complete for graphs with a pathwidth bound, but The-
orem 1.6 only gives the result with three commodities.

We also conjecture that Integer 2-Commodity Flow is fixed parameter tractable with
the vertex cover number as parameter, possibly by using a dynamic programming algorithm
that only needs to investigate solutions that are “close” to the approximate solution found
by Theorem 1.11.

Finally, we believe that the problem may be interesting to investigate on certain graph
classes, for example planar graphs of bounded treewidth or in general on graphs of treewidth
or pathwidth below the bounds given by our hardness results.
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