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—— Abstract

We introduce a new parameter, called stretch-width, that we show sits strictly between clique-
width and twin-width. Unlike the reduced parameters [BKW ’22], planar graphs and polynomial
subdivisions do not have bounded stretch-width. This leaves open the possibility of efficient
algorithms for a broad fragment of problems within Monadic Second-Order (MSO) logic on graphs
of bounded stretch-width. In this direction, we prove that graphs of bounded maximum degree
and bounded stretch-width have at most logarithmic treewidth. As a consequence, in classes of
bounded stretch-width, MAXIMUM INDEPENDENT SET can be solved in subexponential time 20(*®)
on n-vertex graphs, and, if further the maximum degree is bounded, Existential Counting Modal
Logic [Pilipczuk ’11] can be model-checked in polynomial time. We also give a polynomial-time
O(OPT?)-approximation for the stretch-width of symmetric 0, 1-matrices or ordered graphs.
Somewhat unexpectedly, we prove that exponential subdivisions of bounded-degree graphs have
bounded stretch-width. This allows to complement the logarithmic upper bound of treewidth with
a matching lower bound. We leave as open the existence of an efficient approximation algorithm for
the stretch-width of unordered graphs, if the exponential subdivisions of all graphs have bounded
stretch-width, and if graphs of bounded stretch-width have logarithmic clique-width (or rank-width).
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1 Introduction

Various graph classes have bounded twin-width! such as, for instance, bounded clique-width
graphs, proper minor-closed classes, proper hereditary subclasses of permutation graphs,
and some expander classes [11]. Low twin-width, together with the witnessing contraction
sequences, enables parameterized algorithms (that are unlikely in general graphs) for testing
if a graph satisfies a first-order sentence [11, 7], and improved approximation algorithms for
highly inapproximable packing and coloring problems [7, 4].

However one should not expect a large gain, in the low twin-width regime, as far as
(non-parameterized) exact algorithms are concerned. This is because every graph obtained
by subdividing (at least) 2[logn] times each edge of an n-vertex graph G has twin-width
at most 4 [3]. It was already observed in the 70’s that a problem like MAXIMUM INDE-
PENDENT SET (MIS, for short) remains NP-complete in 2¢-subdivisions [23]. Furthermore,
known reductions [16] combined with the Sparsification Lemma [20], imply that unless the

1 We refer the reader to Section 2 for the relevant definitions.
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Exponential-Time Hypothesis? (ETH) fails [19] solving MIS in subcubic graphs requires
time 29" The previous remarks entail that, unless the ETH fails, solving MIS in subcubic
graphs of twin-width at most 4 requires time 2¢(/logn)

In contrast, on the significantly less general classes of bounded clique-width not only can
MIS be solved in polynomial-time, but a fixed-parameter algorithm solving MSO;? model
checking in time f(w, |p|)n®™) exists [14, 21], with w the clique-width of the input graph, ¢
the input sentence, and f some computable function.

In this paper, we start exploring the trade-off between class broadness and algorithmic
generality in the zone delimited by bounded clique-width and bounded twin-width. It may
seem like the reduced parameters [12], where a graph has reduced p at most k if it admits
a contraction sequence in which all the red graphs have parameter p at most k, are exactly
designed to tackle this endeavor. Indeed by definition, twin-width is reduced A, where A is
the maximum degree, and it was shown that reduced maximum connected component size
(under the name of component twin-width) is functionally equivalent to clique-width [10].
Between mazimum connected component size and mazimum degree, there are several para-
meters p, such as bandwidth, cutwidth, treewidth+A, whose reduced parameters give rise to
a strict [12] hierarchy between bounded clique-width and bounded twin-width. Unfortunately,
even reduced bandwidth —the closest to clique-width among the above-mentioned reduced
parameters— turns out to be too general in the following sense: the n-subdivision of any
n-vertex graph has reduced bandwidth at most 2 [12]. This means, by the arguments of
the second paragraph of this introduction, that solving MIS on graphs of bounded reduced
bandwidth requires time 22(vV™) unless the ETH fails, even among graphs of bounded degree.
Actually, another fact leading to the same conclusion is that planar graphs have bounded
reduced bandwidth [12].

We therefore introduce another parameter, that we call stretch-width* and denote by stw,
which, while inspired by reduced parameters, does not fully fit that framework. To a first
approximation, stretch-width can be thought as reduced bandwidth where the bandwidth
upper bound on the red graphs have to be witnessed by a single (and fixed) order on the
vertex set. Observe indeed that the linear orders witnessing that all the red graphs of the
sequence have low bandwidth can, in reduced bandwidth, be very different one from the
other. We first show that the family of bounded stretch-width classes strictly contains the
family of bounded clique-width classes. Using an upper bound of component twin-width by
clique-width [2], we prove that:

» Theorem 1 (x). The stretch-width of any graph is at most twice its clique-width.

All the statements marked with a x are only proved in the long version, in appendix.
Then we provide a separating class of bounded stretch-width and unbounded clique-width.

» Theorem 2 (x). There is an infinite family of graphs G with bounded stretch-width and
clique-width £2(log |V (G))).

As was done for twin-width [9], we give an effective characterization of bounded stretch-
width for symmetric 0, 1-matrices (or ordered graphs).

» Theorem 3 (x). A class C of symmetric 0, 1-matrices has bounded stretch-width if and
only if there is an integer k such that no matriz of C has a k-wide division.

2 the assumption that there is a A > 1 such that n-variable 3-SAT cannot be solved in time A"n°®

3 Monadic Second-Order logic, when the second-order variables can only be vertex subsets
1 We refer a reader who would already want a formal definition to the start of Section 3.
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The k-wide division (see definition in Section 4) is a scaled-down version of the k-rich
division that analogously characterizes matrices of bounded twin-width [9]. Theorem 3 yields

a polynomial-time approximation algorithm for the stretch-width of symmetric 0, 1-matrices.

More precisely:

» Theorem 4 (x). Given an integer k and a symmetric n X n 0, 1-matriz M, there is an
nPW _time algorithm that outputs a sequence witnessing that stw(M) = O(k®) or correctly
reports that stw(M) > k.

Compared to the approximation algorithm for the twin-width of a matrix, this is better both
in terms of running time (polynomial vs fixed-parameter tractable) and approximation factor
(quadratic vs exponential).

Conveniently for the sought algorithmic applications, planar graphs and n°-subdivisions
of n-vertex graphs (for any constant ¢) both have unbounded stretch-width (whereas they
have bounded reduced bandwidth if ¢ > 1). We indeed establish the following upper bound
on treewidth, implying that graphs of bounded maximum degree and bounded stretch-width
have at most logarithmic treewidth.

» Theorem 5. There is a c such that for every graph G, tw(G) < cA(G)%stw(G)* log |V (G)].

We match Theorem 5 with a lower bound. There are graphs with bounded A + stw and
treewidth growing as a logarithm of their number of vertices. This is because, as we prove,
very long subdivisions of bounded-degree graphs have bounded stretch-width.

» Theorem 6. Every (> n2™)-subdivision of every n-vertex m-edge graph G of mazimum
degree d has stretch-width at most 32(4d + 5)3.

By (> s)-subdivision of G, we mean every graph obtained by subdividing each edge of G
at least s times. In particular, for every natural k, the n-vertex k222*(*=1)_subdivision of the
k x k grid has bounded maximum degree (by 4) and stretch-width (by 296352), whereas it
has treewidth k = £2(y/logn). A more careful argument and reexamination of Theorem 6
show that, for some constant ¢, the n-vertex 2°*-subdivision of the k x k grid has bounded
A+ stw, and treewidth k& = 2(logn) matching the upper bound of Theorem 5.

The proofs of Theorems 5 and 6 involve the notion of overlap graph of a graph G whose
vertex set is totally ordered by <, with one vertex per edge of GG, and an edge between

two “overlapping edges” of G, that is, two edges ab and cd such that a < ¢ < b < d.

Using Theorem 3, we show that finding a vertex ordering such that the overlap graph has no
large biclique allows to bound the stretch-width.

» Lemma 7. For every ordered graph (G, <) and every integer t, if the overlap graph of
(G, <) has no Ky subgraph then stw(G) < 32(2t +1)3.

Theorem 6 is then derived by designing a long subdivision process that, for ordered graphs of
maximum degree d, reduces the bicliques in the overlap graph to a size at most linear in d.
Theorem 5 has direct algorithmic implications for classes of bounded stretch-width.

» Proposition 8. There is an algorithm that solves MAX INDEPENDENT SET in graphs of
(n®?)

bounded stretch-width with running time 20

Pilipczuk [22] showed that any problem expressible in Existential Counting Modal Logic
(ECML) admits a single-exponential fixed-parameter algorithm in treewidth. In particular,
ECML model checking can be solved in polynomial time in any class with logarithmic
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treewidth. This logic allows existential quantifications over vertex and edge sets followed by
an arithmetic formula and a counting modal formula that shall be satisfied from every vertex v.
The arithmetic formula is a quantifier-free expression that may involve the cardinality of
the vertex and edge sets, as well as integer parameters. Counting modal formulas enrich
quantifier-free Boolean formulas with (°¢, whose semantics is that the current vertex v has
a number of neighbors satisfying ¢ in a prescribed ultimately periodic set .S of non-negative
integers.

The logic ECML4-C gives to ECML the power of also using in the arithmetic formula
the number of connected components in subgraphs induced by some vertex or edge sets.
There is a Monte-Carlo polynomial-time algorithm for ECML+-C in graphs of treewidth at
most a logarithm function in their number of vertices [22]. Most NP-hard graphs problems,
such as MAXIMUM INDEPENDENT SET, MINIMUM DOMINATING SET, STEINER TREE, etc.
are expressible in ECML+C; see [22, Appendix D] for the ECML4C formulation of several
examples.

» Corollary 9. Problems definable in ECML (resp. ECML+C) can be solved in polynomial
time (resp. randomized polynomial time) in bounded-degree graphs of bounded stretch-width.

Perspectives. Proposition 8 and Corollary 9 constitute some preliminary pieces of evidence
of the algorithmic amenability of classes of bounded stretch-width. We ask several questions.
How can the running time of Proposition 8 be improved? (As far as we know, there could be
a polynomial-time algorithm for any problem defined in ECML on graphs of bounded stretch-
width.) As for twin-width, an approximation algorithm for stretch-width of (unordered)
graphs remains open. Lemma 7 gives some hope that this question might be easier than its
twin-width counterpart, especially among sparse graphs.

Can we lift the bounded-degree requirement in Theorem 6, that is, is there a function f
and a constant ¢, such that the stretch-width of any (> f(n))-subdivision of any n-vertex
graph is at most ¢? Our separating example showing that bounded stretch-width is strictly
more general than bounded clique-width (Theorem 2) yields graphs of essentially logarithmic
clique-width. Is that true in general?

» Conjecture 10. For every class C of bounded stretch-width, there is a constant ¢ such that
for every n-vertex graph G € C the clique-width of G is at most clogn.

We ask the same question with rank-width instead of clique-width, which would be more
algorithmically helpful. One interpretation of Theorem 5 is that graphs of bounded maximum
degree and bounded stretch-width have logarithmic treewidth. Whether the bounded-degree
constraint can be relaxed to the mere absence of large bipartite complete subgraphs is related
to Conjecture 10. A positive answer to Conjecture 10 would indeed imply this relaxation, as
Gurski and Wanke have shown that graphs without K, subgraphs have treewidth at most
their clique-width times 3¢ [18]. A natural future work would consist of using the witness of
low stretch-width to get improved algorithms compared to those attained with a witness of
low twin-width.

Related work. Our work is in line with twin-width [11], and the reduced parameters [12].
Theorem 1 closely follows a similar proof in the sixth paper of the twin-width series [10],
while Theorem 3 is inspired by the fourth paper [9], and notably the so-called rich divisions.

Finding the right logic for a given width parameter, or the right width parameter for
a given logic has been a common goal ever since Courcelle’s and Courcelle-Makowsky-
Rotics’s theorems [13, 14] relating treewidth with MSOs, and clique-width with MSO;.
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Recent developments (all from 2023) include an efficient model checking of the new logic
A&C DN (an extension of Existential MSO;) on classes of bounded mim-width [5], the new
parameter flip-width [26], which could lead to an efficient first-order (FO) model checking in
a very general class, and efficient model checking algorithms for FO extensions with disjoint-
paths predicates in proper minor-closed classes [17], and in proper topological-minor-closed
classes [24].

Classes with logarithmic treewidth, although not a priori defined as such, are somewhat
rare. To our knowledge, the first such example is the class of triangle-free graphs with no
theta (see [25] for the lower bound, and [1], for the upper bound). Another example consists
of graphs without K ; subgraph and bounded induced cycle packing number [6]. We add
a new family: graphs of bounded maximum degree and bounded stretch-width. Note that
these three families are all incomparable.

2 Preliminaries

For i < j two integers, we denote the set of integers that are at least i and at most j by
[¢, 7], and [i] is a short-hand for [1,4]. We use the standard graph-theoretic notations. In
particular, for a graph G, we denote by V(G) its set of vertices and by E(G) its set of edges.
If S C V(G), the subgraph of G induced by S, denoted G[S] is the graph obtained from G by
removing the vertices not in S.

2.1 Contraction sequences and twin-width

Twin-width is a graph parameter introduced by Bonnet, Kim, Thomassé, and Watrigant [11].
A possible definition involves the notions of trigraphs, red graphs, and contraction sequences.
A trigraph is a graph with two types of edges: black (regular) edges and red (error) edges.
The red graph R(H) of a trigraph H consists of ignoring its black edges, and considering
its red edges as being normal (black) edges. We may say red neighbor (or red neighborhood)
to simply mean a neighbor (or neighborhood) in the red graph. A (vertex) contraction
consists of merging two (non-necessarily adjacent) vertices, say, u, v into a vertex w, and
keeping every edge wz black if and only if uz and vz were previously black edges. The other
edges incident to w become red (if not already), and the rest of the trigraph remains the
same. A contraction sequence of an n-vertex graph G is a sequence of trigraphs G = G,,,

., G1 such that G; is obtained from G;y; by performing one contraction. A d-sequence
is a contraction sequence in which every vertex of every trigraph has at most d red edges
incident to it. In other words, every red graph of the sequence has maximum degree at
most d. The twin-width of G, denoted by tww(G), is then the minimum integer d such that
G admits a d-sequence. Figure 1 gives an example of a graph with a 2-sequence, i.e., of

O,
N
c@o @
Gpetned 9 e

Figure 1 A 2-sequence witnessing that the initial graph has twin-width at most 2.

twin-width at most 2.
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2.2 Partition sequences

Partition sequences yield an equivalent viewpoint to contraction sequences. Instead of dealing
with a sequence of trigraphs G = G,,, ..., G1, we now have a sequence of partitions P,, ..., P
of V(G), with P, = {{v} | v € V(G)} and for every i € [n — 1], P; is obtained from P;41
by merging two parts X, Y € P,y into one (X UY). In particular P; = {V(G)}. Now one
can obtain the red graph R(G;) of G;, as the graph whose vertices are the parts of P;, and
whose edges link two parts X # Y € P, whenever there is u,u’ € X and v,v’ € Y such
that wv € E(G) and v'v' ¢ E(G). We may call two such parts X,Y inhomogeneous. On
the contrary, two parts X,Y are homogeneous in G when every vertex of X is adjacent to
every vertex of Y, or no vertex of X is adjacent to a vertex of Y. We will also denote R(G;)
by R(P;).

2.3 Separation number

When dealing with treewidth in Section 7 it will more convenient to think of it in terms of
the functionally equivalent separation number. A separation (A, B) of a graph G is such that
AU B = V(G) and there is no edge between A\ B and B\ A. The order of the separation
(A, B) is |AN B|. A separation (A, B) is balanced if max(|A\ B|,|B\ 4]) < %|V(G)| The
separation number sn(G) of G is the smallest integer s such that every subgraph of G admits
a balanced separation of order at most s. It is not difficult to show that for every graph G,
sn(G) < tw(G) + 1. Dvordk and Norin showed the converse linear dependence:

» Lemma 11 ([15]). For every graph G, tw(G) < 15sn(G).

Note that if for some positive constant ¢ < 1, every subgraph H of G has a separation
(A, B) that is c-balanced, in the sense that max(|A\ B|,|B\ A|) < ¢|V(H)| of order at most s,
then every subgraph of G has a balanced separation of order (10};(%1 - 5. In particular,

by Lemma 11, tw(G) = O(s).

3 Stretch-width

An ordered graph is a pair (G, <) where G is a graph and < a strict total order on V(G).
We write u < v whenever u < v or u = v. Let (G, <) is an ordered graph, and X C V(G).
We now define some objects depending on <, but as the order will be clear from the context,
we omit it from the corresponding notations.

The minimum and maximum of X along < are denoted by min(X) and max(X), respect-
ively. The convex closure or span of X is conv(X) := {v € V(GQ) | min(X) < v < max(X)}.
Two sets X,Y C V(G) are in conflict®, or X conflicts with Y, if conv(X) N conv(Y) # 0.
Note that this does not imply that X and Y themselves intersect, and indeed we will mostly
use this notion for two disjoint sets X, Y.

Let now P be a partition of V(G), R(P) its red graph, and X € P. We say that
Y € P\ {X} interferes with X if Y conflicts with Nz (p)[X]. Note that it may well be that
Y interferes with X, but not vice versa. The stretch of the part X € P, denoted by str(X), is
then defined as the number of parts in P interfering with X. In turn, the stretch of P is the
maximum over every part Z € P of str(Z). The stretch-width of the ordered graph (G, <),
denoted by stw(G, <), is the minimum, taken among every partition sequence Py, ..., P;
of G, of max;ep, str(P;). Finally the stretch-width of G, denoted by stw(G), is the minimum
of stw(G, <) taken among every total order < on V(G).

5 In a similar context in [9], the verb overlap was also used. In this paper, we will reserve overlap for
intersecting intervals (actually edges) that are not nested, notion which we will later use.
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4 Matrix characterization

Let us first reinterpret the definition of stretch-width on symmetric (ordered) matrices.
A (symmetric) partition of a (symmetric) matrix M is a pair (R,C) such that R is a partition
of the row set of M, rows(M), C is a partition of the column set, columns(M), and C is
symmetric to R, i.e., two rows r; and r; are in the same part if and only if the symmetric
columns ¢; and ¢; are in the same part. Hence, each row part corresponds to a (unique)
symmetric column part. A division of a (symmetric) matrix M is a partition of M every
row (resp. column) part of which is on consecutive rows (resp. columns). Given a row part
R € R, and a column part C' € C, the zone RN C of M is the submatrix of M with row
set R and column set C. The diagonal zone of R € R is the zone R N C where C' is the
symmetric part of R in columns. A zone is non-constant if it contains two distinct entries.
A zone of a division may be called cell. A partition sequence of an n x n 0, 1-matrix M
is a sequence (R1,C1),...,(Rn-1,Cn—1) where (R1,Cy) is the finest partition (with n row
parts and n column parts), (R,,—1,Cnr—1) is the coarsest partition (with one row part and
one column part), and for every i € [n — 2], (R;41,C;y1) is obtained by merging together
two row parts (and the symmetric two column parts) of (R;,C;).

So far, we were following the definitions of [11, 8]. Instead of defining the error value
which leads to the twin-width of a matrix, we introduce the stretch value. The stretch value
of a row part R of a matrix partition (R,C) is the number of row parts conflicting with R
plus the number column parts conflicting with the union of columns parts C' such that
RN C is non-constant or RN C' is diagonal. The stretch value of a column part is defined
symmetrically. The stretch value of a partition (R, C) is the maximum stretch value of a part
of (R,C). Finally, one can define the stretch-width of a 0,1-matrix M as the minimum
among every partition sequence S of M of the maximum stretch value among partitions
of 8. Observe that for any ordered graph (G, <), the stretch-width of (G, <) is equal to the
stretch-width of its adjacency matrix.

The following is the counterpart of the so-called rich divisions [9] tailored for stretch-width.

If R is a set of rows and C' a set of columns of a matrix M, we denote by R\ C the zone
RN (columns(M) \ C), that is the submatrix formed by R deprived of the columns of C' (and
symmetrically for C'\ R).

In a division (R = (Ry,...,R,),C = (C1,...,Cp)), a row part R; is k-wide if for
every k consecutive columns parts Cj,...,Cjyr—1 containing the symmetric of R;, R; \
Ujchgj+k—1Ch contains at least k distinct rows. The k-wideness of column parts is defined
symmetrically.

A division (R,C) is k-wide if all its row and column parts are k-wide. The division is
k-diagonal if none of the row and column parts is k-wide. Given a set of rows (or columns)
X of a matrix M, we keep the notation conv(X) for the set of rows (or columns) of M with
indices between the minimum and the maximum indices of X.

» Theorem 12. For every integer k, if stw(M) < k, then M has no 9k-wide division.

Proof. Let D = (R,C) be a (symmetric) division of M. Let (R,C}), (R5,C5),... be
a (symmetric) partition sequence of M with stretch value at most k (i.e., witnessing that
the stretch-width of M is at most k). Let s be the smallest integer for which there is a row
part R’ € R/, such that conv(R') contains a row part R € R of the division D (by symmetry,
it happens at the same moment for a column part). We will prove that R is not 9k-wide.
Let C’ be the symmetric of R’ in columns. Set § := {T" € R’ | conv(T) N R # (}. Note

that S is the set of row parts of R/, that conflicts with R, and that R’ is necessarily in S.

As conv(R) C conv(R'), every part in S conflicts with R’ and it should hold that |S| < &k

8:7
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because (R.,C.) witnesses that stw(M) < k. For each T in S, we define Cr := {c €
columns(M) | ¢ € C, C € C., and C N T is non-constant or C' is the symmetric of T'}.
By assumption on the stretch value of (RY,C.), we know that for each T' € S, Cr conflicts
with at most k parts of C.. Let C’ be the symmetric of R'. As T conflicts with R/, the
symmetric of T' conflicts with C’. The symmetric of T being contained in Cr, Cr conflicts
with C’ which means that conv(C’) N conv(Cr) is not empty.

Let us consider (Jpcg Cr. An element A of C{ conflicts with (J,.g Cr if and only if
conv(A) N conv(|Jpeg Cr) is non-empty. As for each T of S, conv(Cr) N conv(C”) is non-
empty, there is 77,75 in S such that the associated two parts Cp, and Cr, (informally the
“leftmost” and the “rightmost”) verify

conv(Cr, ) U conv(Cr,) U conv(C’) = conv( U Cr).
TeS

Note that C7, can be equal to C’. As Cr, and Cr, conflicts with C’, C" U Cr, U C'r, conflicts
with at most 3k parts of C;. Thus (J,.s Cr conflicts with at most 3k parts of Cy.

Observe that, except for C’, every part in C. is covered by the union of two consecutive
parts of C. Part C’ itself is covered by the union of three consecutive parts of C: conv(C")
cannot cover two parts of C by minimality of s. Thus, overall, each part of C. is covered by
the union of at most three consecutive parts of C. Hence, if | J,.g Cr conflicts with 3k parts

of C., it is contained in 9% consecutive parts of C, say Cj,...,Cjtox—1. Thus for any T € S,
T\ (Cy,...,Citor—1) is constant, and so R\ (C},...,Cj1ox—1) contains at most k different
TOWS. <

» Theorem 13 (x). For every integer k, if M does not have a k-wide division, then M
admits a sequence (R1,C1), (Ra,Ca), ... every division of which is 2(k 4+ 1)-diagonal.

» Theorem 14 (x). If M admits a sequence of k-diagonal divisions, then stw(M) < 4k3.
» Theorem 15. If a matriz M does not admit a k-wide division, then stw(M) < 32(k + 1)3.

Proof. In fact, M admits a sequence of 2k-diagonal divisions by Theorem 13. Applying
Theorem 14 on this sequence outputs a witness of stretch-width 4-(2(k+1))3 = 32(k+1)%. =

» Theorem 4 (x). Given an integer k and a symmetric n x n 0, 1-matriz M, there is an
nPW _time algorithm that outputs a sequence witnessing that stw(M) = O(k®) or correctly
reports that stw(M) > k.

5 Overlap graph

Consider an ordered graph (G, <), and think of < as a left-to-right order (with the smallest
vertex being the leftmost one). For any edge e € E(G), we denote by L(e) (resp. R(e)) the
left (resp. right) endpoint of e. Given two edges e, f € F(G), we say that e is left of f if
L(e) < L(f), and e is strictly left of f if L(e) < L(f). By extension, we say that X C E(G)
is left of (resp. strictly left of) Y C E(G) if for every e € X and f € Y, L(e) < L(J)
(resp. L(e) < L(f)). If u,v are vertices of (G, <), we denote by [u, v] the set of vertices that
are, in <, at least u and at most v. We also denote by [+, u] (resp. [u, —]) the set of vertices
that are at most u (resp. at least w).

We say that two edges e, f are crossing if L(e) < L(f) < R(e) < R(f) (or symmetrically)
and we denote e x f this relation. Observe that two edges sharing an endpoint are not
crossing. The relation X is symmetric and anti-reflexive, hence defines an undirected graph
on E(G). We denote by Ov(G, <) the graph (E(G), x). Ov(G, <) is called the overlap graph
of (G, <); see Figure 2.
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Figure 2 An ordered graph (left) and its overlap graph (right).

We relate the structure of Ov4(G) and the stretch-width of G among bounded-degree
graphs, by proving the following theorem:

» Theorem 16. A class C of ordered graphs of bounded degree has bounded stretch-width if
and only if {Ov(G, <) | G € C} does not admit K, subgraph, for some integer t.

The next two lemmas prove the forward implication, by considering a special point in the
partition sequence. The last lemma of this section proves the backward implication, using
the matrix characterization of Section 4. We say that a K ; subgraph of Ov(G, <) is clean
if the sides of the K, are X,Y C E(G) such that X is strictly left of Y.

» Lemma 17. For every ordered graph (G, <), if Ov(G, <) contains a Ky, as a subgraph,
then Ou(G, <) contains a clean K|y /2] 1/2] subgraph.

Proof. Assuming that Ov(G, <) has a K;; subgraph, there is two disjoint sets X,Y C E(G)
each of size ¢ such that for every x € X andy € Y, x xy. Let L(z1) < L(z2) < ... < L(x¢) be
the elements of X, and L(y1) < L(y2) < ... < L(y¢), the elements of Y. As x|;/5) and y|4/2)
are crossing, either L(z|;/2)) < L(y|t/2)) or L(y|e/2)) < L(z|r/2)). The sides of the clean
K\¢/2),1t/2) are {z1,...,2|¢/2)} and {y|¢/2], ..., y¢} in the former case, and {y1,...,y[1/2/}
and {x|¢/2),..., ¢} in the latter. <

» Lemma 18 (x). For any ordered graph (G, <), if A(G) < d and stw(G,=<) < t, then
Ov(G, <) does not contain K y with N = 4td* as a subgraph.

» Lemma 7. For every ordered graph (G, <) and positive integer N, if Ov(G, <) does not
contain Ky N as a subgraph, then stw(G, <) < 32(2N + 1)3.

Proof. Let (G,<) be an ordered graph such that Ov(G, <) does not contain Ky y as
a subgraph, and let M be the adjacency matrix of (G, <). We prove that stw(M) <
32(2N +1)°.

Suppose, for the sake of contradiction, that stw(M) > 32(2N + 1)3. By Theorem 15,
there is a 2N-wide division (R = {R1,...,Ri},C = {C4,...,C}) of M. In particular, for
any row R;, R; \ Ci—_N+1,-..,Citn—1 contains more that 2N different rows. Let D be the
union of the zones R; N C; such that |i — j| < N, that is, the 2N — 1 “longest” diagonals
of zones of the division (R,C). As, for every ¢ € [k], the number of distinct rows in R; \ D
(resp. distinct columns in C; \ D) is at least 2N, R; \ D (resp. C; \ D) contains at least 2N
1-entries.

To simplify the coming notations, let denote by ||M’|| the number of 1-entries of any
submatrix M’ of M. For example, ||R; \ D|| > 2N. Observe that R; (resp. Cj) is split by
D in at most two sets Rf~ and R;” (resp. C’JT and C’j), namely, Rf™ = J;¢; n R N C; and
R =Ujsin NGy

Observe that for every ¢,j such that i + 1 < j < i+ N, each l-entry of R;” (resp. C’j)
and l-entry of C’JT (resp. R;*) correspond to crossing edges in (G, <). As Ov(G, <) does not
contain any Ky n subgraph we have, for every ¢,j such that ¢ +1 < j < i+ N:

8:9
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L. min(|| R[], ||C]]) < N, and
2. min(||CF |, | R [) < N.
Indeed, if the first item does not hold, N l-entries in R;” and N l-entries in CJT form the
two sides of a Ky n.

We finally prove by induction on ¢ that, while 2¢ < k, the property || R, || > N, henceforth
called (Q;), holds. Note that R§ is empty. Thus ||Ry”|| = 2N > N, hence (Qp) holds. Now
assume that (Q;) holds. By the first item, we have ||C;-+1|| < N. Thus ||C2¢i+1|| > N, since

Caita \ D = i UCT, and [|Caipr \ D > 2N.

Symmetrically, by the second item, ||R$;, .|| < N, and hence [|[R5; || > N. Thus (Q;y1)
holds. As R;” n, is empty, (Q;) can no longer be true when 2i > k — N + 1, a contradiction.
Therefore stw(M) < 32(2N)3. <

6 Subdivisions

When subdividing the edges of an ordered graph, there is a simple way of updating its vertex
ordering without creating larger bicliques in its overlap graph.

» Lemma 19. Let (G, <) be an ordered graph, and H be obtained by subdividing an edge
of G. There is an order <’ such that, for every integer t, if Ov(G, <) has no Ky, subgraph,
then Ov(H, <) has no Ky, subgraph.

Proof. Let e = uv be the edge of G subdivided to form H, and let w € V(H) be the new
vertex resulting from this subdivision. The total order <’ is obtained from <, by adding
w next to u, say, just to its right. This way Ov(H, <’) is simply Ov(G, <) plus an isolated
vertex. Indeed the edge uw € E(H) is an isolated vertex in Ov(H, <), since u and w are
consecutive along <’, whereas wv € F(H) crosses the same edges as uv was crossing. |

We now define a long subdivision process that is actually “erasing” large bicliques in
the overlap graph of a bounded-degree graph. Let uv be an edge of an ordered graph
(G, <), with h vertices between v and v, say, u < u1 < ug < ... < up < v. We describe an
h + 1-subdivision of uv in (G, <) that we call flattening of uv. We delete uv, and create h+ 1
new vertices wi,...,wp41 such that u < w; < ug R we <ug < ... <wp < up < Wpp1 < 0.
We then create the edges uwq, w;w; 1 for every i € [h], and wp1v. We may say that these
edges stem from wv. An iterated subdivision of (G, <) chooses a total order on the edges
of G, and iteratively flattens the edges of G in this order (note that the created edges are
not flattened themselves); see Figure 3.

—
mé_/—\\ PV APV e Ve Ve

Figure 3 An iterated subdivision. Created edges have the color of the edge they stem from.

» Lemma 20. Any iterated subdivision (G', <) of an ordered graph (G, <) of mazimum
degree d, is such that Ov(G',<") has no Kagyo 24+2 subgraph.
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Proof. Assume for the sake of contradiction that Ov(G’, <) has a Kag4224+2 subgraph.
Then by Lemma 17, Ov(G’, <’) has a clean K441, 441 subgraph. Let X,Y be the two sides
of this clean biclique, where X is left of Y. As every vertex of G’ (like G) is incident to
at most d edges, there is {z1,22} C X and {y1,y2} C Y such that L(z1) < L(z2) < L(y1) <
L(y2) < R(z;) < R(zs-i) < R(y;) < R(ys—;) with ¢, € [2].

As z1 and x9 cross y; and yo, there is no 4,j € [2] such that z; and y; stem from the
same edge of G. We can thus assume without loss of generality that the last edge among
Z1,%2,Y1,Y2 to be created is in X (since the argument is symmetric if this happens in Y),
i.e., x; for some i € [2]. When z; is created, the vertices L(y;) and L(yz) already exist and
form a non-trivial interval since L(y;) < L(y2). This contradicts the construction of the
iterated subdivision, since z; jumps over [L(y1), L(y2)], when it should have at least created
an intermediate vertex in [L(y1), L(y2)]- <

» Theorem 6. Every (> n2™)-subdivision of every n-vertex m-edge graph G of mazimum
degree d has stretch-width at most 32(4d + 5)3.

Proof. Let G be any graph of C with n vertices and m edges, and let G” be any (> n2™)-
subdivision of G. Choose an arbitrary order < of V(G). Let (G’,<’) be the iterated
subdivision of (G, <), choosing an arbitrary order on the edges G. By Lemma 20, Ov(G’, <’)
has no Ks442,24+2 subgraph. Every edge of G is subdivided at most n2™ times by the process
of iterated subdivision. By Lemma 19, the edges of G’ can be further subdivided to obtain G”
such that Ov(G”, <") has no Kagt2 24+2 subgraph, for some vertex ordering <”. Therefore,
by Section 5, stw(G", <) < 32(4d + 5)3, and in particular, stw(G") < 32(4d + 5)3. <

» Corollary 21. There are graph classes with bounded stretch-width and maximum degree,
and yet unbounded treewidth.

Proof. Consider the family I, I, ..., where I}, is the k2225 ~1)_gubdivision of the k x k-
grid, for every positive integer k. The graphs from this family have degree at most 4, and
stretch-width at most 296352, but unbounded treewidth since tw(I}) = k. <

The above argument gives an example of n-vertex graphs with bounded degree and
stretch-width, and treewidth £2(y/logn). We can do better by picking the vertex ordering <,
and the order on the edges (for the iterated subdivision) more carefully. We simply order

LSOO

Figure 4 The 4 x 4 grid ordered row by row, with the horizontal edges in blue, and vertical edges

in green.

the grid row by row, and from left to right within each row; see Figure 4. We perform the
iterated subdivision of this ordered grid, with the following edge ordering. First we flatten
every horizontal edge (in blue), in any order. When this is done, the total number of vertices
has less than doubled. Then we flatten every vertical edge (in green) from left to right. It can
be observed that, starting from the k£ x k grid, we now obtain an iterated subdivision with
less than 2°% vertices, for some constant c¢. Thus, there are n-vertex graphs with bounded
degree and stretch-width, and treewidth £2(logn).
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7 Classes with bounded A + stw have logarithmic treewidth

For any edge e of an ordered graph (G, <), we denote ¢! = |L(e), R(e)], the interior of e, and
e® 1= [«, L(e)[U]R(e), =], the exterior of e; note that L(e) and R(e) are neither part of e’
nor of e°. The length of e according to < is ¢(e, <) = R(e) — L(e). When F' is a set of edges
we define £(F, <) to be the maximum length of an edge of F'. We say that a set C of vertices
is a c-balanced separator of G when there is a c-balanced separation (A4, B) of G such that
C = AN B. In an ordered graph (G, <) a set of vertices C' is a left/right c-balanced separator
if there exists a c-balanced separation (A, B) where A contains the initial interval of length
¢+ n, B contains the final interval of length ¢-n and C = AN B.

To simplify the notations, if the vertices of (G, <) are v1 < « -+ < v,, we will write G(i, j)
instead of G|[v;, v;]] and (4, j) instead of [v;, v;].

» Lemma 22 (). For any ordered n-vertex graph (G, <), if A(Ov(G, <)) < d and ((E(G), <)
< An, then G admits a left/right (1/2 — X)-balanced separator of size at most d + 2.

» Lemma 23 (x). For every ordered graph (G,<), if A(Ov(G,=<)) < d then G admits
a 1/6-balanced separator of size 2d + 4.

We say that a set S of edges of (G, <) is a rainbow if for every pair e, f of S, e* C f? or
f# C e'. Notice that a rainbow induces an independent set in Ov(G, <). When S contains ¢
edges we say that S is a t-rainbow, or a rainbow of order t. The following is an application
of Dilworth’s theorem on permutation graphs. It can be found in [27].

» Lemma 24 ([27]). Let (G, <) be an ordered graph, such that Ov(G, <) does not contain
some K. Then, for every vertex v of V(G), for every set F of edges from [+, v] to Jv,—]
we have |F| < kt where k is the mazimum order of a rainbow of F.

For any rainbow S, we denote by S* := Uees e'. A rainbow over v is a rainbow S
contained in the set of edges from [« v[ to Jv,—]. A mazimum rainbow over v is a rainbow
of maximum cardinality among the rainbows over v.

» Lemma 25 (x). Let (G, <) be an ordered graph such that Ov(G, <) does not contain
a K¢ subgraph. Then, if S is a mazimum rainbow over v € V(G), there is a vertex x € S*
and a set U that separates [<, x| from |z, —] with U of size < g(t)(log(£(S, <)) + 1), for a
function g such that g(t) = O(t*).

» Theorem 26. For any ordered graph (G, <), if Ov(G, <) does not contain any K, then
G contains a 1/12-balanced separator of order at most yt*, for some constant .

Proof. Let (G, <) be an ordered graph on n vertices, such that Ov(G, <) does not contain
any Ky ;. Let F be the set of edges over a vertex v € V(G), and let S be a maximum rainbow
over v. Denote by ey, ..., e, the edges in S with eé_H C eé. We build X, and Y, in the
same way as in the proof of Lemma 25.

Suppose that there are 3t 4+ 2 edges of S with length in [n/12,11n/12]. We denote
these edges by e;,...,e;, with j = i 4 3t + 2. We consider the set of edges Z, which is
the union of the Y, and X, for a € [¢,j] and b € [a — t,a + t], and erase it by removing
Lz ={L(z) | z€ Z}. As in the proof of Lemma 25, this operation removes O(t*) vertices of
G. Let G’ = G — Lz be the obtained graph.

Let x, y two vertices, respectively in |L(e;4+), L(eita:)[ an |R(e;12¢), R(ei1¢)[. If one of
these sets is empty, say |L(e;++), L(ei+at)[, then any path going from [+, L(e;4+)[U]R(€i4+), =]
to [L(eitat), R(eit2t)] has a vertex in |R(e;yot), R(ei+t)[. Then, we only need to consider y
in the following (if y also does not exist, the graph is already separated).



E. Bonnet and J. Duron

By construction, any edge over z is contained in [L(e;), L(e;)], or is going from [<—, L(e;)]
to [R(e;),—]. Thus, by applying Lemma 25 on G, = G'[«, R(e;)] over z, we find a set U,
separating [+, uy] from [u,, —|, where u, is in [L(e;), L(e;)]. We do the same on the right
side, considering G, = G[L(e;), —] and finding U, and w,, such that u, € [R(e;), R(e;)]. Set
Uy, U U, separates ug, uy[ from |ug, uy]®. As u, — u, is between n/11 and n/12, we found a
n/12-balanced separator of G of size at most 1 + 2¢(t) - log £(S, <).

Hence, assume now that for any vertex v of G, the number of edges of length in
[n/12,11n/12] in a maximum rainbow over v is bounded by 3t + 1. Thus, for every v,
the set M, of edges over v going from [n/12,v —n/12] to [v+n/12,11n/12] is of size at most
2t(3t + 1) by Lemma 24.

Set u = v,,/3 and v = vy, /3. By deleting the set A = {L(e) | e € M, U M,}, we get a new
ordered graph H = (G — A, <). Consider H,, = H[+,11n/12], and H, = H[n/12,—]. Then
the length of a maximum rainbow over w (resp. v) in H,, (resp. H,) is at most n/12.

Hence we can apply Lemma 25 on H, over u, and on H, over v. This yields two sets
W, W, of size O(t*logn) and two vertices w,,w, such that |w, —u| (resp. |w, — v|) is at
most n/12, and such that W, separates [«—, w,,] from [w,,—] in H, (and resp. for v). The
set W,, U W, is then separating |w,,, w,[ from [w,, w,]. <

» Theorem 27. Let G be any graph on n vertices, such that A(G) < d and stw(G) < t.
Then G contains a 1/12-balanced separator of size at most v(d*t)*logn, for a constant ~.

Proof. Let G a graph on n vertices, such that stw(G) < ¢t and A(G) < d. Let < be an order
such that (G, <) has stretch-width ¢. By Lemma 18, Ov(G, <) does not admit any Kyzq2 442
as a subgraph. Hence the Theorem 26 ensures the existence of a 1/12-balanced separator of
(G, <) (hence of G) of size v(4td*)* logn. <

By Lemma 11 and Theorem 27, we obtain the bound on the treewidth of a graph of
bounded degree and bounded stretch-width.

» Theorem 5. There is a c such that for every graph G, tw(G) < cA(G)¥stw(G)* log |V (G)].
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