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Abstract
We study the problem of reconfiguring one minimum s-t-separator A into another minimum s-t-
separator B in some n-vertex graph G containing two non-adjacent vertices s and t. We consider
several variants of the problem as we focus on both the token sliding and token jumping models. Our
first contribution is a polynomial-time algorithm that computes (if one exists) a minimum-length
sequence of slides transforming A into B. We additionally establish that the existence of a sequence
of jumps (which need not be of minimum length) can be decided in polynomial time (by an algorithm
that also outputs a witnessing sequence when one exists). In contrast, and somewhat surprisingly,
we show that deciding if a sequence of at most ℓ jumps can transform A into B is an NP-complete
problem. To complement this negative result, we investigate the parameterized complexity of what
we believe to be the two most natural parameterized counterparts of the latter problem; in particular,
we study the problem of computing a minimum-length sequence of jumps when parameterized by
the size k of the minimum s-t-separators and when parameterized by the number ℓ of jumps. For
the first parameterization, we show that the problem is fixed-parameter tractable, but does not
admit a polynomial kernel unless NP ⊆ coNP/poly. We complete the picture by designing a kernel
with O(ℓ2) vertices and edges for the length ℓ of the sequence as a parameter.
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1 Introduction

We study the problem of computing reconfiguration sequences between minimum s-t-
separators2. A set S of vertices in a graph G is an s-t-separator if vertices s and t are
separated in G − S, i.e, s and t belong to different components of G − S. A minimum
s-t-separator is an s-t-separator of minimum size. We always let k denote the size of a
minimum s-t-separator in G. The token3 jumping (TJ-) (resp. token sliding (TS-)) Minimum
Separator Reconfiguration (MSR) problem is defined as follows. Given a graph G and
minimum s-t-separators A and B, the goal is to determine if there exists a sequence of sets
A = S1, S2, . . . , Sr = B, such that Si is a minimum s-t-separator, Si = (Si−1 \ {v}) ∪ {u}
for some v ∈ Si−1, and u ∈ V (G) \ Si−1 (resp. u ∈ NG−Si−1(v)) for every i ∈ [r] \ {1}.

Motivation. Reconfiguration problems arise in various applications and, as a result, have
gained considerable attention in recent literature [1, 2, 9, 18]. They appear in power supply
problems, such as operating switches in a network to transform between different arrangements
of power supply from stations to homes without causing a blackout [17]. They also show up in
evolutionary biology, such as in the transformation of genomes via mutations [22]. Moreover,
reconfiguration problems contribute to numerous fields of study, such as computational
geometry with polygon reconfiguration [5], or statistical physics with the transformation
of a particle’s spin system [6]. At the same time, vertex separators are useful in the
factorization of sparse matrices [23], as well as, partitioning hypergraphs [19]. They also
lend themselves to problems in cyber security and telecommunication [20], bioinformatics
and computational biology [15], and many divide-and-conquer graph algorithms [12]. Given
the importance of vertex separators, we believe that it is a natural question to study the
problem of reconfiguration between different vertex separators.

Related work. Gomes, Nogueira, and dos Santos [16] initiated the study of the problem of
computing reconfiguration sequences between s-t-separators, A and B, without restricting
the size of the separators (to minimum). We call the corresponding problem Vertex
Separator Reconfiguration (VSR). They show that for token sliding, checking if A can
be transformed to B, i.e., Vertex Separator Reconfiguration, is a PSPACE-complete
problem even on bipartite graphs. In contrast, under the token jumping model the problem
becomes NP-complete for bipartite graphs.

Our results. Unlike the VSR problem, the requirement in the MSR problem that the
separators in the reconfiguration sequence must be minimum introduces a lot of structure.
In particular, we can rely on the duality between minimum separators and disjoint paths,
observing that tokens are always constrained to move on a set of disjoint s-t-paths, which
we call canonical paths. Using this property, we prove that, in an (optimal) solution, tokens
always move “forward” towards their target locations and we never need to take a step
back. This immediately prevents the problems from being PSPACE-complete since this gives
a (polynomial) bound on the length of a solution. In fact, the “always-forward” property
immediately implies a greedy algorithm that decides whether we can reconfigure one s-t-
separator into another or not for both the token sliding and token jumping models. We then

2 It is important to note that graphs may have an exponential number of minimum s-t-separators as
otherwise the problem is trivial.

3 The notion of tokens is intentionally kept abstract as tokens can represent any type of agents.
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turn our attention to finding shortest reconfiguration sequences. While TS-MSR is still
solvable in polynomial-time, finding an optimal solution for the TJ-MSR problem is shown
to be NP-complete by a reduction from Vertex Cover; finding the largest set of vertices
that can be “skipped” by jumping over them is “similar” to finding a minimum vertex cover.

We give a complete characterization of the (parameterized) complexity of the TJ-MSR
problem for its natural parameterizations. In particular, we complement our NP-hardness
result by showing that the problem of finding a shortest sequence of token jumps is fixed-
parameter tractable when parameterized by k, the size of a minimum separator; this is
accomplished by further exploiting the structure imposed by the separators’ minimality as
yes-instances have pathwidth bounded by O(k). Unfortunately, unless NP ⊆ coNP/poly, the
problem admits no polynomial kernel under this parameterization. Finally, we show that if
we parameterize the problem by the length of the reconfiguration sequence, ℓ, then we obtain
a kernel with O(ℓ2) vertices and edges.

2 Preliminaries

We denote the set of natural numbers by N and, for n ∈ N, we let [n] = {1, 2, . . . , n}. We
only deal with finite simple undirected graphs. We let V (G) and E(G) denote the vertex set
and edge set of graph G, respectively. The open neighborhood of a vertex v is denoted by
NG(v) = {u ∈ V (G) | {u, v} ∈ E(G)} and the closed neighborhood by NG[v] = NG(v) ∪ {v}.
For a set S ⊆ V (G) of vertices, we define NG(S) =

⋃
v∈S NG(v) \ S and NG[S] = NG(S) ∪ S;

if the context is clear, we omit the subscript G. The subgraph of G induced by S is denoted
by G[S], where G[S] has vertex set S and edge set {{u, v} ∈ E(G) | u, v ∈ S}; we also define
G − S = G[V (G) \ S]. A walk of length q from v0 to vq in G is a vertex sequence v0, . . . , vq

such that {vi, vi+1} ∈ E(G) for all i ∈ {0, . . . , q − 1}. It is a path if all vertices are distinct.
An s-t-path is one with endpoints s and t. Two s-t-paths P1 and P2 are (internally) disjoint
if V (P1) ∩ V (P2) = {s, t}. The following is a celebrated theorem attributed to Menger [21]
and later generalized and made algorithmic by Ford and Fulkerson [13].

▶ Theorem 1. The size of a minimum s-t-separator is equal to the maximum number of
pairwise internally disjoint s-t-paths, which can be computed in polynomial time.

Parameterized complexity. A parameterized problem Q is a subset of Σ∗ × N, where the
second component denotes the parameter. A parameterized problem is fixed-parameter
tractable with respect to a parameter κ, FPT for short, if there exists an algorithm to decide
whether (x, κ) ∈ Q in time f(κ) · |x|O(1), where f is a computable function. We say that two
instances are equivalent if they are both yes-instances or both no-instances. A kernelization
algorithm, or a kernelization for short, is a polynomial-time algorithm that reduces an
input instance (x, κ) into an equivalent instance (x′, κ′) such that |x′|, κ′ ≤ f(κ), for some
computable function f . Such x′ is called a kernel. Every fixed-parameter tractable problem
admits a kernel, however, possibly of exponential or worse size. For efficient algorithms it is
therefore most desirable to obtain kernels of polynomial, or even linear size. We refer to the
textbooks [7, 10] for extensive background on parameterized complexity.

3 Preprocessing and general observations

Let (G, s, t, A, B) denote an instance of Minimum Separator Reconfiguration, where
A and B are minimum s-t-separators of size k. The reconfiguration model, i.e., jumping vs.
sliding, will be clear from context. We begin by making some general observations (that

IPEC 2023



9:4 Minimum Separator Reconfiguration

hold for both models) about the structure of sequences of minimum s-t-separators, which
we make extensive use of. We also describe some preprocessing operations: we assume they
have been applied on every instance in the rest of the paper. We begin by introducing the
notion of canonical paths, which describe the possible locations for each token.

▶ Definition 2 (Canonical paths). Let A and B denote the starting and target separators,
respectively. By Theorem 1, we begin by fixing a maximum set of pairwise internally disjoint
s-t-paths, which has size k = |A| = |B| (since A, B are minimum separators). We may
assume that all paths are chordless, i.e., if two vertices of the same path are adjacent the
edge connecting them is part of the path; otherwise, we could decrease the length of the path
by shortcutting along the chord. We repeat this procedure until all paths are chordless; it
terminates since in each iteration the total number of vertices involved in the paths decreases.
We call these k chordless pairwise internally disjoint s-t-paths P1, . . . , Pk the canonical paths
of our instance.

Note that canonical paths may not be uniquely defined; however, we can fix any set of k

internally vertex disjoint paths as canonical.

▶ Lemma 3. Let S be a minimum s-t-separator. Then, S contains exactly one vertex of
each canonical path.

Proof. The set S has to contain at least one vertex of each path since otherwise there would
be an s-t-path in G − S. Since the number of paths is equal to the size of a minimum
separator and the paths are disjoint, it has to be exactly one in each (Theorem 1). ◀

The next observation follows immediately from Lemma 3.

▶ Observation 4. For both token sliding and token jumping, each token is confined to its
respective canonical path and in the case of sliding, a token can only slide to either one of its
two neighbours along its canonical path.

Thus, our view of the problem is that we are sliding (resp. jumping) tokens along a set of
k paths and that each token is confined to its respective path. We now show that we can
always slide (resp. jump) a token in the direction of the target separator B and never have
to do a “backward” move.

Let L(i) denote the number of vertices on the canonical path Pi, including s and t.
Let ui,1, . . . ui,L(i) denote the vertices on the canonical path Pi in the order in which they
appear on it, with ui,1 = s and ui,L(i) = t. Let ai and bi denote the indices such that
V (Pi) ∩ A = {ui,ai} and V (Pi) ∩ B = {ui,bi}, i.e., ai is the index of the starting vertex of
the token on Pi and bi the index of the goal vertex for this token. Let li = min(ai, bi) and
ri = max(ai, bi). We first show that, in any (shortest) reconfiguration sequence, we only
need to consider configurations of tokens in which, for all i, the token on the path Pi remains
between (or on) ui,li

and ui,ri
.

▶ Lemma 5. For all i ∈ [k], let ϕi be the function such that for all 1 < a < L(i),

ϕi(a) :=


li if a < li,

ri if a > ri,

a otherwise.

Let f(ui,a) := ui,ϕi(a). If X is a minimum s-t-separator, then so is f(X).



G. C. M. Gomes et al. 9:5

s t

ui,a
ui,ϕ(xi)

uj,ϕ(xj)
uj,b

Figure 1 P is in blue and P ′ is highlighted in orange.

Proof. Given a set X = {ui,xi
| i ∈ [k]}, let Left(X) =

⋃
i{ui,a | a < xi}.

Let X = {ui,xi
| i ∈ [k]} be an s-t-separator. Assume that Y = f(X) is not an s-t-

separator. Let P be an s-t-path in G − Y . Let ui,a be the last vertex of P belonging to
Left(Y ) (possibly ui,a = s). Let uj,b be the first vertex of P lying on a canonical path after
ui,a (possibly uj,b = t). We have uj,b /∈ Left(Y ) and thus b > ϕj(xj). Note that a ̸= ϕi(xi)
and b ̸= ϕj(xj) by the definition of P . Let P ′ be the path in G going from s to ui,a via Pi,
then to uj,b via P and finally to t via Pj ; see Figure 1. We have i ̸= j since otherwise P ′

would be an s-t-path in G − A (respectively G − B or G − X) if ϕi(xi) = ai (respectively
ϕi(xi) = bi or ϕi(xi) = xi).

We cannot have a < xi and xj < b at the same time since otherwise P ′ would be an s-t-path
in G − X. Without loss of generality, assume that xi ≤ a. As a result, xi ≤ a < ϕi(xi) = li.
We must have b < lj , or otherwise P ′ would be an s-t-path in G − A or G − B. Thus,
b < lj ≤ ϕj(xj) which contradicts the aforementioned property that b > ϕj(xj) and proves
that f(X) is an s-t-separator. ◀

▶ Corollary 6. In both the token jumping and token sliding models, if there exists a re-
configuration sequence from A to B, then there exists a shortest sequence such that, for
any i, the ith token remains between li and ri at all times. As a result, deleting all ver-
tices on canonical paths that are not beteween li and ri and replacing them by the edges
{{s, li} | 1 ≤ i ≤ k} ∪ {{ri, t} | 1 ≤ i ≤ k} yields an equivalent instance.

Proof. Two s-t-separators differing only by a token jump (resp. slide) are mapped by f

to two s-t-separators that are either equal or differing by only a token jump (resp. slide).
Thus, applying f to all separators in the reconfiguration sequence, we get a reconfiguration
sequence with the claimed property. ◀

Given a vertex ui,x on a canonical path Pi, we define the set F (ui,x) as the set of vertices
of Pi between ui,x and ui,bi

(see Figure 2). We say that a jump (resp. slide) from ui,a to ui,b

is forward if ui,b ∈ F (ui,a). Intuitively, this means that a jump (resp. slide) is forward if it
moves the token closer to its target location (along the canonical path) without going past it.

▶ Lemma 7 (Forward-moving lemma). If there exists a reconfiguration sequence from A to B,
then there exists a shortest sequence S of jumps (resp. slides) going from A to B containing
only forward jumps (resp. slides).

Proof. We proceed by induction on the length of a shortest sequence. If A = B, there is
nothing to prove. Otherwise, let S be a shortest sequence of moves going from A to B.
By Corollary 6, we can assume that the first move in S is a forward move. Let A′ be the
separator obtained after this move. The tail of S is a shortest sequence of move between
A′ and B and by induction, it may be replaced with a shortest sequence that only contains
forward jumps (resp. slides). ◀

IPEC 2023
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s t

ui,ai

ui,x
ui,bi

uj,bj uj,y
uj,aj

Figure 2 F (ui,x) is highlighted in orange and F (uj,y) in blue.

4 Polynomial-time algorithms

The forward-moving lemma immediately implies that several problems can be solved in
polynomial time by a greedy algorithm.

▶ Theorem 8. A minimum-length sequence of token slides reconfiguring one minimum
s-t-separator to another can be computed in polynomial time.

Proof. Since slides are reversible, doing any slide can never turn a yes-instance into a
no-instance. Thus, we can greedily apply moves that slide a token forward. That is, we
iteratively find any token that can slide forward (as long as possible) and execute the slide.
Since we never need to do a backward slide (Lemma 7), this always finds a solution if one
exists. Moreover, this is optimal; the paths are chordless, so any slide can only advance a
token one step closer towards its target position, and since there are no backward slides,
the solution is optimal. Clearly, checking if a token can slide forward requires polynomial
time and given that an optimal solution has polynomial length we get the claimed running
time. ◀

▶ Theorem 9. A (feasible, but not necessarily minimum-length) sequence of token jumps
reconfiguring one minimum s-t-separator to another can be computed in polynomial time.

Proof. Jumps are also reversible, so doing a jump can never turn a yes-instance into a
no-instance. Again, we can greedily apply forward jumps. Since a solution never needs to
contain a backward jump, this yields a feasible solution if one exists. ◀

In the case of token jumping, the solution produced by the greedy algorithm is not
necessarily optimal (not guaranteed to be a shortest sequence of jumps); by choosing a
different order for the jumps, it might be possible to make “longer” jumps, i.e., jumping over
more vertices. In fact, we show that deciding whether a sequence of at most ℓ jumps can
tranform one minimum s-t-separator into another is an NP-complete problem.

5 Hardness of finding short sequences of jumps

First, we note that the problem of deciding whether a sequence of at most ℓ jumps between
two minimum s-t-separators exists is in NP. Indeed, Lemma 7 implies that the length of a
reconfiguration sequence cannot exceed |V (G)|; we can therefore directly use a reconfiguration
sequence as a certificate.

We show NP-hardness by reducing the Vertex Cover problem. Given a graph G =
(V, E) and the size κ of a desired vertex cover, we construct our instance (G′, s, t, A, B) as
follows. We first create a copy of the graph G, and for every v ∈ V (G) we add two additional
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vertices sv, tv and edges {sv, v}, {v, tv}. We further add vertices s, t and for all v ∈ V (G),
edges {s, sv}, {tv, t}; see Figure 3. We ask whether we can reconfigure the s-t-separator
A = {sv | v ∈ V (G)} to the separator B = {tv | v ∈ V (G)} using at most |V (G)| + κ token
jumps. Note that the canonical paths are of the form {s, sv, v, st, t | v ∈ V (G)}.

s t

sv
v tv

···
GA B

Figure 3 The graph G′ formed from G (highlighted in orange), along with the initial and target
separators A and B (highlighted in blue), respectively.

▶ Theorem 10. Deciding whether a sequence of at most ℓ token jumps can tranform one
minimum s-t-separator into another is an NP-complete problem.

6 Preprocessing for token jumping

In this section, we describe some preprocessing rules that can be applied to the token jumping
variant of Minimum Separator Reconfiguration. In the remainder of this paper, we
assume that all instances are preprocessed according to these rules. We first show that we
can reduce the graph so that it contains no vertices that are not on the canonical s-t-paths.

▶ Lemma 11. Given an instance (G, s, t, A, B) of Minimum Separator Reconfiguration
in the token jumping model, it is possible to compute in polynomial time an equivalent
instance (G′, s, t, A, B) in which all vertices are on the (chordless) canonical paths and both
the minimum s-t-separator size and the length of minimum reconfiguration sequences are
preserved. Moreover, all vertices in A ∪ B are adjacent to either s or t.

Going forward, we assume that all graphs are preprocessed according to these rules. We
next observe that to ensure that a configuration of tokens forms a valid s-t-separator it
suffices to check the existence of relatively simple s-t-paths.

▶ Lemma 12. To check whether a configuration of tokens that assigns exactly one token
to each canonical path forms an s-t-separator, it suffices to check whether there exists an
s-t-path that from s, follows one of the canonical paths, then follows one edge (a crossing
edge) from that canonical path to another, and then follows that canonical path to t.

We now show that it suffices to consider instances in which all vertices have degree at
least 3 and at most 2k, where k ≥ 3 is the size of the minimum separator (for k ≤ 2, the
problem can be solved in polynomial time by a simple algorithm that computes a shortest
path in an auxiliary graph H having one vertex for each of the at most n2 s-t-separators
and where two vertices of H share an edge whenever the corresponding s-t-separators are
one reconfiguration step away from each other).

IPEC 2023



9:8 Minimum Separator Reconfiguration

▶ Lemma 13. Given an instance (G, s, t, A, B) of Minimum Separator Reconfiguration
in the token jumping model, it is possible to compute in polynomial time an equivalent instance
(G′, s, t, A, B) in which the length of minimum reconfiguration sequences is preserved and all
vertices have degree at least 3 and at most 2k, where k = |A| = |B| (assuming k ≥ 3). In
particular, every vertex can have at most two neighbors on each canonical path.

We proceed by showing that we can always assume that the source and target minimum
s-t-separators, i.e., A and B, are disjoint.

▶ Lemma 14. Given an instance (G, s, t, A, B) of Minimum Separator Reconfiguration
in the token jumping model, it is possible to compute in polynomial time an equivalent instance
(G′, s, t, A′, B′) in which A′ ∩ B′ = ∅ and such that the length of minimum reconfiguration
sequences is preserved.

We conclude this section by formalizing the notion of unskippable vertices; a notion
that will be useful in many of our subsequent results. Given an instance (G, s, t, A, B), we
say that v ∈ V (G) \ (A ∪ B ∪ {s, t}) is unskippable if for every sequence (if any exist) of
minimum s-t-separators that transforms A to B there exists at least one s-t-separator S

in the sequence such that v ∈ S. In other words, there is no transformation from A to B

that can skip over v and not jump a token onto v at some point. Similarly, we say that a
set U ⊆ V (G) \ (A ∪ B ∪ {s, t}) of vertices is unskippable whenever there exists at least one
s-t-separator S in every reconfiguration sequence (from A to B) such that |U ∩ S| ≥ 1.

▶ Lemma 15. Let (G, s, t, A, B) be an instance of Minimum Separator Reconfiguration
in the token jumping model. A vertex v ∈ V (G) \ (A ∪ B ∪ {s, t}) having two neighbors on a
canonical path other than its own is unskippable. If u, v ∈ V (G) \ (A ∪ B ∪ {s, t}), u, v belong
to two different canonical paths, and {u, v} ∈ E(G), then {u, v} is unskippable.

7 Parameterizing by the size of the separators

In this section, we study the natural parameterization by k: the number of tokens, or the
size of minimum separators. We first prove that there exists an FPT algorithm for this
parameterization, then show that no polynomial kernel exists unless NP ⊆ coNP/poly.

7.1 FPT algorithm
In this section, we show that finding a shortest sequence for the token jumping variant of
Minimum Separator Reconfiguration is fixed-parameter tractable with respect to k,
the size of the minimum s-t-separators. We do so by constructing a path decomposition
of the graph from an arbitrary sequence of token jumps, and then proceed by designing a
dynamic programming algorithm that operates on that path decomposition. We shall work
towards proving the following.

▶ Lemma 16. Given a graph G preprocessed by our reduction rules and two minimum
s-t-separators A and B of G with |A| = k, if A and B can be reconfigured into each other,
then G \ {s, t} has pathwidth at most k.

Let S = A, S1, . . . , Sℓ, B be a reconfiguration sequene of minimum separators. Note that
the symmetric difference between two elements of S are two vertices uj,p ∈ Si \ Si+1 and
uj,r ∈ Si+1 \ Si belonging to the same canonical path. As such, we can construct a width-k
path decomposition where (i) each Si ∈ S is placed in the order they appear in S and (ii)
between Si and Si+1 we have the bags X ∪ {uj,q}, where X = Si ∩ Si+1 and p < q < r.
Using the previous statement and dynamic programming, we prove our main result.
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▶ Theorem 17. The optimization version of Minimum Separator Reconfiguration
under token jumping parameterized by the size of a minimum separator is in FPT.

7.2 No polynomial kernel for parameter k

We use the cross-composition framework developed by the work of Drucker [11], Bodlaender
et al. [3, 4], Dell and van Melkebeek [8], and Fortnow and Santhanam [14]. Roughly speaking,
in this framework, a problem Π and-cross-composes into a parameterized problem Γ if,
given instances {I1, . . . , Ir} of Π, we can construct an instance (O, k) of Γ such that: O is a
yes-instance if and only if Ii is a yes-instance for all i ∈ [r], |O| is polynomial on

∑
i |Ii| + r,

and k ≤ poly(maxi |Ii| + log r).
For Minimum Separator Reconfiguration under token jumping, we and-cross-

compose Vertex Cover, employing a construction very similar to the one used in Theo-
rem 10. In fact, for each of the r vertex cover instances (Gi, κ), we repeat the construction of
Theorem 10 and serialize all the graphs in a “linear fashion” using synchronization gadgets,
as depicted in Figure 4. We ask for a reconfiguration sequence between the leftmost and
rightmost sets (each of size k = µ + 1) of length O(rk +

∑
(|V (Gi)|)). As the name suggests,

the purpose of the synchronization gadgets is to guarantee that all tokens jump over each
graph Gi before moving on to the next graph (allowing us to accurately calculate the total
number of required jumps). Formally, our result can be stated as follows:

▶ Theorem 18. There exists an and-cross-composition from Vertex Cover into TJ
Minimum Separator Reconfiguration, parameterized by the minimum size k of an
s-t-separator. Consequently, when parameterized by k, TJ Minimum Separator Recon-
figuration does not admit a polynomial kernel unless NP ⊆ coNP/poly.

s t

Figure 4 An overview of the and-cross-composition with r = 3 and k = 5. The orange blobs are
A and B, the blue blobs represent the graphs Gi, and the green vertices and edges represent the
synchronization gadgets.

8 Polynomial kernel for parameter ℓ

Observe that the construction employed in Theorem 18 heavily relies on the fact that the
length ℓ of the reconfiguration sequence is linearly proportional to the number of instances.
We show that this dependence cannot be broken. That is, when parameterizing by ℓ, we
prove that Minimum Separator Reconfiguration admits a quadratic kernel.

Recall that, by Lemma 11, we can preprocess the graph so that all vertices are on the
canonical paths and the vertices in A and B are adjacent to (at least one of) s or t. Similarly,
by Lemma 13, each vertex in G will have degree at least 3 and at most 2k (with at most two
neighbors on each canonical path) and, by Lemma 14, we know that A ∩ B = ∅. We refer to
an instance satisfying all of the above as a reduced instance.

IPEC 2023
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▶ Lemma 19. In a reduced yes-instance where ℓ is the parameter, all the following properties
must be satisfied: (i) A ∩ B = ∅ and |A| = |B| ≤ ℓ; (ii) all vertices are on the (at most ℓ)
canonical paths; (iii) vertices in A and B are adjacent to (at least one of) s or t; and (iv)
each vertex in G has degree at least 3, degree at most 2ℓ, and at most two neighbors on each
canonical path.

Proof. The lemma follows immediately from the fact that if after obtaining a reduced
instance we have |A| = |B| > ℓ, then we have a no-instance; as at least ℓ + 1 jumps are
needed. Consequently, the minimum separator size will be at most ℓ and all the remaining
properties follow from Lemma 11, Lemma 13, and Lemma 14. ◀

▶ Lemma 20. Assume that in a reduced instance one of the canonical paths contains more
than 4(ℓ + 1)2 + 4 vertices. Then, the instance is a no-instance.

Proof. Let P denote such a canonical path. We claim that at least ℓ + 1 jumps are required
for the token on P . We assume otherwise, i.e, that ℓ jumps or fewer are enough, and work
towards a contradiction.

First, recall that if a vertex v on a canonical path is adjacent to two distinct vertices on
another canonical path, then v can never be jumped over, i.e., v is unskippable (Lemma 15).
We decompose P into ℓ + 1 subpaths each consisting of at least 4ℓ + 4 vertices (excluding
s, t, and the initial and target vertices of A and B). For the token on P to reach its final
position in at most ℓ jumps, it must (at least once) jump over 2ℓ + 1 (consecutive) vertices
of P or more (landing on the vertex 2ℓ + 2 away or more). Let us denote those vertices that
are jumped over by Q. Moreover, let Si denote the s-t-separator preceeding the jump and
let Si+1 denote the resulting s-t-separator after the jump.

If Q contains a vertex having two distinct neighbors on another canonical path, then the
vertex is unskippable and we get a contradiction. Hence, every vertex v of Q (which has
degree 3 or more) can have at most one neighbor on every canonical path P ′ ≠ P (and we
know that v must have at least one neighbor not in P ). Since Si and Si+1 are s-t-separators,
every vertex v ∈ Q can only be adjacent to vertices in Si \ V (P ) = Si+1 \ V (P ); otherwise an
s-t-path can be easily constructed, contradicting the fact that Si and Si+1 are s-t-separators.
Now, given that |Q| ≥ 2ℓ + 1, we know that there exists at least 3 distinct vertices in Q all
having the same neighbor in Si+1 \ V (P ). This contradicts the fact that after our reductions
each vertex in G can have at most two distinct neighbors on any canonical path. ◀

Lemmas 19 and 20 immediately imply a kernel with O(ℓ3) vertices: a yes-instance consists
of at most ℓ canonical paths each having O(ℓ2) vertices. We obtain an improved bound by
refining our analysis slightly and strengthening the result of Lemma 20 in Theorem 21.

▶ Theorem 21. The optimization version of TJ Minimum Separator Reconfiguration
admits a kernel with O(ℓ2) vertices and edges when parameterized by the length ℓ of a
reconfiguration sequence.

9 Concluding Remarks

We studied the minimum s-t-separator reconfiguration problem through several lenses. First,
we considered the token sliding and token jumping reconfiguration models, showing that
the reachability question is answerable in polynomial time in both cases. Afterwards, we
considered the task of finding a shortest reconfiguration sequence; we proved that it is easy
under the first model but NP-complete under the second. To tackle this hardness, we studied
the parameterized complexity of the token jumping version for the natural parameterizations
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k (the number of tokens) and ℓ (the length of the sequence). In this context, we designed an
FPT algorithm for parameter k, a quadratic kernel when parameterized by ℓ, and showed
that no polynomial kernel exists for k unless NP ⊆ coNP/poly.

In terms of future work on minimum s-t-separator reconfiguration itself, we are interested
in understanding shortest token jumping sequences for some graph classes, in particular for
planar graphs. Other possibilities include the study of structural parameterizations, such as
treewidth, feedback edge set, and vertex deletion distance metrics (e.g., distance to cluster,
clique, etc.). In a different spirit, studying the connectivity of the minimum s-t-separator
reconfiguration graph might yield different insights than the ones presented in this paper.
Beyond minimum separators, the work of Gomes, Nogueira, and dos Santos [16] investigated
arbitrary s-t-separator reconfiguration, but no research has yet been done on bounded size
separators. As such, we believe work on the complexity of reconfiguration of minimum + r

s-t-separators might be of independent interest.
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