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Abstract
In this paper, we show that Treewidth is NP-complete for cubic graphs, thereby improving the
result by Bodlaender and Thilikos from 1997 that Treewidth is NP-complete on graphs with
maximum degree at most 9. We add a new and simpler proof of the NP-completeness of treewidth,
and show that Treewidth remains NP-complete on subcubic induced subgraphs of the infinite
3-dimensional grid.
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1 Introduction

Treewidth is one of the most studied graph parameters, with many applications for both
theoretical investigations as well as for applications. The problem of deciding the treewidth
of a given graph, and finding corresponding tree decomposition, single-handedly lead to
a plethora of studies, including exact algorithms, algorithms for special graph classes,
approximations, upper and lower bound heuristics, parameterised algorithms and more. In
this paper, we look at the basic problem to decide, for a given graph G and integer k, whether
the treewidth of G is at most k.
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7:2 Treewidth Is NP-Complete on Cubic Graphs

This problem was shown to be NP-complete in 1987 by Arnborg et al. [1]; their proof
also gives NP-completeness on co-bipartite graphs. As the treewidth of a graph (without
parallel edges) does not change under subdivision of edges, it easily follows and is well
known that Treewidth is NP-complete on bipartite graphs. In 1997, Bodlaender and
Thilikos [4] modified the construction of Arnborg et al. [1] and showed that Treewidth
remains NP-complete if we restrict the inputs to graphs with maximum degree 9. In this
paper, we sharpen this bound of 9 to 3. Our proof uses a simple transformation, whose
correctness follows from well-known facts about treewidth and simple insights. We also give
a new simple proof of the NP-completeness of Treewidth on arbitrary (and on co-bipartite)
graphs. We obtain a number of corollaries of the results, in particular NP-completeness of
Treewidth on d-regular graphs for each fixed d ≥ 3, and for graphs that can be embedded
in a 3-dimensional grid.

Our techniques are based on the techniques in [1] and [4] with streamlined and simplified
arguments, and some additional new but elementary ideas. As a starting point for the
reductions, we use the NP-complete problems Cutwidth on cubic graphs and Pathwidth;
the NP-completeness proofs for these were given by Monien and Sudborough [6] in 1987.

This paper is organised as follows. In Section 2, we give basic definitions and some
well-known results on treewidth. In Section 3, we give a new simple proof of the NP-
completeness of Treewidth on co-bipartite graphs that uses an elementary transformation
from pathwidth. Section 4 gives our main result: NP-completeness for Treewidth on cubic
graphs (i.e. graphs with each vertex of degree 3). In Section 5, we derive as consequences
some additional NP-completeness results: on d-regular graphs for each fixed d and on graphs
that can be embedded in a 3-dimensional grid. Some final remarks are made in Section 6.

2 Definitions and preliminaries

Throughout the paper, we denote the number of vertices of the graph G by n. All graphs
considered in this paper are undirected. A graph G is d-regular if each vertex has degree d.
We say that a graph G is cubic if G is 3-regular. If each vertex of G has degree at most 3, we
say that G is subcubic. All numbers considered are assumed to be integers, and an interval
[a, b] denotes the set of integers {a, a + 1, a + 2, . . . , b − 1, b}. Furthermore, for a positive
integer a, we denote by [a] the interval [1, a]. A graph G is a minor of a graph H, if G can
be obtained from H by zero or more vertex deletions, edge deletions, and edge contractions.
For a graph G and a set of vertices A ⊆ V (G), we write G + clique(A) for the graph obtained
by adding an edge between each pair of distinct non-adjacent vertices in A, i.e. by turning A

into a clique.
A tree decomposition of a graph G is a pair (T, β) such that T is a tree and β is a mapping

assigning each node x of T to a bag β(x) ⊆ V (G), satisfying the following conditions: every
vertex of G belongs to some bag, for every edge of G there exists a bag containing both
endpoints of the edge, and for every vertex of G, the set of nodes x of T such that v ∈ β(x)
induces a connected subtree of T . The width of a tree decomposition (T, β) is the maximum,
over all nodes x of T , of the value of |β(x)|−1. The treewidth of a graph G, denoted by tw(G),
is the minimum width of a tree decomposition of G. Path decompositions and pathwidth
(denoted by pw(G)) are defined analogously, but with the additional requirement that the
tree T is a path.

We use a number of well-known facts about treewidth and tree decompositions.
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▶ Lemma 1 (Folklore). Let G be a graph, and (T, β) a tree decomposition of width k of G.
Then the following statements hold.
1. Let W be a clique in G. Then, there is a node x of T with W ⊆ β(x).
2. Suppose v, w ∈ V (G), {v, w} ̸∈ E(G). If there is a node x of T , with v, w ∈ β(x), then

(T, β) is a tree decomposition of width k of the graph obtained by adding the edge {v, w}
to G.

3. Suppose W ⊆ V (G). Then, there is a node x in T such that when we remove β(x) and
all incident edges from G, then each connected component of G contains at most n/2
vertices of W .

4. Let y be a leaf of T , with neighbour y′. If β(y) ⊆ β(y′), then removing y with its bag from
the tree decomposition (T, β) yields another tree decomposition of G of width at most k.

5. If H is a minor of G, then tw(H) ≤ tw(G), and pw(H) ≤ pw(G).

A graph G is co-bipartite if V (G) = A ∪ B with A a clique and B a clique (that is, the
complement of G is bipartite). The following fact is also well known, and follows implicitly
from the proofs of Arnborg et al. [1]. For completeness, we give a proof here.

▶ Lemma 2 (See, e.g. [1]). Let G be a co-bipartite graph, with V (G) = A ∪ B where A and
B are cliques. Then:
1. tw(G) = pw(G).
2. G has a path decomposition (P, β) with width equal to tw(G) such that A ⊆ β(p1) and

B ⊆ β(pr), where p1 and pr are the two endpoints of P .

Proof. Suppose (T, β) is a tree decomposition of G of width tw(G). By Lemma 1(1), there
is a node x in T with A ⊆ β(x), and a node y in T with B ⊆ β(y). Let P be the path from
x to y in T .

If T has nodes not in P , then we can apply the following step. Take a leaf z of T , not
in P . Let z′ be the neighbour of z in T . For each v ∈ A ∩ β(z), it holds that v ∈ β(z′) as
z′ is on the path from z to x, and for each v ∈ B ∩ β(z), it holds that v ∈ β(z′) as z′ is on
the path from z to y. So, by Lemma 1(4), we can remove z from T and obtain another tree
decomposition of G. Repeating this step as long as possible gives the desired result. ◀

The vertex separation number of a graph G is denoted by vsn(G) and defined as the
minimum, over all orderings σ = (v1, . . . , vn) of the vertex set of G, of the maximum, over
all i ∈ {1, . . . , n}, of the number of vertices vj such that j > i and vj has a neighbour in
{v1, . . . , vi}. Kinnersley proved the following characterisation of pathwidth.

▶ Theorem 3 (Kinnersley [5]). The pathwidth of every graph equals its vertex separation
number.

Treewidth is the following decision problem: Given a graph G and an integer k, is the
treewidth of G at most k? The problems Pathwidth and Vertex Separation Number
are defined analogously.

In 1987, Arnborg, Corneil, and Proskurowski established NP-completeness of Treewidth
in the class of co-bipartite graphs [1]. Ten years later, Bodlaender and Thilikos [4] proved
that Treewidth is NP-complete on graphs with maximum degree at most 9. Monien and
Sudborough [6] proved that Vertex Separation Number is NP-complete on planar graphs
with maximum degree at most 3. Combining this result with Theorem 3 directly shows the
following.

▶ Theorem 4 (Monien and Sudborough [6]). Pathwidth is NP-complete on planar graphs
with maximum degree at most 3.

IPEC 2023
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Figure 1 A brick wall with 5 rows and 12 columns.

A well-known type of graphs are the walls. A wall with r rows and c columns has r × c

vertices. We refrain from giving a formal definition here, as the concept is clear from Figure 11

It is well known that the pathwidth and treewidth of an n by r grid equal min{n, r}, see,
e.g. [3, Lemmas 87 and 88]. Since any brick wall is a subgraph of a grid, the upper bound
also holds for brick walls, and the standard construction gives the following result.

▶ Lemma 5 (Folklore). Let Br,c be a brick wall with r rows and c columns. Then tw(Br,c) ≤
pw(Br,c) ≤ r and there is a path decomposition (P, β) of Br,c of width r with β(p1) the set of
vertices on the first column of Br,c, and β(pq) the set of vertices on the last column of Br,c,
where p1 and pr are the two endpoints of P .

A linear ordering of a graph G is a bijection f : V (G) → {1, . . . , n}. The cutwidth of a
linear ordering of G is

max
i∈[n]

∣∣∣{{v, w} ∈ E(G)
∣∣ f(v) ≤ i < f(w)

}∣∣∣.
The cutwidth of a graph G, denoted by cw(G), is the minimum cutwidth of a linear ordering
of G.

The Cutwidth problem asks to decide, for a given graph G and integer k, whether
the cutwidth of G is at most k. Monien and Sudborough [6] showed that Cutwidth is
NP-complete on graphs of maximum degree three (using the problem name Minimum Cut
Linear Arrangement). As their proof does not generate vertices of degree one, and the
cutwidth of a graph does not change by subdividing an edge, from their proof, the next result
follows.

▶ Theorem 6 (Monien and Sudborough [6]). Cutwidth is NP-complete on cubic graphs.

3 A simple proof for co-bipartite graphs

In this section, we give a new simple proof that Treewidth is NP-complete. Our proof
borrows elements from the NP-completeness proof from Arnborg et al. [1], but uses an easy
transformation from Pathwidth.

Let G be a graph. We denote by F (G) the graph obtained from G as follows. The vertices
of F (G) consist of two copies v and v′ for every v ∈ V (G); we denote by V and V ′ the
sets V (G) and {v′ | v ∈ V (G)}, respectively. Moreover, the graph F (G) contains for every
v ∈ V (G) an edge between v and v′, and for every edge {u, v} ∈ E(G), it contains one edge
between u and v′ and one edge between v and u′. Finally, F (G) contains all edges between
every pair of distinct vertices in V and every pair of distinct vertices in V ′. Note that each
of the sets V and V ′ are cliques in F (G). In particular, G is co-bipartite. An example is
given in Figure 2.

1 The most common notion of wall does not have the vertices of degree one which we see at the bottom
left and top right corner of Figure 1. We keep these degree one vertices, for slightly easier notation.
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Figure 2 A graph G with F (G).
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Figure 3 A path decomposition of the graph G from Figure 2 and the corresponding path
decomposition of F (G).

▶ Lemma 7. Let G be a graph. Then, tw(F (G)) = pw(F (G)) = n+pw(G), where n = |V (G)|.

Proof. First, we show that pw(F (G)) ≤ n+pw(G). Let k = pw(G). Take a path decomposition
(P, β) of G of width k, with P = (p1, . . . , pr). Now, let γ(pi) be a set of vertices of F (G)
defined as follows:

For each v ∈ V (G) such that there is a j ≥ i with v ∈ β(pj), add v to γ(pi).
For each v ∈ V (G) such that there is a j ≤ i with v ∈ β(pj), add v′ to γ(pi).

An example of this construction, applied to the graphs G and F (G) of Figure 2, is given
in Figure 3.

We claim that (P, γ) is a path decomposition of F (G) of width n + k. We first verify that
(P, γ) is a path decomposition. The first and third conditions of path decompositions are
clearly satisfied. Notice that V ⊆ γ(p1), and V ′ ⊆ γ(pr). So, for each edge in F (G) between
two vertices in V , or between two vertices in V ′, there is a bag in (P, γ) containing the two
endpoints of the edge, namely, the bag corresponding to the node p1 or pr, respectively.
Consider an edge {v, v′} for a vertex v ∈ V (G). There is a node pv with v ∈ β(pv),
and therefore v, v′ ∈ γ(pv). Consider an edge {v, w′} in F (G), corresponding to an edge
{v, w} ∈ E(G). There is a node pvw with v, w ∈ β(pvw). Now, v, v′, w, w′ ∈ γ(pvw).

To see that the width is n + k, consider some bag γ(pi) and a vertex v ∈ V (G). There
are three possible cases:
1. For each j with v ∈ β(pj), j > i. Now, v ∈ γ(pi); v′ ̸∈ γ(pi).
2. For each j with v ∈ β(pj), j < i. Now, v′ ∈ γ(pi); v ̸∈ γ(pi).
3. If the previous two cases do not hold, then there is j ≤ i with v ∈ β(pj), and j′ ≥ i with

v ∈ β(pj′). From the definition of path decompositions, it follows that v ∈ β(pi). From
the construction of γ, we have v, v′ ∈ γ(pi).

IPEC 2023



7:6 Treewidth Is NP-Complete on Cubic Graphs

In each of the cases, we have one vertex more in γ(pi) than in β(pi), so for each node,
the size of its γ-bag is exactly n larger than the size of its β-bag. The claim follows.

Now, suppose the treewidth of G equals ℓ. From Lemma 2(2), it follows that we can
assume we have a path decomposition (P, γ) of F (G) of width ℓ, with P having successive
bags p1, p2, . . . , pr, and with V ⊆ γ(p1) and V ′ ⊆ γ(p2).

We now define a path decomposition (P, δ) of G, as follows. For each node x on P , set
δ(x) = {v ∈ V | v ∈ γ(x) ∧ v′ ∈ γ(x)}. (Note that this is the reverse of the operation in the
first part of the proof; compare with Figure 3.)

We now verify that (P, δ) is indeed a path decomposition of G. For each vertex v, {v, v′}
is an edge in F (G), so there is a node xv with v, v′ ∈ γ(xv), hence v ∈ δ(xv). For each edge
{v, w} ∈ E(G), the set {v, v′, w, w′} forms a clique in F (G), so there is a node xvw with
{v, v′, w, w′} ⊆ γ(xvw) (see Lemma 1(1)). Hence v, w ∈ δ(xvw). Finally, for each v ∈ V (G),
the set of nodes x with v ∈ δ(x) is the intersection of the nodes with v ∈ γ(x) and the nodes
with v′ ∈ γ(x); the intersection of connected subtrees is connected, so the third condition in
the definition of path (tree) decompositions also holds.

Finally, we show that the width of (P, δ) is ℓ − n. Consider a vertex v, and i ∈ [r]. There
must be iv with {v, v′} ⊆ γ(piv

). If i ≤ iv, then v ∈ γ(pi); if i ≥ iv, then v′ ∈ γ(pi) (using
that v ∈ γ(p1) and v′ ∈ γ(pr)). So, we have {v, v′} ∩ γ(pi) ̸= ∅.

Now, for each node pi, i ∈ [r], for each vertex v, we have that γ(pi) contains both
vertices from the set {v, v′} when v ∈ δ(pi), and γ(pi) contains exactly one vertex from
the set {v, v′} when v ̸∈ δ(pi). So, |γ(pi)| = |δ(pi)| + n. As this holds for each bag, we
have that the width of (P, γ) is exactly n larger than the width of (P, δ). It follows that
pw(G) ≤ tw(F (G)) − n ≤ pw(F (G)) − n, which shows the result. ◀

Lemma 7, together with the NP-completeness of Vertex Separation Number [6], and
the equivalence between the pathwidth and the vertex separation number (Theorem 3), leads
to an alternative simple proof of NP-completeness of Treewidth in the class of co-bipartite
graphs.

▶ Corollary 8. Treewidth is NP-complete on co-bipartite graphs.

One can obtain a proof of the NP-completeness of Treewidth on graphs with maximum
degree five by combining the proof above with the technique of replacing a clique with a
wall or grid (as in [4] or in the next section). Instead of this, we give in the next section a
proof that reduces from Cutwidth and shows NP-completeness of Treewidth on graphs
of degree three.

4 Cubic graphs

In this section, we give an NP-completeness proof for Treewidth on cubic graphs. The
construction uses a few steps. The first step is a simplified version of the NP-completeness
proof from Arnborg et al. [1]; the second step follows the idea of Bodlaender and Thilikos [4]
to replace the cliques by grids or walls. After this step, we have a graph with maximum
degree 7. In the third step, we replace vertices of degree more than 3 by trees of maximum
degree 3, and show that this step does not change the treewidth (it actually can change the
pathwidth). The fourth step makes the graph 3-regular by simply contracting over vertices
of degree 2.

▶ Theorem 9. Treewidth is NP-complete on regular graphs of degree 3.
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Proof. We use a transformation from Cutwidth on 3-regular graphs.
Let G be an n-vertex 3-regular graph and k an integer. Using a sequence of intermediate

steps and intermediate graphs G1, G2, G3, we construct a 3-regular graph G4 with the
property that G has cutwidth at most k, if and only if G4 has treewidth at most 3n + k + 2.

Step 1: From Cutwidth to Treewidth. The first step is a streamlined version of the proof
from Arnborg et al. [1]. For each vertex v ∈ V (G), we take a set Av = {v1, v2, v3} which has
three copies of v.

For each edge e ∈ E(G), we have a set Be = {e1, e2}, which consists of two vertices that
represent the edge.

Let A =
⋃

v∈V (G) Av, and B =
⋃

e∈E(G) Be. We create G1 by taking A ∪ B as vertex set,
turning A into a clique, turning B into a clique, and for each pair v, e with v an endpoint of
e, adding edges between all vertices in Av and all vertices in Be.

▷ Claim 10. Let G and G1 be as above. tw(G1) = pw(G1) = cw(G) + 3n + 2.

Proof. First, assume G has cutwidth k, and let f be a linear ordering of G of cutwidth k,
and denote the ith vertex in the linear ordering as vi = f−1(i).

Build a path decomposition (P, β) with P the path with nodes p1, . . . , pn. For i ∈ [n],
set

β(pi) =
{

va
j

∣∣ j ≥ i ∧ a ∈ {1, 2, 3}
}

∪
{

eb
∣∣ e = {vj , vj′} ∈ E(G) ∧ min{j, j′} ≤ i ∧ b ∈ [2]

}
.

That is, we take the representatives of the vertices vi, vi+1, . . . , vn, and all vertices that
represent an edge with at least one endpoint in {v1, v2, . . . , vi}.

We can verify that (P, β) is a path decomposition of G1. From the construction, it directly
follows that A ⊆ β(p1) and B ⊆ β(pn). For the second condition of path decompositions, it
remains to look at edges in G1 with one vertex of the form va

i and one vertex of the form eb.
Necessarily, vi is an endpoint of e, and now we can note that both vertices are in bag β(pi).
From the construction, it directly follows that the third condition of path decompositions is
fulfilled.

To show that the width of this path decomposition is at most k + 3n + 2, we use
an accounting system. Consider β(pi). Give each vertex v ∈ V (G) three credits, except
vi, which gets six credits. Each edge that “crosses the cut”, i.e. it belongs to the set
{{v, w} ∈ E(G) | f(v) ≤ i < f(w)}, gets one credit. All other edges get no credit. We
handed out at most k + 3n + 3 credits. We now redistribute these credits to the vertices
in β(pi). Each vertex vj , j ≥ i, gives one credit to each vertex of the form va

j , a ∈ {1, 2, 3}.
For an edge e = {vj , vj′}, with j < i and j′ < i, the vertices e1 and e2 get, respectively, a
credit from vj and vj′ . For an edge e = {vj , vj′}, with j ≤ i < j′, the vertices e1 and e2

get, respectively, a credit from vj and a credit from e. Now, each vertex and edge precisely
spends its credit: a vertex vj with j < i gives one credit to each of its incident edges, vi gives
one credit to each of its copies v1

i , v2
i , v3

i , and one credit to each of its incident edges, and vj

with j > i gives one credit to each of its copies v1
j , v2

j , v3
j . Each vertex in the bag β(pi) gets

one credit, so the size of the bag is at most k + 3n + 3. As this holds for each bag, the width
of the path decomposition is at most k + 3n + 2.

Now, assume that we have a tree decomposition (T, γ) of G1 of width ℓ. By Lemma 1(1),
as A and B are cliques, there is a bag p1 with A ⊆ γ(p1), and a bag pr with B ⊆ γ(pr).
As in the proof of Lemma 2, we can remove all bags not on the path from p1 and pr, and

IPEC 2023



7:8 Treewidth Is NP-Complete on Cubic Graphs

still keep a tree decomposition of G1. So, we can assume we have a path decomposition
(P, γ) of width at most ℓ of G1, where P is a path with successive vertices p1, p2, . . . , pr, and
γ(p1) = A and γ(pr) = B.

For each v ∈ V (G), set g(v) to the maximum i such that {v1, v2, v3} ⊆ β(pi). (As
{v1, v2, v3} ⊆ A ⊆ β(p1), g(v) is well defined and in [r].)

Take a linear ordering f of G such that for all v, w ∈ V (G), g(v) < g(w) ⇒ f(v) < f(w).
(That is, order the vertices with respect to increasing values of g, and arbitrarily break
the ties when vertices have the same value g(v).) We claim that f has cutwidth at most
ℓ − 3n − 2.

Consider a vertex v ∈ V (G), and suppose g(v) = i′. Let e be an edge incident to v.
The set {v1, v2, v3, e1, e2} is a clique in G1, so there is an ie with {v1, v2, v3, e1, e2} ⊆ β(pie).
From the definition of path decompositions and the construction of g, we have ie ≤ i′. As
{e1, e2} ⊆ β(pie) ∩ β(pr), we have that {e1, e2} ⊆ β(pi′).

Now, consider an i ∈ [n]. Let v = f−1(i) be the ith vertex of the ordering and C = f−1[i]
be the first i vertices in the linear ordering. Let E1 be the set of edges with exactly one
endpoint in C, and let E2 be the set of edges with both endpoints in C. Suppose g(v) = i′.
We now examine which vertices belong to β(pi′):

By definition, v1, v2, v3.
For each w ∈ V (G) \ C, there is an iw ≥ i′ with {w1, w2, w3} ⊆ β(piw

), hence w1, w2,
and w3 are in β(pi′). (Use here that these vertices are in β(p1).) The number of such
vertices is 3n − 3i.
For each edge e ∈ E1 ∪ E2, from the discussion above it follows that there is an ie ≤ i′

with e1, e2 ∈ β(pie
), and, as these vertices are in β(pr), we have {e1, e2} ⊆ β(pi′).

Thus, the size of β(pi′) is at least 3n − 3i + 3 + 2 · |E1| + 2 · |E2|. As each vertex in C

is incident to exactly three edges, we have 3i = |E1| + 2 · |E2|. Now, ℓ ≥ |β(pi′)| − 1 ≥
3n − 3i + 2 + 2 · |E1| + 2 · |E2| = 3n + 2 + |E1|. It follows that the size of the cut∣∣∣{{x, y} ∈ E(G)

∣∣ f(x) ≤ i < f(y)
}∣∣∣ = |E1| ≤ ℓ − 3n − 2. As this holds for each i ∈ [n], the

bound of ℓ − 3n − 2 on the cutwidth of f follows.

We have thus shown that pw(G1) ≤ cw(G) + 3n + 2 and that cw(G1) ≤ tw(G1) − 3n − 2.
Together with the inequality tw(G1) ≤ pw(G1), this proves the claim. ◁

Step 2: The wall construction. In the second step, we use a technique from Bodlaender
and Thilikos [4]. We construct a graph G2 from the graph G1 by removing the edges between
vertices in A and the edges between vertices in B; then, we add a wall with 3n rows and 24n

columns, and add a matching from the vertices in the last column of the wall to the vertices
in A. Similarly, we add another wall with 3n rows and 24n columns, and add a matching
from the vertices in the first column of this wall to the vertices in B.

As applying the wall construction to a graph obtained from the first step would be
unwieldy, the example in Figure 4 shows the wall construction applied to the graph from the
previous section.

▷ Claim 11. tw(G1) = pw(G1) = tw(G2) = pw(G2). Moreover, there is a path decomposition
of G2 of optimal width with a node xA with A ⊆ β(xA) and a node xB with B ⊆ β(xB).

Proof. Suppose we have a tree decomposition (T, β) of G2 of optimal width k. By Lemma 1(3),
there is a node x such that each connected component of G2 \ β(x) contains at most 36n2

vertices of the left wall. Note that β(x) must contain a vertex of each row from the left wall.
Suppose not. Each pair of two successive columns in the wall is connected; there are at least
12n−|β(x)| disjoint pairs of columns which do not contain a vertex from β(x). All vertices on
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Figure 4 Illustration of the wall construction. Here, it is applied to the graphs from Figure 2,
and the number of columns shown is smaller than that in the actual construction.

these columns are connected in G2 \ β(x) as they intersect the row without vertices in β(x).
As the number of vertices in these columns is larger than 36n2, since k ≤ |E(G)| = 3n/2, we
have a contradiction.

By Lemma 1(2), (T, β) is also a tree decomposition of the graph obtained from G2 by
adding edges between each pair of vertices in β(x). Apply the same step to the right wall.
We see that (T, β) is a tree decomposition of width k of a graph that for each pair of rows in
the left wall contains an edge between a pair of vertices from these rows, and similarly for
the right wall. Now, if we contract each row of the left wall to the neighbouring vertex in A,
and contract each row of the right wall to the neighbouring vertex in B, we obtain G1 as
minor: G1 is a minor of a graph of treewidth k, so has treewidth at most k.

By Lemma 2, tw(G1) = pw(G1), and there is a path decomposition (P, γ) of G1 of optimal
width ℓ such that A ⊆ γ(p1) and B ⊆ γ(pq), where p1 and pq are the endpoints of P .

We can now build a path decomposition of G2 of the same width ℓ as follows: first, take
the successive bags of a path decomposition of the left wall, of width 3n, where we can end
with a bag that contains all vertices of A. Then, we take the bags of (P, γ). Now, we add
a path decomposition of the right wall, of width 3n, that starts with a bag containing all
vertices in B. ◁

Step 3: Making the graph subcubic. Note that the maximum degree of a vertex in G2
is seven. A vertex in A has one neighbour in the wall, and six neighbours in B (the vertex
it represents has three incident edges, and each is represented by two vertices). Similarly,
a vertex in B has degree seven: again, one neighbour in the wall, and six neighbours in A

(each endpoint of the edge it represents is represented by three vertices). Vertices in the
walls have degree at most three.

Given G2, we build a subcubic graph G3. We do this by replacing each vertex in A and
in B by a tree, and replacing edges to vertices in A and B by edges to leaves or the root of
these trees.

For vertices vα in A (with v ∈ V (G), α ∈ [3]), we take an arbitrary tree with a root of
degree 2, all other internal vertices of degree 3, and six leaves. The root (which we denote by
the name of the original vertex vα) is made adjacent to the neighbour of vα in the wall.

Each vertex eα ∈ B (with e ∈ E(G), α ∈ [2]) is also replaced by a tree with a root of
degree 2, all other internal vertices of degree 3, and six leaves, but here we need to use a
specific shape of the tree. Suppose e has endpoints v and w. Figure 5 shows this tree. In
particular, note that the root is made adjacent to the neighbour of eα in the wall, and the
leaves that go to the subtrees that represent v are grouped together, and the leaves that go
to the subtrees that represent w are grouped together.

Each edge between a vertex vα in A and a vertex eα′ in B now becomes an edge from a
leaf of the tree representing vα, to a leaf of the tree representing eα′ ; α ∈ [3], α′ ∈ [2]. The
roots of the trees are made adjacent to a vertex in the wall; this is the same vertex as the
wall neighbour of the original vertex in G2.

IPEC 2023
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eα

v1

v2

v3

w1

w2

w3

in the brick wall

eα

to the tree of v1

to the tree of v2

to the tree of v3

to the tree of w1

to the tree of w2

to the tree of w3

in the brick wall

eαw

eαv

Figure 5 Replacing a vertex eα from B by a tree; e is here the edge {v, w}.

▷ Claim 12. Suppose tw(G2) ≥ 68. Then tw(G2) = pw(G2) = tw(G3).

Proof. We have already established that tw(G2) = pw(G2).
First, note that G2 is a minor of G3: we obtain G2 from G3 by contracting each of the

new trees to its original vertex. By Lemma 1(5), we have tw(G2) ≤ tw(G3).

Suppose we have a path decomposition (P, β) of G2 of optimal width ℓ = pw(G2) = tw(G2).
By Claim 11, we can also assume that there is a bag that contains all vertices in A, and that
there is a bag that contains all vertices in B.

For each vertex v ∈ V (G), we claim that there is a node piv
with v1, v2, v3 ∈ β(piv

) and
e1, e2 ∈ β(piv ) for each edge e incident to v. This can be shown as follows. The pair (P, β)
is also a path decomposition of the graph G + clique(A) + clique(B), obtained from G2 by
adding edges between each pair of vertices in A, and each pair of vertices in B (since there is
a bag containing all vertices of A and a bag containing all vertices of B and by Lemma 1(2).)
The claim now follows from Lemma 1(1) by observing that these nine vertices (v1, v2, v3,
and e1, e2 for each edge incident to v) form a clique in G + clique(A) + clique(B).

Now, we can construct a tree decomposition of G3 as follows. Take (P, β). Replace each
vertex in A and each vertex in B by the root of the tree it represents. For each vertex
v ∈ V (G), we add one additional bag to the tree decomposition; this bag becomes a leaf of
the tree decomposition. (Note that after this step, we no longer have a path decomposition.)

Consider a vertex v ∈ V (G). Take a new node xv, and make xv adjacent to piv in the tree.
Let the bag of xv contain the following vertices: all vertices in the subtrees that represent v1,
v2, v3, for each edge e with v as endpoint the vertices e1, e1

v, e2, e2
v, and the descendants of

e1
v and e2

v in the respective subtrees (the vertices in the yellow area in Figure 5, assuming
that e = {v, w}).

Each vertex in A is represented by a binary tree with a root of degree two and six leaves,
so by eleven vertices. For each of the three edges incident to v, we have two subtrees of
which we take six vertices each, so the total size of this new bag is 3 · 11 + 3 · 2 · 6 = 69. One
easily verifies that we have a tree decomposition of G3, and as the original bags keep the
same size when ℓ ≥ 68, we have a tree decomposition of G of width at most ℓ. ◁

By taking a sufficiently large n (e.g. n ≥ 22 works), we can assume that ℓ ≥ 68.

Step 4: Making the graph 3-regular. The fourth step is simple. Note that when the
treewidth of a graph is at least three, the treewidth does not change when we contract a vertex
of degree at most two to a neighbour (see [2]), possibly removing parallel edges. We apply
this step as long as possible, and let G4 be the resulting graph. The graph G4 is a 3-regular
graph, and, when n ≥ 22, its treewidth equals the treewidth of G1, which is cw(G) + 3n + 2.
As we can construct G4 in polynomial time, this completes the transformation, and we can
conclude that Treewidth is NP-complete on 3-regular graphs. ◀
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A B
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Figure 6 Illustration of the proof. The path decomposition before and after adding the new node
xv.

v w v w

Figure 7 Increasing the degree of two adjacent vertices by one.

5 Special cases

In this section, we give two NP-completeness proofs for Treewidth on special graph classes,
which follow from minor modifications of the proof of Theorem 9. We first observe that for
any fixed d ≥ 4, Treewidth is NP-complete on d-regular graphs.

▶ Proposition 13. For each d ≥ 3, Treewidth is NP-complete on d-regular graphs.

Proof. The result for d = 3 was given as Theorem 9.
A small modification of the proof of Theorem 9 gives the result for 4-regular graphs:

instead of using a wall, use a grid. At the borders of this grid, we have vertices of degree less
than 3. We can avoid these by first contracting vertices of degree 2, and then noting that
there is a perfect matching with the vertices of degree 3 at the sides of the grid. Replace
each edge in this matching by a small subgraph, as shown in Figure 7. Note that this step
increases the degree of v and w by one, while, when the treewidth of G is at least 5, the step
will not change the treewidth of the graph.

In the step where we change vertices of degree 7 to vertices of degree 3 by replacing a
vertex by a small tree, we instead use a tree with the root having two children, each with
three children. These roots are made adjacent to the grid. Now, the roots have degree 3,
and we add an arbitrary perfect matching between these root vertices in A, and similarly for
B. (Note that in the construction, there is a bag containing all roots for A, and similarly B;
these sets have even size.) This gives the result for d = 4.

Consider the following gadget. Take a clique with d + 1 vertices, and remove one edge,
say {x, y}, from this clique. For a vertex v in a graph G, add an edge from x to v, and an
edge from y to v. See Figure 8.

If G has treewidth at least d, then this step increases the degree of v by 2 without
changing the treewidth. Now, if d is odd, we can take an instance of the hardness proof on
3-regular graphs, and add to each vertex of that instance (d − 3)/2 copies of this gadget. We
obtain an equivalent instance that is d-regular. If d is even, we add (d − 4)/2 copies of the
gadget to an instance of the hardness proof on 4-regular graphs. ◀
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v v

Figure 8 Increasing the degree of a vertex: if tw(G) ≥ 4, then the step increases the degree of v

from 3 to 5, but does not change the treewidth.

A d-dimensional grid graph is a finite induced subgraph of the infinite d-dimensional
grid. Observe that d-dimensional grid graphs have degree at most 2d, and in particular the
3-dimensional grid graphs have degree at most 6. As a consequence of lowering the degree of
hard Treewidth instances from 9 to at most 6, we can show that computing the treewidth
of 3-dimensional grid graphs is NP-complete. Since we lowered the degree of hard instances
down to at most 3, we can even show the following.

▶ Proposition 14. Treewidth is NP-complete on subcubic 3-dimensional grid graphs.

Proof. The argument is simply that every n-vertex (sub)cubic graph admits a subdivision of
polynomial size that is a 3-dimensional grid graph. We give a simple such embedding.

We reduce from Treewidth on cubic graphs, which is NP-hard by Theorem 9. Let G

be any cubic graph, v0, v1, . . . , vn−1 its vertices, and e1, e2, . . . , e3n/2 its edges. We build
a subcubic induced subgraph H of the (6n − 1) × (3n + 1) × 3 grid that is a subdivision of G.
In particular, tw(H) = tw(G) and H has O(n2) vertices and edges, thus we can conclude.

For each i ∈ [0, n − 1], vertex vi is encoded by the path made by the 5 vertices (x, 0, 0)
with x ∈ [6i, 6i + 4]. We arbitrarily assign (6i, 0, 0), (6i + 2, 0, 0), (6i + 4, 0, 0) each with
a distinct neighbour of vi in G, say vi(0), vi(1), vi(2), respectively.

Every edge ek = {vi, vj} of G with i < j is encoded in the following way. Let a, b ∈ [0, 2]
be such that i(a) = j and j(b) = i. We build a path from (6i + 2a, 0, 0) to (6j + 2b, 0, 0) with
degree-2 vertices, by first adding all the vertices (6i + 2a, y, 0) and (6j + 2b, y, 0) for y ∈ [2k],
then bridging (6i + 2a, 2k, 0) and (6j + 2b, 2k, 0) by adding (6i + 2a, 2k, 1)(6i + 2a, 2k, 2)(6i +
2a + 1, 2k, 2)(6i + 2a + 2, 2k, 2) . . . (6j + 2b − 1, 2k, 2)(6j + 2b, 2k, 2)(6j + 2b, 2k, 1).

This finishes the construction of H. All of its vertices have degree 2, except the vertices
at (6i + 2, 0, 0), which have degree 3. It is easy to see that H is a subdivision of G (where
each edge gets subdivided at most 12n + 5 times). ◀

We can easily adapt the previous proof to show hardness for finite subcubic (non-induced)
subgraphs of the ∞ × ∞ × 2 grid.

6 Conclusions

In this paper, we gave a number of NP-completeness proofs for Treewidth. The first proof
is an elementary reduction from Pathwidth to Treewidth on co-bipartite graphs; while
the hardness result is long known, our new proof has the advantage of being very simple, and
presentable in a matter of minutes. Our second main result is the NP-completeness proof for
Treewidth on cubic graphs, which improves upon the over 25-years-old bound of degree 9.

We end this paper with a few open problems. A long standing open problem is the
complexity of Treewidth on planar graphs. While the famous ratcatcher algorithm solves
the related Branchwidth problem in polynomial time [7], it is still unknown whether
Treewidth on planar graphs is polynomial time solvable or whether it is NP-complete.
Also, no NP-hardness proofs for Treewidth on graphs of bounded genus, or H-minor free
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graphs for some fixed H are known. An easier open problem might be the complexity of
Branchwidth for graphs of bounded degree, and we conjecture that Branchwidth is
NP-complete on cubic graphs.

While “our” reductions are simple, the NP-hardness of Treewidth is derived from
the NP-hardness of Pathwidth or Cutwidth. Thus, it would be good to have simple
NP-hardness proofs for Pathwidth and/or Cutwidth, preferably building upon “classic”
NP-hard problems like Satisfiability, elementary graph problems like Clique, or Bin
Packing.

The reductions in our hardness proofs increase the parameter by a term linear in n, so
shed no light on the parameterised complexity of Treewidth. Hence, it would be interesting
to obtain parameterised reductions (i.e. reductions that change k to a value bounded by a
function of k), and also aim at lower bounds (e.g. based on the (S)ETH) on the parameterised
complexity of Treewidth. It is also not known whether one can obtain a time lower bound
of 2Ω(n) for Treewidth.
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