
18th International Symposium on
Parameterized and Exact
Computation

IPEC 2023, September 6–8, 2023, Amsterdam, The Netherlands

Edited by

Neeldhara Misra
Magnus Wahlström

LIPIcs – Vo l . 285 – IPEC 2023 www.dagstuh l .de/ l ip i c s

Editors

Neeldhara Misra
IIT Gandhinagar, India
neeldhara.m@iitgn.ac.in

Magnus Wahlström
Royal Holloway, University of London, UK
Magnus.Wahlstrom@rhul.ac.uk

ACM Classification 2012
Theory of computation → Parameterized complexity and exact algorithms; Theory of computation →
Approximation algorithms analysis; Theory of computation → Graph algorithms analysis; Theory of
computation → Mathematical optimization; Theory of computation → Algorithm design techniques

ISBN 978-3-95977-305-8

Published online and open access by
Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany. Online available at https://www.dagstuhl.de/dagpub/978-3-95977-305-8.

Publication date
December, 2023

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at https://portal.dnb.de.

License
This work is licensed under a Creative Commons Attribution 4.0 International license (CC-BY 4.0):
https://creativecommons.org/licenses/by/4.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/LIPIcs.IPEC.2023.0

ISBN 978-3-95977-305-8 ISSN 1868-8969 https://www.dagstuhl.de/lipics

https://orcid.org/0000-0003-1727-5388
mailto:neeldhara.m@iitgn.ac.in
https://orcid.org/0000-0002-0933-4504
mailto:Magnus.Wahlstrom@rhul.ac.uk
https://www.dagstuhl.de/dagpub/978-3-95977-305-8
https://www.dagstuhl.de/dagpub/978-3-95977-305-8
https://portal.dnb.de
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.4230/LIPIcs.IPEC.2023.0
https://www.dagstuhl.de/dagpub/978-3-95977-305-8
https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics

0:iii

LIPIcs – Leibniz International Proceedings in Informatics

LIPIcs is a series of high-quality conference proceedings across all fields in informatics. LIPIcs volumes
are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board

Luca Aceto (Chair, Reykjavik University, IS and Gran Sasso Science Institute, IT)
Christel Baier (TU Dresden, DE)
Roberto Di Cosmo (Inria and Université de Paris, FR)
Faith Ellen (University of Toronto, CA)
Javier Esparza (TU München, DE)
Daniel Král’ (Masaryk University, Brno, CZ)
Meena Mahajan (Institute of Mathematical Sciences, Chennai, IN)
Anca Muscholl (University of Bordeaux, FR)
Chih-Hao Luke Ong (University of Oxford, GB)
Phillip Rogaway (University of California, Davis, US)
Eva Rotenberg (Technical University of Denmark, Lyngby, DK)
Raimund Seidel (Universität des Saarlandes, Saarbrücken, DE and Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, Wadern, DE)
Pierre Senellart (ENS, Université PSL, Paris, FR)

ISSN 1868-8969

https://www.dagstuhl.de/lipics

IPEC 2023

https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics

Contents

Preface
Neeldhara Misra and Magnus Wahlström . 0:ix–0:x

Program Committees
. 0:xi

Reviewers
. 0:xiii

Authors
. 0:xv–0:xviii

Regular Papers

Kernelizing Temporal Exploration Problems
Emmanuel Arrighi, Fedor V. Fomin, Petr A. Golovach, and Petra Wolf 1:1–1:18

Cluster Editing with Overlapping Communities
Emmanuel Arrighi, Matthias Bentert, Pål Grønås Drange, Blair D. Sullivan, and
Petra Wolf . 2:1–2:12

Existential Second-Order Logic over Graphs: Parameterized Complexity
Max Bannach, Florian Chudigiewitsch, and Till Tantau . 3:1–3:15

On the Complexity of Finding a Sparse Connected Spanning Subgraph in a
Non-Uniform Failure Model

Matthias Bentert, Jannik Schestag, and Frank Sommer . 4:1–4:12

Difference Determines the Degree: Structural Kernelizations of Component Order
Connectivity

Sriram Bhyravarapu, Satyabrata Jana, Saket Saurabh, and Roohani Sharma 5:1–5:14

The Parameterised Complexity Of Integer Multicommodity Flow
Hans L. Bodlaender, Isja Mannens, Jelle J. Oostveen, Sukanya Pandey, and
Erik Jan van Leeuwen . 6:1–6:19

Treewidth Is NP-Complete on Cubic Graphs
Hans L. Bodlaender, Édouard Bonnet, Lars Jaffke, Dušan Knop, Paloma T. Lima,
Martin Milanič, Sebastian Ordyniak, Sukanya Pandey, and Ondřej Suchý 7:1–7:13

Stretch-Width
Édouard Bonnet and Julien Duron . 8:1–8:15

Minimum Separator Reconfiguration
Guilherme C. M. Gomes, Clément Legrand-Duchesne , Reem Mahmoud,
Amer E. Mouawad, Yoshio Okamoto, Vinicius F. dos Santos, and
Tom C. van der Zanden . 9:1–9:12

Kernels for the Disjoint Paths Problem on Subclasses of Chordal Graphs
Juhi Chaudhary, Harmender Gahlawat, Michal Włodarczyk, and Meirav Zehavi . . 10:1–10:22

18th International Symposium on Parameterized and Exact Computation (IPEC 2023).
Editors: Neeldhara Misra and Magnus Wahlström

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:vi Contents

Parameterized Complexity Classification for Interval Constraints
Konrad K. Dabrowski, Peter Jonsson, Sebastian Ordyniak, George Osipov,
Marcin Pilipczuk, and Roohani Sharma . 11:1–11:19

An FPT Algorithm for Temporal Graph Untangling
Riccardo Dondi and Manuel Lafond . 12:1–12:16

Budgeted Matroid Maximization: a Parameterized Viewpoint
Ilan Doron-Arad, Ariel Kulik, and Hadas Shachnai . 13:1–13:17

Computing Complexity Measures of Degenerate Graphs
Pål Grønås Drange, Patrick Greaves, Irene Muzi, and Felix Reidl 14:1–14:21

An Improved Kernelization Algorithm for Trivially Perfect Editing
Maël Dumas and Anthony Perez . 15:1–15:17

From Data Completion to Problems on Hypercubes: A Parameterized Analysis
of the Independent Set Problem

Eduard Eiben, Robert Ganian, Iyad Kanj, Sebastian Ordyniak, and Stefan Szeider 16:1–16:14

Approximate Monotone Local Search for Weighted Problems
Barış Can Esmer, Ariel Kulik, Dániel Marx, Daniel Neuen, and Roohani Sharma 17:1–17:23

Consistency Checking Problems: A Gateway to Parameterized Sample Complexity
Robert Ganian, Liana Khazaliya, and Kirill Simonov . 18:1–18:17

Finding Degree-Constrained Acyclic Orientations
Jaroslav Garvardt, Malte Renken, Jannik Schestag, and Mathias Weller 19:1–19:14

Graph Clustering Problems Under the Lens of Parameterized Local Search
Jaroslav Garvardt, Nils Morawietz, André Nichterlein, and Mathias Weller 20:1–20:19

Bandwidth Parameterized by Cluster Vertex Deletion Number
Tatsuya Gima, Eun Jung Kim, Noleen Köhler, Nikolaos Melissinos, and
Manolis Vasilakis . 21:1–21:15

Collective Graph Exploration Parameterized by Vertex Cover
Siddharth Gupta, Guy Sa’ar, and Meirav Zehavi . 22:1–22:18

Drawn Tree Decomposition: New Approach for Graph Drawing Problems
Siddharth Gupta, Guy Sa’ar, and Meirav Zehavi . 23:1–23:22

Single Machine Scheduling with Few Deadlines
Klaus Heeger, Danny Hermelin, and Dvir Shabtay . 24:1–24:15

Twin-Width of Graphs with Tree-Structured Decompositions
Irene Heinrich and Simon Raßmann . 25:1–25:17

Dynamic Programming on Bipartite Tree Decompositions
Lars Jaffke, Laure Morelle, Ignasi Sau, and Dimitrios M. Thilikos 26:1–26:22

Kernelization for Counting Problems on Graphs: Preserving the Number of
Minimum Solutions

Bart M. P. Jansen and Bart van der Steenhoven . 27:1–27:15

On the Parameterized Complexity of Multiway Near-Separator
Bart M. P. Jansen and Shivesh K. Roy . 28:1–28:18

Contents 0:vii

Sunflowers Meet Sparsity: A Linear-Vertex Kernel for Weighted Clique-Packing
on Sparse Graphs

Bart M. P. Jansen and Shivesh K. Roy . 29:1–29:13

How Can We Maximize Phylogenetic Diversity? Parameterized Approaches for
Networks

Mark Jones and Jannik Schestag . 30:1–30:12

Sidestepping Barriers for Dominating Set in Parameterized Complexity
Ioannis Koutis, Michał Włodarczyk, and Meirav Zehavi . 31:1–31:17

Approximate Turing Kernelization and Lower Bounds for Domination Problems
Stefan Kratsch and Pascal Kunz . 32:1–32:17

A Parameterized Approximation Scheme for the Geometric Knapsack Problem
with Wide Items

Mathieu Mari, Timothé Picavet, and Michał Pilipczuk . 33:1–33:20

A Contraction-Recursive Algorithm for Treewidth
Hisao Tamaki . 34:1–34:15

PACE Solver Descriptions

PACE Solver Description: The PACE 2023 Parameterized Algorithms and
Computational Experiments Challenge: Twinwidth

Max Bannach and Sebastian Berndt . 35:1–35:14

PACE Solver Description: Hydra Prime
Yosuke Mizutani, David Dursteler, and Blair D. Sullivan . 36:1–36:5

PACE Solver Description: Exact (GUTHMI) and Heuristic (GUTHM)
Alexander Leonhardt, Holger Dell, Anselm Haak, Frank Kammer,
Johannes Meintrup, Ulrich Meyer, and Manuel Penschuck . 37:1–37:7

PACE Solver Description: Touiouidth
Gaétan Berthe, Yoann Coudert–Osmont, Alexander Dobler, Laure Morelle,
Amadeus Reinald, and Mathis Rocton . 38:1–38:4

PACE Solver Description: Zygosity
Emmanuel Arrighi, Pål Grønås Drange, Kenneth Langedal, Farhad Vadiee,
Martin Vatshelle, and Petra Wolf . 39:1–39:3

PACE Solver Description: RedAlert - Heuristic Track
Édouard Bonnet and Julien Duron . 40:1–40:5

IPEC 2023

Preface

The International Symposium on Parameterized and Exact Computation (IPEC, formerly
IWPEC) is a series of international symposia covering research in all aspects of parameterized
and exact algorithms and complexity. It started in 2004 as a biennial workshop and became
an annual event in 2009. Previous iterations of the symposium were:

2004 Bergen, Norway
2006 Zürich, Switzerland
2008 Victoria, Canada
2009 Copenhagen, Denmark
2010 Chennai, India
2011 Saarbrücken, Germany
2012 Lubljana, Slovenia
2013 Sophia Antipolis, France
2014 Wrocław, Poland

2015 Patras, Greece
2016 Aarhus, Denmark
2017 Vienna, Austria
2018 Helsinki, Finland
2019 Munich, Germany
2020 virtual / Hong Kong, China
2021 virtual / Lisbon, Portugal
2022 Potsdam, Germany

This volume contains the papers presented at IPEC 2023: the 18th International Sym-
posium on Parameterized and Exact Computation. IPEC 2023 was held on September 6—8
(Wed to Fri) as part of ALGO 2023, and took place in Amsterdam, the Netherlands at
Centrum Wiskunde & Informatica (CWI). In response to the call for papers, 85 extended
abstracts were registered, of which 10 were withdrawn or otherwise failed to submit a full
version. The resulting number of 75 full submissions represents a significant increase in
interest in the conference compared to previous years. 34 papers were ultimately selected
for presentation at the conference and inclusion in these proceedings. The reviews were
performed in a double-blind fashion, and there were 106 external reviews out of a total of
223 reviews.

The Best Paper Award was given to Hans L. Bodlaender (Utrecht University), Isja
Mannens (Utrecht University), Jelle Oostveen (Utrecht University), Sukanya Pandey (Utrecht
University) and Erik Jan van Leeuwen (Utrecht University) for their paper “The Parameterised
Complexity of Integer Multicommodity Flow”. The Best Student Paper Award was given
to Stefan Kratsch (Humboldt-Universität zu Berlin) and Pascal Kunz (Humboldt-Universität
zu Berlin) for their paper “Approximate Turing kernelization and lower bounds for domination
problems”. The EATCS-IPEC Nerode Prize was given to Marek Cygan (University of
Warsaw and Nomagic), Jesper Nederlof (Utrecht University), Marcin Pilipczuk (University
of Warsaw), Michał Pilipczuk (University of Warsaw), Johan M. M. van Rooij (Utrecht
University) and Jakub Onufry Wojtaszczyk (Google) for their paper “Solving Connectivity
Problems Parameterized by Treewidth in Single Exponential Time”. IPEC 2023 hosted an
award ceremony with a talk given jointly by Michał Pilipczuk and Johan M. M. van Rooij.
The Nerode Prize committee consisted of Fedor Fomin (chair; University of Bergen), Thore
Husfeldt (IT University of Copenhagen) and Sang-il Oum (Korea Advanced Institute of
Science and Technology). Tuukka Korhonen (University of Bergen) presented an invited
tutorial on “New methods in FPT algorithms for treewidth”. Finally, IPEC 2023 hosted the
award ceremony of the eighth Parameterized Algorithms and Computational Experiments
(PACE) challenge. These proceedings contain a report on the PACE 2023 challenge and
brief communications of the winners about their solvers.
18th International Symposium on Parameterized and Exact Computation (IPEC 2023).
Editors: Neeldhara Misra and Magnus Wahlström

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:x Preface

We thank the program committee and the external reviewers for their commitment in
the paper selection process. We also thank all the authors who submitted their work. We
are grateful to the local organizers of ALGO 2023 for the local arrangements.

Neeldhara Misra and Magnus Wahlström
Gandhinagar and London, October 2022

Program Committees

IPEC 2023 Program Committee

Akanksha Agrawal (IIT Madras, India)
Cristina Bazgan (Paris Dauphine University, France)
Robert Bredereck (TU Clausthal, Germany)
Eduard Eiben (Royal Holloway, University of London, UK)
Archontia Giannopoulou (University of Athens, Greece)
Pallavi Jain (IIT Jodhpur, India)
Bart M. P. Jansen (Eindhoven University of Technology, Netherlands)
Mark Jones (TU Delft, Netherlands)
Christian Knauer (Universität Bayreuth, Germany)
Dusan Knop (Czech Technical University, Czech Republic)
Bingkai Lin (Nanjing University, China)
Neeldhara Misra (IIT Gandhinagar, India) (co-chair)
André Nichterlein (TU Berlin, Germany)
Sebastian Ordyniak (University of Leeds, UK)
Fahad Panolan (IIT Hydrebad, India)
Daniel Paulusma (Durham University, UK)
R.B. Sandeep (IIT Dharwad, India)
Magnus Wahlström (Royal Holloway, University of London, UK) (co-chair)

IPEC 2023 Steering Committee

Holger Dell (2021-24, chair)
Fedor Fomin (2021-24)
Petr Golovach (2020-23)
Łukasz Kowalik (2022-25)
Daniel Marx (2020-23)
Neeldhara Misra (2022-25)
Jesper Nederlof (2021-24)
Magnus Wahlström (2022-25)
Meirav Zehavi (2020-23)

PACE 2023 Program Committee

Max Bannach (Universität zu Lübeck)
Sebastian Berndt (Universität zu Lübeck)

18th International Symposium on Parameterized and Exact Computation (IPEC 2023).
Editors: Neeldhara Misra and Magnus Wahlström

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

List of External Reviewers

Duncan Adamson
Jungho Ahn
Dhanyamol Antony
Emmanuel Arrighi
Pradeesha Ashok
Rémy Belmonte
Matthias Bentert
Steffen van Bergerem
Magnus Bordewich
Sergio Cabello
Huairui Chu
Alexis de Colnet
Alex Crane
Radu Curticapean
Argyrios Deligkas
Riccardo Dondi
Pål Grønås Drange
Foivos Fioravantes
Till Fluschnik
Vincent Froese
Harmender Gahlawat
Jaroslav Garvardt
Serge Gaspers
Panos Giannopoulos
Tiger-Lily Goldsmith
Petr Golovach
Maximilian Gorsky
Siddharth Gupta
Sushmita Gupta
Thekla Hamm
Tesshu Hanaka

Samuel Hand
Klaus Heeger
Leo van Iersel
Tanmay Inamdar
Yuni Iwamasa
Lars Jaffke
Satyabrata Jana
Rasmus Ibsen-Jensen
Andrzej Kaczmarczyk
Lawqueen Kanesh
Anjeneya Swami Kare
Tomohiro Koana
Christian Komusiewicz
Stefan Kratsch
Simon Krogmann
Ariel Kulik
O-Joung Kwon
Noleen Köhler
Matyáš Křišťan
Junjie Luo
Jayakrishnan Madathil
Diptapriyo Majumdar
Barnaby Martin
Andrés López Martínez
Rogers Mathew
Filippos Mavropoulos
Marcelo Garlet Milani
Pranabendu Misra
Matthias Mnich
Hendrik Molter
Nils Morawietz

Amer Mouawad
Anthony Perez
Théo Pierron
Evangelos Protopapas
Lars Rohwedder
Sanjukta Roy
Abhishek Sahu
Saket Saurabh
Sanjay Seetharaman
Sebastian Siebertz
Kirill Simonov
Fiona Skerman
Ramanujan M. Sridharan
Ramanujan Sridharan
Giannos Stamoulis
Fabian Stehn
Céline Swennenhuis
Prafullkumar Tale
Ioan Todinca
Vikash Tripathi
Oxana Tsidulko
Rao B V
Ruben F.A. Verhaegh
Christopher Weyand
Hongxun Wu
Karol Węgrzycki
Jie Xue
Yongjie Yang
Chihao Zhang
Dimitris Zoros

18th International Symposium on Parameterized and Exact Computation (IPEC 2023).
Editors: Neeldhara Misra and Magnus Wahlström

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

List of Authors

Emmanuel Arrighi (1, 2, 39)
University of Bergen, Norway; University of
Trier, Germany

Max Bannach (3, 35)
European Space Agency, Advanced Concepts
Team, Noordwijk, The Netherlands

Matthias Bentert (2, 4)
University of Bergen, Norway

Sebastian Berndt (35)
Institute for Theoretical Computer Science,
University of Lübeck, Germany

Gaétan Berthe (38)
LIRMM, CNRS, Université de Montpellier,
France

Sriram Bhyravarapu (5)
The Institute of Mathematical Sciences, HBNI,
Chennai, India

Hans L. Bodlaender (6, 7)
Utrecht University, The Netherlands

Édouard Bonnet (7, 8, 40)
LIP, ENS Lyon, France

Guilherme C. M. Gomes (9)
Department of Computer Science, Federal,
University of Minas Gerais, Belo Horizonte,
Brazil

Tom C. van der Zanden (9)
Department of Data Analytics and
Digitalisation, Maastricht University, The
Netherlands

Juhi Chaudhary (10)
Ben-Gurion University of the Negev, Beersheba,
Israel

Florian Chudigiewitsch (3)
Universität zu Lübeck, Germany

Yoann Coudert-Osmont (38)
Université de Lorraine, CNRS, Inria, LORIA,
France

Konrad K. Dabrowski (11)
School of Computing, Newcastle University, UK

Holger Dell (37)
Goethe University Frankfurt, Germany

Alexander Dobler (38)
Algorithms and Complexity Group, TU Wien,
Austria

Riccardo Dondi (12)
Università degli studi di Bergamo, Italy

Ilan Doron-Arad (13)
Computer Science Department, Technion, Haifa,
Israel

Pål Grønås Drange (2, 14, 39)
University of Bergen, Norway

Maël Dumas (15)
Univ. Orléans, INSA Centre Val de Loire, LIFO
EA 4022, F-45067 Orléans, France

Julien Duron (8, 40)
Univ Lyon, CNRS, ENS de Lyon, Université
Claude Bernard Lyon 1, LIP UMR5668, France

David Dursteler (36)
University of Utah, Salt Lake City, UT, USA

Eduard Eiben (16)
Department of Computer Science, Royal
Holloway, University of London, Egham, UK

Barış Can Esmer (17)
CISPA Helmholtz Center for Information
Security, Saarbrücken, Germany; Saarbrücken
Graduate School of Computer Science, Saarland
Informatics Campus, Germany

Vinicius F. dos Santos (9)
Department of Computer Science, Federal,
University of Minas Gerais, Belo Horizonte,
Brazil

Fedor V. Fomin (1)
University of Bergen, Norway

Harmender Gahlawat (10)
Ben-Gurion University of the Negev, Beersheba,
Israel

Robert Ganian (16, 18)
Algorithms and Complexity Group, TU Wien,
Austria

Jaroslav Garvardt (19, 20)
Philipps-Universität Marburg, Germany;
Friedrich-Schiller-Universität Jena, Germany

Tatsuya Gima (21)
JSPS Research Fellow, Nagoya University, Japan

18th International Symposium on Parameterized and Exact Computation (IPEC 2023).
Editors: Neeldhara Misra and Magnus Wahlström

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-0326-1893
https://doi.org/10.4230/LIPIcs.IPEC.2023.1
https://doi.org/10.4230/LIPIcs.IPEC.2023.2
https://doi.org/10.4230/LIPIcs.IPEC.2023.39
https://orcid.org/0000-0002-6475-5512
https://doi.org/10.4230/LIPIcs.IPEC.2023.3
https://doi.org/10.4230/LIPIcs.IPEC.2023.35
https://doi.org/10.4230/LIPIcs.IPEC.2023.2
https://doi.org/10.4230/LIPIcs.IPEC.2023.4
https://orcid.org/0000-0003-4177-8081
https://doi.org/10.4230/LIPIcs.IPEC.2023.35
https://orcid.org/0000-0003-0017-6922
https://doi.org/10.4230/LIPIcs.IPEC.2023.38
https://doi.org/10.4230/LIPIcs.IPEC.2023.5
https://orcid.org/0000-0002-9297-3330
https://doi.org/10.4230/LIPIcs.IPEC.2023.6
https://doi.org/10.4230/LIPIcs.IPEC.2023.7
https://orcid.org/0000-0002-1653-5822
https://doi.org/10.4230/LIPIcs.IPEC.2023.7
https://doi.org/10.4230/LIPIcs.IPEC.2023.8
https://doi.org/10.4230/LIPIcs.IPEC.2023.40
https://orcid.org/0000-0002-5164-1460
https://doi.org/10.4230/LIPIcs.IPEC.2023.9
https://orcid.org/0000-0003-3080-3210
https://doi.org/10.4230/LIPIcs.IPEC.2023.9
https://orcid.org/0000-0001-5560-9129
https://doi.org/10.4230/LIPIcs.IPEC.2023.10
https://orcid.org/0000-0003-3237-1650
https://doi.org/10.4230/LIPIcs.IPEC.2023.3
https://doi.org/10.4230/LIPIcs.IPEC.2023.38
https://orcid.org/0000-0001-9515-6945
https://doi.org/10.4230/LIPIcs.IPEC.2023.11
https://orcid.org/0000-0001-8955-0786
https://doi.org/10.4230/LIPIcs.IPEC.2023.37
https://orcid.org/0000-0002-0712-9726
https://doi.org/10.4230/LIPIcs.IPEC.2023.38
https://orcid.org/0000-0002-6124-2965
https://doi.org/10.4230/LIPIcs.IPEC.2023.12
https://doi.org/10.4230/LIPIcs.IPEC.2023.13
https://orcid.org/0000-0001-7228-6640
https://doi.org/10.4230/LIPIcs.IPEC.2023.2
https://doi.org/10.4230/LIPIcs.IPEC.2023.14
https://doi.org/10.4230/LIPIcs.IPEC.2023.39
https://doi.org/10.4230/LIPIcs.IPEC.2023.15
https://orcid.org/0009-0004-0925-9438
https://doi.org/10.4230/LIPIcs.IPEC.2023.8
https://doi.org/10.4230/LIPIcs.IPEC.2023.40
https://orcid.org/0009-0000-6471-1504
https://doi.org/10.4230/LIPIcs.IPEC.2023.36
https://orcid.org/0000-0003-2628-3435
https://doi.org/10.4230/LIPIcs.IPEC.2023.16
https://orcid.org/0000-0001-5694-1465
https://doi.org/10.4230/LIPIcs.IPEC.2023.17
https://orcid.org/0000-0002-4608-4559
https://doi.org/10.4230/LIPIcs.IPEC.2023.9
https://orcid.org/0000-0003-1955-4612
https://doi.org/10.4230/LIPIcs.IPEC.2023.1
https://orcid.org/0000-0001-7663-6265
https://doi.org/10.4230/LIPIcs.IPEC.2023.10
https://orcid.org/0000-0002-7762-8045
https://doi.org/10.4230/LIPIcs.IPEC.2023.16
https://doi.org/10.4230/LIPIcs.IPEC.2023.18
https://orcid.org/0000-0002-8762-8567
https://doi.org/10.4230/LIPIcs.IPEC.2023.19
https://doi.org/10.4230/LIPIcs.IPEC.2023.20
https://orcid.org/0000-0003-2815-5699
https://doi.org/10.4230/LIPIcs.IPEC.2023.21
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:xvi Authors

Petr A. Golovach (1)
University of Bergen, Norway

Patrick Greaves (14)
Birkbeck, University of London, UK

Siddharth Gupta (22, 23)
BITS Pilani, Goa Campus, India

Anselm Haak (37)
Goethe University Frankfurt, Germany

Klaus Heeger (24)
Department of Industrial Engineering and
Management, Ben-Gurion University of the
Negev, Beer-Sheva, Israel

Irene Heinrich (25)
Technische Universität Darmstadt, Germany

Danny Hermelin (24)
Department of Industrial Engineering and
Management, Ben-Gurion University of the
Negev, Beer-Sheva, Israel

Lars Jaffke (7, 26)
University of Bergen, Norway

Satyabrata Jana (5)
The Institute of Mathematical Sciences, HBNI,
Chennai, India

Bart M. P. Jansen (27, 28, 29)
Eindhoven University of Technology, The
Netherlands

Mark Jones (30)
TU Delft, The Netherlands

Peter Jonsson (11)
Department of Computer and Information
Science, Linköping University, Sweden

Frank Kammer (37)
THM, University of Applied Sciences ,
Mittelhessen, Gießen, Germany

Iyad Kanj (16)
School of Computing, DePaul University,
Chicago, IL, USA

Liana Khazaliya (18)
Technische Universität Wien, Austria

Eun Jung Kim (21)
Université Paris-Dauphine, PSL University,
CNRS UMR7243, LAMSADE, Paris, France

Dušan Knop (7)
Czech Technical University in Prague, Czech
Republic

Ioannis Koutis (31)
New Jersey Institute of Technology, NJ, USA

Stefan Kratsch (32)
Algorithm Engineering, Humboldt-Universität
zu Berlin, Germany

Ariel Kulik (13, 17)
CISPA Helmholtz Center for Information
Security, Saarbrücken, Germany

Pascal Kunz (32)
Algorithm Engineering, Humboldt-Universität
zu Berlin, Germany

Noleen Köhler (21)
Université Paris-Dauphine, PSL University,
CNRS UMR7243, LAMSADE, Paris, France

Manuel Lafond (12)
Université de Sherbrooke, Canada

Kenneth Langedal (39)
University of Bergen, Norway

Clément Legrand-Duchesne (9)
LaBRI, CNRS, Université de Bordeaux, France

Alexander Leonhardt (37)
Goethe University Frankfurt, Germany

Paloma T. Lima (7)
IT University of Copenhagen, Denmark

Reem Mahmoud (9)
Virginia Commonwealth University, Richmond,
VA, USA

Isja Mannens (6)
Utrecht University, The Netherlands

Mathieu Mari (33)
Institute of Informatics, University of Warsaw,
Poland; IDEAS-NCBR, Warsaw, Poland

Dániel Marx (17)
CISPA Helmholtz Center for Information
Security, Saarbrücken, Germany

Johannes Meintrup (37)
THM, University of Applied Sciences ,
Mittelhessen, Gießen, Germany

Nikolaos Melissinos (21)
Department of Theoretical Computer Science,
Faculty of Information Technology, Czech
Technical University in Prague, Czech Republic

Ulrich Meyer (37)
Goethe University Frankfurt, Germany

https://orcid.org/0000-0002-2619-2990
https://doi.org/10.4230/LIPIcs.IPEC.2023.1
https://doi.org/10.4230/LIPIcs.IPEC.2023.14
https://orcid.org/0000-0003-4671-9822
https://doi.org/10.4230/LIPIcs.IPEC.2023.22
https://doi.org/10.4230/LIPIcs.IPEC.2023.23
https://doi.org/10.4230/LIPIcs.IPEC.2023.37
https://orcid.org/0000-0001-8779-0890
https://doi.org/10.4230/LIPIcs.IPEC.2023.24
https://orcid.org/0000-0001-9191-1712
https://doi.org/10.4230/LIPIcs.IPEC.2023.25
https://orcid.org/0000-0002-6379-0383
https://doi.org/10.4230/LIPIcs.IPEC.2023.24
https://orcid.org/0000-0003-4856-5863
https://doi.org/10.4230/LIPIcs.IPEC.2023.7
https://doi.org/10.4230/LIPIcs.IPEC.2023.26
https://orcid.org/0000-0002-7046-0091
https://doi.org/10.4230/LIPIcs.IPEC.2023.5
https://orcid.org/0000-0001-8204-1268
https://doi.org/10.4230/LIPIcs.IPEC.2023.27
https://doi.org/10.4230/LIPIcs.IPEC.2023.28
https://doi.org/10.4230/LIPIcs.IPEC.2023.29
https://orcid.org/0000-0002-4091-7089
https://doi.org/10.4230/LIPIcs.IPEC.2023.30
https://orcid.org/0000-0002-5288-3330
https://doi.org/10.4230/LIPIcs.IPEC.2023.11
https://orcid.org/0000-0002-2662-3471
https://doi.org/10.4230/LIPIcs.IPEC.2023.37
https://orcid.org/0000-0003-1698-8829
https://doi.org/10.4230/LIPIcs.IPEC.2023.16
https://orcid.org/0009-0002-3012-7240
https://doi.org/10.4230/LIPIcs.IPEC.2023.18
https://orcid.org/0000-0002-6824-0516
https://doi.org/10.4230/LIPIcs.IPEC.2023.21
https://orcid.org/0000-0003-2588-5709
https://doi.org/10.4230/LIPIcs.IPEC.2023.7
https://orcid.org/0000-0003-1535-3397
https://doi.org/10.4230/LIPIcs.IPEC.2023.31
https://orcid.org/0000-0002-0193-7239
https://doi.org/10.4230/LIPIcs.IPEC.2023.32
https://orcid.org/0000-0002-0533-3926
https://doi.org/10.4230/LIPIcs.IPEC.2023.13
https://doi.org/10.4230/LIPIcs.IPEC.2023.17
https://orcid.org/0000-0002-0787-8428
https://doi.org/10.4230/LIPIcs.IPEC.2023.32
https://orcid.org/0000-0002-1023-6530
https://doi.org/10.4230/LIPIcs.IPEC.2023.21
https://orcid.org/0000-0002-5305-7372
https://doi.org/10.4230/LIPIcs.IPEC.2023.12
https://orcid.org/0009-0001-6838-4640
https://doi.org/10.4230/LIPIcs.IPEC.2023.39
https://orcid.org/0000-0002-4516-7336
https://doi.org/10.4230/LIPIcs.IPEC.2023.9
https://doi.org/10.4230/LIPIcs.IPEC.2023.37
https://orcid.org/0000-0001-9304-4536
https://doi.org/10.4230/LIPIcs.IPEC.2023.7
https://doi.org/10.4230/LIPIcs.IPEC.2023.9
https://orcid.org/0000-0003-2295-0827
https://doi.org/10.4230/LIPIcs.IPEC.2023.6
https://doi.org/10.4230/LIPIcs.IPEC.2023.33
https://orcid.org/0000-0002-5686-8314
https://doi.org/10.4230/LIPIcs.IPEC.2023.17
https://orcid.org/0000-0003-4001-1153
https://doi.org/10.4230/LIPIcs.IPEC.2023.37
https://orcid.org/0000-0002-0864-9803
https://doi.org/10.4230/LIPIcs.IPEC.2023.21
https://orcid.org/0000-0002-1197-3153
https://doi.org/10.4230/LIPIcs.IPEC.2023.37

Authors 0:xvii

Martin Milanič (7)
FAMNIT and IAM, University of Primorska,
Koper, Slovenia

Yosuke Mizutani (36)
University of Utah, Salt Lake City, UT, USA

Nils Morawietz (20)
Institute of Computer Science, Friedrich Schiller
University Jena, Germany

Laure Morelle (26, 38)
LIRMM, Université de Montpellier, CNRS,
France

Amer E. Mouawad (9)
Department of Computer Science, American
University of Beirut, Beirut, Lebanon

Irene Muzi (14)
Birkbeck, University of London, UK

Daniel Neuen (17)
University of Bremen, Germany

André Nichterlein (20)
Technische Universität Berlin, Germany

Yoshio Okamoto (9)
Graduate School of Informatics and Engineering,
The University of Electro-Communications,
Chofu, Japan

Jelle J. Oostveen (6)
Utrecht University, The Netherlands

Sebastian Ordyniak (7, 11, 16)
University of Leeds, UK

George Osipov (11)
Department of Computer and Information
Science, Linköping University, Sweden

Sukanya Pandey (6, 7)
Utrecht University, The Netherlands

Manuel Penschuck (37)
Goethe University Frankfurt, Germany

Anthony Perez (15)
Univ. Orléans, INSA Centre Val de Loire, LIFO
EA 4022, F-45067 Orléans, France

Timothé Picavet (33)
ENS de Lyon, France; Aalto University, Finland

Marcin Pilipczuk (11)
Faculty of Mathematics, Informatics and
Mechanics, University of Warsaw, Poland; IT
University Copenhagen, Denmark

Michał Pilipczuk (33)
Institute of Informatics, University of Warsaw,
Poland

Simon Raßmann (25)
Technische Universität Darmstadt, Germany

Felix Reidl (14)
Birkbeck, University of London, UK

Amadeus Reinald (38)
LIRMM, CNRS, Université de Montpellier,
France

Malte Renken (19)
Technische Universität Berlin, Germany

Mathis Rocton (38)
Algorithms and Complexity Group, TU Wien,
Austria

Shivesh K. Roy (28, 29)
Eindhoven University of Technology, The
Netherlands

Guy Sa’ar (22, 23)
Ben Gurion University of the Negev, Beersheba,
Israel

Ignasi Sau (26)
LIRMM, Université de Montpellier, CNRS,
France

Saket Saurabh (5)
The Institute of Mathematical Sciences, HBNI,
Chennai, India; University of Bergen, Norway

Jannik Schestag (4, 19, 30)
Faculteit Elektrotechniek, Wiskunde en
Informatica, TU Delft, The Netherlands;
Fakultät für Mathematik und Informatik,
Friedrich-Schiller-Universität Jena, Germany

Dvir Shabtay (24)
Department of Industrial Engineering and
Management, Ben-Gurion University of the
Negev, Beer-Sheva, Israel

Hadas Shachnai (13)
Computer Science Department, Technion, Haifa,
Israel

Roohani Sharma (5, 11, 17)
Max Planck Institute for Informatics, Saarland
Informatics Campus, Saarbrücken, Germany

Kirill Simonov (18)
Hasso Plattner Institute, Universität Potsdam,
Germany

IPEC 2023

https://orcid.org/0000-0002-8222-8097
https://doi.org/10.4230/LIPIcs.IPEC.2023.7
https://orcid.org/0000-0002-9847-4890
https://doi.org/10.4230/LIPIcs.IPEC.2023.36
https://orcid.org/0000-0002-7283-4982
https://doi.org/10.4230/LIPIcs.IPEC.2023.20
https://orcid.org/0009-0000-1001-1801
https://doi.org/10.4230/LIPIcs.IPEC.2023.26
https://doi.org/10.4230/LIPIcs.IPEC.2023.38
https://orcid.org/0000-0003-2481-4968
https://doi.org/10.4230/LIPIcs.IPEC.2023.9
https://orcid.org/0000-0003-2410-6523
https://doi.org/10.4230/LIPIcs.IPEC.2023.14
https://orcid.org/0000-0002-4940-0318
https://doi.org/10.4230/LIPIcs.IPEC.2023.17
https://orcid.org/0000-0001-7451-9401
https://doi.org/10.4230/LIPIcs.IPEC.2023.20
https://orcid.org/0000-0002-9826-7074
https://doi.org/10.4230/LIPIcs.IPEC.2023.9
https://orcid.org/0009-0009-4419-3143
https://doi.org/10.4230/LIPIcs.IPEC.2023.6
https://orcid.org/0000-0003-1935-651X
https://doi.org/10.4230/LIPIcs.IPEC.2023.7
https://doi.org/10.4230/LIPIcs.IPEC.2023.11
https://doi.org/10.4230/LIPIcs.IPEC.2023.16
https://orcid.org/0000-0002-2884-9837
https://doi.org/10.4230/LIPIcs.IPEC.2023.11
https://orcid.org/0000-0001-5728-1120
https://doi.org/10.4230/LIPIcs.IPEC.2023.6
https://doi.org/10.4230/LIPIcs.IPEC.2023.7
https://orcid.org/0000-0003-2630-7548
https://doi.org/10.4230/LIPIcs.IPEC.2023.37
https://doi.org/10.4230/LIPIcs.IPEC.2023.15
https://orcid.org/0000-0002-7129-0127
https://doi.org/10.4230/LIPIcs.IPEC.2023.33
https://orcid.org/0000-0001-5680-7397
https://doi.org/10.4230/LIPIcs.IPEC.2023.11
https://orcid.org/0000-0001-7891-1988
https://doi.org/10.4230/LIPIcs.IPEC.2023.33
https://orcid.org/0000-0003-1685-410X
https://doi.org/10.4230/LIPIcs.IPEC.2023.25
https://orcid.org/0000-0002-2354-3003
https://doi.org/10.4230/LIPIcs.IPEC.2023.14
https://orcid.org/0000-0002-8108-4036
https://doi.org/10.4230/LIPIcs.IPEC.2023.38
https://orcid.org/0000-0002-1450-1901
https://doi.org/10.4230/LIPIcs.IPEC.2023.19
https://orcid.org/0000-0002-7158-9022
https://doi.org/10.4230/LIPIcs.IPEC.2023.38
https://orcid.org/0000-0003-0896-3437
https://doi.org/10.4230/LIPIcs.IPEC.2023.28
https://doi.org/10.4230/LIPIcs.IPEC.2023.29
https://doi.org/10.4230/LIPIcs.IPEC.2023.22
https://doi.org/10.4230/LIPIcs.IPEC.2023.23
https://doi.org/10.4230/LIPIcs.IPEC.2023.26
https://orcid.org/0000-0001-7847-6402
https://doi.org/10.4230/LIPIcs.IPEC.2023.5
https://orcid.org/0000-0001-7767-2970
https://doi.org/10.4230/LIPIcs.IPEC.2023.4
https://doi.org/10.4230/LIPIcs.IPEC.2023.19
https://doi.org/10.4230/LIPIcs.IPEC.2023.30
https://orcid.org/0000-0002-2709-599X
https://doi.org/10.4230/LIPIcs.IPEC.2023.24
https://doi.org/10.4230/LIPIcs.IPEC.2023.13
https://orcid.org/0000-0003-2212-1359
https://doi.org/10.4230/LIPIcs.IPEC.2023.5
https://doi.org/10.4230/LIPIcs.IPEC.2023.11
https://doi.org/10.4230/LIPIcs.IPEC.2023.17
https://orcid.org/0000-0001-9436-7310
https://doi.org/10.4230/LIPIcs.IPEC.2023.18

0:xviii Authors

Frank Sommer (4)
Fakultät für Mathematik und Informatik,
Friedrich-Schiller-Universität Jena, Germany

Ondřej Suchý (7)
Czech Technical University in Prague, Czech
Republic

Blair D. Sullivan (2, 36)
University of Utah, Salt Lake City, UT, USA

Stefan Szeider (16)
Algorithms and Complexity Group, TU Wien,
Austria

Hisao Tamaki (34)
Meiji University, Kawasaki, Japan

Till Tantau (3)
Universität zu Lübeck, Germany

Dimitrios M. Thilikos (26)
LIRMM, Université de Montpellier, CNRS,
France

Farhad Vadiee (39)
University of Bergen, Norway

Bart van der Steenhoven (27)
Eindhoven University of Technology, The
Netherlands

Erik Jan van Leeuwen (6)
Utrecht University, The Netherlands

Manolis Vasilakis (21)
Université Paris-Dauphine, PSL University,
CNRS UMR7243, LAMSADE, Paris, France

Martin Vatshelle (39)
University of Bergen, Norway

Mathias Weller (19, 20)
Technische Universität Berlin, Germany

Petra Wolf (1, 2, 39)
University of Bergen, Norway

Michal Włodarczyk (10)
University of Warsaw, Poland

Michał Włodarczyk (31)
University of Warsaw, Poland

Meirav Zehavi (10, 22, 23, 31)
Ben-Gurion University of the Negev, Beersheba,
Israel

https://orcid.org/0000-0003-4034-525X
https://doi.org/10.4230/LIPIcs.IPEC.2023.4
https://orcid.org/0000-0002-7236-8336
https://doi.org/10.4230/LIPIcs.IPEC.2023.7
https://orcid.org/0000-0001-7720-6208
https://doi.org/10.4230/LIPIcs.IPEC.2023.2
https://doi.org/10.4230/LIPIcs.IPEC.2023.36
https://orcid.org/0000-0001-8994-1656
https://doi.org/10.4230/LIPIcs.IPEC.2023.16
https://orcid.org/0000-0001-7566-8505
https://doi.org/10.4230/LIPIcs.IPEC.2023.34
https://orcid.org/0000-0002-3946-8028
https://doi.org/10.4230/LIPIcs.IPEC.2023.3
https://doi.org/10.4230/LIPIcs.IPEC.2023.26
https://orcid.org/0000-0001-8106-2198
https://doi.org/10.4230/LIPIcs.IPEC.2023.39
https://orcid.org/0009-0006-8816-5687
https://doi.org/10.4230/LIPIcs.IPEC.2023.27
https://orcid.org/0000-0001-5240-7257
https://doi.org/10.4230/LIPIcs.IPEC.2023.6
https://orcid.org/0000-0001-6505-2977
https://doi.org/10.4230/LIPIcs.IPEC.2023.21
https://doi.org/10.4230/LIPIcs.IPEC.2023.39
https://orcid.org/0000-0002-9653-3690
https://doi.org/10.4230/LIPIcs.IPEC.2023.19
https://doi.org/10.4230/LIPIcs.IPEC.2023.20
https://orcid.org/0000-0003-3097-3906
https://doi.org/10.4230/LIPIcs.IPEC.2023.1
https://doi.org/10.4230/LIPIcs.IPEC.2023.2
https://doi.org/10.4230/LIPIcs.IPEC.2023.39
https://orcid.org/0000-0003-0968-8414
https://doi.org/10.4230/LIPIcs.IPEC.2023.10
https://orcid.org/0000-0003-0968-8414
https://doi.org/10.4230/LIPIcs.IPEC.2023.31
https://orcid.org/0000-0002-3636-5322
https://doi.org/10.4230/LIPIcs.IPEC.2023.10
https://doi.org/10.4230/LIPIcs.IPEC.2023.22
https://doi.org/10.4230/LIPIcs.IPEC.2023.23
https://doi.org/10.4230/LIPIcs.IPEC.2023.31

Kernelizing Temporal Exploration Problems
Emmanuel Arrighi # Ñ

University of Bergen, Norway
University of Trier, Germany

Fedor V. Fomin #

University of Bergen, Norway

Petr A. Golovach #

University of Bergen, Norway

Petra Wolf # Ñ

University of Bergen, Norway

Abstract
We study the kernelization of exploration problems on temporal graphs. A temporal graph consists
of a finite sequence of snapshot graphs G = (G1, G2, . . . , GL) that share a common vertex set but
might have different edge sets. The non-strict temporal exploration problem (NS-TEXP for short)
introduced by Erlebach and Spooner, asks if a single agent can visit all vertices of a given temporal
graph where the edges traversed by the agent are present in non-strict monotonous time steps, i.e.,
the agent can move along the edges of a snapshot graph with infinite speed. The exploration must
at the latest be completed in the last snapshot graph. The optimization variant of this problem is
the k-arb NS-TEXP problem, where the agent’s task is to visit at least k vertices of the temporal
graph. We show that under standard computational complexity assumptions, neither of the problems
NS-TEXP nor k-arb NS-TEXP allow for polynomial kernels in the standard parameters: number
of vertices n, lifetime L, number of vertices to visit k, and maximal number of connected components
per time step γ; as well as in the combined parameters L + k, L + γ, and k + γ. On the way to
establishing these lower bounds, we answer a couple of questions left open by Erlebach and Spooner.

We also initiate the study of structural kernelization by identifying a new parameter of a temporal
graph p(G) =

∑L

i=1(|E(Gi)|) − |V (G)| + 1. Informally, this parameter measures how dynamic the
temporal graph is. Our main algorithmic result is the construction of a polynomial (in p(G)) kernel
for the more general Weighted k-arb NS-TEXP problem, where weights are assigned to the
vertices and the task is to find a temporal walk of weight at least k.

2012 ACM Subject Classification Theory of computation → Parameterized complexity and exact
algorithms; Theory of computation → Problems, reductions and completeness

Keywords and phrases Temporal graph, temporal exploration, computational complexity, kernel

Digital Object Identifier 10.4230/LIPIcs.IPEC.2023.1

Related Version Full Version: https://arxiv.org/abs/2302.10110

Funding The research leading to these results has received funding from the Research Council of
Norway via the project BWCA (grant no. 314528).

1 Introduction

We investigate the kernelization of exploration and connectivity tasks in temporal networks.
While kernelization, and in particular, structural kernelization, appears to be a successful
approach for addressing many optimization problems on static graphs, its applications in
temporal graphs are less impressive, to say the least. A reasonable explanation for this (we
will provide some evidence of that later) is that most of the structural parameters of static
graphs, like treewidth, size of a feedback vertex set, or the vertex cover number, do not seem
to be useful when it comes to dynamic settings. This brings us to the following question.

© Emmanuel Arrighi, Fedor V. Fomin, Petr A. Golovach, and Petra Wolf;
licensed under Creative Commons License CC-BY 4.0

18th International Symposium on Parameterized and Exact Computation (IPEC 2023).
Editors: Neeldhara Misra and Magnus Wahlström; Article No. 1; pp. 1:1–1:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:emmanuel@arrighi.eu
http://emmanuel.arrighi.eu
https://orcid.org/0000-0002-0326-1893
mailto:Fedor.Fomin@uib.no
https://orcid.org/0000-0003-1955-4612
mailto:Petr.Golovach@ii.uib.no
https://orcid.org/0000-0002-2619-2990
mailto:mail@wolfp.net
https://www.wolfp.net/
https://orcid.org/0000-0003-3097-3906
https://doi.org/10.4230/LIPIcs.IPEC.2023.1
https://arxiv.org/abs/2302.10110
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

1:2 Kernelizing Temporal Exploration Problems

What structure of dynamic graphs could be “helpful” for kernelization algorithms?

We propose a new structural parameter of a temporal graph estimating how “dynamic”
is the temporal graph. Our main result is an algorithm for the exploration problem on a
temporal graph that produces a kernel whose size is polynomial in the new parameter. Before
proceeding with the formal statement of the problem and our results, we provide a short
overview of temporal graphs and kernelization.

Temporal exploration. Many networks considered nowadays show an inherently dynamic
behavior, for instance connectivity in mobile ad-hoc networks, relationships in a social
network, or accessibility of services in the internet. Classical graphs do not suffice to model
those dynamic behaviors, which led to an intensive study of so-called temporal graphs. In
general, temporal graphs are graphs that change over time. There are several models in the
literature that consider different types of dynamic behaviors and encodings of the temporal
graphs. Here, we consider a temporal graph G to consist of a sequence of snapshot graphs
G1, G2, . . . , GL that share a common set of vertices V but might have different edge sets
E1, E2, . . . , EL. We call the graph G = (V,

⋃L
i=1 Ei) the underlying graph of G. We can think

of the temporal graph G as the graph G where only a subset of edges are present at a certain
time step. The number of snapshots L is commonly referred to as the lifetime of G. Due
to its relevance in modeling dynamic systems, a huge variety of classical graph problems
have been generalized to temporal graphs. We refer to [10, 26, 29, 31] for an introduction to
temporal graphs and their associated combinatorial problems.

Graph exploration is a fundamental problem in the realm of graph theory and has been
extensively studied since its introduction by Shannon in 1951 [32]. The question of whether a
given graph can be explored by a single agent was generalized to temporal graphs by Michail
and Spirakis [30]. They showed that deciding whether a single agent can visit all vertices
of a temporal graph within a given number of time steps while crossing only one edge per
time step is an NP-hard problem. This hardness motivated the study of the parameterized
complexity of the temporal exploration problem performed by Erlebach and Spooner in [19].

While the temporal exploration problem, TEXP for short, allows the agent to cross only
one edge per time step, in some scenarios, the network only changes slowly, way slower than
the speed of an agent. Then, it is natural to assume that the agent can travel with infinite
speed and explore the whole connected component in which he is currently located in a
single time step. Such scenarios arise for instance in delay-tolerant networks [9]. Erlebach
and Spooner generalized TEXP to allow the agent to travel with infinite speed in [17] and
called this problem the non-strict temporal exploration problem, NS-TEXP for short. In
NS-TEXP the task is to identify whether an agent can visit all vertices of the graph starting
from an initial vertex v according to the following procedure. At step 1, the agent visits
all vertices of the connected component C1 of the snapshot graph G1 containing v. At step
i ∈ {2, . . . , L}, the agent selects to explore the vertices of one of the components Ci of Gi

that have a non-empty intersection with the component explored by the agent at step (i − 1).
Shifting to an infinite exploration speed allows for exploration times that can be signif-

icantly shorter than the number of vertices. While for classical graphs, the question if a
graph can be explored with infinite speed simply reduces to the question of connectivity
for temporal graphs, NS-TEXP is NP-complete [17]. The parameterized complexity of
NS-TEXP was studied by Erlebach and Spooner in [19] where FPT algorithms for the
parameter lifetime L of the temporal graph (equivalently number of time steps during which
the temporal exploration must be performed) was shown. They also studied an optimization

E. Arrighi, F. V. Fomin, P. A. Golovach, and P. Wolf 1:3

variant of NS-TEXP, where not all but at least k arbitrary vertices must be visited during
the lifetime of the graph. This variant is called k-arb NS-TEXP. An FPT algorithm with
parameter k solving k-arb NS-TEXP was obtained in [19]. In the long version of this
study [20], it was stated as an open question whether NS-TEXP is in FPT or at least in XP
for the parameter maximal number of connected components in a time step, γ, and, whether
k-arb NS-TEXP is in FPT for parameter L. These open problems were also stated at the
2022 ICALP satellite workshop Algorithmic Aspects of Temporal Graphs V. In this work, we
will answer both of these questions negatively.

Kernelization. Informally, a kernelization algorithm is a preprocessing algorithm that
consecutively applies various data reduction rules in order to shrink the instance size of a
parameterized problem. Kernelization is one of the major research domains of parameterized
complexity and many important advances in the area are on kernelization. These advances
include general algorithmic findings on problems admitting kernels of polynomial size and
frameworks for ruling out polynomial kernels under certain complexity-theoretic assumptions.
We refer to the book [22] for an overview of the area. A fruitful approach in kernelization (for
static graphs) is the study of the impact of various structural measurements (i.e., different
than just the total input size or expected solution size) on the problem complexity. Such
structural parameterizations, like the minimum size of a feedback vertex set, of a vertex
cover, or the treedepth, measure the non-triviality of the instance [7, 24, 25, 34].

Our contribution. Our focus is on the possibility of kernelization for the problems NS-
TEXP and k-arb NS-TEXP. In their work on the parameterized complexity of these
problems, Erlebach and Spooner in [19, 20] established fixed-parameter tractability for some
combinations of these problems and “standard” parameterizations like number of vertices n,
lifetime L, number of vertices to visit k, and L + γ, where γ is the maximal number of
connected components per time step, see Table 1. As the first step, we rule out the existence
of polynomial kernels for both problems when parameterized by each of these standard
parameters. Moreover, our lower bounds hold even for “combined” parameters L + k, L + γ,
and k + γ. On the way to establish our lower bounds for kernelization, we resolve two
open problems from the parameterized study of NS-TEXP and k-arb NS-TEXP posed
by Erlebach and Spooner in [19, 20]. Namely, we show that NS-TEXP is NP-complete for
constant values of γ ≥ 5 and that k-arb NS-TEXP is W[1]-hard parameterized by L.

This motivates the study of structural kernelization of the exploration problems. While at
the first glance, the most natural direction would be to explore the structure of the underlying
graph of the temporal graph G, this direction does not seem to bring new algorithmic results.
The reason is that our lower bounds on NS-TEXP and k-arb NS-TEXP hold for temporal
graphs with very restricted underlying graphs. In particular, we show that the problems
remain NP-hard even when the underlying graph is a tree with vertex cover number at most 2.
Thus a reasonable structural parameterization, in this case, should capture not only the
“static” structure of the underlying graph but also the “dynamics” of the edges in G. With
this in mind, we introduce the new parameter of a temporal graph G = (G1, G2, . . . , GL),
p(G) =

∑L
i=1(|E(Gi)|) − |V (G)| + 1.

Note that if
∑L

i=1(|E(Gi)|) < |V (G)| − 1, then the underlying graph is disconnected
and hence the temporal graph G cannot be explored. The parameter p(G) bounds both
the structure and the dynamic of G. Indeed, consider the multigraph on V (G) obtained
by inserting a copy of the edge uv for each occurrence of uv in a snapshot. Then, p(G)
corresponds to the size of a minimum feedback edge set of this multigraph. As an example,

IPEC 2023

1:4 Kernelizing Temporal Exploration Problems

Table 1 Overview of the parameterized complexity of NS-TEXP and k-arb NS-TEXP. Our
contribution is highlighted in red. The results stating that there is no polynomial kernel rely on the
assumption that NP ̸⊆ coNP/poly. Here, for a temporal graph G, n is the number of vertices, L the
lifetime, γ is the maximal number of components per time step, and p = p(G). For entries marked
with ⋆, we get a compression to the more general variant Weighted k-arb NS-TEXP.

Param. NS-TEXP k-arb NS-TEXP
FPT Kernel FPT Kernel

p 2O(p)(nL)O(1) O(p4)⋆ 2O(p)(nL)O(1) O(p4)⋆

n O∗((2e)nnlog n) [20] no poly kernel FPT in k [20] no poly kernel
L O∗(L(L!)2) [19] no poly kernel W[1]-hard no poly kernel
k - - O∗((2e)kklog k) [20] no poly kernel
L + k - - FPT in k [20] no poly kernel
γ in P for ≤ 2 [20], - in P for ≤ 2 [20], -

NP-hard for ≥ 5 NP-hard for ≥ 5

L + γ FPT in L [19] no poly kernel O(γLnO(1)) no poly kernel
for γ ≥ 6 for γ ≥ 6

k + γ - - FPT in k [20] no poly kernel

p(G) = 0 means that the underlying graph of G is a tree and each edge of the underlying
graph appears in exactly one snapshot. Hence, our parameter describes how far the graph
is from such a tree. Our main result is a polynomial kernel for the more general problem
Weighted k-arb NS-TEXP in the parameter p = p(G). In Weighted k-arb NS-TEXP,
the vertices contain weights and the task is to find a temporal walk that visits vertices with
a total sum of weights of at least k for some given integer k. The obtained kernel is of size
O(p4) and contains a number of vertices that is linear in the parameter p.

Our results are summarized in Table 1. Due to space constraints, the proofs of some
results are either sketched or omitted in this extended abstract. The full details could be
found in the full arXiv version [3].

Further related work. Michail and Spirakis [30] introduced the TEXP problem and showed
that the problem is NP-complete when no restrictions are placed on the input. They proposed
considering the problem under the always-connected assumption that requires that the
temporal graph is connected in every time step. Erlebach et al. [14] followed this proposition
and showed that for always-connected temporal graphs, computing a foremost exploration
schedule is NP-hard to approximate with ratio O(n1−ϵ), for every ϵ > 0. Bodlaender and
van der Zanden [6] showed that the TEXP problem, when restricted to always-connected
temporal graphs whose underlying graph has pathwidth at most 2, remains NP-complete.
Bounds on the length of exploration schedules where given in [1, 14, 33] for temporal graphs
where the underlying graph has a certain structure, and in [15, 16, 18] for temporal graphs
where each snapshot graph has a certain structure.

Erlebach and Spooner [19] studied the TEXP problem from a parameterized perspective.
Based on the color coding technique [2], they gave an FPT algorithm parameterized by k for
the problems k-arb TEXP and the non-strict variant k-arb NS-TEXP. They also gave
an FPT algorithm parameterized by the lifetime L of the temporal graph for the problems
TEXP and NS-TEXP. In the respective long version [20], Erlebach and Spooner further
studied the parameter maximal number of connected components per time step γ and showed

E. Arrighi, F. V. Fomin, P. A. Golovach, and P. Wolf 1:5

that TEXP is NP-hard for γ = 1, but NS-TEXP is solvable in polynomial time for γ ≤ 2.
The NS-TEXP problem was introduced and studied by Erlebach and Spooner [17]. Among
other things, they showed NP-completeness of the general problem, as well as O(n1/2−ϵ)
and O(n1−ϵ)-inapproximability for computing a foremost exploration schedule under the
assumption that the number of time steps required to move between any pair of vertices is
bounded by 2, resp. 3. Bumpus and Meeks [8] considered the parameterized complexity of a
graph exploration problem that asks no longer to visit all vertices, but to traverse all edges
of the underlying graph exactly once. They observed that for natural structural parameters
of the underlying graph, the problem does not admit FPT algorithms. Similarly, Kunz et
al. [28] obtained several hardness results for structural parameters of the underlying graph
when studying the parameterized complexity of the problem of finding temporally disjoint
paths and walks, a problem introduced by Klobas et al. [27]. Their obtained W[1]-hardness
in the parameter number of vertices, that holds even for instances where the underlying
graph is a star, indicates that simply considering structural parameters of the underlying
graph is not sufficient to obtain FPT algorithms for temporal graph problems.

2 Preliminaries

Notations. We denote by Z the set of integers, by N the set of natural numbers including 0,
by N>0 the set of positive integers, and by Q the set of rational numbers. Let n be a positive
integer, we denote with [n] the set {1, 2, . . . , n}. Given a vector w = (w1, w2, . . . , wr) ∈ Qr,
we let ∥w∥∞ = maxi∈[r] |wi| and ∥w∥1 =

∑
i∈[r] |wi|. Given x ∈ Z, we let sign(x) be + if

x ≥ 0 and − otherwise.

Graphs. We consider a graph G = (V, E) to be a static undirected graph. Given a graph G,
we denote by V (G) the set of vertices of G, by E(G) the set of edges of G, by NG(x)
the neighbors of a vertex x in G, and by γ(G) the number of connected components of
G. Let G = (V, E) be a graph, given a subset of vertices X ⊆ V (G) and a subset of
edges E′ ⊆ E, we define the following operation on G: G[X] = (X, {uv ∈ E | u, v ∈ X}),
G−X = G[V \X] and G−E′ = (V, E\E′). We call a walk in a graph G an alternating sequence
W = v0, e1, v1, . . . , er, vr of vertices and edges, where v0, . . . , vr ∈ V (G), e1, . . . , er ∈ E(G)
and ei = vi−1vi for i ∈ [r]; note that W may visit the same vertices and edges several times.
A walk without repeated vertices is called a path. We say that v0 and vr are end-vertices
of W and W is a (v0, vr)-walk. We use V (W) ⊆ V (G) to denote the set of vertices of G

visited by W and denote by E(W) the set of edges of G that are in W . Given a walk
W = v0, e1, v1, . . . , er, vr, for 0 ≤ i ≤ j ≤ r, we call the sequence W ′ = vi, ei+1, . . . , ej , vj a
subwalk of W .

Temporal graphs. A temporal graph G over a set of vertices V is a sequence G =
(G1, G2, . . . , GL) of graphs such that for all t ∈ [L], V (Gt) = V . We call L the lifetime
of G and for t ∈ [L], we call Gt = (V, Et) the snapshot graph of G at time step t. We might
refer to Gt as G(t). We call G = (V, E) with E =

⋃
t∈[L] Et the underlying graph of G. We

denote by V (G) the set of vertices of G and by γ(G) = maxt∈L γ(Gt) the maximum number
of connected components over all snapshot graphs of G. We write V and γ if the graph or
temporal graph is clear from the context. For a temporal graph G = (G1, . . . , GL), we define
the total number of edge appearances as m(G) =

∑L
i=1 |E(Gi)|; we use m to denote this value

if G is clear for the context.

IPEC 2023

1:6 Kernelizing Temporal Exploration Problems

In the following, we will be interested in temporal walks where the agent has infinite
speed within a snapshot graph. Those temporal walks are called non-strict temporal walks
in [19]. In [19], a non-strict temporal walk is defined as a sequence of connected components.
However, it is more convenient for us to consider a non-strict temporal walk as a monotone
walk in the underlying graph. For a walk W = v0, e1, v1, . . . , er, vr in the underlying graph
G of G = (G1, . . . , GL), we say that W is monotone if there are t1, . . . , tr ∈ [L] with
1 ≤ t1 ≤ · · · ≤ tr ≤ L such that ei ∈ E(Gti

) for each i ∈ [r]. The definition of a non-strict
temporal walk immediately implies the following observation.

▶ Observation 1. Given a temporal graph G and a vertex x, G has a non-strict temporal
walk starting in x that visits exactly the vertices of a set X if and only if the underlying graph
G has a monotone (x, y)-walk W for some y ∈ V (G) such that X = V (W).

For the remainder of this paper, we are mainly interested in the computational problem of
finding monotone walks that visit all vertices of a temporal graph. We might also call such a
walk an exploration schedule or simply an exploration.

▶ Definition 2 (Non-Strict Temporal Exploration (NS-TEXP)).
Input: Temporal graph G = (G1, G2, . . . , GL), vertex v ∈ V (G).
Question: Is there a monotone walk in G that starts in v and visits all vertices in V (G)?

We further consider a more general variant of the NS-TEXP problem, called k-arb
NS-TEXP, were we ask for a monotone walk that visits at least k vertices (instead of |V |).

▶ Definition 3 (k-arbitrary Non-Strict Temporal Exploration (k-arb NS-TEXP)).
Input: Temporal graph G = (G1, G2, . . . , GL), vertex v ∈ V (G), integer k.
Question: Is there a monotone walk in G that starts in v and visits at least k vertices?

We will further generalize the problem by considering the weighted version of k-arb
NS-TEXP. We refer to this problem as Weighted k-arb NS-TEXP.

▶ Definition 4 (Weighted k-arbitrary Non-Strict Temporal Exploration
(Weighted k-arb NS-TEXP)).
Input: Temporal graph G = (G1, G2, . . . , GL), positive-valued weight function w : V (G) →
N>0, vertex v ∈ V (G), integer k.
Question: Is there a monotone walk W in G such that W starts in v and w(V (W)) =∑

u∈V (W) w(u) ≥ k?

Note that k-arb NS-TEXP is a special case of Weighted k-arb NS-TEXP.

Parameterized complexity and kernelization. We refer to books [22] and [12] for an
introduction to the field.

A data reduction rule, or simply, reduction rule, for a parameterized problem Q is a
function ϕ : Σ∗×N → Σ∗×N that maps an instance (I, k) of Q to an equivalent instance (I ′, k′)
of Q such that ϕ is computable in time polynomial in |I| and k. We say that two instances
of Q are equivalent if the following holds: (I, k) ∈ Q if and only if (I ′, k′) ∈ Q. We refer to
this property of the reduction rule ϕ, that it translates an instance to an equivalent one, as
to the safeness of the reduction rule.

Informally, kernelization is a preprocessing algorithm that consecutively applies various
data reduction rules in order to shrink the instance size as much as possible. A preprocessing
algorithm takes as input an instance (I, k) ∈ Σ∗ × N of Q, works in polynomial in |I|

E. Arrighi, F. V. Fomin, P. A. Golovach, and P. Wolf 1:7

and k time, and returns an equivalent instance (I ′, k′) of Q. The quality of a preprocessing
algorithm A is measured by the size of the output. More precisely, the output size of a
preprocessing algorithm A is a function sizeA : N → N ∪ {∞} defined as follows:

sizeA(k) = sup{|I ′| + k′ : (I ′, k′) = A(I, k), I ∈ Σ∗}.

A kernelization algorithm, or simply a kernel, for a parameterized problem Q is a preprocessing
algorithm A that, given an instance (I, k) of Q, works in polynomial in |I| and k time and
returns an equivalent instance (I ′, k′) of Q such that sizeA(k) ≤ g(k) for some computable
function g : N → N. It is said that g(·) is the size of a kernel. If g(·) is a polynomial
function, then we say that Q admits a polynomial kernel . It is well-known that a decidable
parameterized problem is FPT if and only if it admits a kernel [13]. However, up to some
reasonable complexity assumptions, there are FPT problems that have no polynomial kernels.
In particular, we are using the cross-composition technique introduced in [4] and [5] to show
that a parameterized problem does not admit a polynomial kernel unless NP ⊆ coNP /poly.

3 Lower Bounds

It was stated as an open problem in [19], whether NS-TEXP is in FPT with parameter
γ (i.e. maximum number of components in any snapshot graph). We answer this question
negatively by showing that NS-TEXP is NP-complete for γ ≥ 5.

▶ Theorem 5. NS-TEXP is NP-complete for γ ≥ 5.

Proof. We give a reduction from the satisfiability problem SAT which asks if a given Boolean
formula has a satisfying variable assignment. Let φ = {c1, c2, . . . , cm} be a Boolean formula
in conjunctive normal form over the variable set X = {x1, x2, . . . , xn}. We construct from φ

a temporal graph G, where each snapshot graph has 4 or 5 connected components, such that
G has a monotone walk that visits all vertices in V (G) if and only if φ is satisfiable.

The main idea of the construction is the following. In V (G), we have a vertex for each
clause, vertices x̂i, xi, ¬xi for each variable xi, and one single control vertex ĉ. The sequence
of snapshot graphs alternates between having four and five connected components. In the
case of four connected components, one component collects all clause vertices, one component
collects all variable vertices x and ¬x, one component collects all not yet processed control
vertices x̂ and ĉ, and one component collects all processed control vertices x̂. In the case
of five connected components, an additional component collects a negative literal ¬x of a
variable x together with all clauses containing ¬x. In this step, the clauses containing x are
incorporated into the variable component, which still contains x. This will allow us to choose
a variable assignment with the exploration schedule. In the next time step, and only in this
time step, the control vertex x̂ is contained in the variable component. For all later time
steps, x̂ is contained in the component collecting the processed control vertices. Thereby,
the control vertices ensure that we return to the component containing the variables in each
snapshot consisting of four connected components.

We now give a more formal construction. For this construction, we are interested in
the connected components of each snapshot graph but not on the actual structure of the
connected components. For simplicity, we define the connected components as set of vertices
and assume that each connected component forms a clique. For a subset S ⊆ V , we
denote by K(S) the set of all possible edges between vertices in S. Thereby, (S, K(S)) is
a clique. Let G = (G1, G2, . . . , GL) with L = 2n + 1 be the temporal graph constructed

IPEC 2023

1:8 Kernelizing Temporal Exploration Problems

from φ = {c1, c2, . . . , cm}. We define V (G) = {c1, c2, . . . , cm} ∪ {xi, ¬xi, x̂i | xi ∈ X} ∪ {ĉ}.
For E(G1) = K(C1,1) ∪ K(C1,2) ∪ K(C1,3) we set C1,1 = {ĉ} ∪ {x̂i | xi ∈ X}, C1,2 =
{c1, c2, . . . , cm}, and C1,3 = {xi, ¬xi | xi ∈ X}. The start vertex is set to x1.

For the next time step, we define the edges of the snapshot graph as E(G2) = K(C2,1) ∪
K(C2,2)∪K(C2,3)∪K(C2,4) where C2,1 = C1,1 = {ĉ}∪{x̂i | xi ∈ X}, C2,2 = {c1, c2, . . . , cm}\
{c ∈ φ | x1 ∈ c ∨ ¬x1 ∈ c}, C2,3 = ({xi, ¬xi | xi ∈ X} \ {¬x1}) ∪ {c ∈ φ | x1 ∈ c} and
C2,4 = {¬x1} ∪ {c ∈ φ | ¬x1 ∈ c}. The intuition is that the exploration schedule visits
the vertices in C2,3 after visiting the vertices in C1,3 if the variable x1 gets assigned with
true and otherwise, visits C2,4 after C1,3 if x1 gets assigned with false. Note that no
other connected component is reachable from C1,3 as only C2,3 and C2,4 have nonempty
intersection with C1,3.

In the next time step, we force the exploration schedule to return to the third connected
component by passing the control vertex x̂1 through this connected component. Therefore,
we define E(G3) = K(C3,1) ∪ K(C3,2) ∪ K(C3,3) with C3,1 = ({ĉ} ∪ {x̂i | xi ∈ X}) \ {x̂1},
C3,2 = {c1, c2, . . . , cm}, and C3,3 = {xi, ¬xi | xi ∈ X} ∪ {x̂1}.

For the remaining time steps, we alternate between the structure of the second and
third time step with an additional connected component that collects the already processed
control vertices x̂i. As this connected component is monotone growing, it acts as a sink for
the temporal walk, i.e., we could not leave this connected component if we ever enter it.
Additionally, the first connected component containing the not yet processed control vertices
is monotone shrinking, making it non-accessible from the start vertex of the temporal walk.
The idea is now that the last control vertex ĉ will only leave the first component into the
variable component in the last time step enforcing us to not go into the sink component of
processed control vertices and thereby enforcing the exploration schedule to return to the
variable component for each odd time step t ≥ 3. We formalize this by defining the snapshot
graphs Gj for 3 < j < 2n + 1 as follows.

First consider the case that j is even. We define E(Gj) = K(Cj,1) ∪ K(Cj,2) ∪ K(Cj,3) ∪
K(Cj,4) ∪ K(Cj,5) with Cj,1 = {ĉ} ∪ {x̂i | xi ∈ X, i ≥ j

2 }, Cj,2 = {c1, c2, . . . , cm} \ {c ∈
φ | x j

2
∈ c ∨ ¬x j

2
∈ c}, Cj,3 = ({xi, ¬xi | xi ∈ X} \ {¬x j

2
}) ∪ {c ∈ φ | x j

2
∈ c}, Cj,4 =

{¬x j
2
} ∪ {c ∈ φ | ¬x j

2
∈ c}, and Cj,5 = {x̂i | xi ∈ X, i < j

2 }.
For the case that j is odd, we define E(Gj) = K(Cj,1) ∪ K(Cj,2) ∪ K(Cj,3) ∪ K(Cj,4) ∪

K(Cj,5) with Cj,1 = {ĉ} ∪ {x̂i | xi ∈ X, i > j
2 }, Cj,2 = {c1, c2, . . . , cm}, Cj,3 = {xi, ¬xi | xi ∈

X} ∪ {x̂ j−1
2

}, Cj,4 = ∅, and Cj,5 = {x̂i | xi ∈ X, i < j−1
2 }.

Finally, for the last time step L = 2n + 1, we define E(GL) = K(CL,1) ∪ K(CL,2) ∪
K(CL,3) ∪ K(CL,4) ∪ K(CL,5) with CL,1 = ∅, CL,2 = {c1, c2, . . . , cm}, CL,3 = {xi, ¬xi | xi ∈
X} ∪ {ĉ}, Cj,4 = ∅, and Cj,5 = {x̂i | xi ∈ X}.

Let us now analyze how a potential exploration schedule for G can look like. Recall that
for each time step t, the first connected component Ct,1 is monotonously shrinking, i.e.,
for t, t′ ∈ [L] with t ≤ t′ it holds that Ct,1 ⊇ Ct′,1. As the start vertex of the exploration
schedule is contained in the third connected component, this means that (i) any exploration
schedule cannot visit a first connected component as the connected component Ct,1 never
has a non empty intersection with any connected component Ct−1,ℓ for 1 < t ≤ L, and ℓ ̸= 1.

Further, recall that the fifth connected component Ct,5 is monotonously growing, i.e.,
for t, t′ ∈ [L] with t ≤ t′ it holds that Ct,1 ⊆ Ct′,1. Therefore, (ii) an exploration schedule
cannot leave any fifth connected component.

Now consider the vertex ĉ. For all time steps t ∈ [L − 1], this vertex is contained in the
first connected component Ct,1 and therefore not reachable from the start vertex. The only
time step in which ĉ is in another connected component is the last time step t = 2n + 1

E. Arrighi, F. V. Fomin, P. A. Golovach, and P. Wolf 1:9

in which ĉ is contained in the third connected component Ct,3 together with the variable
vertices. As an exploration schedule need to reach ĉ and ĉ is never contained in a fifth
connected component, observation (ii) implies, that we must never enter a fifth connected
component. As all elements in {x̂i | xi ∈ X} ∪ {x̂} do only appear in a first, third or fifth
connected component, observation (i) implies that (iii) we need to visit them in a third
connected component.

We further need to visit all elements in {c1, c2, . . . , cm}. Assume, we visit some of them
for the first time in some second connected component in a time step t. By the construction
of G, the second connected component is only reachable from a third or fourth connected
component in an odd time step. Note that the odd time step t is the only time step in which
the control vertex x̂ t−1

2
is contained in a third connected component. As by assumption the

exploration schedule visits the second connected component in time step t it will not visit
x̂ t−1

2
in time step t. But observation (iii) implies that then, x̂ t−1

2
cannot be reached during

the remaining walk. Hence, any exploration schedule cannot visit any second connected
component and the vertices {c1, c2, . . . , cm} must be visited in a third or fourth connected
component in an even time step.

We already observed that any exploration schedule must be in the third component in any
odd time step. From this component, it is only possible to visit some vertex cj by traversing
to a component containing a literal that is contained in cj . In each even time step t, it is
possible to visit those clause vertices cj that contain a literal from the variable x t

2
. Thereby,

we can either visit those containing the positive literal, or those containing the negative literal.
An exploration schedule visiting all clause vertices {c1, c2, . . . , cm} thereby corresponds to a
satisfying variable assignment for φ. Conversely, a satisfying variable assignment for φ gives
us an exploration schedule for G by traversing to the component containing the satisfied
literal of the variable xi in time step x2i. ◀

We now shift our focus to restricting the graph class of the underlying graph. We show
that NS-TEXP is NP-hard restricted to temporal graphs where the underlying graph is
a tree consisting of two stars connected with an edge, or in other words, trees of diameter
three. The vertex cover number of such trees is two. With a simple adaptation of the
construction, we obtain that NS-TEXP is NP-hard even if every edge appears at most once,
or is non-present in at most one time step and the underlying graph is a tree.

▶ Theorem 6 (⋆). 1 NS-TEXP is NP-complete for temporal graphs even if:
the underlying graph consists of two stars connected with a bridge, or
every edge of the input temporal graph appears at most once, or
the underlying graph is a tree and every edge is not present in at most one time step

For the combined parameter γ + L, there exists a trivial FPT-algorithm for the problem
k-arb NS-TEXP (and so for NS-TEXP) as this parameter bounds the size of a search
tree, where γ is the branching factor and L is the depth of the tree. In this tree we consider
for each time step all connected components that are reachable from the current connected
component, starting with the component containing the start vertex v.

▶ Observation 7. k-arb NS-TEXP can be solved in O(γLnO(1)) time.

1 The proofs of the claims marked with (⋆) are omitted in this extended abstract and are available in the
full arXiv version [3].

IPEC 2023

1:10 Kernelizing Temporal Exploration Problems

In contrast, using a reduction from Hitting Set, we obtain that NS-TEXP does not have
a polynomial kernel in the same parameter γ + L unless NP ⊆ coNP/poly. In fact, we show
a stronger statement: if γ is constant, there does not exists a polynomial kernel in L.

▶ Theorem 8 (⋆). Unless NP ⊆ coNP/poly, there does not exist a polynomial kernel for
NS-TEXP in the parameter L for any constant γ ≥ 6.

The size of an instance of NS-TEXP can be bounded by n2 × L and there exists FPT
algorithms in the parameter L as well as in the parameter n [20]. We already showed that
under standard complexity assumptions, there does not exists a polynomial kernel for the
parameter L. The next result is obtained by a cross-composition from NS-TEXP into itself.

▶ Theorem 9 (⋆). Unless coNP ⊆ NP/poly, NS-TEXP does not admit a polynomial kernel
parameterized by n.

In [20] an FPT-algorithm based on color coding is given for the problem k-arb NS-TEXP
with parameter k. We obtain in the following that k-arb NS-TEXP parameterized by
L is W[1]-hard by a reduction from multicolored independent set. We thereby answer an
open question from [20]. This hardness contrasts the FPT-algorithm in parameter L for the
problem NS-TEXP. We further obtain that k-arb NS-TEXP does not admit a polynomial
kernel in L + k unless coNP ⊆ NP/poly. This result is based on a cross-composition from the
problem k-arb NS-TEXP to itself.

▶ Theorem 10 (⋆). k-arb NS-TEXP is W[1]-hard parameterized by L.

▶ Theorem 11 (⋆). Unless coNP ⊆ NP/poly k-arb NS-TEXP does not admit a polynomial
kernel parameterized by k + L.

4 Polynomial Kernel for Bounded Number of Edge Appearances

In the field of static graphs, trees are nice structures that often lead to efficient algorithms.
Building on this fact, structural parameters, like treewidth, defining a distance to trees were
successfully introduced and used to design efficient algorithms. Unfortunately, we have seen
in Theorem 6 that even when the underlying graph is a tree with vertex cover number 2
the problems we consider remain NP-hard. Therefore, in this section, we introduce a new
structural parameter p(G) which, intuitively, characterises how far G is from being a tree
in which each edge appears exactly once. Using this new parameter, we investigate the
complexity of k-arb NS-TEXP.

We restate the definition of p(G). Recall that for a temporal graph G = (G1, . . . , GL),
we write m =

∑L
i=1 |E(Gi)|. Observe that if m < n − 1, then the underlying graph G of G

is disconnected. Let X be the set of vertices of the connected component of G containing
the source vertex v. Then, k-arb NS-TEXP for G is equivalent to k-arb NS-TEXP for
the temporal graph G[X] = (G1[X], . . . , GL[X]). Hence, we can assume that the underlying
graph is connected and m ≥ n − 1. This allows us to consider the above-guarantee parameter
p(G) = m− n + 1. We show that k-arb NS-TEXP admits a polynomial kernel in p(G) when
the underlying graph is connected. In fact, we give a kernel for a more general variant of the
problem with vertex weights called Weighted k-arb NS-TEXP.

The starting point of our kernelization algorithm is a polynomial time algorithm for
Weighted k-arb NS-TEXP on temporal graphs in which each edge appears exactly once
and the underlying graph is a tree (Lemma 14). In addition to this algorithm, the crucial
observation that leads to a kernel is that the underlying graph of the input temporal graph

E. Arrighi, F. V. Fomin, P. A. Golovach, and P. Wolf 1:11

X

v

Figure 1 Structure of the underlying graph G of a temporal graph G when the parameter
p = m − n + 1 is bounded. Here |X| ≤ 4p. (See Lemma 13.)

has a feedback edge set of bounded size (Lemma 12). By combining this observation and the
fact that there is a bounded number of edges repetitions, we show that the input temporal
graph G has some specific structure. Namely, there exists a core set X ⊆ V (G) of vertices
of bounded size such that the underlying graph of the remaining graph G − X is a forest
F with the following property. In G − X, each edge appears exactly once and each tree of
F is connected to X by at most two edges (see Figure 1 and Lemma 13). For each tree
T in F , depending on its structure and its interaction with X, we are able to describe all
possible ways an exploration can visit some of the vertices of T . Using the polynomial time
algorithm for trees in which edges appear only once, we can then compute the maximum
weight contributed by the vertices in T for each of those cases and design a gadget of constant
size that simulates the original tree T . Thereby, the gadget keeps the information of how
many vertices, respectively vertex weights, were reachable in T and is the reason why we need
to work with the weighted version of k-arb-NS-TEXP. This gives us several reduction rules
(Reduction Rule 1-4). To conclude the kernel, we show that after applying these reduction
rules exhaustively, the obtained temporal graph has linear size in p (Claim 18). Lastly, by
using an algorithm proposed by Frank and Tardos (Proposition 15), we can bound the size
of the obtained weights on the vertices by O(p4).

Throughout this section we assume that the temporal graphs under consideration have
connected underlying graphs. Let G = (G1, . . . , GL) be a temporal graph and G its underlying
graph. For e ∈ E(G), we denote by A(e) = {t : e ∈ E(Gt) for 1 ≤ t ≤ L} and set
m(e) = |A(e)|. Note that m(G) =

∑
e∈E(G) m(e).

By Observation 1, an instance (G, w, v, k) of Weighted k-arb NS-TEXP is a yes-
instance if and only if the underlying graph G has a monotone (v, x)-walk W for some
x ∈ V (G) such that w(V (W)) ≥ k. Slightly abusing notation, we write w(W) instead of
w(V (W)) for the total weight of vertices visited by a walk.

We start by showing that the underlying graph has a feedback edge set of bounded size.
Recall that a set of edges S ⊆ E(G) is a feedback edge set of a graph G, if G − S is a forest.
Let G = (G1, . . . , GL) be a temporal graph and let p = m − n + 1. We denote by R the set
of edges of the underlying graph G appearing at least twice in G. We refer to the edges of R

as red. We set B = E(G) \ R and call the edges of B blue.

▶ Lemma 12 (⋆). Let G be a temporal graph and let p = m − n + 1. Then, the underlying
graph G of G has a feedback edge set S of size at most p such that every red edge is in S.

Lemma 12 implies that G has a special structure that is used in our algorithm (see Figure 1).

IPEC 2023

1:12 Kernelizing Temporal Exploration Problems

▶ Lemma 13. Let G be a temporal graph with the underlying graph G and let p = m − n + 1.
Let also v ∈ V (G). Then, there is a set of vertices X ⊆ V (G) of size at most 4p such that
(i) v ∈ X, (ii) every red edge is in G[X], (iii) G−E(G[X]) is a forest and (iv) each connected
component T of G − X is a tree with the properties that each vertex x ∈ X has at most one
neighbor in T and
(a) either X has a unique vertex x that has a neighbor in T ,
(b) or X contain exactly two vertices x and y having neighbors in T .
Furthermore, if q is the number of connected components T of G − X satisfying (b), then
q ≤ 4p − 1 and G[X] has at most 5p − q − 1 edges.

Proof. By Lemma 12, G has a feedback edge set S of size at most p containing all red edges.
We define Y = {v} ∪ {x ∈ V (G) | x is an endpoint of an edge of S}. Note that |Y | ≤ 2p + 1.
Consider the graph G′ obtained from G by the iterative deletion of vertices of degree one
that are not in Y . Because S is a feedback edge set, we obtain that H = G′ − S is a forest
such that every vertex of degree at most one is in Y . It is a folklore knowledge that any tree
with ℓ ≥ 2 vertices of degree one (leaves) has at most ℓ − 2 vertices of degree at least three.
This implies that the set Z of vertices of H with degree at least three has size at most 2p − 1.
We define X = Y ∪ Z. By the construction, |X| ≤ 4p and (i)–(iv) are fulfilled.

Let q be the number of connected components T of G − X satisfying (b). Consider the
multigraph G′′ obtained from G[X] by the following operation: for each connected component
T of G−X satisfying (b), where x and y are the vertices of X having neighbors in T , add the
edge xy to G[X] and make it a multi-edge if xy ∈ E(G[X]). Because of (iii), G′′ − E(G[X])
is a tree on |X| vertices, therefore, we have that q ≤ |X| − 1 ≤ 4p − 1. Because G has a
feedback edge set of size at most p, G′′ has the same property. Therefore, G′′ has at most
|X| − 1 + p ≤ 5p − 1 edges. Hence, G[X] has at most 5p − q − 1 edges. ◀

We show that Weighted k-arb NS-TEXP can be solved in polynomial time if each
edge appears exactly once and the underlying graph is a tree. If an edge e appears exactly
once, then we use t(e) to denote the unique element of A(e).

▶ Lemma 14. There is an algorithm running in O(n + L) time that, given a temporal graph
T = (F1, . . . , FL) such that its underlying graph T is a tree with m(e) = 1 for each e ∈ E(T),
a weight function w : V (T) → N>0 and two vertices x, y ∈ V (T), either finds the maximum
weight of a monotone (x, y)-walk W in T or reports that such a walk does not exist.

Proof sketch. The algorithm works as follow. Consider the unique (x, y)-path P in T . Let
P = v0, e1, v1, . . . , er, vr in T with x = v0 and y = vr. As each edge e can only be crossed
in the single time step t(e), there exists a monotone (x, y)-walk W in T if and only if P is
monotone. Suppose P is monotone. For i ∈ [r], let ti = t(ei), t0 = 0 and tr+1 = L. Let
i ∈ {0, . . . , r}. Because edges cannot be crossed in two different time steps, any (x, y)-walk
needs to be on vi between time step ti and ti+1. Therefore, for any time step ti ≤ t ≤ ti+1,
an (x, y)-walk can only visit the vertices of Ct(vi), where Ct(vi) correspond to the connected
components of Ft containing vi, and the set U(vi) =

⋃
ti≤t≤ti+1

V (Ct(vi)) corresponds to all
vertices that can be visited while waiting on vi. Thereby, a (x, y)-walk of maximum weight
visits exactly the vertices of U = ∪i∈{0,...r}U(vi). By the preconditions, the number of edges
over all snapshots is n − 1. By using a BFS we can find the connected component containing
a specific vertex in time linear in the size of the component. Therefore, we can construct U

and compute its weight in time O(n + L). ◀

To reduce the vertex weights in our kernelization algorithm, we use the approach proposed
by Etscheid et al. [21] that is based on the result of Frank and Tardos [23].

E. Arrighi, F. V. Fomin, P. A. Golovach, and P. Wolf 1:13

▶ Proposition 15 ([23]). There is an algorithm that, given a vector w ∈ Qr and an integer N ,
in polynomial time finds a vector w ∈ Zr with ∥w∥∞ ≤ 24r3

Nr(r+2) such that sign(w · b) =
sign(w · b) for all vectors b ∈ Zr with ∥b∥1 ≤ N − 1.

Now we are ready to prove the main result of the section. We recall that a pair (P, Q) of
subsets of V (G) is called a separation of G if P ∪ Q = V (G) and there is no edge xy with
x ∈ P \ Q and y ∈ Q \ P . The set P ∩ Q is a separator and |P ∩ Q| is called the order of a
separation (P, Q). If a separation has order one, then the single vertex of P ∩ Q is called a
cut-vertex and we say that this vertex is a separator. Notice that it may happen that P ⊆ Q

or Q ⊆ P and we slightly abuse the standard notation, as in these cases necessarily P ∩ Q

does not separate G. We also recall that an edge cut of G is a partition (P, Q) of V (G) and
the edge cut-set is the set of all edges xy for x ∈ P and y ∈ Q.

▶ Theorem 16. Weighted k-arb NS-TEXP parameterized by p = m − n + 1 admits
a kernel of size O(p4) for connected underlying graphs such that for the output instance
(G = (G1, . . . , GL), w, v, k), G has O(p) vertices and edges, and L ∈ O(p).

Proof sketch. Let (G = (G1, . . . , GL), w, v, k) be an instance of Weighted k-arb NS-
TEXP and let p = m − n + 1. Let also G be the underlying graph of G and let R be
the set of red edges. We describe our kernelization algorithm as a series of reduction rules
that are applied exhaustively whenever it is possible to apply a rule. The rules modify
G = (G1, . . . , GL) and w. Whenever we say that a rule deletes a vertex x, this means that x

is deleted from G1, . . . , GL and G together with the incident edges. Similarly, whenever we
create a vertex, this vertex is added to every graph Gi for i ∈ [L] and G. When we either
delete or add an edge, we specify Gi where this operation is performed and also assume that
the corresponding operation is done for G.

To describe the first rule, we need some auxiliary notation. Let (P, Q) be a separation of
G of order one with a cut-vertex x. We say that (P, Q) is important if

(i) G[P] is a tree with at least two vertices,
(ii) the start vertex v is in Q and R ⊆ E(G[Q]), and
(iii) P is an inclusion-maximal set satisfying (i) and (ii).

Suppose that (P, Q) is an important separation of G with a cut-vertex x. Let a, b ∈ [L].
Then, there is a separation (P1, P2) of H = G[P] with x being the cut-vertex such that for
any y ∈ NH(x), y ∈ P1 if and only if a ≤ t(xy) ≤ b and, moreover, (P1, P2) is unique. We
use T[a,b] to denote the temporal graph (G1[P1], . . . , GL[P1]) and T[a,b] = G[P1]. Observe
that T[a,b] may be a single-vertex temporal graph containing only x. We write T(a,b) (T[a,b)
and T(a,b], respectively) for T[a+1,b−1] (T[a,b−1] and T[a+1,b], respectively) and we use the
corresponding notation for the underlying trees. We also write Ta and Ta instead of T[a,a]
and T[a,a]. Given an important separation (P, Q) of G with a cut-vertex x, we denote
A(Q) =

⋃
y∈NG[Q](x) A(xy). We say that i, j ∈ A(Q) are consecutive if i < j and there is no

t ∈ A(Q) such that i < t < j.
Observe that as cut-vertices and blocks of a graph can be found in linear time by standard

algorithmic tools (see, e.g., [11]), all important separations can be listed in linear time.
Given a cut vertex x such that one side T of the important separation is a tree, then an

optimal exploration can either enter and exit T by x or end in some vertex of T . In both
cases, using the algorithm from Lemma 14 we can compute the optimal exploration of T and
replace T − x by 2 vertices simulating those two options giving us the first reduction rule.

IPEC 2023

1:14 Kernelizing Temporal Exploration Problems

▶ Reduction Rule 1. If there is an important separation (P, Q) of G with a cut-vertex x

such that either there is i ∈ A(Q) such that T = Ti has at least four vertices, or there are
consecutive i, j ∈ A(Q) such that T = T(i,j) has at least four vertices, or T = T[1,i) has at
least four vertices for i = min A(Q), or T = T(j,L] has at least four vertices for j = max A(Q),
then do the following for T and the underlying tree T (see Figure 2):

Call the algorithm from Lemma 14 and compute the maximum weight w1 of a monotone
(x, x)-walk in T and the maximum weight w2 of a monotone (x, y)-walk, where maximum
is taken over all y ∈ V (T). Set t = minu∈NT (x) t(xu).
Delete the vertices of T in G except x, create a new vertex y, make it adjacent to x in Gt

and set w(y) = w1 − w(x).
If w2 > w1, then create a new vertex z, make it adjacent to y in GL and set w(z) = w2−w1.

zQ Qx x y

Figure 2 The application of Reduction Rule 1.

To state the next rules, we define edge cuts that are important for our algorithm. We say
that an edge cut (P, Q) of G is important if

(i) the edge-cut set is of size two and consists of edges with distinct endpoints,
(ii) G[P] is a tree, and
(iii) v ∈ Q and R ⊆ E(G[Q]).
Given an important edge cut (P, Q) with an edge cut-set {x1y1, x2y2}, where x1, x2 ∈ P ,
there is the unique (x1, x2)-path S in the tree G[P]. We say that the path y1, y1x1, S, x2y2, y2
is the backbone of the edge cut. We also denote TP,Q = (G1[(P ∪{y1, y2})]−y1y2, . . . , GL[P ∪
{y1, y2}] − y1y2). Note that the underlying graph T of TP,Q is a tree and the unique
(y1, y2)-path in T is the backbone.

Observe that all important edge cuts can be found in polynomial time. The next three
reduction rules reduce the length of backbones. We begin by deleting irrelevant edges.

Rule 3

Q v0

v3

v1

v2

Q v0

v3

v1

v2

Q v0

v2

v3

v1
Rule 2

Figure 3 The application of Reduction Rule 2 and Reduction Rule 3.

▶ Reduction Rule 2. If there is an important edge cut (P, Q) of G with a backbone
v0, e1, v1, e2, v2, e3, v3 such that t(e1) > t(e2) and t(e3) > t(e2), then modify G and G by
deleting e2 from Gt(e2) (see Figure 3). Furthermore, if the obtained underlying graph G is
disconnected, then delete the vertices of the (unique) connected component that does not
contain the source vertex v.

The next rule aims at consecutive edges in backbones that occur in the same Gt.

E. Arrighi, F. V. Fomin, P. A. Golovach, and P. Wolf 1:15

▶ Reduction Rule 3. If there is an an important edge cut (P, Q) of G with a backbone
v0, e1, v1, e2, v2, e3, v3 such that t(e1) = t(e2), then modify G and G by deleting e2 from Gt(e1)
and adding v0v2 in Gt(e1) (see Figure 3).

y3

Q Q
v1

v2

v3
v4v5

v0 v0

v5

u1

u2

u3

y1

Figure 4 The application of Reduction Rule 4.

It remains to shorten monotone backbones.

▶ Reduction Rule 4. If there is an important edge cut (P, Q) of G with a backbone
v0, e1, . . . , e5, v5 such that t(e1) < · · · < t(e5), then modify G and G by doing the following
for T = TP,Q with its underlying tree T (see Figure 4):

Call the algorithm from Lemma 14 and compute the maximum weight w1 of a monotone
(v0, v0)-walk in T , the maximum weight w2 of a monotone (v0, v5)-walk and the maximum
weight w3 of a monotone (v5, v5)-walk.
Delete the vertices of V (T) \ {v0, v5}, create new vertices u1, u2, u3, make u1 adjacent to
v0 in Gt(e1), make u2 adjacent to u1 and u3 in Gt(e2) and Gt(e4), respectively, and make
u3 adjacent to v5 in Gt(e5).
Set w(u1) = w1 − w(v0), w(u3) = w3 − w(v5) and w(u2) = w2 − w1 − w3.
Call the algorithm from Lemma 14 and compute the maximum weight w0 of a monotone
(v0, u)-walk in T − v5, where the maximum is taken over all u ∈ V (T) \ {v5}. Create a
vertex y1, make y1 adjacent to u1 in Gt(e3) and set w(y1) = w0 − w(v0) − w(u1) − w(u2).
Call the algorithm from Lemma 14 and compute the maximum weight w5 of a monotone
(v5, u)-walk in T , where the maximum is taken over all u ∈ V (T). If w5 > w3, then create
a vertex y3, make y3 adjacent to u3 in GL and set w(y3) = w5 − w(v5) − w(u3).

We observe that by the definitions of Rules 1–4, we immediately obtain the following claim.

▷ Claim 17. Rules 1–4 do not increase the parameter p = m − n + 1.

After applying Rules 1–4, the graph has bounded size.

▷ Claim 18. If Rules 1–4 are not applicable, then |V (G)| ≤ 324p and |E(G)| ≤ 326p.

The bound on the number of edges of G allows to reduce the value of L.

▶ Reduction Rule 5. If there is t ∈ [L] such that Gt has no edge, then delete Gt from G.

After applying this rule L ≤ 326p as |E(G)| ≤ 326p.
Our last aim is to reduce the weights. For this, we use the algorithm from Proposition 15.

Let n = |V (G)| and let V (G) = {v1, . . . , vn}. We define r = n + 1 and consider the vector
w = (w0, w1, . . . , wn)⊺ ∈ Zr, where w0 = k and wi = w(vi) for i ∈ [n].

▶ Reduction Rule 6. Apply the algorithm from Proposition 15 for w and N = r + 1 and
find the vector w = (w0, . . . , wn). Set k := w0 and set w(vi) := wi for i ∈ [n].

IPEC 2023

1:16 Kernelizing Temporal Exploration Problems

To see that the rule is safe, let k′ = w0 and let w′(vi) = wi for i ∈ [n]. Note that by
the choice of N , for each vector b ∈ {−1, 0, 1}r, we have that sign(w · b) = sign(w · b). This
implies that the new weights w′(x) and k′ are positive integers and for every U ⊆ V (G),
w(U) ≥ k if and only if w′(U) ≥ k′.

By Proposition 15, we obtain that k ≤ 24n3(n + 2)(n+1)(n+2) and the same upper bound
holds for w(x) for every x ∈ V (G). Because |V (G)| = O(p), we have that we need O(p3)
bits to encode k and the weight of each vertex. Then, the total bit-length of the encoding of
the weights and k is O(p4). Taking into account that |V (G)| = O(p), |E(G)| = O(p) and
L = O(p), we conclude that we obtained a kernel of size O(p4).

Because important separations and important edge cuts can be found in polynomial
time and the algorithm from Lemma 14 is polynomial, we have that Rules 1–4 can be
exhaustively applied in polynomial time. It is trivial that Reduction Rule 5 can be applied
in polynomial time. Because the algorithm from Proposition 15 is polynomial, Reduction
Rule 6 requires polynomial time. Therefore, the overall running time of our kernelization
algorithm is polynomial. This concludes the proof. ◀

In [20], Erlebach and Spooner proved that NS-TEXP can be solved in O(2nLn3) time.
This fact together with Theorem 16 implies the following corollary.

▶ Corollary 19. Weighted k-arb NS-TEXP parameterized by p = m− n + 1 can be solved
in 2O(p)(nL)O(1) time on temporal graphs with connected underlying graphs.

Conclusion

We initiated the study of polynomial kernels for exploration problems on temporal graphs.
We showed that for the problems NS-TEXP, k-arb NS-TEXP, and Weighted k-arb-NS-
TEXP, unless NP ⊆ coNP/poly, there does not exist a polynomial kernel for the parameters
number of vertices n, lifetime L, and number of vertices to visit k; and for the combined
parameters L + k, L + γ, and k + γ, where γ is the maximal number of connected components
per time step. In fact, by a straight forward reduction that repeats each snapshot sufficiently
many times, all of our hardness results, that do not involve the parameter L, carry over to
the strict settings TEXP and k-arb TEXP where a temporal exploration traverses at most
one edge per time step. We showed that the temporal exploration problems remain NP-hard
restricted to temporal graphs where the underlying graph is a tree of diameter three. From
a parameterized complexity point of view, this eliminates most of the common structural
parameters considered on the underlying graph. Nonetheless, we were able to identify a
new parameter of a temporal graph p(G) =

∑L
i=1(|E(Gi)|) − |V (G)| + 1 that captures how

close the temporal graph is to a tree where each edge appears exactly once. Our parameter
can also be seen as a notion of sparsity for temporal graphs. For this parameter p(G), we
were able to obtain a polynomial kernel for Weighted k-arb NS-TEXP. Using simplified
reduction rules, we can obtain a kernel of linear size for NS-TEXP. While the reduction
from NS-TEXP to TEXP blows up the parameter p(G), our reduction rules can still be
adapted to obtain polynomial kernels for the strict variants of the considered exploration
problems. The natural next step would be to evaluate how useful our parameter is for other
problems on temporal graphs.

E. Arrighi, F. V. Fomin, P. A. Golovach, and P. Wolf 1:17

References
1 Duncan Adamson, Vladimir V. Gusev, Dmitriy S. Malyshev, and Viktor Zamaraev. Faster

exploration of some temporal graphs. In James Aspnes and Othon Michail, editors, 1st
Symposium on Algorithmic Foundations of Dynamic Networks, SAND 2022, March 28-30,
2022, Virtual Conference, volume 221 of LIPIcs, pages 5:1–5:10. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.SAND.2022.5.

2 Noga Alon, Raphael Yuster, and Uri Zwick. Color-coding. J. ACM, 42(4):844–856, 1995.
doi:10.1145/210332.210337.

3 Emmanuel Arrighi, Fedor V. Fomin, Petr A. Golovach, and Petra Wolf. Kernelizing temporal
exploration problems. CoRR, abs/2302.10110, 2023. doi:10.48550/arXiv.2302.10110.

4 Hans L. Bodlaender, Rodney G. Downey, Michael R. Fellows, and Danny Hermelin. On
problems without polynomial kernels. Journal of Computer and System Sciences, 75(8):423–
434, 2009. doi:10.1016/j.jcss.2009.04.001.

5 Hans L. Bodlaender, Bart M. P. Jansen, and Stefan Kratsch. Kernelization lower bounds by
cross-composition. SIAM J. Discret. Math., 28(1):277–305, 2014. doi:10.1137/120880240.

6 Hans L. Bodlaender and Tom C. van der Zanden. On exploring always-connected temporal
graphs of small pathwidth. Inf. Process. Lett., 142:68–71, 2019. doi:10.1016/j.ipl.2018.10.
016.

7 Marin Bougeret and Ignasi Sau. How much does a treedepth modulator help to obtain
polynomial kernels beyond sparse graphs? Algorithmica, 81(10):4043–4068, 2019. doi:
10.1007/s00453-018-0468-8.

8 Benjamin Merlin Bumpus and Kitty Meeks. Edge exploration of temporal graphs. Algorithmica,
pages 1–29, 2022.

9 Sobin C. C., Vaskar Raychoudhury, Gustavo Marfia, and Ankita Singla. A survey of routing
and data dissemination in delay tolerant networks. J. Netw. Comput. Appl., 67:128–146, 2016.
doi:10.1016/j.jnca.2016.01.002.

10 Arnaud Casteigts, Paola Flocchini, Walter Quattrociocchi, and Nicola Santoro. Time-varying
graphs and dynamic networks. Int. J. Parallel Emergent Distributed Syst., 27(5):387–408,
2012. doi:10.1080/17445760.2012.668546.

11 Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction
to Algorithms, Second Edition. The MIT Press and McGraw-Hill Book Company, 2001.

12 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

13 Rodney G. Downey and Michael R. Fellows. Parameterized complexity. Springer-Verlag, New
York, 1999.

14 Thomas Erlebach, Michael Hoffmann, and Frank Kammer. On temporal graph exploration. J.
Comput. Syst. Sci., 119:1–18, 2021. doi:10.1016/j.jcss.2021.01.005.

15 Thomas Erlebach, Frank Kammer, Kelin Luo, Andrej Sajenko, and Jakob T. Spooner.
Two moves per time step make a difference. In Christel Baier, Ioannis Chatzigiannakis,
Paola Flocchini, and Stefano Leonardi, editors, 46th International Colloquium on Automata,
Languages, and Programming, ICALP 2019, July 9-12, 2019, Patras, Greece, volume 132
of LIPIcs, pages 141:1–141:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019.
doi:10.4230/LIPIcs.ICALP.2019.141.

16 Thomas Erlebach and Jakob T. Spooner. Faster exploration of degree-bounded temporal
graphs. In Igor Potapov, Paul G. Spirakis, and James Worrell, editors, 43rd International
Symposium on Mathematical Foundations of Computer Science, MFCS 2018, August 27-31,
2018, Liverpool, UK, volume 117 of LIPIcs, pages 36:1–36:13. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2018. doi:10.4230/LIPIcs.MFCS.2018.36.

IPEC 2023

https://doi.org/10.4230/LIPIcs.SAND.2022.5
https://doi.org/10.1145/210332.210337
https://doi.org/10.48550/arXiv.2302.10110
https://doi.org/10.1016/j.jcss.2009.04.001
https://doi.org/10.1137/120880240
https://doi.org/10.1016/j.ipl.2018.10.016
https://doi.org/10.1016/j.ipl.2018.10.016
https://doi.org/10.1007/s00453-018-0468-8
https://doi.org/10.1007/s00453-018-0468-8
https://doi.org/10.1016/j.jnca.2016.01.002
https://doi.org/10.1080/17445760.2012.668546
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1016/j.jcss.2021.01.005
https://doi.org/10.4230/LIPIcs.ICALP.2019.141
https://doi.org/10.4230/LIPIcs.MFCS.2018.36

1:18 Kernelizing Temporal Exploration Problems

17 Thomas Erlebach and Jakob T. Spooner. Non-strict temporal exploration. In Andrea Werneck
Richa and Christian Scheideler, editors, Structural Information and Communication Complexity
- 27th International Colloquium, SIROCCO 2020, Paderborn, Germany, June 29 - July 1, 2020,
Proceedings, volume 12156 of Lecture Notes in Computer Science, pages 129–145. Springer,
2020. doi:10.1007/978-3-030-54921-3_8.

18 Thomas Erlebach and Jakob T. Spooner. Exploration of k-edge-deficient temporal graphs.
Acta Informatica, 59(4):387–407, 2022. doi:10.1007/s00236-022-00421-5.

19 Thomas Erlebach and Jakob T. Spooner. Parameterized temporal exploration problems. In
1st Symposium on Algorithmic Foundations of Dynamic Networks (SAND), volume 221 of
LIPIcs, pages 15:1–15:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. doi:
10.4230/LIPIcs.SAND.2022.15.

20 Thomas Erlebach and Jakob T. Spooner. Parameterized temporal exploration problems.
CoRR, abs/2212.01594, 2022. doi:10.48550/arXiv.2212.01594.

21 Michael Etscheid, Stefan Kratsch, Matthias Mnich, and Heiko Röglin. Polynomial kernels for
weighted problems. J. Comput. Syst. Sci., 84:1–10, 2017. doi:10.1016/j.jcss.2016.06.004.

22 Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi. Kernelization. Theory
of Parameterized Preprocessing. Cambridge University Press, 2019.

23 András Frank and Éva Tardos. An application of simultaneous diophantine approximation in
combinatorial optimization. Comb., 7(1):49–65, 1987. doi:10.1007/BF02579200.

24 Bart M. P. Jansen and Hans L. Bodlaender. Vertex cover kernelization revisited - upper and
lower bounds for a refined parameter. Theory of Computing Systems, 53(2):263–299, 2013.
doi:10.1007/s00224-012-9393-4.

25 Bart M. P. Jansen, Jari J. H. de Kroon, and Michal Wlodarczyk. Vertex deletion parameterized
by elimination distance and even less. In Proceedings of the 53rd Annual ACM SIGACT
Symposium on Theory of Computing (STOC), pages 1757–1769. ACM, 2021. doi:10.1145/
3406325.3451068.

26 David Kempe, Jon M. Kleinberg, and Amit Kumar. Connectivity and inference problems for
temporal networks. J. Comput. Syst. Sci., 64(4):820–842, 2002. doi:10.1006/jcss.2002.1829.

27 Nina Klobas, George B. Mertzios, Hendrik Molter, Rolf Niedermeier, and Philipp Zschoche.
Interference-free walks in time: temporally disjoint paths. Auton. Agents Multi Agent Syst.,
37(1):1, 2023. doi:10.1007/s10458-022-09583-5.

28 Pascal Kunz, Hendrik Molter, and Meirav Zehavi. In which graph structures can we efficiently
find temporally disjoint paths and walks? CoRR, abs/2301.10503, 2023. doi:10.48550/arXiv.
2301.10503.

29 Othon Michail. An introduction to temporal graphs: An algorithmic perspective. Internet
Math., 12(4):239–280, 2016. doi:10.1080/15427951.2016.1177801.

30 Othon Michail and Paul G. Spirakis. Traveling salesman problems in temporal graphs. Theor.
Comput. Sci., 634:1–23, 2016. doi:10.1016/j.tcs.2016.04.006.

31 Polina Rozenshtein and Aristides Gionis. Mining temporal networks. In Proceedings of the
25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD,
pages 3225–3226. ACM, 2019. doi:10.1145/3292500.3332295.

32 Claude E Shannon. Presentation of a maze-solving machine. Claude Elwood Shannon Collected
Papers, pages 681–687, 1993.

33 Shadi Taghian Alamouti. Exploring temporal cycles and grids. Master’s thesis, Concordia
University, 2020.

34 Johannes Uhlmann and Mathias Weller. Two-layer planarization parameterized by feedback
edge set. Theor. Comput. Sci., 494:99–111, 2013. doi:10.1016/j.tcs.2013.01.029.

https://doi.org/10.1007/978-3-030-54921-3_8
https://doi.org/10.1007/s00236-022-00421-5
https://doi.org/10.4230/LIPIcs.SAND.2022.15
https://doi.org/10.4230/LIPIcs.SAND.2022.15
https://doi.org/10.48550/arXiv.2212.01594
https://doi.org/10.1016/j.jcss.2016.06.004
https://doi.org/10.1007/BF02579200
https://doi.org/10.1007/s00224-012-9393-4
https://doi.org/10.1145/3406325.3451068
https://doi.org/10.1145/3406325.3451068
https://doi.org/10.1006/jcss.2002.1829
https://doi.org/10.1007/s10458-022-09583-5
https://doi.org/10.48550/arXiv.2301.10503
https://doi.org/10.48550/arXiv.2301.10503
https://doi.org/10.1080/15427951.2016.1177801
https://doi.org/10.1016/j.tcs.2016.04.006
https://doi.org/10.1145/3292500.3332295
https://doi.org/10.1016/j.tcs.2013.01.029

Cluster Editing with Overlapping Communities
Emmanuel Arrighi # Ñ

University of Trier, Germany

Matthias Bentert #

University of Bergen, Norway

Pål Grønås Drange1 #

University of Bergen, Norway

Blair D. Sullivan #

University of Utah, Salt Lake City, UT, USA

Petra Wolf # Ñ

University of Bergen, Norway

Abstract
Cluster Editing, also known as correlation clustering, is a well-studied graph modification problem.
In this problem, one is given a graph and allowed to perform up to k edge additions and deletions to
transform it into a cluster graph, i.e., a graph consisting of a disjoint union of cliques. However, in
real-world networks, clusters are often overlapping. For example, in social networks, a person might
belong to several communities – e.g. those corresponding to work, school, or neighborhood. Another
strong motivation comes from language networks where trying to cluster words with similar usage
can be confounded by homonyms, that is, words with multiple meanings like “bat”. The recently
introduced operation of vertex splitting is one natural approach to incorporating such overlap into
Cluster Editing. First used in the context of graph drawing, this operation allows a vertex v to
be replaced by two vertices whose combined neighborhood is the neighborhood of v (and thus v can
belong to more than one cluster). The problem of transforming a graph into a cluster graph using
at most k edge additions, edge deletions, or vertex splits is called Cluster Editing with Vertex
Splitting and is known to admit a polynomial kernel with respect to k and an O(9k2

+ n + m)-time
(parameterized) algorithm. However, it was not known whether the problem is NP-hard, a question
which was originally asked by Abu-Khzam et al. [Combinatorial Optimization, 2018]. We answer
this in the affirmative. We further give an improved algorithm running in O(27k log k + n + m) time.

2012 ACM Subject Classification Mathematics of computing → Graph algorithms

Keywords and phrases graph modification, correlation clustering, vertex splitting, NP-hardness,
parameterized algorithm

Digital Object Identifier 10.4230/LIPIcs.IPEC.2023.2

Funding Matthias Bentert: European Research Council (ERC) under the European Union’s Horizon
2020 research and innovation programme (grant agreement No. 819416).
Pål Grønås Drange: Research Council of Norway under grant Parameterized Complexity for Practical
Computing (NFR, no. 274526).
Blair D. Sullivan: Gordon & Betty Moore Foundation under grant GBMF4560.

1 Introduction

Correlation clustering is a fundamental problem in data mining and machine learning that
aims to identify groups of similar objects based on their pairwise similarity or dissimilarity.
This problem arises in various domains, including social network analysis, image segmentation,

1 corresponding author

© Emmanuel Arrighi, Matthias Bentert, Pål Grønås Drange, Blair D. Sullivan, and Petra Wolf;
licensed under Creative Commons License CC-BY 4.0

18th International Symposium on Parameterized and Exact Computation (IPEC 2023).
Editors: Neeldhara Misra and Magnus Wahlström; Article No. 2; pp. 2:1–2:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:emmanuel@arrighi.eu
http://emmanuel.arrighi.eu
https://orcid.org/0000-0002-0326-1893
mailto:matthias.bentert@uib.no
mailto:pal.drange@uib.no
https://orcid.org/0000-0001-7228-6640
mailto:sullivan@cs.utah.edu
https://orcid.org/0000-0001-7720-6208
mailto:mail@wolfp.net
https://www.wolfp.net/
https://orcid.org/0000-0003-3097-3906
https://doi.org/10.4230/LIPIcs.IPEC.2023.2
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

2:2 Cluster Editing with Overlapping Communities

document classification, gene expression analysis, and many more. Broadly speaking, the
goal of correlation clustering is to partition the objects into clusters such that objects within
the same cluster are more similar to each other than to objects in different clusters.

Correlation clustering has also been studied in algorithmic graph theory [34]. In this
setting, the input is a graph and two vertices share an edge if they are similar. The goal is
then to add or remove a minimum number of edges such that the resulting graph is a cluster
graph, that is, a disjoint unions of cliques. This problem is typically known as Cluster
Editing and formally defined as follows.

Input: A graph G = (V, E) and an integer k.
Question: Does there exist a set F ⊆

(
V
2

)
of size at most k such that G = (V, E△F)

is a cluster graph?

Cluster Editing

Here, △ is the symmetric difference between two sets. Equivalently, one can ask whether
there is a sequence (σ1, σ2, . . . , σℓ) of length ℓ ≤ k where each σi describes either an edge
addition or an edge removal between two vertices such that performing all operations in the
sequence yields a cluster graph.

Cluster Editing has been extensively studied in terms of both classic and parameterized
complexity. Cai [9] showed a general result implying an O(3k ·n3)-time algorithm for Cluster
Editing. This running time has since been improved several times [23, 25, 29]. Moreover, it
is known that Cluster Editing admits a polynomial kernel with respect to k [21].

However, it has been observed that real-world data usually does not neatly conform
to such an equivalence relation [27, 36, 40]. This lead to the study of detecting so-called
overlapping communities [5, 31], with applications in categorizing videos [35], classifying
emotions in music [41] and sentiments in online posts [33], document classification [18, 32],
and protein clustering based on amino-acid sequences [8].

The overlapping clusters model we study was introduced by Abu-Khzam et al. [2], who
augmented Cluster Editing with a vertex-splitting operation which enables vertices to
belong to multiple clusters. Specifically, in addition to allowing edge modification, a vertex v

can be split into two vertices v1, v2 such that N(v1) ∪ N(v2) = N(v), where N is the (open)
neighborhood of a vertex (see Figure 1 for an example). In the same article [2], they show that
this generalized problem admits a quadratic vertex kernel and an FPT algorithm. A slightly
tighter analysis than the paper provides reveals that the algorithm runs in O(9k2 + n + m)
time. Abu-Khzam et al. [1] later provided a greedy algorithm, but it was still not known
whether the problem is actually NP-hard, a question posed by the former set of authors. We
settle this question by showing that the following problem is indeed NP-complete.

Input: A graph G = (V, E) and an integer k.
Question: Does there exist a sequence σ = (σ1, σ2, . . . , σℓ) of length ℓ ≤ k, where

each σi is an edge addition, an edge removal, or a vertex splitting, such
that performing the operations in σ turns G into a cluster graph?

Cluster Editing with Vertex Splitting (CEVS)

Related work. In addition to the aforementioned work [1, 2], overlapping clustering has
been studied from the graph-editing point of view before, but under a less natural restriction.
Fellows et al. [16] consider the problem where each vertex (and edge) is allowed to participate
in a fixed number of clusters. In real-world applications, however, there is no fixed number s

such that every vertex belongs to at most s cliques. Indeed, some vertices naturally belong
to many clusters and some to few.

E. Arrighi, M. Bentert, P. G. Drange, B. D. Sullivan, and P. Wolf 2:3

a

b

c

d

e

f g

h

i

j

(a) A graph with two overlapping clusters
that can be separated by two vertex splits.

a

b

c

d1 d2

e1 e2

f g

h

i

j

(b) The graph after splitting d into d1 and d2 and e
into e1 and e2.

Figure 1 An example of an instance where the budget needed for Cluster Editing is 8, and
where the resulting graph is quite different from the input graph (d has to be disconnected completely
from (e.g.) g, h, i, and j). In CEVS, we only need a budget of 2, and the resulting graph is very
similar to the input graph.

To the best of our knowledge, the first use of vertex splitting in graph modification
is the Planar Vertex Splitting used in graph drawing [15], a problem shown to be
FPT quite recently by Nöllenburg et al. [30]. Even more recently, an FPT algorithm was
given for obtaining a 2-layer planar drawing of a graph after at most k vertex splits [3]. In
addition, vertex splitting has also been studied in the context of reducing a graph’s pathwidth
by Baumann, Pfretzschner, and Rutter [6], who also show that the problem Π-Vertex
Splitting is definable in MSO2 (provided that Π is), making the problem FPT for graphs
of bounded treewidth.

Finally, we would also like to highlight that finding ever faster algorithms for overlapping
clustering and community detection is a major area of study in complex networks [4, 7, 11,
19, 20, 39, 43].

2 Preliminaries

For a positive integer n, we use [n] = {1, 2, . . . , n} to denote the set of all positive integers
up to n. All logarithms in this paper use 2 as their base.

We use standard graph-theoretic notation and refer the reader to the textbook by
Diestel [12] for commonly used definitions. For an introduction to parameterized complexity,
fixed-parameter tractability, and kernelization, we refer the reader to the textbooks by Flum
and Grohe [17] and Cygan et al. [10]. The only non-standard graph concept used in this
work are critical cliques as introduced by Lin et al. [28].

▶ Definition 1. A critical clique is a subset of vertices C that is maximal with the properties
that
1. C is a clique
2. there exists U ⊆ V (G) s.t. N [v] = U for all v ∈ C.

▶ Lemma 2 ([2, 28]). Every vertex appears in exactly one critical clique.

We denote the critical clique in which a vertex v appears by CC(v). The critical clique
quotient graph C of G contains a vertex for each critical clique in G and two vertices are
adjacent if and only if the two respective critical cliques C1 and C2 are adjacent, that is,

IPEC 2023

2:4 Cluster Editing with Overlapping Communities

there is an edge between each vertex in C1 and each vertex in C2. Note that by the definition
of critical cliques this is equivalent to the condition that at least one edge {u, v} with u ∈ C1
and v ∈ C2 exists. The main reason that critical cliques turn out to be useful when studying
CEVS is captured by the following lemma.

▶ Lemma 3 ([2]). Let σ be an optimal solution to CEVS. Then for each critical clique Ci and
each clique Sj in the cluster graph reached after performing the operations in σ, either Ci ⊆ Sj

or Ci ∩ Sj = ∅.

To show NP-hardness, we reduce from the well-known NP-complete problem 3-SAT.

Input: A CNF formula ϕ where each clause contains exactly three distinct literals.
Question: Is ϕ satisfiable?

3-SAT

Even stronger hardness results than NP-hardness can be achieved if one assumes the
exponential time hypothesis (ETH) to be true. The ETH, formulated by Impagliazzo, Paturi,
and Zane [24], states that there exists some positive real number s such that 3-SAT on N

variables and M clauses cannot be solved in 2s(N+M) time.

3 NP-hardness

In this section, we show that Cluster Editing with Vertex Splitting is NP-hard,
thereby resolving an open problem posed by Abu-Khzam et al. [2].

▶ Theorem 4. CEVS is NP-complete. Moreover, assuming ETH, there is no 2o(n+m)-time
or 2o(k) · poly(n)-time algorithm for it.

Proof. Since containment in NPis obvious (non-deterministically guess the sequence of
operations and check that the resulting graph is indeed a cluster graph), we focus on the
NP-hardness and present a reduction from 3-SAT. Therein, we will use two gadgets, a variable
gadget and a clause gadget. The variable gadget is a wheel graph with two (connected) center
vertices. An example of this graph is depicted on the left side of Figure 2. We call this graph
with t vertices on the outside Wt and we will only consider instances with t mod 6 = 0, that
is, t = 6a for some positive integer a. The clause gadget is a “crown graph” as depicted in
Figure 3(a).

More precisely, for each variable xi, we construct a variable gadget Gi which is a W6a

where a is the number of clauses that contain either xi or ¬xi. For each clause Cj , we
construct a clause gadget Hj , that is, a K5 with the edges of a triangle removed. We
arbitrarily assign each of the three vertices of degree two in Hj to one literal in Cj . Finally,
we connect the variable and clause gadgets as follows. If a variable xi appears in a clause Cj ,
then let u be the vertex in Hj assigned to xi (or ¬xi). Moreover, let b be the number such
that Cj is the bth clause containing either xi or ¬xi and let c = 6(b − 1). Let the vertices
on the outer cycle of Gi be v1, v2, . . . , v6a. If Cj contains the literal xi, then we add the
three edges {u, vc+1}, {u, vc+2}, {u, vc+3}. If Cj contains the literal ¬xi, then we add the
three edges {u, vc+2}, {u, vc+3}, {u, vc+4}. To complete the reduction, we set k = 35M − 2N ,
where M is the number of clauses and N is the number of variables.

We next show that the reduction is correct, that is, the constructed instance of CEVS is
a yes-instance if and only if the original formula ϕ of 3-SAT is satisfiable. To this end, first
assume that ϕ is satisfiable and let β be a satisfying assignment. For each variable xi we will

E. Arrighi, M. Bentert, P. G. Drange, B. D. Sullivan, and P. Wolf 2:5

(a) The graph W6 (variable gadget).

(b) One of the three ways of trans-
forming W6 into two K5’s using six
operations.

Figure 2 The graph W6t requires 8t − 2 edits and any solution with exactly 8t − 2 edits results
in a disjoint union of K5s.

partition Gi into K5’s as follows. Let a be the value such that Gi is isomorphic to W6a. If β

sets xi to true, then we remove the edge {v3j , v3j+1} and add the edge {v3j+1, v3j+3} for each
integer 1 ≤ j ≤ 2a (where values larger than 6a are taken modulo 6a). If β sets xi to false,
then we remove the edge {v3j+1, v3j+2} and add the edge {v3j+2, v3j+4} for each 1 ≤ j ≤ 2a.
Moreover, we split the two center vertices 2a − 1 times. In total, we use 8a − 2 modifications
to transform Gi into a collection of K5’s. Since each clause contains exactly three literals and
we add six vertices for each variable appearance, the sum of lengths of cycles in all variable
gadgets combined is 18M . Hence, in all variable gadgets combined, we perform 24M − 2N

modifications.
Next, we modify the crown graphs. To this end, let Cj be a clause and let Hj be the

constructed clause gadget. Since β is a satisfying assignment, at least one variable appearing
in Cj satisfies it. If multiple such variables exist, then we pick any one. Let xi be the selected
variable and let u be the vertex in Hj assigned to xi. We first turn Hj into a K4 and an
isolated vertex by removing the two edges incident to u in Hj and add the missing edge
between the two vertices assigned to different variables. Finally, we look at the edges between
variable gadgets and clause gadgets. For the vertex u, note that by construction the three
vertices that u is adjacent to in Gi already belong to a K5 and hence we can add two edges
to the two (split) centers of the variable gadget to get to a K6. For the two other vertices
in Hj that have edges to vertices in variable gadgets, we remove all three such edges, that is,
six edges per clause. Hence, we use 3 + 2 + 6 = 11 modifications for each clause. Since the
total number of modifications is 35M − 2N and the resulting graph is a collection of K4’s,
K5’s, and K6’s, the constructed instance of CEVS is a yes-instance.

For the other direction, suppose the constructed instance of CEVS is a yes-instance. We
first show that 24M − 2N modifications are necessary to transform all variable gadgets
into cluster graphs and that this bound can only be achieved if each time exactly three
consecutive vertices on the cycles are contained in the same K5. To this end, consider any
variable gadget Gi. By construction, Gi is isomorphic to W6a for some integer a. By the
counting argument from above, we show that at least 8a − 2 modifications are necessary.
Note first that some edge in the cycle has to be removed or some vertex on the cycle has to
be split as otherwise any solution would contain a clique with all vertices in the cycle and

IPEC 2023

2:6 Cluster Editing with Overlapping Communities

yx z

(a) The crown graph.

yx z

(b) Good solution: One added
edge and two deleted edges.

yx z

(c) Bad solution 1: three
added edges.

yx z

(d) Bad solution 2: two splits
and one added edge.

yx z

(e) Bad solution 3: one split,
one deleted edge, and one
added edge.

Figure 3 The crown graph with its four solutions of size 3. The good solution is the only solution
with three operations that creates at least one isolated vertex.

this would require at least 18a2 − 9a > 8a − 2 edge additions (since the degree of each of
the 6a vertices in the cycle would need to increase from 2 to 6a − 1). We next analyze how
many modifications are necessary to separate b vertices from the outer cycle into a clique. We
require at least two modifications for the center vertices (either splitting them or removing
the edges between them and the first vertex that we want to separate) and one operation
to separate the cycle on the other end (either splitting a vertex or removing an edge of the
cycle). For b ∈ {1, 2} these operations are enough. For b ≥ 3, we need to add

(
b
2
)

− (b − 1)
edges (all edges in a clique of size b minus the already existing edges of a path on b vertices).
Note that the “average cost” per separated vertex (number of operations divided by b) is
minimized (only) with b = 3 with a cost of 4 for three vertices. Hence, to separate all but c

vertices from the cycle, we require at least 4(6a − c)/3 operations. The cost for making the
remaining c vertices into a clique requires again

(
c
2
)

− (c − 1) edge additions. Analogously,
the optimal solution is to have c = 3 with just a single edge addition. Thus, the minimum
number of required operations is at least 4(6a − 3)/3 + 2 = 8a − 2 (where the +2 comes
from the initial edge removal and the final edge addition between the last c = 3 vertices) and
this value can only be reached by partitioning the cycle into triples which each form a K5
with the two center vertices. Note that it is always preferable to delete an edge on the outer
cycle and not split one of the two incident edges as splitting a vertex increases the number
of vertices on the cycle and thus invokes a higher average cost. Next, we analyze the clause
gadget and the edges between the different gadgets. We start with the latter. Let u be a
vertex in a clause gadget Hj with (three) incident edges to some variable gadget. The only
way to not use at least three operations to deal with the three edges is if u is an isolated
vertex or if the three neighbors do not have two more neighbors in the current solution. In
the former case, we can (possibly) add the two edges between u and the two centers of the
respective variable gadgets to build a K6. In the latter case, we have used at least three
operations more in the variable gadget than intended (either by removing edges between
neighbors of u and the center vertices or by splitting all neighbors of u). Since each vertex in
a variable gadget is only adjacent to at most one vertex in a clause gadget, this cannot lead
to an overall reduction in the number of operations and we can therefore ignore this latter
case.

E. Arrighi, M. Bentert, P. G. Drange, B. D. Sullivan, and P. Wolf 2:7

We are now in a position to argue that at least eleven modifications are necessary for
each clause gadget. First, note that at least three operations are required to transform a
crown into a cluster graph. Possible ways of achieving this are depicted in Figure 3. In each
of these possibilities at most one vertex becomes an isolated vertex. To make two vertices
independent, at least four operations are required and for three isolated vertices at least
five operations are required. As shown above, at least two operations are required for each
isolated vertex with edges to variable gadgets and at least three operations are required for
non-isolated vertices with edges to variable gadgets. Thus, at least eleven operations are
required for each clause gadget and eleven operations are sufficient if and only if the three
vertices incident to one of the vertices in Hj belong to the same K5 in the variable gadget.

By the argument above, at least 24M − 2N + 11M = k operations are necessary and
since the constructed instance is a yes-instance, there is a way to cover all variable gadgets
with K5’s such that for each clause there is at least one vertex whose three neighbors in a
variable gadget belong to the same K5. Let Cj be a clause, let u be a vertex with all three
neighbors in the same K5, and let xi be the variable corresponding to this variable gadget.
If xi appears positively in Cj , then v3i+1, v3i+2, and v3i+3 belong to the same K5 for each i

and we set xi to true. If xi appears negatively in Cj , then v3i+2, v3i+3, and v3i+4 belong to
the same K5 for each i and we set xi to false. Note that we never set a variable to both
true and false in this way. We set all remaining variables arbitrarily to true or false. By
construction, the variable xi satisfies Cj and since we do the same for all clauses, all clauses
are satisfied, that is, the original formula ϕ is satisfiable. Thus, the constructed instance is
equivalent to the original 3-SAT instance.

Since the reduction can clearly be computed in polynomial time, this concludes the proof
for the NP-hardness. For the ETH-hardness, observe that k, n, m ∈ O(N + M). This implies
that there are no 2o(n+m)-time or 2o(k) · poly n-time algorithm for CEVS unless the ETH
fails [24]. ◀

In contrast to the reduction for Cluster Editing [26], our reduction does not produce
instances with constant maximum degree. We instead observe that in our reduction, the
maximum degree of the produced instances depends only on the maximum number of times
a variable appears in a clause. Combining this with the fact that 3-SAT remains NP-hard
when restricted to instances where each variable appears in at most four clauses [37], we
obtain the following corollary.

▶ Corollary 5. CEVS remains NP-hard on bounded-degree graphs.

4 A faster algorithm

In this section, we improve upon the known O(9k2 + n + m)-time algorithm and present an
algorithm running in O(27k log k + n + m) time. The general outline of the two algorithms is
fairly similar. We first compute a kernel with O(k2) vertices as well as all critical cliques in
linear time [2]. We then guess2 which critical cliques belong to the same clique (cluster) in
the solution. The main difference between the two algorithms is how these guesses are made.

▶ Theorem 6. CEVS can be solved in O(27k log k + n + m) time.

2 Whenever we pretend to guess something, we iterate over all possibilities and assume in the presentation
that we are currently in an iteration that yields a solution.

IPEC 2023

2:8 Cluster Editing with Overlapping Communities

Proof. First, we compute the critical clique of each vertex and the critical clique quotient
graph C of G in linear time [28]. As shown by Abu-Khzam et al. [2], we may assume
that C contains at most 4k vertices. By Lemma 3, we can also assume that all vertices in a
critical clique belong to the same clique in the graph G′ reached after performing an optimal
solution σ. Let X = (S1, S2, . . . , Sℓ) be the set of cliques in G′. Note that X contains ℓ ≤ 2k

cliques as each operation can complete at most two cliques of the solution (removing an edge
between two cliques or splitting a vertex contained in both cliques). Hence, if there are more
than 2k cliques in the solution, then we cannot reach the solution with k operations. To
streamline the following argumentation, we will cover the vertices in C by cliques S1, S2, . . . , Sℓ

and assume that an optimal solution contains exactly 2k cliques by allowing some of the
cliques to be empty. Next, we iterate over all possible colorings of the vertices in C using ℓ + 1
colors 0, 1, 2, . . . , ℓ. Note that there are at most (ℓ + 1)4k ∈ O((2k + 1)4k) such colorings.

The idea behind the coloring is the following. All colors 1, 2, . . . , ℓ will correspond to the
cliques S1, S2, . . . , Sℓ, that is, we try to find a solution where all (critical cliques corresponding
to) vertices of the same color (except for color 0) belong to the same clique in the solution.
The color 0 indicates that the vertex will belong to multiple cliques in the solution, that is,
that all vertices in the respective critical clique will be split. Since each such split operation
reduces k by one, we can reject any coloring in which the number of vertices in critical
cliques corresponding to vertices with color 0 is more than k. In particular, we can reject
any coloring in which more than k vertices have color 0.

Next, we guess two indices i ∈ [k], j ∈ [ℓ] and assume that the ith vertex of color 0 belongs
to Sj or we guess that all vertices of color 0 have been assigned to all cliques they belong to.
Note that in each iteration there are kℓ + 1 possibilities and since each guess (except for the
last one) reduces k by at least one, we can make at most k guesses (after k guesses we know
that the next guess has to be that all vertices have been fully assigned). Hence, there are at
most (kℓ + 1)k = (2k2 + 1)k ∈ O((2k + 1)2k) such guesses.

It remains to compute the best solution corresponding to each possible sequence of guesses.
To this end, we first iterate over each pair of vertices and remove an existing edge between
them if we guessed that the two vertices do not appear in a common clique. Moreover, we
add an edge between them if such an edge does not already exist and we guessed that there
is a clique Si which contains both vertices. Finally, we perform all split operations. Therein,
we iteratively split one vertex v into two vertices u1 and u2 where u1 will be the vertex in
some clique Si and u2 might be split further in the future. The vertex u1 is adjacent to all
vertices that are guessed to belong to Si. The vertex u2 is adjacent to all vertices that u was
adjacent to, except for vertices that are adjacent to u1 and not guessed to also belong to
some other clique Sj which (some part of) u2 belongs to.

Since our algorithm basically performs an exhaustive search, it will find an optimal solution.
It only remains to analyze the running time. We first compute the kernel in O(n + m) time.
We then try O((2k+1)4k) possible colorings of C and for each coloring O((2k+1)2k) sequences
of guesses. Afterwards, we compute the solution in O(k3) time. Thus, the overall running
time is in O((2k + 1)6k · k3 + n + m) ⊆ O(27k log k + n + m). ◀

We mention in passing that while the constants in the running time of our algorithm
can probably be improved, a completely new approach is required if one wants a single-
exponential-time algorithm. This is due to the fact that the number of possible partitions
of O(k) critical cliques into clusters grows super-exponentially (roughly as fast as k!) even if
no vertex-splitting operations are allowed.

E. Arrighi, M. Bentert, P. G. Drange, B. D. Sullivan, and P. Wolf 2:9

5 Conclusion

On the one hand, we resolve an open question from the literature by showing that CEVS is NP-
complete. We also show that, assuming the ETH, there are no 2o(n+m)-time or 2o(k) ·poly(n)-
time algorithms for CEVS. On the other hand, we give an O(27k log k +n+m)-time algorithm,
beating the previously best O(9k2 + n + m) algorithm. This leaves the following gap.

▶ Open problem. Does there exist a 2O(k) · poly(n)-time algorithm for CEVS?

However, even resolving this question should only be seen as a starting point for a much
larger undertaking. While we do understand the parameterized complexity of CEVS with
respect to k reasonably well, there are still a lot of open questions regarding structural
parameters of the input graph. Moreover, one might also study the approximability of CEVS
as the trivial constant-factor approximation of Cluster Editing does not carry over if
we allow vertex splitting. In case CEVS turns out to be hard to approximate, one might
then continue with studying FPT-approximation (schemes) and approximation kernels (also
known as lossy kernels).

Regarding real-world applications, it has been observed that requiring communities to
be cliques is too restrictive in some settings. To circumvent this issue, many relaxations of
cliques such as s-cliques, s-clubs, s-plexes, k-cores, and γ-quasi-cliques have been proposed.
It would also be interesting to study vertex-splitting operations in the respective graph
editing problems for these relaxations.

Finally, a related area of study is clustering of bipartite data, which is modelled by
Bicluster Editing and which has received significant attention recently [13, 22, 38, 42].
Overlapping structures are also relevant in the bipartite case [14]. To the best of our
knowledge, nothing is known about Bicluster Editing with Vertex Splitting. We
mention that there are two natural versions in the bipartite case and both of them seem
worth studying. The two versions differ in whether or not one requires that all copies of
a split vertex lie on the same side of a bipartition in a solution. On the one hand, the
additional requirement makes sense if the data is inherently bipartite. This happens for
example if each vertex represents either a researcher or a paper. On the other hand, if edges
reflect something like a seller-buyer relationship, then it is plausible that a person both sells
and buys.

References
1 Faisal N. Abu-Khzam, Joseph R. Barr, Amin Fakhereldine, and Peter Shaw. A greedy heuristic

for cluster editing with vertex splitting. In Proceedings of the 4th International Conference on
Artificial Intelligence for Industries (AI4I ’21), pages 38–41. IEEE, 2021.

2 Faisal N. Abu-Khzam, Judith Egan, Serge Gaspers, Alexis Shaw, and Peter Shaw. Cluster
editing with vertex splitting. In Combinatorial optimization, pages 1–13. Springer, 2018.

3 Reyan Ahmed, Stephen Kobourov, and Myroslav Kryven. An FPT algorithm for bipartite
vertex splitting. In Proceedings of the 30th International Symposium on Graph Drawing and
Network Visualization (GD ’22), pages 261–268. Springer International Publishing, 2022.

4 Sanjeev Arora, Rong Ge, Sushant Sachdeva, and Grant Schoenebeck. Finding overlapping
communities in social networks: toward a rigorous approach. In Proceedings of the 13th
ACM Conference on Electronic Commerce (EC ’12), pages 37–54. Association for Computing
Machinery, 2012.

5 Sanghamitra Bandyopadhyay, Garisha Chowdhary, and Debarka Sengupta. FOCS: Fast
overlapped community search. IEEE Transactions on Knowledge and Data Engineering,
27(11):2974–2985, 2015.

IPEC 2023

2:10 Cluster Editing with Overlapping Communities

6 Jakob Baumann, Matthias Pfretzschner, and Ignaz Rutter. Parameterized complexity of vertex
splitting to pathwidth at most 1. CoRR, abs/2302.14725, 2023.

7 Jeffrey Baumes, Mark Goldberg, and Malik Magdon-Ismail. Efficient identification of overlap-
ping communities. In Proceedings of the 2005 IEEE International Conference on Intelligednce
and Security Informatics (ISI ’05), pages 27–36. Springer, 2005.

8 Francesco Bonchi, Aristides Gionis, and Antti Ukkonen. Overlapping correlation clustering.
Knowledge and Information Systems, 35(1):1–32, 2013.

9 Leizhen Cai. Fixed-parameter tractability of graph modification problems for hereditary
properties. Information Processing Letters, 58(4):171–176, 1996. doi:10.1016/0020-0190(96)
00050-6.

10 Marek Cygan, Fedor V. Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized algorithms. Springer, 2015.

11 George B. Davis and Kathleen M. Carley. Clearing the FOG: Fuzzy, overlapping groups for
social networks. Social Networks, 30(3):201–212, 2008. doi:10.1016/j.socnet.2008.03.001.

12 Reinhard Diestel. Graph Theory. Springer, 2005.
13 Pål Grønås Drange, Felix Reidl, Fernando S. Villaamil, and Somnath Sikdar. Fast biclustering

by dual parameterization. In Proceedings of the 10th International Symposium on Parameterized
and Exact Computation (IPEC ’15), pages 402–413. Schloss Dagstuhl — Leibniz-Zentrum für
Informatik, 2015.

14 Nan Du, Bai Wang, Bin Wu, and Yi Wang. Overlapping community detection in bipartite
networks. In Proceedings of the 2008 IEEE/WIC/ACM International Conference on Web
Intelligence and Intelligent Agent Technology (WI-IAT ’08), pages 176–179, 2008.

15 Peter Eades and Candido Ferreira Xavier de Mendonça Neto. Vertex splitting and tension-free
layout. In Proceedings of the 3rd International Symposium on Graph Drawing and Network
Visualization (GD ’95), pages 202–211. Springer, 1995.

16 Michael R. Fellows, Jiong Guo, Christian Komusiewicz, Rolf Niedermeier, and Johannes
Uhlmann. Graph-based data clustering with overlaps. In Proceedings of the 15th Annual
International Conference on Computing and Combinatorics (COCOON ’09), pages 516–526.
Springer, 2009.

17 Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Springer, 2006.
18 Reynaldo Gil-García and Aurora Pons-Porrata. Dynamic hierarchical algorithms for document

clustering. Pattern Recognition Letters, 31(6):469–477, 2010. doi:10.1016/j.patrec.2009.
11.011.

19 Mark Goldberg, Stephen Kelley, Malik Magdon-Ismail, Konstantin Mertsalov, and Al Wal-
lace. Finding overlapping communities in social networks. In Proceedings of the 2nd
IEEE International Conference on Social Computing (SC ’10), pages 104–113, 2010. doi:
10.1109/SocialCom.2010.24.

20 Steve Gregory. An algorithm to find overlapping community structure in networks. In
Proceedings of 2007 Knowledge Discovery in Databases (PKDD ’07), pages 91–102. Springer,
2007.

21 Jiong Guo. A more effective linear kernelization for cluster editing. Theoretical Computer
Science, 410(8-10):718–726, 2009. doi:10.1016/j.tcs.2008.10.021.

22 Jiong Guo, Falk Hüffner, Christian Komusiewicz, and Yong Zhang. Improved algorithms
for bicluster editing. In Proceedings of the 5th International Conference on Theory and
Applications of Models of Computation (TAMC ’08), pages 445–456. Springer, 2008.

23 Falk Hüffner, Christian Komusiewicz, Hannes Moser, and Rolf Niedermeier. Fixed-parameter
algorithms for cluster vertex deletion. Theory of Computing Systems, 47(1):196–217, 2010.
doi:10.1007/s00224-008-9150-x.

24 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity? Journal of Computer and System Sciences, 63(4):512–530, 2001.
doi:10.1006/jcss.2001.1774.

https://doi.org/10.1016/0020-0190(96)00050-6
https://doi.org/10.1016/0020-0190(96)00050-6
https://doi.org/10.1016/j.socnet.2008.03.001
https://doi.org/10.1016/j.patrec.2009.11.011
https://doi.org/10.1016/j.patrec.2009.11.011
https://doi.org/10.1109/SocialCom.2010.24
https://doi.org/10.1109/SocialCom.2010.24
https://doi.org/10.1016/j.tcs.2008.10.021
https://doi.org/10.1007/s00224-008-9150-x
https://doi.org/10.1006/jcss.2001.1774

E. Arrighi, M. Bentert, P. G. Drange, B. D. Sullivan, and P. Wolf 2:11

25 Christian Komusiewicz and Johannes Uhlmann. Alternative parameterizations for cluster
editing. In Proceedings of the 2011 Conference on Current Trends in Theory and Practice of
Computer Science (SOFSEM ’11), pages 344–355. Springer, 2011.

26 Christian Komusiewicz and Johannes Uhlmann. Cluster editing with locally bounded modifi-
cations. Discrete Applied Mathematics, 160(15):2259–2270, 2012. doi:10.1016/j.dam.2012.
05.019.

27 Jure Leskovec, Kevin J. Lang, Anirban Dasgupta, and Michael W. Mahoney. Statistical
properties of community structure in large social and information networks. In Proceedings of
the 17th International Conference on World Wide Web (WWW ’08), pages 695–704. Association
for Computing Machinery, 2008.

28 Guo-Hui Lin, Tao Jiang, and Paul E. Kearney. Phylogenetic k-root and Steiner k-root. In
Proceedings of the 11th International Symposium on Algorithms and Computation (ISAAC ’00),
pages 539–551. Springer, 2000.

29 Neeldhara Misra, Fahad Panolan, and Saket Saurabh. Subexponential algorithm for d-cluster
edge deletion: Exception or rule? Journal of Computer and System Sciences, 113:150–162,
2020.

30 Martin Nöllenburg, Manuel Sorge, Soeren Terziadis, Anaïs Villedieu, Hsiang-Yun Wu, and
Jules Wulms. Planarizing graphs and their drawings by vertex splitting. In Proceedings of the
30th International Symposium on Graph Drawing and Network Visualization (GD ’22), pages
232–246. Springer, 2022.

31 Lorenzo Orecchia, Konstantinos Ameranis, Charalampos Tsourakakis, and Kunal Talwar.
Practical almost-linear-time approximation algorithms for hybrid and overlapping graph clus-
tering. In Proceedings of the 39th International Conference on Machine Learning (ICML ’22),
pages 17071–17093. PMLR, 2022.

32 Airel Pérez-Suárez, José Fco. Martínez-Trinidad, Jesús A. Carrasco-Ochoa, and José E. Medina-
Pagola. An algorithm based on density and compactness for dynamic overlapping clustering.
Pattern Recognition, 46(11):3040–3055, 2013. doi:10.1016/j.patcog.2013.03.022.

33 Hafiz Hassaan Saeed, Khurram Shahzad, and Faisal Kamiran. Overlapping toxic sentiment
classification using deep neural architectures. In Proceedings of the 2018 IEEE International
Conference on Data Mining Workshops (ICDMW ’18), pages 1361–1366. IEEE Computer
Society, 2018. doi:10.1109/ICDMW.2018.00193.

34 Satu Elisa Schaeffer. Graph clustering. Computer Science Review, 1(1):27–64, 2007. doi:
10.1016/j.cosrev.2007.05.001.

35 Cees G. M. Snoek, Marcel Worring, Jan C. van Gemert, Jan-Mark Geusebroek, and Arnold
W. M. Smeulders. The challenge problem for automated detection of 101 semantic concepts
in multimedia. In Proceedings of the 14th ACM International Conference on Multimedia
(MM ’06), pages 421–430. Association for Computing Machinery, 2006.

36 Lei Tang and Huan Liu. Scalable learning of collective behavior based on sparse social
dimensions. In Proceedings of the 18th ACM Conference on Information and Knowledge
Management (CIKM ’09), pages 1107–1116. Association for Computing Machinery, 2009.

37 Craig A. Tovey. A simplified NP-complete satisfiability problem. Discrete Applied Mathematics,
8(1):85–89, 1984.

38 Dekel Tsur. Faster parameterized algorithm for bicluster editing. Information Processing
Letters, 168, 2021. doi:10.1016/j.ipl.2021.106095.

39 Qinna Wang and Eric Fleury. Uncovering overlapping community structure. In Proceedings
of the 2nd International Workshop on Complex Networks (COMPLEX ’10), pages 176–186.
Springer, 2010.

40 Xufei Wang, Lei Tang, Huiji Gao, and Huan Liu. Discovering overlapping groups in social
media. In Proceedings of the 2010 IEEE International Conference on Data Mining (ICDM ’10),
pages 569–578, 2010.

IPEC 2023

https://doi.org/10.1016/j.dam.2012.05.019
https://doi.org/10.1016/j.dam.2012.05.019
https://doi.org/10.1016/j.patcog.2013.03.022
https://doi.org/10.1109/ICDMW.2018.00193
https://doi.org/10.1016/j.cosrev.2007.05.001
https://doi.org/10.1016/j.cosrev.2007.05.001
https://doi.org/10.1016/j.ipl.2021.106095

2:12 Cluster Editing with Overlapping Communities

41 Alicja Wieczorkowska, Piotr Synak, and Zbigniew W. Raś. Multi-label classification of
emotions in music. In Proceedings of the 2006 Intelligent Information Processing and Web
Mining (IIPWM ‘04), pages 307–315. Springer, 2006.

42 Mingyu Xiao and Shaowei Kou. A simple and improved parameterized algorithm for bicluster
editing. Information Processing Letters, 2022.

43 Shihua Zhang, Rui-Sheng Wang, and Xiang-Sun Zhang. Identification of overlapping community
structure in complex networks using fuzzy c-means clustering. Physica A: Statistical Mechanics
and its Applications, 374(1):483–490, 2007.

Existential Second-Order Logic over Graphs:
Parameterized Complexity
Max Bannach #

European Space Agency, Advanced Concepts Team, Noordwijk, The Netherlands

Florian Chudigiewitsch #

Universität zu Lübeck, Germany

Till Tantau #

Universität zu Lübeck, Germany

Abstract
By Fagin’s Theorem, NP contains precisely those problems that can be described by formulas starting
with an existential second-order quantifier, followed by only first-order quantifiers (eso formulas).
Subsequent research refined this result, culminating in powerful theorems that characterize for
each possible sequence of first-order quantifiers how difficult the described problem can be. We
transfer this line of inquiry to the parameterized setting, where the size of the set quantified by the
second-order quantifier is the parameter. Many natural parameterized problems can be described in
this way using simple sequences of first-order quantifiers: For the clique or vertex cover problems, two
universal first-order quantifiers suffice (“for all pairs of vertices . . . must hold”); for the dominating
set problem, a universal followed by an existential quantifier suffice (“for all vertices, there is a
vertex such that . . . ”); and so on. We present a complete characterization that states for each
possible sequence of first-order quantifiers how high the parameterized complexity of the described
problems can be. The uncovered dividing line between quantifier sequences that lead to tractable
versus intractable problems is distinct from that known from the classical setting, and it depends on
whether the parameter is a lower bound on, an upper bound on, or equal to the size of the quantified
set.

2012 ACM Subject Classification Theory of computation → Finite Model Theory; Theory of
computation → Complexity theory and logic; Theory of computation → Fixed parameter tractability;
Theory of computation → W hierarchy

Keywords and phrases existential second-order logic, graph problems, parallel algorithms, fixed-
parameter tractability, descriptive complexity

Digital Object Identifier 10.4230/LIPIcs.IPEC.2023.3

Related Version Full Version: https://arxiv.org/abs/2310.01134 [2]

Acknowledgements We thank Marcel Wienöbst for fruitful discussions and helpful comments on an
earlier draft.

1 Introduction

The 3-coloring problem is to decide, given an undirected simple graph, whether there exist
three sets R, G, and B (the red, green, and blue vertices) such that any two vertices x and y
connected by an edge have different colors; or in logical terms:

∃R∃G∃B ∀x∀y
(

(Rx ∨Gx ∨Bx) ∧(
x ∼ y → ¬

(
(Rx ∧Ry) ∨ (Gx ∧Gy) ∨ (Bx ∧By)

)))
. (1)

This formula is an existential second-order formula, meaning that it starts with existential
second-order quantifiers (∃R∃G∃B) followed by first-order quantifiers (∀x∀y) followed by a
quantifier-free part. We can succinctly describe which quantifiers are used in such a prefix

© Max Bannach, Florian Chudigiewitsch, and Till Tantau;
licensed under Creative Commons License CC-BY 4.0

18th International Symposium on Parameterized and Exact Computation (IPEC 2023).
Editors: Neeldhara Misra and Magnus Wahlström; Article No. 3; pp. 3:1–3:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:max.bannach@esa.int
https://orcid.org/0000-0002-6475-5512
mailto:fch@tcs.uni-luebeck.de
https://orcid.org/0000-0003-3237-1650
mailto:tantau@tcs.uni-luebeck.de
https://orcid.org/0000-0002-3946-8028
https://doi.org/10.4230/LIPIcs.IPEC.2023.3
https://arxiv.org/abs/2310.01134
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

3:2 ESO-Logic over Graphs: Parameterized Complexity

by using “E1” for a (monadic, hence the “1”) existential second-order quantifier and “e” and
“a” for existential and universal first-order quantifiers, respectively. The resulting quantifier
pattern of the above formula is then E1E1E1aa; and (monadic) existential second-order
formulas are formulas with a prefix in E∗

1 (ae)∗. It is no coincidence that an NP-complete
problem can be described using the quantifier pattern E1E1E1aa: Fagin’s Theorem [12]
states that a problem lies in NP iff it can be described by a formula with a pattern in
E∗

i (ae)∗ for some arity i. However, the example shows that the pattern E1E1E1aa already
suffices to describe an NP-complete problem and a closer look reveals that so does E1E1aa.
In contrast, formulas with the pattern Eiaa can only describe problems decidable in NL
(regardless of the arity i of the quantified relation variables). Such observations have sparked
an interest in different quantification patterns’ power. The question was answered by Gottlob,
Kolaitis, and Schwentick [15] in the form of a dichotomy (“can only describe problems in P”
versus “can describe an NP-complete problem”) and later in a refined form by Tantau [17],
where the described problems in P are further classified into “in AC0” or “L-complete” or
“NL-complete”.

While in the formula for 3-colorability it was only necessary that three sets of colors exist,
for many problems the size of these sets is important. Consider:

ϕclique = ∃≥C ∀x∀y
(
(Cx ∧ Cy) → x ∼ y

)
, (2)

ϕvertex-cover = ∃≤C ∀x∀y
(
x ∼ y → (Cx ∨ Cy)

)
, (3)

ϕdominating-set = ∃≤D ∀x∃y
(
Dy ∧ (x = y ∨ x ∼ y)

)
. (4)

where the second-order quantifiers ∃≥ and ∃≤ ask whether there exists a set of size at least or
at most some parameter value k such that the rest of the formula holds. These formulas show
that we can describe the clique problem using a formula with the succinctly written pattern
E≥

1 aa (and also E=
1 aa); the vertex cover problem using E≤

1 aa (and again also E=
1 aa); and the

dominating set using E≥
1 ae (and yet again also E=

1 ae). Readers will notice that the problems
are some of the most fundamental problems studied in that theory and lie in different
levels of the W-hierarchy. The main message of the present paper is that it is once more
no coincidence that the quantifier patterns needed to describe these problems differ (E≥

1 aa

versus E≤
1 aa versus E≥

1 ae): As done in [15, 17], we will give a complete characterization of
the complexities of the problems that can be described using a specific quantifier pattern.
The well-known results that the (parameterized) clique and dominating set problems are
W[1]-hard while the (parameterized) vertex cover problem lies in FPT (in fact, in para-AC0)
can now all be derived just from the syntactic structure of the formulas used to describe
these problems.

Our Contributions. In this paper, we classify the complexity of the following classes (formal
definitions are given in Section 2): Given a pattern p ∈ {a, e}∗ of first-order quantifiers, the
classes p-FD(E=

1 p), p-FD(E≤
1 p), and p-FD(E≥

1 p) contain all parameterized problems that
can be described by formulas with quantifier pattern E=

1 p, or E≥
1 p, or E≤

1 p, respectively.
The restriction to study just a single, monadic, parameterized eso quantifier is motivated by
our earlier observation that important and interesting problems of parameterized complexity
can be described in this way. Our classification is complete in the sense that for every p

we either show that all problems in the class are fixed-parameter tractable (in these cases,
we derive more fine-grained results by placing the problems in para-AC0 or para-AC0↑) or
there is a W[1]-hard problem that can be described using the pattern. Table 1 lists the
obtained bounds. In the table, the classes with the subscript “basic” refer to the restriction
to undirected graphs without self-loops. As can be seen, for these graphs we get slightly

M. Bannach, F. Chudigiewitsch, and T. Tantau 3:3

Table 1 Complete complexity classification of the weighted eso logic for a single weighted
monadic second-order quantification followed by first-order quantifiers with some pattern p ∈ {a, e}∗

(where p ⪯ q means that p is a subsequence of q). The upper part (arbitrary structures) and lower
part (basic graphs) are identical except for the patterns E≥

1 ae and E≤
1 aa, where they differ. Note

that para-AC0 ⊊ para-AC0↑ ⊆ para-P = FPT and FPT ∩ W[1]-hard = ∅ is a standard assumption.

p-FD(E=
1 p) ⊆ para-AC0, when p ⪯ e∗a.

∩ W[1]-hard ̸= ∅, when ae or aa ⪯ p.

p-FD(E≥
1 p) ⊆ para-AC0, when p ⪯ e∗a.

∩ W[1]-hard ̸= ∅, when ae or aa ⪯ p.

p-FD(E≤
1 p) ⊆ para-AC0, when p ⪯ e∗a.

̸⊆ para-AC0 but ⊆ para-AC0↑, when aa ⪯ p ⪯ e∗a∗.
∩ W[1]-hard ̸= ∅, when ae ⪯ p.

p-FDbasic(E=
1 p) ⊆ para-AC0, when p ⪯ e∗a.

∩ W[1]-hard ̸= ∅, when ae or aa ⪯ p.

p-FDbasic(E≥
1 p) ⊆ para-AC0, when p ⪯ e∗a or ae.

∩ W[1]-hard ̸= ∅, when aee, eae, or aa ⪯ p.

p-FDbasic(E≤
1 p) ⊆ para-AC0, when p ⪯ e∗a or aa.

̸⊆ para-AC0 but ⊆ para-AC0↑, when aaa ⪯ p ⪯ e∗a∗.
∩ W[1]-hard ̸= ∅, when ae ⪯ p.

different complexity results. This is in keeping with the classical, non-parameterized setting
studied by Gottlob et al. [15], where results for basic graphs are often considerably harder
to obtain. However, the complexity landscape we uncover in the present paper is different
from the one presented in [15] and [17]: Although certain patterns (like p = ae) feature
prominently in the parameterized and non-parameterized analysis, the dividing lines are
different. To establish these lines, we combine ideas used in the classical setting with different
methods from parameterized complexity theory, tailored to the specific problems we study.
The notoriously difficult cases from the classical setting (Gottlob et al. [15] spend 34 pages
to address the case E∗

1ae, Tantau [17] spends several pages on E1aa) are also technically
highly challenging in the parameterized setting.

Our research sheds new light on what difference it makes whether we want solutions
to have size exactly k or at most k or at least k. To begin, equations (2) and (4) already
show that for individual problems (like clique) the maximization problem can be hard while
minimization is trivial (a single vertex is always a clique) and for some problems (like
dominating set) the opposite is true (the whole vertex set itself is always a dominating set).
Furthermore, from the perspective of descriptive complexity, there is a qualitative difference
between ∃=C and ∃≤C on the one hand and ∃≥C on the other: For any k, the first two can
easily be expressed in normal eso logic using k first-order quantifiers binding the elements
of C, while ∃≥ translates to ∃C∃x1 · · · ∃xk where the xi bind the elements not in C. Thus,
∃= and ∃≤ only allow us to express problems that are “slicewise first-order” and hence
in XAC0 ⊆ XP, while already the slice for k = 0 of ∃≥ formulas can express NP-complete
problems for many patterns. However, we also prove a result for basic graphs for p = ae that
runs counter this “tendency” of ∃≥ to be harder than ∃≤: While p-FDbasic(E≤

1 ae) contains
the W[2]-hard dominating set problem, p-FDbasic(E≥

1 ae) ⊆ para-AC0.

IPEC 2023

3:4 ESO-Logic over Graphs: Parameterized Complexity

Related Work. Using logic to describe languages dates back all the way to Büchi’s pioneering
work [6] on the expressive power of monadic second-order logic (which, over strings, describes
exactly the regular languages). Switching from monadic second-order logic to existential
second-order logic yields Fagin’s Theorem [12]. Since then, the expressive power of fragments
of this logic was the subject of intensive research: Eiter et al. [11] studied the expressiveness
of eso-patterns over strings; Gottlob et al. did so over graphs [15]; Tantau [17] refined
the latter results for subclasses of P. Taken together, these results give us a complete
complexity-theoretic classification of the problems resulting from any eso quantifier pattern
over strings, basic graphs, directed graphs, undirected graphs, and arbitrary structures.

Using logical fragments to characterize complexity classes is also standard practice in
parameterized complexity theory [13], especially the power of mso logic plays a prominent
role, see for instance [8]. In particular, characterizations of the levels of the W-hierarchy in
terms of the number of quantifier alternations are known [9, 13], but – to the best of our
knowledge – a complete and exact analysis of the parameterized complexity of problems in
terms of the quantifier patterns describing them is new.

Organization of this Paper. Following a review of basic concepts and terminology in
Section 2, we present our results on the power of quantifier patterns of the forms E≤

1 p, E
≥
1 p,

and E=
1 p for p ∈ {a, e}∗ in the subsections of Section 3 (arbitrary structures) and Section 4

(basic graphs). Due to space constraints, we provide only proof ideas for some of the results.
The full proofs can be found in the technical report version [2] of the text.

2 Background in Descriptive and Parameterized Complexity

Terminology for Graphs and Logic. A directed graph (“digraph”) is a pair G = (V,E)
where V is a vertex set and E ⊆ V ×V an edge set. An undirected graph is a pair G = (V,E)
such that E ⊆

{
{u, v} | u, v ∈ V

}
. A basic graph is an undirected graph that has no

self-loops, that is, where all edges have size 2. In this paper, graphs are always finite.
We use standard terminology from logic and finite model theory, see for instance [10].

Let us point out some perhaps not-quite-standard notation choices: Our vocabularies τ
(also known as signatures) contain only relation symbols and we write struc[τ] to denote
the set of all finite τ -structures. For a first-order or second-order τ -sentence ϕ (a formula
without free variables), let models(ϕ) denote the subset of struc[τ] of all τ -structures
that are models of ϕ. As an example, we can represent digraphs using the vocabulary
τdigraph = {∼2}, containing a single binary relation symbol, and the class of digraphs is
exactly struc[τdigraphs]. The formula ϕ = ∀x∀y(x ∼ y → x ≠ y) expresses that there are no
loops in a graph, that is, models(ϕ) = {G | G is a digraph that has no self-loops}. While an
undirected graph G = (V,E) is not immediately a τdigraph-structure, we can trivially “turn it”
into a structure G by setting the universe to be V and setting ∼G= {(x, y) | {x, y} ∈ E} and
this structure is a model of ϕundirected = ∀x∀y(x ∼ y → y ∼ x). The structures representing
basic graphs are then models of ϕbasic = ∀x∀y(x ∼ y → (x ̸= y ∧ y ∼ x)). As another
example, the class of all bipartite graphs equals models(ϕbipartite) where ϕbipartite is the
second-order formula ∃X∀u∀v

(
u ∼ v → (Xu ↔ ¬Xv)

)
and Xu is our shorthand for the less

concise X(u).
As already sketched in the introduction, we can associate a quantifier prefix pattern (a

word over the infinite alphabet {E1, E2, E3, . . . } ∪ {e, a}), or just a pattern, to formulas of
eso logic by first writing them in prenex normal form (quantifiers first, in a block) and

M. Bannach, F. Chudigiewitsch, and T. Tantau 3:5

then replacing each (existential) second-order quantifier by Ei, where i is the arity of the
quantifier, each universal first-order quantifier by a, and each existential first-order quantifier
by e. For instance, the pattern of ϕbipartite is E1aa.

Describing Problems and Classes. In the context of descriptive complexity a decision
problem P is a subset of struc[τ] that is closed under isomorphisms. We say that ϕ

describes P if models(ϕ) = P . Moving on to classes, for a set Φ of τ -formulas, let
FD(Φ) := {models(ϕ) | ϕ ∈ Φ} denote the class of problems “Fagin-defined” by Φ. For a
quantifier prefix pattern p let FD(p) := {models(ϕ) | ϕ has pattern p}, so (1) shows that
3colorable ∈ FD(E1E1E1aa), and for a set S of patterns let FD(S) =

⋃
p∈S FD(p). In

slight abuse of notation, we usually write down regular expressions to denote sets S of quanti-
fier patterns: For instance, Fagin’s Theorem [12] can now be written as “NP = FD

(
E∗

2 (ae)∗)
.”

Trivially, more quantifiers potentially allow us to express more problems. Formally, let p ⪯ q

denote that p is a subsequence of q (so p can be obtained from q by, possibly, deleting some
letters). Then FD(p) ⊆ FD(q). Also in slight abuse of notation, we also write things like
“p ⪯ e∗a” to indicate that p ⪯ q holds for some q of the form e∗a.

Our analysis will show that restricting attention to basic graphs yields particularly
interesting results. For this reason, it will be convenient to consider the introduced complexity
classes restricted to basic graphs by adding a subscript “basic”: For τdigraph-formulas ϕ, let
modelsbasic(ϕ) = models(ϕ) ∩ models(ϕbasic) and define FDbasic(Φ) and FDbasic(p) in the
obvious ways – and similarly for the classes with the subscript “undirected.”

When we move from classical complexity theory to parameterized complexity, we assign
to every instance a parameter that measures an aspect of interest of that instance and that is
hopefully small for practical instances. A parameterized problem is a set Q ⊆ struc[τ] × N
such that for every k the slice {x | (x, k) ∈ Q} is closed under isomorphisms. In a pair (x, k)
we call x the input and k the parameter. The usual goal in the field is to prove that a problem
is fixed-parameter tractable (in FPT) by deciding (x, k) ∈? Q in time f(k) · |x|O(1) for some
computable function f . In the context of problems described by eso formulas, a natural
parameter to consider is the size of the relations that we can assign to the existential second-
order quantifiers and this size is commonly called the solution weight. As mentioned earlier,
problems like the vertex cover problem can be described naturally in this manner: Consider
the formula ϕ(X) = ∀u∀v

(
u ∼ v → (Xu ∨ Xv)

)
, where X is a free monadic second-order

variable. Then for a graph G = (V,E), viewed as a logical structure G, and a set C ⊆ V we
have G |= ϕ(C) iff C is a vertex cover of G. Thus, (G, k) ∈ p-vertex-cover = {(G, k) | G has
a vertex cover of size k} iff there exists a set C ⊆ V of size k such that G |= ϕ(C).

Formally, the second-order quantifiers ∃≤, ∃=, and ∃≥ have the following semantics: For a
structure S with a universe U , a non-negative integer k, an i-ary second-order variable X, and
a formula ϕ(X), we say that S is a model of ∃≤X ϕ(X) for parameter k and write (S, k) |=
∃≤X ϕ(X), if there is a set C ⊆ U i with |C| ≤ k such that S |= ϕ(C). A formula starting with
a ∃≤ quantifier then gives rise to a parameterized problem: Let p-models

(
∃≤X ϕ(X)

)
=

{(S, k) | (S, k) |= ∃≤X ϕ(X)} and let p-FD(Φ) := {p-models(ϕ) | ϕ ∈ Φ}. The at-least and
equal cases are, of course, defined analogously. As an example, we have p-vertex-cover ∈
p-FD(E≤

1 aa) since p-vertex-cover = p-models
(
∃≤X ∀u∀v

(
u ∼ v → (Xu ∨Xv)

))
.

Standard and Parameterized Complexity Classes. Concerning standard complexity classes,
we use standard definitions, see for instance [1, 16]. In the context of descriptive complexity
theory, it is often necessary to address coding issues (meaning the question of how words are
encoded as logical structures and vice versa) – but fortunately this will not be important

IPEC 2023

3:6 ESO-Logic over Graphs: Parameterized Complexity

for the present paper. Concerning parameterized complexity classes like FPT = para-P
or W[1], we also use standard definitions, which can be adapted to the descriptive setting
in exactly the same way as for classical complexity classes (see for instance [3, 4] for
details) and encoding details will once more be unimportant. The classes para-AC0 and
para-AC0↑ are likely less well-known: We have Q ∈ para-AC0 if there is a family (Cn,k)n,k∈N
of unbounded fan-in circuits of constant depth and size f(k) · nO(1) for some computable
function f , such that for every (S, k) ∈ struc[τ] × N we have (S, k) ∈ Q iff the circuit
Clength(S),k outputs 1 on input of (a suitably encoded) S, where length(S) is the length
of the encoding of S. For the class para-AC0↑, the circuits may have depth f(k). We
have para-AC0 ⊊ para-AC0↑ ⊆ para-P = FPT [3]. In our proofs, two properties of the
classes will be important: First, all of them are (quite trivially) closed under para-AC0-
reductions. Second, for τ = (I1), the signature with a single unary relation symbol, we
have p-threshold = {(S, k) | S = (U, IS), |IS | ≥ k} ∈ para-AC0, that is, we can “count up
to the parameter in para-AC0.” For more details on these classes, including discussions of
uniformity, see [3, 4, 7].

3 Classifying Parameterized ESO Classes: Arbitrary Structures

We now begin tracing the tractability frontier for the classes from the upper part of Table 1:
p-FD(E=

1 p), p-FD(E≥
1 p), and p-FD(E≤

1 p). Recall that for these classes we are given a
formula ϕ starting with one of the monadic second-order quantifiers ∃=, ∃≤, or ∃≥, followed
by first-order quantifiers with the pattern p; and the objective is to show upper bounds of the
form “for all ϕ with pattern p all p-models(ϕ) lie in a certain class” and lower bounds of the
form “there is a ϕ with pattern p such that p-models(ϕ) contains a problem that is hard
for a certain class”. We dedicate one subsection to each of ∃=, ∃≤, and ∃≥, each starting
with the main theorem and covering more technical parts of the proofs later.

In this section, we allow arbitrary (finite, relational) structures, meaning that the signa-
ture τ can contain arbitrary relation symbols (but neither constant nor function symbols),
and our upper bounds will hold for all such structures. However, for our lower bounds it will
suffice to consider only undirected graphs. That is, the lower bounds for a pattern p will be
of the form “there is a ϕ with pattern p such that p-modelsundirected(ϕ) contains a hard
problem”. Interestingly, we can typically (but not always, by the results of Section 4) replace
undirected graphs by basic graphs (undirected graphs without self-loops) here.

3.1 Solution Weight Equals the Parameter for Arbitrary Structures
We start with the classification of p-FD(E=

1 p), the first two lines of Table 1:

▶ Theorem 3.1 (Complexity Dichotomy for p-FD(E=
1 p)). Let p ∈ {a, e}∗ be a pattern.

1. p-FD(E=
1 p) ⊆ para-AC0, if p ⪯ e∗a.

2. p-FD(E=
1 p) contains a W[1]-hard problem, if aa ⪯ p or ae ⪯ p.

Both items also hold for p-FDundirected(E=
1 p) and even p-FDbasic(E=

1 p).

The cases in the above theorem are exhaustive (so for every p we either have p ⪯ e∗a or we
have aa ⪯ p or ae ⪯ p). The theorem follows directly from the following lemma:

▶ Lemma 3.2 (Detailed Bounds for p-FD(E=
1 p)).

1. p-FD(E=
1 e

∗a) ⊆ para-AC0.
2. p-FDbasic(E=

1 aa) contains a W[1]-hard problem.
3. p-FDbasic(E=

1 ae) contains a W[2]-hard problem.

M. Bannach, F. Chudigiewitsch, and T. Tantau 3:7

Proof. Item 1 is shown in Corollary 3.5, which we prove later in this section. For item 2, we
already saw in equation (2) that we can describe the W[1]-hard clique problem p-clique
using a formula ϕclique with pattern E≥

1 aa. It was also already mentioned that replacing ∃≥

by ∃= yields the same problem and, thus, p-FDbasic(E=
1 aa) contains a W[1]-hard problem.

Similarly, for item 3, replacing ∃≤ by ∃= in equation (4) shows we can describe the W[2]-hard
dominating set problem using an E=

1 ae formula. ◀

To establish the upper bound (item 1 of the theorem), we make use of a well-known connection
between weighted satisfiability in predicate logic (problems in p-FD(E=

1 e
∗a) in our case) and

weighted satisfiability in propositional logic (the problem p-1wsat= below). We present this
connection in more generality than strictly necessary to prove the upper bound since we
will rely on variants of it later on. For propositional formulas ψ in dcnf (meaning at most
d literals per clause), let vars(ψ) and clauses(ψ) denote the sets of variables and clauses,
respectively. For an assignment β : vars(ψ) → {0, 1}, with the model relation β |= ψ defined
as usual, the weight is weight(β) =

∣∣{v ∈ vars(ψ) | β(v) = 1
}∣∣. The following problem is the

weighted version of the satisfiability problem for dcnf formulas:

▶ Problem 3.3 (p-dwsat= for fixed d).
Instance: A dcnf formula ψ and a non-negative integer k ∈ N.
Parameter: k
Question: Is there an assignment β with β |= ψ and weight(β) = k?

The problem is also known as p-dwsat in the literature, but we keep the “=” superscript
since we also consider p-dwsat≤ and p-dwsat≥, where we ask whether there is a satisfying
assignment with weight(β) ≤ k and weight(β) ≥ k, respectively. For us, the importance of
these problems lies in the following lemma, where “≤para-AC0” refers to the earlier-mentioned
para-AC0-reductions. Recall that these reductions are extremely weak and that all classes
considered in this paper, including para-AC0, are closed under them.

▶ Lemma 3.4. Let d ≥ 1. Then:
1. For every Q ∈ p-FD(E=

1 e
∗ad) we have Q ≤para-AC0 p-dwsat=.

2. For every Q ∈ p-FD(E≥
1 e

∗ad) we have Q ≤para-AC0 p-dwsat≥.
3. For every Q ∈ p-FD(E≤

1 e
∗ad) we have Q ≤para-AC0 p-dwsat≤.

Proof. In all three cases, Q is the set of models of a weighted eso formula of the form
∃=X ϕ(X) or ∃≤X ϕ(X) or ∃≥X ϕ(X) where ϕ(X) has the quantifier pattern e∗ad. In [13,
Lemma 7.2] it is shown that given a formula ϕ(X) with such a pattern, we can map any
structure S with some universe S to a dcnf formula ψ such that there there is a one-to-one
correspondence between the sets C ⊆ S with S |= ϕ(C) and the satisfying assignments β
of ψ. Furthermore, when C corresponds to β, we have |C| = weight(β). While in [13] it is
only argued that the mapping from ϕ(X) to ψ can be done in polynomial time, a closer look
reveals that a para-AC0 reduction suffices. This means that in all three items we can use
this mapping as the reduction whose existence in claimed. ◀

▶ Corollary 3.5. p-FD(E=
1 e

∗a), p-FD(E≤
1 e

∗a), p-FD(E≥
1 e

∗a) are subsets of para-AC0.

Proof. Let us start with some Q ∈ p-FD(E=
1 e

∗a). By item 1 of Lemma 3.4, Q ≤para-AC0

p-1wsat=. Thus, showing p-1wsat= ∈ para-AC0 yields the claim for p-FD(E=
1 e

∗a) as
para-AC0 is closed under para-AC0 reductions. However, a 1cnf formula ψ is just a con-
junction of literals. It is trivial to check in plain AC0 (independently of the parameter)
whether ψ is satisfiable (it may not contain a literal and its negation) and, if so, it is trivial

IPEC 2023

3:8 ESO-Logic over Graphs: Parameterized Complexity

to determine the single satisfying assignment β : vars(ψ) → {0, 1}. We are left with having
to check whether weight(β) = k holds. It is well known [3] that the problem of checking
whether the number of 1 bits in a bitstring is at least, at most, or equal to a parameter value
lies in para-AC0, yielding the claim. However, this also yields the other two items. ◀

3.2 Solution Weight Is At Least the Parameter for Arbitrary Structures
For p-FD(E≥

1 p), we get the exact same dichotomy as for p-FD(E=
1 p). However, a look at

the detailed bounds in the lemma shows that for p-FD(E≥
1 p) we only get a lower bound

for undirected graphs and not for basic graphs (and, indeed, we will show in Section 4
that the complexity is different for basic graphs). Furthermore, while we always have
p-FD(E=

1 p) ⊆ W[t] for some t (see [13, Definition 5.1]), we show that the patterns E≥
1 eae

or E≥
1 aee suffice to describe even para-NP-complete problems even on basic graphs. Thus,

although the tractability frontier (“in FPT” versus “contains W[1]-hard problems”) is the
same for p-FD(E=

1 p) and p-FD(E≥
1 p), the detailed structure is more complex.

▶ Theorem 3.6 (Complexity Dichotomy for p-FD(E≥
1 p)). Let p be a pattern.

1. p-FD(E≥
1 p) ⊆ para-AC0, if p ⪯ e∗a.

2. p-FD(E≥
1 p) contains a W[1]-hard problem, if aa ⪯ p or ae ⪯ p.

Both items also hold for p-FDundirected(E≥
1 p).

The theorem follows directly from the following lemma (whose last two items are not actually
needed here, but shed more light on the detailed structure and will be needed in Section 4).

▶ Lemma 3.7 (Detailed Bounds for p-FD(E≥
1 p)).

1. p-FD(E≥
1 e

∗a) ⊆ para-AC0.
2. p-FDbasic(E≥

1 aa) contains a W[1]-hard problem.
3. p-FDundirected(E≥

1 ae) contains a para-NP-hard problem.
4. p-FDbasic(E≥

1 eae) contains a para-NP-hard problem.
5. p-FDbasic(E≥

1 aee) contains a para-NP-hard problem.

Proof. Item 1 is already stated in Corollary 3.5. For item 2, equation 2 shows that the
W[1]-complete problem p-clique can be expressed with a weighted eso formula with the
pattern E≥

1 aa and, thus, lies in p-FDbasic(E≥
1 aa).

For the other items, a claim is useful:

▷ Claim 3.8. If there is an NP-hard problem in FD(E1p), there is a para-NP-hard problem in
p-FD(E≥

1 p); and this holds also for the restrictions to undirected, basic, or directed graphs.

To see that this claim holds, just note that the non-parameterized problem is the special
case of the parameterized maximization problem where k = 0.

To prove item 3, observe that Gottlob et al. have shown [15, Theorem 2.1] that there
are NP-complete problems in FDundirected(E1ae). By the claim, there must be para-NP-hard
problems in p-FDundirected(E≥

1 ae). Next, for item 4, in [15, Theorem 2.5] it is shown that
there is an NP-hard problem in FDbasic(E1eae). Finally, for item 5, by [15, Theorem 2.6]
there is also an NP-hard problem in FDbasic(E1aee). ◀

Note that compared to Lemma 3.2, in the third item of Lemma 3.7 we have shown the lower
bound for the restriction of structures to undirected graphs rather than basic graphs. This is
no coincidence: the self-loops which are allowed for undirected graphs have in some cases an
impact on the complexity of the problems we can express. Later, when we cover basic graphs,
we will see that, indeed, sometimes problems become easier compared to their counterparts
where undirected graphs are admissible as structures.

M. Bannach, F. Chudigiewitsch, and T. Tantau 3:9

3.3 Solution Weight Is At Most the Parameter for Arbitrary Structures
When the parameter is an upper bound on the weight of solutions, the tractability landscape
changes quite a bit: The pattern E≤

1 ae becomes intractable, while E≤
1 aa no longer lies in

para-AC0, but stays tractable:

▶ Theorem 3.9 (Complexity Trichotomy for p-FD(E≤
1 p)). Let p be a pattern.

1. p-FD(E≤
1 p) ⊆ para-AC0, if p ⪯ e∗a.

2. p-FD(E≤
1 p) ⊆ para-AC0↑ but p-FD(E≤

1 p) ̸⊆ para-AC0, if aa ⪯ p ⪯ e∗a∗.
3. p-FD(E≤

1 p) contains a W[1]-hard problem, if ae ⪯ p.
All items also hold for p-FDundirected(E≤

1 p).

As before, the theorem covers all possible p and follows from a lemma that is a bit more
general than strictly necessary: We will need items 4 and 5 only in Section 4.2, where we
show that item 3 does not hold for basic graphs.

▶ Lemma 3.10 (Detailed Bounds for p-FD(E≤
1 p)).

1. p-FD(E≤
1 e

∗a) ⊆ para-AC0.
2. p-FD(E≤

1 e
∗a∗) ⊆ para-AC0↑.

3. p-FDundirected(E≤
1 aa) contains a problem not in para-AC0.

4. p-FDbasic(E≤
1 aaa) contains a problem not in para-AC0.

5. p-FDbasic(E≤
1 eaa) contains a problem not in para-AC0.

6. p-FDbasic(E≤
1 ae) contains a W[2]-hard problem.

Proof. Item 1 is already stated in Corollary 3.5. Item 2 is shown in Lemma 3.11 below.
Items 3, 4, and 5 are shown in Lemma 3.14, Lemma 3.15, and Lemma 3.16, respectively.
Item 6 follows, once more, from p-dominating-set ∈ p-FDbasic(E≤

1 ae) by equation (4). ◀

▶ Lemma 3.11. p-FD(E≤
1 e

∗a∗) ⊆ para-AC0↑.

Proof. Let Q ∈ p-FD(E≤
1 e

∗ad) for some fixed d. By Lemma 3.4, Q ≤para-AC0 p-dwsat≤.
We now show that p-dwsat≤ ∈ para-AC0↑, which implies the claim as para-AC0↑ is closed
under para-AC0 reductions.

We have to construct a circuit family of depth f(k) and size f(k) · nO(1) for n = |vars(ψ)|
for some computable function f . The circuit implements a bounded search tree such that
every layer evaluates one level of the tree. To that end, each layer gets a set Ψi of formulas
as input and outputs a new set Ψi+1 of formulas. We start with Ψ0 = {ψ}. The invariant
will be that ψ has a satisfying assignment of (exact) weight w iff some formula in Ψi has a
satisfying assignment of (exact) weight w − i.

To compute the next Ψi+1 for i ∈ {0, . . . , k}, we perform the following operations in
parallel for every ρ ∈ Ψ:
1. If every clause in ρ contains a negative literal (meaning that ρ is satisfied by the all-0

assignment), accept the original input. (Doing so is correct by the invariant.)
2. Take a clause c ∈ clauses(ρ) that only contains positive literals x1, . . . , xe. For each xi,

generate a new formula ρi from ρ by “setting one of these variables to 1” or, formally,
by removing all clauses that contain it positively and removing the variable from all
clauses that contain it negatively, respectively. Add ρ1 to ρe to Ψi+1. (This maintains
the invariant as we must set one of the xi to 1 in any assignment that satisfies ρ.)

If we have not accepted the input after having computed Ψk+1, we reject. This is correct
since all satisfying assignments of the ρ ∈ Ψk+1 have weight at least 0 and, thus, by the
invariant all satisfying assignments of ψ have weight at least k + 1 − 0 > k.

IPEC 2023

3:10 ESO-Logic over Graphs: Parameterized Complexity

To see that the circuit can be implemented with the claimed depth and size, note that
since e ≤ d, the list grows by a factor of at most d in every layer and we can implement each
layer in constant depth. As there are only k+1 layers, we have |Ψk+1| ≤ (k+1)d =: f(k). ◀

For the three remaining still-to-be-proved lower bounds in Lemma 3.10, the claim is always
that a class is (unconditionally) not contained in para-AC0. To prove this, we will show
that the following problem is (provably) not in para-AC0 but can be para-AC0-reduced to
problems that lie in the three classes:

▶ Problem 3.12 (p-matched-reach).
Instance: A directed layered graph G with vertex set {1, . . . , n} × {1, . . . , k}, where the ith

layer is Vi := {1, . . . , n} × {i}, such that for each i ∈ {1, . . . , k − 1} the edges
point to the next layer and they form a perfect matching between Vi and Vi+1;
two designated vertices s ∈ V1 and t ∈ Vk.

Parameter: k.
Question: Is t reachable from s?

▶ Lemma 3.13. p-matched-reach /∈ para-AC0 and consequently, for any problem Q with
p-matched-reach ≤para-AC0 Q we have Q /∈ para-AC0.

Proof. Beame et al. [5] have shown that any depth-c circuit that solves p-matched-reach
requires size nΩ(k(ρ−2c)/3), where ρ is the golden ratio. However, p-matched-reach ∈
para-AC0 would imply that for some constant c there is a depth-c circuit family that decides
the problem in size f(k) · nO(1); contradicting the Beame et al. bound of nkΘ(1) . For the
claim concerning Q, just note that para-AC0 is closed under para-AC0 reductions. ◀

▶ Lemma 3.14. p-FDundirected(E≤
1 aa) ̸⊆ para-AC0.

Proof. Consider the following formula with quantifier pattern E≤
1 aa:

ϕreach := ∃≤S ∀x∀y
((

(x ∼ x) → Sx
)

∧
(
(Sx ∧ x ∼ y) → Sy

))
.

We claim that we can reduce p-matched-reach to p-modelsundirected(ϕreach) as follows
(and the claim then follows from Lemma 3.13): On input (G, s, t), the reduction first checks
that the graph is, indeed, a layered graph with perfect matchings between consecutive levels.
Then, we forget about the direction of the edges (making the graph undirected). Next,
we add an additional layer Vk+1 and match each vertex of Vk to the corresponding new
vertex Vk+1. Next, we remove the just-added edge from t in layer Vk to its counterpart in
layer Vk+1. Finally, add a self-loop at s. To see that this reduction is correct, note that the
self-loop at s forces it (but does not force any other vertex), to be part of the solution set S
by the first part of the formula. The second part then forces the solution set to be closed
under reachability. Thus, if t lies on the same path as s, there is a solution of size k, and if
not, the smallest solution has size k + 1. ◀

▶ Lemma 3.15. p-FDbasic(E≤
1 aaa) ̸⊆ para-AC0.

Proof. We reduce p-matched-reach to p-modelsbasic(ϕreach-aaa) for

ϕreach-aaa := ∃≤S ∀x∀y∀z
(
((x ∼ y ∧ y ∼ z ∧ x ∼ z) → Sx) ∧ ((Sx ∧ x ∼ y) → Sy)

)
.

On input (G, s, t), once more we start by forgetting about the direction of the edges. This
time, add two vertices and connect them to s so that these three vertices form a triangle.
Do the same for t by adding another two vertices. Output k + 4 as the new parameter. This

M. Bannach, F. Chudigiewitsch, and T. Tantau 3:11

reduction is correct, because the first part of the formula forces every vertex which is part of
a triangle to be part of S, which are exactly the triangles at s and t. The latter part of the
formula forces the solution set to be closed under reachability. Thus, if t lies on the same
path as s, there is a solution of size k + 4, and if not, the smallest solution has size as least
k + 5. ◀

▶ Lemma 3.16. p-FDbasic(E≤
1 eaa) ̸⊆ para-AC0.

Proof. We reduce p-matched-reach to p-modelsbasic(ϕreach-eaa) for

ϕreach-eaa := ∃≤S ∃z∀x∀y
(
Sz ∧ ((Sx ∧ x ∼ y) → Sy)

)
.

On input (G, s, t) we forget the direction of edges and add a single vertex that we connect to
every vertex that has degree 1 except for s and t. If t is on the same path as s, there will be
two connected components: One consisting of the path between s and t, and one containing
everything else. In particular, there is a component of size k and one of size n− k. If t is not
on the same path as s, there is just a single connected component of size n. To see that the
reduction is correct, notice that the first part of the formula (Sz) forces at least one vertex
to be part of the solution. The latter part of the formula once more forces the solution set to
be closed under reachability. By construction, there is a solution of size at most k iff t was
on the same path as s. ◀

4 Classifying Parameterized ESO Classes: Basic Graphs

We saw in Section 3 that the parameterized complexity of weighted eso classes depends
strongly on the first-order quantifier pattern p and on whether we are interested in the
equal-to, at-least, or at-most case – but it does not matter whether we consider arbitrary
logical structures, only directed graphs, or only undirected graphs: the complexity is always
the same. The situation changes if we restrict attention to basic graphs, which are undirected
graphs without self-loops: We get different tractability frontiers. This is an interesting effect
since the only difference between undirected graphs and basic graphs is that some vertices
may have self-loops – and self-loops are usually neither needed nor used in hardness proofs,
just think of the clique problem, the vertex cover problem, or the dominating set problem.
Nevertheless, it turns out that “a single extra bit per vertex” and sometimes even “a single
self-loop” allows us to encode harder problems than without.

To establish the tractability frontier for basic graphs, we can, of course, recycle many
results from the previous section: Having a look at the detailed bounds listed in Lemmas 3.2,
3.7, and 3.10, we see that the upper bounds are shown for arbitrary structures and, hence,
also hold for basic graphs; and many lower bounds have also already been established for
basic graphs. Indeed, it turns out there are exactly two classes whose complexity “changes”
when we restrict the inputs to basic graphs:
1. p-FDbasic(E≥

1 ae) lies in para-AC0, while p-FD(E≥
1 ae) does not.

2. p-FDbasic(E≤
1 aa) lies in para-AC0, while p-FD(E≤

1 aa) does not.
We have already shown the “while . . . ” part in Section 3, it is the upper bounds that are
new. For all other patterns p, the classification does not change. Proving the two items turns
out to be technical and we devote one subsection to each of these results.

4.1 The Case E ≥
1 ae for Basic Graphs

As mentioned, for the classification of the complexity of p-FDbasic(E≥
1 p) we can reuse all of

our previous results, except that p-FDbasic(E≥
1 ae) ⊆ para-AC0 holds. This is the statement

of Lemma 4.2, which is proved in the rest of this section. However, before be plunge into

IPEC 2023

3:12 ESO-Logic over Graphs: Parameterized Complexity

the glorious details, let us ascertain that there are no further patterns p ̸= ae for which
p-FDbasic(E≥

1 p) becomes any easier: To see this, note that for any p with p ̸⪯ ae we have
aa ⪯ p or eae ⪯ p or aee ⪯ p; and for aa, eae, and aee we have already established hardness
for basic graphs in Lemma 3.7. For completeness, we spell out the resulting structure:

▶ Theorem 4.1 (Dichotomy for p-FDbasic(E≥
1 p)). Let p be a pattern.

1. p-FDbasic(E≥
1 p) ⊆ para-AC0, if p ⪯ e∗a or p ⪯ ae.

2. p-FDbasic(E≥
1 p) contains a W[1]-hard problem, if aa ⪯ p, eae ⪯ p, or aee ⪯ p.

▶ Lemma 4.2. p-FDbasic(E≥
1 ae) ⊆ para-AC0.

For the surprisingly difficult proof we employ machinery first used in [15] and in [17,
Section 3.3]: Our objective is to represent the problems in p-FDbasic(E≥

1 ae) as special kinds
of graph coloring problems – and to then show that we can solve these problems in para-AC0.

Proof idea. Following [15], a pattern graph P = (C,A⊕, A⊖) consists of a set of colors C, a
set A⊕ ⊆ C × C of ⊕-arcs, and a set A⊖ ⊆ C × C of ⊖-arcs (note that A⊕ and A⊖ need
not be disjoint). In our paper, we will only need the case that there are only two colors, so
C = {black,white} will always hold, and we call such a pattern graph binary. In the rest
of the section, pattern always refers to a binary pattern graph (and no longer to quantifier
prenex patterns – we are only interested in the single pattern E≥

1 ae anyway). Observe that
there 256 possible binary pattern graphs. A superpattern of a pattern P = (C,A⊕, A⊖)
is any pattern P ′ = (C,B⊕, B⊖) with A⊕ ⊆ B⊕ and A⊖ ⊆ B⊖. A ⊕-superpattern is a
superpattern with A⊖ = B⊖.

For a basic graph B = (V,E), a coloring of B is a function c : V → C. However, unlike
standard coloring problems, where vertices connected by an edge must have different colors,
what constitutes an allowed coloring is dictated by the pattern graph via a witness function:
A mapping w : V → V is called a witness function for a coloring c if for all x ∈ V we have
1. x ̸= w(x),
2. if {x,w(x)} ∈ E, then

(
c(x), c(w(x))

)
∈ A⊕, and

3. if {x,w(x)} ̸∈ E, then
(
c(x), c(w(x))

)
∈ A⊖.

The idea is that a vertex x and its witness w(x) are connected by “a ⊕-arc” if there is an
edge between them and by “a ⊖-arc” if there is no edge between them. The pattern graph
then tells us which colors are allowed for x and w(x) in dependence on which kind of arc
there is. For instance, for the pattern ⊕

⊕ every vertex must be connected by an edge
to a vertex of the opposite color. Note that this is not the same as asking for a 2-coloring:
We only impose a requirement on the edge (corresponding to a ⊕-arc) between x and w(x),
other edges are not relevant. In more detail, consider a triangle with the vertices {x, y, z}
and the coloring c(x) = black, c(y) = c(z) = white and the witness function w(x) = y and
w(y) = w(z) = x. Then the coloring is legal with respect to the pattern and the witness
function, despite that fact that a triangle is not 2-colorable.

If there exists a coloring c together with a witness function w for B with respect to P ,
we say that B is P -saturated by c and w. The saturation problem saturation(P) for a
pattern P is then simply the set of all basic graphs B = (V,E) that can be P -saturated (via
some coloring c and witness function w). The relation between the saturation problem and
E1ae is as follows: We want the witness function to tell us for each x in ∀x which y in ∃y we
must pick to make a formula of the form ∃S ∀x∃y ψ true: We color a vertex black to indicate
that it should be included in S, otherwise we color it white. In this way, one can associate a
pattern graph with each E1ae-formula.

M. Bannach, F. Chudigiewitsch, and T. Tantau 3:13

▶ Fact 4.3 ([17, Fact 3.3] for a single quantifier). For every eso formula ϕ with quantifier
pattern E1ae there is a binary pattern graph P such that models(ϕ) = saturation(P).

(Strictly speaking, this only holds for basic graphs B with at least two vertices. For this
reason, in the following we always assume that |V | ≥ 2 holds.)

Adapting this approach to the parameterized setting is straightforward: Define the weight
of a binary coloring as the number of vertices that are colored black. This leads to the
following parameterized problem and transfer of Fact 4.3 to the parameterized setting:

▶ Problem 4.4 (p-saturation≥(P) for a fixed binary pattern graph P = (C,A⊕, A⊖)).
Instance: A basic graph B = (V,E) and an integer k ∈ N.
Parameter: k.
Question: Can B be P -saturated via a coloring of weight at least k?

▷ Claim 4.5. For every weighted eso formula ϕ with quantifier pattern E≥
1 ae there is a

binary pattern graph P such that p-models(ϕ) = p-saturation≥(P).

With the above claim, it remains to show for all 256 binary pattern graphs P that
p-saturation≥(P) ∈ para-AC0 holds. The (surprisingly diverse and nontrivial) treatment
of the cases can be found in the technical report version [2]. ◀

4.2 The Case E ≤
1 aa for Basic Graphs

The classification of the complexity of E≤
1 p also changes when we restrict the admissible

input structures to be basic graphs: p-FDbasic(E≤
1 aa) ⊆ para-AC0 holds by Lemma 4.7 and,

once more, this is the only change. Proving the lemma will be considerably easier than in the
previous section, but still demanding. Before we start, we summarize the resulting landscape
for completeness. Note that all bounds other than the just-mentioned new upper bound have
already been shown in Lemma 3.10.

▶ Theorem 4.6 (Trichotomy for p-FDbasic(E≤
1 p)). Let p be a pattern.

1. p-FDbasic(E≤
1 p) ⊆ para-AC0 if p ⪯ e∗a or p ⪯ aa.

2. p-FDbasic(E≤
1 p) ⊆ para-AC0↑ but p-FDbasic(E≤

1 p) ̸⊆ para-AC0, if aaa ⪯ p or eaa ⪯ p,
and p ⪯ e∗a∗.

3. p-FDbasic(E≤
1 p) contains a W[1]-hard problem, if ae ⪯ p.

▶ Lemma 4.7. p-FDbasic(E≤
1 aa) ⊆ para-AC0.

Proof idea. As in the previous section, we can reuse some ideas from the literature, but need
to take care of some extra complications caused by the need to limit the sizes of the solution
sets. In particular, we will use the notion of cardinality constraints introduced in [17] for
the study of the E1aa case: For two sets C,D ⊆ {0, 1, 2} define p-csp≤{C,D} as follows.
The instances for this problem consist of a finite universe U , a function P that maps each
two-element subset {x, y} ⊆ U to either C or D (so, unlike normal constraint satisfaction
problems, a constraint must be stated for every single pair of variables), and a number k.
A solution for P is a subset X ⊆ U of size |X| ≤ k such that for all two-element subsets
{x, y} ⊆ U we have |{x, y} ∩X| ∈ P (x, y). We call

(
U,P−1(C)

)
the C-graph of P and note

that this is just the set of edges that are mapped to C by P . The D-graph is defined as(
U,P−1(D)

)
; and observe that every two-element set belongs to exactly one of these two

graphs except when C = D in which case both graphs are the complete cliques. It is shown
in [17, Lemma 3.1] that all problems in FD(Eaa) reduce to csp{C,D} (without the “≤ k”
restrictions) for some C and D. We need to following variant:

IPEC 2023

3:14 ESO-Logic over Graphs: Parameterized Complexity

▷ Claim 4.8. All problems in p-FD(E≤
1 aa) reduce to p-csp≤{C,D} for some C and D via

para-AC0 reductions.

Proof. The reduction is a trivial reencoding in which the solutions of the csp instances are
exactly the sets that satisfy the formula when assigned to the existentially bound second-order
variable. In particular, solutions and assigned sets have the same sizes and satisfy the same
size restrictions. ◁

It remains to show p-csp≤{C,D} ∈ para-AC0 for all C,D ⊆ {0, 1, 2}. For this, we have to
go over the possible choices in a case distinction. Once more, the detailed treatment of the
cases can be found in the technical report version [2]. ◀

5 Conclusion

We gave a complete characterization of the tractability frontier of weighted eso logic over
basic graphs, undirected graphs, and arbitrary structures. While in some cases our results
mirror the classical complexity landscape, other cases yield clearly different results. The
proofs differ significantly from the classical setting and make extensive use of tools from
parameterized complexity theory. Especially for the class p-FDbasic(E≥ae), sophisticated
machinery is needed to establish the upper bound. Whether we require solutions to have size
exactly k, at most k, or at least k plays a central role in the complexity of the describable
problems. While the class p-FDbasic(E≥ae) can be shown to be included in para-AC0, the
classes p-FDbasic(E=ae) and p-FDbasic(E≤ae) both contain W[2]-hard problems. Similarly,
while p-FDbasic(E≤aa) is contained in para-AC0, both p-FDbasic(E=aa) and p-FDbasic(E≥aa)
contain W[1]-hard problems.

An obvious further line of research is to consider the prefixes E=
i p, E

≥
i p, and E≤

i p for i ≥ 2,
that is, the non-monadic case, and also multiple monadic quantifiers. While in the classical
setting it turns out [15] that we can normally reduce non-monadic quantifiers to (possibly
multiple) monadic ones, it is not clear whether the same happens in the parameterized
setting. Just pinpointing the complexity of, say, p-FDbasic(E≥

2 ae) seems difficult.
A different line of inquiry is to further investigate the patterns that lead to intractable

problems: In the unweighted setting, all eso-definable problems lie in NP and if the class
is not contained in P, then it contains an NP-complete problem. Our intractability results
range from W[1]-completeness to para-NP-completeness. Can we find for every t a pattern
for which we get classes that contain W[t]-hard problems and are contained in W[t]?

Our results also shed some light on graph modification problems, where we have a fixed
first-order formula ϕ and are given a pair (G, k). The objective is to modify the graph as little
as possible (for instance, by deleting as few vertices as possible) such that for the resulting
graph G′ we have G′ |= ϕ. Fomin et al. [14] have recently shown a complexity dichotomy
regarding the number quantifier alternations in ϕ. Since it is not difficult to encode the “to
be deleted vertices” using a ∃≤D quantifier, at least the upper bounds from our paper also
apply to vertex deletion problems. We believe that our results can be extended to also cover
lower bounds and, thereby, to give exact and complete classifications of the complexity of
vertex deletion problems in terms of the quantifier pattern of ϕ.

M. Bannach, F. Chudigiewitsch, and T. Tantau 3:15

References
1 Sanjeev Arora and Boaz Barak. Computational Complexity - A Modern Approach. Cambridge

University Press, 2009.
2 Max Bannach, Florian Chudigiewitsch, and Till Tantau. Existential second-order logic over

graphs: Parameterized complexity. Technical Report abs/2310.01134, Cornell University, 2023.
URL: https://arxiv.org/abs/2310.01134.

3 Max Bannach, Christoph Stockhusen, and Till Tantau. Fast parallel fixed-parameter algorithms
via color coding. In 10th International Symposium on Parameterized and Exact Computation,
IPEC 2015, September 16-18, 2015, Patras, Greece, pages 224–235, 2015. doi:10.4230/
LIPIcs.IPEC.2015.224.

4 Max Bannach and Till Tantau. Computing kernels in parallel: Lower and upper bounds. In
13th International Symposium on Parameterized and Exact Computation, IPEC 2018, August
20-24, 2018, Helsinki, Finland, pages 13:1–13:14, 2018. doi:10.4230/LIPIcs.IPEC.2018.13.

5 Paul Beame, Russell Impagliazzo, and Toniann Pitassi. Improved depth lower bounds for small
distance connectivity. Comput. Complex., 7(4):325–345, 1998. doi:10.1007/s000370050014.

6 J. Richard Büchi. Weak second-order arithmetic and finite automata. Zeitschrift für mathe-
matische Logik und Grundlagen der Mathematik, 6(1-6):66–92, 1960.

7 Yijia Chen and Jörg Flum. Some lower bounds in parameterized acˆ0. In 41st International
Symposium on Mathematical Foundations of Computer Science, MFCS 2016, August 22-26,
2016 - Kraków, Poland, pages 27:1–27:14, 2016. doi:10.4230/LIPIcs.MFCS.2016.27.

8 Bruno Courcelle and Joost Engelfriet. Graph Structure and Monadic Second-Order Logic - A
Language-Theoretic Approach, volume 138 of Encyclopedia of mathematics and its applications.
Cambridge University Press, 2012. URL: http://www.cambridge.org/fr/knowledge/isbn/
item5758776/?site_locale=fr_FR.

9 Rodney G. Downey and Michael R. Fellows. Parameterized Complexity. Monographs in
Computer Science. Springer, 1999. doi:10.1007/978-1-4612-0515-9.

10 Heinz-Dieter Ebbinghaus, Jörg Flum, and Wolfgang Thomas. Mathematical logic (2. ed.).
Springer, 1994.

11 Thomas Eiter, Yuri Gurevich, and Georg Gottlob. Existential second-order logic over strings.
J. ACM, 47(1):77–131, 2000. doi:10.1145/331605.331609.

12 Ronald Fagin. Generalized first-order spectra and polynomial-time recognizable sets. Com-
plexity of Computation, 7:43–74, 1974.

13 Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Springer, 2006. doi:
10.1007/3-540-29953-X.

14 Fedor V. Fomin, Petr A. Golovach, and Dimitrios M. Thilikos. On the parameterized complexity
of graph modification to first-order logic properties. Theory Comput. Syst., 64(2):251–271,
2020. doi:10.1007/s00224-019-09938-8.

15 Georg Gottlob, Phokion G. Kolaitis, and Thomas Schwentick. Existential Second-Order Logic
Over Graphs: Charting the Tractability Frontier. Journal of the ACM, 51(2):312–362, 2004.
doi:10.1145/972639.972646.

16 Christos H. Papadimitriou. Computational complexity. Addison-Wesley, 1994.
17 Till Tantau. Existential second-order logic over graphs: A complete complexity-theoretic

classification. In 32nd International Symposium on Theoretical Aspects of Computer Science,
STACS 2015, March 4-7, 2015, Garching, Germany, pages 703–715, 2015. doi:10.4230/
LIPIcs.STACS.2015.703.

IPEC 2023

https://arxiv.org/abs/2310.01134
https://doi.org/10.4230/LIPIcs.IPEC.2015.224
https://doi.org/10.4230/LIPIcs.IPEC.2015.224
https://doi.org/10.4230/LIPIcs.IPEC.2018.13
https://doi.org/10.1007/s000370050014
https://doi.org/10.4230/LIPIcs.MFCS.2016.27
http://www.cambridge.org/fr/knowledge/isbn/item5758776/?site_locale=fr_FR
http://www.cambridge.org/fr/knowledge/isbn/item5758776/?site_locale=fr_FR
https://doi.org/10.1007/978-1-4612-0515-9
https://doi.org/10.1145/331605.331609
https://doi.org/10.1007/3-540-29953-X
https://doi.org/10.1007/3-540-29953-X
https://doi.org/10.1007/s00224-019-09938-8
https://doi.org/10.1145/972639.972646
https://doi.org/10.4230/LIPIcs.STACS.2015.703
https://doi.org/10.4230/LIPIcs.STACS.2015.703

On the Complexity of Finding a Sparse Connected
Spanning Subgraph in a Non-Uniform Failure
Model
Matthias Bentert # Ñ

Department of Informatics, University of Bergen, Norway

Jannik Schestag #

Faculteit Elektrotechniek, Wiskunde en Informatica, TU Delft, The Netherlands
Fakultät für Mathematik und Informatik, Friedrich-Schiller-Universität Jena, Germany

Frank Sommer # Ñ

Fakultät für Mathematik und Informatik, Friedrich-Schiller-Universität Jena, Germany

Abstract
We study a generalization of the classic Spanning Tree problem that allows for a non-uniform
failure model. More precisely, edges are either safe or unsafe and we assume that failures only
affect unsafe edges. In Unweighted Flexible Graph Connectivity we are given an undirected
graph G = (V, E) in which the edge set E is partitioned into a set S of safe edges and a set U of unsafe
edges and the task is to find a set T of at most k edges such that T −{u} is connected and spans V for
any unsafe edge u ∈ T . Unweighted Flexible Graph Connectivity generalizes both Spanning
Tree and Hamiltonian Cycle. We study Unweighted Flexible Graph Connectivity in terms
of fixed-parameter tractability (FPT). We show an almost complete dichotomy on which parameters
lead to fixed-parameter tractability and which lead to hardness. To this end, we obtain FPT-time
algorithms with respect to the vertex deletion distance to cluster graphs and with respect to the
treewidth. By exploiting the close relationship to Hamiltonian Cycle, we show that FPT-time
algorithms for many smaller parameters are unlikely under standard parameterized complexity
assumptions. Regarding problem-specific parameters, we observe that Unweighted Flexible
Graph Connectivity admits an FPT-time algorithm when parameterized by the number of unsafe
edges. Furthermore, we investigate a below-upper-bound parameter for the number of edges of a
solution. We show that this parameter also leads to an FPT-time algorithm.

2012 ACM Subject Classification Theory of computation → Parameterized complexity and exact
algorithms; Theory of computation → Graph algorithms analysis

Keywords and phrases Flexible graph connectivity, NP-hard problem, parameterized complexity,
below-guarantee parameterization, treewidth

Digital Object Identifier 10.4230/LIPIcs.IPEC.2023.4

Related Version A continuously updated version of the paper is available at https://arxiv.org/
abs/2308.04575.

Funding Matthias Bentert: Supported by the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programme (grant agreement No. 819416).
Jannik Schestag: Supported by the German Academic Exchange Service (DAAD), project 57556279.
Frank Sommer : Supported by the Deutsche Forschungsgemeinschaft (DFG), project EAGR,
KO 3669/6-1.

Acknowledgements This work was initiated at the research retreat of the Algorithmics and Compu-
tational Complexity group of TU Berlin held in Darlingerode in September 2022.

© Matthias Bentert, Jannik Schestag, and Frank Sommer;
licensed under Creative Commons License CC-BY 4.0

18th International Symposium on Parameterized and Exact Computation (IPEC 2023).
Editors: Neeldhara Misra and Magnus Wahlström; Article No. 4; pp. 4:1–4:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:matthias.bentert@uib.no
https://www.uib.no/en/persons/Matthias.Bentert
mailto:j.t.schestag@uni-jena.de
https://orcid.org/0000-0001-7767-2970
mailto:frank.sommer@uni-jena.de
https://www.fmi.uni-jena.de/en/institute-for-computer-science/research-group-algorithm-engineering/team/dr-frank-sommer
https://orcid.org/0000-0003-4034-525X
https://doi.org/10.4230/LIPIcs.IPEC.2023.4
https://arxiv.org/abs/2308.04575
https://arxiv.org/abs/2308.04575
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

4:2 Finding a Sparse Connected Spanning Subgraph in a Non-Uniform Failure Model

1 Introduction

Computing a spanning tree is a fundamental task in computer science with a huge variety of
applications in network design [14] and clustering problems [29]. In Spanning Tree, one is
given a graph G, and the aim is to find a set T ⊆ E(G) of minimal size such that each pair
of vertices in G is connected via edges in T . It is well known that Spanning Tree can be
solved in polynomial time [22, 25]. This classic spanning tree model has, however, a major
drawback: all edges are seen as equal. In many scenarios, for example in the construction of
supply chains [27], this is not sufficient: some connections might be more fragile than others.
To overcome this issue, several different network-design and connectivity problems are studied
with additional robustness constraints [13, 26]. In this work, we continue this line of research
and investigate a graph model in which the edge set is partitioned into safe edges S and
unsafe edges U [1, 2, 8]. In contrast to several other variants of robust connectivity, these
two edge types enable us to model a non-uniform failure scenario [1]. With these types at
hand, we can relax the model of a spanning tree in the sense that one unsafe edge may fail.
An edge set T of a graph G = (V, S, U) is an unsafe spanning connected subgraph if a) T is
spanning for V , and b) T − {e} is connected for each unsafe edge e ∈ T [1]. This leads to the
following problem:

Unweighted Flexible Graph Connectivity (UFGC)
Input: A graph G = (V, S, U) and an integer k.
Question: Is there an unsafe spanning connected subgraph T of G with |T | ≤ k?

In the following, we refer to T as a solution. UFGC generalizes several well-studied classic
graph problems. Examples include 2-Edge Connected Spanning Subgraph [20, 26]
(S = ∅) and Hamiltonian Cycle [3, 19] (S = ∅ and k = |V (G)|). Thus, in sharp contrast
to the classic Spanning tree problem, UFGC is NP-hard.

Related Work. If the graph is additionally equipped with an edge-cost function, the
corresponding problem, in which one aims to find a solution of minimum total weight, is
known as Flexible Graph Connectivity [1, 8]. Flexible Graph Connectivity is
mainly studied in terms of approximation: Adjiashvili et al. [1] provided a polynomial-time
2.527-approximation algorithm which was improved by Boyd et al. [8] to a polynomial-time
2-approximation. Recently, a generalization (p, q)-Flexible Graph Connectivity was
introduced [8] and studied in terms of approximation. In this model, up to p unsafe edges
may fail and the result shall be q-edge connected. Clearly, Flexible Graph Connectivity
is the special case where p = 1 and q = 1. Boyd et al. [8] provided a (q + 1)-approximation
for the case p = 1 and a O(q log(n)) approximation for the general case. For the special case
of p = 2, an improved approximation of O(q) was provided by Chekuri and Jain [9], and for
the special case of q = 1 a O(1) approximation was shown by Bansal et al. [6].

Our model with safe and unsafe edges is based on prior work by e.g. Adjiashvili et al.,
who studied the approximability of the classic (s, t)-Path and (s, t)-Flow problems in this
model [2]. Even previous to Adjiashvili et al. [2], some studies already indirectly investigated
problems in this setting: There have been some studies of classic graph-connectivity problems
where one wishes for the stronger requirement of 2-edge connectivity. In terms of our
setting, this corresponds to the case that all edges are unsafe. One prominent example is
the aforementioned 2-Edge Connected Spanning Subgraph [10, 21, 26]. There exists a
4/3-approximation [10, 21, 26], and an 6/5-approximation in cubic graphs [10]. Furthermore,
for its generalization q-Edge Connected Spanning Subgraph approximation algorithms

M. Bentert, J. Schestag, and F. Sommer 4:3

of ratio 1+1/(2q)+O(1/(q2)) are known [17]. q-Edge Connected Spanning Subgraph is
also studied in terms of parameterized complexity: Basavaraju et al. [4] provided an FPT-time
algorithm with respect to the number of edges deleted from G to obtain a solution. A variant
of 2-Edge Connected Spanning Subgraph in digraphs was studied by Bang-Jensen and
Yeo [5]. They provided an FPT-time algorithm for a solution-size related parameter below
an upper bound.

Our Results. We study the parameterized complexity of UFGC with respect to many
natural parameters. We investigate problem specific and also structural graph parameters.
A first idea to solve UFGC might be the following: merge each safe component into a single
vertex by computing an arbitrary spanning tree of this component and then use existing
algorithms for 2-Edge Connected Spanning Subgraph to solve the remaining instance.
This approach, however, does not yield a minimal solution: Consider a C4 on unsafe edges
where we add one safe edge. Then, the unique minimal solution consists of all four unsafe
edges. Hence, we need new techniques to solve UFGC optimally.

In terms of problem specific parameters, we first study parameterization by the number |U |
of unsafe edges. We provide an FPT-time algorithm for |U | (Proposition 3.1), by exploiting
the fact that Disjoint Subgraphs admits an FPT-time algorithm. Second, we investigate
parameterizations above a lower bound and below an upper bound for the solution size. For
the former parameterization, we obtain hardness due to the connection to Hamiltonian
Cycle and for the latter we obtain an FPT-time algorithm (Theorem 3.2). Our algorithm
is inspired by an algorithm of Bang-Jensen and Yeo [5] for Minimum Spanning Strong
Subgraph. In this problem one is given a digraph D and one wants to find a minimum
spanning strong digraph of D. The main technical hurdle in our adaption is that in UFGC
we have two different edge types which have to be treated differently compared with the
problem studied by Bang-Jensen and Yeo [5].

We also study parameterization by structural graph parameters; see Figure 1 towards
a dichotomy for UFGC. For many parameters such as maximum degree and domination
number we obtain para-NP-hardness, due to the connection to Hamiltonian Cycle. For
other parameters, we obtain FPT-time algorithms. For example, for the treewidth tw of the
input graph and the (vertex) deletion distance to cluster graphs. With these two algorithms
at hand, we obtain an almost complete border between parameters which allow for FPT-time
algorithms and those that do not.

For the treewidth tw, we present an FPT-time algorithm based on dynamic programming
with running time n · 2O(tw log(tw)) (Proposition 4.1). In order to achieve this running time,
we define and exploit an encoding of size twtw to check all possibilities on how the current
bag of the tree decomposition is connected with the already considered vertices. Finally, we
show our main technical result: UFGC parameterized by the vertex-deletion distance to
cluster graphs admits an FPT-time algorithm (Theorem 4.2). Therein, we use a combination
of the following two main ingredients: First, given a modulator K, that is, a set of vertices
such that G′ = G − K is a cluster graph, we can safely connect all vertices in K using
vertices from O(|K|) cliques in G′ in any solution. We call these cliques the backbone of the
solution and we can guess in FPT time the structure of the backbone. Second, we show
how to compute the size of a smallest solution that implements a backbone in FPT time
using algorithms for both Maximum Bipartite Matching and Disjoint Subgraphs in
the process. Due to lack of space, several proofs (marked with (⋆)) are deferred to the full
version.

IPEC 2023

4:4 Finding a Sparse Connected Spanning Subgraph in a Non-Uniform Failure Model

Minimum Vertex Cover Max Leaf #Distance to
Clique

Minimum
Clique Cover

Distance to
Co-Cluster

Distance to
Cluster

Distance to
disjoint Paths

Feedback
Edge Set Bandwidth

Neighborhood
Diversity

Maximum
Independent Set

Distance to
Cograph

Distance to
Interval

Feedback
Vertex Set

Treedepth

Maximum
Degree

Minimum
Dominating Set

Distance to
Bipartite

Distance to
Outerplanar

Pathwidth

h-indexGenus
Max Diameter
of Components

Treewidth

Acyclic
Chromatic #

Distance to
Planar

Clique-width

Average
Distance

Distance to
Chordal

Degeneracy

Boxicity

Chromatic #Distance to
Perfect

Average
Degree

Minimum
Degree

Maximum
Clique

Chordality

Girth

Figure 1 The relations between structural graph parameters and our respective results for UFGC.
A parameter k is marked green () if UFGC admits an FPT-time algorithm for k, yellow () if it is
W[1]-hard with respect to k, and red () if it is NP-hard for constant k (para-NP-hard). We do not
know the status for parameters with white boxes. An edge from a parameter α to a parameter β

below α means that there is a function f such that β ≤ f(α) in every graph. Hardness results
for α imply the same hardness results for β and an FPT-time algorithm for β implies an FPT-time
algorithm for α.

Preliminaries. For n ∈ N, by [n] we denote the set {1, . . . , n}. Throughout this work, all loga-
rithms have 2 as their base. For a graph G = (V, S, U), we denote by V (G) and E(G) := S ∪ U

its vertex set and edge set, respectively. Furthermore, by n := |V (G)| we denote the number
of vertices. Let Z ⊆ V (G) be a vertex set. By G[Z] we denote the subgraph induced by Z,
and by G − Z := G[V (G) \ Z] we denote the graph obtained by removing the vertices of Z.
We denote by NG(Z) := {y ∈ V (G) \ Z : {y, z} ∈ E(G), z ∈ Z} and NG[Z] := NG(Z) ∪ Z,
the open and closed neighborhood of Z, respectively. For all these notations, whenever Z is a
singleton {z} we may write z instead of {z}. We may drop the subscript ·G when it is clear
from the context. Let u, v ∈ V (G). We say that u and v are safely connected if there exists
a path from u to v using only safe edges or if there exist two paths P1 and P2 from u to v

such that E(P1) ∩ E(P2) ⊆ S. We say that u and v are unsafe connected if u and v are not
safely connected and if there exists a path from u to v. For more details on graph notation
we refer to the standard monograph [28].

A parameterized problem is fixed-parameter tractable if every instance (I, k) can be solved
in f(k) · |I|O(1) time for some computable function f . For more details on parameterized
complexity, we refer to the standard monographs [11, 12].

M. Bentert, J. Schestag, and F. Sommer 4:5

2 Basic Observations

In this section, we explore the aforementioned connection between UFGC and Hamiltonian
Cycle and some implications thereof. To this end, note that if the graph contains no safe
edges, then each vertex needs to be contained in at least one cycle in the solution. We show
that a solution of size n to UFGC (if such a solution exists) corresponds to a Hamiltonian
cycle.

▶ Observation 2.1 (⋆). Let G be a graph and let I := (G′ = (V (G), ∅, E(G)), n). Then G

contains a Hamiltonian cycle if and only if I is a yes-instance of UFGC.

Since Observation 2.1 describes a polynomial-time reduction from Hamiltonian Cycle
to UFGC, we can directly transfer any NP-hardness results for Hamiltonian Cycle on
restricted graph classes to UFGC for the special case that there are no safe edges. It is known
that Hamiltonian Cycle remains NP-hard on subcubic bipartite planar graphs [3], on split
graphs [19], and on graphs with constant maximum degree [18]. Moreover, Hamiltonian
Cycle is NP-hard for graphs with exactly one universal vertex, as shown next.

▶ Observation 2.2 (⋆). Hamiltonian Cycle is NP-hard even if there is exactly one
universal vertex.

We obtain the following simple corollary for UFGC.

▶ Corollary 2.3. UFGC is NP-hard, even if there are no safe edges, k equals n, and the
graph G a) is subcubic, planar and bipartite, b) is a split graph, c) has domination number
one, or d) has constant maximum degree.

Moreover, since Hamiltonian Cycle is W[1]-hard parameterized by clique-width cw [15],
and cannot be solved in f(cw) · no(cw) time [16], we obtain the following.

▶ Corollary 2.4. UFGC is W[1]-hard with respect to the clique-width cw, even if S = ∅
and k = n. Moreover, this restricted version cannot be solved in f(cw) · no(cw) time.

▶ Observation 2.5 (⋆). UFGC is NP-hard even if the bisection width is one.

3 Problem-Specific Parameters

In this section, we study problem-specific parameters. In particular, we show that UFGC
is fixed-parameter tractable when parameterized by the number of unsafe edges in the
input graph and we study some above-lower-bound and below-upper-bound parameterizations
for the solution size. Such parameters are frequently studied [23, 24]. However, since
Observation 2.1 shows hardness for UFGC where k = n and since each solution has at least
n − 1 edges, the parameterization above the lower bound of n − 1 is hopeless. Hence, we
focus on a parameterization below an upper bound. More precisely, we show that an optimal
solution of G consists of at most 2n − 4 edges. Then, we aim to find a solution for G with
k = 2n − 4 − ℓ edges for small values of ℓ.

▶ Proposition 3.1 (⋆). UFGC is fixed-parameter tractable when parameterized by |U |.

We continue by presenting an FPT-time algorithm for the below lower bound parame-
ter ℓ := 2n − 4 − k for UFGC.

▶ Theorem 3.2 (⋆). UFGC can be solved in ℓ8ℓ · poly(n) time, where ℓ := 2n − 4 − k.

IPEC 2023

4:6 Finding a Sparse Connected Spanning Subgraph in a Non-Uniform Failure Model

K

A

B

C

Figure 2 An example of a solution. Safe edges are depicted with solid lines and unsafe edges are
depicted with dashed lines. The modulator K and three connecting components A, B, and C of a
minimal backbone are drawn in black. All other vertices (drawn in blue) are not part of the minimal
backbone as all vertices in K are already safely connected in the black subgraph. The connecting
component A is a cyclic component and B and C are usual connecting components.

4 Structural Graph Parameters

In this section, we study two structural graph parameters. We start by giving an FPT-time
algorithm for the parameter treewidth tw. Afterwards, we develop a far more intricate
FPT-time algorithm for the parameter (vertex-deletion) distance to cluster graphs. Recall
that a cluster graph is a graph in which each connected component is a clique.

▶ Proposition 4.1 (⋆). UFGC parameterized by tw is solvable in O(n · 237 tw log(tw)) time.

We continue with the algorithm for distance to cluster graphs.

▶ Theorem 4.2. UFGC parameterized by the (vertex-deletion) distance ℓ to cluster graphs
can be solved in f(ℓ) · n3 time for some computable function f .

Proof. We start by computing a set K of ℓ vertices in O(3ℓ ·n3) time such that G′ = G[V \K]
is a cluster graph as follows. Note that a graph G is a cluster graph if and only if it does
not contain an induced P3, that is, three vertices a, b, and c with {a, b}, {b, c} ∈ E(G)
and {a, c} /∈ E(G). Hence, we can find an induced P3 in O(n3) if it exists and then branch
on which of the three vertices in the P3 to include in K. Note that K needs to contain at
least one of the three vertices and the resulting search tree has therefore depth ℓ and size 3ℓ.

We next give a few definitions required to give a more detailed description of the algorithm
afterwards. We call a subgraph of a solution H = (VH , SH , UH) a backbone if it contains
all vertices in K and each pair of vertices in VH is safely connected in H. See Figure 2
for an example. Given such a backbone H = (VH , SH , UH), a connecting component is a
connected component in H ′ = H [VH \ K]. We say that a backbone is minimal if the removal
of any connecting component results in some pair of vertices in K being not safely connected
anymore. We distinguish between two types of connecting components: cyclic and usual. A
cyclic connecting component is a cycle (with some connections to vertices in K). Note that
the number of edges in a cycle equals its number of vertices. A usual connecting component
is a tree. Its number of edges is one less than its number of vertices but if it contains unsafe
edges, then not all vertices are safely connected within the connecting component. Observe
that we can indeed assume that each connecting component is either usual or cyclic as any
connecting component that is not a tree contains at least as many edges as vertices. Hence,

M. Bentert, J. Schestag, and F. Sommer 4:7

we can replace such a connecting component by any cycle through all of its vertices. Such a
cycle exists within any clique of size at least three (any permutation of the vertices results in
a cycle and any connecting component inside a clique of size at most two is a tree) and any
pair of vertices in a cyclic connecting component is safely connected.

Next, we distinguish between three types of cliques in G′. To this end, let C be a
connected component in G′, that is, a clique in the cluster graph. The three types are based
on the edges between C and K (note that all edges between vertices in C and the rest of the
graph are to vertices in K) and on the connected components within C if we ignore all unsafe
edges. We call such components strong components. A clique C is strong, if each strong
component in C contains at least one vertex with a safe edge to a vertex in K. In this case,
we can add C to the backbone using |C| (safe) edges (a maximal spanning forest plus for
each strong component one edge connecting it to K). The second type, we call weak cliques.
A weak clique is not a strong clique but it is connected to K by a safe edge or by two unsafe
edges with different endpoints in C. Since weak cliques are not strong cliques, there is some
strong component in them, which is not connected to K via only safe edges. Hence, to safely
connect this strong component L to K, we require at least |L| + 1 edges. Since we require at
least |C \ L| edges to connect the remaining vertices, we require at least |C| + 1 edges to
safely connect C to the backbone. For weak cliques, |C| + 1 edges are sufficient as we can
use a) a safe edge between C and K and a Hamiltonian cycle in C or b) two unsafe edges to
different vertices in C and any Hamiltonian path between the two endpoints within C. We
call the third type of clique singletons. A singleton is only connected to K by unsafe edges
and all of these edges have the same endpoint in C. Note that if there is at most one unsafe
edge between K and C (and assuming that K ̸= ∅), then there cannot be a solution as C

cannot be safely connected to K. We call them singletons because we can reduce such a
clique to a single vertex in a preprocessing step. Since all connections to K are through one
vertex v ∈ C, we have to safely connect all vertices in C to v. This can either be done via a
spanning tree consisting only of safe edges (if such a tree exists) or via any Hamiltonian cycle
otherwise1. Which case applies can be checked in linear time by checking whether there is
exactly one strong component in C.

We are now in a position to describe the algorithm. First, we guess which edges between
vertices in K belong to a solution T and the number p of connecting components in a minimal
backbone H of T . Note that p ≤ 2ℓ since any connecting component in H provides an
(unsafe) connection between two vertices in K and any cycle of unsafe connections implies
also safe connections. Hence, in the worst case each cycle is of length two and we require 2ℓ−2
connections to implement a “safe spanning tree” between the vertices in K. Next, we guess
the structure of H, that is, for each connecting component P in H, we guess the following
(see also Figure 3).
1. Which vertices in K are adjacent to vertices in P in T?
2. How large is the set Y of vertices in P that are neighbors to vertices in K in T?2

3. Which edges between K and Y are contained in T?3

4. Which pairs of vertices in Y are safely connected within Y ? (That is, a partition of the
vertices in Y)

5. Is P a usual or a cyclic component?

1 The Hamiltonian cycle exists if there are at least three vertices in C. If |C| = 2 and there is only an
unsafe edge between the two vertices, then there cannot be a solution and we can return no.

2 Note that |Y | ≤ 2ℓ by the same argument that shows p ≤ 2ℓ.
3 Note that we something like “there are three vertices y1, y2, y3 ∈ Y and the solution contains the safe

edge {u, y1} and the unsafe edges {v, y2}, {v, y3}, and {w, y3}”. However, we do not guess which vertex
in the input graph is a vertex in Y . For an example, we refer to Figure 3.

IPEC 2023

4:8 Finding a Sparse Connected Spanning Subgraph in a Non-Uniform Failure Model

u
v

w

a b c d

K

C

u

v

w

y1

y2

y3

K

Figure 3 The left side depicts the modulator K and one clique C in G − K. Safe edges are
depicted with solid lines and unsafe edges are depicted with dashed lines. To reduce visual clutter,
we do not show the unsafe edges between two vertices in C. The right side depicts one possible guess
for a connecting component. It contains three vertices y1, y2, and y3, some edges between K and a
partition of the guessed vertices (in our case y1 and y2 are guessed to be safely connected within C).
Note that in the graph on the left side there are many different possibilities to realize the guess on
the right side. One possibility is y1 = a, y2 = b and y3 = d. A second possibility is y1 = b, y2 = c

and y3 = d and a third possibility y1 = a, y2 = c and y3 = b.

Moreover, we guess which connecting components of the minimal backbone are contained
in the same clique in G′, that is, we guess a partition of the p connecting components.
Finally, we guess for each part of the partition the type of clique that contains the connecting
components and how the rest of the clique (that is, all vertices in the clique that are not
contained in any connecting component) is connected to the minimal backbone.

We distinguish between the following three types of connections. To this end, let C be a
clique in G′ that hosts at least one connecting component of H and let C ′ = C \ VH be the
set of vertices that are not contained in a connecting component. If there is a connecting
component in P that contains at least one unsafe edge, then we can replace this edge with
a Hamiltonian path through all vertices in C ′. If this is the case or if C ′ = ∅, then we say
that C ′ is empty. Otherwise, if we can safely connect all vertices in C ′ to the backbone
using |C ′| edges, then we say that C ′ is efficiently connected to the backbone. This is the
case if each vertex in C ′ is contained in a strong component in C that contains a) a vertex
in some Pi ∈ P or b) a vertex with an incident safe edge to a vertex in K. If neither of the
two cases above applies, then we require at least |C ′| + 1 edges to connect the vertices in C ′

to the backbone. Note that in this case, we can always find a path through all vertices in C ′

and connect the two ends to any vertex in C \ C ′. We call this type of connection inefficient.
Observe that if two solutions lead to exactly the same set of guesses, then they have the

same number of edges4 as the difference between the number of edges and vertices in their
minimal backbones and the types of the remaining cliques (both of cliques containing parts
of the minimal backbone and those which do not) is the same for both solutions. As argued
above, the difference between the number of edges and vertices in these cliques in a solution
is completely determined by their type.

It remains to show how to check whether a guess leads to a solution and to analyze the
running time. Towards the former, we first show how to test whether a given clique C of a
guessed type can host a guessed set P = {P1, . . . , Pc} of connecting components such that
the rest of the clique has the guessed connection type. We can handle most combinations
of clique type and connection type with a general approach. One special case has to be
treated differently: The connection type is efficient, each connecting component Pi ∈ P is

4 Assuming that the solutions are minimal, that is, they do not contain edges whose removal yields a
smaller solution.

M. Bentert, J. Schestag, and F. Sommer 4:9

a usual component which safely connects all respective vertices in Y and the clique C is a
weak clique. First, we describe why this case is different from the others. Then, we show
how to handle this special case and how to handle all other cases. The difference is that
if the connection type is “C ′ is empty” or inefficient, then we can pretty much ignore the
connection type as we can always greedily find a solution independent of the connecting
component. If one of the connecting components in P is a cyclic component or a usual
component with at least one unsafe edge in it, then the connection type is “C ′ is empty”.5
The same is true if the clique C is a singleton. If C is a strong clique, then we can also
ignore C ′ as we can always greedily find an efficient connection independent of the connecting
component. Only if the connection type is efficient, P only consists of usual components
which safely connect all respective vertices in Y , and C is a weak clique, then we somehow
need to “hit all strong components in C” which do not have a safe edge to a vertex in K

using the connecting components.
The next step in this proof is to describe our algorithm to check if a clique C can host

a set P = {P1, P2, . . . , Pc} of connecting components where each Pi is a usual connecting
component consisting only of safe edges. Due to space constraints, we only show this algorithm
in this extended abstract; the running time analysis is deferred to the full version. Informally
speaking, we first show that each Pi is contained in a different strong component in C. We
then use Maximum Bipartite Matching to first check in which strong components Vj

in C each Pi can be contained in. We then check whether we can assign each Pi to some Vj

such that Pi can be contained in Vj and each strong component Vj which does not have a
safe edge to a vertex in K contains some Pi.

▷ Claim 4.3 (⋆). We can check in O(ℓ2 · n3) time whether a clique C can host a
set P = {P1, P2, . . . , Pc} of connecting components where each Pi is a usual connecting
component consisting only of safe edges.

Next, we present the general algorithm for all remaining cases, that is, the connection
type is not efficient, the clique C is not a weak clique, or the set of connecting components
contains an unsafe edge. Here, we can ignore the connection type and we only need to check
whether the guessed set P of connecting components can be hosted in a clique C. Since C is a
clique, any pair of vertices in C is connected by an edge. Hence, we can trivially connect any
set of t vertices with unsafe connections using t − 1 edges. We only need to check two points:
1. Is there for each vertex in Y (the neighbors of vertices in K in C) a distinct vertex in C

with all the required edges to vertices in K and
2. can all sets of vertices that are guessed to be pairwise connected via paths of safe edges

inside C be connected in this way?
Note that the latter point is unfortunately not as simple as checking whether all vertices
belong to the same strong component in C as the example in Figure 4 shows. We solve
both points as follows. We built a graph with two vertices y, y′ for each vertex y ∈ Y and
a vertex v for each vertex v ∈ C. There are edges {y, v} and {y′, v} if the following holds.
For each edge {x, y} with x ∈ K that is guessed to be in the solution, the edge {x, v} is
contained in the input graph G and the edge {x, v} is safe if and only if the edge {x, y} is
guessed to be safe. Moreover, there is an edge between two vertices u, v ∈ C if and only

5 We may assume that there is only one cyclic component in P as we can always merge two cyclic
components in one clique into one cyclic component. We need to consider the special case where the
cyclic component contains exactly two vertices with edges to vertices in K as we need to ensure that
there is at least one additional vertex not contained in any of the other connecting components in P.

IPEC 2023

4:10 Finding a Sparse Connected Spanning Subgraph in a Non-Uniform Failure Model

d

v

a

b c

Figure 4 A clique with five vertices is shown. Safe edges are depicted with solid lines and unsafe
edges are depicted with dashed lines. Suppose we want to connect a to b and c to d using only safe
edges. All vertices belong to the same strong component in C but the only solution is to include all
four safe edges in the backbone. If each pair of vertices was connected via a safe edge, however, we
could connect v with one of the terminal pairs and directly connect the other terminal pair with
a safe edge. In this case we only used 3 edges. Intuitively, we were able to use one edge less by
ignoring the connection between the two pairs of terminals. Since we assume our guess to be correct,
we do not need to connect these terminals inside C as they will be connected via some paths outside
of C. Thus, we want each set of vertices that are guessed to be pairwise connected via paths of safe
edges inside C to form their own connected component when considering the graph induced by C in
the solution.

if there is a safe edge between them in G. Let R = {R1, R2, . . . , Rr} with Ri ⊆ Y be a
partition of the vertices in Y according to which vertices are pairwise connected via paths
of safe edges. Let R′

i = {y, y′ | y ∈ Ri} be the corresponding vertices in our constructed
graph. As mentioned earlier, we need to consider the special case where one of the connecting
components is a cyclic component with exactly two vertices in it as we need to ensure that
there is at least one additional vertex that can be included in the cyclic component. In
this case, we add two new vertices z, z′ to the graph, connect each of them to all vertices v

with v ∈ C, and define the set R′
0 = {z, z′}. We now solve Disjoint Connected Subgraphs

where each set R′
i is one terminal set. Next, we show that if there is a set of disjoint connected

subgraphs each connecting the vertices in one set R′
i, then this corresponds to a solution

to both points. Note that we may again assume that each vertex in C can only fill the role
of one vertex in Ri and hence selecting any vertex adjacent to y in the solution gives us a
matching between the vertices in C and the vertices in Y (any vertex y ∈ Ri needs to be
connected to at least y′ and hence such a neighbor exists). Moreover, since the solution is a
set of disjoint connected subgraphs and we only included safe edges between vertices in C, we
are also ensured that this solution corresponds to a set of connecting components as guessed.
Conversely, if there is a set of disjoint subgraphs in C that exactly correspond to our set of
guesses, then this is also a solution to the instance of Disjoint Connected Subgraphs if
we additionally connect each pair of vertices y, y′ to the respective vertex in C. Thus, we
have found a way to check whether C can host a guessed set P of connecting components.

After checking which cliques could potentially host each set P of guessed connecting
components, it remains to check whether all of these guesses can be fulfilled at the same
time. To this end, we need to check whether all q ≤ p sets P1, P2, . . . , Pq can be hosted each
by a distinct clique. We do this using the textbook O(nm)-time algorithm for Maximum
Bipartite Matching as follows. We build a bipartite graph with one vertex vi for each set Pi

and a vertex uj for each connected component (clique) Cj in G′. There is an edge {vi, uj}
in the graph if and only if Cj can host Pi. It then only remains to check whether there is a
matching of size q as in this case each set Pi is matched to a distinct clique in G′.

For space reasons, we defer the analysis of the running time to the full version.

▷ Claim 4.4 (⋆). The algorithm runs in time f(ℓ) · n3 for some computable function f . ◀

We mention that each cluster graph is also a co-graph. Whether the parameter distance
to co-graphs also allows for an FPT-time algorithm remains an open question.

M. Bentert, J. Schestag, and F. Sommer 4:11

5 Conclusion

In this work, we started an investigation into the parameterized complexity of UFGC. Our
main results are FPT-time algorithms for a below-upper-bound parameter, the treewidth,
and the vertex-deletion distance to cluster graphs, respectively. Moreover, we give a fairly
comprehensive dichotomy between parameters that allow for FPT-time algorithms and those
that lead to W[1]-hardness (or in most cases even para-NP-hardness).

Nonetheless, several open questions remain. First, what is the status of the parame-
ters that we were not able to resolve; for example does parameterization by the distance
to cographs or interval graphs allow for an FPT-time algorithm? Second, is there an
XP-time algorithm for UFGC parameterized by the clique-width. Third, it would be inter-
esting to study the existence of polynomial kernels for the parameters that yield FPT-time
algorithms. Unfortunately, some of these can be excluded due to the close relation to Hamil-
tonian Cycle. In particular, Hamiltonian Cycle (and hence also UFGC) does not
admit a polynomial kernel with respect to the distance to outerplanar graphs unless
coNP ̸⊆ NP/poly [7]. Moreover, using the framework of AND-cross compositions, it is
not hard to also exclude polynomial kernels for the parameters treedepth and bandwidth
unless coNP ̸⊆ NP/poly. However, this still leaves quite a few parameters ready to be
investigated in the future.

Last but not least, UFGC should only be regarded as a first step towards generalizing
Spanning Tree to more robust connectivity requirements. It is interesting to see whether
(some of) our positive results can be lifted to the more general problem (p, q)-Flexible
Graph Connectivity. Therein, the solution graph should still be q connected even if up
to p unsafe edges fail. Also, one can study other problems in the setting where the edge
set is partitioned into safe and unsafe edges from the lens of parameterized complexity; one
possibility is (p, q)-Flexible (s, t)-Path [2].

References
1 David Adjiashvili, Felix Hommelsheim, and Moritz Mühlenthaler. Flexible graph connectivity.

Mathematical Programming, 192(1):409–441, 2022.
2 David Adjiashvili, Felix Hommelsheim, Moritz Mühlenthaler, and Oliver Schaudt. Fault-

tolerant edge-disjoint s − t paths - beyond uniform faults. In Proceedings of the 18th Scandi-
navian Symposium and Workshops on Algorithm Theory (SWAT ’22), volume 227 of LIPIcs,
pages 5:1–5:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022.

3 Takanori Akiyama, Takao Nishizeki, and Nobuji Saito. NP-completeness of the hamiltonian
cycle problem for bipartite graphs. Journal of Information processing, 3(2):73–76, 1980.

4 Jørgen Bang-Jensen, Manu Basavaraju, Kristine Vitting Klinkby, Pranabendu Misra, M. S.
Ramanujan, Saket Saurabh, and Meirav Zehavi. Parameterized algorithms for survivable
network design with uniform demands. In Proceedings of the Twenty-Ninth Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA ’18), pages 2838–2850. SIAM, 2018.

5 Jørgen Bang-Jensen and Anders Yeo. The minimum spanning strong subdigraph problem is
fixed parameter tractable. Discrete Applied Mathematics, 156(15):2924–2929, 2008.

6 Ishan Bansal, Joseph Cheriyan, Logan Grout, and Sharat Ibrahimpur. Improved approximation
algorithms by generalizing the primal-dual method beyond uncrossable functions. In Proceedings
of the 50th International Colloquium on Automata, Languages, and Programming (ICALP ’23),
volume 261 of LIPIcs, pages 15:1–15:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2023.

7 Hans L. Bodlaender, Bart M. P. Jansen, and Stefan Kratsch. Kernel bounds for path and
cycle problems. Theoretical Computer Science, 511:117–136, 2013.

IPEC 2023

4:12 Finding a Sparse Connected Spanning Subgraph in a Non-Uniform Failure Model

8 Sylvia C. Boyd, Joseph Cheriyan, Arash Haddadan, and Sharat Ibrahimpur. Approximation
algorithms for flexible graph connectivity. In Proceedings of the 41st IARCS Annual Conference
on Foundations of Software Technology and Theoretical Computer Science (FSTTCS ’21),
pages 9:1–9:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.

9 Chandra Chekuri and Rhea Jain. Approximation algorithms for network design in non-uniform
fault models. In Proceedings of the 50th International Colloquium on Automata, Languages,
and Programming (ICALP ’23), volume 261 of LIPIcs, pages 36:1–36:20. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2023.

10 Ali Çivril. A new approximation algorithm for the minimum 2-edge-connected spanning
subgraph problem. Theoretical Computer Science, 943:121–130, 2023.

11 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.

12 Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity.
Springer, 2013.

13 Andreas Emil Feldmann, Anish Mukherjee, and Erik Jan van Leeuwen. The parameterized
complexity of the survivable network design problem. In Proceedings of the 5th Symposium on
Simplicity in Algorithms (SOSA ’22), pages 37–56. SIAM, 2022.

14 Corinne Feremans, Martine Labbé, and Gilbert Laporte. Generalized network design problems.
European Journal of Operational Research, 148(1):1–13, 2003.

15 Fedor V. Fomin, Petr A. Golovach, Daniel Lokshtanov, and Saket Saurabh. Intractability of
clique-width parameterizations. SIAM Journal on Computing, 39(5):1941–1956, 2010.

16 Fedor V. Fomin, Petr A. Golovach, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi.
Clique-width III: hamiltonian cycle and the odd case of graph coloring. ACM Transactions on
Algorithms, 15(1):9:1–9:27, 2019.

17 Harold N. Gabow and Suzanne Gallagher. Iterated rounding algorithms for the smallest k-edge
connected spanning subgraph. SIAM Journal on Computing, 41(1):61–103, 2012.

18 M. R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman, 1979.

19 Martin Charles Golumbic. Algorithmic graph theory and perfect graphs. Academic Press, 1980.
20 Woonghee Tim Huh. Finding 2-edge connected spanning subgraphs. Operations Research

Letters, 32(3):212–216, 2004.
21 Christoph Hunkenschröder, Santosh S. Vempala, and Adrian Vetta. A 4/3-approximation

algorithm for the minimum 2-edge connected subgraph problem. ACM Transactions on
Algorithms, 15(4):55:1–55:28, 2019.

22 Joseph B Kruskal. On the shortest spanning subtree of a graph and the traveling salesman
problem. Proceedings of the American Mathematical society, 7(1):48–50, 1956.

23 Meena Mahajan and Venkatesh Raman. Parameterizing above guaranteed values: Maxsat
and maxcut. Journal of Algorithms, 31(2):335–354, 1999.

24 Meena Mahajan, Venkatesh Raman, and Somnath Sikdar. Parameterizing above or below
guaranteed values. Journal of Computer and System Sciences, 75(2):137–153, 2009.

25 Robert Clay Prim. Shortest connection networks and some generalizations. The Bell System
Technical Journal, 36(6):1389–1401, 1957.

26 András Sebö and Jens Vygen. Shorter tours by nicer ears: 7/5-approximation for the graph-
tsp, 3/2 for the path version, and 4/3 for two-edge-connected subgraphs. Combinatorica,
34(5):597–629, 2014.

27 Lawrence V Snyder, Maria P Scaparra, Mark S Daskin, and Richard L Church. Planning for
disruptions in supply chain networks. In Models, methods, and applications for innovative
decision making, pages 234–257. Informs, 2006.

28 Douglas B. West. Introduction to Graph Theory. Prentice Hall, 2000.
29 Ying Xu, Victor Olman, and Dong Xu. Clustering gene expression data using a graph-theoretic

approach: an application of minimum spanning trees. Bioinformatics, 18(4):536–545, 2002.

Difference Determines the Degree: Structural
Kernelizations of Component Order Connectivity
Sriram Bhyravarapu #

The Institute of Mathematical Sciences, HBNI, Chennai, India

Satyabrata Jana #

The Institute of Mathematical Sciences, HBNI, Chennai, India

Saket Saurabh #

The Institute of Mathematical Sciences, HBNI, Chennai, India
University of Bergen, Norway

Roohani Sharma # Ñ

Max Planck Institute for Informatics, Saarland Informatics Campus, Saarbrücken, Germany

Abstract
We consider the question of polynomial kernelization of a generalization of the classical Vertex
Cover problem parameterized by a parameter that is provably smaller than the solution size. In
particular, we focus on the c-Component Order Connectivity problem (c-COC) where given an
undirected graph G and a non-negative integer t, the objective is to test whether there exists a set
S of size at most t such that every component of G − S contains at most c vertices. Such a set S is
called a c-coc set. It is known that c-COC admits a kernel with O(ct) vertices. Observe that for
c = 1, this corresponds to the Vertex Cover problem.

We study the c-Component Order Connectivity problem parameterized by the size of a
d-coc set (c-COC/d-COC), where c, d ∈ N with c ≤ d. In particular, the input is an undirected
graph G, a positive integer t and a set M of at most k vertices of G, such that the size of each
connected component in G − M is at most d. The question is to find a set S of vertices of size at
most t, such that the size of each connected component in G − S is at most c. In this paper, we
give a kernel for c-COC/d-COC with O(kd−c+1) vertices and O(kd−c+2) edges. Our result exhibits
that the difference in d and c, and not their absolute values, determines the exact degree of the
polynomial in the kernel size.

When c = d = 1, the c-COC/d-COC problem is exactly the Vertex Cover problem para-
meterized by the solution size, which has a kernel with O(k) vertices and O(k2) edges, and this is
asymptotically tight [Dell & Melkebeek, JACM 2014]. We also show that the dependence of d − c in
the exponent of the kernel size cannot be avoided under reasonable complexity assumptions.

2012 ACM Subject Classification Theory of computation → Fixed parameter tractability

Keywords and phrases Kernelization, Component Order Connectivity, Vertex Cover, Structural
Parameterizations

Digital Object Identifier 10.4230/LIPIcs.IPEC.2023.5

Funding Sriram Bhyravarapu: Supported by the SERB-DST via grant PDF/2021/003452.
Saket Saurabh: Supported by the European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme (grant agreement No. 819416), and Swarnajayanti
Fellowship (No. DST/SJF/MSA01/2017-18).

1 Introduction

The design of parameterized algorithms and kernelization has traditionally relied on the
size of the solution as a crucial parameter. Nonetheless, when a problem is established
as fixed-parameter tractable based on the solution size, it becomes natural to explore the
problem using a parameter that is provably smaller than the solution size.

© Sriram Bhyravarapu, Satyabrata Jana, Saket Saurabh, and Roohani Sharma;
licensed under Creative Commons License CC-BY 4.0

18th International Symposium on Parameterized and Exact Computation (IPEC 2023).
Editors: Neeldhara Misra and Magnus Wahlström; Article No. 5; pp. 5:1–5:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sriramb@imsc.res.in
mailto:satyamtma@gmail.com
https://orcid.org/0000-0002-7046-0091
mailto:saket@imsc.res.in
https://orcid.org/0000-0001-7847-6402
mailto:rsharma@mpi-inf.mpg.de
https://people.mpi-inf.mpg.de/~rsharma/
https://orcid.org/0000-0003-2212-1359
https://doi.org/10.4230/LIPIcs.IPEC.2023.5
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

5:2 Difference Determines the Degree: Structural Kernelizations of COC

Over the past decade, several interesting papers have explored these inquiries, particularly
in the realm of kernelization [2,7,9–12,15]. Notable contributions in this area include polyno-
mial kernels for the Vertex Cover problem parameterized by the feedback vertex set [10]
and the odd cycle transversal [12]. Hols, Kratsch, and Pieterse [9] provide a comprehensive
perspective on most of the aforementioned structural kernelization of Vertex Cover.
Additionally, kernelization of Vertex Cover with respect to above-guarantee parameters
has also been studied [11]. More recently, in another direction of work, Bougeret, Jansen &
Sau, gave a characterization for which structural parameters, that serve as modulators of
minor-closed graph classes, Vertex Cover admits polynomial kernels [1].

In this paper, we consider a generalized version of the Vertex Cover problem known
as the c-Component Order Connectivity (c-COC) problem. In the c-COC problem,
we are given a graph G and an integer t, and the objective is to identify a set of at most t

vertices, say S, such that the size of each connected component of G − S is at most c. Such
a set S is referred to as a c-coc set. It is worth noting that when c equals 1, the c-COC
problem is equivalent to the Vertex Cover problem. The current best-known kernel for the
Vertex Cover problem parametrized by solution size (t) consists of 2t − c log t vertices [14]
for all c > 0. Although previously there was a kernel for Vertex Cover with O(t) vertices
and O(t2) edges [4] which is asymptotically best. For c-COC we can obtain a simple kernel
with O((t + c)t) vertices by deleting vertices of degree at least t + c, iteratively. Kumar and
Lokshtanov [13] designed a kernel with 2ct vertices running in time nO(c). Finally, Xiao [18]
obtained a kernel with 9ct vertices running in time nO(1). Here, the polynomial in the
running time does not depend on c.

Observe that when d ≥ c, the size of a d-coc set is at most the size of a c-coc set. This
observation leads us to a natural hierarchy of parameterized problems known as c-COC
parameterized by a d-coc set, where c and d are positive integers satisfying c ≤ d. We refer
to these parameterized problems as c-COC/d-COC.

c-COC/d-COC Parameter: k

Input: An undirected graph G, an integer t, a set M ⊆ V (G) such that |M | ≤ k and for
each connected component C of G − M , |C| ≤ d

Question: Does there exist a set S ⊆ V (G) such that |S| ≤ t and for each connected
component C ′ of G − S, |C ′| ≤ c?

It is natural to ask how do we get the modulator. Either, we can assume that it is given
as part of the input or we can obtain a set M of size at most (d + 1)opt, where opt is the
size of a smallest d-coc set. Indeed, start with an empty M , and while M is not a d-coc set,
greedily select a arbitrary connected subgraph with d + 1 vertices and include each of these
d + 1 vertices into M and remove them from the graph. Thus, from now onwards we assume
that M is given as part of the input.

Our main result shows that c-COC/d-COC admits a polynomial kernel with O(kd−c+1)
vertices and O(kd−c+2) edges, where k is the size of M , a d-coc set. Notably, our result
establishes that the degree of the polynomial in the kernel size is solely determined by the
difference between d and c, rather than the specific values of d and c. To illustrate, both
5-COC/7-COC and 23-COC/25-COC exhibit kernels of size O(k3). The formal statement
of our main result is presented in Theorem 1.

▶ Theorem 1. c-COC/d-COC admits a kernel with O(kd−c+1) vertices and O(kd−c+2)
edges.

S. Bhyravarapu, S. Jana, S. Saurabh, and R. Sharma 5:3

c-COC/d-COC
(G,M, k)

Reduced Instance
(G,M, k)

R. Rule 1

Bound # of

Start

use Expansion Lemma

O(kd−c+1) vertices
& O(kd−c+2) edges

Construction of a

Certifying family

via

Bipartite graph

components in G−M

R. Rule 2

kernel

Figure 1 A summary of the main steps of our kernelization.

Note that when c = d = 1, the c-COC/d-COC problem corresponds to the Vertex
Cover problem parameterized by the size of the solution. In this scenario, our result is
asymptotically consistent with the best-known bounds for Vertex Cover.

In the light of Theorem 1, the subsequent question arises as to whether the exponent of
k in the kernel size can be made a constant value and be independent of d − c. Specifically,
does c-COC/d-COC admit a uniform kernel of size f(d, c)kO(1), where f is a function that
only depends on d and c? However, we demonstrate that this is not possible. In particular,
we establish that Vertex Cover/d-COC does not admit a kernel of size O(kd−ϵ) for any
ϵ > 0 and positive integer d. This result is precisely formalized in Theorem 2. Vertex
Cover therefore does not admit a kernel that is uniformly polynomial in the value of d. The
phenomenon that the degree of the kernel size for Vertex Cover has to increase when
using smaller and smaller structural parameterization is well-known [8].

▶ Theorem 2. For every ϵ > 0 and every positive integer d, Vertex Cover/d-COC has
no compression of vertex size O(kd−ϵ) unless co-NP ⊆ NP/poly.

Our methods

In order to construct a kernel for c-COC/d-COC, our algorithm employs the Expansion
Lemma, a combinatorial tool that played a crucial role in developing a quadratic kernel for the
Feedback Vertex Set problem. Given an input instance (G, M, k, t) of c-COC/d-COC,
we generate sets of “certifying families” for every subset T ⊆ M that correspond to certain
components in G − M . In particular, the idea is to understand the following. Suppose
we do not include any vertex from T in our solution. Then for which components C of
G − M do we need to select a strictly larger number of vertices than what is required to
locally solve the problem in C. These components (in fact, a subset of these) are part of
a certifying family corresponding to T . By utilizing these certifying families, we construct
a bipartite graph and apply the Expansion Lemma to identify an irrelevant component in
G − M . Through repeated applications of the Expansion Lemma, we can upper bound the
number of components in G − M by O(kd−c+1). Since the size of M is at most k, and each
component in G − M contains at most d vertices, we can bound the number of vertices in
the kernel to O(d · kd−c+1 + k) and the number of edges to O(d2 · kd−c+2 + k2). A summary
of the key steps in our kernelization algorithm is provided in Figure 1. Moreover, our lower
bound results are established through a parameter-preserving reduction from the d-SAT
problem.

IPEC 2023

5:4 Difference Determines the Degree: Structural Kernelizations of COC

2 Preliminaries

In this paper, we consider finite, undirected graphs. For a graph G, we use V (G) and
E(G) to refer to its vertex and edge sets, respectively. By |G| we denote the number of
vertices in G. We use comp(G) to denote the size of the largest component in G, defined as
comp(G) = max{|V (C)| : C is a component of G}. Thus, an n-vertex graph G is connected
if and only if comp(G) = n. Given two vertex-disjoint sets X and Y from V (G), the set
NX(Y) = N(Y) ∩ X represents the subset of vertices in X that has at least one neighbour
in Y . For any positive integer ℓ and a subgraph H ⊆ G, the ℓ-component order connectivity
of H, denoted as cocℓ(H), is defined as the size of the minimum set X ⊆ V (H) such that
comp(H − X) ≤ ℓ. In other words, we have cocℓ(H) = min{|X| : comp(H − X) ≤ ℓ, X ⊆
V (H)}. We use [q] to denote the set {1, . . . , q}. For details on parameterized complexity,
kernelization, and compression we refer to the textbooks [3] and [6].

3 Kernelization

We represent an instance of c-COC/d-COC as (G, M, k, t), where G is a graph, M ⊆ V (G) is
a subset of vertices with size at most k, and comp(G− M) ≤ d. Recall that the problem seeks
to determine whether there exists a set S ⊆ V (G) of size at most t such that comp(G−S) ≤ c.
We use C to denote the set of all components in G − M . For any component C in C, since
|C| ≤ d, we have cocc(C) ≤ d − c, where cocc(C) denotes the size of the smallest vertex
set X ⊆ V (C) such that comp(C − X) ≤ c. Let Cℓ = {C | C ∈ C and cocc(C) = ℓ} denote
the set of components C in G − M for which the size of a smallest c-coc is ℓ. It is possible
for the set Cℓ to be empty. Note that for each C ∈ C, cocc(C) ≤ d − c. Consequently, for
each ℓ > d − c, we have Cℓ = ∅. In the subsequent section, we show that the number of
components in Cℓ, for any ℓ ∈ {0, 1, . . . , d − c}, can be upper bounded by O(kd−c+1) (after
the application of certain reduction rules). Once this is accomplished the bounds on the
number of vertices and edges in the kernel follow immediately, as each component has at
most d vertices. Hence, in the remaining we focus on bounding the size of each set Cℓ.

Note that the family Cℓ can be constructed in polynomial time. Indeed, for each component
C of G − M , the value of cocc(C) can be computed in 2|C| · |C|O(1) time by considering all
possible subsets of C as c-coc sets. Given that |C| ≤ d for each connected component C, the
computation of cocc(C) can be done in time that only depends on d (which is a constant).
Recall that (G, M, k, t) represents an instance of c-COC/d-COC. Consider a vertex set
T ⊆ M and a component C ∈ Cℓ. We use local(T, C) to denote the size of the smallest
set X ⊆ V (C) such that comp(C − X) ≤ c and NC(T) ⊆ X, where NC(T) = N(T) ∩ V (C).
Informally, local(T, C) represents the size of the smallest solution corresponding to cocc(C)
in G[C] that must include all the neighbors of T in C. Notably, for any pair T and C, the
value of local(T, C) can be computed in 2|C| · |C|O(1) time by examining all subsets of
C that are supersets of the neighborhood of T in C, considering them as solution sets of
G[C], and determining the minimum possible set among them. Since cocc(C) = ℓ for each
component C ∈ Cℓ, we make the following observation.

▶ Observation 3. For each pair (T, C) where T ⊆ M and C ∈ Cℓ, we have local(T, C) ≥ ℓ.

Certifying family for a fixed ℓ. Let T = {T | T ⊆ M and |T | ≤ ℓ + 1} denote the set
of all subsets of M of size at most (ℓ + 1). We refer to each T ∈ T as an unordered tuple
of size |T |. For every T ∈ T , we define a set of components FT associated with T as

S. Bhyravarapu, S. Jana, S. Saurabh, and R. Sharma 5:5

FT = {C : C ∈ Cℓ, local(T, C) > ℓ}. We refer to such a family FT as a certifying family for
T . Essentially, if C ∈ FT , then there exists no solution of G[C] corresponding to cocc(C) of
size ℓ that includes all the neighbors of T in C.

Given two disjoint vertex sets V1 and V2, the boundary of V1 with respect to V2, denoted by
bdryV2

(V1), is defined as the set N(V2) ∩ V1. We present two key lemmas that are crucial
for our analysis.

▶ Lemma 4. Let C ∈ Cℓ such that |bdryM (C)| ≥ ℓ + 1. Then there exists T ∈ T satisfying
C ∈ FT .

Proof. Since C ∈ Cℓ, an optimal c-coc set in G[C] has size ℓ but each c-coc set containing
NG(T) ∩ C has size more than ℓ because |NC(T)| > ℓ. Now consider an arbitrary set
C∗ ⊆ bdryM (C) of size (ℓ+1). Let U ⊆ NM (C) be a set containing a neighbor of each vertex
in C∗ (arbitrarily select a neighbor of each vertex in C∗). Clearly, the size of |U | ≤ ℓ + 1
and C∗ ⊆ NC(U). According to the definition of a certifying family, the component C is
associated with U .

This concludes the proof. ◀

▶ Lemma 5. Let C ∈ Cℓ be a component with the property that |bdryM (C)| ≤ ℓ. Then either
there exists a tuple T ∈ T such that C ∈ FT , or there exists a vertex set U ⊆ V (C) with
|U | = ℓ, satisfying bdryM (C) ⊆ U and comp(C − U) ≤ c.

Proof. Consider the vertex set NM (C) ⊆ M . Let X ⊆ NM (C) be a set containing a neighbor
of each vertex in bdryM (C) (arbitrarily select a neighbor of each vertex in bdryM (C)). Clearly,
the size of |X| ≤ |bdryM (C| ≤ ℓ. Furthermore, we have NC(X) = bdryM (C).

If C belongs to the certifying family FX , then our assertion is proven. So we assume
that C /∈ FX . According to the definition of FX , this implies local(X, C) = ℓ. Therefore,
there exists a solution U associated with local(X, C) such that U ⊆ V (C), |U | = ℓ,
bdryM (C) ⊆ U , and comp(C − U) ≤ c. ◀

Lemmas 4 and 5, essentially, say that a component C of G − M is not in any certifying
family if there exists a minimum size local solution for the component C that contains all
the boundary vertices (bdryM (C)). This observation leads to the following reduction rule.

▶ Reduction Rule 1. Consider a component C ∈ Cℓ for which there is no tuple T ∈ T that
satisfies that C ∈ FT . Then we remove C from the graph G and reduce the value of t by ℓ.
The resulting instance is (G − C, M, k, t − ℓ).

To apply Reduction Rule 1 finding such a component takes kℓ+1 · 2d · nO(1) time. The
correctness of the Reduction Rule 1 follows from the following Lemma 6.

▶ Lemma 6. Reduction Rule 1 is safe.

Proof. The forward direction is straightforward. Let S be a solution to the instance
(G, M, k, t). Since G − C is a subgraph of G and cocc(C) = ℓ, there are at least ℓ vertices of
C in S. Therefore, S \ C is a solution for (G − C, M, k, t − ℓ).

In the backward direction, let S1 be a solution to (G−C, M, k, t−ℓ). We aim to show that
there exists a vertex set Z ⊆ V (C) such that |Z| = ℓ and S ∪ Z is a solution to (G, M, k, t).
We consider two cases based on the size of bdryM\S1

(C).

Case 1. bdryM\S1
(C) ≥ ℓ + 1. Based on Lemma 4, there exists T ∈ T such that T ⊆ M ,

|T | ≤ (ℓ + 1), and C ∈ FT . This contradicts our assumption that there is no T ∈ T
satisfying C ∈ FT .

IPEC 2023

5:6 Difference Determines the Degree: Structural Kernelizations of COC

Case 2. bdryM\S1
(C) ≤ ℓ. Based on Lemma 5, we have two possibilities: either there

exists T ∈ T such that |T | ⊆ M \ S1, |T | ≤ (ℓ + 1), and C ∈ FT , or there is a vertex set
U ⊆ V (C) satisfying |U | = ℓ, bdryM\S1

(C) ⊆ U , and comp(C − U) ≤ c. However, based
on our assumption, the former condition cannot occur. Therefore, there must exist a
vertex set U ⊆ V (C) satisfying |U | = ℓ, bdryM\S1

(C) ⊆ U , and comp(C − U) ≤ c. In
this case, we set Z = U .

This completes the proof. ◀

Expansion Lemma. From now onwards, we assume that we have an instance (G, M, k, t) of
c-COC/d-COC, on which we have applied Reduction Rule 1 exhaustively. Now, we bound
the number of components in Cℓ using the expansion lemma in strengthened form of [16].
Let us first recall the definition of expansion and the expansion lemma.

▶ Definition 7 (q-expansion [3]). Let H be a bipartite graph with vertex bipartition (X, Y)
and q be a positive integer. A set of edges E∗ ⊆ E(H) is called a q-expansion of X into Y

if (i) each vertex of X is incident with exactly q edges of E∗, and (ii) E∗ saturates exactly
q|X| vertices in Y .

▶ Lemma 8 (Expansion Lemma [[3], Lemma 2.18]). Let q ∈ N and G be a bipartite graph
with vertex bipartition (P, Q) such that |Q| > q · |P | and there are no isolated vertices in Q.
Then there exist nonempty vertex sets X ⊆ P and Y ⊆ Q such that (i) X has a q-expansion
E∗ into Y , (ii) no vertex in Y has a neighbor outside X. Furthermore, two such sets X and
Y and such vertex w can be found in the time that is polynomial in the size of G.

Next we mention q–Expansion Lemma given by Fomin et al. [5] which is a generalization
of a result due to Thomass´e [[17], Theorem 2.3].

▶ Lemma 9 (The q-Expansion Lemma [[5], Lemma 5.1]). Let q ∈ N and G be a bipartite
graph with vertex bipartition (P, Q) such that |Q| > q · t, where t is the size of a maximum
matching in G, and there are no isolated vertices in Q. Then there exist nonempty vertex
sets X ⊆ P and Y ⊆ Q such that (i) X has a q-expansion E∗ into Y , (ii) no vertex in Y

has a neighbor outside X. Furthermore, two such sets X and Y and such vertex w can be
found in the time that is polynomial in the size of G.

For our purpose we use the expansion lemma in strengthened form given by Philip et
al. [16] which is following.

▶ Lemma 10 (Strong q-Expansion Lemma [[16], Lemma 5]). Let q ∈ N and G be a bipartite
graph with vertex bipartition (P, Q) such that |Q| > q · t, where t is the size of a maximum
matching in G, and there are no isolated vertices in Q. Then there exist nonempty vertex
sets X ⊆ P and Y ⊆ Q such that (i) X has a q-expansion E∗ into Y , (ii) no vertex in Y

has a neighbor outside X, and (iii) there is a vertex w ∈ Y such that w is not incident to
any edge in E∗ (or, E∗ does not saturate w). Furthermore, two such sets X and Y and such
vertex w can be found in the time that is polynomial in the size of G.

Note that the statement of Lemma 10 remains valid even for |Q| > q · |P |, as |P | ≥ t.
Now, in order to apply the expansion lemma, we first construct an auxiliary bipartite graph
where this lemma is applied.

S. Bhyravarapu, S. Jana, S. Saurabh, and R. Sharma 5:7

Â

B̂

t1
t2 t3

Figure 2 An example of 4-expansion from Â into B̂. t1, t2, t3 represents vertices of corresponding
tuples in T

Â
. The red-colored vertices denote the solution vertices from the modulator.

Construction of an auxiliary bipartite graph H = (A, B). Let us recall the set T , which
consists of all subsets of M with size at most ℓ + 1, and the corresponding certifying families
{FT : T ∈ T }. We will now construct a bipartite graph H with vertex partitions A and B

using the following procedure:
For each tuple Ti ∈ T , we introduce a vertex ti in the part A.
For each component Cj ∈ Cℓ, we include a vertex cj in the part B.
For each pair of vertices ti ∈ A and cj ∈ B, we add an edge ticj in H if and only if Cj

belongs to the certifying family FTi
.

We are now ready to give the reduction rule. From this point onwards, we fix the following
value for q.

q = (ℓ + 2) + c(ℓ + 1)

Consider the bipartite graph H = (A, B) that was constructed above. It is important to
note that if the instance (G, M, k, t) is reduced using Reduction Rule 1, then there are no
isolated vertices in the vertex set B.

▶ Reduction Rule 2. If |B| > q · |A|, then call the algorithm provided by the Expansion
Lemma to compute sets Â ⊆ A and B̂ ⊆ B such that

no vertex in B̂ has a neighbor outside Â, i.e., N(B̂) ⊆ Â,
there is a q-expansion Ê from Â into B̂, and
there is a vertex b ∈ B̂ such that b is not incident with Ê.

Consider the component C ∈ Cℓ corresponding to the vertex b in B. Then we remove C from
the graph G and reduce the value of t by ℓ. The resulting instance is (G − C, M, k, t − ℓ).

Before analyzing the safeness of Reduction Rule 2, we look at the following lemma.

▶ Lemma 11. Suppose Ê represents a q-expansion from Â into B̂, and let b be a vertex in B̂

that satisfies the condition of Reduction Rule 2. Further, let S1 be a solution to the problem
(G−C, M, k, t−ℓ). Then, there exists another solution S2 of (G−C, M, k, t−ℓ) that satisfies
the following properties: (i) |S2| ≤ |S1|; (ii) for each vertex ti in Â, S2 intersects with the
corresponding vertex set Ti ⊆ M , that is S2 ∩ Ti ̸= ∅.

Proof. Let T
Â

be the set of tuples corresponding to the vertices in Â. Let T1 be a subset of
T

Â
, containing those tuples T for which T intersects with S1 (i.e., T ∩ S1 ≠ ∅). On the other

hand, let T2 be defined as the set of tuples in T
Â

that are not in T1, i.e., T2 = T
Â

\ T1. In
other words, T2 comprises all the tuples T from T

Â
that satisfy T ∩ S1 = ∅.

IPEC 2023

5:8 Difference Determines the Degree: Structural Kernelizations of COC

For each vertex ti in Â that corresponds to a tuple in the set T2, we define two sets: C1,ti

and C2,ti
. The set C1,ti

consists of each component Cj in Cℓ such that ticj is an edge in Ê

and |V (Cj) ∩ S1| = ℓ. The set C2,ti
consists of each component Cj in Cℓ such that ticj is an

edge in Ê and |V (Cj) ∩ S1| ≥ ℓ + 1. For an illustration see Figure 2.
First we show that |C1,ti

| < c(ℓ+1). On the contrary, assume that |C1,ti
| ≥ c(ℓ+1). For any

component Cj belonging to C1,ti , we observe that cjti ∈ Ê implies Cj ∈ FTi . Consequently, it
follows that local(Ti, Cj) > ℓ. However, since Cj ∈ C1,ti

, we have |Cj ∩ S1| = ℓ. Hence, we
conclude that NCj (Ti)\S1 ̸= ∅. Thus there always exists a vertex x ∈ Ti and y ∈ (NCj (Ti)\S1)
such that xy ∈ E(G). As |C1,ti

| ≥ c(ℓ + 1), we can select a vertex each from each of the
components in C1,ti

and obtain a set Y containing c(ℓ + 1) vertices from G − M , where
Y ∩S1 = ∅ and each vertex y ∈ Y has a neighbor in T1. Since, |Ti| ≤ ℓ+1 (since Ti ∈ T), and
Ti ∩ S1 = ∅, we can deduce, by applying the pigeon-hole principle, the existence of a vertex x

in Ti such that degG−C−S1(x) ≥ c. Consequently, we have a component of size at least c + 1
in G − S1. This contradicts the fact that S1 is a solution for the c-COC/d-COC problem on
the instance (G − C, M, k, t − ℓ). Therefore, we can conclude that |C1,ti | ≤ c(ℓ + 1).

Given that q = (ℓ + 2) + c(ℓ + 1), and |C1,ti
| ≤ c(ℓ + 1), we can deduce that |C2,ti

| ≥ ℓ + 2.
We denote the set of all vertices contained in some tuple in T2 as V (T2), defined formally as
V (T2) := {v | ∃ T ∈ T2 : v ∈ M ∩ T}. Now, we propose a new solution denoted as S2. Let
U =

⋃
i V (C2,ti

) and C′ =
⋃

i C2,ti
.

S2 =
(
S1 \ U

) ⋃
V (T2)

⋃
Cj∈C′

Zj ,

Here, Zj ⊆ V (Cj) represents a set (the exact choice of Zj is deferred to later in the proof)
that corresponds to cocc(Cj). Here we want to mention that we do not want to choose an
arbitrary ℓ-size coc in G[Cj]: rather we want to choose one that contains the neighborhood
of (M \ (S1 ∪ V (T2)) in Cj . We define a set X to correspond to cocc(H) if |X| = cocc(H)
and comp(H − X) ≤ c. Recall that cocc(Cj) = ℓ.

Towards the proof, we need to establish two conditions: firstly, |S2| ≤ |S1|, and secondly,
that S2 is a solution of (G − C, M, k, t − ℓ).

(i) |S2| ≤ |S1|. In this comparison, we are examining the sizes of S1 and S2. Observe that
we are only editing (deleting or adding) vertices that appear in the tuples in T2 and the
components C2,ti where ti corresponds to a specific tuple Ti in T2. Let us define the size
of the solution outside T2 and C2,ti

as f . We also define r as the sum of the sizes of C2,ti

for all relevant tuples Ti ∈ T2, i.e., r =
∑

i |C2,ti |. Since |C2,ti | ≥ ℓ + 2, we can conclude
that r ≥ (ℓ + 2) · |T2|. Based on these definitions, we can establish that |S1| ≥ f + r(ℓ + 1)
and |S2| = f + |V (T2)| + rℓ. Now according to the definition of a certifying family, we
have |V (T2)| ≤ (ℓ + 1) · |T2|.
Now,

|S2| = f + rℓ + |V (T2)|
≤ f + rℓ + (ℓ + 1) · |T2|
≤ f + rℓ + (ℓ + 2) · |T2|
≤ f + rℓ + r

≤ f + r(ℓ + 1)
≤ |S1|

(ii) S2 is a solution of (G − C, M, k, t − ℓ). Next, we show that S2 serves as a solution
for (G − C, M, k, t − ℓ). We analyze a component Cj ∈ C2,ti

. There are two possible
scenarios depending on the size of bdryM\S2

(Cj).

S. Bhyravarapu, S. Jana, S. Saurabh, and R. Sharma 5:9

bdryM\S2
(Cj) ≤ ℓ.

Based on Lemma 5, we can have two possibilities. Either there exists a tuple Ti ⊆
M \ S2 such that |Ti| ≤ (ℓ + 1) and Cj belongs to the certifying family FT , or
there exists a vertex set U ⊆ V (Cj) that satisfies the following conditions: |U | = ℓ,
bdryM\S2

(Cj) ⊆ U , and comp(Cj − U) ≤ c.
If there is a Ti belonging to T such that Cj is in FTi , it and Cj ∈ C2,ti implies that
ti must be a part of Â. However, this leads to a contradiction because it means Ti

has a non-empty intersection with S2, which contradicts the fact that Ti is a subset
of M \ S2.
If there exists a subset U of the vertex set V (Cj) such that |U | = ℓ, bdryM\S2

(Cj) ⊆
U and comp(Cj − U) ≤ c, then we can define the set Zj as U , which represents the
set corresponding to cocc(Cj).

bdryM\S2
(Cj) ≥ ℓ + 1.

Lemma 4 guarantees the existence of Ti ∈ T that fulfills the following conditions:
Ti ⊆ M \ S2, |Ti| ≤ (ℓ + 1), and Cj ∈ FT . As a result, ti must belong to Â according
to Lemma 10. However, this implies that Ti ∩ S2 cannot be empty, which contradicts
the fact that Ti is a subset of M \ S2.

when Cj ∈ C1,ti
, the vertices S1 ∩ Cj ⊆ S2 and no neighbor of Cj \ S1 have been added to

S1. So we are fine for this case. Hence the proof follows. ◀

The correctness of Reduction Rule 2 follows from the lemma below.

▶ Lemma 12. Reduction Rule 2 is safe.

Proof. The forward direction is straightforward. Suppose S is a solution to the instance
(G, M, k, t). Given that G − C is a subgraph of G and cocc(C) = ℓ, we can conclude that S

contains at least ℓ vertices from C. Hence, S \ C forms a solution for (G − C, M, k, t − ℓ).
In the backward direction, let S1 represent a solution for (G − C, M, k, t − ℓ). We will

show that there exists a vertex set Z ⊆ V (C) such that S ∪Z forms a solution for (G, M, k, t).
Consider the sets Â, B̂, and Ê that satisfy the assumptions outlined in Reduction Rule 2.
Within these assumptions, there exists a vertex b ∈ B̂ associated with a vertex w ∈ Â.
Specifically, T ⊆ N(C) and local(T, C) ≥ ℓ + 1, where C represents the component in Cℓ

corresponding to the vertex b in B, and T ⊆ M is the tuple associated with the vertex w.
However, due to the property of Ê, there is no edge e ∈ Ê in which w and b are the endpoints.
At this point, we invoke the algorithm provided by Lemma 11 to compute the set S2. As per
Lemma 11, for each t′ ∈ Â, we have S2 ∩ T ′ ̸= ∅, where T ′ ⊆ M represents the vertex set
associated with the vertex t′ in Â. Depending on the size of bdryM\S2

(C), we encounter two
cases.

Case 1. bdryM\S2
(C) ≥ ℓ + 1. By applying Lemma 4, we can establish the existence

of Ti ∈ T that satisfies the following conditions: Ti ⊆ M \ S2, |Ti| ≤ (ℓ + 1), and
C ∈ FT . Consequently, ti must belong to Â (based on the Expansion Lemma, b ∈ B̂

and N(B̂) ⊆ Â). However, this implies that Ti ∩ S2 ̸= ∅, which contradicts the fact that
Ti ⊆ M \ S2.

Case 2. bdryM\S2
(C) ≤ ℓ. Using Lemma 5, we can conclude that one of the following two

cases holds: Either there exists Ti ⊆ M \ S2, where |Ti| ≤ (ℓ + 1) and C ∈ FT , or, there
exists a vertex set U ⊆ V (C) satisfying |U | = ℓ, bdryM\S2

(C) ⊆ U , and comp(C −U) ≤ c.
If there exists Ti ∈ T such that C ∈ FTi , then it follows that ti must be in Â. However,
this implies that Ti ∩ S2 ̸= ∅, which contradicts the fact that Ti ⊆ M \ S2.

IPEC 2023

5:10 Difference Determines the Degree: Structural Kernelizations of COC

In the case where there exists a vertex set U ⊆ V (C) that satisfies the conditions
|U | = ℓ, bdryM\S2

(C) ⊆ U , and comp(C − U) ≤ c, we can set Z equal to U .

This completes the proof. ◀

Putting them all together, we get the following theorem.

▶ Theorem 1. c-COC/d-COC admits a kernel with O(kd−c+1) vertices and O(kd−c+2)
edges.

Proof. Consider the instance of the c-COC/d-COC problem denoted as (G, M, k, t). We
begin by partitioning all the components C into a maximum of d − c parts denoted as
C1, C2, . . . , Cd−c. Each part Cℓ is defined as the collection of components C in G − M

satisfying cocc(C) = ℓ, where ℓ ∈ [d − c]. In other words, Cℓ contains components C for
which the minimum-sized set X ⊆ V (C) that guarantees comp(C − X) ≤ c is exactly ℓ.
Towards solving the problem, we initially focus on each set Cℓ individually, aiming to reduce
the number of components contained within each set.

We exhaustively apply Reduction Rules 1 and 2 to the set Cℓ for each ℓ ≤ d − c. Each
reduction rule is capable of removing at least one vertex from the graph and can be executed
in polynomial time. The running time of the algorithm takes into account the time required
for applying Reduction Rule 2 as well as constructing the auxiliary bipartite graph, which
facilitates the application of the expansion lemma. The construction of the bipartite graph
can be accomplished in kd−c+1 · nO(1) time. Consequently, the entire kernelization procedure
runs within polynomial time, specifically nO(1). The output of the algorithm is the resulting
instance (G′, M ′, k′, t′), which is guaranteed to be a kernel, meaning that no further reduction
can be applied to it. The correctness of the algorithm is derived from the proofs establishing
the safeness of the reduction rules (Lemmas 6 and 12).

We now argue about the size of the kernel. When Reduction Rules 1 and 2 are not
applicable, we can establish that |B| ≤ q · |A|, where q = (ℓ + 2) + c(ℓ + 1), and A and B

represent the vertex sets of the auxiliary bipartite graph. Recall that each vertex a ∈ A

corresponds to a set of at most ℓ + 1 ≤ (d − c) + 1 vertices from M , and each vertex b ∈ B

corresponds to a set of at most d vertices. Consequently, we have |A| ≤ O(kd−c+1) and
|B| ≤ O(kd−c+1). By combining these bounds, we can deduce that the size of the vertex set
in the reduced instance (G′, M ′, k′, t′) is upper bounded by O(kd−c+1). Additionally, the
degree of each vertex in M ′ is bounded by k +(d ·O(kd−c+1)), while the degree of each vertex
in G′ − M ′ is bounded by k + d. As a result, the size of the edge set in the reduced instance
is upper bounded by O(kd−c+2). In conclusion, the size of the vertex set in the reduced
instance is upper bounded by O(kd−c+1), and the size of the edge set is upper bounded by
O(kd−c+2). Hence the proof follows. ◀

4 Kernel Lower bound

In this section, we show a lower bound for the size of the kernel of the problem we considered in
this paper, under some complexity-theoretic assumptions. We prove it by giving a parameter
preserving transformation from d-CNF-SAT to c-COC/d-COC and using the Vertex
Cover kernelization lower bound due to Dell and Van Melkebeek [4].

Given a CNF formula where each clause has at most d literals, the d-CNF-SAT problem
asks to find a boolean assignment of values to the variables such that each clause is satisfiable.
The following two theorems are known due to Dell and Van Melkebeek [4].

S. Bhyravarapu, S. Jana, S. Saurabh, and R. Sharma 5:11

▶ Theorem 13 (Lower Bound for d-CNF-SAT [4]). Let d ≥ 3 be an integer. For any ϵ > 0,
the d-CNF-SAT problem parameterized by the number of variables (n) does not admit a
polynomial compression with size O(nd−ϵ), unless co-NP ⊆ NP/poly.

▶ Theorem 14 (Lower Bound for Vertex Cover [4]). For any ϵ > 0, the Vertex Cover
problem parameterized by the solution size (k) does not admit a polynomial compression with
size O(k2−ϵ), unless co-NP ⊆ NP/poly.

▶ Definition 15 (Parameter preserving transformation (PPT)). Let Π1 and Π2 be two para-
meterized problems. We say that there exists a parameter preserving transformation from
Π1 to Π2 if there exists a polynomial time algorithm B that given an instance (x, k) of Π1,
constructs an instance (x′, k′) of Π2 such that

(x, k) ∈ Π1 if and only if (x′, k′) ∈ Π2, and
k′ ≤ O(k).

Below we provide a parameter preserving transformation from d-CNF-SAT to c-COC/d-
COC when c = 1. In particular, we prove the following lemma.

▶ Lemma 16 (Reduction from d-CNF-SAT to Vertex Cover/d-COC). There exists a
parameter preserving transformation from the d-CNF-SAT parameterized by the number of
variables to Vertex Cover/d-COC. In the Vertex Cover/d-COC problem, the size of
the modulator is twice the number of variables present in the d-CNF-SAT formula.

Proof. Let Φ be a d-CNF formula, an instance of d-CNF-SAT, consisting of n variables,
denoted as {x1, x2, . . . , xn}, and m clauses {C1, C2, . . . , Cm}. Since Φ is a d-CNF formula,
each clause contains at most d literals. We construct an instance (G, k, t) for Vertex
Cover/d-COC using the following construction:

For each variable x, we introduce two vertices denoted as x1 and x2, and connect them
with an edge (x1, x2).
For a clause Cj consisting of dj literals, we include a clique of size dj . Within the clique,
we label the vertices as follows: a vertex is named vi,j if the literal xi or xi is present in
clause Cj .
For every i ∈ [n], j ∈ [m], if xi is a literal in clause Cj , we add the edge (xi, vi,j). Similarly,
if xi is a literal in clause Cj , we add the edge (xi, vi,j).

▷ Claim 17. There exists a vertex subset S ⊆ V (G) of size 2n such that comp(G − S) ≤ d.

Proof. Let S be defined as the set containing elements xi and xi for all i ∈ [n]. Clearly
|S| = 2n. Considering the construction of graph G, it can be observed that every component
in G − S forms a clique with a maximum size of d. Therefore, we have comp(G − S) ≤ d.

◁

▷ Claim 18. Φ is satisfiable if and only if G has a vertex cover of size n − m +
∑m

i=1 |Ci|.

Proof. In the forward direction, assuming that Φ is satisfiable, we show the existence of
a vertex cover in G with a size of n − m +

∑m
i=1 |Ci|. To construct this vertex cover, we

proceed as follows:
For every variable x, we include x in the set S if it is assigned the value true in the
satisfying assignment. Otherwise, we add x to S.
For each clause Cj , assuming that variable xa makes clause Cj satisfiable, we add all
vertices from the corresponding clique to S except for the vertex va,j .

IPEC 2023

5:12 Difference Determines the Degree: Structural Kernelizations of COC

It is evident that the set S constructed as described above forms a vertex cover. Further-
more, the size of S is bounded by n − m +

∑m
i=1 |Ci| due to the construction process.

In the backward direction, let R be a vertex cover of G with a size of n − m +
∑m

i=1 |Ci|.
Since any vertex cover in Ci must have size at least |Ci| − 1, it follows that for each i, exactly
one of xi and xi is present in R. Now, we construct an assignment β for the variables in Φ
as follows: we set xi to true if xi is in R, and we set xi to false otherwise. Our objective
is to show that β satisfies all the clauses. Consider the clique corresponding to clause Cj .
We observe that exactly dj − 1 vertices are present in R. Therefore, there exists a vertex,
denoted as va,j , which is not in R. However, since R is a vertex cover, it must contain the
vertex xa in order to cover the edge (va,j , xa). Since xa is assigned the value true, the literal
xa satisfies the clause Cj . Hence, every clause in Φ is satisfied by the assignment β. ◁

As the transformation of d-CNF-SAT to Vertex Cover/d-COC can be performed in
nO(1) time, the lemma follows from the above two claims. ◀

Now we have the following theorem.

▶ Theorem 2. For every ϵ > 0 and every positive integer d, Vertex Cover/d-COC has
no compression of vertex size O(kd−ϵ) unless co-NP ⊆ NP/poly.

Proof. Our proof is divided into three cases in order to prove that, for any ϵ > 0 and an
integer d ∈ N, there exists no polynomial time algorithm that can transform a given instance
of Vertex Cover/d-COC to an equivalent instance of any arbitrary problem with O(kd−ϵ)
bits, unless co-NP ⊆ NP/poly.

Case 1. d = 1. In the case where d = 1, the problem known as Vertex Cover/1-COC
refers to the Vertex Cover problem parameterized by solution size. In this particular
case, the result stated in Theorem 14 proves the theorem.

Case 2. d = 2. We can observe that the size of a 2-COC set is at most the size of a minimum
vertex cover of the graph. As a result, 2-COC can be considered a parameter smaller
than 1-COC (vertex cover). Therefore, if Vertex Cover/2-COC admits a compression
of O(k2−ϵ) bits, it would imply that the Vertex Cover problem parameterized by the
solution size also has a compression of O(k2−ϵ) bits. However, this contradicts the result
stated in Theorem 14.

Case 3. d ≥ 3. Suppose we have an instance (G, k, t) of Vertex Cover/d-COC, where
d ≥ 3, and there exists a polynomial time algorithm A that can transform (G, k, t)
into an equivalent instance I of an arbitrary problem L such that I can be represented
using O(kd−ϵ) bits. To demonstrate the implications of this assumption, let us consider
an instance Π of d-CNF-SAT with n variables and m clauses. First, we utilize the
polynomial time algorithm described in Lemma 16 to transform Π into an instance
(G, 2n, n +

∑m
j=1 dj − 1) of Vertex Cover/d-COC. Next, we apply the algorithm A to

this transformed instance (G, 2n, n +
∑m

j=1 dj − 1), resulting in an equivalent instance
I of problem L. Based on our assumption, we know that I can be represented using
O(2nd−ϵ) = O(nd−ϵ) bits. However, this leads to a contradiction with co-NP ⊆ NP/poly,
as stated in Theorem 13.

This completes the proof. ◀

S. Bhyravarapu, S. Jana, S. Saurabh, and R. Sharma 5:13

5 Conclusion

In this paper, we show that c-COC/d-COC admits a polynomial kernel with O(kd−c+1)
vertices and O(kd−c+2) edges, where k is the size of the minimum d-coc set. Importantly,
we observe that the degree of the polynomial in the kernel size is solely determined by the
difference between d and c, and is independent of the specific values of d and c. Furthermore,
we establish that obtaining a uniform kernel for the problem, where the exponent of k is inde-
pendent of d−c, is unlikely under reasonable complexity assumptions. This result contributes
valuable insights to the field of kernelization for Vertex Cover, particularly regarding
c-Component Order Connectivity, when considering parameterizations smaller than
the conventional solution size.

References
1 Marin Bougeret, Bart M. P. Jansen, and Ignasi Sau. Bridge-depth characterizes which minor-

closed structural parameterizations of vertex cover admit a polynomial kernel. SIAM J. Discret.
Math., 36(4):2737–2773, 2022. doi:10.1137/21m1400766.

2 Marin Bougeret and Ignasi Sau. How much does a treedepth modulator help to obtain
polynomial kernels beyond sparse graphs? Algorithmica, 81(10):4043–4068, 2019. doi:
10.1007/s00453-018-0468-8.

3 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

4 Holger Dell and Dieter van Melkebeek. Satisfiability allows no nontrivial sparsification unless the
polynomial-time hierarchy collapses. J. ACM, 61(4):23:1–23:27, 2014. doi:10.1145/2629620.

5 Fedor V. Fomin, Daniel Lokshtanov, Neeldhara Misra, Geevarghese Philip, and Saket Saurabh.
Hitting forbidden minors: Approximation and kernelization. SIAM J. Discret. Math., 30(1):383–
410, 2016. doi:10.1137/140997889.

6 Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi. Kernelization: Theory
of Parameterized Preprocessing: Theory of parameterized preprocessing. Cambridge University
Press, United Kingdom, 2019. Publisher Copyright: © Fedor V. Fomin, Daniel Lokshtanov,
Saket Saurabh, and Meirav Zehavi 2019. doi:10.1017/9781107415157.

7 Fedor V. Fomin and Torstein J. F. Strømme. Vertex cover structural parameterization
revisited. In Pinar Heggernes, editor, Graph-Theoretic Concepts in Computer Science - 42nd
International Workshop, WG 2016, Istanbul, Turkey, June 22-24, 2016, Revised Selected
Papers, volume 9941 of Lecture Notes in Computer Science, pages 171–182, 2016. doi:
10.1007/978-3-662-53536-3_15.

8 Archontia C. Giannopoulou, Bart M. P. Jansen, Daniel Lokshtanov, and Saket Saurabh.
Uniform kernelization complexity of hitting forbidden minors. ACM Trans. Algorithms,
13(3):35:1–35:35, 2017. doi:10.1145/3029051.

9 Eva-Maria C. Hols and Stefan Kratsch. Smaller parameters for vertex cover kernelization.
In Daniel Lokshtanov and Naomi Nishimura, editors, 12th International Symposium on
Parameterized and Exact Computation, IPEC 2017, September 6-8, 2017, Vienna, Austria,
volume 89 of LIPIcs, pages 20:1–20:12. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2017. doi:10.4230/LIPIcs.IPEC.2017.20.

10 Bart M. P. Jansen and Hans L. Bodlaender. Vertex cover kernelization revisited - upper
and lower bounds for a refined parameter. Theory Comput. Syst., 53(2):263–299, 2013.
doi:10.1007/s00224-012-9393-4.

11 Stefan Kratsch. A randomized polynomial kernelization for vertex cover with a smaller
parameter. SIAM J. Discret. Math., 32(3):1806–1839, 2018. doi:10.1137/16M1104585.

12 Stefan Kratsch and Magnus Wahlström. Representative sets and irrelevant vertices: New tools
for kernelization. J. ACM, 67(3):16:1–16:50, 2020. doi:10.1145/3390887.

IPEC 2023

https://doi.org/10.1137/21m1400766
https://doi.org/10.1007/s00453-018-0468-8
https://doi.org/10.1007/s00453-018-0468-8
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1145/2629620
https://doi.org/10.1137/140997889
https://doi.org/10.1017/9781107415157
https://doi.org/10.1007/978-3-662-53536-3_15
https://doi.org/10.1007/978-3-662-53536-3_15
https://doi.org/10.1145/3029051
https://doi.org/10.4230/LIPIcs.IPEC.2017.20
https://doi.org/10.1007/s00224-012-9393-4
https://doi.org/10.1137/16M1104585
https://doi.org/10.1145/3390887

5:14 Difference Determines the Degree: Structural Kernelizations of COC

13 Mithilesh Kumar and Daniel Lokshtanov. A 2lk kernel for l-component order connectivity.
In Jiong Guo and Danny Hermelin, editors, 11th International Symposium on Parameterized
and Exact Computation, IPEC 2016, August 24-26, 2016, Aarhus, Denmark, volume 63 of
LIPIcs, pages 20:1–20:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016. doi:
10.4230/LIPIcs.IPEC.2016.20.

14 Michael Lampis. A kernel of order 2 k-c log k for vertex cover. Inf. Process. Lett., 111(23-
24):1089–1091, 2011. doi:10.1016/j.ipl.2011.09.003.

15 Diptapriyo Majumdar, Venkatesh Raman, and Saket Saurabh. Polynomial kernels for vertex
cover parameterized by small degree modulators. Theory Comput. Syst., 62(8):1910–1951,
2018. doi:10.1007/s00224-018-9858-1.

16 Geevarghese Philip, Varun Rajan, Saket Saurabh, and Prafullkumar Tale. Subset feedback
vertex set in chordal and split graphs. Algorithmica, 81(9):3586–3629, 2019. doi:10.1007/
s00453-019-00590-9.

17 Stéphan Thomassé. A 4k2 kernel for feedback vertex set. ACM Trans. Algorithms, 6(2):32:1–
32:8, 2010. doi:10.1145/1721837.1721848.

18 Mingyu Xiao. Linear kernels for separating a graph into components of bounded size. J.
Comput. Syst. Sci., 88:260–270, 2017. doi:10.1016/j.jcss.2017.04.004.

https://doi.org/10.4230/LIPIcs.IPEC.2016.20
https://doi.org/10.4230/LIPIcs.IPEC.2016.20
https://doi.org/10.1016/j.ipl.2011.09.003
https://doi.org/10.1007/s00224-018-9858-1
https://doi.org/10.1007/s00453-019-00590-9
https://doi.org/10.1007/s00453-019-00590-9
https://doi.org/10.1145/1721837.1721848
https://doi.org/10.1016/j.jcss.2017.04.004

The Parameterised Complexity Of
Integer Multicommodity Flow
Hans L. Bodlaender #

Utrecht University, The Netherlands

Isja Mannens #

Utrecht University, The Netherlands

Jelle J. Oostveen #

Utrecht University, The Netherlands

Sukanya Pandey #

Utrecht University, The Netherlands

Erik Jan van Leeuwen #

Utrecht University, The Netherlands

Abstract
The Integer Multicommodity Flow problem has been studied extensively in the literature.
However, from a parameterised perspective, mostly special cases, such as the Disjoint Path
problem, have been considered. Therefore, we investigate the parameterised complexity of the
general Integer Multicommodity Flow problem. We show that the decision version of this
problem on directed graphs for a constant number of commodities, when the capacities are given
in unary, is XNLP-complete with pathwidth as parameter and XALP-complete with treewidth as
parameter. When the capacities are given in binary, the problem is NP-complete even for graphs of
pathwidth at most 13. We give related results for undirected graphs. These results imply that the
problem is unlikely to be fixed-parameter tractable by these parameters.

In contrast, we show that the problem does become fixed-parameter tractable when weighted
tree partition width (a variant of tree partition width for edge weighted graphs) is used as parameter.

2012 ACM Subject Classification Mathematics of computing → Graph theory; Theory of computa-
tion → Graph algorithms analysis; Theory of computation → Problems, reductions and completeness

Keywords and phrases multicommodity flow, parameterised complexity, XNLP-completeness, XALP-
completeness

Digital Object Identifier 10.4230/LIPIcs.IPEC.2023.6

Related Version Full Version: https://doi.org/10.48550/arXiv.2310.05784

Funding Isja Mannens: The research of Isja Mannens was supported by the project CRACKNP
that has received funding from the European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme (grant agreement No 853234).
Jelle J. Oostveen: The research of Jelle Oostveen was supported by the NWO grant OCENW.KLEIN.
114 (PACAN).

1 Introduction

The Multicommodity Flow problem is the generalisation of the textbook flow problem
where instead of just one commodity, multiple different commodities have to be transported
through a network. The problem models important operations research questions (see
e.g. [32]). Although several optimisation variants of this problem exist [32], we consider
only the variant where for each commodity, a given amount of flow (the demand) has to be
sent from the commodity’s source to its sink, subject to a capacity constraint on the total

© Hans L. Bodlaender, Isja Mannens, Jelle J. Oostveen, Sukanya Pandey, and Erik Jan van Leeuwen;
licensed under Creative Commons License CC-BY 4.0

18th International Symposium on Parameterized and Exact Computation (IPEC 2023).
Editors: Neeldhara Misra and Magnus Wahlström; Article No. 6; pp. 6:1–6:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:h.l.bodlaender@uu.nl
https://orcid.org/0000-0002-9297-3330
mailto:i.m.e.mannens@uu.nl
https://orcid.org/0000-0003-2295-0827
mailto:j.j.oostveen@uu.nl
https://orcid.org/0009-0009-4419-3143
mailto:s.pandey1@uu.nl
https://orcid.org/0000-0001-5728-1120
mailto:e.j.vanleeuwen@uu.nl
https://orcid.org/0000-0001-5240-7257
https://doi.org/10.4230/LIPIcs.IPEC.2023.6
https://doi.org/10.48550/arXiv.2310.05784
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

6:2 The Parameterised Complexity of Integer Multicommodity Flow

amount flow through each arc. The nature and computational complexity of the problem
is highly influenced by the graph (undirected or directed, its underlying structure) and the
capacities, demands, and flow value (integral or not, represented in unary or binary). When
the flow values are allowed to be fractional, the problem can be trivially solved through a
linear program (see e.g. [22, 25]).

We focus on Integer Multicommodity Flow, where all the given capacities and
demands are integers and the output flow must be integral. The Integer Multicommodity
Flow problem is widely studied and well known to be NP-hard even if all capacities are 1,
on both directed and undirected graphs, even when there are only two commodities [11]. On
directed graphs, it is NP-hard even for two commodities of demand 1 [14]. These strong
hardness results have led to a range of heuristic solution methods as well as a substantial
body of work on approximation algorithms. For surveys, see e.g., [1, 32, 33].

An important special case of Integer Multicommodity Flow and the main source of
its computational hardness is the Edge Disjoint Paths problem. It can be readily seen
that Integer Multicommodity Flow is equivalent to Edge Disjoint Paths when all
capacities and demands are 1. Indeed, all aforementioned hardness results stem from this
connection. The Edge Disjoint Paths problem has been studied broadly in its own right (see
e.g. the surveys by Frank [16] and Vygen [31]), including a large literature on approximation
algorithms. See, amongst others [21, 30] for further hardness and inapproximability results.
On undirected graphs, Edge Disjoint Paths is fixed-parameter tractable parameterised by
the number of source-sink pairs [28, 24].

Investigation of the parameterised complexity of Edge Disjoint Paths has recently
been continued by considering structural parameterisations. Unfortunately, the problem is
NP-hard for graphs of treewidth 2 [26] and even for graphs with a vertex cover of size 3 [13].
It is also W[1]-hard parameterised by the size of a vertex set whose removal leaves an
independent set of vertices of degree 2 [19]. From an algorithmic perspective, Ganian and
Ordyniak [19] showed that Edge Disjoint Paths is in XP parameterised by tree-cut width.
Zhou et al. [34] give two XP algorithms for Edge Disjoint Paths for graphs of bounded
treewidth: one for when the number of paths is small, and one for when a specific condition
holds on the pairs of terminals. Ganian et al. [20] give an FPT algorithm parameterised by
the treewidth and degree of the graph. Friedrich et al. [17, 18] give approximation algorithms
for multicommodity flow on graphs of bounded treewidth.

These results naturally motivate the question: What can we say about the parameterised
complexity of the general Integer Multicommodity Flow problem under structural
parameterisations? We are unaware of any explicit studies in this direction. We do note that
the result of Zhou et al. [34] implies an XP algorithm on graphs of bounded treewidth for a
bounded number of commodities if the capacities are given in unary. We are particularly
interested in whether this result can be improved to an FPT algorithm, which is hitherto
unknown.

Our Setting and Contributions
We consider the Integer Multicommodity Flow problem for a small, fixed number of
commodities. In particular, Integer ℓ-Commodity Flow is the variant in which there
are ℓ commodities. Furthermore, we study the setting where some well-known structural
parameter of the input graph, particularly its pathwidth or treewidth, is small.

Our main contribution is to show that Integer 2-Commodity Flow is unlikely to be
fixed-parameter tractable parameterised by treewidth and or by pathwidth. Instead of being
satisfied with just a W[t]-hardness result for some t or any t, we seek stronger results using
the recently defined complexity classes XNLP and XALP. An overview of our results can be
found in Table 1.

H. L. Bodlaender, I. Mannens, J. J. Oostveen, S. Pandey, and E. J. van Leeuwen 6:3

Table 1 Overview of our results for Integer 2-Commodity Flow. para-NP-complete =
NP-complete for fixed value of parameter. (1) = capacities of arcs inside bags can be arbitrary,
capacities of arcs between bags are bounded by weighted tree partition width. (2) Approximation,
see Theorem 1.11; conjectured in FPT. For the undirected case, the same results hold, except that for
the para-NP-completeness for the parameters pathwidth and treewidth, we need a third commodity.

Parameter unary capacities binary capacities
pathwidth XNLP-complete para-NP-complete
treewidth XALP-complete para-NP-complete

weighted tree partition width FPT (1) FPT (1)
vertex cover (2); in XP (2); open

XNLP is the class of parameterised problems that can be solved on a non-deterministic
Turing machine in f(k)|x|O(1) time and f(k) log |x| memory for a computable function f ,
where |x| is the size of the input x. The class XNLP (under a different name) was first
introduced by Elberfeld et al. [9]. Bodlaender et al. [2, 5, 7] showed a number of problems to
be XNLP-complete with pathwidth as parameter. In particular, [2] gives XNLP-completeness
proofs for several flow problems with pathwidth as parameter.

In this work, we prove XNLP-completeness (and stronger) results for Integer ℓ-
Commodity Flow. These give a broad new insight into the complexity landscape of
Integer Multicommodity Flow. We distinguish how the capacities of arcs and edges
are specified: these can be given in either unary or binary. First, we consider the unary case:

▶ Theorem 1.1. Integer 2-Commodity Flow with capacities given in unary, paramet-
erised by pathwidth, is XNLP-complete.

▶ Theorem 1.2. Undirected Integer 2-Commodity Flow with capacities given in
unary, parameterised by pathwidth, is XNLP-complete.

These hardness results follow by reduction from the XNLP-complete Chained Multi-
coloured Clique problem [6], a variant of the perhaps more familiar Multicoloured
Clique problem [12]. We follow a common strategy in such reductions, using vertex selection
and edge verification gadgets. However, a major hurdle is to use flows to select vertices
and verify the existence of edges to form the sought-after cliques. To pass this hurdle, we
construct gadgets that use Sidon sets as flow values, combined with gadgets to check that a
flow value indeed belongs to such a Sidon set.

For the parameter treewidth, we are able to show a slightly stronger result. Recently,
Bodlaender et al. [6] introduced the complexity class XALP, which is the class of parameterised
problems that can be solved on a non-deterministic Turing machine that has access to an
additional stack, in f(k)|x|O(1) time and f(k) log |x| space (excluding the space used by the
stack), for a computable function f , where |x| again denotes the size of the input x. Many
problems that are XNLP-complete with pathwidth as parameter are XALP-complete with
treewidth as parameter. This also holds for the Integer Multicommodity Flow problem:

▶ Theorem 1.3 (♣). Integer 2-Commodity Flow with capacities given in unary, para-
meterised by treewidth, is XALP-complete.

The reduction is from the XALP-complete Tree-Chained Multicoloured Clique
problem [7] and follows similar ideas as the above reduction. Combining techniques of the
proofs of Theorems 1.2 and 1.3 gives the following result.

IPEC 2023

6:4 The Parameterised Complexity of Integer Multicommodity Flow

▶ Theorem 1.4 (♣). Undirected Integer 2-Commodity Flow with capacities given in
unary, parameterised by treewidth, is XALP-complete.

Assuming the Slice-wise Polynomial Space Conjecture [27, 5], these results show that
XP-algorithms for Integer 2-Commodity Flow or Undirected Integer 2-Commodity
Flow for graphs of small pathwidth or treewidth cannot use only f(k)|x|O(1) memory.
Moreover, the results imply these problems are W [t]-hard for all positive integers t.

If the capacities are given in binary, then the problems become even harder.

▶ Theorem 1.5. Integer 2-Commodity Flow with capacities given in binary is NP-
complete for graphs of pathwidth at most 13.

▶ Theorem 1.6 (♣). Undirected Integer 3-Commodity Flow with capacities given in
binary is NP-complete for graphs of pathwidth at most 18.

Finally, we consider a variant of the Integer Multicommodity Flow problem where
the flow must be monochrome, i.e. a flow is only valid when no edge carries more than one
type of commodity. Then, we obtain hardness even for parameterisation by the vertex cover
number of the graph, for both variants of the problem.

▶ Theorem 1.7 (♣). Integer 2-Commodity Flow with Monochrome Edges is NP-
hard for binary weights and vertex cover number 6, and W[1]-hard for unary weights when
parameterised by the vertex cover number.

▶ Theorem 1.8 (♣). Undirected Integer 2-Commodity Flow with Monochrome
Edges is NP-hard for binary weights and vertex cover number 6, and W[1]-hard for unary
weights when parameterised by the vertex cover number.

To complement our hardness results, we prove two algorithmic results. Bodlaender et
al. [2] had given FPT algorithms for several flow problems, using the recently defined notion
of weighted tree partition width as parameter (see [3, 2]). Weighted tree partition width can
be seen as a variant of the notion of tree partition width for edge-weighted graphs, introduced
by Seese [29] in 1985 under the name strong treewidth. See Section 2 for formal definitions of
these parameters. The known hardness for the vertex cover number [13] implies that Edge
Disjoint Paths is NP-hard even for graphs of tree partition width 3. Here, we prove that:

▶ Theorem 1.9. The Integer ℓ-Commodity Flow problem can be solved in time
22b3ℓb

nO(1), where b is the breadth of a given tree partition of the input graph.

▶ Theorem 1.10. The Undirected Integer ℓ-Commodity Flow problem can be solved
in time 22b3ℓb

nO(1), where b is the breadth of a given tree partition of the input graph.

For the standard Integer 2-Commodity Flow problem with the vertex cover number
vc(G) of the input graph G as parameter, we conjecture that this problem is in FPT. As a
partial result, we can give the following approximation algorithms:

▶ Theorem 1.11 (♣). There is a polynomial-time algorithm that, given an instance of
Integer 2-Commodity Flow on a graph G with demands d1, d2, either outputs that
there is no flow that meets the demands or outputs a 2-commodity flow of value at least
di − O(vc(G)3) for each commodity i ∈ [2].

H. L. Bodlaender, I. Mannens, J. J. Oostveen, S. Pandey, and E. J. van Leeuwen 6:5

▶ Theorem 1.12 (♣). There is a polynomial-time algorithm that, given an instance of
Undirected Integer 2-Commodity Flow on a graph G with demands d1, d2, either
outputs that there is no flow that meets the demands or outputs a 2-commodity flow of value
at least di − O(vc(G)3) for commodity i ∈ [2].

Proofs of theorems marked by ♣ appear in the full version. For other theorems, we are
only able to provide proof sketches in the limited space.

2 Preliminaries

In this paper, we consider both directed and undirected graphs. Graphs are directed unless
explicitly stated otherwise. Arcs and edges are denoted as vw (an arc from v to w, or an
edge with v and w as endpoints).

We use the interval notation for intervals of integers, e.g., [−1, 3] = {−1, 0, 1, 2, 3}. We
simplify this notation for intervals that start at 1, i.e. [k] = [1, k]. Moreover, we use
N = {1, 2, . . .} and N0 = {0, 1, 2, . . .}.

A Sidon set is a set of positive integers {a1, a2, . . . , an} such that all pairs have a different
sum, i.e., when ai + ai′ = aj + aj′ then {i, i′} = {j, j′}. Sidon sets are also Golomb rulers
and vice versa – in a Golomb ruler, pairs of different elements have unequal differences: if
i ̸= i′ and j ̸= j′, then |ai − ai′ | = |aj − aj′ |, then {i, i′} = {j, j′}. A construction by Erdös
and Turán [10] for Sidon sets implies the following, cf. the discussion in [8].

▶ Theorem 2.1. A Sidon set of n elements in [4n2] can be found in O(n
√

n) time and
logarithmic space.

We now formally define our flow problems. A flow network is a pair (G, c) of a directed
(undirected) graph G = (V, E) and a function c : E → N0 that assigns to each arc (edge) a
non-negative integer capacity. We generally use n = |V | and m = |E|.

For a positive integer ℓ, an ℓ-commodity flow in a flow network with sources s1, . . . , sℓ ∈ V

and sinks t1, . . . , tℓ ∈ V is a ℓ-tuple of functions f1, . . . , f ℓ : E → R≥0, that fulfils the
following conditions:

Flow conservation. For all i ∈ [ℓ], v ̸∈ {si, ti},
∑

wv∈E f i(wv) =
∑

vw∈E f i(vw).
Capacity. For all vw ∈ E,

∑
i∈[ℓ] f i(vw) ≤ c(vw).

An ℓ-commodity flow is an integer ℓ-commodity flow if for all i ∈ [c], vw ∈ E, f i(vw) ∈ N0.
The value for commodity i of an ℓ-commodity flow equals

∑
siw∈E f i(siw) −

∑
wsi∈E f i(wsi).

We shorten this to “flow” when it is clear from context what the value of ℓ is and whether
we are referring to an integer or non-integer flow.

The main problem considered in the paper now is as follows:

Integer ℓ-Commodity Flow
Input: A flow network G = (V, E) with capacities c, sources s1, . . . , sℓ ∈ V , sinks
t1, . . . , tℓ ∈ V , and demands d1, . . . , dℓ ∈ N.
Question: Does there exist an integer ℓ-commodity flow in G which has value di for
each commodity i ∈ [ℓ]?

The Integer Multicommodity Flow problem is the union of all Integer ℓ-
Commodity Flow problems for all non-negative integers ℓ.

For undirected graphs, flow still has direction, but the capacity constraint changes to:
Capacity. For all vw ∈ E,

∑
i∈[ℓ] f i(vw) + f i(wv) ≤ c(vw).

IPEC 2023

6:6 The Parameterised Complexity of Integer Multicommodity Flow

The undirected version of the Integer ℓ-Commodity Flow problem then is as follows:

Undirected Integer ℓ-Commodity Flow
Input: An undirected flow network G = (V, E) with capacities c, sources s1, . . . , sℓ ∈ V ,
sinks t1, . . . , tℓ ∈ V , and demands d1, . . . , dℓ ∈ N.
Question: Does there exist an integer ℓ-commodity flow in G which has value di for
each commodity i ∈ [ℓ]?

We use the well-known parameters treewidth and pathwidth without giving an explicit
definition. For the parameter (weighted) tree partition width, refer to [2] (see also [3]). We
also use these parameters for directed graphs. In that case, the direction of edges is ignored.

The classes XNLP and XALP were defined in the introduction. XNLP-hardness and
XALP-hardness are defined with respect to pl-reductions. The main difference with the
more standard parameterized reductions is that the computation of the reduction must be
done with logarithmic space. In most cases, existing parameterized reductions are also pl-
reductions; logarithmic space is achieved by not storing intermediate results but recomputing
these when needed.

Our hardness results stem from two variants of Multicoloured Clique (see [12]):

Chained Multicoloured Clique
Input: A graph G = (V, E), a partition of V into V1, . . . , Vr, such that |i − j| ≤ 1 for
each edge uv ∈ E(G) with u ∈ Vi and v ∈ Vj , and a function c : V → [k].
Parameter: k.
Question: Is there a set of vertices W ⊆ V such that for all i ∈ [r − 1], W ∩ (Vi ∪ Vi+1)
is a clique, and for each i ∈ [r] and j ∈ [k], there is a vertex v ∈ W ∩ Vi with c(v) = j?

Tree-Chained Multicoloured Clique
Input: A graph G = (V, E), a tree partition ({Vi | i ∈ I}, T = (I, F)) with T a tree of
maximum degree 3, and a function c : V → [k].
Parameter: k.
Question: Is there a set of vertices W ⊆ V such that for all ii′ ∈ F , W ∩ (Vi ∪ Vi′) is a
clique, and for each i ∈ I and j ∈ [k], there is a vertex v ∈ W ∩ Vi with c(v) = j?

▶ Theorem 2.2 (From [6] and [7]). Chained Multicoloured Clique is XNLP-complete,
and Tree-Chained Multicoloured Clique is XALP-complete.

3 Hardness Results – Unary Capacities

We prove our hardness results for Integer Multicommodity Flow with unary capacities,
parameterised by pathwidth. We aim to reduce from Chained Multicoloured Clique.
It is good to know that all constructions will have disjoint sources and sinks for the different
commodities. We will set the demands for each commodity equal to the total capacity of the
outgoing arcs from the sources, which is equal to the total capacity of the incoming arcs to the
sinks. Thus, the flow over such arcs will be equal to their capacity. Furthermore, throughout
this section, our constructions will have two commodities. We name the commodities 1 and 2,
with sources s1, s2 and sinks t1, t2, respectively.

We first introduce two types of gadgets: subgraphs that fulfil certain properties and that
are used in the hardness constructions. Given an integer a, the a-Gate gadget (see Figure 1)
either can move 1 unit of flow from one commodity from left to right, or at most a units

H. L. Bodlaender, I. Mannens, J. J. Oostveen, S. Pandey, and E. J. van Leeuwen 6:7

x

w

y

v

1 1 1 1 1 1 1
1 1

1
1 1 1

1 1 1
1

a

a

1 1

a

a

Figure 1 The a-Gate gadget. Left: the schematic representation of the gadget, with its entry
and exit arcs. Right: the full construction for a = 4, with arcs labelled by their capacities.

a1

a1

L− a1
L− a3

1

1

1

1

1

1

1 1

1

L− a3a3

2

s1 t1
S = {a1, . . . , a|S|} 2

a3

L− a1

L

v w

x y

L− 1 L− 1

L− 1 L− 1

u
z

Figure 2 The (S, L)-Verifier gadget. Left: a schematic representation of the gadget, with its
entry and exit arcs. The value on the bottom-right of the schematic representation denotes the sum
of the incoming flows to the gadget. Right: the graph that realises the gadget for S = {a1, a2, a3},
with arcs labelled by their capacities (the unlabelled arcs have capacities a2 and L − a2 respectively;
their labels are omitted for clarity).

of flow from the other commodity from top to bottom, but not both. Hence, it models a
form of choice. This gadget will grow in size with a, and thus will only be useful if the
input values are given in unary. Given a set S of integers and a large integer L (larger than
any number in S), the (S, L)-Verifier (see Figure 2) is used to check if the flow over an arc
belongs to a number in S. The a-Gate gadget is used as a sub-gadget in this construction.
In our reduction, later, we will use appropriately constructed sets S to select vertices or to
check for the existence of edges.

Both types of gadget have constant pathwidth. The arcs incoming and outgoing of the
gadget are called the entry arcs and exit arcs respectively.

Our hardness construction will be built using only Verifier gadgets as subgadgets. The
entry arcs and exit arcs of this gadget are meant to transport solely flow of commodity 2.
Hence, in the remainder, it helps to think of only commodity 2 being transported along the
edges, to focus on the exact value of that flow. This value indicate which vertex is selected
or whether two selected vertices are adjacent.

▶ Theorem 1.1. Integer 2-Commodity Flow with capacities given in unary, paramet-
erised by pathwidth, is XNLP-complete.

IPEC 2023

6:8 The Parameterised Complexity of Integer Multicommodity Flow

S(Vi,γ) S(Vi′,γ′)

S(E)

L L

2L

S(Vi,γ) S(Vi′,γ′)
L L

Ei′,γ′

i,γ

S(Vi,γ)

s2

L

L

(a) (b) (c)

Figure 3 (a) A Vertex selector gadget. (b) A schematic representation of an Edge check gadget
for Vi,γ and Vi′,γ′ . (c) The construction of an Edge check gadget.

Proof sketch. Proof of membership in XNLP follows immediately from a dynamic program-
ming algorith. For the hardness, we reduce from Chained Multicolour Clique (see
Theorem 2.2). Suppose we have an instance of Chained Multicolour Clique, with a
graph G = (V, E), colouring c : V → [k], and partition V1, . . . , Vr of V .

Build a Sidon set with |V | numbers by applying the algorithm of Theorem 2.1. Following
the same theorem, the numbers are in [4|V |2]. Set L = 4|V |2 + 1 to be a “large” integer. To
each vertex v ∈ V , we assign a unique element of the set S, denoted by S(v). For any subset
V ′ ⊆ V , let S(V ′) = {S(v) | v ∈ W}. For any subset E′ ⊆ E, let S(E′) = {S(u) + S(v) |
uv ∈ E′}.

We now describe several (further) gadgets that we use to build the full construction. Let
Vi,γ be the vertices in Vi with colour γ. Each set Vi,γ is called a class. For each class Vi,γ ,
we use a Vertex selector gadget (see Figure 3) to select the vertex from Vi,γ that should be
in the solution to the Chained Multicoloured Clique instance. We select some v ∈ Vi,γ

if and only if the left branch receives S(v) flow and the right branch receives L − S(v) flow.
For each pair of incident classes, we construct an Edge check gadget (see Figure 3).

That is, we have an Edge check gadget for all classes Vi,γ and Vi′,γ′ with |i − i′| ≤ 1, and
{i, γ} ≠ {i′, γ′}. An Edge check gadget will check if two incident classes have vertices selected
that are adjacent. If the entry arcs have flow (of commodity 2) of value S(v), L − S(v),
S(w), and L − S(w) consecutively, then there is a valid flow if and only if vw ∈ E. Note that
the sum S(v) + S(w) is unique, because S is a Sidon set, and thus so is 2L − (S(v) + S(w)).
Hence, the only way for the flow to split up again and leave via the exit arcs is to split into
S(v), S(w), L − S(v), and L − S(w); otherwise, it cannot pass the (S(Vi,γ), L)-Verifier or
the (S(Vi′,γ′), L)-Verifier at the bottom of the Edge check gadget. Hence, the exit arcs again
have flow of values S(v), L − S(v), S(w), and L − S(w) consecutively, just like the entry arcs.

With these gadgets in hand, we now describe the global structure of the reduction. For
each class Vi,γ , we first create a Vertex selector gadget (as in Figure 3).

We then create Edge check gadgets to check, for any i ∈ [r], that the selected vertices in
Vi,γ for all γ ∈ [k] are adjacent in G. The construction is shown in Figure 4a. We call this
the Triangle gadget for Vi.

Next, we create Edge check gadgets to check, for any i ∈ [r − 1], that the selected vertices
in Vi,γ and Vi+1,γ′ for all γ, γ′ ∈ [k] are indeed adjacent in G. The construction is shown in
Figure 4b. We call this the Square gadget for Vi and Vi+1.

H. L. Bodlaender, I. Mannens, J. J. Oostveen, S. Pandey, and E. J. van Leeuwen 6:9

s2

V1

S(V1,1) S(V1,2) S(V1,3) S(V1,4)

E1,2
1,1 E1,3

1,1 E1,4
1,1

E1,3
1,2 E1,4

1,2

E1,4
1,3

α1,1

α1,2

α1,3

α1,4

L− α1,1

L− α1,2

L− α1,3

L− α1,4

(a) The Triangle gadget for V1 consists of
Edge check gadgets to enforce the selected
vertices form a clique in V1. Here, k = 4. The
Vertex selector gadgets for each class V1,γ are
also shown. The α1,γ ’s denote the amount of
flow selected in the corresponding (S(V1,γ), L)-
Verifiers.

E2,1
1,1 E2,2

1,1 E2,3
1,1 E2,4

1,1

E2,2
1,2 E2,3

1,2 E2,4
1,2

E2,3
1,3 E2,4

1,3

E2,4
1,4

α1,1

α1,2

α1,3

α1,4

L− α1,1

L− α1,2

L− α1,3

L− α1,4

E2,1
1,2

E2,2
1,3E2,1

1,3

E2,3
1,4E2,2

1,4E2,1
1,4

t2

α1,1

α1,2

α1,3

α1,4

L− α1,1

L− α1,2

L− α1,3

L− α1,4

α
2
,1

L
−
α
2
,1

α
2
,2

L
−
α
2
,2

α
2
,3

L
−
α
2
,3

α
2
,4

L
−
α
2
,4

α
2
,1

L
−
α
2
,1

α
2
,2

L
−
α
2
,2

α
2
,3

L
−
α
2
,3

α
2
,4

L
−
α
2
,4

(b) The Square gadget for V1 and V2 has Edge check
gadgets to enforce the selected vertices form a clique
between V1 and V2. Here, k = 4.

Figure 4

Then, we connect the Vertex selector, Triangle and Square gadgets as in Figure 5. We
now set the demand for commodity 1 to the sum of the capacities of the outgoing arcs of s1
(which is equal to the sum of the capacities of the incoming arcs of t1). We set the demand
for commodity 2 to the sum of the capacities of the outgoing arcs of s2 (which is equal to
the sum of the capacities of the incoming arcs of t2). This completes the construction.

▷ Claim 3.1 (♣). The constructed graph has pathwidth at most 8k + O(1).

▷ Claim 3.2. The given Chained Multicolour Clique instance has a solution if and
only if the constructed instance of Integer 2-Commodity Flow has a solution.

Proof sketch. For the forward direction, assume there exists a chained multicolour clique W

in G. Recall that one vertex is picked per Vi,γ class by definition and thus W has size rk.
If v ∈ Vi,γ ∩ W for some i ∈ [r], γ ∈ [k], then in the Vertex selector gadget of Vi,γ , we send
S(v) units of flow of commodity 2 to the left and L − S(v) units of flow to the right into
the Verifier gadget (see Figure 3). In any Verifier gadget, we route the flow so that it takes
the path with capacity equal to the flow. This flow is then routed through all Edge check
gadgets of the Triangle and Square gadgets, in the manner presented above in the description
of Edge check gadgets. Since W is a chained multicolour clique, the corresponding edge exist
in E and the flow can indeed pass through the (S(E), 2L)-Verifier gadget of each Edge check
gadget. All flow of commodity 1 is routed through the unused gates in the Verifier gadgets,
which is possible as we only use one vertical path per gadget for the flow corresponding to a
vertex or edge (see Figure 2). It follows that we use all arcs from s1 and to t1 to capacity.

For the other direction, suppose there is a 2-commodity flow in the constructed graph
with all arcs from s1 and s2 and to t1 and t2 used to capacity. Since the constructed graph is
acyclic, we can apply induction on its topological ordering to show that flow of commodity 1
never leaves a Verifier gadget downwards. Then the construction of the Verifier gadget
ensures that that the amount flow of commodity 2 that passes through it always corresponds
to some α ∈ S for the associated set S of the gadget, and the left and right exit arcs carry α

and L−α units of flow of commodity 2 respectively. Now, the arc from s2 in a Vertex selector

IPEC 2023

6:10 The Parameterised Complexity of Integer Multicommodity Flow

s2
s2

s2

s2

t2

t2

t2

t2

V1

V2

V3

V4

V1, V2

V2, V3

V3, V4

Figure 5 Overview of the complete structure of the reduction for r = 4. Triangles represent a
structure as in Figure 4a, and squares a structure as in Figure 4b. Directions are not drawn, but
clear from Figure 4a and 4b. The labels inside each block (say Vi or Vi, Vi+1) denote that flow
corresponding to vertices of this set (i.e. Vi or Vi and Vi+1) is flowing in a block. Note that all points
labelled s2, t2 are indeed the same vertex.

gadget for some class Vi,γ must have L flow of commodity 2 and this must be split in α and
L − α, with α ∈ S(Vi,γ). We place the corresponding vertex v in the chained multicoloured
clique. In any Edge check gadget, the flow of α ∈ S(Vi,γ), L − α and β ∈ S(Vi′,γ′),L − β

combines to a unique sum α + β and 2L − (α + β), and assures that the edge between the
corresponding vertices is present. The flow must split back up into α, L − α and β, L − β by
the unique sum due to the fact that S is a Sidon set. We get that the chosen vertices indeed
form a chained multicolour clique. ◁

Finally, using Theorem 2.1 and standard log-space techniques, the constructed graph with
its capacities can be built with O(f(k) + log n) space, for some computable function f . ◀

To show the XALP-hardness of the Integer 2-Commodity Flow parameterised by
treewidth, we reduce from Tree-Chained Multicolour Clique in a similar, but more
involved manner (see Figure 6 for an illustration) and obtain Theorem 1.3.

We now reduce from the case of directed graphs to the case of undirected graphs in a
general manner, by modification of a transformation by Even et al. [11, Theorem 4]. In this
way, both our hardness results (for parameter pathwidth and for parameter treewidth) can
be translated to undirected graphs.

▶ Lemma 3.3. Let G be a directed graph of an Integer 2-Commodity Flow instance
with capacities given in unary. Then in logarithmic space, we can construct an equivalent
instance of Undirected Integer 2-Commodity Flow with an undirected graph G′ with
pw(G′) ≤ pw(G) + O(1), tw(G′) ≤ tw(G) + O(1), and unit capacities.

Proof sketch. Given a directed graph G = (V, E), demands d1 and d2, and capacity function
c : E → N0, we construct an instance G′, d′

1 and d′
2, and c′ : E(G′) → {0, 1}. To the graph G,

we add four new vertices s1, s2, t1, t2 as new sources and sinks. We connect si to si and ti to
ti by di parallel undirected edges of capacity 1, for each i ∈ {1, 2}. Next, for each arc uv ∈ E

of capacity p, we create p parallel undirected edges between u and v of capacity 1 each. Then,

H. L. Bodlaender, I. Mannens, J. J. Oostveen, S. Pandey, and E. J. van Leeuwen 6:11

s2
s2

s2

t2

t2

V1

V2

V4

V1, V2

s2

V3
V2, V3

V3, V4

t2

V2, V5

s2

V5

V1

V2

V3

V4

V5

V6 V7

s2

V6

V5, V6

t2

s2

t2

V7

V5, V7

t2

t2

Figure 6 Overview of the structure of the reduction of Theorem 1.3. Left: the structure of
the input tree partition. Right: the structure of the reduction. Triangles represent a structure as
in Figure 4a, and squares a structure as in Figure 4b. Directions are not drawn, but clear from
Figure 4a and 4b. The labels inside each block (say Vi or Vi, Vi+1) denote that flow corresponding
to vertices of this set (i.e. Vi or Vi and Vi+1) is flowing in a block. Note that all points labelled s2, t2

are indeed the same vertex. Flow paths corresponding to a selected vertex in V2 (orange) and one in
V5 (purple) are drawn as an example.

we replace each of these p undirected edges by the Diamond gadget of Figure 7(a). This is
the graph G′. In G′, the demands on the two commodities are d′

1 = d1 + e∗ and d′
2 = d2 + e∗,

where e∗ is the number of edge gadgets in G′ (i.e. the sum of all capacities in c).
The pathwidth of G′ is pw(G) + O(1) and the treewidth is tw(G) + O(1). Moreover, the

demands d1 and d2 are met in G if and only if the demands d′
1 and d′

2 are met in G′. The
construction can be done in logarithmic space: while scanning G, we can output G′. ◀

Theorem 1.2 and 1.4 follow immediately from this lemma and Theorem 1.1 and 1.3.

4 Hardness Results – Binary Capacities

Our previous reduction strategy relied heavily on a-Gate gadgets, which have size linear in a,
and thus only work in the case a unary representation of the capacities is given. For the case
of binary capacities, we can prove stronger results by reducing from 2-Partition. However,
we need a completely new chain of gadgets and constructions.

We define three different types of (directed) gadgets. Since we use binary capacities, our
goal is to double flow in an effective manner. For a given integer a, the a-Doubler gadget
receives a flow and sends out 2a flow of the same commodity. This gadget is obtained by
combining two other gadgets: the a-Switch and the Doubling a-Switch. The a-Switch gadget
changes the type of flow; that is, it receives a flow from one commodity, but sends out a

IPEC 2023

6:12 The Parameterised Complexity of Integer Multicommodity Flow

t1 s1

s2t2

(a)

vu

t1 s1

s2t2

(b)

vu

t1 s1

s2t2

(d)

vu

t1 s1

s2t2

(c)

vu

Figure 7 The transformation of Lemma 3.3 from directed to undirected graphs. Every arc uv

with capacity c is replaced by c parallel copies of gadget (a), where t1, s1, t2, s2 are the same for
every gadget, for all arcs. All capacities are 1. The remaining figures illustrate that the gadget
either transports no flow (b), a flow of commodity 1 (c), or a flow of commodity 2 (d).

flow from the other commodity. The Doubling a-Switch is similar, but sends out 2a flow.
All three types of gadgets have constant size, even in the binary setting. Moreover, any
a-Doubler gadget has pathwidth 5.

A crucial property of the a-Doubler gadget are the following. It has two (vertical) entry
arcs and two exit arcs. If the left entry arc carries a units of flow of commodity 2 and the
right entry arc carries 0 units of flow of commodity 2, then the left exit arc carries 2a units
of flow of commodity 2 and the right exit arc carries 0 units of flow of commodity 2. The
same property holds with left and right swapped.

▶ Theorem 1.5. Integer 2-Commodity Flow with capacities given in binary is NP-
complete for graphs of pathwidth at most 13.

Proof sketch. Membership in NP is trivial. To show NP-hardness, we transform from
Partition. Recall Partition problem asks, given positive integers a1, . . . , an, to decide
if there is a subset S ⊆ [n] with

∑
i∈S ai = B, where B =

∑n
i=1 ai/2. This problem is well

known to be NP-complete [23].
Create the sources s1, s2 and the sinks t1, t2. Create two vertices b1, b2, both with an arc

of capacity B to t2.
For each ai, we build a Binary gadget that either sends ai units of flow to b1 or ai units

of flow to a vertex b2, in each case of commodity 2. This will indicate whether or not ai is
in the solution set to the Partition instance. This gadget is constructed as follows (see
Figure 8 for the case when ai = 13). Consider the binary representation ap

i , . . . , a0
i of ai.

That is, ai =
∑p

j=0 2jaj
i . For each j ∈ [p] such that aj

i = 1, we create a column of chained
Doubler gadgets. For each j′ < j, create a 2j′-Doubler gadget and identify its entry arcs
with the exit arcs of the 2j′−1-Doubler gadget (see Figure 8). Then the left exit arc of the
(final) 2j−1-Doubler gadget is directed to b1, while the right exit arc is directed to b2.

Create two directed paths P 1
i , P 2

i of 2
∑p

j=0 aj
i vertices each (see Figure 8). We consider

the vertices of each of these paths in consecutive pairs, one pair for each aj
i that is equal

to 1. For each j ∈ [p] such that aj
i = 1, create a vertex vj

i with an arc from s2, an arc to
the first vertex of the pair on P 1

i corresponding to aj
i , and an arc to the first vertex of the

pair on P 2
i corresponding to aj

i . Then, add an arc from the second vertex of the pair on
P 1

i corresponding to aj
i to the left entry arc of the 1-Doubler gadget of the jth column of

gadgets and an arc from the second vertex of the pair on P 2
i corresponding to aj

i to the right
entry arc of the 1-Doubler gadget of the jth column of gadgets. Finally, create a vertex ui

H. L. Bodlaender, I. Mannens, J. J. Oostveen, S. Pandey, and E. J. van Leeuwen 6:13

s2

2 2 2 2

4 4 4 4

8 8

b1 b2

×2 ×2

×2 ×2

×2

v3i v2i v0i

ui wi

P 2
i

P 1
i

s1 t1

Figure 8 Example of the Binary gadget for ai = 13 and its associated paths P 1
i and P 2

i and the
ends ui and wi. Since 13 = 23 + 22 + 20, we have a column with three Doubler gadgets (indicated
by the square boxes), a column with two Doubler gadgets, and one with no Doubler gadgets. The
vertices v3

i , v2
i and v0

i are also drawn. Arcs are labelled by their capacities, but unlabelled arcs have
capacity 1. If 1 unit of flow of commodity 1 is sent from s1 to t1, then it must pick one of P 1

i , P 2
i to

go through. Hence, the gadget ensures that either ai units of flow of commodity 2 are sent to b1

through the left entry and exit arcs of the Doubler gadgets, or ai units of flow of commodity 2 are
sent to b2 through the left entry and exit arcs of the Doubler gadgets.

with an arc to the first vertex of P 1
i and to the first vertex of P 2

i and create a vertex wi with
an arc from the last vertex of P 1

i and the last vertex of P 2
i . This completes the description

of the Binary gadget.
We now chain the Binary gadgets. For each i ∈ [n − 1], add an arc from wi to ui+1. Add

an arc from s1 to u1 and from wn to t1. These arcs all have capacity 1.
We set the demand for commodity 1 to the sum of the capacities of the outgoing arcs of s1

(which is equal to the sum of the capacities of the incoming arcs of t1). We set the demand
for commodity 2 to the sum of the capacities of the outgoing arcs of s2 (which is equal to
the sum of the capacities of the incoming arcs of t2). This completes the construction.

▷ Claim 4.1 (♣). The constructed graph has pathwidth at most 13.

▷ Claim 4.2. The given Partition instance has a solution if and only if the constructed
instance of Integer 2-Commodity Flow has a solution.

Proof sketch. Let S ⊆ [n] be a solution to the Partition instance. For each i ∈ [n], we do
the following. If i ∈ S, then we send flow of commodity 2 from s2 to b1, through left entry
and exit arcs of the Doubler gadgets in the Binary gadget corresponding to ai. To reach this
left side of the Doubler gadgets, the flow passes through vertices and arcs of P 1

i . We can
thus send flow of commodity 1 from ui to wi via P 2

i . Otherwise, if i ̸∈ S, we send flow of
commodity 2 from s2 to b2, through right entry and exit arcs of the Doubler gadgets in the
Binary gadget corresponding to ai. To reach this right side of the Doubler gadgets, the flow
passes through vertices and arcs of P 2

i . We send flow of commodity 1 from ui to wi via P 1
i .

IPEC 2023

6:14 The Parameterised Complexity of Integer Multicommodity Flow

By the properties of the Doubler gadget, b1 will receive ai units of flow of commodity 2
if i ∈ S and b2 will receive ai units of flow of commodity 2 if i ̸∈ S. Since S is a solution
to Partition, both b1 and b2 receive B units of flow of commodity 2, which they can then
pass on to t2. Moreover, we observe that we can send 1 unit of flow from s1 to t1 via the
paths P 1

i and P 2
i , using i /∈ S and i ∈ S respectively.

In the other direction, we see that the flow of commodity 1 starting at u1 takes a path
which is a union of P ji

i paths, for i ∈ [n] and ji ∈ {1, 2}. In particular, this flow does not
“leak” into any Doubler gadget. Then, similar to the above, let S ⊆ [n] be the set of indices i

for which the flow of commodity 2 through the Binary gadget corresponding to ai arrives at
b1. We can see that S is a valid solution to the Partition instance. ◁

Finally, as each a-Doubler has constant size, the gadget for some ai has size O(log2(ai)),
which is polynomial in the input size. Hence, the construction as a whole has size polynomial
in the input size. Moreover, it can clearly be computed in polynomial time. ◀

We now reduce from the case of directed graphs to the case of undirected graphs in a
general manner. We define a new gadget similar to the one for the unary case. However, we
note that there we required a copies of the gadget if the capacity of an arc is a, which is not
feasible in the case of binary capacities. Also note that increasing the capacities of the gadget
by Even et al. [11, Theorem 4], here Figure 7, invalidates the gadget, as any under-capacity
edge would allow flow in the other direction. Hence, we need a different gadget, the Directed
edge gadget, which we do not describe in detail here.

▶ Lemma 4.3 (♣). Let G be a directed graph of an Integer ℓ-Commodity Flow instance
with a path decomposition of width w, such that each bag contains the sources and sinks of
commodities 1, . . . , ℓ. Then in polynomial time, we can construct an equivalent instance of
Undirected Integer ℓ + 1-Commodity Flow of pathwidth at most w + 5.

By combining Lemma 4.3 and Theorem 1.5, we obtain Theorem 1.6.

5 Algorithm for Parameter Weighted Tree Partition Width

We give an FPT-algorithm for Integer ℓ-Commodity Flow parameterised by weighted
tree partition width. This algorithm assumes that a tree partition of the input graph is given.
There is an algorithm by Bodlaender et al. [4] that for any graph G and integer w, runs in
time poly(w) · n2 and either outputs a tree partition of G of width poly(w) or outputs that
G has no tree partition of width at most w. By some simple tricks, this can be expanded
to approximate weighted tree partition width as well, at the expense of a slightly worse
polynomial in w. An approximately optimal tree partition of this form would be sufficient as
input to our algorithm.

▶ Theorem 1.9. The Integer ℓ-Commodity Flow problem can be solved in time
22b3ℓb

nO(1), where b is the breadth of a given tree partition of the input graph.

Proof. We will describe a dynamic-programming algorithm on a given tree partition
(T, (Bx)x∈V (T)). Let r ∈ V (T) be some node, that we will designate as the root of the
tree T . For convenience, we first attach a node to every leaf, with an empty bag.

We will create a table τ , where every entry is indexed by a node x of the tree partition
and a collection fx of functions f i

x, one function for every commodity i ∈ [ℓ]. We will refer to
fx as a flow profile and use the superscript i to refer to the flow function for commodity i in
the profile. The function

f i
x : Bp(x) → [− b, b],

H. L. Bodlaender, I. Mannens, J. J. Oostveen, S. Pandey, and E. J. van Leeuwen 6:15

where p(x) the parent node of x, indicates for every v ∈ Bp(x) the net difference between the
amount of flow of commodity i that v receives from (indicated by a positive value) or sends
to (indicated by a negative value) the vertices in the bag Bx, in the current partial solution.
That is, f i

x(v) models the value of
∑

u∈Bx
(f i(uv) − f i(vu)), where f denotes the current

partial solution. Notice that this sum has value in [− b, b], as the sum over all capacities of
edges between bags Bx and Bp(x) is at most b. The content of each table entry will be a
boolean that indicates whether there exists a partial flow on the graph considered up to x

that is consistent with the indices of the table entry.
We will build the table τ , starting at the leaves of the tree, for which we assumed the

corresponding bags to be empty sets, and working towards the root. If x is a leaf in the tree
partition, we set τ [x, {∅, . . . , ∅}] = True, where we denote by ∅, the unique function with the
empty set as domain. Otherwise, x is some node with children y1, . . . , yt. We will group
these children yi in equivalence classes ξ, defined by the equivalence relation y ∼ y′ if and
only if τ [y, fx] = τ [y′, f] for every flow profile f . Note that there are at most 2bℓ(2 b +1) such
equivalence classes, with at most bℓ(2 b +1) possible flow profiles fyj = (f1

yj
, . . . , f ℓ

yj
) for every

child yj of x.
We will now describe an integer linear program that determines the value of τ [x, fx] for a

given flow profile fx. We define a variable Xξ,g as the number of sets in class ξ whose in- and
outflow we choose to match flow profile g1. We also define a variable Y i

e for each edge inside
the bag Bx or between Bx and its parent bag, which indicates the flow of commodity i on this
edge. We will denote by N in(v) and Nout(v) the set of in-neighbours and out-neighbours of
v, respectively, restricted to Bx ∪ Bp(x). We now add constraints for the following properties,
for every commodity i ∈ [ℓ]. Flow conservation for all vertices v in the bag Bx, that are not
a sink/source for commodity i:∑

u∈Nin(v)

Yuv +
∑
ξ,g

Xξ,g · gi(v) =
∑

u∈Nout(v)

Yuv.

The flow of commodity i from a source si (if si ∈ Bx):

−
∑

u∈Nin(si)

Yusi
+

∑
u∈Nout(si)

Yusi
−

∑
ξ,g

Xξ,g · gi(si) = di

The flow of commodity i to a sink ti (if ti ∈ Bx):∑
u∈Nin(ti)

Yuti
−

∑
u∈Nout(ti)

Yuti
+

∑
ξ,g

Xξ,g · gi(ti) = di

The desired flow to a vertex v in the parent bag:∑
u∈Nin(v)\Bp(x)

Yuv −
∑

u∈Nout(v)\Bp(x)

Yuv = f i
x(v).

Edge capacities and non-negative flow:

0 ≤
ℓ∑

i=1
Y i

e ≤ c(e)

1 Throughout the proof, if we sum over pairs ξ, g, we only sum over flow profiles that are valid for bags in
ξ. Alternatively, we can set any invalid Xξ,g to 0 beforehand.

IPEC 2023

6:16 The Parameterised Complexity of Integer Multicommodity Flow

The number of flow profiles of each type from each class matches the number of bags in that
class: ∑

g:Bx→[− b,b]

Xξ,g = |ξ|.

Xξ,g must be a non-negative integer:

Xξ,g ∈ N0

We then use an algorithm of Frank and Tardos [15, Theorem 5.3] to solve the ILP in time
N2.5N+o(N), where N is the number of variables in the ILP. This number is dominated by
the number of variables Xξ,g, of which there are O(2bℓ(2 b +2)). We thus find a running time of
2bℓ(2 b +2)(2.5·2bℓ(2 b +2)

+o(2bℓ(2 b +2)
)). If the ILP has a feasible solution, we set τ [x, fx] = True;

otherwise, we set τ [x, fx] = False. We solve bℓ(2 b +1) such ILP’s per bag in the decomposition
and thus find a total running time of O(22b3ℓb

)
Once we reach the root bag, we use a similar ILP to compute the flow on the root bag,

finding a final solution. We find a total running time of 22b3ℓb

nO(1). ◀

Note that with some minor changes to the ILP (flow variables can be negative and there
is no distinction between in/out edges), this proof also works in the undirected case, proving
Theorem 1.10

6 Conclusions

The parameterised complexity analysis of integer multicommodity flow shows that the
problem is already hard for several natural parameterisations, e.g., treewidth and pathwidth,
even when there are only two commodities. The XNLP- and XALP-completeness imply
that the problems have XP algorithms but which are likely also to use Ω(nf(k)) space by
the Slice-wise Polynomial Space Conjecture. Moreover, the XNLP- and XALP-completeness
results imply that the problems are W[t]-hard.

We end the paper with some open problems. A number of cases for undirected graphs
remain unresolved. We conjecture that for several such cases, the complexity results will be
analogue to the directed case. A notable open case is Undirected Integer 2-Commodity
Flow, which we conjecture is NP-complete for graphs with a pathwidth bound, but The-
orem 1.6 only gives the result with three commodities.

We also conjecture that Integer 2-Commodity Flow is fixed parameter tractable with
the vertex cover number as parameter, possibly by using a dynamic programming algorithm
that only needs to investigate solutions that are “close” to the approximate solution found
by Theorem 1.11.

Finally, we believe that the problem may be interesting to investigate on certain graph
classes, for example planar graphs of bounded treewidth or in general on graphs of treewidth
or pathwidth below the bounds given by our hardness results.

H. L. Bodlaender, I. Mannens, J. J. Oostveen, S. Pandey, and E. J. van Leeuwen 6:17

References
1 Cynthia Barnhart, Niranjan Krishnan, and Pamela H. Vance. Multicommodity flow problems.

In Christodoulos A. Floudas and Panos M. Pardalos, editors, Encyclopedia of Optimization,
pages 2354–2362. Springer US, 2009. doi:10.1007/978-0-387-74759-0_407.

2 Hans L. Bodlaender, Gunther Cornelissen, and Marieke van der Wegen. Problems hard for
treewidth but easy for stable gonality. In Michael A. Bekos and Michael Kaufmann, editors,
Proceedings 48th International Workshop on Graph-Theoretic Concepts in Computer Science,
WG 2022, volume 13453 of Lecture Notes in Computer Science, pages 84–97. Springer, 2022.
doi:10.1007/978-3-031-15914-5_7.

3 Hans L. Bodlaender, Gunther Cornelissen, and Marieke van der Wegen. Problems hard for
treewidth but easy for stable gonality. arXiv, abs/2202.06838, 2022. arXiv:2202.06838.

4 Hans L. Bodlaender, Carla Groenland, and Hugo Jacob. On the parameterized complexity
of computing tree-partitions. In Holger Dell and Jesper Nederlof, editors, 17th International
Symposium on Parameterized and Exact Computation, IPEC 2022, September 7-9, 2022,
Potsdam, Germany, volume 249 of LIPIcs, pages 7:1–7:20. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2022. doi:10.4230/LIPIcs.IPEC.2022.7.

5 Hans L. Bodlaender, Carla Groenland, Hugo Jacob, Lars Jaffke, and Paloma T. Lima. XNLP-
completeness for parameterized problems on graphs with a linear structure. In Holger Dell
and Jesper Nederlof, editors, Proceedings 17th International Symposium on Parameterized and
Exact Computation, IPEC 2022, volume 249 of LIPIcs, pages 8:1–8:18. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.IPEC.2022.8.

6 Hans L. Bodlaender, Carla Groenland, Hugo Jacob, Marcin Pilipczuk, and Michal Pilipczuk.
On the complexity of problems on tree-structured graphs. In Holger Dell and Jesper Nederlof,
editors, Proceedings 17th International Symposium on Parameterized and Exact Computation,
IPEC 2022, volume 249 of LIPIcs, pages 6:1–6:17. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2022. doi:10.4230/LIPIcs.IPEC.2022.6.

7 Hans L. Bodlaender, Carla Groenland, Jesper Nederlof, and Céline M. F. Swennenhuis.
Parameterized problems complete for nondeterministic FPT time and logarithmic space. In
Proceedings 62nd IEEE Annual Symposium on Foundations of Computer Science, FOCS 2021,
pages 193–204. IEEE, 2022. doi:10.1109/FOCS52979.2021.00027.

8 Hans L. Bodlaender and Marieke van der Wegen. Parameterized complexity of scheduling chains
of jobs with delays. In Yixin Cao and Marcin Pilipczuk, editors, 15th International Symposium
on Parameterized and Exact Computation, IPEC 2020, volume 180 of LIPIcs, pages 4:1–4:15.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.IPEC.2020.4.

9 Michael Elberfeld, Christoph Stockhusen, and Till Tantau. On the space and circuit complexity
of parameterized problems: Classes and completeness. Algorithmica, 71(3):661–701, 2015.
doi:10.1007/s00453-014-9944-y.

10 P. Erdös and P. Turán. On a problem of Sidon in additive number theory, and on some
related problems. Journal of the London Mathematical Society, s1-16(4):212–215, 1941.
doi:10.1112/jlms/s1-16.4.212.

11 Shimon Even, Alon Itai, and Adi Shamir. On the complexity of timetable and multicommodity
flow problems. SIAM J. Comput., 5(4):691–703, 1976. doi:10.1137/0205048.

12 Michael R. Fellows, Danny Hermelin, Frances A. Rosamond, and Stéphane Vialette. On
the parameterized complexity of multiple-interval graph problems. Theor. Comput. Sci.,
410(1):53–61, 2009. doi:10.1016/j.tcs.2008.09.065.

13 Krzysztof Fleszar, Matthias Mnich, and Joachim Spoerhase. New algorithms for maximum
disjoint paths based on tree-likeness. Math. Program., 171(1-2):433–461, 2018. doi:10.1007/
s10107-017-1199-3.

14 Steven Fortune, John E. Hopcroft, and James Wyllie. The directed subgraph homeomorphism
problem. Theor. Comput. Sci., 10:111–121, 1980. doi:10.1016/0304-3975(80)90009-2.

15 A. Frank and Éva Tardos. An application of simultaneous diophantine approximation in com-
binatorial optimization. Combinatorica, 7(1):49–65, January 1987. doi:10.1007/BF02579200.

IPEC 2023

https://doi.org/10.1007/978-0-387-74759-0_407
https://doi.org/10.1007/978-3-031-15914-5_7
https://arxiv.org/abs/2202.06838
https://doi.org/10.4230/LIPIcs.IPEC.2022.7
https://doi.org/10.4230/LIPIcs.IPEC.2022.8
https://doi.org/10.4230/LIPIcs.IPEC.2022.6
https://doi.org/10.1109/FOCS52979.2021.00027
https://doi.org/10.4230/LIPIcs.IPEC.2020.4
https://doi.org/10.1007/s00453-014-9944-y
https://doi.org/10.1112/jlms/s1-16.4.212
https://doi.org/10.1137/0205048
https://doi.org/10.1016/j.tcs.2008.09.065
https://doi.org/10.1007/s10107-017-1199-3
https://doi.org/10.1007/s10107-017-1199-3
https://doi.org/10.1016/0304-3975(80)90009-2
https://doi.org/10.1007/BF02579200

6:18 The Parameterised Complexity of Integer Multicommodity Flow

16 András Frank. Packing paths, circuits, and cuts – a survey. In Bernhard Korte, Lásló Lovász,
Hans Jürgen Prömel, and Alexander Schrijver, editors, Paths, Flows, and VLSI-Layout, pages
47–100. Springer-Verlag, Berlin, 1990.

17 Tobias Friedrich, Davis Issac, Nikhil Kumar, Nadym Mallek, and Ziena Zeif. Approximate
max-flow min-multicut theorem for graphs of bounded treewidth. arXiv, abs/2211.06267, 2022.
arXiv:2211.06267.

18 Tobias Friedrich, Davis Issac, Nikhil Kumar, Nadym Mallek, and Ziena Zeif. A primal-
dual algorithm for multicommodity flows and multicuts in treewidth-2 graphs. In Amit
Chakrabarti and Chaitanya Swamy, editors, Proceedings 25th International Conference on
Approximation Algorithms for Combinatorial Optimization Problems and 26th International
Conference on Randomization and Computation APPROX/RANDOM 2022, volume 245 of
LIPIcs, pages 55:1–55:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. doi:
10.4230/LIPIcs.APPROX/RANDOM.2022.55.

19 Robert Ganian and Sebastian Ordyniak. The power of cut-based parameters for computing
edge-disjoint paths. Algorithmica, 83(2):726–752, 2021. doi:10.1007/s00453-020-00772-w.

20 Robert Ganian, Sebastian Ordyniak, and M. S. Ramanujan. On structural parameterizations
of the edge disjoint paths problem. Algorithmica, 83(6):1605–1637, 2021. doi:10.1007/
s00453-020-00795-3.

21 Venkatesan Guruswami, Sanjeev Khanna, Rajmohan Rajaraman, F. Bruce Shepherd, and
Mihalis Yannakakis. Near-optimal hardness results and approximation algorithms for edge-
disjoint paths and related problems. Journal of Computing and System Sciences, 67(3):473–496,
2003. doi:10.1016/S0022-0000(03)00066-7.

22 George Karakostas. Faster approximation schemes for fractional multicommodity flow problems.
ACM Trans. Algorithms, 4(1):13:1–13:17, 2008. doi:10.1145/1328911.1328924.

23 Richard M. Karp. Reducibility among combinatorial problems. In Raymond E. Miller and
James W. Thatcher, editors, Proceedings of a symposium on the Complexity of Computer
Computations, held March 20-22, 1972, at the IBM Thomas J. Watson Research Center,
Yorktown Heights, New York, USA, The IBM Research Symposia Series, pages 85–103. Plenum
Press, New York, 1972. doi:10.1007/978-1-4684-2001-2_9.

24 Ken-ichi Kawarabayashi, Yusuke Kobayashi, and Bruce A. Reed. The disjoint paths problem
in quadratic time. J. Comb. Theory, Ser. B, 102(2):424–435, 2012. doi:10.1016/j.jctb.
2011.07.004.

25 Bernhard Korte and Jens Vygen. Combinatorial Optimization: Theory and Algorithms.
Springer Berlin, Heidelberg, 2000.

26 Takao Nishizeki, Jens Vygen, and Xiao Zhou. The edge-disjoint paths problem is np-
complete for series-parallel graphs. Discret. Appl. Math., 115(1-3):177–186, 2001. doi:
10.1016/S0166-218X(01)00223-2.

27 Michal Pilipczuk and Marcin Wrochna. On space efficiency of algorithms working on structural
decompositions of graphs. ACM Trans. Comput. Theory, 9(4):18:1–18:36, 2018. doi:10.1145/
3154856.

28 Neil Robertson and Paul D. Seymour. Graph minors .xiii. the disjoint paths problem. J.
Comb. Theory, Ser. B, 63(1):65–110, 1995. doi:10.1006/jctb.1995.1006.

29 Detlef Seese. Tree-partite graphs and the complexity of algorithms. In Lothar Budach,
editor, 5th International Conference on Fundamentals of Computation Theory, FCT 1985,
volume 199 of Lecture Notes in Computer Science, pages 412–421. Springer, 1985. doi:
10.1007/BFb0028825.

30 F. Bruce Shepherd and Adrian R. Vetta. The inapproximability of maximum single-sink
unsplittable, priority and confluent flow problems. Theory of Computation, 13(1):1–25, 2017.
doi:10.4086/toc.2017.v013a020.

31 Jens Vygen. Disjoint paths. Technical Report 94816, Research Institute for Discrete Mathem-
atics, University of Bonn, 1998.

https://arxiv.org/abs/2211.06267
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2022.55
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2022.55
https://doi.org/10.1007/s00453-020-00772-w
https://doi.org/10.1007/s00453-020-00795-3
https://doi.org/10.1007/s00453-020-00795-3
https://doi.org/10.1016/S0022-0000(03)00066-7
https://doi.org/10.1145/1328911.1328924
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1016/j.jctb.2011.07.004
https://doi.org/10.1016/j.jctb.2011.07.004
https://doi.org/10.1016/S0166-218X(01)00223-2
https://doi.org/10.1016/S0166-218X(01)00223-2
https://doi.org/10.1145/3154856
https://doi.org/10.1145/3154856
https://doi.org/10.1006/jctb.1995.1006
https://doi.org/10.1007/BFb0028825
https://doi.org/10.1007/BFb0028825
https://doi.org/10.4086/toc.2017.v013a020

H. L. Bodlaender, I. Mannens, J. J. Oostveen, S. Pandey, and E. J. van Leeuwen 6:19

32 I-Lin Wang. Multicommodity network flows: A survey, part I: Applications and formulations.
International Journal of Operations Research, 15(4):145–153, 2018. URL: http://www.orstw.
org.tw/ijor/vol15no4/IJOR2018_vol15_no4_p145_p153.pdf.

33 I-Lin Wang. Multicommodity network flows: A survey, part II: Solution methods. International
Journal of Operations Research, 15(4):155–173, 2018. URL: http://www.orstw.org.tw/ijor/
vol15no4/IJOR2018_vol15_no4_p155_p173.pdf.

34 Xiao Zhou, Syurei Tamura, and Takao Nishizeki. Finding edge-disjoint paths in partial k-trees.
Algorithmica, 26(1):3–30, 2000. doi:10.1007/s004539910002.

IPEC 2023

http://www.orstw.org.tw/ijor/vol15no4/IJOR2018_vol15_no4_p145_p153.pdf
http://www.orstw.org.tw/ijor/vol15no4/IJOR2018_vol15_no4_p145_p153.pdf
http://www.orstw.org.tw/ijor/vol15no4/IJOR2018_vol15_no4_p155_p173.pdf
http://www.orstw.org.tw/ijor/vol15no4/IJOR2018_vol15_no4_p155_p173.pdf
https://doi.org/10.1007/s004539910002

Treewidth Is NP-Complete on Cubic Graphs
Hans L. Bodlaender #

Utrecht University, The Netherlands
Édouard Bonnet #

LIP, ENS Lyon, France

Lars Jaffke #

University of Bergen, Norway
Dušan Knop #

Czech Technical University in Prague,
Czech Republic

Paloma T. Lima #

IT University of Copenhagen, Denmark
Martin Milanič #

FAMNIT and IAM, University of Primorska,
Koper, Slovenia

Sebastian Ordyniak #

University of Leeds, UK
Sukanya Pandey #

Utrecht University, The Netherlands

Ondřej Suchý #

Czech Technical University in Prague,
Czech Republic

Abstract
In this paper, we show that Treewidth is NP-complete for cubic graphs, thereby improving the
result by Bodlaender and Thilikos from 1997 that Treewidth is NP-complete on graphs with
maximum degree at most 9. We add a new and simpler proof of the NP-completeness of treewidth,
and show that Treewidth remains NP-complete on subcubic induced subgraphs of the infinite
3-dimensional grid.

2012 ACM Subject Classification Theory of computation → Problems, reductions and completeness

Keywords and phrases Treewidth, cubic graphs, degree, NP-completeness

Digital Object Identifier 10.4230/LIPIcs.IPEC.2023.7

Funding Dušan Knop and Ondřej Suchý: Dušan Knop and Ondřej Suchý acknowledge the support
of the Czech Science Foundation Grant No. 22-19557S.
Martin Milanič : Martin Milanič acknowledges the support of the Slovenian Research and Innovation
Agency (I0-0035, research program P1-0285 and research projects N1-0102, N1-0160, J1-3001,
J1-3002, J1-3003, J1-4008, and J1-4084) and the research program CogniCom (0013103) at the
University of Primorska.
Sebastian Ordyniak: Sebastian Ordyniak acknowledges support by the Engineering and Physical
Sciences Research Council (EPSRC, project EP/V00252X/1).

Acknowledgements This research was conducted in the Lorentz Center, Leiden, the Netherlands,
during the workshop Graph Decompositions: Small Width, Big Challenges, October 24–28, 2022.

1 Introduction

Treewidth is one of the most studied graph parameters, with many applications for both
theoretical investigations as well as for applications. The problem of deciding the treewidth
of a given graph, and finding corresponding tree decomposition, single-handedly lead to
a plethora of studies, including exact algorithms, algorithms for special graph classes,
approximations, upper and lower bound heuristics, parameterised algorithms and more. In
this paper, we look at the basic problem to decide, for a given graph G and integer k, whether
the treewidth of G is at most k.

© Hans L. Bodlaender, Édouard Bonnet, Lars Jaffke, Dušan Knop, Paloma T. Lima, Martin Milanič,
Sebastian Ordyniak, Sukanya Pandey, and Ondřej Suchý;
licensed under Creative Commons License CC-BY 4.0

18th International Symposium on Parameterized and Exact Computation (IPEC 2023).
Editors: Neeldhara Misra and Magnus Wahlström; Article No. 7; pp. 7:1–7:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:h.l.bodlaender@uu.nl
https://orcid.org/0000-0002-9297-3330
mailto:edouard.bonnet@ens-lyon.fr
https://orcid.org/0000-0002-1653-5822
mailto:lars.jaffke@uib.no
https://orcid.org/0000-0003-4856-5863
mailto:dusan.knop@fit.cvut.cz
https://orcid.org/0000-0003-2588-5709
mailto:palt@itu.dk
https://orcid.org/0000-0001-9304-4536
mailto:martin.milanic@upr.si
https://orcid.org/0000-0002-8222-8097
mailto:sordyniak@gmail.com
https://orcid.org/0000-0003-1935-651X
mailto:s.pandey1@uu.nl
https://orcid.org/0000-0001-5728-1120
mailto:ondrej.suchy@fit.cvut.cz
https://orcid.org/0000-0002-7236-8336
https://doi.org/10.4230/LIPIcs.IPEC.2023.7
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

7:2 Treewidth Is NP-Complete on Cubic Graphs

This problem was shown to be NP-complete in 1987 by Arnborg et al. [1]; their proof
also gives NP-completeness on co-bipartite graphs. As the treewidth of a graph (without
parallel edges) does not change under subdivision of edges, it easily follows and is well
known that Treewidth is NP-complete on bipartite graphs. In 1997, Bodlaender and
Thilikos [4] modified the construction of Arnborg et al. [1] and showed that Treewidth
remains NP-complete if we restrict the inputs to graphs with maximum degree 9. In this
paper, we sharpen this bound of 9 to 3. Our proof uses a simple transformation, whose
correctness follows from well-known facts about treewidth and simple insights. We also give
a new simple proof of the NP-completeness of Treewidth on arbitrary (and on co-bipartite)
graphs. We obtain a number of corollaries of the results, in particular NP-completeness of
Treewidth on d-regular graphs for each fixed d ≥ 3, and for graphs that can be embedded
in a 3-dimensional grid.

Our techniques are based on the techniques in [1] and [4] with streamlined and simplified
arguments, and some additional new but elementary ideas. As a starting point for the
reductions, we use the NP-complete problems Cutwidth on cubic graphs and Pathwidth;
the NP-completeness proofs for these were given by Monien and Sudborough [6] in 1987.

This paper is organised as follows. In Section 2, we give basic definitions and some
well-known results on treewidth. In Section 3, we give a new simple proof of the NP-
completeness of Treewidth on co-bipartite graphs that uses an elementary transformation
from pathwidth. Section 4 gives our main result: NP-completeness for Treewidth on cubic
graphs (i.e. graphs with each vertex of degree 3). In Section 5, we derive as consequences
some additional NP-completeness results: on d-regular graphs for each fixed d and on graphs
that can be embedded in a 3-dimensional grid. Some final remarks are made in Section 6.

2 Definitions and preliminaries

Throughout the paper, we denote the number of vertices of the graph G by n. All graphs
considered in this paper are undirected. A graph G is d-regular if each vertex has degree d.
We say that a graph G is cubic if G is 3-regular. If each vertex of G has degree at most 3, we
say that G is subcubic. All numbers considered are assumed to be integers, and an interval
[a, b] denotes the set of integers {a, a + 1, a + 2, . . . , b − 1, b}. Furthermore, for a positive
integer a, we denote by [a] the interval [1, a]. A graph G is a minor of a graph H, if G can
be obtained from H by zero or more vertex deletions, edge deletions, and edge contractions.
For a graph G and a set of vertices A ⊆ V (G), we write G + clique(A) for the graph obtained
by adding an edge between each pair of distinct non-adjacent vertices in A, i.e. by turning A

into a clique.
A tree decomposition of a graph G is a pair (T, β) such that T is a tree and β is a mapping

assigning each node x of T to a bag β(x) ⊆ V (G), satisfying the following conditions: every
vertex of G belongs to some bag, for every edge of G there exists a bag containing both
endpoints of the edge, and for every vertex of G, the set of nodes x of T such that v ∈ β(x)
induces a connected subtree of T . The width of a tree decomposition (T, β) is the maximum,
over all nodes x of T , of the value of |β(x)|−1. The treewidth of a graph G, denoted by tw(G),
is the minimum width of a tree decomposition of G. Path decompositions and pathwidth
(denoted by pw(G)) are defined analogously, but with the additional requirement that the
tree T is a path.

We use a number of well-known facts about treewidth and tree decompositions.

H. L. Bodlaender et al. 7:3

▶ Lemma 1 (Folklore). Let G be a graph, and (T, β) a tree decomposition of width k of G.
Then the following statements hold.
1. Let W be a clique in G. Then, there is a node x of T with W ⊆ β(x).
2. Suppose v, w ∈ V (G), {v, w} ̸∈ E(G). If there is a node x of T , with v, w ∈ β(x), then

(T, β) is a tree decomposition of width k of the graph obtained by adding the edge {v, w}
to G.

3. Suppose W ⊆ V (G). Then, there is a node x in T such that when we remove β(x) and
all incident edges from G, then each connected component of G contains at most n/2
vertices of W .

4. Let y be a leaf of T , with neighbour y′. If β(y) ⊆ β(y′), then removing y with its bag from
the tree decomposition (T, β) yields another tree decomposition of G of width at most k.

5. If H is a minor of G, then tw(H) ≤ tw(G), and pw(H) ≤ pw(G).

A graph G is co-bipartite if V (G) = A ∪ B with A a clique and B a clique (that is, the
complement of G is bipartite). The following fact is also well known, and follows implicitly
from the proofs of Arnborg et al. [1]. For completeness, we give a proof here.

▶ Lemma 2 (See, e.g. [1]). Let G be a co-bipartite graph, with V (G) = A ∪ B where A and
B are cliques. Then:
1. tw(G) = pw(G).
2. G has a path decomposition (P, β) with width equal to tw(G) such that A ⊆ β(p1) and

B ⊆ β(pr), where p1 and pr are the two endpoints of P .

Proof. Suppose (T, β) is a tree decomposition of G of width tw(G). By Lemma 1(1), there
is a node x in T with A ⊆ β(x), and a node y in T with B ⊆ β(y). Let P be the path from
x to y in T .

If T has nodes not in P , then we can apply the following step. Take a leaf z of T , not
in P . Let z′ be the neighbour of z in T . For each v ∈ A ∩ β(z), it holds that v ∈ β(z′) as
z′ is on the path from z to x, and for each v ∈ B ∩ β(z), it holds that v ∈ β(z′) as z′ is on
the path from z to y. So, by Lemma 1(4), we can remove z from T and obtain another tree
decomposition of G. Repeating this step as long as possible gives the desired result. ◀

The vertex separation number of a graph G is denoted by vsn(G) and defined as the
minimum, over all orderings σ = (v1, . . . , vn) of the vertex set of G, of the maximum, over
all i ∈ {1, . . . , n}, of the number of vertices vj such that j > i and vj has a neighbour in
{v1, . . . , vi}. Kinnersley proved the following characterisation of pathwidth.

▶ Theorem 3 (Kinnersley [5]). The pathwidth of every graph equals its vertex separation
number.

Treewidth is the following decision problem: Given a graph G and an integer k, is the
treewidth of G at most k? The problems Pathwidth and Vertex Separation Number
are defined analogously.

In 1987, Arnborg, Corneil, and Proskurowski established NP-completeness of Treewidth
in the class of co-bipartite graphs [1]. Ten years later, Bodlaender and Thilikos [4] proved
that Treewidth is NP-complete on graphs with maximum degree at most 9. Monien and
Sudborough [6] proved that Vertex Separation Number is NP-complete on planar graphs
with maximum degree at most 3. Combining this result with Theorem 3 directly shows the
following.

▶ Theorem 4 (Monien and Sudborough [6]). Pathwidth is NP-complete on planar graphs
with maximum degree at most 3.

IPEC 2023

7:4 Treewidth Is NP-Complete on Cubic Graphs

Figure 1 A brick wall with 5 rows and 12 columns.

A well-known type of graphs are the walls. A wall with r rows and c columns has r × c

vertices. We refrain from giving a formal definition here, as the concept is clear from Figure 11

It is well known that the pathwidth and treewidth of an n by r grid equal min{n, r}, see,
e.g. [3, Lemmas 87 and 88]. Since any brick wall is a subgraph of a grid, the upper bound
also holds for brick walls, and the standard construction gives the following result.

▶ Lemma 5 (Folklore). Let Br,c be a brick wall with r rows and c columns. Then tw(Br,c) ≤
pw(Br,c) ≤ r and there is a path decomposition (P, β) of Br,c of width r with β(p1) the set of
vertices on the first column of Br,c, and β(pq) the set of vertices on the last column of Br,c,
where p1 and pr are the two endpoints of P .

A linear ordering of a graph G is a bijection f : V (G) → {1, . . . , n}. The cutwidth of a
linear ordering of G is

max
i∈[n]

∣∣∣{{v, w} ∈ E(G)
∣∣ f(v) ≤ i < f(w)

}∣∣∣.
The cutwidth of a graph G, denoted by cw(G), is the minimum cutwidth of a linear ordering
of G.

The Cutwidth problem asks to decide, for a given graph G and integer k, whether
the cutwidth of G is at most k. Monien and Sudborough [6] showed that Cutwidth is
NP-complete on graphs of maximum degree three (using the problem name Minimum Cut
Linear Arrangement). As their proof does not generate vertices of degree one, and the
cutwidth of a graph does not change by subdividing an edge, from their proof, the next result
follows.

▶ Theorem 6 (Monien and Sudborough [6]). Cutwidth is NP-complete on cubic graphs.

3 A simple proof for co-bipartite graphs

In this section, we give a new simple proof that Treewidth is NP-complete. Our proof
borrows elements from the NP-completeness proof from Arnborg et al. [1], but uses an easy
transformation from Pathwidth.

Let G be a graph. We denote by F (G) the graph obtained from G as follows. The vertices
of F (G) consist of two copies v and v′ for every v ∈ V (G); we denote by V and V ′ the
sets V (G) and {v′ | v ∈ V (G)}, respectively. Moreover, the graph F (G) contains for every
v ∈ V (G) an edge between v and v′, and for every edge {u, v} ∈ E(G), it contains one edge
between u and v′ and one edge between v and u′. Finally, F (G) contains all edges between
every pair of distinct vertices in V and every pair of distinct vertices in V ′. Note that each
of the sets V and V ′ are cliques in F (G). In particular, G is co-bipartite. An example is
given in Figure 2.

1 The most common notion of wall does not have the vertices of degree one which we see at the bottom
left and top right corner of Figure 1. We keep these degree one vertices, for slightly easier notation.

H. L. Bodlaender et al. 7:5

v1

v2

v3

v4

v5

v1

v2

v3

v4

v5

v′1

v′2

v′3

v′4

v′5

Figure 2 A graph G with F (G).

v1
v2
v3
v4
v5

v′1
v′2 v2

v3
v4
v5

v′1
v′2
v′3 v3

v4
v5

v′1
v′2
v′3
v′4

v3

v5

v′1
v′2
v′3
v′4
v′5

v1
v2

v2
v3

v3
v4

v3
v5

Figure 3 A path decomposition of the graph G from Figure 2 and the corresponding path
decomposition of F (G).

▶ Lemma 7. Let G be a graph. Then, tw(F (G)) = pw(F (G)) = n+pw(G), where n = |V (G)|.

Proof. First, we show that pw(F (G)) ≤ n+pw(G). Let k = pw(G). Take a path decomposition
(P, β) of G of width k, with P = (p1, . . . , pr). Now, let γ(pi) be a set of vertices of F (G)
defined as follows:

For each v ∈ V (G) such that there is a j ≥ i with v ∈ β(pj), add v to γ(pi).
For each v ∈ V (G) such that there is a j ≤ i with v ∈ β(pj), add v′ to γ(pi).

An example of this construction, applied to the graphs G and F (G) of Figure 2, is given
in Figure 3.

We claim that (P, γ) is a path decomposition of F (G) of width n + k. We first verify that
(P, γ) is a path decomposition. The first and third conditions of path decompositions are
clearly satisfied. Notice that V ⊆ γ(p1), and V ′ ⊆ γ(pr). So, for each edge in F (G) between
two vertices in V , or between two vertices in V ′, there is a bag in (P, γ) containing the two
endpoints of the edge, namely, the bag corresponding to the node p1 or pr, respectively.
Consider an edge {v, v′} for a vertex v ∈ V (G). There is a node pv with v ∈ β(pv),
and therefore v, v′ ∈ γ(pv). Consider an edge {v, w′} in F (G), corresponding to an edge
{v, w} ∈ E(G). There is a node pvw with v, w ∈ β(pvw). Now, v, v′, w, w′ ∈ γ(pvw).

To see that the width is n + k, consider some bag γ(pi) and a vertex v ∈ V (G). There
are three possible cases:
1. For each j with v ∈ β(pj), j > i. Now, v ∈ γ(pi); v′ ̸∈ γ(pi).
2. For each j with v ∈ β(pj), j < i. Now, v′ ∈ γ(pi); v ̸∈ γ(pi).
3. If the previous two cases do not hold, then there is j ≤ i with v ∈ β(pj), and j′ ≥ i with

v ∈ β(pj′). From the definition of path decompositions, it follows that v ∈ β(pi). From
the construction of γ, we have v, v′ ∈ γ(pi).

IPEC 2023

7:6 Treewidth Is NP-Complete on Cubic Graphs

In each of the cases, we have one vertex more in γ(pi) than in β(pi), so for each node,
the size of its γ-bag is exactly n larger than the size of its β-bag. The claim follows.

Now, suppose the treewidth of G equals ℓ. From Lemma 2(2), it follows that we can
assume we have a path decomposition (P, γ) of F (G) of width ℓ, with P having successive
bags p1, p2, . . . , pr, and with V ⊆ γ(p1) and V ′ ⊆ γ(p2).

We now define a path decomposition (P, δ) of G, as follows. For each node x on P , set
δ(x) = {v ∈ V | v ∈ γ(x) ∧ v′ ∈ γ(x)}. (Note that this is the reverse of the operation in the
first part of the proof; compare with Figure 3.)

We now verify that (P, δ) is indeed a path decomposition of G. For each vertex v, {v, v′}
is an edge in F (G), so there is a node xv with v, v′ ∈ γ(xv), hence v ∈ δ(xv). For each edge
{v, w} ∈ E(G), the set {v, v′, w, w′} forms a clique in F (G), so there is a node xvw with
{v, v′, w, w′} ⊆ γ(xvw) (see Lemma 1(1)). Hence v, w ∈ δ(xvw). Finally, for each v ∈ V (G),
the set of nodes x with v ∈ δ(x) is the intersection of the nodes with v ∈ γ(x) and the nodes
with v′ ∈ γ(x); the intersection of connected subtrees is connected, so the third condition in
the definition of path (tree) decompositions also holds.

Finally, we show that the width of (P, δ) is ℓ − n. Consider a vertex v, and i ∈ [r]. There
must be iv with {v, v′} ⊆ γ(piv

). If i ≤ iv, then v ∈ γ(pi); if i ≥ iv, then v′ ∈ γ(pi) (using
that v ∈ γ(p1) and v′ ∈ γ(pr)). So, we have {v, v′} ∩ γ(pi) ̸= ∅.

Now, for each node pi, i ∈ [r], for each vertex v, we have that γ(pi) contains both
vertices from the set {v, v′} when v ∈ δ(pi), and γ(pi) contains exactly one vertex from
the set {v, v′} when v ̸∈ δ(pi). So, |γ(pi)| = |δ(pi)| + n. As this holds for each bag, we
have that the width of (P, γ) is exactly n larger than the width of (P, δ). It follows that
pw(G) ≤ tw(F (G)) − n ≤ pw(F (G)) − n, which shows the result. ◀

Lemma 7, together with the NP-completeness of Vertex Separation Number [6], and
the equivalence between the pathwidth and the vertex separation number (Theorem 3), leads
to an alternative simple proof of NP-completeness of Treewidth in the class of co-bipartite
graphs.

▶ Corollary 8. Treewidth is NP-complete on co-bipartite graphs.

One can obtain a proof of the NP-completeness of Treewidth on graphs with maximum
degree five by combining the proof above with the technique of replacing a clique with a
wall or grid (as in [4] or in the next section). Instead of this, we give in the next section a
proof that reduces from Cutwidth and shows NP-completeness of Treewidth on graphs
of degree three.

4 Cubic graphs

In this section, we give an NP-completeness proof for Treewidth on cubic graphs. The
construction uses a few steps. The first step is a simplified version of the NP-completeness
proof from Arnborg et al. [1]; the second step follows the idea of Bodlaender and Thilikos [4]
to replace the cliques by grids or walls. After this step, we have a graph with maximum
degree 7. In the third step, we replace vertices of degree more than 3 by trees of maximum
degree 3, and show that this step does not change the treewidth (it actually can change the
pathwidth). The fourth step makes the graph 3-regular by simply contracting over vertices
of degree 2.

▶ Theorem 9. Treewidth is NP-complete on regular graphs of degree 3.

H. L. Bodlaender et al. 7:7

Proof. We use a transformation from Cutwidth on 3-regular graphs.
Let G be an n-vertex 3-regular graph and k an integer. Using a sequence of intermediate

steps and intermediate graphs G1, G2, G3, we construct a 3-regular graph G4 with the
property that G has cutwidth at most k, if and only if G4 has treewidth at most 3n + k + 2.

Step 1: From Cutwidth to Treewidth. The first step is a streamlined version of the proof
from Arnborg et al. [1]. For each vertex v ∈ V (G), we take a set Av = {v1, v2, v3} which has
three copies of v.

For each edge e ∈ E(G), we have a set Be = {e1, e2}, which consists of two vertices that
represent the edge.

Let A =
⋃

v∈V (G) Av, and B =
⋃

e∈E(G) Be. We create G1 by taking A ∪ B as vertex set,
turning A into a clique, turning B into a clique, and for each pair v, e with v an endpoint of
e, adding edges between all vertices in Av and all vertices in Be.

▷ Claim 10. Let G and G1 be as above. tw(G1) = pw(G1) = cw(G) + 3n + 2.

Proof. First, assume G has cutwidth k, and let f be a linear ordering of G of cutwidth k,
and denote the ith vertex in the linear ordering as vi = f−1(i).

Build a path decomposition (P, β) with P the path with nodes p1, . . . , pn. For i ∈ [n],
set

β(pi) =
{

va
j

∣∣ j ≥ i ∧ a ∈ {1, 2, 3}
}

∪
{

eb
∣∣ e = {vj , vj′} ∈ E(G) ∧ min{j, j′} ≤ i ∧ b ∈ [2]

}
.

That is, we take the representatives of the vertices vi, vi+1, . . . , vn, and all vertices that
represent an edge with at least one endpoint in {v1, v2, . . . , vi}.

We can verify that (P, β) is a path decomposition of G1. From the construction, it directly
follows that A ⊆ β(p1) and B ⊆ β(pn). For the second condition of path decompositions, it
remains to look at edges in G1 with one vertex of the form va

i and one vertex of the form eb.
Necessarily, vi is an endpoint of e, and now we can note that both vertices are in bag β(pi).
From the construction, it directly follows that the third condition of path decompositions is
fulfilled.

To show that the width of this path decomposition is at most k + 3n + 2, we use
an accounting system. Consider β(pi). Give each vertex v ∈ V (G) three credits, except
vi, which gets six credits. Each edge that “crosses the cut”, i.e. it belongs to the set
{{v, w} ∈ E(G) | f(v) ≤ i < f(w)}, gets one credit. All other edges get no credit. We
handed out at most k + 3n + 3 credits. We now redistribute these credits to the vertices
in β(pi). Each vertex vj , j ≥ i, gives one credit to each vertex of the form va

j , a ∈ {1, 2, 3}.
For an edge e = {vj , vj′}, with j < i and j′ < i, the vertices e1 and e2 get, respectively, a
credit from vj and vj′ . For an edge e = {vj , vj′}, with j ≤ i < j′, the vertices e1 and e2

get, respectively, a credit from vj and a credit from e. Now, each vertex and edge precisely
spends its credit: a vertex vj with j < i gives one credit to each of its incident edges, vi gives
one credit to each of its copies v1

i , v2
i , v3

i , and one credit to each of its incident edges, and vj

with j > i gives one credit to each of its copies v1
j , v2

j , v3
j . Each vertex in the bag β(pi) gets

one credit, so the size of the bag is at most k + 3n + 3. As this holds for each bag, the width
of the path decomposition is at most k + 3n + 2.

Now, assume that we have a tree decomposition (T, γ) of G1 of width ℓ. By Lemma 1(1),
as A and B are cliques, there is a bag p1 with A ⊆ γ(p1), and a bag pr with B ⊆ γ(pr).
As in the proof of Lemma 2, we can remove all bags not on the path from p1 and pr, and

IPEC 2023

7:8 Treewidth Is NP-Complete on Cubic Graphs

still keep a tree decomposition of G1. So, we can assume we have a path decomposition
(P, γ) of width at most ℓ of G1, where P is a path with successive vertices p1, p2, . . . , pr, and
γ(p1) = A and γ(pr) = B.

For each v ∈ V (G), set g(v) to the maximum i such that {v1, v2, v3} ⊆ β(pi). (As
{v1, v2, v3} ⊆ A ⊆ β(p1), g(v) is well defined and in [r].)

Take a linear ordering f of G such that for all v, w ∈ V (G), g(v) < g(w) ⇒ f(v) < f(w).
(That is, order the vertices with respect to increasing values of g, and arbitrarily break
the ties when vertices have the same value g(v).) We claim that f has cutwidth at most
ℓ − 3n − 2.

Consider a vertex v ∈ V (G), and suppose g(v) = i′. Let e be an edge incident to v.
The set {v1, v2, v3, e1, e2} is a clique in G1, so there is an ie with {v1, v2, v3, e1, e2} ⊆ β(pie).
From the definition of path decompositions and the construction of g, we have ie ≤ i′. As
{e1, e2} ⊆ β(pie) ∩ β(pr), we have that {e1, e2} ⊆ β(pi′).

Now, consider an i ∈ [n]. Let v = f−1(i) be the ith vertex of the ordering and C = f−1[i]
be the first i vertices in the linear ordering. Let E1 be the set of edges with exactly one
endpoint in C, and let E2 be the set of edges with both endpoints in C. Suppose g(v) = i′.
We now examine which vertices belong to β(pi′):

By definition, v1, v2, v3.
For each w ∈ V (G) \ C, there is an iw ≥ i′ with {w1, w2, w3} ⊆ β(piw

), hence w1, w2,
and w3 are in β(pi′). (Use here that these vertices are in β(p1).) The number of such
vertices is 3n − 3i.
For each edge e ∈ E1 ∪ E2, from the discussion above it follows that there is an ie ≤ i′

with e1, e2 ∈ β(pie
), and, as these vertices are in β(pr), we have {e1, e2} ⊆ β(pi′).

Thus, the size of β(pi′) is at least 3n − 3i + 3 + 2 · |E1| + 2 · |E2|. As each vertex in C

is incident to exactly three edges, we have 3i = |E1| + 2 · |E2|. Now, ℓ ≥ |β(pi′)| − 1 ≥
3n − 3i + 2 + 2 · |E1| + 2 · |E2| = 3n + 2 + |E1|. It follows that the size of the cut∣∣∣{{x, y} ∈ E(G)

∣∣ f(x) ≤ i < f(y)
}∣∣∣ = |E1| ≤ ℓ − 3n − 2. As this holds for each i ∈ [n], the

bound of ℓ − 3n − 2 on the cutwidth of f follows.

We have thus shown that pw(G1) ≤ cw(G) + 3n + 2 and that cw(G1) ≤ tw(G1) − 3n − 2.
Together with the inequality tw(G1) ≤ pw(G1), this proves the claim. ◁

Step 2: The wall construction. In the second step, we use a technique from Bodlaender
and Thilikos [4]. We construct a graph G2 from the graph G1 by removing the edges between
vertices in A and the edges between vertices in B; then, we add a wall with 3n rows and 24n

columns, and add a matching from the vertices in the last column of the wall to the vertices
in A. Similarly, we add another wall with 3n rows and 24n columns, and add a matching
from the vertices in the first column of this wall to the vertices in B.

As applying the wall construction to a graph obtained from the first step would be
unwieldy, the example in Figure 4 shows the wall construction applied to the graph from the
previous section.

▷ Claim 11. tw(G1) = pw(G1) = tw(G2) = pw(G2). Moreover, there is a path decomposition
of G2 of optimal width with a node xA with A ⊆ β(xA) and a node xB with B ⊆ β(xB).

Proof. Suppose we have a tree decomposition (T, β) of G2 of optimal width k. By Lemma 1(3),
there is a node x such that each connected component of G2 \ β(x) contains at most 36n2

vertices of the left wall. Note that β(x) must contain a vertex of each row from the left wall.
Suppose not. Each pair of two successive columns in the wall is connected; there are at least
12n−|β(x)| disjoint pairs of columns which do not contain a vertex from β(x). All vertices on

H. L. Bodlaender et al. 7:9

Figure 4 Illustration of the wall construction. Here, it is applied to the graphs from Figure 2,
and the number of columns shown is smaller than that in the actual construction.

these columns are connected in G2 \ β(x) as they intersect the row without vertices in β(x).
As the number of vertices in these columns is larger than 36n2, since k ≤ |E(G)| = 3n/2, we
have a contradiction.

By Lemma 1(2), (T, β) is also a tree decomposition of the graph obtained from G2 by
adding edges between each pair of vertices in β(x). Apply the same step to the right wall.
We see that (T, β) is a tree decomposition of width k of a graph that for each pair of rows in
the left wall contains an edge between a pair of vertices from these rows, and similarly for
the right wall. Now, if we contract each row of the left wall to the neighbouring vertex in A,
and contract each row of the right wall to the neighbouring vertex in B, we obtain G1 as
minor: G1 is a minor of a graph of treewidth k, so has treewidth at most k.

By Lemma 2, tw(G1) = pw(G1), and there is a path decomposition (P, γ) of G1 of optimal
width ℓ such that A ⊆ γ(p1) and B ⊆ γ(pq), where p1 and pq are the endpoints of P .

We can now build a path decomposition of G2 of the same width ℓ as follows: first, take
the successive bags of a path decomposition of the left wall, of width 3n, where we can end
with a bag that contains all vertices of A. Then, we take the bags of (P, γ). Now, we add
a path decomposition of the right wall, of width 3n, that starts with a bag containing all
vertices in B. ◁

Step 3: Making the graph subcubic. Note that the maximum degree of a vertex in G2
is seven. A vertex in A has one neighbour in the wall, and six neighbours in B (the vertex
it represents has three incident edges, and each is represented by two vertices). Similarly,
a vertex in B has degree seven: again, one neighbour in the wall, and six neighbours in A

(each endpoint of the edge it represents is represented by three vertices). Vertices in the
walls have degree at most three.

Given G2, we build a subcubic graph G3. We do this by replacing each vertex in A and
in B by a tree, and replacing edges to vertices in A and B by edges to leaves or the root of
these trees.

For vertices vα in A (with v ∈ V (G), α ∈ [3]), we take an arbitrary tree with a root of
degree 2, all other internal vertices of degree 3, and six leaves. The root (which we denote by
the name of the original vertex vα) is made adjacent to the neighbour of vα in the wall.

Each vertex eα ∈ B (with e ∈ E(G), α ∈ [2]) is also replaced by a tree with a root of
degree 2, all other internal vertices of degree 3, and six leaves, but here we need to use a
specific shape of the tree. Suppose e has endpoints v and w. Figure 5 shows this tree. In
particular, note that the root is made adjacent to the neighbour of eα in the wall, and the
leaves that go to the subtrees that represent v are grouped together, and the leaves that go
to the subtrees that represent w are grouped together.

Each edge between a vertex vα in A and a vertex eα′ in B now becomes an edge from a
leaf of the tree representing vα, to a leaf of the tree representing eα′ ; α ∈ [3], α′ ∈ [2]. The
roots of the trees are made adjacent to a vertex in the wall; this is the same vertex as the
wall neighbour of the original vertex in G2.

IPEC 2023

7:10 Treewidth Is NP-Complete on Cubic Graphs

eα

v1

v2

v3

w1

w2

w3

in the brick wall

eα

to the tree of v1

to the tree of v2

to the tree of v3

to the tree of w1

to the tree of w2

to the tree of w3

in the brick wall

eαw

eαv

Figure 5 Replacing a vertex eα from B by a tree; e is here the edge {v, w}.

▷ Claim 12. Suppose tw(G2) ≥ 68. Then tw(G2) = pw(G2) = tw(G3).

Proof. We have already established that tw(G2) = pw(G2).
First, note that G2 is a minor of G3: we obtain G2 from G3 by contracting each of the

new trees to its original vertex. By Lemma 1(5), we have tw(G2) ≤ tw(G3).

Suppose we have a path decomposition (P, β) of G2 of optimal width ℓ = pw(G2) = tw(G2).
By Claim 11, we can also assume that there is a bag that contains all vertices in A, and that
there is a bag that contains all vertices in B.

For each vertex v ∈ V (G), we claim that there is a node piv
with v1, v2, v3 ∈ β(piv

) and
e1, e2 ∈ β(piv) for each edge e incident to v. This can be shown as follows. The pair (P, β)
is also a path decomposition of the graph G + clique(A) + clique(B), obtained from G2 by
adding edges between each pair of vertices in A, and each pair of vertices in B (since there is
a bag containing all vertices of A and a bag containing all vertices of B and by Lemma 1(2).)
The claim now follows from Lemma 1(1) by observing that these nine vertices (v1, v2, v3,
and e1, e2 for each edge incident to v) form a clique in G + clique(A) + clique(B).

Now, we can construct a tree decomposition of G3 as follows. Take (P, β). Replace each
vertex in A and each vertex in B by the root of the tree it represents. For each vertex
v ∈ V (G), we add one additional bag to the tree decomposition; this bag becomes a leaf of
the tree decomposition. (Note that after this step, we no longer have a path decomposition.)

Consider a vertex v ∈ V (G). Take a new node xv, and make xv adjacent to piv in the tree.
Let the bag of xv contain the following vertices: all vertices in the subtrees that represent v1,
v2, v3, for each edge e with v as endpoint the vertices e1, e1

v, e2, e2
v, and the descendants of

e1
v and e2

v in the respective subtrees (the vertices in the yellow area in Figure 5, assuming
that e = {v, w}).

Each vertex in A is represented by a binary tree with a root of degree two and six leaves,
so by eleven vertices. For each of the three edges incident to v, we have two subtrees of
which we take six vertices each, so the total size of this new bag is 3 · 11 + 3 · 2 · 6 = 69. One
easily verifies that we have a tree decomposition of G3, and as the original bags keep the
same size when ℓ ≥ 68, we have a tree decomposition of G of width at most ℓ. ◁

By taking a sufficiently large n (e.g. n ≥ 22 works), we can assume that ℓ ≥ 68.

Step 4: Making the graph 3-regular. The fourth step is simple. Note that when the
treewidth of a graph is at least three, the treewidth does not change when we contract a vertex
of degree at most two to a neighbour (see [2]), possibly removing parallel edges. We apply
this step as long as possible, and let G4 be the resulting graph. The graph G4 is a 3-regular
graph, and, when n ≥ 22, its treewidth equals the treewidth of G1, which is cw(G) + 3n + 2.
As we can construct G4 in polynomial time, this completes the transformation, and we can
conclude that Treewidth is NP-complete on 3-regular graphs. ◀

H. L. Bodlaender et al. 7:11

Left grid wall Right grid wall

A B
.

e2
v1v

2

e1 v3

. . .

Left grid wall Right grid wall

A B
.

e2
v1v

2

e1 v3

. . .

xv

Figure 6 Illustration of the proof. The path decomposition before and after adding the new node
xv.

v w v w

Figure 7 Increasing the degree of two adjacent vertices by one.

5 Special cases

In this section, we give two NP-completeness proofs for Treewidth on special graph classes,
which follow from minor modifications of the proof of Theorem 9. We first observe that for
any fixed d ≥ 4, Treewidth is NP-complete on d-regular graphs.

▶ Proposition 13. For each d ≥ 3, Treewidth is NP-complete on d-regular graphs.

Proof. The result for d = 3 was given as Theorem 9.
A small modification of the proof of Theorem 9 gives the result for 4-regular graphs:

instead of using a wall, use a grid. At the borders of this grid, we have vertices of degree less
than 3. We can avoid these by first contracting vertices of degree 2, and then noting that
there is a perfect matching with the vertices of degree 3 at the sides of the grid. Replace
each edge in this matching by a small subgraph, as shown in Figure 7. Note that this step
increases the degree of v and w by one, while, when the treewidth of G is at least 5, the step
will not change the treewidth of the graph.

In the step where we change vertices of degree 7 to vertices of degree 3 by replacing a
vertex by a small tree, we instead use a tree with the root having two children, each with
three children. These roots are made adjacent to the grid. Now, the roots have degree 3,
and we add an arbitrary perfect matching between these root vertices in A, and similarly for
B. (Note that in the construction, there is a bag containing all roots for A, and similarly B;
these sets have even size.) This gives the result for d = 4.

Consider the following gadget. Take a clique with d + 1 vertices, and remove one edge,
say {x, y}, from this clique. For a vertex v in a graph G, add an edge from x to v, and an
edge from y to v. See Figure 8.

If G has treewidth at least d, then this step increases the degree of v by 2 without
changing the treewidth. Now, if d is odd, we can take an instance of the hardness proof on
3-regular graphs, and add to each vertex of that instance (d − 3)/2 copies of this gadget. We
obtain an equivalent instance that is d-regular. If d is even, we add (d − 4)/2 copies of the
gadget to an instance of the hardness proof on 4-regular graphs. ◀

IPEC 2023

7:12 Treewidth Is NP-Complete on Cubic Graphs

v v

Figure 8 Increasing the degree of a vertex: if tw(G) ≥ 4, then the step increases the degree of v

from 3 to 5, but does not change the treewidth.

A d-dimensional grid graph is a finite induced subgraph of the infinite d-dimensional
grid. Observe that d-dimensional grid graphs have degree at most 2d, and in particular the
3-dimensional grid graphs have degree at most 6. As a consequence of lowering the degree of
hard Treewidth instances from 9 to at most 6, we can show that computing the treewidth
of 3-dimensional grid graphs is NP-complete. Since we lowered the degree of hard instances
down to at most 3, we can even show the following.

▶ Proposition 14. Treewidth is NP-complete on subcubic 3-dimensional grid graphs.

Proof. The argument is simply that every n-vertex (sub)cubic graph admits a subdivision of
polynomial size that is a 3-dimensional grid graph. We give a simple such embedding.

We reduce from Treewidth on cubic graphs, which is NP-hard by Theorem 9. Let G

be any cubic graph, v0, v1, . . . , vn−1 its vertices, and e1, e2, . . . , e3n/2 its edges. We build
a subcubic induced subgraph H of the (6n − 1) × (3n + 1) × 3 grid that is a subdivision of G.
In particular, tw(H) = tw(G) and H has O(n2) vertices and edges, thus we can conclude.

For each i ∈ [0, n − 1], vertex vi is encoded by the path made by the 5 vertices (x, 0, 0)
with x ∈ [6i, 6i + 4]. We arbitrarily assign (6i, 0, 0), (6i + 2, 0, 0), (6i + 4, 0, 0) each with
a distinct neighbour of vi in G, say vi(0), vi(1), vi(2), respectively.

Every edge ek = {vi, vj} of G with i < j is encoded in the following way. Let a, b ∈ [0, 2]
be such that i(a) = j and j(b) = i. We build a path from (6i + 2a, 0, 0) to (6j + 2b, 0, 0) with
degree-2 vertices, by first adding all the vertices (6i + 2a, y, 0) and (6j + 2b, y, 0) for y ∈ [2k],
then bridging (6i + 2a, 2k, 0) and (6j + 2b, 2k, 0) by adding (6i + 2a, 2k, 1)(6i + 2a, 2k, 2)(6i +
2a + 1, 2k, 2)(6i + 2a + 2, 2k, 2) . . . (6j + 2b − 1, 2k, 2)(6j + 2b, 2k, 2)(6j + 2b, 2k, 1).

This finishes the construction of H. All of its vertices have degree 2, except the vertices
at (6i + 2, 0, 0), which have degree 3. It is easy to see that H is a subdivision of G (where
each edge gets subdivided at most 12n + 5 times). ◀

We can easily adapt the previous proof to show hardness for finite subcubic (non-induced)
subgraphs of the ∞ × ∞ × 2 grid.

6 Conclusions

In this paper, we gave a number of NP-completeness proofs for Treewidth. The first proof
is an elementary reduction from Pathwidth to Treewidth on co-bipartite graphs; while
the hardness result is long known, our new proof has the advantage of being very simple, and
presentable in a matter of minutes. Our second main result is the NP-completeness proof for
Treewidth on cubic graphs, which improves upon the over 25-years-old bound of degree 9.

We end this paper with a few open problems. A long standing open problem is the
complexity of Treewidth on planar graphs. While the famous ratcatcher algorithm solves
the related Branchwidth problem in polynomial time [7], it is still unknown whether
Treewidth on planar graphs is polynomial time solvable or whether it is NP-complete.
Also, no NP-hardness proofs for Treewidth on graphs of bounded genus, or H-minor free

H. L. Bodlaender et al. 7:13

graphs for some fixed H are known. An easier open problem might be the complexity of
Branchwidth for graphs of bounded degree, and we conjecture that Branchwidth is
NP-complete on cubic graphs.

While “our” reductions are simple, the NP-hardness of Treewidth is derived from
the NP-hardness of Pathwidth or Cutwidth. Thus, it would be good to have simple
NP-hardness proofs for Pathwidth and/or Cutwidth, preferably building upon “classic”
NP-hard problems like Satisfiability, elementary graph problems like Clique, or Bin
Packing.

The reductions in our hardness proofs increase the parameter by a term linear in n, so
shed no light on the parameterised complexity of Treewidth. Hence, it would be interesting
to obtain parameterised reductions (i.e. reductions that change k to a value bounded by a
function of k), and also aim at lower bounds (e.g. based on the (S)ETH) on the parameterised
complexity of Treewidth. It is also not known whether one can obtain a time lower bound
of 2Ω(n) for Treewidth.

References
1 Stefan Arnborg, Derek G. Corneil, and Andrzej Proskurowski. Complexity of finding em-

beddings in a k-tree. SIAM Journal on Algebraic and Discrete Methods, 8(2):277–284, 1987.
doi:10.1137/0608024.

2 Stefan Arnborg and Andrzej Proskurowski. Characterization and recognition of partial 3-trees.
SIAM Journal on Algebraic Discrete Methods, 7(2):305–314, 1986. doi:10.1137/0607033.

3 Hans L. Bodlaender. A partial k-arboretum of graphs with bounded treewidth. Theoretical
Computer Science, 209(1-2):1–45, 1998. doi:10.1016/S0304-3975(97)00228-4.

4 Hans L. Bodlaender and Dimitrios M. Thilikos. Treewidth for graphs with small chordality.
Discrete Applied Mathematics, 79(1-3):45–61, 1997. doi:10.1016/S0166-218X(97)00031-0.

5 Nancy G. Kinnersley. The vertex separation number of a graph equals its path-width.
Information Processing Letters, 42(6):345–350, 1992. doi:10.1016/0020-0190(92)90234-M.

6 B. Monien and I. H. Sudborough. Min cut is NP-complete for edge weighted trees. Theoret.
Comput. Sci., 58(1-3):209–229, 1988. doi:10.1016/0304-3975(88)90028-X.

7 Paul D. Seymour and Robin Thomas. Call routing and the ratcatcher. Combinatorica,
14(2):217–241, 1994. doi:10.1007/BF01215352.

IPEC 2023

https://doi.org/10.1137/0608024
https://doi.org/10.1137/0607033
https://doi.org/10.1016/S0304-3975(97)00228-4
https://doi.org/10.1016/S0166-218X(97)00031-0
https://doi.org/10.1016/0020-0190(92)90234-M
https://doi.org/10.1016/0304-3975(88)90028-X
https://doi.org/10.1007/BF01215352

Stretch-Width
Édouard Bonnet # Ñ

Univ Lyon, CNRS, ENS de Lyon, Université Claude Bernard Lyon 1, LIP UMR5668, France

Julien Duron #

Univ Lyon, CNRS, ENS de Lyon, Université Claude Bernard Lyon 1, LIP UMR5668, France

Abstract
We introduce a new parameter, called stretch-width, that we show sits strictly between clique-
width and twin-width. Unlike the reduced parameters [BKW ’22], planar graphs and polynomial
subdivisions do not have bounded stretch-width. This leaves open the possibility of efficient
algorithms for a broad fragment of problems within Monadic Second-Order (MSO) logic on graphs
of bounded stretch-width. In this direction, we prove that graphs of bounded maximum degree
and bounded stretch-width have at most logarithmic treewidth. As a consequence, in classes of
bounded stretch-width, Maximum Independent Set can be solved in subexponential time 2Õ(n8/9)

on n-vertex graphs, and, if further the maximum degree is bounded, Existential Counting Modal
Logic [Pilipczuk ’11] can be model-checked in polynomial time. We also give a polynomial-time
O(OPT2)-approximation for the stretch-width of symmetric 0, 1-matrices or ordered graphs.

Somewhat unexpectedly, we prove that exponential subdivisions of bounded-degree graphs have
bounded stretch-width. This allows to complement the logarithmic upper bound of treewidth with
a matching lower bound. We leave as open the existence of an efficient approximation algorithm for
the stretch-width of unordered graphs, if the exponential subdivisions of all graphs have bounded
stretch-width, and if graphs of bounded stretch-width have logarithmic clique-width (or rank-width).

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis; Theory of
computation → Design and analysis of algorithms

Keywords and phrases Contraction sequences, twin-width, clique-width, algorithms, algorithmic
metatheorems

Digital Object Identifier 10.4230/LIPIcs.IPEC.2023.8

Related Version Full Version: https://arxiv.org/abs/2305.12023

1 Introduction

Various graph classes have bounded twin-width1 such as, for instance, bounded clique-width
graphs, proper minor-closed classes, proper hereditary subclasses of permutation graphs,
and some expander classes [11]. Low twin-width, together with the witnessing contraction
sequences, enables parameterized algorithms (that are unlikely in general graphs) for testing
if a graph satisfies a first-order sentence [11, 7], and improved approximation algorithms for
highly inapproximable packing and coloring problems [7, 4].

However one should not expect a large gain, in the low twin-width regime, as far as
(non-parameterized) exact algorithms are concerned. This is because every graph obtained
by subdividing (at least) 2⌈log n⌉ times each edge of an n-vertex graph G has twin-width
at most 4 [3]. It was already observed in the 70’s that a problem like Maximum Inde-
pendent Set (MIS, for short) remains NP-complete in 2t-subdivisions [23]. Furthermore,
known reductions [16] combined with the Sparsification Lemma [20], imply that unless the

1 We refer the reader to Section 2 for the relevant definitions.

© Édouard Bonnet and Julien Duron;
licensed under Creative Commons License CC-BY 4.0

18th International Symposium on Parameterized and Exact Computation (IPEC 2023).
Editors: Neeldhara Misra and Magnus Wahlström; Article No. 8; pp. 8:1–8:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:edouard.bonnet@ens-lyon.fr
http://perso.ens-lyon.fr/edouard.bonnet/
https://orcid.org/0000-0002-1653-5822
mailto:julien.duron@ens-lyon.fr
https://orcid.org/0009-0004-0925-9438
https://doi.org/10.4230/LIPIcs.IPEC.2023.8
https://arxiv.org/abs/2305.12023
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

8:2 Stretch-Width

Exponential-Time Hypothesis2 (ETH) fails [19] solving MIS in subcubic graphs requires
time 2Ω(n). The previous remarks entail that, unless the ETH fails, solving MIS in subcubic
graphs of twin-width at most 4 requires time 2Ω(n/ log n).

In contrast, on the significantly less general classes of bounded clique-width not only can
MIS be solved in polynomial-time, but a fixed-parameter algorithm solving MSO1

3 model
checking in time f(w, |φ|)nO(1) exists [14, 21], with w the clique-width of the input graph, φ

the input sentence, and f some computable function.
In this paper, we start exploring the trade-off between class broadness and algorithmic

generality in the zone delimited by bounded clique-width and bounded twin-width. It may
seem like the reduced parameters [12], where a graph has reduced p at most k if it admits
a contraction sequence in which all the red graphs have parameter p at most k, are exactly
designed to tackle this endeavor. Indeed by definition, twin-width is reduced ∆, where ∆ is
the maximum degree, and it was shown that reduced maximum connected component size
(under the name of component twin-width) is functionally equivalent to clique-width [10].
Between maximum connected component size and maximum degree, there are several para-
meters p, such as bandwidth, cutwidth, treewidth+∆, whose reduced parameters give rise to
a strict [12] hierarchy between bounded clique-width and bounded twin-width. Unfortunately,
even reduced bandwidth –the closest to clique-width among the above-mentioned reduced
parameters– turns out to be too general in the following sense: the n-subdivision of any
n-vertex graph has reduced bandwidth at most 2 [12]. This means, by the arguments of
the second paragraph of this introduction, that solving MIS on graphs of bounded reduced
bandwidth requires time 2Ω(

√
n), unless the ETH fails, even among graphs of bounded degree.

Actually, another fact leading to the same conclusion is that planar graphs have bounded
reduced bandwidth [12].

We therefore introduce another parameter, that we call stretch-width4 and denote by stw,
which, while inspired by reduced parameters, does not fully fit that framework. To a first
approximation, stretch-width can be thought as reduced bandwidth where the bandwidth
upper bound on the red graphs have to be witnessed by a single (and fixed) order on the
vertex set. Observe indeed that the linear orders witnessing that all the red graphs of the
sequence have low bandwidth can, in reduced bandwidth, be very different one from the
other. We first show that the family of bounded stretch-width classes strictly contains the
family of bounded clique-width classes. Using an upper bound of component twin-width by
clique-width [2], we prove that:

▶ Theorem 1 (⋆). The stretch-width of any graph is at most twice its clique-width.

All the statements marked with a ⋆ are only proved in the long version, in appendix.
Then we provide a separating class of bounded stretch-width and unbounded clique-width.

▶ Theorem 2 (⋆). There is an infinite family of graphs G with bounded stretch-width and
clique-width Ω(log |V (G)|).

As was done for twin-width [9], we give an effective characterization of bounded stretch-
width for symmetric 0, 1-matrices (or ordered graphs).

▶ Theorem 3 (⋆). A class C of symmetric 0, 1-matrices has bounded stretch-width if and
only if there is an integer k such that no matrix of C has a k-wide division.

2 the assumption that there is a λ > 1 such that n-variable 3-SAT cannot be solved in time λnnO(1)
3 Monadic Second-Order logic, when the second-order variables can only be vertex subsets
4 We refer a reader who would already want a formal definition to the start of Section 3.

É. Bonnet and J. Duron 8:3

The k-wide division (see definition in Section 4) is a scaled-down version of the k-rich
division that analogously characterizes matrices of bounded twin-width [9]. Theorem 3 yields
a polynomial-time approximation algorithm for the stretch-width of symmetric 0, 1-matrices.
More precisely:

▶ Theorem 4 (⋆). Given an integer k and a symmetric n × n 0, 1-matrix M , there is an
nO(1)-time algorithm that outputs a sequence witnessing that stw(M) = O(k3) or correctly
reports that stw(M) > k.

Compared to the approximation algorithm for the twin-width of a matrix, this is better both
in terms of running time (polynomial vs fixed-parameter tractable) and approximation factor
(quadratic vs exponential).

Conveniently for the sought algorithmic applications, planar graphs and nc-subdivisions
of n-vertex graphs (for any constant c) both have unbounded stretch-width (whereas they
have bounded reduced bandwidth if c ⩾ 1). We indeed establish the following upper bound
on treewidth, implying that graphs of bounded maximum degree and bounded stretch-width
have at most logarithmic treewidth.

▶ Theorem 5. There is a c such that for every graph G, tw(G) ⩽ c∆(G)2stw(G)4 log |V (G)|.

We match Theorem 5 with a lower bound. There are graphs with bounded ∆ + stw and
treewidth growing as a logarithm of their number of vertices. This is because, as we prove,
very long subdivisions of bounded-degree graphs have bounded stretch-width.

▶ Theorem 6. Every (⩾ n2m)-subdivision of every n-vertex m-edge graph G of maximum
degree d has stretch-width at most 32(4d + 5)3.

By (⩾ s)-subdivision of G, we mean every graph obtained by subdividing each edge of G

at least s times. In particular, for every natural k, the n-vertex k222k(k−1)-subdivision of the
k × k grid has bounded maximum degree (by 4) and stretch-width (by 296352), whereas it
has treewidth k = Ω(

√
log n). A more careful argument and reexamination of Theorem 6

show that, for some constant c, the n-vertex 2ck-subdivision of the k × k grid has bounded
∆ + stw, and treewidth k = Ω(log n) matching the upper bound of Theorem 5.

The proofs of Theorems 5 and 6 involve the notion of overlap graph of a graph G whose
vertex set is totally ordered by ≺, with one vertex per edge of G, and an edge between
two “overlapping edges” of G, that is, two edges ab and cd such that a ≺ c ≺ b ≺ d.
Using Theorem 3, we show that finding a vertex ordering such that the overlap graph has no
large biclique allows to bound the stretch-width.

▶ Lemma 7. For every ordered graph (G,≺) and every integer t, if the overlap graph of
(G,≺) has no Kt,t subgraph then stw(G) < 32(2t + 1)3.

Theorem 6 is then derived by designing a long subdivision process that, for ordered graphs of
maximum degree d, reduces the bicliques in the overlap graph to a size at most linear in d.

Theorem 5 has direct algorithmic implications for classes of bounded stretch-width.

▶ Proposition 8. There is an algorithm that solves Max Independent Set in graphs of
bounded stretch-width with running time 2Õ(n8/9).

Pilipczuk [22] showed that any problem expressible in Existential Counting Modal Logic
(ECML) admits a single-exponential fixed-parameter algorithm in treewidth. In particular,
ECML model checking can be solved in polynomial time in any class with logarithmic

IPEC 2023

8:4 Stretch-Width

treewidth. This logic allows existential quantifications over vertex and edge sets followed by
an arithmetic formula and a counting modal formula that shall be satisfied from every vertex v.
The arithmetic formula is a quantifier-free expression that may involve the cardinality of
the vertex and edge sets, as well as integer parameters. Counting modal formulas enrich
quantifier-free Boolean formulas with ♢Sφ, whose semantics is that the current vertex v has
a number of neighbors satisfying φ in a prescribed ultimately periodic set S of non-negative
integers.

The logic ECML+C gives to ECML the power of also using in the arithmetic formula
the number of connected components in subgraphs induced by some vertex or edge sets.
There is a Monte-Carlo polynomial-time algorithm for ECML+C in graphs of treewidth at
most a logarithm function in their number of vertices [22]. Most NP-hard graphs problems,
such as Maximum Independent Set, Minimum Dominating Set, Steiner Tree, etc.
are expressible in ECML+C; see [22, Appendix D] for the ECML+C formulation of several
examples.

▶ Corollary 9. Problems definable in ECML (resp. ECML+C) can be solved in polynomial
time (resp. randomized polynomial time) in bounded-degree graphs of bounded stretch-width.

Perspectives. Proposition 8 and Corollary 9 constitute some preliminary pieces of evidence
of the algorithmic amenability of classes of bounded stretch-width. We ask several questions.
How can the running time of Proposition 8 be improved? (As far as we know, there could be
a polynomial-time algorithm for any problem defined in ECML on graphs of bounded stretch-
width.) As for twin-width, an approximation algorithm for stretch-width of (unordered)
graphs remains open. Lemma 7 gives some hope that this question might be easier than its
twin-width counterpart, especially among sparse graphs.

Can we lift the bounded-degree requirement in Theorem 6, that is, is there a function f

and a constant c, such that the stretch-width of any (⩾ f(n))-subdivision of any n-vertex
graph is at most c? Our separating example showing that bounded stretch-width is strictly
more general than bounded clique-width (Theorem 2) yields graphs of essentially logarithmic
clique-width. Is that true in general?

▶ Conjecture 10. For every class C of bounded stretch-width, there is a constant c such that
for every n-vertex graph G ∈ C the clique-width of G is at most c log n.

We ask the same question with rank-width instead of clique-width, which would be more
algorithmically helpful. One interpretation of Theorem 5 is that graphs of bounded maximum
degree and bounded stretch-width have logarithmic treewidth. Whether the bounded-degree
constraint can be relaxed to the mere absence of large bipartite complete subgraphs is related
to Conjecture 10. A positive answer to Conjecture 10 would indeed imply this relaxation, as
Gurski and Wanke have shown that graphs without Kt,t subgraphs have treewidth at most
their clique-width times 3t [18]. A natural future work would consist of using the witness of
low stretch-width to get improved algorithms compared to those attained with a witness of
low twin-width.

Related work. Our work is in line with twin-width [11], and the reduced parameters [12].
Theorem 1 closely follows a similar proof in the sixth paper of the twin-width series [10],
while Theorem 3 is inspired by the fourth paper [9], and notably the so-called rich divisions.

Finding the right logic for a given width parameter, or the right width parameter for
a given logic has been a common goal ever since Courcelle’s and Courcelle-Makowsky-
Rotics’s theorems [13, 14] relating treewidth with MSO2, and clique-width with MSO1.

É. Bonnet and J. Duron 8:5

Recent developments (all from 2023) include an efficient model checking of the new logic
A&C DN (an extension of Existential MSO1) on classes of bounded mim-width [5], the new
parameter flip-width [26], which could lead to an efficient first-order (FO) model checking in
a very general class, and efficient model checking algorithms for FO extensions with disjoint-
paths predicates in proper minor-closed classes [17], and in proper topological-minor-closed
classes [24].

Classes with logarithmic treewidth, although not a priori defined as such, are somewhat
rare. To our knowledge, the first such example is the class of triangle-free graphs with no
theta (see [25] for the lower bound, and [1], for the upper bound). Another example consists
of graphs without Kt,t subgraph and bounded induced cycle packing number [6]. We add
a new family: graphs of bounded maximum degree and bounded stretch-width. Note that
these three families are all incomparable.

2 Preliminaries

For i ⩽ j two integers, we denote the set of integers that are at least i and at most j by
[i, j], and [i] is a short-hand for [1, i]. We use the standard graph-theoretic notations. In
particular, for a graph G, we denote by V (G) its set of vertices and by E(G) its set of edges.
If S ⊆ V (G), the subgraph of G induced by S, denoted G[S] is the graph obtained from G by
removing the vertices not in S.

2.1 Contraction sequences and twin-width

Twin-width is a graph parameter introduced by Bonnet, Kim, Thomassé, and Watrigant [11].
A possible definition involves the notions of trigraphs, red graphs, and contraction sequences.
A trigraph is a graph with two types of edges: black (regular) edges and red (error) edges.
The red graph R(H) of a trigraph H consists of ignoring its black edges, and considering
its red edges as being normal (black) edges. We may say red neighbor (or red neighborhood)
to simply mean a neighbor (or neighborhood) in the red graph. A (vertex) contraction
consists of merging two (non-necessarily adjacent) vertices, say, u, v into a vertex w, and
keeping every edge wz black if and only if uz and vz were previously black edges. The other
edges incident to w become red (if not already), and the rest of the trigraph remains the
same. A contraction sequence of an n-vertex graph G is a sequence of trigraphs G = Gn,
. . . , G1 such that Gi is obtained from Gi+1 by performing one contraction. A d-sequence
is a contraction sequence in which every vertex of every trigraph has at most d red edges
incident to it. In other words, every red graph of the sequence has maximum degree at
most d. The twin-width of G, denoted by tww(G), is then the minimum integer d such that
G admits a d-sequence. Figure 1 gives an example of a graph with a 2-sequence, i.e., of
twin-width at most 2.

a

b

c

d

e

f

g

a

b

c

d

ge

f

ef

b

c

gef

a dad

c

g

ad

b efbef

c

adg

bef

adg

bcef
abcdefg

Figure 1 A 2-sequence witnessing that the initial graph has twin-width at most 2.

IPEC 2023

8:6 Stretch-Width

2.2 Partition sequences
Partition sequences yield an equivalent viewpoint to contraction sequences. Instead of dealing
with a sequence of trigraphs G = Gn, . . . , G1, we now have a sequence of partitions Pn, . . . ,P1
of V (G), with Pn = {{v} | v ∈ V (G)} and for every i ∈ [n − 1], Pi is obtained from Pi+1
by merging two parts X, Y ∈ Pi+1 into one (X ∪ Y). In particular P1 = {V (G)}. Now one
can obtain the red graph R(Gi) of Gi, as the graph whose vertices are the parts of Pi, and
whose edges link two parts X ≠ Y ∈ Pi whenever there is u, u′ ∈ X and v, v′ ∈ Y such
that uv ∈ E(G) and u′v′ /∈ E(G). We may call two such parts X, Y inhomogeneous. On
the contrary, two parts X, Y are homogeneous in G when every vertex of X is adjacent to
every vertex of Y , or no vertex of X is adjacent to a vertex of Y . We will also denote R(Gi)
by R(Pi).

2.3 Separation number
When dealing with treewidth in Section 7 it will more convenient to think of it in terms of
the functionally equivalent separation number. A separation (A, B) of a graph G is such that
A ∪B = V (G) and there is no edge between A \B and B \A. The order of the separation
(A, B) is |A ∩B|. A separation (A, B) is balanced if max(|A \B|, |B \A|) ⩽ 2

3 |V (G)|. The
separation number sn(G) of G is the smallest integer s such that every subgraph of G admits
a balanced separation of order at most s. It is not difficult to show that for every graph G,
sn(G) ⩽ tw(G) + 1. Dvorák and Norin showed the converse linear dependence:

▶ Lemma 11 ([15]). For every graph G, tw(G) ⩽ 15sn(G).

Note that if for some positive constant c < 1, every subgraph H of G has a separation
(A, B) that is c-balanced, in the sense that max(|A\B|, |B \A|) ⩽ c|V (H)| of order at most s,
then every subgraph of G has a balanced separation of order ⌈ log c

log(2/3)⌉ · s. In particular,
by Lemma 11, tw(G) = O(s).

3 Stretch-width

An ordered graph is a pair (G,≺) where G is a graph and ≺ a strict total order on V (G).
We write u ≼ v whenever u ≺ v or u = v. Let (G,≺) is an ordered graph, and X ⊆ V (G).
We now define some objects depending on ≺, but as the order will be clear from the context,
we omit it from the corresponding notations.

The minimum and maximum of X along ≺ are denoted by min(X) and max(X), respect-
ively. The convex closure or span of X is conv(X) := {v ∈ V (G) | min(X) ≼ v ≼ max(X)}.
Two sets X, Y ⊆ V (G) are in conflict5, or X conflicts with Y , if conv(X) ∩ conv(Y) ̸= ∅.
Note that this does not imply that X and Y themselves intersect, and indeed we will mostly
use this notion for two disjoint sets X, Y .

Let now P be a partition of V (G), R(P) its red graph, and X ∈ P. We say that
Y ∈ P \ {X} interferes with X if Y conflicts with NR(P)[X]. Note that it may well be that
Y interferes with X, but not vice versa. The stretch of the part X ∈ P , denoted by str(X), is
then defined as the number of parts in P interfering with X. In turn, the stretch of P is the
maximum over every part Z ∈ P of str(Z). The stretch-width of the ordered graph (G,≺),
denoted by stw(G,≺), is the minimum, taken among every partition sequence Pn, . . . ,P1
of G, of maxi∈[n] str(Pi). Finally the stretch-width of G, denoted by stw(G), is the minimum
of stw(G,≺) taken among every total order ≺ on V (G).

5 In a similar context in [9], the verb overlap was also used. In this paper, we will reserve overlap for
intersecting intervals (actually edges) that are not nested, notion which we will later use.

É. Bonnet and J. Duron 8:7

4 Matrix characterization

Let us first reinterpret the definition of stretch-width on symmetric (ordered) matrices.
A (symmetric) partition of a (symmetric) matrix M is a pair (R, C) such that R is a partition
of the row set of M , rows(M), C is a partition of the column set, columns(M), and C is
symmetric to R, i.e., two rows ri and rj are in the same part if and only if the symmetric
columns ci and cj are in the same part. Hence, each row part corresponds to a (unique)
symmetric column part. A division of a (symmetric) matrix M is a partition of M every
row (resp. column) part of which is on consecutive rows (resp. columns). Given a row part
R ∈ R, and a column part C ∈ C, the zone R ∩ C of M is the submatrix of M with row
set R and column set C. The diagonal zone of R ∈ R is the zone R ∩ C where C is the
symmetric part of R in columns. A zone is non-constant if it contains two distinct entries.
A zone of a division may be called cell. A partition sequence of an n × n 0, 1-matrix M

is a sequence (R1, C1), . . . , (Rn−1, Cn−1) where (R1, C1) is the finest partition (with n row
parts and n column parts), (Rn−1, Cn−1) is the coarsest partition (with one row part and
one column part), and for every i ∈ [n − 2], (Ri+1, Ci+1) is obtained by merging together
two row parts (and the symmetric two column parts) of (Ri, Ci).

So far, we were following the definitions of [11, 8]. Instead of defining the error value
which leads to the twin-width of a matrix, we introduce the stretch value. The stretch value
of a row part R of a matrix partition (R, C) is the number of row parts conflicting with R

plus the number column parts conflicting with the union of columns parts C such that
R ∩ C is non-constant or R ∩ C is diagonal. The stretch value of a column part is defined
symmetrically. The stretch value of a partition (R, C) is the maximum stretch value of a part
of (R, C). Finally, one can define the stretch-width of a 0, 1-matrix M as the minimum
among every partition sequence S of M of the maximum stretch value among partitions
of S. Observe that for any ordered graph (G,≺), the stretch-width of (G,≺) is equal to the
stretch-width of its adjacency matrix.

The following is the counterpart of the so-called rich divisions [9] tailored for stretch-width.
If R is a set of rows and C a set of columns of a matrix M , we denote by R \ C the zone
R∩ (columns(M) \C), that is the submatrix formed by R deprived of the columns of C (and
symmetrically for C \R).

In a division (R = (R1, . . . , Rn), C = (C1, . . . , Cm)), a row part Ri is k-wide if for
every k consecutive columns parts Cj , . . . , Cj+k−1 containing the symmetric of Ri, Ri \
∪j⩽h⩽j+k−1Ch contains at least k distinct rows. The k-wideness of column parts is defined
symmetrically.

A division (R, C) is k-wide if all its row and column parts are k-wide. The division is
k-diagonal if none of the row and column parts is k-wide. Given a set of rows (or columns)
X of a matrix M , we keep the notation conv(X) for the set of rows (or columns) of M with
indices between the minimum and the maximum indices of X.

▶ Theorem 12. For every integer k, if stw(M) ⩽ k, then M has no 9k-wide division.

Proof. Let D = (R, C) be a (symmetric) division of M . Let (R′1, C′1), (R′2, C′2), . . . be
a (symmetric) partition sequence of M with stretch value at most k (i.e., witnessing that
the stretch-width of M is at most k). Let s be the smallest integer for which there is a row
part R′ ∈ R′s such that conv(R′) contains a row part R ∈ R of the division D (by symmetry,
it happens at the same moment for a column part). We will prove that R is not 9k-wide.

Let C ′ be the symmetric of R′ in columns. Set S := {T ∈ R′s | conv(T) ∩R ̸= ∅}. Note
that S is the set of row parts of R′s that conflicts with R, and that R′ is necessarily in S.
As conv(R) ⊂ conv(R′), every part in S conflicts with R′ and it should hold that |S| ⩽ k

IPEC 2023

8:8 Stretch-Width

because (R′s, C′s) witnesses that stw(M) ⩽ k. For each T in S, we define CT := {c ∈
columns(M) | c ∈ C, C ∈ C′s, and C ∩ T is non-constant or C is the symmetric of T}.
By assumption on the stretch value of (R′s, C′s), we know that for each T ∈ S, CT conflicts
with at most k parts of C′s. Let C ′ be the symmetric of R′. As T conflicts with R′, the
symmetric of T conflicts with C ′. The symmetric of T being contained in CT , CT conflicts
with C ′ which means that conv(C ′) ∩ conv(CT) is not empty.

Let us consider
⋃

T∈S CT . An element A of C′s conflicts with
⋃

T∈S CT if and only if
conv(A) ∩ conv(

⋃
T∈S CT) is non-empty. As for each T of S, conv(CT) ∩ conv(C ′) is non-

empty, there is T1, T2 in S such that the associated two parts CT1 and CT2 (informally the
“leftmost” and the “rightmost”) verify

conv(CT1) ∪ conv(CT2) ∪ conv(C ′) = conv(
⋃

T∈S
CT).

Note that CTi
can be equal to C ′. As CT1 and CT2 conflicts with C ′, C ′ ∪CT1 ∪CT2 conflicts

with at most 3k parts of C′s. Thus
⋃

T∈S CT conflicts with at most 3k parts of C′s.
Observe that, except for C ′, every part in C′s is covered by the union of two consecutive

parts of C. Part C ′ itself is covered by the union of three consecutive parts of C: conv(C ′)
cannot cover two parts of C by minimality of s. Thus, overall, each part of C′s is covered by
the union of at most three consecutive parts of C. Hence, if

⋃
T∈S CT conflicts with 3k parts

of C′s, it is contained in 9k consecutive parts of C, say Cj , . . . , Cj+9k−1. Thus for any T ∈ S,
T \ (Cj , . . . , Cj+9k−1) is constant, and so R \ (Cj , . . . , Cj+9k−1) contains at most k different
rows. ◀

▶ Theorem 13 (⋆). For every integer k, if M does not have a k-wide division, then M

admits a sequence (R1, C1), (R2, C2), . . . every division of which is 2(k + 1)-diagonal.

▶ Theorem 14 (⋆). If M admits a sequence of k-diagonal divisions, then stw(M) ⩽ 4k3.

▶ Theorem 15. If a matrix M does not admit a k-wide division, then stw(M) ⩽ 32(k + 1)3.

Proof. In fact, M admits a sequence of 2k-diagonal divisions by Theorem 13. Applying
Theorem 14 on this sequence outputs a witness of stretch-width 4·(2(k+1))3 = 32(k+1)3. ◀

▶ Theorem 4 (⋆). Given an integer k and a symmetric n × n 0, 1-matrix M , there is an
nO(1)-time algorithm that outputs a sequence witnessing that stw(M) = O(k3) or correctly
reports that stw(M) > k.

5 Overlap graph

Consider an ordered graph (G,≺), and think of ≺ as a left-to-right order (with the smallest
vertex being the leftmost one). For any edge e ∈ E(G), we denote by L(e) (resp. R(e)) the
left (resp. right) endpoint of e. Given two edges e, f ∈ E(G), we say that e is left of f if
L(e) ≼ L(f), and e is strictly left of f if L(e) ≺ L(f). By extension, we say that X ⊂ E(G)
is left of (resp. strictly left of) Y ⊂ E(G) if for every e ∈ X and f ∈ Y , L(e) ≼ L(f)
(resp. L(e) ≺ L(f)). If u, v are vertices of (G,≺), we denote by [u, v] the set of vertices that
are, in ≺, at least u and at most v. We also denote by [←, u] (resp. [u,→]) the set of vertices
that are at most u (resp. at least u).

We say that two edges e, f are crossing if L(e) ≺ L(f) ≺ R(e) ≺ R(f) (or symmetrically)
and we denote e × f this relation. Observe that two edges sharing an endpoint are not
crossing. The relation × is symmetric and anti-reflexive, hence defines an undirected graph
on E(G). We denote by Ov(G,≺) the graph (E(G),×). Ov(G,≺) is called the overlap graph
of (G,≺); see Figure 2.

É. Bonnet and J. Duron 8:9

Figure 2 An ordered graph (left) and its overlap graph (right).

We relate the structure of Ov≺(G) and the stretch-width of G among bounded-degree
graphs, by proving the following theorem:

▶ Theorem 16. A class C of ordered graphs of bounded degree has bounded stretch-width if
and only if {Ov(G,≺) | G ∈ C} does not admit Kt,t subgraph, for some integer t.

The next two lemmas prove the forward implication, by considering a special point in the
partition sequence. The last lemma of this section proves the backward implication, using
the matrix characterization of Section 4. We say that a Kt,t subgraph of Ov(G,≺) is clean
if the sides of the Kt,t are X, Y ⊂ E(G) such that X is strictly left of Y .

▶ Lemma 17. For every ordered graph (G,≺), if Ov(G,≺) contains a Kt,t as a subgraph,
then Ov(G,≺) contains a clean K⌊t/2⌋,⌊t/2⌋ subgraph.

Proof. Assuming that Ov(G,≺) has a Kt,t subgraph, there is two disjoint sets X, Y ⊂ E(G)
each of size t such that for every x ∈ X and y ∈ Y , x×y. Let L(x1) ≼ L(x2) ≼ . . . ≼ L(xt) be
the elements of X, and L(y1) ≼ L(y2) ≼ . . . ≼ L(yt), the elements of Y . As x⌊t/2⌋ and y⌊t/2⌋
are crossing, either L(x⌊t/2⌋) ≺ L(y⌊t/2⌋) or L(y⌊t/2⌋) ≺ L(x⌊t/2⌋). The sides of the clean
K⌊t/2⌋,⌊t/2⌋ are {x1, . . . , x⌊t/2⌋} and {y⌊t/2⌋, . . . , yt} in the former case, and {y1, . . . , y⌊t/2⌋}
and {x⌊t/2⌋, . . . , xt} in the latter. ◀

▶ Lemma 18 (⋆). For any ordered graph (G,≺), if ∆(G) ⩽ d and stw(G,≺) ⩽ t, then
Ov(G,≺) does not contain KN,N with N = 4td2 as a subgraph.

▶ Lemma 7. For every ordered graph (G,≺) and positive integer N , if Ov(G,≺) does not
contain KN,N as a subgraph, then stw(G,≺) ⩽ 32(2N + 1)3.

Proof. Let (G,≺) be an ordered graph such that Ov(G,≺) does not contain KN,N as
a subgraph, and let M be the adjacency matrix of (G,≺). We prove that stw(M) ⩽
32(2N + 1)3.

Suppose, for the sake of contradiction, that stw(M) > 32(2N + 1)3. By Theorem 15,
there is a 2N -wide division (R = {R1, . . . , Rk}, C = {C1, . . . , Ck}) of M . In particular, for
any row Ri, Ri \ Ci−N+1, . . . , Ci+N−1 contains more that 2N different rows. Let D be the
union of the zones Ri ∩ Cj such that |i − j| < N , that is, the 2N − 1 “longest” diagonals
of zones of the division (R, C). As, for every i ∈ [k], the number of distinct rows in Ri \D

(resp. distinct columns in Ci \D) is at least 2N , Ri \D (resp. Ci \D) contains at least 2N

1-entries.
To simplify the coming notations, let denote by ∥M ′∥ the number of 1-entries of any

submatrix M ′ of M . For example, ∥Ri \D∥ ⩾ 2N . Observe that Ri (resp. Cj) is split by
D in at most two sets R←i and R→i (resp. C↑j and C↓j), namely, R←i =

⋃
j⩽i−N Ri ∩ Cj and

R←i =
⋃

j⩾i+N Ri ∩ Cj .
Observe that for every i, j such that i + 1 ⩽ j < i + N , each 1-entry of R→i (resp. C↓i)

and 1-entry of C↑j (resp. R→j) correspond to crossing edges in (G,≺). As Ov(G,≺) does not
contain any KN,N subgraph we have, for every i, j such that i + 1 ⩽ j < i + N :

IPEC 2023

8:10 Stretch-Width

1. min(∥R→i ∥, ∥C
↑
j ∥) < N , and

2. min(∥C↓i ∥, ∥R←j ∥) < N .
Indeed, if the first item does not hold, N 1-entries in R→i and N 1-entries in C↑j form the
two sides of a KN,N .

We finally prove by induction on i that, while 2i ⩽ k, the property ∥R→2i ∥ > N , henceforth
called (Qi), holds. Note that R←0 is empty. Thus ∥R→0 ∥ ⩾ 2N > N , hence (Q0) holds. Now
assume that (Qi) holds. By the first item, we have ∥C↑2i+1∥ < N . Thus ∥C↓2i+1∥ > N , since

C2i+1 \D = C↓2i+1 ∪ C↑2i+1 and ∥C2i+1 \D∥ ⩾ 2N.

Symmetrically, by the second item, ∥R←2i+2∥ < N , and hence ∥R→2i+2∥ > N . Thus (Qi+1)
holds. As R→k−N+1 is empty, (Qi) can no longer be true when 2i ⩾ k−N + 1, a contradiction.
Therefore stw(M) ⩽ 32(2N)3. ◀

6 Subdivisions

When subdividing the edges of an ordered graph, there is a simple way of updating its vertex
ordering without creating larger bicliques in its overlap graph.

▶ Lemma 19. Let (G,≺) be an ordered graph, and H be obtained by subdividing an edge
of G. There is an order ≺′ such that, for every integer t, if Ov(G,≺) has no Kt,t subgraph,
then Ov(H,≺′) has no Kt,t subgraph.

Proof. Let e = uv be the edge of G subdivided to form H, and let w ∈ V (H) be the new
vertex resulting from this subdivision. The total order ≺′ is obtained from ≺, by adding
w next to u, say, just to its right. This way Ov(H,≺′) is simply Ov(G,≺) plus an isolated
vertex. Indeed the edge uw ∈ E(H) is an isolated vertex in Ov(H,≺′), since u and w are
consecutive along ≺′, whereas wv ∈ E(H) crosses the same edges as uv was crossing. ◀

We now define a long subdivision process that is actually “erasing” large bicliques in
the overlap graph of a bounded-degree graph. Let uv be an edge of an ordered graph
(G,≺), with h vertices between u and v, say, u ≺ u1 ≺ u2 ≺ . . . ≺ uh ≺ v. We describe an
h + 1-subdivision of uv in (G,≺) that we call flattening of uv. We delete uv, and create h + 1
new vertices w1, . . . , wh+1 such that u ≺ w1 ≺ u1 ≺ w2 ≺ u2 ≺ . . . ≺ wh ≺ uh ≺ wh+1 ≺ v.
We then create the edges uw1, wiwi+1 for every i ∈ [h], and wh+1v. We may say that these
edges stem from uv. An iterated subdivision of (G,≺) chooses a total order on the edges
of G, and iteratively flattens the edges of G in this order (note that the created edges are
not flattened themselves); see Figure 3.

Figure 3 An iterated subdivision. Created edges have the color of the edge they stem from.

▶ Lemma 20. Any iterated subdivision (G′,≺′) of an ordered graph (G,≺) of maximum
degree d, is such that Ov(G′,≺′) has no K2d+2,2d+2 subgraph.

É. Bonnet and J. Duron 8:11

Proof. Assume for the sake of contradiction that Ov(G′,≺′) has a K2d+2,2d+2 subgraph.
Then by Lemma 17, Ov(G′,≺′) has a clean Kd+1,d+1 subgraph. Let X, Y be the two sides
of this clean biclique, where X is left of Y . As every vertex of G′ (like G) is incident to
at most d edges, there is {x1, x2} ⊆ X and {y1, y2} ⊆ Y such that L(x1) ≼ L(x2) ≺ L(y1) ≺
L(y2) ≺ R(xi) ≺ R(x3−i) ≺ R(yj) ≼ R(y3−j) with i, j ∈ [2].

As x1 and x2 cross y1 and y2, there is no i, j ∈ [2] such that xi and yj stem from the
same edge of G. We can thus assume without loss of generality that the last edge among
x1, x2, y1, y2 to be created is in X (since the argument is symmetric if this happens in Y),
i.e., xi for some i ∈ [2]. When xi is created, the vertices L(y1) and L(y2) already exist and
form a non-trivial interval since L(y1) ≺ L(y2). This contradicts the construction of the
iterated subdivision, since xi jumps over [L(y1), L(y2)], when it should have at least created
an intermediate vertex in [L(y1), L(y2)]. ◀

▶ Theorem 6. Every (⩾ n2m)-subdivision of every n-vertex m-edge graph G of maximum
degree d has stretch-width at most 32(4d + 5)3.

Proof. Let G be any graph of C with n vertices and m edges, and let G′′ be any (⩾ n2m)-
subdivision of G. Choose an arbitrary order ≺ of V (G). Let (G′,≺′) be the iterated
subdivision of (G,≺), choosing an arbitrary order on the edges G. By Lemma 20, Ov(G′,≺′)
has no K2d+2,2d+2 subgraph. Every edge of G is subdivided at most n2m times by the process
of iterated subdivision. By Lemma 19, the edges of G′ can be further subdivided to obtain G′′

such that Ov(G′′,≺′′) has no K2d+2,2d+2 subgraph, for some vertex ordering ≺′′. Therefore,
by Section 5, stw(G′′,≺′′) ⩽ 32(4d + 5)3, and in particular, stw(G′′) ⩽ 32(4d + 5)3. ◀

▶ Corollary 21. There are graph classes with bounded stretch-width and maximum degree,
and yet unbounded treewidth.

Proof. Consider the family Γ1, Γ2, . . ., where Γk is the k222k(k−1)-subdivision of the k × k-
grid, for every positive integer k. The graphs from this family have degree at most 4, and
stretch-width at most 296352, but unbounded treewidth since tw(Γk) = k. ◀

The above argument gives an example of n-vertex graphs with bounded degree and
stretch-width, and treewidth Ω(

√
log n). We can do better by picking the vertex ordering ≺,

and the order on the edges (for the iterated subdivision) more carefully. We simply order

Figure 4 The 4 × 4 grid ordered row by row, with the horizontal edges in blue, and vertical edges
in green.

the grid row by row, and from left to right within each row; see Figure 4. We perform the
iterated subdivision of this ordered grid, with the following edge ordering. First we flatten
every horizontal edge (in blue), in any order. When this is done, the total number of vertices
has less than doubled. Then we flatten every vertical edge (in green) from left to right. It can
be observed that, starting from the k × k grid, we now obtain an iterated subdivision with
less than 2ck vertices, for some constant c. Thus, there are n-vertex graphs with bounded
degree and stretch-width, and treewidth Ω(log n).

IPEC 2023

8:12 Stretch-Width

7 Classes with bounded ∆ + stw have logarithmic treewidth

For any edge e of an ordered graph (G,≺), we denote ei =]L(e), R(e)[, the interior of e, and
eo := [←, L(e)[∪]R(e),→], the exterior of e; note that L(e) and R(e) are neither part of ei

nor of eo. The length of e according to ≺ is ℓ(e,≺) = R(e)− L(e). When F is a set of edges
we define ℓ(F,≺) to be the maximum length of an edge of F . We say that a set C of vertices
is a c-balanced separator of G when there is a c-balanced separation (A, B) of G such that
C = A∩B. In an ordered graph (G,≺) a set of vertices C is a left/right c-balanced separator
if there exists a c-balanced separation (A, B) where A contains the initial interval of length
c · n, B contains the final interval of length c · n and C = A ∩B.

To simplify the notations, if the vertices of (G,≺) are v1 ≺ · · · ≺ vn, we will write G⟨i, j⟩
instead of G[[vi, vj]] and ⟨i, j⟩ instead of [vi, vj].

▶ Lemma 22 (⋆). For any ordered n-vertex graph (G,≺), if ∆(Ov(G,≺)) ⩽ d and ℓ(E(G),≺)
⩽ λn, then G admits a left/right (1/2− λ)-balanced separator of size at most d + 2.

▶ Lemma 23 (⋆). For every ordered graph (G,≺), if ∆(Ov(G,≺)) ⩽ d then G admits
a 1/6-balanced separator of size 2d + 4.

We say that a set S of edges of (G,≺) is a rainbow if for every pair e, f of S, ei ⊂ f i or
f i ⊂ ei. Notice that a rainbow induces an independent set in Ov(G,≺). When S contains t

edges we say that S is a t-rainbow, or a rainbow of order t. The following is an application
of Dilworth’s theorem on permutation graphs. It can be found in [27].

▶ Lemma 24 ([27]). Let (G,≺) be an ordered graph, such that Ov(G,≺) does not contain
some Kt. Then, for every vertex v of V (G), for every set F of edges from [←, v[to]v,→]
we have |F | ⩽ kt where k is the maximum order of a rainbow of F .

For any rainbow S, we denote by Si :=
⋃

e∈S ei. A rainbow over v is a rainbow S

contained in the set of edges from [←, v[to]v,→]. A maximum rainbow over v is a rainbow
of maximum cardinality among the rainbows over v.

▶ Lemma 25 (⋆). Let (G,≺) be an ordered graph such that Ov(G,≺) does not contain
a Kt,t subgraph. Then, if S is a maximum rainbow over v ∈ V (G), there is a vertex x ∈ Si

and a set U that separates [←, x[from]x,→] with U of size ⩽ g(t)(log(ℓ(S,≺)) + 1), for a
function g such that g(t) = O(t4).

▶ Theorem 26. For any ordered graph (G,≺), if Ov(G,≺) does not contain any Kt,t, then
G contains a 1/12-balanced separator of order at most γt4, for some constant γ.

Proof. Let (G,≺) be an ordered graph on n vertices, such that Ov(G,≺) does not contain
any Kt,t. Let F be the set of edges over a vertex v ∈ V (G), and let S be a maximum rainbow
over v. Denote by e1, . . . , ek the edges in S with ei

j+1 ⊊ ei
j . We build Xa,b and Ya in the

same way as in the proof of Lemma 25.
Suppose that there are 3t + 2 edges of S with length in [n/12, 11n/12]. We denote

these edges by ei, . . . , ej , with j = i + 3t + 2. We consider the set of edges Z, which is
the union of the Ya and Xa,b for a ∈ [i, j] and b ∈ [a − t, a + t], and erase it by removing
LZ = {L(z) | z ∈ Z}. As in the proof of Lemma 25, this operation removes O(t4) vertices of
G. Let G′ = G− LZ be the obtained graph.

Let x, y two vertices, respectively in]L(ei+t), L(ei+2t)[an]R(ei+2t), R(ei+t)[. If one of
these sets is empty, say]L(ei+t), L(ei+2t)[, then any path going from [←, L(ei+t)[∪]R(ei+t),→]
to [L(ei+2t), R(ei+2t)] has a vertex in]R(ei+2t), R(ei+t)[. Then, we only need to consider y

in the following (if y also does not exist, the graph is already separated).

É. Bonnet and J. Duron 8:13

By construction, any edge over x is contained in [L(ei), L(ej)], or is going from [←, L(ei)]
to [R(ei),→]. Thus, by applying Lemma 25 on Gx = G′[←, R(ei)] over x, we find a set Ux

separating [←, ux] from [ux,→], where ux is in [L(ei), L(ej)]. We do the same on the right
side, considering Gy = G[L(ei),→] and finding Uy and uy such that uy ∈ [R(ej), R(ei)]. Set
Uy ∪ Uy separates]ux, uy[from]ux, uy]c. As uy − ux is between n/11 and n/12, we found a
n/12-balanced separator of G of size at most 1 + 2g(t) · log ℓ(S,≺).

Hence, assume now that for any vertex v of G, the number of edges of length in
[n/12, 11n/12] in a maximum rainbow over v is bounded by 3t + 1. Thus, for every v,
the set Mv of edges over v going from [n/12, v−n/12] to [v + n/12, 11n/12] is of size at most
2t(3t + 1) by Lemma 24.

Set u = vn/3 and v = v2n/3. By deleting the set A = {L(e) | e ∈Mu ∪Mv}, we get a new
ordered graph H = (G−A,≺). Consider Hu = H [←, 11n/12], and Hv = H [n/12,→]. Then
the length of a maximum rainbow over u (resp. v) in Hu (resp. Hv) is at most n/12.

Hence we can apply Lemma 25 on Hu over u, and on Hv over v. This yields two sets
Wu, Wv of size O(t4 log n) and two vertices wu, wv such that |wu − u| (resp. |wv − v|) is at
most n/12, and such that Wu separates [←, wu] from [wu,→] in Hu (and resp. for v). The
set Wu ∪Wv is then separating]wu, wv[from [wu, wv]c. ◀

▶ Theorem 27. Let G be any graph on n vertices, such that ∆(G) ⩽ d and stw(G) ⩽ t.
Then G contains a 1/12-balanced separator of size at most γ(d2t)4 log n, for a constant γ.

Proof. Let G a graph on n vertices, such that stw(G) ⩽ t and ∆(G) ⩽ d. Let ≺ be an order
such that (G,≺) has stretch-width t. By Lemma 18, Ov(G,≺) does not admit any K4td2,4td2

as a subgraph. Hence the Theorem 26 ensures the existence of a 1/12-balanced separator of
(G,≺) (hence of G) of size γ(4td2)4 log n. ◀

By Lemma 11 and Theorem 27, we obtain the bound on the treewidth of a graph of
bounded degree and bounded stretch-width.

▶ Theorem 5. There is a c such that for every graph G, tw(G) ⩽ c∆(G)8stw(G)4 log |V (G)|.

References
1 Tara Abrishami, Maria Chudnovsky, Sepehr Hajebi, and Sophie Spirkl. Induced subgraphs

and tree-decompositions III. Three-path-configurations and logarithmic tree-width. Advances
in Combinatorics, 2022.

2 Ambroise Baril, Miguel Couceiro, and Victor Lagerkvist. Linear bounds between cliquewidth
and component twin-width and applications, 2023. URL: https://ramics20.lis-lab.fr/
slides/slidesAmbroise.pdf.

3 Pierre Bergé, Édouard Bonnet, and Hugues Déprés. Deciding twin-width at most 4 is
NP-complete. In Mikolaj Bojanczyk, Emanuela Merelli, and David P. Woodruff, editors,
49th International Colloquium on Automata, Languages, and Programming, ICALP 2022,
July 4-8, 2022, Paris, France, volume 229 of LIPIcs, pages 18:1–18:20. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.ICALP.2022.18.

4 Pierre Bergé, Édouard Bonnet, Hugues Déprés, and Rémi Watrigant. Approximating highly
inapproximable problems on graphs of bounded twin-width. In Petra Berenbrink, Patricia
Bouyer, Anuj Dawar, and Mamadou Moustapha Kanté, editors, 40th International Sym-
posium on Theoretical Aspects of Computer Science, STACS 2023, March 7-9, 2023, Hamburg,
Germany, volume 254 of LIPIcs, pages 10:1–10:15. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2023. doi:10.4230/LIPIcs.STACS.2023.10.

IPEC 2023

https://ramics20.lis-lab.fr/slides/slidesAmbroise.pdf
https://ramics20.lis-lab.fr/slides/slidesAmbroise.pdf
https://doi.org/10.4230/LIPIcs.ICALP.2022.18
https://doi.org/10.4230/LIPIcs.STACS.2023.10

8:14 Stretch-Width

5 Benjamin Bergougnoux, Jan Dreier, and Lars Jaffke. A logic-based algorithmic meta-theorem
for mim-width. In Nikhil Bansal and Viswanath Nagarajan, editors, Proceedings of the 2023
ACM-SIAM Symposium on Discrete Algorithms, SODA 2023, Florence, Italy, January 22-25,
2023, pages 3282–3304. SIAM, 2023. doi:10.1137/1.9781611977554.ch125.

6 Marthe Bonamy, Edouard Bonnet, Hugues Déprés, Louis Esperet, Colin Geniet, Claire Hilaire,
Stéphan Thomassé, and Alexandra Wesolek. Sparse graphs with bounded induced cycle packing
number have logarithmic treewidth. In Nikhil Bansal and Viswanath Nagarajan, editors,
Proceedings of the 2023 ACM-SIAM Symposium on Discrete Algorithms, SODA 2023, Florence,
Italy, January 22-25, 2023, pages 3006–3028. SIAM, 2023. doi:10.1137/1.9781611977554.
ch116.

7 Édouard Bonnet, Colin Geniet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant.
Twin-width III: Max Independent Set, Min Dominating Set, and Coloring. In Nikhil Bansal,
Emanuela Merelli, and James Worrell, editors, 48th International Colloquium on Automata,
Languages, and Programming, ICALP 2021, July 12-16, 2021, Glasgow, Scotland (Virtual
Conference), volume 198 of LIPIcs, pages 35:1–35:20. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2021. doi:10.4230/LIPIcs.ICALP.2021.35.

8 Édouard Bonnet, Colin Geniet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant.
Twin-width II: small classes. Combinatorial Theory, 2(2), 2022. doi:10.5070/C62257876.

9 Édouard Bonnet, Ugo Giocanti, Patrice Ossona de Mendez, Pierre Simon, Stéphan Thomassé,
and Szymon Torunczyk. Twin-width IV: ordered graphs and matrices. In Stefano Leonardi
and Anupam Gupta, editors, STOC ’22: 54th Annual ACM SIGACT Symposium on Theory
of Computing, Rome, Italy, June 20 - 24, 2022, pages 924–937. ACM, 2022. doi:10.1145/
3519935.3520037.

10 Édouard Bonnet, Eun Jung Kim, Amadeus Reinald, and Stéphan Thomassé. Twin-width VI:
the lens of contraction sequences. In Proceedings of the 2022 Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 1036–1056. SIAM, 2022.

11 Édouard Bonnet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant. Twin-width I:
tractable FO model checking. J. ACM, 69(1):3:1–3:46, 2022. doi:10.1145/3486655.

12 Édouard Bonnet, O-joung Kwon, and David R. Wood. Reduced bandwidth: a qualitative
strengthening of twin-width in minor-closed classes (and beyond). CoRR, abs/2202.11858,
2022. arXiv:2202.11858.

13 Bruno Courcelle. The monadic second-order logic of graphs. I. Recognizable sets of finite graphs.
Information and Computation, 85(1):12–75, 1990. doi:10.1016/0890-5401(90)90043-H.

14 Bruno Courcelle, Johann A. Makowsky, and Udi Rotics. Linear time solvable optimization
problems on graphs of bounded clique-width. Theory Comput. Syst., 33(2):125–150, 2000.
doi:10.1007/s002249910009.

15 Zdenek Dvorák and Sergey Norin. Treewidth of graphs with balanced separations. J. Comb.
Theory, Ser. B, 137:137–144, 2019. doi:10.1016/j.jctb.2018.12.007.

16 Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman, 1979.

17 Petr A. Golovach, Giannos Stamoulis, and Dimitrios M. Thilikos. Model-checking for first-order
logic with disjoint paths predicates in proper minor-closed graph classes. In Nikhil Bansal and
Viswanath Nagarajan, editors, Proceedings of the 2023 ACM-SIAM Symposium on Discrete
Algorithms, SODA 2023, Florence, Italy, January 22-25, 2023, pages 3684–3699. SIAM, 2023.
doi:10.1137/1.9781611977554.ch141.

18 Frank Gurski and Egon Wanke. The tree-width of clique-width bounded graphs without Kn, n.
In Ulrik Brandes and Dorothea Wagner, editors, Graph-Theoretic Concepts in Computer
Science, 26th International Workshop, WG 2000, Konstanz, Germany, June 15-17, 2000,
Proceedings, volume 1928 of Lecture Notes in Computer Science, pages 196–205. Springer,
2000. doi:10.1007/3-540-40064-8_19.

19 Russell Impagliazzo and Ramamohan Paturi. On the Complexity of k-SAT. J. Comput. Syst.
Sci., 62(2):367–375, 2001. doi:10.1006/jcss.2000.1727.

https://doi.org/10.1137/1.9781611977554.ch125
https://doi.org/10.1137/1.9781611977554.ch116
https://doi.org/10.1137/1.9781611977554.ch116
https://doi.org/10.4230/LIPIcs.ICALP.2021.35
https://doi.org/10.5070/C62257876
https://doi.org/10.1145/3519935.3520037
https://doi.org/10.1145/3519935.3520037
https://doi.org/10.1145/3486655
https://arxiv.org/abs/2202.11858
https://doi.org/10.1016/0890-5401(90)90043-H
https://doi.org/10.1007/s002249910009
https://doi.org/10.1016/j.jctb.2018.12.007
https://doi.org/10.1137/1.9781611977554.ch141
https://doi.org/10.1007/3-540-40064-8_19
https://doi.org/10.1006/jcss.2000.1727

É. Bonnet and J. Duron 8:15

20 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity? J. Comput. Syst. Sci., 63(4):512–530, 2001. doi:10.1006/jcss.2001.
1774.

21 Sang-il Oum. Approximating rank-width and clique-width quickly. ACM Trans. Algorithms,
5(1):10:1–10:20, 2008. doi:10.1145/1435375.1435385.

22 Michal Pilipczuk. Problems parameterized by treewidth tractable in single exponential time:
A logical approach. In Filip Murlak and Piotr Sankowski, editors, Mathematical Foundations
of Computer Science 2011 - 36th International Symposium, MFCS 2011, Warsaw, Poland,
August 22-26, 2011. Proceedings, volume 6907 of Lecture Notes in Computer Science, pages
520–531. Springer, 2011. doi:10.1007/978-3-642-22993-0_47.

23 Svatopluk Poljak. A note on stable sets and colorings of graphs. Commentationes Mathematicae
Universitatis Carolinae, 15(2):307–309, 1974.

24 Nicole Schirrmacher, Sebastian Siebertz, Giannos Stamoulis, Dimitrios M. Thilikos, and
Alexandre Vigny. Model checking disjoint-paths logic on topological-minor-free graph classes.
CoRR, abs/2302.07033, 2023. doi:10.48550/arXiv.2302.07033.

25 Ni Luh Dewi Sintiari and Nicolas Trotignon. (theta, triangle)-free and (even hole, k4)-free
graphs - part 1: Layered wheels. J. Graph Theory, 97(4):475–509, 2021. doi:10.1002/jgt.
22666.

26 Szymon Toruńczyk. Flip-width: Cops and robber on dense graphs. CoRR, abs/2302.00352,
2023. doi:10.48550/arXiv.2302.00352.

27 Jakub Černý. Coloring circle graphs. Electronic Notes in Discrete Mathematics, 29:457–
461, 2007. European Conference on Combinatorics, Graph Theory and Applications. doi:
10.1016/j.endm.2007.07.072.

IPEC 2023

https://doi.org/10.1006/jcss.2001.1774
https://doi.org/10.1006/jcss.2001.1774
https://doi.org/10.1145/1435375.1435385
https://doi.org/10.1007/978-3-642-22993-0_47
https://doi.org/10.48550/arXiv.2302.07033
https://doi.org/10.1002/jgt.22666
https://doi.org/10.1002/jgt.22666
https://doi.org/10.48550/arXiv.2302.00352
https://doi.org/10.1016/j.endm.2007.07.072
https://doi.org/10.1016/j.endm.2007.07.072

Minimum Separator Reconfiguration
Guilherme C. M. Gomes #

Department of Computer Science, Federal
University of Minas Gerais, Belo Horizonte, Brazil

Clément Legrand-Duchesne1

Ñ

LaBRI, CNRS, Université de Bordeaux, France

Reem Mahmoud #

Virginia Commonwealth University, Richmond,
VA, USA

Amer E. Mouawad # Ñ

Department of Computer Science, American
University of Beirut, Beirut, Lebanon

Yoshio Okamoto # Ñ

Graduate School of Informatics and Engineer-
ing, The University of Electro-Communications,
Chofu, Japan

Vinicius F. dos Santos # Ñ

Department of Computer Science, Federal
University of Minas Gerais, Belo Horizonte, Brazil

Tom C. van der Zanden # Ñ

Department of Data Analytics and Digitalisation,
Maastricht University, The Netherlands

Abstract
We study the problem of reconfiguring one minimum s-t-separator A into another minimum s-t-
separator B in some n-vertex graph G containing two non-adjacent vertices s and t. We consider
several variants of the problem as we focus on both the token sliding and token jumping models. Our
first contribution is a polynomial-time algorithm that computes (if one exists) a minimum-length
sequence of slides transforming A into B. We additionally establish that the existence of a sequence
of jumps (which need not be of minimum length) can be decided in polynomial time (by an algorithm
that also outputs a witnessing sequence when one exists). In contrast, and somewhat surprisingly,
we show that deciding if a sequence of at most ℓ jumps can transform A into B is an NP-complete
problem. To complement this negative result, we investigate the parameterized complexity of what
we believe to be the two most natural parameterized counterparts of the latter problem; in particular,
we study the problem of computing a minimum-length sequence of jumps when parameterized by
the size k of the minimum s-t-separators and when parameterized by the number ℓ of jumps. For
the first parameterization, we show that the problem is fixed-parameter tractable, but does not
admit a polynomial kernel unless NP ⊆ coNP/poly. We complete the picture by designing a kernel
with O(ℓ2) vertices and edges for the length ℓ of the sequence as a parameter.

2012 ACM Subject Classification Theory of computation → Parameterized complexity and exact
algorithms

Keywords and phrases minimum separators, combinatorial reconfiguration, parameterized complex-
ity, kernelization

Digital Object Identifier 10.4230/LIPIcs.IPEC.2023.9

Related Version Full Version: https://arxiv.org/abs/2307.07782

Funding Yoshio Okamoto: JSPS KAKENHI Grant Numbers JP20K11670, JP20H05795, JP23K10982.
Vinicius F. dos Santos: FAPEMIG grant APQ-01707-21 and CNPq grants 406036/2021-7 and
312069/2021-9.

Acknowledgements This work started during the Combinatorial Reconfiguration Workshop (CoRe
2022) which was hosted at the Banff International Research Station for Mathematical Innovation
and Discovery (BIRS), Alberta, Canada, from May 8–13, 2022. We would like to thank everyone
who made this collaboration possible and, in particular, the organizers Daniel Cranston, Marthe
Bonamy, Moritz Mühlenthaler, Naomi Nishimura, Nicolas Bousquet, Ryuhei Uehara, and Takehiro
Ito for their continuous support of the combinatorial reconfiguration community in general.

1 Corresponding author

© Guilherme C. M. Gomes, Clément Legrand-Duchesne, Reem Mahmoud, Amer E. Mouawad,
Yoshio Okamoto, Vinicius F. dos Santos, and Tom C. van der Zanden;
licensed under Creative Commons License CC-BY 4.0

18th International Symposium on Parameterized and Exact Computation (IPEC 2023).
Editors: Neeldhara Misra and Magnus Wahlström; Article No. 9; pp. 9:1–9:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:gcm.gomes@dcc.ufmg.br
https://orcid.org/0000-0002-5164-1460
mailto:clement.legrand@labri.fr
https://www.labri.fr/perso/clemlegrand/
https://orcid.org/0000-0002-4516-7336
mailto:mahmoudr@vcu.edu
mailto:aa368@aub.edu.lb
https://www.aub.edu.lb/pages/profile.aspx?MemberId=aa368
https://orcid.org/0000-0003-2481-4968
mailto:okamotoy@uec.ac.jp
http://dopal.cs.uec.ac.jp/okamotoy/
https://orcid.org/0000-0002-9826-7074
mailto:viniciussantos@dcc.ufmg.br
https://homepages.dcc.ufmg.br/~viniciussantos/
https://orcid.org/0000-0002-4608-4559
mailto:t.vanderzanden@maastrichtuniversity.nl
https://www.tomvanderzanden.nl/
https://orcid.org/0000-0003-3080-3210
https://doi.org/10.4230/LIPIcs.IPEC.2023.9
https://arxiv.org/abs/2307.07782
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

9:2 Minimum Separator Reconfiguration

1 Introduction

We study the problem of computing reconfiguration sequences between minimum s-t-
separators2. A set S of vertices in a graph G is an s-t-separator if vertices s and t are
separated in G − S, i.e, s and t belong to different components of G − S. A minimum
s-t-separator is an s-t-separator of minimum size. We always let k denote the size of a
minimum s-t-separator in G. The token3 jumping (TJ-) (resp. token sliding (TS-)) Minimum
Separator Reconfiguration (MSR) problem is defined as follows. Given a graph G and
minimum s-t-separators A and B, the goal is to determine if there exists a sequence of sets
A = S1, S2, . . . , Sr = B, such that Si is a minimum s-t-separator, Si = (Si−1 \ {v}) ∪ {u}
for some v ∈ Si−1, and u ∈ V (G) \ Si−1 (resp. u ∈ NG−Si−1(v)) for every i ∈ [r] \ {1}.

Motivation. Reconfiguration problems arise in various applications and, as a result, have
gained considerable attention in recent literature [1, 2, 9, 18]. They appear in power supply
problems, such as operating switches in a network to transform between different arrangements
of power supply from stations to homes without causing a blackout [17]. They also show up in
evolutionary biology, such as in the transformation of genomes via mutations [22]. Moreover,
reconfiguration problems contribute to numerous fields of study, such as computational
geometry with polygon reconfiguration [5], or statistical physics with the transformation
of a particle’s spin system [6]. At the same time, vertex separators are useful in the
factorization of sparse matrices [23], as well as, partitioning hypergraphs [19]. They also
lend themselves to problems in cyber security and telecommunication [20], bioinformatics
and computational biology [15], and many divide-and-conquer graph algorithms [12]. Given
the importance of vertex separators, we believe that it is a natural question to study the
problem of reconfiguration between different vertex separators.

Related work. Gomes, Nogueira, and dos Santos [16] initiated the study of the problem of
computing reconfiguration sequences between s-t-separators, A and B, without restricting
the size of the separators (to minimum). We call the corresponding problem Vertex
Separator Reconfiguration (VSR). They show that for token sliding, checking if A can
be transformed to B, i.e., Vertex Separator Reconfiguration, is a PSPACE-complete
problem even on bipartite graphs. In contrast, under the token jumping model the problem
becomes NP-complete for bipartite graphs.

Our results. Unlike the VSR problem, the requirement in the MSR problem that the
separators in the reconfiguration sequence must be minimum introduces a lot of structure.
In particular, we can rely on the duality between minimum separators and disjoint paths,
observing that tokens are always constrained to move on a set of disjoint s-t-paths, which
we call canonical paths. Using this property, we prove that, in an (optimal) solution, tokens
always move “forward” towards their target locations and we never need to take a step
back. This immediately prevents the problems from being PSPACE-complete since this gives
a (polynomial) bound on the length of a solution. In fact, the “always-forward” property
immediately implies a greedy algorithm that decides whether we can reconfigure one s-t-
separator into another or not for both the token sliding and token jumping models. We then

2 It is important to note that graphs may have an exponential number of minimum s-t-separators as
otherwise the problem is trivial.

3 The notion of tokens is intentionally kept abstract as tokens can represent any type of agents.

G. C. M. Gomes et al. 9:3

turn our attention to finding shortest reconfiguration sequences. While TS-MSR is still
solvable in polynomial-time, finding an optimal solution for the TJ-MSR problem is shown
to be NP-complete by a reduction from Vertex Cover; finding the largest set of vertices
that can be “skipped” by jumping over them is “similar” to finding a minimum vertex cover.

We give a complete characterization of the (parameterized) complexity of the TJ-MSR
problem for its natural parameterizations. In particular, we complement our NP-hardness
result by showing that the problem of finding a shortest sequence of token jumps is fixed-
parameter tractable when parameterized by k, the size of a minimum separator; this is
accomplished by further exploiting the structure imposed by the separators’ minimality as
yes-instances have pathwidth bounded by O(k). Unfortunately, unless NP ⊆ coNP/poly, the
problem admits no polynomial kernel under this parameterization. Finally, we show that if
we parameterize the problem by the length of the reconfiguration sequence, ℓ, then we obtain
a kernel with O(ℓ2) vertices and edges.

2 Preliminaries

We denote the set of natural numbers by N and, for n ∈ N, we let [n] = {1, 2, . . . , n}. We
only deal with finite simple undirected graphs. We let V (G) and E(G) denote the vertex set
and edge set of graph G, respectively. The open neighborhood of a vertex v is denoted by
NG(v) = {u ∈ V (G) | {u, v} ∈ E(G)} and the closed neighborhood by NG[v] = NG(v) ∪ {v}.
For a set S ⊆ V (G) of vertices, we define NG(S) =

⋃
v∈S NG(v) \ S and NG[S] = NG(S) ∪ S;

if the context is clear, we omit the subscript G. The subgraph of G induced by S is denoted
by G[S], where G[S] has vertex set S and edge set {{u, v} ∈ E(G) | u, v ∈ S}; we also define
G − S = G[V (G) \ S]. A walk of length q from v0 to vq in G is a vertex sequence v0, . . . , vq

such that {vi, vi+1} ∈ E(G) for all i ∈ {0, . . . , q − 1}. It is a path if all vertices are distinct.
An s-t-path is one with endpoints s and t. Two s-t-paths P1 and P2 are (internally) disjoint
if V (P1) ∩ V (P2) = {s, t}. The following is a celebrated theorem attributed to Menger [21]
and later generalized and made algorithmic by Ford and Fulkerson [13].

▶ Theorem 1. The size of a minimum s-t-separator is equal to the maximum number of
pairwise internally disjoint s-t-paths, which can be computed in polynomial time.

Parameterized complexity. A parameterized problem Q is a subset of Σ∗ × N, where the
second component denotes the parameter. A parameterized problem is fixed-parameter
tractable with respect to a parameter κ, FPT for short, if there exists an algorithm to decide
whether (x, κ) ∈ Q in time f(κ) · |x|O(1), where f is a computable function. We say that two
instances are equivalent if they are both yes-instances or both no-instances. A kernelization
algorithm, or a kernelization for short, is a polynomial-time algorithm that reduces an
input instance (x, κ) into an equivalent instance (x′, κ′) such that |x′|, κ′ ≤ f(κ), for some
computable function f . Such x′ is called a kernel. Every fixed-parameter tractable problem
admits a kernel, however, possibly of exponential or worse size. For efficient algorithms it is
therefore most desirable to obtain kernels of polynomial, or even linear size. We refer to the
textbooks [7, 10] for extensive background on parameterized complexity.

3 Preprocessing and general observations

Let (G, s, t, A, B) denote an instance of Minimum Separator Reconfiguration, where
A and B are minimum s-t-separators of size k. The reconfiguration model, i.e., jumping vs.
sliding, will be clear from context. We begin by making some general observations (that

IPEC 2023

9:4 Minimum Separator Reconfiguration

hold for both models) about the structure of sequences of minimum s-t-separators, which
we make extensive use of. We also describe some preprocessing operations: we assume they
have been applied on every instance in the rest of the paper. We begin by introducing the
notion of canonical paths, which describe the possible locations for each token.

▶ Definition 2 (Canonical paths). Let A and B denote the starting and target separators,
respectively. By Theorem 1, we begin by fixing a maximum set of pairwise internally disjoint
s-t-paths, which has size k = |A| = |B| (since A, B are minimum separators). We may
assume that all paths are chordless, i.e., if two vertices of the same path are adjacent the
edge connecting them is part of the path; otherwise, we could decrease the length of the path
by shortcutting along the chord. We repeat this procedure until all paths are chordless; it
terminates since in each iteration the total number of vertices involved in the paths decreases.
We call these k chordless pairwise internally disjoint s-t-paths P1, . . . , Pk the canonical paths
of our instance.

Note that canonical paths may not be uniquely defined; however, we can fix any set of k

internally vertex disjoint paths as canonical.

▶ Lemma 3. Let S be a minimum s-t-separator. Then, S contains exactly one vertex of
each canonical path.

Proof. The set S has to contain at least one vertex of each path since otherwise there would
be an s-t-path in G − S. Since the number of paths is equal to the size of a minimum
separator and the paths are disjoint, it has to be exactly one in each (Theorem 1). ◀

The next observation follows immediately from Lemma 3.

▶ Observation 4. For both token sliding and token jumping, each token is confined to its
respective canonical path and in the case of sliding, a token can only slide to either one of its
two neighbours along its canonical path.

Thus, our view of the problem is that we are sliding (resp. jumping) tokens along a set of
k paths and that each token is confined to its respective path. We now show that we can
always slide (resp. jump) a token in the direction of the target separator B and never have
to do a “backward” move.

Let L(i) denote the number of vertices on the canonical path Pi, including s and t.
Let ui,1, . . . ui,L(i) denote the vertices on the canonical path Pi in the order in which they
appear on it, with ui,1 = s and ui,L(i) = t. Let ai and bi denote the indices such that
V (Pi) ∩ A = {ui,ai} and V (Pi) ∩ B = {ui,bi}, i.e., ai is the index of the starting vertex of
the token on Pi and bi the index of the goal vertex for this token. Let li = min(ai, bi) and
ri = max(ai, bi). We first show that, in any (shortest) reconfiguration sequence, we only
need to consider configurations of tokens in which, for all i, the token on the path Pi remains
between (or on) ui,li

and ui,ri
.

▶ Lemma 5. For all i ∈ [k], let ϕi be the function such that for all 1 < a < L(i),

ϕi(a) :=

li if a < li,

ri if a > ri,

a otherwise.

Let f(ui,a) := ui,ϕi(a). If X is a minimum s-t-separator, then so is f(X).

G. C. M. Gomes et al. 9:5

s t

ui,a
ui,ϕ(xi)

uj,ϕ(xj)
uj,b

Figure 1 P is in blue and P ′ is highlighted in orange.

Proof. Given a set X = {ui,xi
| i ∈ [k]}, let Left(X) =

⋃
i{ui,a | a < xi}.

Let X = {ui,xi
| i ∈ [k]} be an s-t-separator. Assume that Y = f(X) is not an s-t-

separator. Let P be an s-t-path in G − Y . Let ui,a be the last vertex of P belonging to
Left(Y) (possibly ui,a = s). Let uj,b be the first vertex of P lying on a canonical path after
ui,a (possibly uj,b = t). We have uj,b /∈ Left(Y) and thus b > ϕj(xj). Note that a ̸= ϕi(xi)
and b ̸= ϕj(xj) by the definition of P . Let P ′ be the path in G going from s to ui,a via Pi,
then to uj,b via P and finally to t via Pj ; see Figure 1. We have i ̸= j since otherwise P ′

would be an s-t-path in G − A (respectively G − B or G − X) if ϕi(xi) = ai (respectively
ϕi(xi) = bi or ϕi(xi) = xi).

We cannot have a < xi and xj < b at the same time since otherwise P ′ would be an s-t-path
in G − X. Without loss of generality, assume that xi ≤ a. As a result, xi ≤ a < ϕi(xi) = li.
We must have b < lj , or otherwise P ′ would be an s-t-path in G − A or G − B. Thus,
b < lj ≤ ϕj(xj) which contradicts the aforementioned property that b > ϕj(xj) and proves
that f(X) is an s-t-separator. ◀

▶ Corollary 6. In both the token jumping and token sliding models, if there exists a re-
configuration sequence from A to B, then there exists a shortest sequence such that, for
any i, the ith token remains between li and ri at all times. As a result, deleting all ver-
tices on canonical paths that are not beteween li and ri and replacing them by the edges
{{s, li} | 1 ≤ i ≤ k} ∪ {{ri, t} | 1 ≤ i ≤ k} yields an equivalent instance.

Proof. Two s-t-separators differing only by a token jump (resp. slide) are mapped by f

to two s-t-separators that are either equal or differing by only a token jump (resp. slide).
Thus, applying f to all separators in the reconfiguration sequence, we get a reconfiguration
sequence with the claimed property. ◀

Given a vertex ui,x on a canonical path Pi, we define the set F (ui,x) as the set of vertices
of Pi between ui,x and ui,bi

(see Figure 2). We say that a jump (resp. slide) from ui,a to ui,b

is forward if ui,b ∈ F (ui,a). Intuitively, this means that a jump (resp. slide) is forward if it
moves the token closer to its target location (along the canonical path) without going past it.

▶ Lemma 7 (Forward-moving lemma). If there exists a reconfiguration sequence from A to B,
then there exists a shortest sequence S of jumps (resp. slides) going from A to B containing
only forward jumps (resp. slides).

Proof. We proceed by induction on the length of a shortest sequence. If A = B, there is
nothing to prove. Otherwise, let S be a shortest sequence of moves going from A to B.
By Corollary 6, we can assume that the first move in S is a forward move. Let A′ be the
separator obtained after this move. The tail of S is a shortest sequence of move between
A′ and B and by induction, it may be replaced with a shortest sequence that only contains
forward jumps (resp. slides). ◀

IPEC 2023

9:6 Minimum Separator Reconfiguration

s t

ui,ai

ui,x
ui,bi

uj,bj uj,y
uj,aj

Figure 2 F (ui,x) is highlighted in orange and F (uj,y) in blue.

4 Polynomial-time algorithms

The forward-moving lemma immediately implies that several problems can be solved in
polynomial time by a greedy algorithm.

▶ Theorem 8. A minimum-length sequence of token slides reconfiguring one minimum
s-t-separator to another can be computed in polynomial time.

Proof. Since slides are reversible, doing any slide can never turn a yes-instance into a
no-instance. Thus, we can greedily apply moves that slide a token forward. That is, we
iteratively find any token that can slide forward (as long as possible) and execute the slide.
Since we never need to do a backward slide (Lemma 7), this always finds a solution if one
exists. Moreover, this is optimal; the paths are chordless, so any slide can only advance a
token one step closer towards its target position, and since there are no backward slides,
the solution is optimal. Clearly, checking if a token can slide forward requires polynomial
time and given that an optimal solution has polynomial length we get the claimed running
time. ◀

▶ Theorem 9. A (feasible, but not necessarily minimum-length) sequence of token jumps
reconfiguring one minimum s-t-separator to another can be computed in polynomial time.

Proof. Jumps are also reversible, so doing a jump can never turn a yes-instance into a
no-instance. Again, we can greedily apply forward jumps. Since a solution never needs to
contain a backward jump, this yields a feasible solution if one exists. ◀

In the case of token jumping, the solution produced by the greedy algorithm is not
necessarily optimal (not guaranteed to be a shortest sequence of jumps); by choosing a
different order for the jumps, it might be possible to make “longer” jumps, i.e., jumping over
more vertices. In fact, we show that deciding whether a sequence of at most ℓ jumps can
tranform one minimum s-t-separator into another is an NP-complete problem.

5 Hardness of finding short sequences of jumps

First, we note that the problem of deciding whether a sequence of at most ℓ jumps between
two minimum s-t-separators exists is in NP. Indeed, Lemma 7 implies that the length of a
reconfiguration sequence cannot exceed |V (G)|; we can therefore directly use a reconfiguration
sequence as a certificate.

We show NP-hardness by reducing the Vertex Cover problem. Given a graph G =
(V, E) and the size κ of a desired vertex cover, we construct our instance (G′, s, t, A, B) as
follows. We first create a copy of the graph G, and for every v ∈ V (G) we add two additional

G. C. M. Gomes et al. 9:7

vertices sv, tv and edges {sv, v}, {v, tv}. We further add vertices s, t and for all v ∈ V (G),
edges {s, sv}, {tv, t}; see Figure 3. We ask whether we can reconfigure the s-t-separator
A = {sv | v ∈ V (G)} to the separator B = {tv | v ∈ V (G)} using at most |V (G)| + κ token
jumps. Note that the canonical paths are of the form {s, sv, v, st, t | v ∈ V (G)}.

s t

sv
v tv

···
GA B

Figure 3 The graph G′ formed from G (highlighted in orange), along with the initial and target
separators A and B (highlighted in blue), respectively.

▶ Theorem 10. Deciding whether a sequence of at most ℓ token jumps can tranform one
minimum s-t-separator into another is an NP-complete problem.

6 Preprocessing for token jumping

In this section, we describe some preprocessing rules that can be applied to the token jumping
variant of Minimum Separator Reconfiguration. In the remainder of this paper, we
assume that all instances are preprocessed according to these rules. We first show that we
can reduce the graph so that it contains no vertices that are not on the canonical s-t-paths.

▶ Lemma 11. Given an instance (G, s, t, A, B) of Minimum Separator Reconfiguration
in the token jumping model, it is possible to compute in polynomial time an equivalent
instance (G′, s, t, A, B) in which all vertices are on the (chordless) canonical paths and both
the minimum s-t-separator size and the length of minimum reconfiguration sequences are
preserved. Moreover, all vertices in A ∪ B are adjacent to either s or t.

Going forward, we assume that all graphs are preprocessed according to these rules. We
next observe that to ensure that a configuration of tokens forms a valid s-t-separator it
suffices to check the existence of relatively simple s-t-paths.

▶ Lemma 12. To check whether a configuration of tokens that assigns exactly one token
to each canonical path forms an s-t-separator, it suffices to check whether there exists an
s-t-path that from s, follows one of the canonical paths, then follows one edge (a crossing
edge) from that canonical path to another, and then follows that canonical path to t.

We now show that it suffices to consider instances in which all vertices have degree at
least 3 and at most 2k, where k ≥ 3 is the size of the minimum separator (for k ≤ 2, the
problem can be solved in polynomial time by a simple algorithm that computes a shortest
path in an auxiliary graph H having one vertex for each of the at most n2 s-t-separators
and where two vertices of H share an edge whenever the corresponding s-t-separators are
one reconfiguration step away from each other).

IPEC 2023

9:8 Minimum Separator Reconfiguration

▶ Lemma 13. Given an instance (G, s, t, A, B) of Minimum Separator Reconfiguration
in the token jumping model, it is possible to compute in polynomial time an equivalent instance
(G′, s, t, A, B) in which the length of minimum reconfiguration sequences is preserved and all
vertices have degree at least 3 and at most 2k, where k = |A| = |B| (assuming k ≥ 3). In
particular, every vertex can have at most two neighbors on each canonical path.

We proceed by showing that we can always assume that the source and target minimum
s-t-separators, i.e., A and B, are disjoint.

▶ Lemma 14. Given an instance (G, s, t, A, B) of Minimum Separator Reconfiguration
in the token jumping model, it is possible to compute in polynomial time an equivalent instance
(G′, s, t, A′, B′) in which A′ ∩ B′ = ∅ and such that the length of minimum reconfiguration
sequences is preserved.

We conclude this section by formalizing the notion of unskippable vertices; a notion
that will be useful in many of our subsequent results. Given an instance (G, s, t, A, B), we
say that v ∈ V (G) \ (A ∪ B ∪ {s, t}) is unskippable if for every sequence (if any exist) of
minimum s-t-separators that transforms A to B there exists at least one s-t-separator S

in the sequence such that v ∈ S. In other words, there is no transformation from A to B

that can skip over v and not jump a token onto v at some point. Similarly, we say that a
set U ⊆ V (G) \ (A ∪ B ∪ {s, t}) of vertices is unskippable whenever there exists at least one
s-t-separator S in every reconfiguration sequence (from A to B) such that |U ∩ S| ≥ 1.

▶ Lemma 15. Let (G, s, t, A, B) be an instance of Minimum Separator Reconfiguration
in the token jumping model. A vertex v ∈ V (G) \ (A ∪ B ∪ {s, t}) having two neighbors on a
canonical path other than its own is unskippable. If u, v ∈ V (G) \ (A ∪ B ∪ {s, t}), u, v belong
to two different canonical paths, and {u, v} ∈ E(G), then {u, v} is unskippable.

7 Parameterizing by the size of the separators

In this section, we study the natural parameterization by k: the number of tokens, or the
size of minimum separators. We first prove that there exists an FPT algorithm for this
parameterization, then show that no polynomial kernel exists unless NP ⊆ coNP/poly.

7.1 FPT algorithm
In this section, we show that finding a shortest sequence for the token jumping variant of
Minimum Separator Reconfiguration is fixed-parameter tractable with respect to k,
the size of the minimum s-t-separators. We do so by constructing a path decomposition
of the graph from an arbitrary sequence of token jumps, and then proceed by designing a
dynamic programming algorithm that operates on that path decomposition. We shall work
towards proving the following.

▶ Lemma 16. Given a graph G preprocessed by our reduction rules and two minimum
s-t-separators A and B of G with |A| = k, if A and B can be reconfigured into each other,
then G \ {s, t} has pathwidth at most k.

Let S = A, S1, . . . , Sℓ, B be a reconfiguration sequene of minimum separators. Note that
the symmetric difference between two elements of S are two vertices uj,p ∈ Si \ Si+1 and
uj,r ∈ Si+1 \ Si belonging to the same canonical path. As such, we can construct a width-k
path decomposition where (i) each Si ∈ S is placed in the order they appear in S and (ii)
between Si and Si+1 we have the bags X ∪ {uj,q}, where X = Si ∩ Si+1 and p < q < r.
Using the previous statement and dynamic programming, we prove our main result.

G. C. M. Gomes et al. 9:9

▶ Theorem 17. The optimization version of Minimum Separator Reconfiguration
under token jumping parameterized by the size of a minimum separator is in FPT.

7.2 No polynomial kernel for parameter k

We use the cross-composition framework developed by the work of Drucker [11], Bodlaender
et al. [3, 4], Dell and van Melkebeek [8], and Fortnow and Santhanam [14]. Roughly speaking,
in this framework, a problem Π and-cross-composes into a parameterized problem Γ if,
given instances {I1, . . . , Ir} of Π, we can construct an instance (O, k) of Γ such that: O is a
yes-instance if and only if Ii is a yes-instance for all i ∈ [r], |O| is polynomial on

∑
i |Ii| + r,

and k ≤ poly(maxi |Ii| + log r).
For Minimum Separator Reconfiguration under token jumping, we and-cross-

compose Vertex Cover, employing a construction very similar to the one used in Theo-
rem 10. In fact, for each of the r vertex cover instances (Gi, κ), we repeat the construction of
Theorem 10 and serialize all the graphs in a “linear fashion” using synchronization gadgets,
as depicted in Figure 4. We ask for a reconfiguration sequence between the leftmost and
rightmost sets (each of size k = µ + 1) of length O(rk +

∑
(|V (Gi)|)). As the name suggests,

the purpose of the synchronization gadgets is to guarantee that all tokens jump over each
graph Gi before moving on to the next graph (allowing us to accurately calculate the total
number of required jumps). Formally, our result can be stated as follows:

▶ Theorem 18. There exists an and-cross-composition from Vertex Cover into TJ
Minimum Separator Reconfiguration, parameterized by the minimum size k of an
s-t-separator. Consequently, when parameterized by k, TJ Minimum Separator Recon-
figuration does not admit a polynomial kernel unless NP ⊆ coNP/poly.

s t

Figure 4 An overview of the and-cross-composition with r = 3 and k = 5. The orange blobs are
A and B, the blue blobs represent the graphs Gi, and the green vertices and edges represent the
synchronization gadgets.

8 Polynomial kernel for parameter ℓ

Observe that the construction employed in Theorem 18 heavily relies on the fact that the
length ℓ of the reconfiguration sequence is linearly proportional to the number of instances.
We show that this dependence cannot be broken. That is, when parameterizing by ℓ, we
prove that Minimum Separator Reconfiguration admits a quadratic kernel.

Recall that, by Lemma 11, we can preprocess the graph so that all vertices are on the
canonical paths and the vertices in A and B are adjacent to (at least one of) s or t. Similarly,
by Lemma 13, each vertex in G will have degree at least 3 and at most 2k (with at most two
neighbors on each canonical path) and, by Lemma 14, we know that A ∩ B = ∅. We refer to
an instance satisfying all of the above as a reduced instance.

IPEC 2023

9:10 Minimum Separator Reconfiguration

▶ Lemma 19. In a reduced yes-instance where ℓ is the parameter, all the following properties
must be satisfied: (i) A ∩ B = ∅ and |A| = |B| ≤ ℓ; (ii) all vertices are on the (at most ℓ)
canonical paths; (iii) vertices in A and B are adjacent to (at least one of) s or t; and (iv)
each vertex in G has degree at least 3, degree at most 2ℓ, and at most two neighbors on each
canonical path.

Proof. The lemma follows immediately from the fact that if after obtaining a reduced
instance we have |A| = |B| > ℓ, then we have a no-instance; as at least ℓ + 1 jumps are
needed. Consequently, the minimum separator size will be at most ℓ and all the remaining
properties follow from Lemma 11, Lemma 13, and Lemma 14. ◀

▶ Lemma 20. Assume that in a reduced instance one of the canonical paths contains more
than 4(ℓ + 1)2 + 4 vertices. Then, the instance is a no-instance.

Proof. Let P denote such a canonical path. We claim that at least ℓ + 1 jumps are required
for the token on P . We assume otherwise, i.e, that ℓ jumps or fewer are enough, and work
towards a contradiction.

First, recall that if a vertex v on a canonical path is adjacent to two distinct vertices on
another canonical path, then v can never be jumped over, i.e., v is unskippable (Lemma 15).
We decompose P into ℓ + 1 subpaths each consisting of at least 4ℓ + 4 vertices (excluding
s, t, and the initial and target vertices of A and B). For the token on P to reach its final
position in at most ℓ jumps, it must (at least once) jump over 2ℓ + 1 (consecutive) vertices
of P or more (landing on the vertex 2ℓ + 2 away or more). Let us denote those vertices that
are jumped over by Q. Moreover, let Si denote the s-t-separator preceeding the jump and
let Si+1 denote the resulting s-t-separator after the jump.

If Q contains a vertex having two distinct neighbors on another canonical path, then the
vertex is unskippable and we get a contradiction. Hence, every vertex v of Q (which has
degree 3 or more) can have at most one neighbor on every canonical path P ′ ≠ P (and we
know that v must have at least one neighbor not in P). Since Si and Si+1 are s-t-separators,
every vertex v ∈ Q can only be adjacent to vertices in Si \ V (P) = Si+1 \ V (P); otherwise an
s-t-path can be easily constructed, contradicting the fact that Si and Si+1 are s-t-separators.
Now, given that |Q| ≥ 2ℓ + 1, we know that there exists at least 3 distinct vertices in Q all
having the same neighbor in Si+1 \ V (P). This contradicts the fact that after our reductions
each vertex in G can have at most two distinct neighbors on any canonical path. ◀

Lemmas 19 and 20 immediately imply a kernel with O(ℓ3) vertices: a yes-instance consists
of at most ℓ canonical paths each having O(ℓ2) vertices. We obtain an improved bound by
refining our analysis slightly and strengthening the result of Lemma 20 in Theorem 21.

▶ Theorem 21. The optimization version of TJ Minimum Separator Reconfiguration
admits a kernel with O(ℓ2) vertices and edges when parameterized by the length ℓ of a
reconfiguration sequence.

9 Concluding Remarks

We studied the minimum s-t-separator reconfiguration problem through several lenses. First,
we considered the token sliding and token jumping reconfiguration models, showing that
the reachability question is answerable in polynomial time in both cases. Afterwards, we
considered the task of finding a shortest reconfiguration sequence; we proved that it is easy
under the first model but NP-complete under the second. To tackle this hardness, we studied
the parameterized complexity of the token jumping version for the natural parameterizations

G. C. M. Gomes et al. 9:11

k (the number of tokens) and ℓ (the length of the sequence). In this context, we designed an
FPT algorithm for parameter k, a quadratic kernel when parameterized by ℓ, and showed
that no polynomial kernel exists for k unless NP ⊆ coNP/poly.

In terms of future work on minimum s-t-separator reconfiguration itself, we are interested
in understanding shortest token jumping sequences for some graph classes, in particular for
planar graphs. Other possibilities include the study of structural parameterizations, such as
treewidth, feedback edge set, and vertex deletion distance metrics (e.g., distance to cluster,
clique, etc.). In a different spirit, studying the connectivity of the minimum s-t-separator
reconfiguration graph might yield different insights than the ones presented in this paper.
Beyond minimum separators, the work of Gomes, Nogueira, and dos Santos [16] investigated
arbitrary s-t-separator reconfiguration, but no research has yet been done on bounded size
separators. As such, we believe work on the complexity of reconfiguration of minimum + r

s-t-separators might be of independent interest.

References
1 Kira Adaricheva, Chassidy Bozeman, Nancy E. Clarke, Ruth Haas, Margaret-Ellen Messinger,

Karen Seyffarth, and Heather C. Smith. Reconfiguration graphs for dominating sets. In
Research Trends in Graph Theory and Applications, volume 25 of Assoc. Women Math. Ser.,
pages 119–135. Springer, Cham, 2021.

2 Akanksha Agrawal, Soumita Hait, and Amer E. Mouawad. On finding short reconfiguration
sequences between independent sets. In 33rd International Symposium on Algorithms and
Computation, volume 248 of LIPIcs. Leibniz Int. Proc. Inform., pages Paper No. 39, 14. Schloss
Dagstuhl. Leibniz-Zent. Inform., Wadern, 2022.

3 Hans L. Bodlaender, Rodney G. Downey, Michael R. Fellows, and Danny Hermelin. On
problems without polynomial kernels. J. Comput. Syst. Sci., 75(8):423–434, 2009. doi:
10.1016/j.jcss.2009.04.001.

4 Hans L. Bodlaender, Bart M. P. Jansen, and Stefan Kratsch. Kernelization lower bounds by
cross-composition. SIAM J. Discret. Math., 28(1):277–305, 2014. doi:10.1137/120880240.

5 Robert Connelly, Erik D. Demaine, and Günter Rote. Blowing up polygonal linkages. Discrete
Comput. Geom., 30:205–239, 2003.

6 Daniel W. Cranston and Reem Mahmoud. In most 6-regular toroidal graphs all 5-colorings
are Kempe equivalent. European J. Combin., 104:Paper No. 103532, 21, 2022.

7 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

8 Holger Dell and Dieter van Melkebeek. Satisfiability allows no nontrivial sparsification unless the
polynomial-time hierarchy collapses. J. ACM, 61(4):23:1–23:27, 2014. doi:10.1145/2629620.

9 Quentin Deschamps, Carl Feghali, František Kardoš, Clément Legrand-Duchesne, and Théo
Pierron. Strengthening a theorem of Meyniel, 2022.

10 Rodney G. Downey and Michael R. Fellows. Parameterized Complexity. Monographs in
Computer Science. Springer, 1999. doi:10.1007/978-1-4612-0515-9.

11 Andrew Drucker. New limits to classical and quantum instance compression. SIAM J. Comput.,
44(5):1443–1479, 2015. doi:10.1137/130927115.

12 Cem Evrendilek. Vertex separators for partitioning a graph. Sensors, 8(2):635–657, 2008.
13 Lester R. Ford and Delbert R. Fulkerson. Flows in Networks. Princeton University Press,

USA, 2010.
14 Lance Fortnow and Rahul Santhanam. Infeasibility of instance compression and succinct PCPs

for NP. J. Comput. Syst. Sci., 77(1):91–106, 2011. doi:10.1016/j.jcss.2010.06.007.
15 Bin Fu and Zhixiang Chen. Sublinear time width-bounded separators and their application to

the protein side-chain packing problem. J. Comb. Optim., 15(4):387–407, 2008.

IPEC 2023

https://doi.org/10.1016/j.jcss.2009.04.001
https://doi.org/10.1016/j.jcss.2009.04.001
https://doi.org/10.1137/120880240
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1145/2629620
https://doi.org/10.1007/978-1-4612-0515-9
https://doi.org/10.1137/130927115
https://doi.org/10.1016/j.jcss.2010.06.007

9:12 Minimum Separator Reconfiguration

16 Guilherme C. M. Gomes, Sérgio H. Nogueira, and Vinícius F. dos Santos. Some results on
vertex separator reconfiguration, 2020.

17 Takehiro Ito, Erik D. Demaine, Xiao Zhou, and Takao Nishizeki. Approximability of parti-
tioning graphs with supply and demand. J. Discrete Algorithms, 6(4):627–650, 2008.

18 Takehiro Ito, Naonori Kakimura, Naoyuki Kamiyama, Yusuke Kobayashi, and Yoshio Okamoto.
Shortest reconfiguration of perfect matchings via alternating cycles. SIAM J. Discrete Math.,
36(2):1102–1123, 2022.

19 Enver Kayaaslan, Ali Pinar, Ümit Çatalyürek, and Cevdet Aykanat. Partitioning hypergraphs
in scientific computing applications through vertex separators on graphs. SIAM J. Sci. Comput.,
34(2):A970–A992, 2012.

20 Charles E. Leiserson. Area-efficient graph layouts. In 21st Annual Symposium on Foundations
of Computer Science, pages 270–281, 1980.

21 Karl Menger. Zur allgemeinen Kurventheorie. Fundamenta Mathematicae, 10:96–115, 1927.
URL: http://eudml.org/doc/211191.

22 István Miklós and Heather Smith. Sampling and counting genome rearrangement scenarios.
BMC Bioinformatics, 16, 2015.

23 Xie Xian-fen, Gu Wan-rong, He Yi-chen, and Mao Yi-jun. Matrix transformation and
factorization based on graph partitioning by vertex separator for recommendation. Computer
Science, 49(6):272–279, 2022.

http://eudml.org/doc/211191

Kernels for the Disjoint Paths Problem on
Subclasses of Chordal Graphs
Juhi Chaudhary # Ñ

Ben-Gurion University of the Negev, Beersheba, Israel

Harmender Gahlawat # Ñ

Ben-Gurion University of the Negev, Beersheba, Israel

Michal Włodarczyk # Ñ

University of Warsaw, Poland

Meirav Zehavi # Ñ

Ben-Gurion University of the Negev, Beersheba, Israel

Abstract
Given an undirected graph G and a multiset of k terminal pairs X , the Vertex-Disjoint Paths
(VDP) and Edge-Disjoint Paths (EDP) problems ask whether G has k pairwise internally vertex-
disjoint paths and k pairwise edge-disjoint paths, respectively, connecting every terminal pair in X .
In this paper, we study the kernelization complexity of VDP and EDP on subclasses of chordal
graphs. For VDP, we design a 4k vertex kernel on split graphs and an O(k2) vertex kernel on
well-partitioned chordal graphs. We also show that the problem becomes polynomial-time solvable
on threshold graphs. For EDP, we first prove that the problem is NP-complete on complete graphs.
Then, we design an O(k2.75) vertex kernel for EDP on split graphs, and improve it to a 7k + 1 vertex
kernel on threshold graphs. Lastly, we provide an O(k2) vertex kernel for EDP on block graphs
and a 2k + 1 vertex kernel for clique paths. Our contributions improve upon several results in the
literature, as well as resolve an open question by Heggernes et al. [Theory Comput. Syst., 2015].

2012 ACM Subject Classification Theory of computation → Parameterized complexity and exact
algorithms; Mathematics of computing → Graph algorithms

Keywords and phrases Kernelization, Parameterized Complexity, Vertex-Disjoint Paths Problem,
Edge-Disjoint Paths Problem

Digital Object Identifier 10.4230/LIPIcs.IPEC.2023.10

Related Version Full Version: https://doi.org/10.48550/arXiv.2309.16892 [5]

Funding This research was supported by the European Research Council (ERC) grant titled
PARAPATH.

1 Introduction

The Vertex-Disjoint Paths (VDP) and Edge-Disjoint Paths (EDP) problems are
fundamental routing problems, having applications in VLSI design and virtual circuit routing
[20, 39, 44, 45]. Notably, they have been a cornerstone of the groundbreaking Graph
Minors project of Robertson and Seymour [42], and several important techniques, including
the irrelevant vertex technique, originated in the process of solving disjoint paths [42]. In
VDP (respectively, EDP), the input is an undirected graph G and a multiset of terminal
pairs X = {(s1, t1), . . . , (sk, tk)}, and the goal is to find k pairwise internally vertex-disjoint
(respectively, edge-disjoint) paths P1, . . . , Pk such that Pi is a path with endpoints si and ti.

Both VDP and EDP are studied extensively, and have been at the center of numerous
results in algorithmic graph theory [6, 15, 18, 22, 31, 34, 36, 48]. Karp [30] proved that
VDP is NP-complete (attributing the result to Knuth), and a year later, Even, Itai, and

© Juhi Chaudhary, Harmender Gahlawat, Michal Włodarczyk, and Meirav Zehavi;
licensed under Creative Commons License CC-BY 4.0

18th International Symposium on Parameterized and Exact Computation (IPEC 2023).
Editors: Neeldhara Misra and Magnus Wahlström; Article No. 10; pp. 10:1–10:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:juhic@post.bgu.ac.il
https://sites.google.com/view/juhichaudhary/home
https://orcid.org/0000-0001-5560-9129
mailto:harmendergahlawat@gmail.com
https://sites.google.com/view/harmendergahlawat/
https://orcid.org/0000-0001-7663-6265
mailto:michal.wloda@gmail.com
https://www.mimuw.edu.pl/~mw277619/
https://orcid.org/0000-0003-0968-8414
mailto:zehavimeirav@gmail.com
https://sites.google.com/site/zehavimeirav/
https://orcid.org/0000-0002-3636-5322
https://doi.org/10.4230/LIPIcs.IPEC.2023.10
https://doi.org/10.48550/arXiv.2309.16892
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

10:2 Kernels for the Disjoint Paths Problem on Subclasses of Chordal Graphs

Table 1 Summary of the kernelization results of VDP and EDP parameterized by the number
of occurrences of terminal pairs (k) on the subclasses of chordal graphs studied in this paper.

Graph Class VDP EDP
Well-partitioned Chordal O(k2) vertex kernel [Theorem 7] OPEN
Split 4k vertex kernel [Theorem 6] O(k2.75) vertex kernel [Theorem 2]
Threshold P [Theorem 9] 7k + 1 vertex kernel [Theorem 3]
Block P [Observation 8] 4k2 − 2k vertex kernel [Theorem 4]
Clique Path P [Observation 8] 2k + 1 vertex kernel [Theorem 5]

Shamir [16] proved the same for EDP. When k is fixed (i.e., treated as a constant), Robertson
and Seymour [37, 42] gave an O(|V (G)|3) time algorithm as a part of their famous Graph
Minors project. This algorithm is a fixed-parameter tractable (FPT) algorithm parameterized
by k. Later, the power 3 was reduced to 2 by Kawarabayashi, Kobayashi, and Reed [32].

In Parameterized Complexity, each problem instance is associated with an integer para-
meter k. We study both VDP and EDP through the lens of kernelization under the
parameterization by k. A kernelization algorithm is a polynomial-time algorithm that takes
as input an instance (I, k) of a problem and outputs an equivalent instance (I ′, k′) of the same
problem such that the size of (I ′, k′) is bounded by some computable function f(k). The
problem is said to admit an f(k) sized kernel, and if f(k) is polynomial, then the problem is
said to admit a polynomial kernel. It is known that a problem is FPT if and only if it admits
a kernel. Due to its profound impact, kernelization has been termed “the lost continent of
polynomial time” [17]. For more details on kernelization, we refer to books [12, 19].

Bodlaender et al. [4] proved that, unless NP ⊆ coNP/poly, VDP does not admit a
polynomial kernel (on general graphs). On the positive side, Heggernes et al. [27] extended
this study to show that VDP and EDP admit polynomial kernels on split graphs with O(k2)
and O(k3) vertices, respectively. Yang et al. [47] further showed that a restricted version
of VDP, where each vertex can appear in at most one terminal pair, admits a 4k vertex
kernel. Recently, Ahn et al. [2] introduced so-called well-partitioned chordal graphs (being
a generalization of split graphs), and showed that VDP on these graphs admits an O(k3)
vertex kernel. In this paper, we extend the study of kernelization of EDP and VDP on these
(and other) subclasses of chordal graphs. We provide an extended survey in the Appendix.

1.1 Our Contribution
Proofs of the results marked with (∗) are deferred to the full version [5] to respect the space
constraints. An overview of our results is given in Table 1. We begin by discussing the results
about EDP. First, we observe that the problem remains NP-hard even on inputs with a
trivial graph structure given by a clique, unlike VDP. This extends the known hardness
results for split graphs [27] and graphs of cliquewidth at most 6 [25]. We prove this theorem
in the Appendix.

▶ Theorem 1. EDP is NP-hard on complete graphs.

Every graph class treated in this paper includes cliques, so EDP is NP-hard on each of
them. This motivates the study of kernelization algorithms. From now on, we always use k

to denote the number of occurrences of terminal pairs in an instance.
We present an O(k2.75) vertex kernel for EDP on split graphs, improving upon the O(k3)

vertex kernel given by Heggernes et al. [27]. Our main technical contribution is a lemma
stating that the length of each path in a minimum-size solution is bounded by O(

√
k). This

allows us to obtain the following.

J. Chaudhary, H. Gahlawat, M. Włodarczyk, and M. Zehavi 10:3

▶ Theorem 2. EDP on split graphs admits a kernel with at most O(k2.75) vertices.

In the quest to achieve better bounds, we consider a subclass of split graphs. Specifically,
we prove that EDP on threshold graphs admits a kernel with at most 7k + 1 vertices. Here,
we exploit the known vertex ordering of threshold graphs that exhibits an inclusion relation
concerning the neighborhoods of the vertices.

▶ Theorem 3 (∗). EDP on threshold graphs admits a kernel with at most 7k + 1 vertices.

Another important subclass of chordal graphs is the class of block graphs. For this case,
we present a kernel with at most 4k2 − 2k vertices. Our kernelization algorithm constructs
an equivalent instance where the number of blocks can be at most 4k − 2, and each block
contains at most k vertices. Thus, we have the following theorem.

▶ Theorem 4. EDP on block graphs admits a kernel with at most 4k2 − 2k vertices.

Whenever a block has more than two cut vertices, decreasing the size of that block below
O(k) becomes trickier. However, if we restrict our block graph to have at most two cut
vertices per block – i.e., if we deal with clique paths – then this can be done. The key point in
designing our linear kernel in clique paths is that, in the reduced instance, for each block B,
the number of vertices in B is dictated by a linear function of the number of terminal pairs
having at least one terminal vertex in B. So, we obtain a 2k + 1 vertex kernel for this class.

▶ Theorem 5. EDP on clique paths admits a kernel with at most 2k + 1 vertices.

Now, we switch our attention to kernelization algorithms for VDP. First, we give a 4k

vertex kernel for VDP on split graphs. This resolves an open question by Heggernes et
al. [27], who asked whether this problem admits a linear vertex kernel. For this purpose, we
use the result by Yang et al. [47], who gave a 4k vertex kernel for a restricted variant of VDP,
called VDP-Unique by us, where each vertex can participate in at most one terminal pair.

In order to obtain a linear vertex kernel for VDP, we give a parameter-preserving
reduction to VDP-Unique. Our reduction relies on a non-trivial matching-based argument.

In this way, we improve upon the 4k2 vertex kernel given by Heggernes et al. [27] as well
as generalize the result given by Yang et al. [47]. Specifically, we have the following theorem.

▶ Theorem 6. VDP on split graphs admits a kernel with at most 4k vertices.

Next, we give an O(k2) vertex kernel for VDP on well-partitioned chordal graphs (see
Definition 64). Ahn et al. [2] showed that VDP admits an O(k3) vertex kernel on this
class. We improve their bound by giving a marking procedure that marks a set of at most
O(k2) vertices in G, which “covers” some solution (if it exists). As a result, we arrive at the
following theorem.

▶ Theorem 7 (∗). VDP on well-partitioned chordal graphs admits a kernel with O(k2)
vertices.

Unlike EDP, the VDP problem turns out easier on the remaining graph classes. In block
graphs, for every terminal pair with terminals in different blocks, there is a unique induced
path connecting these terminals (all internal vertices of this path are the cut vertices). After
adding these paths to the solution, we end up with a union of clique instances, where VDP
is solvable in polynomial time. This leads to the following observation about block graphs
and its subclass, clique paths.

IPEC 2023

10:4 Kernels for the Disjoint Paths Problem on Subclasses of Chordal Graphs

▶ Observation 8. VDP on block graphs (and, in particular, on clique paths) is solvable in
polynomial time.

Finally, we identify a less restricted graph class on which VDP is polynomial-time solvable,
namely the class of threshold graphs. This yields a sharp separation between split graphs
and its subclass – threshold graphs – in terms of VDP.

▶ Theorem 9 (∗). VDP on thresholds graphs is solvable in polynomial time.

1.2 Organization of the paper
We begin with formal preliminaries, where we gather information about the studied graph
classes and the basic algorithmic tools. In Section 3, we prove the kernelization theorems
for EDP, which are followed by the NP-hardness proof for EDP on cliques in Appendix C.
Next, we cover the kernelization results for VDP in Section 4. We conclude in Section 5.

2 Preliminaries

For a positive integer ℓ, let [ℓ] denote the set {1, . . . , ℓ}. We provide the preliminaries
concerning parameterized complexity and graph classes considered in the Appendix.

Graph Notations. All graphs considered in this paper are simple, undirected, and connected
unless stated otherwise. Standard graph-theoretic terms not explicitly defined here can be
found in [13]. For a graph G, let V (G) denote its vertex set, and E(G) denote its edge
set. For a graph G, the subgraph of G induced by S ⊆ V (G) is denoted by G[S], where
G[S] = (S, ES) and ES = {xy ∈ E(G) | x, y ∈ S}. For two sets X, Y ⊆ V (G), we denote by
G[X, Y] the subgraph of G with vertex set X ∪ Y and edge set {xy ∈ E(G) : x ∈ X, y ∈ Y }.
The open neighborhood of a vertex v in G is NG(v) = {u ∈ V (G) : uv ∈ E(G)}. The degree
of a vertex v is |NG(v)|, and it is denoted by dG(v). When there is no ambiguity, we do
not use the subscript G in NG(v) and dG(v). A vertex v with d(v) = 1 is a pendant vertex.
The distance between two vertices in a graph G is the number of edges in the shortest path
between them. We use the notation d(u, v) to represent the distance between two vertices u

and v in a graph G (when G is clear from the context). For a graph G and a set X ⊆ V (G),
we use G − X to denote G[V (G) \ X], that is, the graph obtained from G by deleting X. In
a graph G, two vertices u and v are twins if NG[u] = NG[v].

An independent set of a graph G is a subset of V (G) such that no two vertices in the
subset have an edge between them in G. A clique is a subset of V (G) such that every two
distinct vertices in the subset are adjacent in G. Given a graph G, a matching M is a subset
of edges of G that do not share an endpoint. The edges in M are called matched edges, and
the remaining edges are called unmatched edges. Given a matching M , a vertex v ∈ V (G) is
saturated by M if v is incident on an edge of M , that is, v is an end vertex of some edge of
M . Given a graph G, Max Matching is to find a matching of maximum cardinality in G.

▶ Proposition 10 ([28]). For a bipartite graph G, Max Matching can be solved in
O(

√
|V (G)| · |E(G)|) time.

A path P = (v1, . . . , vn) is an M-alternating path if the edges in P are matched and
unmatched alternatively with respect to M . If both the end vertices of an alternating path
are unsaturated, then it is an M -augmenting path.

▶ Proposition 11 ([3]). A matching M is maximum if and only if there is no M -augmenting
path in G.

J. Chaudhary, H. Gahlawat, M. Włodarczyk, and M. Zehavi 10:5

A path P = (v1, v2, . . . , vn) on n vertices is a (v1, vn)-path and {v2, . . . , vn−1} are the
internal vertices of P . Moreover, for a path P = (v1, v2, . . . , vn), we say that P visits the
vertices {v1, v2, . . . , vn}. Throughout this paper, let Puv denote the path containing only
the edge uv. Let P1 be an (s1, t1)-path and P2 be an (s2, t2)-path. Then, P1 and P2 are
vertex-disjoint if V (P1) ∩ V (P2) = ∅. Moreover, P1 and P2 are internally vertex-disjoint if
(V (P1) \ {s1, t1}) ∩ V (P2) = ∅ and (V (P2) \ {s2, t2}) ∩ V (P1) = ∅, that is, no internal vertex
of one path is used as a vertex on the other path, and vice versa. Two paths are said to be
edge-disjoint if they do not have any edge in common. Note that two internally vertex-disjoint
paths are edge-disjoint, but the converse may not be true. A path P is induced if G[V (P)]
is the same as P . For a path P = (v1, . . . , vn) on n vertices and vertices vi, vj ∈ V (P), let
(vi, vj)-subpath of P denote the subpath of P with endpoints vi and vj .

Problem Statements. Given a graph G and a set (or, more generally, an ordered multiset)
X of pairs of distinct vertices in G, we refer to the pairs in X as terminal pairs. A ver-
tex in G is a terminal vertex if it appears in at least one terminal pair in X (when X is
clear from context); else, it is a non-terminal vertex. For example, if G is a graph with
V (G) = {v1, v2, . . . , v6}, and X = {(v1, v3), (v2, v3), (v3, v6), (v1, v6)} is a set of terminal
pairs, then {v1, v2, v3, v6} are terminal vertices in G and {v4, v5} are non-terminal vertices
in G. Formally, the definitions of VDP and EDP are given below.

Vertex-Disjoint Paths (VDP):
Input: A graph G and an ordered multiset X = {(s1, t1), . . . , (sk, tk)} of k terminal pairs.
Question: Does G contain k distinct and pairwise internally vertex-disjoint paths
P1, . . . , Pk such that for all i ∈ [k], Pi is an (si, ti)-path?

Edge-Disjoint Paths (EDP):
Input: A graph G and an ordered multiset X = {(s1, t1), . . . , (sk, tk)} of k terminal pairs.
Question: Does G contain k pairwise edge-disjoint paths P1, . . . , Pk such that for all
i ∈ [k], Pi is an (si, ti)-path?

▶ Remark 12. Note that in both problems (VDP and EDP), we allow different terminal
pairs to intersect, that is, it may happen that for i ̸= j, {si, ti} ∩ {sj , tj} ̸= ∅.

If there are two identical pairs {si, ti} = {sj , tj} = {x, y} in X and the edge xy is
present in G then only one of the paths Pi, Pj can use the edge xy if we require them to
be edge-disjoint. However, setting Pi = Pj = (x, y) does not violate the condition of being
internally vertex-disjoint. It is natural though and also consistent with the existing literature
to impose the additional condition that all paths in a solution have to be pairwise distinct.
▶ Remark 13. Throughout this paper, we assume that the degree of every terminal vertex is
at least the number of terminal pairs in which it appears. Else, it is trivially a No-instance.

Following the notation introduced in [2] and [27], we have the following definitions.

▶ Definition 14. An edge xy ∈ E(G) is heavy if for some w ≥ 2, there exist pairwise distinct
indices i1, . . . , iw such that for each j ∈ [w], {x, y} = {sij , tij }. We call a terminal pair
(si, ti) heavy if siti is a heavy edge; else, we call it light. Note that calling a terminal pair
heavy or light only makes sense when the terminals in the pair have an edge between them.

▶ Definition 15 (Minimum Solution). Let (G, X , k) be a Yes-instance of VDP or EDP.
A solution P = {P1, . . . , Pk} for the instance (G, X , k) is minimum if there is no solution
Q = {Q1, . . . , Qk} for (G, X , k) such that

∑k
i=1 |E(Qi)| <

∑k
i=1 |E(Pi)|.

IPEC 2023

10:6 Kernels for the Disjoint Paths Problem on Subclasses of Chordal Graphs

Since we deal with subclasses of chordal graphs, the following proposition is crucial for us.

▶ Proposition 16 ([27]). Let (G, X , k) be a Yes-instance of VDP such that G is a chordal
graph, and let P = {P1, . . . , Pk} be a minimum solution of (G, X , k). Then, for every path
Pi ∈ P, either Pi is an induced path or Pi is a path of length 2, and there exists a path
Pj ∈ P of length 1 whose endpoints are the same as the endpoints of Pi.

The next observation follows from Proposition 16.

▶ Observation 17. Let (G, X , k) be a Yes-instance of VDP. If there is a terminal pair
(s, t) ∈ X such that st ∈ E(G), then Pst belongs to every minimum solution of (G, X , k).

3 Kernelization Results on EDP

We begin with the analysis of the simplest scenario where the input graph is a clique. In
this setting, EDP is still NP-hard (see Appendix C), but we show below that whenever the
size of the clique is larger than the parameter k, then we always obtain a Yes-instance. This
improves the bound in [27, Lemma 7] by a factor of 2, which will play a role in optimizing
the constants in our kernels (particularly, the linear ones).

▶ Lemma 18 (∗). Let (G, X , k) be an instance of EDP such that G is a clique. If |V (G)| > k,
then (G, X , k) is a Yes-instance.

The bound above is tight as one can construct a No-instance (G, X , k) where G is a clique
and |V (G)| = k. Consider X comprising just k copies of some pair {u, v}. Since the degree
of u is k − 1, there cannot be k edge-disjoint paths having u as their common endpoint.

If G is a split graph with more than k vertices in the clique and the degree of each terminal
vertex is at least the number of terminals on it, then we can reduce such an instance to the
setting of Lemma 18 by replacing each terminal v in the independent set with an arbitrary
neighbor of v. As a consequence, we obtain the following corollary, being a quantitative
improvement over [27, Lemma 8].

▶ Corollary 19. Let (G, X , k) be an instance of EDP such that G is a split graph with split
partition (C, I). If |C| > k and the degree of each terminal vertex is at least the number of
terminals on it, then (G, X , k) is a Yes-instance.

3.1 A Subcubic Vertex Kernel for Split Graphs
In this section, we show that EDP on split graphs admits a kernel with O(k2.75) vertices.
Let (G, X , k) be an instance of EDP where G is a split graph. Note that given a split graph
G, we can compute (in linear time) a partition (C, I) of V (G) such that C is a clique and I is
an independent set [26]. We partition the set I into two sets, say, IT and IN , where IT and
IN denote the set of terminal vertices and the set of non-terminal vertices in I, respectively.

To ease the presentation of mathematical calculations, for this section (Section 3.1), we
assume that k

1
4 is a natural number. If this is not the case, then we can easily get a new

equivalent instance that satisfies this condition in the following manner. Let d = (⌈k
1
4 ⌉)4 − k

and v ∈ C. Now, we add d terminal pairs {(si1 , ti1), . . . , (sid
, tid

)} and attach each of these
terminals to v. Observe that this does not affect the size of our kernel (O(k2.75) vertices)
since (⌈k

1
4 ⌉)4 = O(k). Moreover, we assume that k > 8, as otherwise, we can use the

FPT algorithm for EDP [42] to solve it in polynomial time.

J. Chaudhary, H. Gahlawat, M. Włodarczyk, and M. Zehavi 10:7

Overview. Heggernes et al. [27] gave an O(k3) vertex kernel for EDP on split graphs. In
our kernelization algorithm (in this section), we use their algorithm as a preprocessing step.
After the prepossessing step, the size of C and IT gets bounded by 2k each, and the size
of IN gets bounded by O(k3). Therefore, we know that the real challenge in designing an
improved kernel for EDP on split graphs lies in giving a better upper bound on |IN |.

Our kernelization algorithm makes a non-trivial use of a lemma (Lemma 25), which
establishes that the length of each path in any minimum solution (of EDP on a split graph
G) is bounded by O(

√
k). This, in turn, implies that a minimum solution of EDP for split

graphs contains O(k1.5) edges. Note that during the preprocessing step (i.e., the kernelization
algorithm by Heggernes et al. [27]), for every pair of vertices in C, at most 4k + 1 vertices are
reserved in IN , giving a cubic vertex kernel. In our algorithm, we characterized those vertices
(called rich by us) in C for which we need to reserve only O(k1.5) vertices in IN . Informally
speaking, a vertex v ∈ C is rich if there are Ω(k0.75) vertices in C that are “reachable” from
v, even if we delete all the edges used by a “small” solution (containing O(k1.5) edges). Then,
we show that if two vertices are rich, then even if they do not have any common neighbors
in IN , there exist “many” (Ω(k1.5)) edge-disjoint paths between them even after removing
any O(k1.5) edges of G. Hence, for every rich vertex, we keep only those vertices in IN that
are necessary to make the vertex rich, that is, we keep O(k1.5) vertices in IN for every rich
vertex. Thus, all rich vertices in C contribute a total of O(k2.5) vertices in IN . The vertices
in C that are not rich are termed as poor. Finally, we establish that a poor vertex cannot
have too many neighbors in IN . More specifically, a poor vertex can have only O(k1.75)
neighbors in IN . So, even if we keep all their neighbors in IN , we store a total of O(k2.75)
vertices in IN for the poor vertices. This leads us to the desired kernel.

3.1.1 A Bound on the Length of the Paths in a Minimum Solution
In this section, we prove that for a minimum solution P of an instance (G, X , k) of EDP where
G is a split graph, each path P ∈ P has length at most 4

√
k + 3. We prove this bound by

establishing that if there is a path of length 4
√

k + 4 in P, then P contains at least k + 1
paths, a contradiction. To this end, we need the concept of intersecting edges (see Definition
21) and non-compatible edges (see Definition 22). Now, consider the following remark.
▶ Remark 20. For ease of exposition, throughout this section (Section 3.1.1), we assume
(without mentioning explicitly it every time) that (G, X , k) is a Yes-instance of EDP, where
G is a split graph. Moreover, P denotes a (arbitrary but fixed) minimum solution of (G, X , k),
and P ∈ P is a path such that P contains ℓ vertices, say, v1, . . . , vℓ, from clique C. Moreover,
without loss of generality, let v1, . . . , vℓ be the order in which these vertices appear in the
path P from some terminal to the other. Note that if a path, say, P ′, in a split graph has
length p (i.e. |E(P ′)| = p), then it contains at least ⌈ p

2 ⌉ vertices from C. Therefore, to bound
the length of P by O(

√
k), it suffices to bound the number of vertices of C in P by O(

√
k).

Assuming the ordering v1, . . . , vℓ of the vertices in V (P) ∩ C along the path P , we have
the following definitions.

▶ Definition 21 (Intersecting Edges). Consider two edges ei = vivi′ and ej = vjvj′ such that
i, i′, j, j′ ∈ [ℓ], and without loss of generality, assume that i < i′, j < j′, and i ≤ j. Then, ei

and ej are non-intersecting if j ≥ i′; otherwise, they are intersecting.

▶ Definition 22 (Non-compatible Edges). Two edges e1, e2 ∈ E(G) are non-compatible if
there does not exist a path P ′ ∈ P \{P} (given P ∈ P) such that {e1, e2} ⊆ E(P ′). Moreover,
a set of edges S = {e1, . . . , ep} ⊆ E(G) is non-compatible if every distinct ei, ej ∈ S are
non-compatible.

IPEC 2023

10:8 Kernels for the Disjoint Paths Problem on Subclasses of Chordal Graphs

Next, we show that, since P is a path in a minimum solution P, most of the edges with
both endpoints in {v1, . . . , vℓ} are used by paths in P (otherwise, we get a contradiction to
the fact that P is a minimum solution). In particular, we have the following lemma.

▶ Lemma 23 (∗). Each edge of the form vivj , where i, j ∈ [ℓ] and j ≥ i + 2, is used by some
path in P \ {P}.

Now, we show that if two edges are intersecting edges, then they are non-compatible.

▶ Lemma 24 (∗). Let ei = vivi′ and ej = vjvj′ be two (distinct) intersecting edges. Then,
ei and ej are non-compatible.

Now, we present the main lemma of this section.

▶ Lemma 25 (∗). Let (G, X , k) be a Yes-instance of EDP where G is a split graph. Moreover,
let P be a minimum solution of (G, X , k). Then, for every path P ∈ P, |E(P)| < 4

√
k + 4.

We have the following corollary as a consequence of Lemma 25 (since k ≥ 9).

▶ Corollary 26. Let P be a minimum solution of an instance (G, X , k) of EDP where G is
a split graph. Then,

∑
P ∈P |E(P)| ≤ 5k1.5.

3.1.2 An O(k2.75) Vertex Kernel for Split Graphs
In this section, we use Corollary 26 stating that there can be at most 5k1.5 edges in any
minimum solution to design a subcubic (O(k2.75)) vertex kernel for EDP on split graphs. We
start with the following preprocessing step, which we apply only once to our input instance.

Preprocessing Step. First, we use the kernelization for EDP on split graphs provided by
Heggernes et al. [27] as a preprocessing step. In their kernel, if |C| ≥ 2k, then they report a
Yes-instance (due to [27, Lemma 8]), and hence, assume that |C| < 2k. Due to Corollary 19,
if |C| > k, then we have a Yes-instance, and hence we assume that |C| ≤ k. Moreover, in
their kernel, for any two vertices u, w ∈ C, |N(u) ∩ N(w) ∩ IN | ≤ 4k + 1 (i.e., u and w have
at most 4k + 1 common neighbors in IN). Furthermore, there are no pendant vertices in IN .

Next, we define a Marking Procedure, where we label the vertices in C as rich or
poor. Furthermore, we partition the vertices in IN into two sets, denoted U (read unmarked)
and M (read marked), in the following manner.

Marking Procedure. Let (G, X , k) be an instance of EDP where G is a split graph.
1. M ⇐ ∅ and U ⇐ IN . (Initially, all vertices in IN is unmarked.) Moreover, fix an ordering

v1, . . . , v|C| of the vertices of C.
2. For 1 ≤ i ≤ |C|:

2.1. Avi
⇐ ∅, Mvi

⇐ ∅ (read marked for vi), and UT = U (read unmarked temporary).
2.2. For 1 ≤ j ≤ |C| such that i ̸= j and |Avi

| < 100k0.75:
2.2.1. If |N(vi) ∩ N(vj) ∩ UT | ≥ k0.75, then Avi

⇐ Avi
∪ {vj}. Moreover, select some

(arbitrary) subset Mvi,vj
⊆ N(vi) ∩ N(vj) ∩ UT such that |Mvi,vj

| = k0.75.
Then, Mvi

⇐ Mvi
∪ Mvi,vj

and UT ⇐ UT \ Mvi,vj
.

2.3. If |Avi
| = 100k0.75, then label vi as rich. Moreover, M ⇐ M ∪ Mvi

and U ⇐ UT .
2.4. If |Avi

| < 100k0.75, then label vi as poor.
This completes our Marking Procedure.

J. Chaudhary, H. Gahlawat, M. Włodarczyk, and M. Zehavi 10:9

▶ Remark 27. Note that the definition of rich and poor depends on the order in which
our Marking Procedure picks and marks the vertices (i.e., being rich or poor is not an
intrinsic property of the vertex itself). A different execution of the above procedure can label
different vertices as rich and poor. Moreover, note that if Mv,x exists (i.e., v is rich and
x ∈ Av) and Mx,v exists (i.e., x is rich and v ∈ Ax), then Mx,v ∩ Mv,x = ∅.

We have the following observation regarding the vertices marked rich by an execution of
Marking Procedure on an instance (G, X , k) of EDP where G is a split graph.

▶ Observation 28 (∗). Consider an execution of Marking Procedure on an instance
(G, X , k) of EDP where G is a split graph. Then for a rich vertex v, |Mv| = 100k1.5 (i.e.,
the number of vertices marked in IN for v are 100k1.5).

▶ Definition 29 (Reachable Vertices). Consider an execution of Marking Procedure on
an instance (G, X , k) of EDP where G is a split graph. Moreover, let P be a solution of
(G, X , k). Then, for a rich vertex v ∈ C, let Rv ⊆ Av (read reachable from v) denote the set
of vertices such that for each vertex x ∈ Rv, there is a vertex u ∈ Mv,x such that u is not
used by any path in P.

Notice that, in Definition 29, a path of the form (v, u, x) is edge-disjoint from every
path in P . Furthermore, we briefly remark that Rv is defined with respect to the execution
of Marking Procedure and a solution P of (G, X , k), which we will always fix before
we use Rv. Let P be a solution to an instance (G, X , k) of EDP. Informally speaking, in
the following lemma, we show that if P uses at most 6k1.5 edges, then for a rich vertex v,
Rv = Ω(k0.75) (i.e., there are “many reachable” vertices in Av from v using paths that are
edge-disjoint from every path in P). In particular, we have the following lemma.

▶ Lemma 30 (∗). Consider an execution of Marking Procedure on an instance (G, X , k)
of EDP where G is a split graph. Moreover, let P be a solution of (G, X , k) (not necessarily
minimum) such that the total number of edges used in P is at most 6k1.5. Then, for any
rich vertex v ∈ C, |Rv| ≥ 94k0.75.

Next, we provide the following reduction rule.

▶ Reduction Rule 1 (RR1). Let (G, X , k) be an instance of EDP where G is a split graph.
Let U be the set of unmarked vertices we get after an execution of Marking Procedure on
(G, X , k). Moreover, let U ′ ⊆ U be the set of vertices in U that do not have a poor neighbor.
If U ′ ̸= ∅, then G′ ⇐ G − U ′ and X ′ ⇐ X .

The following two lemmas (Lemmas 31 and 32) are essential to prove the safeness of RR1.

▶ Lemma 31 (∗). Let (G, X , k) be an instance of EDP where G is a split graph. Consider an
execution of Marking Procedure on (G, X , k). Moreover, let P be a solution of (G, X , k)
(not necessarily minimum) such that the total number of edges used in P is ℓ, where ℓ ≤ 6k1.5.
Furthermore, let u ∈ U be an unmarked vertex such that u does not have any poor neighbor. If
there is a path P ∈ P such that u ∈ V (P), then there exists a solution P ′ = (P \ {P}) ∪ {P ′}
of (G, X , k) such that u /∈ V (P ′), and the total number of edges in P ′ is at most ℓ + 3.

▶ Lemma 32 (∗). Let (G, X , k) be an instance of EDP where G is a split graph. Let U be
the set of unmarked vertices we get after an execution of Marking Procedure on (G, X , k),
and let u ∈ U be a vertex such that u does not have any poor neighbor. Let G′ = G − {u}.
Then, (G, X , k) is a Yes-instance if and only if (G′, X , k) is a Yes-instance.

Since G′ is a split graph (due to Remark 67), Lemma 32 implies the following.

IPEC 2023

10:10 Kernels for the Disjoint Paths Problem on Subclasses of Chordal Graphs

▶ Lemma 33. RR1 is safe.

Next, we show that an exhaustive application of RR1 provides a subcubic vertex kernel.

▶ Lemma 34 (∗). Let (G, X , k) be an instance of EDP where G is a split graph. If we
cannot apply RR1 on (G, X , k), then |V (G)| = O(k2.75).

Finally, due to Preprocessing Step, RR1, Lemmas 33 and 34, and the observation that
RR1, Marking Procedure, and Preprocessing Step can be executed in polynomial
time (and do not increase our parameter k) we have the following theorem.

▶ Theorem 2. EDP on split graphs admits a kernel with at most O(k2.75) vertices.

3.2 A Quadratic Vertex Kernel for Block Graphs
In this section, we show that EDP on block graphs admits a kernel with at most 4k2 − 2k

vertices. Let us first discuss the overall idea leading us to this result.

Overview. Let (G, X , k) be an instance of EDP where G is a block graph. First, we aim to
construct a reduced instance where the number of blocks can be at most 4k − 2. We begin by
showing that if there is an end block that does not contain any terminal, then we can delete
this block from the graph (in RR2), while preserving all solutions. Next, we argue that if
there is a block, say, B, with at most two cut vertices that do not contain any terminal, then
we can either contract (defined in Definition 37) B to a single vertex, or answer negatively
(in RR4). Thus, each block with at most two cut vertices in the (reduced) graph contains at
least one terminal. This bounds the number of blocks with at most two cut vertices to be at
most 2k (as k terminal pairs yield at most 2k terminals). First, we observe the following.

▶ Observation 35 (∗). Let ℓ be the number of end blocks in a block graph G. Then, the
number of blocks with at least three cut vertices is at most ℓ − 2.

Observation 35, along with the fact that the number of end blocks is at most 2k, establishes
that the number of blocks with at least three cut vertices in the (reduced) graph is at most
2k − 2. Therefore, we have at most 4k − 2 blocks in the (reduced) graph. Finally, due to
Lemma 18 and the properties of block graphs, we show that if a block, say, B, is big enough
(i.e., |V (B)| > k), then we can contract B to a single vertex while preserving the solutions (in
RR3). Hence, each block contains at most k vertices, and thus, the total number of vertices
in the (reduced) graph is at most 4k2 − 2k.

Our kernelization algorithm is based on the application of three reduction rules (RR2-
RR4), discussed below, to an instance (G, X , k) of EDP where G is a block graph.

▶ Reduction Rule 2 (RR2). If B is an end block of G with cut vertex v such that B does
not contain any terminal, then G′ ⇐ G[V (G) \ (V (B) \ {v})] and X ′ ⇐ X .

We have the following lemma to establish that RR2 is safe.

▶ Lemma 36 (∗). RR2 is safe.

The following definitions (Definitions 37 and 38) are crucial to proceed further in this
section. Informally speaking, we contract a block B by replacing it with a (new) vertex v

such that “edge relations” are preserved. We have the following formal definition.

J. Chaudhary, H. Gahlawat, M. Włodarczyk, and M. Zehavi 10:11

▶ Definition 37 (Contraction of a Block). Let (G, X , k) be an instance of EDP where G is
a block graph, and let B be a block of G. The contraction of B in (G, X , k) yields another
instance (G′, X ′, k′) of EDP as follows. First, V (G′) = (V (G) \ V (B)) ∪ {v} (i.e., delete
V (B) and add a new vertex v). Moreover, define f : V (G) → V (G′) such that f(x) = x

if x ∈ V (G) \ V (B), and f(x) = v if x ∈ V (B). Second, E(G′) = {f(x)f(y) : xy ∈
E(G), f(x) ̸= f(y)}. Similarly, X ′ = {(f(s), f(t)) : (s, t) ∈ X , f(s) ̸= f(t)}. Finally,
let k′ = |X ′|. Note that k′ might be smaller than k (in case B contains a terminal pair).
Moreover,

⋃
u∈V (B)(NG(u) \ B) ⊆ NG′(v).

We will exploit the properties of block graphs to show that if a block B has at least
k + 1 vertices, then we can contract B to a single vertex “safely”. To this end, we define the
instance (G, X , k) of EDP restricted to a block B of the block graph G as follows.

▶ Definition 38 (Restriction of an Instance (G, X , k) to a Block). Consider a block B whose
set of cut vertices is U . For each cut vertex u ∈ U , let CB,u denote the (connected) component
of G[V (G) \ (V (B) \ {u})] containing u. Now, define h : V (G) → V (B) such that h(x) = x

if x ∈ V (B), and h(x) = u if x ∈ V (CB,u). Then, the restriction of (G, X , k) to B, denoted
by (B, XB , |XB |), is defined as follows: XB = {(h(s), h(t)) : (s, t) ∈ X , h(s) ̸= h(t)}.

We have the following trivial observation that we will use for our proofs.

▶ Observation 39. Let P be a set of edge-disjoint paths. Consider a set of paths P∗

constructed in the following manner. For each path P ∈ P, add a path P ∗ to P∗ such that
E(P ∗) ⊆ E(P). Then, P∗ is also a set of edge-disjoint paths.

We have the following lemma.

▶ Lemma 40 (∗). Let (G, X , k) be an instance of EDP on a block graph G, and let B be a
block of G. If (G, X , k) is a Yes-instance, then (B, XB , |XB |) is a Yes-instance.

Next, we will show that if for a block B, (B, XB , |XB |) is a Yes-instance, then we can
contract B “safely”. In particular, we have the following lemma.

▶ Lemma 41 (∗). Let (G, X , k) be an instance of EDP on a block graph G, and let B be
a block of G whose set of cut vertices is U . Moreover, let the contraction of B in (G, X , k)
yield (G′, X ′, k′). Given that (B, XB , |XB |) is a Yes-instance, (G, X , k) is a Yes-instance if
and only if (G′, X ′, k′) is a Yes-instance.

Next, we have the following reduction rule.

▶ Reduction Rule 3 (RR3). If G has a block B such that |V (B)| > k, then contract B in
(G, X , k) to get (G′, X ′, k′).

The safeness of RR3 is implied by Lemma 41 and Lemma 18.

▶ Corollary 42. RR3 is safe.

Finally, we have the following reduction rule.

▶ Reduction Rule 4 (RR4). Let B be a block of G that has exactly two cut vertices, say, u

and w, and there is no terminal vertex in V (B) \ {u, w}. Consider the instance (B, XB , |XB |)
restricted to the block B. If |V (B)| > |XB |, then contract B in (G, X , k) to get the instance
(G′, X ′, k′). Else, answer negatively.

We have the following lemma to establish that RR4 is safe.

IPEC 2023

10:12 Kernels for the Disjoint Paths Problem on Subclasses of Chordal Graphs

▶ Lemma 43 (∗). RR4 is safe.

Next, we establish that once we cannot apply RR2-RR4 anymore, the size of the reduced
graph is bounded by a quadratic function of k. In particular, we have the following lemma.

▶ Lemma 44 (∗). Let (G, X , k) be an instance of EDP where we cannot apply reduction
rules RR2-RR4 anymore. Then, G contains at most 4k − 2 blocks and 4k2 − 2k vertices.

Observe that RR2-RR4 can be implemented in polynomial time and do not increase our
initial parameter k. Hence, Lemmas 36, 43, 44, and Corollary 42 imply the following.

▶ Theorem 4. EDP on block graphs admits a kernel with at most 4k2 − 2k vertices.

3.3 A Linear Vertex Kernel for Clique Paths
A clique path is a block graph where each block has at most two cut vertices. (In an informal
manner, we can think that the blocks are arranged in the form of a path.) In this section,
we present a linear vertex kernel for EDP on clique paths. First, we present an overview of
the overall idea leading to this result.

Overview. Let (G, X , k) be an instance of EDP where G is a clique path. Our kernelization
algorithm is based on the application of RR2-RR4 (defined in Section 3.2) along with three
new reduction rules (RR5-RR7). In our kernel for block graph in Section 3.2, we established
that for a block B, if |V (B)| ≥ k + 1, then we can contract B (see RR3). Moreover, we
showed that the total number of blocks in a reduced instance can be at most 4k − 2, thus
giving us an O(k2) vertex kernel.

Here, we use the property of clique paths that each block can have at most two cut
vertices to improve the kernel size. Since there is no block with more than two cut vertices,
each block must contain a terminal after an exhaustive application of RR2-RR4. Let B

be a block of G with cut vertices u and w. Consider the instance (B, XB , |XB |), that is,
the instance (G, X , k) restricted to the block B (see Definition 38). Any terminal pair
(s, t) ∈ XB is of one of the following types: (i) Type-A: s, t ∈ {u, w}, (ii) Type-B: s = u and
t ∈ V (B) \ {u, w}, or vice versa, (iii) Type-C: s = w and t ∈ V (B) \ {u, w}, or vice versa,
and (iv) Type-D: s, t ∈ V (B) \ {u, w}. Let a, b, c, and d denote the cardinality of Type-A,
Type-B, Type-C, and Type-D occurrences of terminal pairs in XB, respectively. We show
that if |V (B)| > d + 2 + max{b + c − 1, 0}, then we can either contract B to a single vertex
“safely” (when |V (B)| > max{a + b, a + c}) or report a No-instance. Summing these numbers
over all blocks yields an upper bound on the total size of the reduced instance. The Type-A
pairs are irrelevant now, each pair of Type-B or Type-C contributes to two blocks, while each
Type-D pair appears in only a single block. By grouping the summands in an appropriate
way, we are able to attain a bound of 2k + 1. We have the following reduction rules.

▶ Reduction Rule 5 (RR5). Let (G, X , k) be an instance of EDP where G is a clique path.
Moreover, let B be a block of G such that B has two cut vertices, say, u and w. Consider
the instance (B, XB , |XB |). If |V (B)| ≤ max{a + b, a + c}, then report a No-instance.

We have the following lemma to prove that RR5 is safe.

▶ Lemma 45 (∗). RR5 is safe.

Next, we have the following reduction rule.

J. Chaudhary, H. Gahlawat, M. Włodarczyk, and M. Zehavi 10:13

▶ Reduction Rule 6 (RR6). Let (G, X , k) be an instance of EDP where G is a clique path.
Moreover, let B be a block of G that has two cut vertices, say, u and w. Consider the instance
(B, XB , |XB |). If |V (B)| > d + 2 + max{b + c − 1, 0}, then contract B in (G, X , k) to obtain
the instance (G′, X ′, k′).

We have the following lemma to establish that RR6 is safe.

▶ Lemma 46 (∗). RR6 is safe.

In RR6, we showed that in a reduced instance, the size of each block with two cut vertices
is bounded by a linear function of the number of times its vertices appear in some occurrences
of terminal pairs. In the next reduction rule (RR7), we consider the end blocks (i.e., blocks
with exactly one cut vertex). So, consider an end block B of G with cut vertex u, and let
(B, XB , |XB |) be the restriction of (G, X , k) to B. Any terminal pair (s, t) ∈ XB is one of
the following types: (i) Type-B′: s = u and t ∈ V (B) \ {u}, or vice versa, and (ii) Type-D′:
s, t ∈ V (B) \ {u}. Let b′ and d′ denote the number of occurrences of Type-B′ and Type-D′

terminal pairs in XB , respectively. We have the following reduction rule.

▶ Reduction Rule 7 (RR7). Let (G, X , k) be an instance of EDP where G is a clique path.
Let B be an end block of G with cut vertex u. Consider the instance (B, XB , |XB |). If
|V (B)| > b′ + d′, then contract B in (G, X , k) to obtain (G′, X ′, k′).

We have the following lemma to prove that RR7 is safe.

▶ Lemma 47 (∗). RR7 is safe.

Next, we establish that once we cannot apply RR2-RR7, the number of vertices of the
reduced graph is bounded by a linear function of k in the following lemma.

▶ Lemma 48 (∗). Let (G, X , k) be an instance of EDP where G is a clique path. If we
cannot apply RR2-RR7 on this instance, then G contains at most 2k + 1 vertices.

Now, we have the following observation.

▶ Observation 49. RR5-RR7 can be applied in polynomial time. Moreover, during the
application of RR5-RR7, we never increase the initial k.

Finally, due to RR2-RR7, along with Lemmas 36, 43, 46, 47, and 48, Corollary 42, and
Observation 49, we have the following theorem.

▶ Theorem 5. EDP on clique paths admits a kernel with at most 2k + 1 vertices.

4 Kernelization Results on VDP on Split Graphs

Let (G, X , k) be an instance of VDP where G is a split graph. Note that given a split graph
G, we can compute (in linear time) a partition (C, I) of V (G) such that C is a clique and I

is an independent set [26]. We partition the set I into two sets, say, IT and IN , where IT

denotes the set of terminal vertices in I and IN denotes the set of non-terminal vertices in I.
Observe that a terminal pair in a split graph can only be of one of the following types: (i)
Type-I: One of the terminal vertices belongs to C, and the other belongs to I, (ii) Type-II:
Both terminal vertices belong to C, and Type-III: Both terminal vertices belong to I.

Our kernelization algorithm is based on a preprocessing step and the application of three
reduction rules (RR8-RR10). We begin by defining the Clean-Up operation, which is a
preprocessing step of our kernelization algorithm. Therefore, given an instance (G, X , k) of
VDP where G is a split graph, we apply this operation before applying RR8-RR10.

IPEC 2023

10:14 Kernels for the Disjoint Paths Problem on Subclasses of Chordal Graphs

a

b

c

d

e

f

g

h

i

j

f

g

h

i

j

A B

G H

C I

v1ab

v2ab

v1de

ℓ

Figure 1 Let (G, X , k) be an instance of VDP where G is a split graph with a partition (C, I)
and X = {(a, b), (a, b), (a, b), (d, e), (d, e), (c, d), (b, d)}. The vertices in C form a clique; to keep the
picture clean, we do not show edges in C. Observe that the terminal pairs (a, b) and (d, e) are heavy.

Clean-Up. First, consider the following construction (Construction A), which is crucial to
define the Clean-Up operation. This construction was also used by Heggernes et al. [27]
who used it to remove a subset of IN (safely). However, in the Clean-Up operation, we will
remove the entire set IN (safely). In order to do so, we need a few more technical arguments
than the ones present in [27].

Construction A. Given an instance (G, X , k) of VDP where G is a split graph, we construct
a bipartite graph, say, H, with bipartition (A, B) as follows: For every terminal pair (s, t)
of Type-II such that st is a heavy edge with weight w ≥ 2, we introduce w − 1 vertices,
say, v1

st, . . . , vw−1
st , to A. The set B consists of all the vertices from set IN . For each v ∈ IN ,

introduce an edge from v to vertices v1
st, . . . , vw−1

st if and only if v is adjacent to both s and t

in G. See Figure 1 for an illustration of the construction of H from (G, X , k).
Due to Proposition 10, we compute a maximum matching, say, M , in H in polynomial

time. Let X̂ ⊆ X be the multiset of all terminal pairs whose corresponding vertices in H are
saturated by M . For example, in Figure 1, if M = {v1

abf, v2
abg, v1

deh} is a maximum matching
in H, then X̂ = {(a, b), (a, b), (d, e)}. This ends Construction A.

▶ Definition 50 (Clean-Up). Given an instance (G, X , k) of VDP where G is a split graph,
construct the bipartite graph H and find a maximum matching M in H, as described in
Construction A. If IN ̸= ∅ or X̂ ̸= ∅, then G′ ⇐ G − IN , X ′ ⇐ X \ X̂ , k′ ⇐ k − |X̂ |.

Note that due to Remark 67, G′ is a split graph. Now, with the help of Definition 52,
Observation 53, we will establish that (G, X , k) and (G′, X ′, k′), as described in Definition 50,
are equivalent (see Lemma 54).

Before that, consider the next observation which follows trivially from Proposition 16.

▶ Observation 51. Let (G, X , k) be a Yes-instance of VDP where G is a split graph.
Moreover, let P be a minimum solution of (G, X , k). If there exists a path P ∈ P that visits
a vertex x ∈ IN , then P must be of the form (u′, x, v′), where u′, v′ ∈ C are terminal vertices
such that Pu′v′ ∈ P.

▶ Definition 52. Let (G, X , k) be a Yes-instance of VDP where G is a split graph. Moreover,
let M and H be as described in Construction A. Let P be a minimum solution of (G, X , k).
Then, M ′ ⊆ E(H) is said to be induced by P in H if it is constructed as follows:

J. Chaudhary, H. Gahlawat, M. Włodarczyk, and M. Zehavi 10:15

1. Initialize M ′ ⇐ ∅.
2. For every path P ∈ P that visits a vertex x ∈ IN : By Observation 51, P must be of the

form (u′, x, v′), where u′, v′ ∈ C are terminal vertices such that Pu′v′ ∈ P. This further
implies that u′v′ is a heavy edge. Let w ≥ 2 be the weight of u′v′, and consider the vertices
v1

u′v′ , . . . , vw−1
u′v′ in graph H. By Construction A, x is adjacent to every vertex in the set

{v1
u′v′ , . . . , vw−1

u′v′ }. So, we can arbitrarily choose an edge xvj
u′v′ of H, for some j ∈ [w − 1]

such that xvj
u′,v′ does not appear in M ′1, and add it to M ′.

▶ Observation 53 (∗). Let (G, X , k) be a Yes-instance of VDP where G is a split graph.
Moreover, let M , A, B, and H be as described in Construction A. Let P be a minimum
solution of (G, X , k). Let M ′ be induced by P in H as described in Definition 52. Then, M ′

is a matching.

For an illustrative example, consider G, H, and X given in Figure 1. Let P =
{(a, f, b), (a, ℓ, b), Pab, (d, g, e), Pde , Pcd, Pbd} be a solution of (G, X , 7). Then, {v1

abf, v1
deg}

and {v2
abf, v1

deg} are two possible choices for M ′.

▶ Lemma 54 (∗). Let (G, X , k) be an instance of VDP where G is a split graph. Moreover,
let X̂ be as described in Construction A. Furthermore, let (G′, X ′, k′) be the output of
Clean-Up on (G, X , k). Then, if (G′, X ′, k′) is a Yes-instance of VDP, then (G, X , k) is
also a Yes-instance of VDP.

Now, consider the following lemma.

▶ Lemma 55 (∗). Let (G, X , k) be an instance of VDP obtained by applying Clean-Up.
Let (s, t) ∈ X be a heavy terminal pair of Type-II in G of weight w ≥ 2. Then, any
minimum solution of (G, X , k) must contain the following internally vertex-disjoint paths:
{Pst} ∪ {(s, u1, t), . . . , (s, uw−1, t)}, where {u1, . . . , uw−1} is a set of non-terminals in C.

Reduction Rules. Let us start by defining our first reduction rule (RR8).

▶ Reduction Rule 8 (RR8). If there is a terminal pair (s, t) ∈ X of Type-I such that
st ∈ E(G), then V (G′) ⇐ V (G), E(G′) ⇐ E(G) \ {st}, X ′ ⇐ X \ {(s, t)}, k′ ⇐ k − 1.
Furthermore, for every x ∈ {s, t} that does not appear as a terminal in any terminal pair in
X ′, update V (G′) ⇐ V (G′) \ {x}.

We have the following lemma to establish that RR8 is safe.

▶ Lemma 56 (∗). RR8 is safe.

▶ Observation 57. After applying RR8 exhaustively on G, no Type-I terminal pair in G has
an edge between its terminals. Moreover, RR8 can be applied in polynomial time.

Let {(s, t) × (w)} denote w copies of (s, t).

▶ Reduction Rule 9 (RR9). If there is a heavy terminal pair (s, t) ∈ X of Type-II of weight
w ≥ 2, then V (G′) ⇐ V (G) ∪ {s1, . . . , sw−1, t1, . . . , tw−1}, E(G′) ⇐ E(G) ∪ {siv, tiv : v ∈
C, i ∈ [w−1]}, X ′ ⇐ (X \X)∪{(s1, t1), . . . , (sw−1, tw−1)}, where X = {(s, t)×(w−1)} ⊆ X .

We have the following lemma to establish that RR9 is safe.

1 The existence of such a j follows from the choice of w, and since Pu′v′ ∈ P

IPEC 2023

10:16 Kernels for the Disjoint Paths Problem on Subclasses of Chordal Graphs

▶ Lemma 58 (∗). After Clean-Up and the exhaustive application of RR8, RR9 is safe.

▶ Observation 59. After applying RR9 exhaustively, there do not exist any heavy Type-II
terminal pairs. Moreover, RR9 can be applied in polynomial time.

The next reduction rule is applied for every terminal participating in more than one
terminal pair.

▶ Reduction Rule 10 (RR10). If v ∈ V (G) belongs to x ≥ 2 terminal pairs (v, a1), . . . , (v, ax),
then V (G′) ⇐ (V (G) \ {v}) ∪ {v1, . . . , vx}, E(G′) ⇐ E(G) ∪ {viu : u ∈ N(v), i ∈ [x]},
X ′ ⇐ (X \ {(v, a1), . . . , (v, ax)}) ∪ {(v1, a1), . . . , (vx, ax)}. Moreover, if v ∈ C, then E(G′) =
E(G′) ∪ {vivj : i ̸= j ∈ [x]}.

We have the following lemma to establish that RR10 is safe.

▶ Lemma 60 (∗). After Clean-Up and an exhaustive application of RR8 and RR9, RR10
is safe.

By Lemma 55 and Observations 57 and 59, we have the following lemma.

▶ Observation 61. After applying reduction rules RR8-RR10 exhaustively, no terminal
participates in more than one terminal pair.

Before concluding this section, we need the following result by Yang et al. [47].

▶ Proposition 62 ([47]). VDP-Unique on split graphs admits a kernel with at most 4k

vertices, where k is the number of occurrences of terminal pairs.

By Observations 61, we note that every instance (G, X , k) of VDP where G is a split
graph, can be converted to an instance (G′, X ′, k′) of VDP-Unique in polynomial time.
Due to Observations 57 and 59 and Lemmas 54, 56, 58, and 60, (G, X , k) and (G′, X ′, k) are
equivalent. Furthermore, our initial parameter k does not increase during the application of
the Clean-Up operation and rules RR8-RR10. Therefore, using Proposition 62, we have
the following theorem.

▶ Theorem 6. VDP on split graphs admits a kernel with at most 4k vertices.

5 Conclusion

In this paper, we studied VDP and EDP, two disjoint paths problems in the realm of
Parameterized Complexity. We analyzed these problems with respect to the natural parameter
“the number of (occurrences of) terminal pairs”. We gave several improved kernelization
results as well as new kernelization results for these problems on subclasses of chordal graphs.

For VDP, we provided a 4k vertex kernel on split graphs and an O(k2) vertex kernel on
well-partitioned chordal graphs. We also show that VDP becomes polynomial-time solvable
on threshold graphs. For EDP, we first proved NP-hardness on complete graphs. Second,
we provided an O(k2.75) vertex kernel on split graphs, a 7k + 1 vertex kernel on threshold
graphs, an O(k2) vertex kernel for EDP on block graphs, and a 2k + 1 vertex kernel on
clique paths.

Apart from the obvious open questions to improve the sizes of the kernels we designed, it
is interesting to determine if VDP or/and EDP admit polynomial kernels for chordal graphs.
It is worth noting here that Golovach et al. [24] proved that it is unlikely for Set-Restricted
Disjoint Paths, a generalization of VDP where each terminal pair has to find its path from

J. Chaudhary, H. Gahlawat, M. Włodarczyk, and M. Zehavi 10:17

a predefined set of vertices, to admit a polynomial kernel even on interval graphs. However,
as noted by them, their reduction is heavily dependent on the sets designed for terminal
pairs and thus cannot be directly generalized to VDP. Moreover, recently Włodarczyk
and Zehavi [46] established that both VDP and EDP are unlikely to admit polynomial
compression even when restricted to planar graphs. They also suggested to investigate the
existence of polynomial kernels for chordal graphs for VDP and EDP.

Another interesting open problem is to study the kernelization complexity of EDP on
well-partitioned chordal graphs. Note that EDP on well-partitioned chordal graphs is more
subtle than VDP on the same. The reason is that, in VDP, a path between a non-adjacent
terminal pair must be induced due to Proposition 16. This paves the way to define valid
paths in the partition tree of the given well-partitioned chordal graph. However, the concept
of valid paths (and, thus, the used techniques) fails for EDP, as a path in the solution can
visit the bags of the partition tree in any weird manner. Furthermore, the approach for
EDP on block graphs does not generalize to well-partitioned chordal graphs because the
intersection of adjacent bags can be large (in well-partitioned chordal graphs), whereas, for a
block graph G, there always exists a partition tree such that for any two consecutive bags,
the corresponding boundary of one of the bags has size one.

References
1 I. Adler, S. G. Kolliopoulos, P. K. Krause, D. Lokshtanov, S. Saurabh, and D. M. Thilikos.

Irrelevant vertices for the planar disjoint paths problem. Journal of Combinatorial Theory,
Series B, 122:815–843, 2017.

2 J. Ahn, L. Jaffke, O. J. Kwon, and P. T. Lima. Well-partitioned chordal graphs. Discrete
Mathematics, 345(10):112985, 2022.

3 Claude Berge. Two theorems in graph theory. Proceedings of the National Academy of Sciences,
43(9):842–844, 1957.

4 H. L. Bodlaender, S. Thomassé, and A. Yeo. Kernel bounds for disjoint cycles and disjoint
paths. Theoretical Computer Science, 412(35):4570–4578, 2011.

5 J. Chaudhary, H. Gahlawat, M. Włodarczyk, and M. Zehavi. Kernels for the disjoint paths
problem on subclasses of chordal graphs. arXiv:2309.16892, 2023.

6 C. Chekuri, S. Khanna, and F. B. Shepherd. An O(
√

n) approximation and integrality gap
for disjoint paths and unsplittable flow. Theory of Computing, 2(7):137–146, 2006.

7 J. Chuzhoy and D. H. K. Kim. On approximating node-disjoint paths in grids. In Ap-
proximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques,
APPROX/RANDOM 2015, pages 187–211. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,
2015.

8 J. Chuzhoy, D. H. K. Kim, and S. Li. Improved approximation for node-disjoint paths in
planar graphs. In Proceedings of the 48th annual ACM symposium on Theory of Computing,
STOC 2016, pages 556–569, 2016.

9 J. Chuzhoy, D. H. K. Kim, and R. Nimavat. Improved approximation for node-disjoint paths
in grids with sources on the boundary. In Proceedings of the 45th International Colloquium on
Automata, Languages, and Programming, ICALP 2018, pages 38:1–38:14. Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik, 2018.

10 J. Chuzhoy, D. H. K. Kim, and R. Nimavat. Almost polynomial hardness of node-disjoint
paths in grids. Theory of Computing, 17(6):1–57, 2021. doi:10.4086/toc.2021.v017a006.

11 J. Chuzhoy, D. H. K. Kim, and R. Nimavat. New hardness results for routing on disjoint
paths. SIAM Journal on Computing, 51(2):189–237, 2022.

12 M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk,
and S. Saurabh. Parameterized Algorithms. Springer Publishing Company, Incorporated, 1st
edition, 2015.

IPEC 2023

https://doi.org/10.4086/toc.2021.v017a006

10:18 Kernels for the Disjoint Paths Problem on Subclasses of Chordal Graphs

13 R. Diestel. Graph theory 3rd ed. Graduate texts in mathematics, 173(33):12, 2005.
14 Z. Dvořák, D. Král’, and R. Thomas. Coloring triangle-free graphs on surfaces. In Proceedings

of the 20th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 120–129. SIAM,
2009.

15 A. Ene, M. Mnich, M. Pilipczuk, and A. Risteski. On routing disjoint paths in bounded
treewidth graphs. In Proceedings of the 15th Scandinavian Symposium and Workshops on
Algorithm Theory, SWAT 2016, pages 1–15. Schloss Dagstuhl, 2016.

16 S. Even, A. Itai, and A. Shamir. On the complexity of timetable and multicommodity flow
problems. SIAM Journal on Computing, 5(4):691–703, 1976.

17 Michael R Fellows. The lost continent of polynomial time: Preprocessing and kernelization. In
International Workshop on Parameterized and Exact Computation, pages 276–277. Springer,
2006.

18 K. Fleszar, M. Mnich, and J. Spoerhase. New algorithms for maximum disjoint paths based
on tree-likeness. In Proceedings of the European Symposium on Algorithms, ESA 2016, pages
1–17. Schloss Dagstuhl, 2016.

19 F. V. Fomin, D. Lokshtanov, S. Saurabh, and M. Zehavi. Kernelization: Theory of Parameter-
ized Preprocessing. Cambridge University Press, 2019. doi:10.1017/9781107415157.

20 A. Frank. Packing paths, circuits, and cuts-a survey. Paths, flows, and VLSI-layout, 49:100,
1990.

21 R. Ganian and S. Ordyniak. The power of cut-based parameters for computing edge-disjoint
paths. Algorithmica, 83:726–752, 2021.

22 N. Garg, V. V. Vazirani, and M. Yannakakis. Primal-dual approximation algorithms for
integral flow and multicut in trees. Algorithmica, 18(1):3–20, 1997.

23 P. A. Golovach, F. Panolan, A. Rai, and S. Saurabh. New algorithms for maximum disjoint
paths based on tree-likeness. In Proceedings of the European Symposium on Algorithms, ESA
2016, pages 1–17. Schloss Dagstuhl, 2016.

24 P. A. Golovach, F. Panolan, A. Rai, and S. Saurabh. Parameterized complexity of set-restricted
disjoint paths on chordal graphs. In Proceedings of the 17th International Computer Science
Symposium in Russia, CSR 2022, Virtual Event, June 29–July 1, 2022, Proceedings, pages
152–169. Springer, 2022.

25 F. Gurski and E. Wanke. Vertex disjoint paths on clique-width bounded graphs. Theoretical
Computer Science, 359(1–3):188–199, 2006.

26 P. L. Hammer and B. Simeone. The splittance of a graph. Combinatorica, 1:275–284, 1981.
27 P. Heggernes, P. V. Hof, E. J. V. Leeuwen, and R. Saei. Finding disjoint paths in split graphs.

Theory of Computing Systems, 57(1):140–159, 2015.
28 J. E. Hopcroft and R. M. Karp. An n

5
2 algorithm for maximum matching in bipartite graphs.

SIAM Journal on Computing, 2(4):225–231, 1973.
29 F. Kammer, T. Tholey, O. J. Kwon, and P. T. Lima. The k-disjoint paths problem on

chordal graphs. In Proceedings of the 35th International Workshop on Graph-Theoretic
Concepts in Computer Science, WG 2009, pages 190–201. Springer, Berlin, 2009. doi:10.
1007/978-3-642-11409-0_17.

30 R. M. Karp. On the computational complexity of combinatorial problems. Networks, 5:45–68,
1975.

31 K. Kawarabayashi, Y. Kobayashi, and S. Kreutzer. An excluded half-integral grid theorem for
digraphs and the directed disjoint paths problem. In Proceedings of the 46th Annual ACM
Symposium on Theory of Computing, STOC 2014, pages 70–78, New York, NY, USA, 2014.
Association for Computing Machinery. doi:10.1145/2591796.2591876.

32 K. Kawarabayashi, Y. Kobayashi, and B. Reed. The disjoint paths problem in quadratic time.
Journal of Combinatorial Theory, Series B, 102(2):424–435, 2012.

33 Y. Kobayashi and K. Kawarabayashi. Algorithms for finding an induced cycle in planar graphs
and bounded genus graphs. In Proceedings of the 20th Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 1146–1155. SIAM, 2009.

https://doi.org/10.1017/9781107415157
https://doi.org/10.1007/978-3-642-11409-0_17
https://doi.org/10.1007/978-3-642-11409-0_17
https://doi.org/10.1145/2591796.2591876

J. Chaudhary, H. Gahlawat, M. Włodarczyk, and M. Zehavi 10:19

34 S. G. Kolliopoulos and C. Stein. Approximating disjoint-path problems using packing integer
programs. Mathematical Programming, 99(1):63–87, 2004.

35 M. Kramer and J. V. Leeuwen. The complexity of wirerouting and finding minimum area
layouts for arbitrary vlsi circuits. Advances in Computing Research, 2:129–146, 1984.

36 D. Lokshtanov, P. Misra, M. Pilipczuk, S. Saurabh, and M. Zehavi. An exponential time
parameterized algorithm for planar disjoint paths. In Proceedings of the 52nd Annual ACM
SIGACT Symposium on Theory of Computing, STOC 2020, pages 1307–1316, New York, NY,
USA, 2020. Association for Computing Machinery. doi:10.1145/3357713.3384250.

37 D. Lokshtanov, S. Saurabh, and M. Zehavi. Efficient graph minors theory and parameterized
algorithms for (planar) disjoint paths. In Treewidth, Kernels, and Algorithms, pages 112–128.
Springer, 2020.

38 S. Natarajan and A. P. Sprague. Disjoint paths in circular arc graphs. Nordic Journal of
Computing, 3:256–270, 1996.

39 T. Nishizeki, J. Vygen, and X. Zhou. The edge-disjoint paths problem is NP-complete for
series-parallel graphs. Discrete Applied Mathematics, 115(1–3):177–186, 2001.

40 B. Reed. Rooted routing in the plane. Discrete Applied Mathematics, 57(2-3):213–227, 1995.
41 Bruce A Reed. Tree width and tangles: A new connectivity measure and some applications.

Surveys in combinatorics, pages 87–162, 1997.
42 N. Robertson and P. D. Seymour. Graph minors XIII. The disjoint paths problem. Journal of

Combinatorial Theory, Series B, 63(1):65–110, 1995.
43 N. Robertson and P. D. Seymour. Graph minors XXII. Irrelevant vertices in linkage problems.

Journal of Combinatorial Theory, Series B, 102(2):530–563, 2012.
44 A. Schrijver. Combinatorial optimization: polyhedra and efficiency, volume 24. Springer, 2003.
45 A. Srinivas and E. Modiano. Finding minimum energy disjoint paths in wireless ad-hoc

networks. Wireless Networks, 11:401–417, 2005.
46 M. Włodarczyk and M. Zehavi. Planar disjoint paths, treewidth, and kernels. In Proceedings

of the 64th IEEE Symposium on Foundations of Computer Science (FOCS) 2023, 2023.
47 Y. Yang, Y. R. Shrestha, W. Li, and J. Guo. On the kernelization of split graph problems.

Theoretical Computer Science, 734:72–82, 2018.
48 X. Zhou, S. Tamura, and T. Nishizeki. Finding edge-disjoint paths in partial k-trees. Algorith-

mica, 26(1):3–30, 2000.

A Brief Survey of Related Works

Both VDP and EDP are known to be NP-complete for planar graphs [35], line graphs [27],
and split graphs [27]. Moreover, VDP is known to be NP-complete on interval graphs [38]
and grids [35] as well. Both VDP and EDP were studied from the viewpoint of structural
parameterization. While VDP is FPT parameterized by treewidth [41], EDP remains NP-
complete even on graphs with treewidth at most 2 [39]. Gurski and Wange [25] showed
that VDP is solvable in linear time on co-graphs but becomes NP-complete for graphs with
clique-width at most 6. As noted by Heggernes et al. [27], there is a reduction from VDP on
general graphs to EDP on line graphs, and from EDP on general graphs to VDP on line
graphs. Since a graph with treewidth ℓ has clique-width at most 2ℓ + 2 [25], EDP can also
be shown to be NP-complete on graphs with clique-width at most 6 [27].

The Graph Minors theory of Robertson and Seymour provides some of the most important
algorithmic results of the modern graph theory. Unfortunately, these algorithms, along with
the O(n3) and O(n2) algorithms for VDP and EDP(when k is fixed), respectively [42, 32],
hide such big constants that they have earned a name for themselves: “galactic algorithms”.
Since then, finding efficient FPT algorithms for VDP and EDP has been a tantalizing
question for researchers. Several improvements have been made for the class of planar
graphs [1, 36, 40, 43], chordal graphs [29], and bounded-genus graphs [40, 14, 33].

IPEC 2023

https://doi.org/10.1145/3357713.3384250

10:20 Kernels for the Disjoint Paths Problem on Subclasses of Chordal Graphs

Concerning kernelization (in addition to the works surveyed in the introduction), we note
that Ganian and Ordyniak [21] proved that EDP admits a linear kernel parameterized by
the feedback edge set number. Recently, Golovach et al. [23] proved that Set-Restricted
Disjoint Paths, a variant of VDP where each terminal pair has to find its path from a
predefined set of vertices, does not admit a polynomial compression on interval graphs unless
NP ⊆ coNP/poly.

The optimization variants of VDP and EDP– MaxVDP and MaxEDP – are well-
studied in the realm of approximation algorithms [6, 15, 18, 22, 34]. Chekuri et al. [6] gave
an O(

√
n)-approximation algorithm for MaxEDP on general graphs, matching the Ω(

√
n)

lower bound provided by Garg et al. [22]. Recently, MaxVDP has gained much attention
on planar graphs [7, 8, 10, 11, 9]. Highlights of this line of works (MaxVDP on planar
graphs) include an approximation algorithm with approximation ratio O(n 9

19 logO(1) n) [8],
and hardness of approximating within a factor of nΩ(1/(log log n)2) [10].

B Preliminaries

B.1 Parameterized Complexity
Standard notions in Parameterized Complexity not explicitly defined here can be found
in [12]. Let Π be an NP-hard problem. In the framework of Parameterized Complexity, each
instance of Π is associated with a parameter k. We say that Π is fixed-parameter tractable
(FPT) if any instance (I, k) of Π is solvable in time f(k) · |I|O(1), where f is some computable
function of k. Two instances (I, k) and (I ′, k′) (possibly of different problems) are equivalent
if: (I, k) is a Yes-instance if and only if (I ′, k′) is a Yes-instance.

A parameterized (decision) problem Π admits a kernel of size f(k) for some computable
function f that depends only on k if the following is true: There exists an algorithm (called
a kernelization algorithm) that runs in (|I| + k)O(1) time and translates any input instance
(I, k) of Π into an equivalent instance (I ′, k′) of Π such that the size of (I ′, k′) is bounded by
f(k). If the function f is polynomial (resp., linear) in k, then the problem is said to admit
a polynomial kernel (resp., linear kernel). It is well known that a decidable parameterized
problem is FPT if and only if it admits a kernel [12].

To design kernelization algorithms, we rely on the notion of reduction rule, defined below.

▶ Definition 63 (Reduction Rule). A reduction rule is a polynomial-time procedure that
consists of a condition and an operation, and its input is an instance (I, k) of a parameterized
problem Π. If the condition is true, then the rule outputs a new instance (I ′, k′) of Π such
that k′ ≤ k.

A reduction rule is safe, when the condition is true, (I, k) and (I ′, k′) are equivalent.
Throughout this paper, the reduction rules will be numbered, and the reduction rules will
be applied exhaustively in the increasing order of their indices. So, if reduction rules i

and j, where i < j, are defined for a problem, then i will be applied exhaustively before j.
Notice that after the application of rule j, the condition of rule i might become true. In this
situation, we will apply rule i again (exhaustively). In other words, when we apply rule j,
we always assume that the condition of rule i is false.

B.2 Graph Classes
A graph G is a chordal graph if every cycle in G of length at least four has a chord, that
is, an edge joining two non-consecutive vertices of the cycle. In what follows, we define
several subclasses of the class of chordal graphs, namely, complete graphs, block graphs, split

J. Chaudhary, H. Gahlawat, M. Włodarczyk, and M. Zehavi 10:21

Chordal Graphs

Well-partitioned Chordal graphs

Split Graphs

Threshold Graphs

Block Graphs

Clique Paths

Figure 2 The inclusive relationship among the subclasses of chordal graphs studied in this paper.

graphs, threshold graphs, and well-partitioned chordal graphs. A graph whose vertex set is a
clique is a complete graph. A vertex is a cut vertex in a graph G if removing it increases the
total number of connected components in G. A block of a graph G is a maximal connected
subgraph of G that does not contain any cut vertex. A graph G is a block graph if the vertex
set of every block in G is a clique. A block of a block graph G is an end block if it contains
exactly one cut vertex. Note that a block graph that is not a complete graph has at least two
end blocks. A graph G is a split graph if there is a partition (C, I) of V (G) such that C is a
clique and I is an independent set. A split graph G is a threshold graph if there exists a linear
ordering of the vertices in I, say, (v1, v2, . . . , v|I|), such that N(v1) ⊆ N(v2) ⊆ · · · ⊆ N(v|I|).

An undirected graph in which any two vertices are connected by exactly one path is a tree.
A tree with at most two vertices or exactly one non-pendant vertex is a star. The vertices of
degree one in a tree are called leaves. Note that a split graph admits a partition of its vertex
set into cliques that can be arranged in a star structure, where the leaves are cliques of size
one. Motivated by this definition of split graphs, Ahn et al. [2] introduced well-partitioned
chordal graphs, which are defined by relaxing the definition of split graphs in the following
two ways: (i) by allowing the parts of the partition to be arranged in a tree structure instead
of a star structure, and (ii) by allowing the cliques in each part to have arbitrary size instead
of one. A more formal definition of a well-partitioned chordal graph is given below.

▶ Definition 64 (Well-Partitioned Chordal Graph). A connected graph G is a well-partitioned
chordal graph if there exists a partition B of V (G) and a tree T having B as its vertex set
such that the following hold.

(i) Each part X ∈ B is a clique in G.
(ii) For each edge XY ∈ E(T), there are subsets X ′ ⊆ X and Y ′ ⊆ Y such that

E(G[X, Y]) = X ′ × Y ′.
(iii) For each pair of distinct X, Y ∈ B with XY /∈ E(T), E(G[X, Y]) = ∅.

The tree T in Definition 64 is called a partition tree of G, and the elements of B are called
its bags. Notice that a well-partitioned chordal graph can have multiple partition trees.

▶ Proposition 65 ([2]). Given a well-partitioned chordal graph G, a partition tree of G can
be found in polynomial time.

▶ Definition 66 (Boundary of a Well-Partitioned Chordal Graph). Let T be a partition tree
of a well-partitioned chordal graph G and let XY ∈ E(T). The boundary of X with respect
to Y , denoted by bd(X, Y), is the set of vertices of X that have a neighbor in Y , i.e.,
bd(X, Y) = {x ∈ X : NG(x) ∩ Y ̸= ∅}.

IPEC 2023

10:22 Kernels for the Disjoint Paths Problem on Subclasses of Chordal Graphs

▶ Remark 67. Note that all the graph classes considered in this paper are closed under vertex
deletion. Therefore, throughout this paper, if G belongs to class Z and G′ is obtained from
G after deleting some vertices, then we assume that G′ also belongs to Z without mentioning
it explicitly.

The inclusion relationship among various subclasses of chordal graphs discussed in this
paper is shown in Figure 2.

C NP-hardness for Complete Graphs

In this section, we prove that EDP is NP-hard on complete graphs by giving a polynomial-time
reduction from EDP on general graphs, which is known to be NP-hard [35]. Our reduction
is based on the standard technique of adding missing edges and placing a terminal pair on
the endpoints of the added edge. This technique was also used to prove the NP-hardness of
EDP for split graphs [27].

▶ Theorem 1. EDP is NP-hard on complete graphs.

Proof. Let (G, X , k) be an instance of EDP, where X = {(s1, t1), . . . , (sk, tk)}. Define
the graph G′ as follows: Let V (G′) = V (G) and E(G′) = E(G) ∪ {uv : uv /∈ E(G)}.
Furthermore, let T = {(suv, tuv) : uv ∈ E(G′) \ E(G), suv = u, tuv = v}. Note that for ease
of notation, we denote the terminal pairs in T by (suv, tuv) rather than (u, v). Also, for
an edge uv ∈ E(G′) \ E(G), we introduce either (suv, tuv) or (svu, tvu) in T , not both. Let
X ′ = X ∪ T . Now, we claim that (G, X , k) and (G′, X ′, k′) are equivalent instances of EDP,
where k′ = k + |T |. Let PT = {Puv : (suv, tuv) ∈ T }.

In one direction, let P = {P1, . . . , Pk} be a solution of (G, X , k). Since for every
(suv, tuv) ∈ T , the edge uv does not belong to any path in P , P ∪ PT is a set of edge-disjoint
paths in G′. As X ′ = X ∪ T , P ∪ PT is a solution of (G′, X ′, k′).

In the other direction, let P ′ be a solution of (G′, X ′, k′) that contains as many paths
from PT as possible. Next, we claim that PT ⊆ P ′. Targeting a contradiction, suppose
that there exists a terminal pair, say, (suv, tuv) ∈ T , such that Puv /∈ P ′. Let Q denote the
path in P ′ connecting suv and tuv. If none of the paths in P ′ uses the edge uv, then the
set (P ′ \ Q) ∪ {Puv} is a solution of (G′, X ′, k′) containing more paths from PT than P ′,
contradicting the choice of P ′. Hence, there must be a unique path P ∗ ∈ P ′ that uses the
edge uv. Let s∗ and t∗ be the two terminals that are connected by the path P ∗. Let W denote
the walk between s∗ and t∗ obtained from P ∗ by replacing the edge uv with the path Q

(there may be some vertices that are repeated in W). Since E(W) = (E(P ∗) ∪ E(Q)) \ {uv},
W is edge-disjoint from every path in P ′ \ {P ∗, Q} (as P ′ is a set of edge-disjoint paths). Let
Q∗ be a path between s∗ and t∗ that uses a subset of edges of W , which again is edge-disjoint
from every path in P ′ \ {P ∗, Q}. Hence, P = (P ′ \ {P ∗, Q}) ∪ {Puv, Q∗} is a solution of
(G′, X ′, k′) that contains one more path from PT than P ′. This contradicts the choice of
P ′, and thus implies that PT ⊆ P ′. Since X ′ = X ∪ T and PT contains the edge-disjoint
paths between the terminal pairs present in T , P ′ \ PT must contain the edge-disjoint paths
between the terminal pairs present in X . Thus, P ′ \ PT is a solution of (G, X , k). ◀

Parameterized Complexity Classification for
Interval Constraints
Konrad K. Dabrowski # Ñ

School of Computing, Newcastle University, UK

Peter Jonsson # Ñ

Department of Computer and Information Science, Linköping University, Sweden

Sebastian Ordyniak #

School of Computing, University of Leeds, UK

George Osipov # Ñ

Department of Computer and Information Science, Linköping University, Sweden

Marcin Pilipczuk # Ñ

Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Poland
IT University Copenhagen, Denmark

Roohani Sharma # Ñ

Max Planck Institute for Informatics, Saarland Informatics Campus, Saarbrücken, Germany

Abstract
Constraint satisfaction problems form a nicely behaved class of problems that lends itself to
complexity classification results. From the point of view of parameterized complexity, a natural task
is to classify the parameterized complexity of MinCSP problems parameterized by the number of
unsatisfied constraints. In other words, we ask whether we can delete at most k constraints, where k

is the parameter, to get a satisfiable instance. In this work, we take a step towards classifying the
parameterized complexity for an important infinite-domain CSP: Allen’s interval algebra (IA). This
CSP has closed intervals with rational endpoints as domain values and employs a set A of 13 basic
comparison relations such as “precedes” or “during” for relating intervals. IA is a highly influential
and well-studied formalism within AI and qualitative reasoning that has numerous applications in,
for instance, planning, natural language processing and molecular biology. We provide an FPT vs.
W[1]-hard dichotomy for MinCSP(Γ) for all Γ ⊆ A. IA is sometimes extended with unions of the
relations in A or first-order definable relations over A, but extending our results to these cases would
require first solving the parameterized complexity of Directed Symmetric Multicut, which is a
notorious open problem. Already in this limited setting, we uncover connections to new variants of
graph cut and separation problems. This includes hardness proofs for simultaneous cuts or feedback
arc set problems in directed graphs, as well as new tractable cases with algorithms based on the
recently introduced flow augmentation technique. Given the intractability of MinCSP(A) in general,
we then consider (parameterized) approximation algorithms. We first show that MinCSP(A) cannot
be polynomial-time approximated within any constant factor and continue by presenting a factor-2
fpt-approximation algorithm. Once again, this algorithm has its roots in flow augmentation.

2012 ACM Subject Classification Theory of computation → Parameterized complexity and exact
algorithms

Keywords and phrases (minimum) constraint satisfaction problem, Allen’s interval algebra, para-
meterized complexity, cut problems

Digital Object Identifier 10.4230/LIPIcs.IPEC.2023.11

Related Version Full Version: arXiv:2305.13889

Funding Peter Jonsson: Partially supported by the Swedish Research Council (VR) under grant
2021-0437 and the Wallenberg AI, Autonomous Systems and Software Program (WASP) funded by
the Knut and Alice Wallenberg Foundation.

© Konrad K. Dabrowski, Peter Jonsson, Sebastian Ordyniak, George Osipov, Marcin Pilipczuk, and
Roohani Sharma;
licensed under Creative Commons License CC-BY 4.0

18th International Symposium on Parameterized and Exact Computation (IPEC 2023).
Editors: Neeldhara Misra and Magnus Wahlström; Article No. 11; pp. 11:1–11:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:konrad.dabrowski@newcastle.ac.uk
https://www.konraddabrowski.co.uk/
https://orcid.org/0000-0001-9515-6945
mailto:peter.jonsson@liu.se
https://www.ida.liu.se/~petjo00
https://orcid.org/0000-0002-5288-3330
mailto:sordyniak@gmail.com
https://orcid.org/0000-0003-1935-651X
mailto:george.osipov@pm.me
https://georgeosipov.me
https://orcid.org/0000-0002-2884-9837
mailto:malcin@mimuw.edu.pl
https://www.mimuw.edu.pl/~malcin/
https://orcid.org/0000-0001-5680-7397
mailto:rsharma@mpi-inf.mpg.de
https://people.mpi-inf.mpg.de/~rsharma/
https://orcid.org/0000-0003-2212-1359
https://doi.org/10.4230/LIPIcs.IPEC.2023.11
https://arxiv.org/abs/2305.13889
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

11:2 Parameterized Complexity Classification for Interval Constraints

Sebastian Ordyniak: Supported by the Engineering and Physical Sciences Research Council (EPSRC,
project EP/V00252X/1).
George Osipov: Supported by the Wallenberg AI, Autonomous Systems and Software Program
(WASP) funded by the Knut and Alice Wallenberg Foundation.
Marcin Pilipczuk: During this research Marcin was part of BARC, supported by the VILLUM
Foundation grant 16582.

1 Introduction

Background. The constraint satisfaction problem over a constraint language Γ (CSP(Γ))
is the problem of deciding whether there is a variable assignment which satisfies a set of
constraints, where each constraint is constructed from a relation in Γ. CSPs over different
constraint languages form a nicely behaved class of problems that lends itself to complex-
ity classification results. Such results are an important testbed for studying the power of
algorithmic techniques and proving their limitations – A prime example is the dichotomy
theorem for finite-domain CSPs that was conjectured by Feder and Vardi [28] and inde-
pendently proved by Bulatov [14] and Zhuk [54]. Here, all hardness results were known
since the work of Bulatov, Jeavons and Krokhin [15] and the algorithms of [14] and [54]
completed the proof of the conjecture. In between, lots of work went into studying the
problem from various algorithmic and algebraic angles, and many ideas emerging from this
project have been re-used in different contexts (such as infinite-domain CSPs [8] or promise
CSPs [42]). Optimization versions of the CSP such as MaxCSP and MinCSP (where the
goal is to find an assignment that maximises the number of satisfied constraints (MaxCSP)
or minimises the number of unsatisfied constraints (MinCSP)) and the generalization Valued
CSP (VCSP) have also been intensively studied. Some notable results include the proof
of that every finite-domain VCSP is either polynomial-time solvable or NP-complete [40],
and the optimal approximability result for finite-domain MaxCSP under the Unique Games
Conjecture [50]. One should note that even if the P/NP borderline for finite-domain VCSPs
is fully known, there are big gaps in our understanding of the corresponding FPT/W[1]
borderline (with parameter solution weight). The situation is even worse if we consider
infinite-domain optimization versions of the CSPs, since we cannot expect to get a full
picture of the P/NP borderline even for the basic CSP problem [9].

In the parameterized complexity world, MinCSP is a natural problem to study. Sub-
problems that have gained attraction include Boolean constraint languages [13, 37, 51],
Dechter et al.’s [25] simple temporal problem (STP) [22], linear inequalities [5] and linear
equations [20, 24], to list a few. Highly interesting results have emerged from studying the
parameterized complexity of problems like these. For instance, the recent dichotomy for
MinCSPs over the Boolean domain by Kim et al. [37] was obtained using a novel technique
called directed flow augmentation. Recent work has indicated temporal CSPs as a possible
next step [27, 38]. Temporal CSPs are CSPs where the relations underlying the constraints
are first-order definable in (Q; <). The computational complexity of temporal CSPs where
we fix the set of allowed constraints exhibits a dichotomy: every such problem is either
polynomial-time solvable or NP-complete [11]. The MinCSP problem for temporal CSPs
is closely related to a number of graph separation problems. For example, if we take the
rationals as the domain and allow constraints ≤ and <, the MinCSP problem is equivalent
to Directed Subset Feedback Arc Set [39], a problem known to be fixed-parameter
tractable for two different, but both quite involved reasons [17, 39]. If we allow the relations
≤ and ̸=, we obtain a problem equivalent to Directed Symmetric Multicut, whose

K. K. Dabrowski, P. Jonsson, S. Ordyniak, G. Osipov, M. Pilipczuk, and R. Sharma 11:3

parameterized complexity is identified as the main open problem in the area of directed graph
separation problems [27, 39]. Another related way forward is to analyse the MinCSP for
Allen’s interval algebra. Allen’s interval algebra is a highly influential formalism within AI
and qualitative reasoning that has numerous applications, e.g. in planning [4, 48, 49], natural
language processing [26, 52] and molecular biology [31]. This CSP uses closed intervals with
rational endpoints as domain values and employs a set A of 13 basic comparison relations
such as “precedes” (one interval finishes before the other starts) or “during” (one interval
is a strict subset of the other); see Table 1. Formally speaking, the CSP for the interval
algebra is not a temporal CSP, since the underlying domain is based on intervals instead
of points. This difference is important: complexity classifications for the interval algebra
have been harder to obtain than for temporal constraints. There are full classifications for
binary relations [41] and for first-order definable constraint languages containing all basic
relations [10]; a classification for all first-order definable constraint languages appears remote.

Our contributions. The aim in this paper is to initiate a study of MinCSP in the context of
Allen’s interval algebra. Obtaining a full parameterized complexity classification for Allen’s
interval algebra would entail resolving the status of Directed Symmetric Multicut and
we do not aim at this very ambitious task. Instead, we restrict ourselves to languages that
are subsets of A and do not consider more involved expressions (say, first-order logic) built
on top of A. Even in this limited quest, we are able to uncover new relations to graph
separation problems, and new areas of both tractability and intractability. One of the main
ingredients for both our tractability and intractability results is a particular characterization
of unsatisfiable instances of CSP(A). A combinatorial analysis of the relations in A allows
us to identify the minimal obstructions given by certain arc-labelled mixed cycles of the
instance. That is, for certain key subsets Γ ⊆ A, we provide a complete description of bad
cycles such that an instance of CSP(Γ) is satisfiable if and only if it does not contain a
bad cycle. This allows us to show that MinCSP(Γ) is equivalent to the problem of finding
a minimum set of arcs that hit every bad cycle in an arc-labelled mixed graph. We prove
that there are seven inclusion-wise maximal subsets Γ of A such that MinCSP(Γ) is in
FPT, and that MinCSP(Γ) is W[1]-hard in all other cases. We show that MinCSP(A)
is not approximable in polynomial time within any constant under the UGC. In fact, we
prove this to hold for MinCSP(r) whenever r ∈ A \ {≡}. As a response to this, we suggest
the use of fixed-parameter approximation algorithms. We show that MinCSP(A) admits
such an algorithm with approximation ratio 2 and a substantially faster algorithm with
approximation ratio 4. We describe the results in greater detail below.

Intractability results. Our intractability results are based on novel W[1]-hardness results
for a variety of natural paired and simultaneous cut and separation problems, which we
believe to be of independent interest. Here, the input consists of two (directed or undirected)
graphs and the task is to find a “generalized” cut that extends to both graphs. The two
input graphs share some arcs/edges that can be deleted simultaneously at unit cost, and
the goal is to compute a set of k arcs/edges that is a cut in both graphs. Both paired and
simultaneous problems have recently received attention from the parameterized complexity
community [1, 2, 37]. In the FPT/W[1]-hardness dichotomy for the Boolean domain [37],
the fundamental difficult problem is Paired Cut (proven to be W[1]-hard by Marx and
Razgon [47]): given an integer k and a directed graph G with two terminals s, t ∈ V (G) and
some arcs grouped into pairs, delete at most k pairs to cut all paths from s to t. An intuitive
reason why Paired Cut is difficult can be seen as follows. Assume G contains two long

IPEC 2023

11:4 Parameterized Complexity Classification for Interval Constraints

st-paths P and Q and the arcs of P are arbitrarily paired with the arcs of Q. Then, one
cuts both paths with a cost of only one pair, but the arbitrary pairing of the arcs allow us to
encode an arbitrary permutation – which is very powerful for encoding edge-choice gadgets
when reducing from Multicoloured Clique. Our strategy for proving W[1]-hardness
of paired problems elaborates upon this idea. In this case, the needed gadgets are quite
succinct and their construction is simplified by the fact that we can recycle ideas from [24].
Our hardness proofs for simultaneous problems also use the same underlying idea, but they
are much more complicated. The simultaneous setting is obviously not as versatile as the
arbitrary pairing of Paired Cut. However, the possibility of choosing common arcs/edges
while deleting them at unit costs still leaves enough freedom to encode arbitrary permutations.
Such permutations enable us to construct edge-choice gadgets by “simulating” the low-level
features that are available for free in paired problems. The resulting construction is complex
and appears to contain ideas that may be useful for proving hardness of other kinds of
simultaneous problems.

Altogether, we obtain novel W[1]-hardness results for Paired Cut Feedback Arc Set,
Simultaneous st-Separator, Simultaneous Directed st-Cut, and Simultaneous
Directed Feedback Arc Set. This allows us to identify six intractable fragments that
are subsets of basic interval relations: {m, r1} for r1 ∈ {≡, s, f}, {d, r2} for r2 ∈ {o, p} and
{p, o}. The hardness reduction for {m, r1}, is based on the hardness of Paired Cut and
Paired Cut Feedback Arc Set. The other hardness results are based on reductions
from Simultaneous Directed Feedback Arc Set, whose W[1]-hardness is shown by
a reduction from Simultaneous st-Separator. The reductions from Simultaneous
Directed Feedback Arc Set are non-trivial but both their presentation and their
correctness proofs are highly simplified by our concrete descriptions of bad cycles.

Tractability results. We identify seven maximal tractable sets of basic interval relations:
{m, p} and {r1, r2, ≡} for r1 ∈ {s, f} and r2 ∈ {p, d, o}. All problems are handled by
reductions to variants of Directed Feedback Arc Set (DFAS). DFAS and variations
are extensively studied in parameterized complexity [6, 12, 16, 17, 29, 30, 45, 46]. DFAS is
equivalent to MinCSP(<), and a variant particularly important in our work is Sub-DFAS
equivalent to MinCSP(<, ≤), where the goal is to destroy only directed cycles that have
a <-arc. To show that MinCSP(m, p) is in FPT, we use a straightforward reduction to
MinCSP(<, =) which, in turn, reduces to MinCSP(<, ≤).

For the remaining six tractable cases, we reduce them all to a new variant of DFAS called
Mixed Feedback Arc Set with Short and Long Arcs (LS-MFAS). The input is a
mixed graph with edges and long and short arcs. Forbidden cycles in this graph are of two
types: (1) cycles with at least one short arc, no long arcs, and all short arcs in the same
direction, and (2) cycles with at least one long arc, all long arcs in the same direction, but
the short arcs can be traversed in arbitrary direction. One intuitive way to think about the
problem is to observe that a graph G has no forbidden cycle if there exists a placement of
the vertices on the number line with certain distance constraints represented by the edges
and arcs. Vertices connected by edges (which correspond to ≡-constraints) should be placed
at the same point. If there is an arc (u, v), we need to place u before v. Moreover, if the arc
is long, then the distance from u to v should be big (say, greater than twice the number of
vertices), while is the arc is short, then the distance from u to v should be small (say, at
most 1). The reduction from MinCSP(r1, r2, ≡) to LS-MFAS creates a mixed graph with
edges for ≡-constraints, short arcs for r1-constraints and long arcs for r2-constraint. For
correctness, consider for example the case with r1 = s and r2 = p. Forbidden cycles of the first

K. K. Dabrowski, P. Jonsson, S. Ordyniak, G. Osipov, M. Pilipczuk, and R. Sharma 11:5

and the second kind imply an unsatisfiable order on the right and left endpoints, respectively.
On the other hand, if bad cycles are absent, we can assign intervals as follows: if two variables
are ≡-connected, they are assigned the same interval, if they are s-connected, their intervals
have the same left endpoints, left endpoints are ordered according to p-constraints, and the
right endpoints of s-connected intervals are ordered according to the s-constraints.

Our algorithm for LS-MFAS builds upon the algorithm of [39] for Sub-DFAS. By
iterative compression (see e.g. Chapter 4 in [21]) and branching, we may assume access to
k + 1 vertices that intersect all forbidden cycles, and we know their relative positions in the
graph obtained after deleting a hypothetical optimal solution. The aforementioned “placing
on a line” way of phrasing the lack of forbidden cycles is the main reason why this leads to a
complete algorithm. In the next step, we try to place all remaining vertices relative to the
terminals while breaking at most k distance constraints. Note that the number of ways in
which a vertex can relate to a terminal is constant: it may be placed at a short/long distance
before/after the terminal, or in the same position. Thus, we can define O(k) types for each
vertex, and the types determine whether distance constraints are satisfied or not. The optimal
type assignment is then obtained by a reduction to Bundled Cut with pairwise-linked
deletable arcs, a workhorse problem shown to be fixed-parameter tractable in [37]. We
remark that our algorithms also handle the weighted versions of the problems.

Approximation results. In response to the negative complexity results for MinCSP(A),
we consider approximation algorithms. We show that MinCSP(A) is not approximable in
polynomial time within any constant under the UGC. We relax the restrictions even more by
allowing our approximation algorithms to run in fixed-parameter tractable time. We show
that MinCSP(A) admits such an algorithm with c = 2 and a substantially faster algorithm
with c = 4. Hence, fpt-approximation is much more powerful than ordinary polynomial-time
approximation in this case. These results are based on the observation that every relation
in A can be defined as a conjunction of {<, =}-constraints on the endpoints. In the relaxation,
we disregard conjunctions and view all {<, =}-constraints as an instance of MinCSP(<, =),
which is then reduced to Sub-DFAS. By invoking the Sub-DFAS algorithm of [39], one
obtains a 2-approximation algorithm for the weighted variant of the problem.

Roadmap. We present the necessary preliminaries in Section 2. Section 3 is a bird’s eye
view of our results for the parameterized complexity and approximability of MinCSP(Γ)
and the technical details are collected in the following sections. We describe the minimal
obstructions to satisfiability for certain subsets of A in Section 4. These results are essential
for connecting the MinCSP(A) problem with the graph-oriented view that we use. We
complete our dichotomy result by a number of fixed-parameter algorithms in Section 5 and a
collection of W[1]-hardness results in Section 6. We conclude the paper with a discussion of
our results and future research directions in Section 7. This is a shortened version of the full
paper, which can be found on arXiv [23].

2 Preliminaries

In this section, we briefly present the rudiments of parameterized complexity, define the CSP
and MinCSP problems, and provide some basics concerning interval relations. Before we
begin, we need some terminology and notation for graphs. Let G be a (directed or undirected)
graph; we allow graphs to contain loops. We denote the set of vertices in G by V (G). If G is
undirected, then E(G) denotes the set of edges in G. If G is directed, then A(G) denotes the

IPEC 2023

11:6 Parameterized Complexity Classification for Interval Constraints

Table 1 The thirteen basic relations in Allen’s Interval Algebra. The endpoint relations I− < I+

and J− < J+ that are valid for all relations have been omitted.

Basic relation Example Endpoint Relations

I precedes J p iii I+ < J−

J preceded by I pi jjj

I meets J m iiii I+ = J−

J met-by I mi jjjj

I overlaps J o iiii I− < J− < I+ < J+

J overlapped-by I oi jjjj

I during J d iii I− > J−, I+ < J+

J includes I di jjjjjjj

I starts J s iii I− = J−, I+ < J+

J started by I si jjjjjjj

I finishes J f iii I+ = J+, I− > J−

J finished by I fi jjjjjjj

I equals J ≡ iiii I− = J−, I+ = J+

jjjj

set of arcs in G, and E(G) denotes the set of edges in the underlying undirected graph of G.
We use uv to denote an undirected edge with end-vertices u and v. We use (u, v) to denote
a directed arc from u to v; u is the tail and v is the head. For X ⊆ E(G), we write G − X to
denote the directed graph obtained by removing all edges/arcs corresponding to X from G

if G is undirected and A(G − X) = A(G) \ {(u, v), (v, u) | {u, v} ∈ X}) if G is directed. If
X ⊆ V (G), then we let G − X = G[V (G) \ X] be the subgraph induced in G by V (G) \ X.
An st-cut in G is a set of edges/arcs X such that the vertices s and t are separated in G − X.

A parameterized problem is a subset of Σ∗ × N, where Σ is the input alphabet. The
parameterized complexity class FPT contains the problems decidable in f(k)·nO(1) time, where
f is a computable function and n is the instance size. Reductions between parameterized
problems need to take the parameter into account. To this end, we use parameterized
reductions (or fpt-reductions). Consider two parameterized problems L1, L2 ⊆ Σ∗ × N. A
mapping P : Σ∗ × N → Σ∗ × N is a parameterized reduction from L1 to L2 if (1) (x, k) ∈ L1
if and only if P ((x, k)) ∈ L2, (2) the mapping can be computed in f(k) · nO(1) time for some
computable function f , and (3) there is a computable function g : N → N such that for all
(x, k) ∈ Σ∗ × N, if (x′, k′) = P ((x, k)), then k′ ≤ g(k). We will sometimes prove that certain
problems are not in FPT. The class W[1] contains all problems that are fpt-reducible to
Independent Set parameterized by the number of vertices in the independent set. Showing
W[1]-hardness (by an fpt-reduction) for a problem rules out the existence of an fpt algorithm
under the standard assumption that FPT ̸= W[1].

We continue by defining CSPs. A constraint language Γ is a set of relations over a
domain D. Each relation R ∈ Γ has an associated arity r ∈ N and R ⊆ Dr. All relations
considered in this paper are binary and all constraint languages are finite. An instance I
of CSP(Γ) consists of a set of variables V (I) and a set of constraints C(I) of the form
R(x, y), where R ∈ Γ and x, y ∈ V (I). To simplify notation, we may write R(x, y) as xRy.
An assignment φ : V (I) → D satisfies a constraint R(x, y) if (φ(x), φ(y)) ∈ R and violates
R(x, y) if (φ(x), φ(y)) /∈ R. The assignment φ is a satisfying assignment (or a solution) if it
satisfies every constraint in C(I).

K. K. Dabrowski, P. Jonsson, S. Ordyniak, G. Osipov, M. Pilipczuk, and R. Sharma 11:7

CSP(Γ)

Instance: An instance I of CSP(Γ).
Question: Does I admit a satisfying assignment?

The value of an assignment φ for I is the number of constraints in C(I) satisfied by φ.
For any subset of constraints X ⊆ C(I), let I −X denote the instance with V (I −X) = V (I)
and C(I − X) = C(I) \ X. The (parameterized) almost constraint satisfaction problem
(MinCSP(Γ)) is defined as follows:

MinCSP(Γ)

Instance: An instance I of CSP(Γ) and an integer k.
Parameter: k.
Question: Is there a set X ⊆ C(I) such that |X| ≤ k and I −X is satisfiable?

Next, we review the basics of Allen’s interval algebra [3] (IA). Its domain is the set I of
all pairs (x, y) ∈ Q2 such that x < y, i.e. I can be viewed as the set of all closed intervals
[a, b] of rational numbers. If I = [a, b] ∈ I, then we write I− for a and I+ for b. Let A
denote the set of 13 basic relations that are presented in Table 1, and let 2A denote the 8192
binary relations that can be formed by taking unions of relations in A. The complexity of
CSP(Γ) is known for every Γ ⊆ 2A [41] and in each case CSP(X) is either polynomial-time
solvable or NP-complete. In particular, CSP(A) is in P. When considering subsets Γ ⊆ A,
note that any constraint xriy is equivalent to yrx for r ∈ {p, m, o, d, s, f}, so we may assume
that r ∈ Γ if and only if ri ∈ Γ. Furthermore, for the remainder of the paper, we may assume
A = {p, m, o, d, s, f, ≡}.

When studying MinCSP and its parameterized complexity, it is convenient to allow crisp
constraints, i.e. constraints that cannot be deleted. Formally, for a language Γ ⊆ A and a
relation r ∈ Γ, we say that Γ supports crisp r-constraints if, for every value of the parameter
k ∈ N, we can construct an instance Ir of MinCSP(Γ) with variables x, y ∈ V (Ir) (and
possibly some auxiliary variables) such that the constraint xry is equivalent to Ir − X for all
X ⊆ C(I) such that |X| ≤ k. Then, if we want to enforce a constraint xry in an instance of
MinCSP(Γ), we can use Ir with fresh variables V (I) \ {x, y} in its place. Straightforward
reasoning about interval constraints readily shows that every r ∈ A supports crisp constraints,
and this also holds for the constraint language {<, =}.

3 Overview

In this section we prove the dichotomy theorem for the parameterized complexity of
MinCSP(Γ) for every subset Γ ⊆ A of interval relations. We also discuss constant-factor ap-
proximation algorithms for MinCSP(A). Some observations reduce the number of subsets of
relations that we need to consider in the classification. For the first one, we need a simplified
definition of implementations. More general definitions are used in e.g. [33] and [35].

▶ Definition 1. Let Γ be a constraint language and r be a binary relation over the same
domain. A (simple) implementation of a relation r in Γ is an instance Cr of CSP(Γ) with
primary variables x1, x2 and, possibly, auxiliary variables y1, . . . , yℓ such that:

if an assignment φ satisfies Cr, then it satisfies the constraint x1rx2;
if an assignment φ′ does not satisfy x1rx2, then it cannot be extended to the auxiliary
variables y1, . . . , yℓ so that it satisfies Cr.
if an assignment φ′ does not satisfy x1rx2, then it can be extended to the auxiliary variables
y1, . . . , yℓ so that all but one constraint in Cr are satisfied.

In this case we say that Γ implements r.

IPEC 2023

11:8 Parameterized Complexity Classification for Interval Constraints

Intuitively, we can replace every occurrence of a constraint xry with its implementation
in Γ while preserving the cost of making the instance satisfiable. This intuition is made
precise in the following lemma, and identifying the two implementations in Lemma 3 is left
to the reader.

▶ Lemma 2 (Proposition 5.2 in [35]). Let Γ be a constraint language that implements a
relation r. If MinCSP(Γ) is in FPT, then so is MinCSP(Γ ∪ {r}). If MinCSP(Γ ∪ {r}) is
W[1]-hard, then so is MinCSP(Γ).

▶ Lemma 3 (Implementations). Let Γ ⊆ A be a subset of interval relations. If Γ contains m,
then Γ implements p, and if Γ contains f and s, then Γ implements d and o.

Another observation utilizes the symmetry of interval relations. By switching the left
and the right endpoints of all intervals in an instance I of MinCSP(A) and then negating
their values, we obtain a reversed instance IR. Formally, instance IR of CSP(A) has the
same set of variables as I, and contains a constraint uf(r)v for every urv in C(I), where
f : A → A is defined as f(r) = ri for r ∈ {m, p, o}, f(≡) =≡, f(d) = d, f(s) = f and f(f) = s.

▶ Lemma 4 (Lemma 4.2 of [41]). An instance I of CSP(A) is satisfiable if and only if the
reversed instance IR is satisfiable.

To obtain our results, we use combinatorial tools and represent an instance I of CSP(A)
as an arc-labelled mixed graph GI , i.e. a graph that contains edges for symmetric constraints
and labelled arcs for asymmetric ones. More precisely, the graph GI is obtained by introducing
all variables of I as vertices, adding directed arcs (u, v) labelled with r ∈ A \ {≡} for every
constraint urv in C(I), and undirected edges uv for every constraint u ≡ v in I. Note
that GI may have parallel arcs with different labels and may contain loops. The undirected
graph underlying GI is called the primal graph of I; we allow the primal graph to contain
loops and parallel edges (in both cases, this will mean the primal graph contains a cycle).
The advantage of the graph representation is supported by the following lemma:

▶ Lemma 5 (Cycles). Let I be an inclusion-wise minimal unsatisfiable instance of CSP(A)
(i.e. removing any constraint of I results in a satisfiable instance). Then the primal graph
of I is a cycle.

The proof of the lemma is deferred to Section 4. All cycles discussed in the rest of
the section are cycles of the primal graph. From the combinatorial point of view, minimal
unsatisfiable instances are bad cycles in the labelled graph. For example, in MinCSP(p),
the bad cycles correspond to the directed cycles. For MinCSP(p, ≡), the bad cycles contain
at least one p-arc and all p-arcs in the same direction. Thus, MinCSP(Γ) can now be cast
as a certain feedback edge set problem – our goal is to find a set of k edges in the primal
graph that intersects all bad cycles. We present such a characterization for several cases in
Section 4.

Our algorithmic results can be summarized as follows.

▶ Lemma 6. MinCSP(m, p) and MinCSP(r1, r2, ≡) are in FPT for r1 ∈ {s, f} and r2 ∈
{p, o, d}.

The algorithm for MinCSP(m, p) is obtained using a simple reduction to Subset Dir-
ected Feedback Arc Set.

K. K. Dabrowski, P. Jonsson, S. Ordyniak, G. Osipov, M. Pilipczuk, and R. Sharma 11:9

Subset Directed Feedback Arc Set (Sub-DFAS)

Instance: A directed graph G, a subset of red arcs R ⊆ A(G), and an integer k.
Parameter: k.
Question: Is there a subset Z ⊆ A(G) of size at most k such that G − Z contains no

directed cycles with at least one red arc?

Chitnis et al. [17] have proved that Sub-DFAS is solvable in O∗(2O(k3)) time. The
algorithm for the remaining cases is more complicated and relies on the bad cycle characteriz-
ation in Section 4 and a sophisticated modification of the algorithm for Sub-DFAS from [39]
in Section 5.

For the negative results, we start by proving W[1]-hardness for certain paired and
simultaneous graph cut problems, and we identify Γ ⊆ A such that paired or simultaneous
problems reduce to MinCSP(Γ). For intuition, consider a constraint x ≡ y. If we consider
the left and the right endpoints separately, then ≡ implies two equalities: x− = y− and
x+ = y+. Together with another relation (e.g. m), this double-equality relation can be used
to encode the pairing of the edges of two graphs (namely, the left-endpoint graph and the
right-endpoint graph). We note that the double-equality relation is also the cornerstone of all
hardness results in the parameterized complexity classification of Boolean MinCSP [37].
Lemma 7 is based on paired problems and Lemma 8 is based on simultaneous problems.

▶ Lemma 7. MinCSP(m, ≡), MinCSP(m, s) and MinCSP(m, f) are W[1]-hard.

▶ Lemma 8. MinCSP(d, o), MinCSP(p, o) and MinCSP(d, p) are W[1]-hard.

Combining all results above, we are ready to present the full classification.

▶ Theorem 9 (Full classification). Let Γ ⊆ A be a subset of interval relations. Then
MinCSP(Γ) is in FPT if Γ ⊆ {m, p} or Γ ⊆ {r1, r2, ≡} for any r1 ∈ {s, f} and r2 ∈ {p, o, d},
and W[1]-hard otherwise.

W[1]-hardness of MinCSP(A) motivates us to look at approximation algorithms for
this problem. Our first observation is that MinCSP(r) for any r ∈ A \ {≡} is NP-hard to
approximate within any constant under the Unique Games Conjecture (UGC) of Khot [34].
This follows by combining two facts: Lemma 11, which implies that an instance I of CSP(r)
is satisfiable if and only if the arc-labelled graph GI is acyclic, and Corollary 1.2 in [32],
which states that under the UGC, Directed Feedback Arc Set (DFAS) is NP-hard to
approximate within any constant [32]. If we allow the approximation algorithm to run in fpt
time, then we obtain the following result.

▶ Theorem 10. MinCSP(A) is 2-approximable in O∗(2O(k3)) time and 4-approximable in
O∗(2O(k)) time.

Proof sketch. We obtain the algorithms by reducing the problem to Sub-DFAS and invoking
the exact algorithm of [21] and the faster O∗(2O(k)) time 2-approximation algorithm of [44],
respectively. There are straightforward reductions from MinCSP(<, =) to MinCSP(≤, =)
to Sub-DFAS, so we focus on the reduction from MinCSP(A) to MinCSP(<, =). Let (I, k)
be an instance of MinCSP(A). Replace every constraint x{o}y by its implementation in
{s, f} according to Lemma 3. By Lemma 2, this does not change the cost of the instance.
Using Table 1, we can rewrite all constraints of I ′ as conjunctions of two atomic constraints
of the form x < y or x = y. Disregarding the pairing, let S be the set of all atomic
constraints. Apply one of the MinCSP(<, =) algorithms to (S, 2k). On the one hand,

IPEC 2023

11:10 Parameterized Complexity Classification for Interval Constraints

deleting k constraints from I ′ corresponds to deleting at most 2k constraints in S. On the
other hand, if there is X ⊆ S, |X| ≤ 2k, such that S − X is satisfiable, define the set of
interval constraints X ′ such that at least one of the defining {<, =}-constraints is in X.
Noting that I − X ′ is satisfiable and |X ′| ≤ |X| ≤ 2k completes the proof. ◀

4 Bad Cycles

In this section, we sketch the proof of Lemma 5 and describe the minimal obstructions to
satisfiability for certain subsets of A, along with a brief sketch of why these are the minimal
obstructions.

▶ Lemma 5 (Cycles). Let I be an inclusion-wise minimal unsatisfiable instance of CSP(A)
(i.e. removing any constraint of I results in a satisfiable instance). Then the primal graph
of I is a cycle.

The proof of Lemma 5 starts by taking a minimal unsatisfiable instance I. Using Table 1,
we write I as an instance I ′ of the point algebra (PA) [53] CSP, which takes rationals Q as the
variable domain and we use only the basic constraint language {<, =}, where the relations
are interpreted in the obvious way. This instance I ′ must contain a minimal unsatisfiable
sub-instance I ′′ of the point algebra, which has a cycle as its primal graph. We then map
the constraints in I ′′ back to the constraints in I that implied them, and find that I must
also have a cycle as its primal graph.

▶ Lemma 11 (Bad Cycles). Let I be an instance of CSP(r1, r2) for some r1, r2 ∈ A, and
consider the arc-labelled mixed graph GI . Then I is satisfiable if and only if GI does not
contain any bad cycles described below.

1. If r1 = d and r2 = p, then the bad cycles are cycles with p-arcs in the same direction and
no d-arcs meeting head-to-head.

2. If r1 = d and r2 = o, then the bad cycles are cycles with all d-arcs in the same direction
and all o-arcs in the same direction (the direction of the d-arcs may differ from that of
the o-arcs).

3. If r1 = o and r2 = p, then the bad cycles are (a) directed cycles of o-arcs and (b) cycles
with all p-arcs in the forward direction, with every consecutive pair of o-arcs in the reverse
direction separated by a p-arc (this case includes directed cycles of p-arcs).

4. If r1 ∈ {f, s} and r2 ∈ {d, o, p}, then the bad cycles are (a) directed cycles of r1-arcs
and (b) cycles with at least one r2-arc and all r2-arcs in the same direction (and r1-arcs
directed arbitrarily).

5 FPT Algorithms

We prove Lemma 6 in this section. The fpt algorithm for {m, p} is simple and we omit the
details: it works by first reducing the problem to MinCSP(<, =) and then to Sub-DFAS.
The remaining six cases are handled by reducing them to a fairly natural generalization of
Directed Feedback Arc Set problem, and showing that this problem is in FPT.

Lemma 11.4 suggests that all six remaining fragments allow uniform treatment. Indeed,
to check whether an instance of CSP(r1, r2, ≡) is satisfiable, one can identify all variables
constrained to be equal. This corresponds exactly to contracting all edges in the graph GI .
Then I becomes an instance of CSP(r1, r2), and the criterion of Lemma 11.4 applies. This
observation allows us to formulate MinCSP(r1, r2, ≡) as a variant of feedback arc set on
mixed graphs.

K. K. Dabrowski, P. Jonsson, S. Ordyniak, G. Osipov, M. Pilipczuk, and R. Sharma 11:11

▶ Definition 12. Consider a mixed graph G with arcs of two types – short and long – and a
walk W in G from u to v that may ignore direction of the arcs. The walk W is undirected if
it only contains edges, it is short if it contains a short arc but no long arcs, and it is long
if it contains a long arc. The walk W is directed if it is either short and all short arcs are
directed from u to v or if it is long and all long arcs are directed from u to v. If W is short
or long, but not directed, it is mixed.

Note that short arcs on a long-directed walk may be directed arbitrarily.

Mixed Feedback Arc Set with Short and Long Arcs (LS-MFAS)

Instance: A mixed graph G with the arc set A(G) partitioned into short As and long Aℓ,
and an integer k.

Parameter: k.
Question: Is there a set Z ⊆ E(G) ∪A(G) with |Z| ≤ k such that G− Z contains neither

short-directed cycles nor long-directed cycles?

The main result of this section is the following theorem.

▶ Theorem 13. LS-MFAS can be solved in O∗(2O(k8 log k)) time.

We see that Lemma 11.4 and Theorem 13 imply MinCSP(r1, r2, ≡) being in FPT whenever
r1 ∈ {s, f} and r2 ∈ {p, o, d}. It is informative to understand the structure of mixed graphs
without bad cycles in the sense of LS-MFAS. The proof of the following lemma is fairly easy
with the placing-vertices-on-the-number-line intuition from the introduction.

▶ Lemma 14. Let G be a mixed graph with long and short arcs. Then G contains no
long-directed cycles nor short-directed cycles if and only if there exists a pair of mappings
σ1, σ2 : V (G) → N such that
1. for every u, v ∈ V (G), u and v are connected by an undirected walk if and only if

(σ1, σ2)(u) = (σ1, σ2)(v);
2. for every u, v ∈ V (G), there exists a short (u, v)-walk in G if and only if σ1(u) = σ1(v);
3. for every u, v ∈ V (G), if there exists a short-directed (u, v)-walk in G, then σ2(u) < σ2(v);
4. for every u, v ∈ V (G), if there exists a long-directed (u, v)-walk in G, then σ1(u) < σ1(v).

We now introduce the technical machinery used in our algorithm for LS-MFAS.
We start by using iterative compression, a standard method in parameterized al-
gorithms (see e.g. Chapter 4 in [21]). This allows us to assume access to a set of k + 1 edges
and arcs intersecting every bad cycle. The problem resulting from iterative compression
reduces to Bundled Cut with pairwise-linked deletable edges, defined in [37] and solved
using the flow-augmentation technique of [36]. To describe Bundled Cut, let G be a
directed graph with two distinguished vertices s, t ∈ V (G). Let B be a family of pairwise
disjoint subsets of E(G), which we call bundles. The edges of

⋃
B are soft and the edges of

E(G) \
⋃

B are crisp. A set Z ⊆
⋃

B violates a bundle B ∈ B if Z ∩ B ̸= ∅ and satisfies B

otherwise.

Bundled Cut
Instance: A directed graph G, two distinguished vertices s, t ∈ V (G), a family B of

pairwise disjoint subsets of E(G), and an integer k.
Parameter: k.
Question: Is there an st-cut Z ⊆

⋃
B that violates at most k bundles?

IPEC 2023

11:12 Parameterized Complexity Classification for Interval Constraints

Table 2 Correspondence between edges, short arcs and long arcs of the LS-MFAS instance and
the arcs introduced in the reduction to Bundled Cut in Theorem 13.

i odd i even, j odd i even, j even

Edge uv
(i, j)→ (i, j) (i, j)→ (i, j) (i, j)→ (i, j)
(i, j)← (i, j) (i, j)← (i, j) (i, j)← (i, j)

Short (u, v) (i, j)→ (i, j) (i, j)→ (i, j) (i, j)→ (i, j + 1)
(i, 1)← (i, j) (i, 1)← (i, j) (i, 1)← (i, j)

Long (u, v) (i, 1)→ (i, 1) (i, j)→ (i + 1, 1) (i, j)→ (i + 1, 1)

In general, Bundled Cut is W[1]-hard even if all bundles are of size 2. However, there
is a special case of Bundled Cut that is tractable. Let (G, s, t, B, k) be a Bundled Cut
instance. A soft arc e is deletable if there is no crisp copy of e in G. An instance (G, s, t, B, k)
has pairwise-linked deletable arcs if for every B ∈ B and every two deletable arcs e1, e2 ∈ B,
there exists in G a path from an endpoint of one of the arcs e1, e2 to an endpoint of the
second of those arcs that does not use any arcs of B \ {B}. The assumption of pairwise-linked
deletable arcs makes Bundled Cut tractable.

▶ Theorem 15 (Theorem 4.1 of [38]). Bundled Cut instances with pairwise-linked deletable
arcs can be solved in O∗(2O(k4d4 log(kd))) time, where d is the maximum number of deletable
arcs in a single bundle.

Armed with Lemma 14 and Theorem 15, we are ready to prove the main result.

Proof of Theorem 13. Let (G, As, Aℓ, k) be an instance of LS-MFAS. By iterative com-
pression, we may assume that we have access to a set Y ⊆ V (G) of size at most k + 1 that
intersects all bad cycles. We refer to the vertices of Y as terminals.

Fix a hypothetical solution Z ⊆ A(G) ∪ E(G). Guess which pairs of terminals are
connected by undirected paths in G−Z and identify them. Define an ordering σ : Y → N×N
that maps terminals to

{(1, 1), . . . , (1, q1), · · · , (i, 1), . . . , (i, qi), · · · , (p, 1), . . . , (p, qp)}

such that the following hold. For every pair of terminals y, y′ ∈ Y , let σ(y) = (i, j) and
σ(y′) = (i′, j′) where (1) i = i′ if y and y′ are connected by a short path in G − Z, (2)
j < j′ if y reaches y′ by a short-directed path in G − Z, and (3) i < i′ if y reaches y′ by
a long-directed path in G − Z. Note that σ exists by Lemma 14. If an ordering satisfies
the conditions above, we say that it is compatible with G − Z. In what follows, we write
(i, j) < (i′, j′) to denote that (i, j) lexicographically precedes (i′, j′), i.e. either i = i′ and
j < j′ or i < i′.

For the algorithm, proceed by guessing an ordering σ, creating 2O(k log k) branches in
total. For each σ, create an instance (H := H(G, σ), B := B(G, σ), k) of Bundled Cut
as follows. Introduce two distinguished vertices s and t in H. For every vertex v ∈ V (G),
create vertices vi

1 in H for all odd i ∈ [2p + 1] and vertices vi
j in H for all even i ∈ [2p + 1]

and all j ∈ [2qi + 1]. Connect the vertices created above by downward arcs (vi
j , vi′

j′) for all
(i, j) > (i′, j′). For every terminal y, let σ(y) = (i, j), and add arcs (s, y2i

2j) and (y2i
2j+1, t) in

H. Using the rules below, create a bundle Be in B for every e ∈ E(G) ∪ A(G), add the newly
created arcs to H.

K. K. Dabrowski, P. Jonsson, S. Ordyniak, G. Osipov, M. Pilipczuk, and R. Sharma 11:13

For an edge e = uv, let Be consist of the arcs (ui
j , vi

j) and (vi
j , ui

j) for all (i, j).
For short arcs e = (u, v), let Be consist of the arcs (ui

j , vi
j) for all i, j such that i or j is

odd, the arcs (ui
j , vi

j+1) for all even i, j, and the arcs (vi
j , ui

1) for all i, j.
For long arcs e = (u, v), let Be consist of the arcs (ui

1, vi
1) for all odd i, and arcs the arcs

(ui
j , vi+1

1) for all even i and all j.
This completes the construction. Bundle construction rules are summarized in Table 2.
Observe that the downward arcs ensure that (H, B, k) has the pairwise-linked deletable arc
property. Moreover, the bundle size is O(k), so we can solve (H, B, k) in O∗(2O(k8 log k)) time.

We now sketch the correctness argument. Fix a guessed ordering σ. For any candidate
solution W in (H := H(G, σ), B = B(G, σ), k), the existence of downward arcs imply that
for every v ∈ V (G) there is a threshold (iv, jv) such that vj

i is reachable from s in H − W if
and only if (i, j) ≤ (iv, jv). This threshold is meant to indicate that v should be placed on
the line somewhere around the terminal x for which σ(x) = (⌊iv/2⌋, ⌊jv/2⌋). A short walk
from u to v in G projects, for every even i and even j, to a walk from uj

i to vj+1
i . A long

walk from u to v in G projects, for every odd i, to a walk from u1
i to v1

i . Together with the
fact that terminals intersect all forbidden cycles in G, this gives a correspondence between
forbidden cycles in G and st-paths in H. ◀

6 W[1]-hard Problems

Here, we show Lemmas 7 and 8. As the first and most challenging step, we show W[1]-hardness
for variants of paired and simultaneous graph cut problems from which we then reduce
to the hard variants of MinCSP(Γ). Our reductions will make use of the following well-
known problem, whose W[1]-hardness follows by a simple reduction from Multicoloured
Clique (see e.g. Exercise 13.3 in [21]).

Multicoloured Biclique (MC-BiClique)

Instance: An undirected graph G with a partition V (G) = A1 ⊎ . . . ⊎Ak ⊎B1 ⊎ . . . ⊎Bk,
where |Ai| = |Bi| = n for each i ∈ [k] and both ⊎i∈[k]Ai and ⊎i∈[k]Bi form
independent sets in G.

Parameter: k.
Question: Does G contain Kk,k as a subgraph, a.k.a. a multicoloured biclique?

6.1 Paired Problems
We consider the problems Paired Cut and Paired Cut Feedback Arc Set (PCFAS)
in what follows.

Paired Cut
Instance: Undirected graphs G1 and G2, vertices si, ti ∈ V (Gi), a set of disjoint edge

pairs B ⊆ E(G1)× E(G2), and an integer k.
Parameter: k.
Question: Is there a subset X ⊆ B such that |X| ≤ k and Xi = {ei | {e1, e2} ∈ X} is an

{si, ti}-cut in Gi for both i ∈ {1, 2}?

The PCFAS problem is similar, but G2 is directed and X2 is required to be such that
G2 − X2 is acyclic (instead of being an {s2, t2}-cut). We show W[1]-hardness of both
problems. Since both reductions are from MC-BiClique and quite similar, we start to
describe the common part of both reductions. Let I = (G, A1, . . . , Ak, B1, . . . , Bk, k) be
an instance of MC-BiClique. We define two directed graphs GA and GB as follows. GA

IPEC 2023

11:14 Parameterized Complexity Classification for Interval Constraints

contains the vertices sA and tA. Moreover, for every i ∈ [k], GA contains the vertices in
P A

i = {vi,1, . . . , vi,n−1}. For convenience, we let vi,0 = sA and vi,n = tA for every i ∈ [k].
Moreover, for every vertex ai,j and every i′ ∈ [k], GA contains the directed path P A

i,j,i′ from
vi,j−1 to vi,j that has one edge (using fresh auxiliary vertices) for every edge between ai,j

and a vertex in Bi′ . Therefore, we may assume in what follows that there is a bijection
between the edges of P A

i,j,i′ and the edges between ai,j and a vertex in Bi′ . This concludes the
description of GA. GB is defined very similarly to GA with the roles of the sets A1, . . . , Ak

and B1, . . . , Bk being reversed.
Finally, define a set B ⊆ E(GA) × E(GB) of bundles as follows. For every edge e =

{ai,j , bi′,j′} ∈ E(G), B contains the pair (eA, eB), where eA is the edge corresponding to e

on the path P A
i,j,i′ and eB is the edge corresponding to e on the path P B

i′,j′,i. This concludes
the construction and the following lemma shows its main property.

▶ Lemma 16. I = (G, A1, . . . , Ak, B1, . . . , Bk, k) is a yes-instance of MC-BiClique if and
only if there is a set X ⊆ B with |X| = k2 and XA = {e | (e, e′) ∈ X} is an (sA, tA)-cut in
GA and XB = {e′ | (e, e′) ∈ X} is an (sB , tB)-cut in GB.

The lemma above makes it relatively straightforward to show W[1]-hardness for Paired
Cut and PCFAS.

▶ Lemma 17. Paired Cut and PCFAS are W[1]-hard.

6.2 Simultaneous Problems
In this section we prove W[1]-hardness of several simultaneous cut problems. Our basis is
the following problem.

Simultaneous Separator (Sim-Separator)

Instance: Two directed graphs D1 and D2 with V = V (D1) = V (D2), vertices s, t ∈ V ,
and an integer k.

Parameter: k.
Question: Is there a subset X ⊆ V \ {s, t} of size at most k such that neither D1 −X nor

D2 −X contains a path from s to t?

We begin by proving that this problem is W[1]-hard in Theorem 18. We will then prove
that simultaneous variants of Directed st-Cut and Directed Feedback Arc Set are
W[1]-hard via reductions from Sim-Separator; these results can be found in Theorems 19
and 20, respectively. It will be convenient to use the term st-separator when working with
directed graphs: given a directed graph G = (V, E) and two vertices s, t ∈ V , we say that
X ⊆ V \ {s, t} is an st-separator if the graph G − X contains no directed path from s to t

and no directed path from t to s.

▶ Theorem 18. Sim-Separator is W[1]-hard even if both input digraphs are acyclic.

We continue by using the W[1]-hardness of Sim-Separator to prove W[1]-hardness of
the following two problems.

Simultaneous Directed st-Cut (Sim-Cut)

Instance: Two directed graphs D1 and D2 with V = V (D1) = V (D2), vertices s, t ∈ V ,
and an integer k.

Parameter: k.
Question: Is there a subset X ⊆ E(D1)∪E(D2) of size at most k such that neither D1−X

nor D2 −X contains a path from s to t?

K. K. Dabrowski, P. Jonsson, S. Ordyniak, G. Osipov, M. Pilipczuk, and R. Sharma 11:15

Simultaneous Directed Feedback Arc Set (Sim-DFAS)

Instance: Directed graphs D1, D2 with V = V (D1) = V (D2), and an integer k.
Parameter: k.
Question: Is there a subset X ⊆ E(D1)∪E(D2) of size at most k such that both D1 −X

and D2 −X are acyclic?

▶ Theorem 19. Sim-Cut is W[1]-hard even if both input digraphs are acyclic.

▶ Theorem 20. Sim-DFAS is W[1]-hard.

6.3 Intractable Fragments
We begin by proving that MinCSP(m, ≡) and MinCSP(m, s) are W[1]-hard. We introduce
two binary relations: let ≡− denote the left-equals relation and ≡+ denote the right-equals
relation, which hold for any pair of intervals with matching left endpoints and right endpoints,
respectively. Both relations can be implemented using only m as follows: {zmx, zmy}
implements x ≡− y where z is a fresh variable; similarly, {xmz, ymz} implements x ≡+ y.
Thus, we may assume that the relations ≡− and ≡+ are available whenever we have access
to the m relation. We are now ready to present the reduction for MinCSP(m, ≡), which will
be from the Paired Cut problem that was shown to be W[1]-hard in Lemma 17.

▶ Theorem 21. MinCSP(m, ≡) is W[1]-hard.

We continue by showing that MinCSP(m, s) is W[1]-hard. First note even though we
no longer have access to ≡, we can add the constraints x ≡− y and x ≡+ y which imply
x ≡ y. As previously, the relations ≡− and ≡+ can be implemented using only m. We
remark that {x ≡− y, x ≡+ y} is not an implementation of ≡, so we can only use ≡ in crisp
constraints. Our reduction is based on the PCFAS problem, which was shown to be W[1]-
hard in Lemma 17. While the reduction is quite similar to the reduction for MinCSP(m, ≡),
it is non-trivial to replace the role of ≡ with s.

▶ Theorem 22. MinCSP(m, s) is W[1]-hard.

We finally show the W[1]-hardness of MinCSP(d, p), MinCSP(d, o), and MinCSP(p, o)
via parameterized reductions from Sim-DFAS (which is a W[1]-hard problem by Theorem 20).

▶ Theorem 23. MinCSP(d, p), MinCSP(d, o), and MinCSP(p, o) are W[1]-hard.

7 Discussion

We have initiated a study of the parameterized complexity of MinCSP for Allen’s interval
algebra. We prove that MinCSP restricted to the relations in A exhibits a dichotomy:
MinCSP(Γ) is either fixed-parameter tractable or W[1]-hard when Γ ⊆ A. Even though
the restriction to the relations in A may seem severe, one should keep in mind that a
CSP instance over A is sufficient for representing definite information about the relative
positions of intervals. In other words, such an instance can be viewed as a data set of interval
information and the MinCSP problem can be viewed as a way of filtering out erroneous
information (that may be the result of contradictory sources of information, noise in the
measurements, human mistakes etc.) Various ways of “repairing” unsatisfiable data sets of
qualitative information have been thoroughly discussed by many authors; see, for instance,
[7, 18, 19] and the references therein.

IPEC 2023

11:16 Parameterized Complexity Classification for Interval Constraints

Proving a full parameterized complexity classification for Allen’s interval algebra is
hindered by a barrier: such a classification would settle the parameterized complexity of
Directed Symmetric Multicut, and this problem is considered to be one of the main
open problems in the area of directed graph separation problems [27, 39]. This barrier comes
into play even in very restricted cases: as an example, it is not difficult to see that MinCSP
for the two Allen relations (f ∪ fi) and (f ∪ ≡) is equivalent to the MinCSP problem for the
two PA relations ̸= and ≤ and thus equivalent to Directed Symmetric Multicut.

One way of continuing this work without necessarily settling the parameterized complexity
of Directed Symmetric Multicut is to consider fpt approximability: it is known that
Directed Symmetric Multicut is 2-approximable in fpt time [27]. Thus, a possible
research direction is to analyse the fpt approximability for MinCSP(Γ) when Γ is a subset
of 2A or, more ambitiously, when Γ is first-order definable in A. A classification that
separates the cases that are constant-factor fpt approximable from those that are not may
very well be easier to obtain than mapping the FPT/W[1] borderline. There is at least
one technical reason for optimism here, and we introduce some definitions to outline this
idea. An n-ary relation R is said to have a primitive positive definition (pp-definition) in a
structure Γ if it can be first-order defined by only using the relations in Γ together with the
equality relation and the operators existential quantification and conjunction. If the equality
relation is not needed, then we say that R has an equality-free primitive positive definition
(efpp-definition) in Γ. Bonnet et al. [13, Lemma 10] have shown that constant-factor fpt
approximability is preserved by efpp-definitions [13], i.e. if R is efpp-definable in Γ and
MinCSP(Γ) is constant-factor fpt approximable, then MinCSP(Γ ∪ {R}) is also constant-
factor fpt approximable. Bonnet et al. focus on Boolean domains, but it is clear that their
Lemma 10 works for problems with arbitrarily large domains. Lagerkvist [43, Lemma 5] has
shown that in most cases one can use pp-definitions instead of efpp-definitions. This implies
that the standard algebraic approach via polymorphisms (that, for instance, underlies the
full complexity classification of finite-domain CSPs [14, 54]) often becomes applicable when
analysing constant-factor fpt approximability. One should note that, on the other hand, the
exact complexity of MinCSP is only preserved by much more limited constructions such as
proportional implementations (see Section 5.2. in [35]). We know from the literature that this
may be an important difference: it took several years after Bonnet et al.’s classification of
approximability before the full classification of exact parameterized complexity was obtained
using a much more complex framework [37]. It is also worth noting that parameterized
approximation results for MinCSP may have very interesting consequences, e.g. [13] resolved
the parameterized complexity of Even Set, which was a long-standing open problem.

References

1 Akanksha Agrawal, Daniel Lokshtanov, Amer E. Mouawad, and Saket Saurabh. Simultaneous
feedback vertex set: A parameterized perspective. ACM Transactions on Computation Theory,
10(4):1–25, 2018.

2 Akanksha Agrawal, Fahad Panolan, Saket Saurabh, and Meirav Zehavi. Simultaneous feedback
edge set: a parameterized perspective. Algorithmica, 83(2):753–774, 2021.

3 James F. Allen. Maintaining knowledge about temporal intervals. Communications of the
ACM, 26(11):832–843, 1983.

4 James F. Allen and Johannes A. G. M. Koomen. Planning using a temporal world model.
In Proc. 8th International Joint Conference on Artificial Intelligence (IJCAI-1983), pages
741–747, 1983.

K. K. Dabrowski, P. Jonsson, S. Ordyniak, G. Osipov, M. Pilipczuk, and R. Sharma 11:17

5 Kristóf Bérczi, Alexander Göke, Lydia Mirabel Mendoza Cadena, and Matthias Mnich.
Resolving infeasibility of linear systems: A parameterized approach. CoRR, abs/2209.02017,
2022.

6 Benjamin Bergougnoux, Eduard Eiben, Robert Ganian, Sebastian Ordyniak, and M. S.
Ramanujan. Towards a polynomial kernel for directed feedback vertex set. Algorithmica,
83(5):1201–1221, 2021.

7 Leopoldo Bertossi and Jan Chomicki. Query answering in inconsistent databases. In Logics
for Emerging Applications of Databases, pages 43–83. Springer, 2004.

8 Manuel Bodirsky. Complexity of Infinite-Domain Constraint Satisfaction. Cambridge University
Press, 2021.

9 Manuel Bodirsky and Martin Grohe. Non-dichotomies in constraint satisfaction complexity. In
Proc. 35th International Colloquium on Automata, Languages and Programming (ICALP-2008),
pages 184–196, 2008.

10 Manuel Bodirsky, Peter Jonsson, Barnaby Martin, Antoine Mottet, and Zaneta Semanisinová.
Complexity classification transfer for CSPs via algebraic products. CoRR, abs/2211.03340,
2022.

11 Manuel Bodirsky and Jan Kára. The complexity of temporal constraint satisfaction problems.
Journal of the ACM, 57(2):9:1–9:41, 2010.

12 Marthe Bonamy, Łukasz Kowalik, Jesper Nederlof, Michał Pilipczuk, Arkadiusz Socała, and
Marcin Wrochna. On directed feedback vertex set parameterized by treewidth. In Proc.
44th International Workshop on Graph-Theoretic Concepts in Computer Science (WG-2018),
volume 11159, pages 65–78, 2018.

13 Édouard Bonnet, László Egri, and Dániel Marx. Fixed-parameter approximability of Boolean
MinCSPs. In Proc. 24th Annual European Symposium on Algorithms (ESA-2016), pages
18:1–18:18, 2016.

14 Andrei A. Bulatov. A dichotomy theorem for nonuniform CSPs. In Proc. 58th IEEE Annual
Symposium on Foundations of Computer Science (FOCS-2017), pages 319–330, 2017.

15 Andrei A. Bulatov, Peter Jeavons, and Andrei A. Krokhin. Classifying the complexity of
constraints using finite algebras. SIAM Journal on Computing, 34(3):720–742, 2005.

16 Jianer Chen, Yang Liu, Songjian Lu, Barry O’Sullivan, and Igor Razgon. A fixed-parameter
algorithm for the directed feedback vertex set problem. In Proc. 40th Annual ACM Symposium
on Theory of Computing (STOC-2008), pages 177–186, 2008.

17 Rajesh Chitnis, Marek Cygan, Mohammataghi Hajiaghayi, and Dániel Marx. Directed subset
feedback vertex set is fixed-parameter tractable. ACM Transactions on Algorithms, 11(4):1–28,
2015.

18 Jan Chomicki and Jerzy Marcinkowski. Minimal-change integrity maintenance using tuple
deletions. Information and Computation, 197(1-2):90–121, 2005.

19 Jean-François Condotta, Issam Nouaouri, and Michael Sioutis. A SAT approach for maximizing
satisfiability in qualitative spatial and temporal constraint networks. In Proc. 15th International
Conference on the Principles of Knowledge Representation and Reasoning (KR-2016), 2016.

20 Robert Crowston, Gregory Gutin, Mark Jones, and Anders Yeo. Parameterized complexity of
satisfying almost all linear equations over F2. Theory of Computing Systems, 52(4):719–728,
2013.

21 Marek Cygan, Fedor V. Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized algorithms. Springer, 2015.

22 Konrad K. Dabrowski, Peter Jonsson, Sebastian Ordyniak, and George Osipov. Resolving
inconsistencies in simple temporal problems: A parameterized approach. In Proc. 36th AAAI
Conference on Artificial Intelligence, (AAAI-2022), pages 3724–3732, 2022.

23 Konrad K. Dabrowski, Peter Jonsson, Sebastian Ordyniak, George Osipov, Marcin Pilipczuk,
and Roohani Sharma. Parameterized complexity classification for interval constraints. CoRR,
abs/2305.13889, 2023.

IPEC 2023

11:18 Parameterized Complexity Classification for Interval Constraints

24 Konrad K. Dabrowski, Peter Jonsson, Sebastian Ordyniak, George Osipov, and Magnus
Wahlström. Almost consistent systems of linear equations. In Proc. 34th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA-2023), pages 3179–3217, 2023.

25 Rina Dechter, Itay Meiri, and Judea Pearl. Temporal constraint networks. Artificial Intelligence,
49(1-3):61–95, 1991.

26 Pascal Denis and Philippe Muller. Predicting globally-coherent temporal structures from texts
via endpoint inference and graph decomposition. In Proc. 22nd International Joint Conference
on Artificial Intelligence (IJCAI-2011), pages 1788–1793, 2011.

27 Eduard Eiben, Clément Rambaud, and Magnus Wahlström. On the parameterized complexity
of symmetric directed multicut. In Proc. 17th International Symposium on Parameterized and
Exact Computation (IPEC-2022), volume 249, pages 11:1–11:17, 2022.

28 Tomás Feder and Moshe Y. Vardi. The computational structure of monotone monadic SNP
and constraint satisfaction: A study through datalog and group theory. SIAM Journal on
Computing, 28(1):57–104, 1998.

29 Alexander Göke, Dániel Marx, and Matthias Mnich. Hitting long directed cycles is fixed-
parameter tractable. In Proc. 47th International Colloquium on Automata, Languages, and
Programming (ICALP-2020), volume 168, pages 59:1–59:18, 2020.

30 Alexander Göke, Dániel Marx, and Matthias Mnich. Parameterized algorithms for generaliza-
tions of directed feedback vertex set. Discrete Optimization, 46:100740, 2022.

31 Martin Charles Golumbic and Ron Shamir. Complexity and algorithms for reasoning about
time: A graph-theoretic approach. Journal of the ACM, 40(5):1108–1133, 1993.

32 Venkatesan Guruswami, Rajsekar Manokaran, and Prasad Raghavendra. Beating the random
ordering is hard: inapproximability of maximum acyclic subgraph. In Proc. 49th Annual IEEE
Symposium on Foundations of Computer Science (FOCS-2008), pages 573–582, 2008.

33 Sanjeev Khanna, Madhu Sudan, Luca Trevisan, and David P. Williamson. The approximability
of constraint satisfaction problems. SIAM Journal on Computing, 30(6):1863–1920, 2000.

34 Subhash Khot. On the power of unique 2-prover 1-round games. In Proc. 24th Annual ACM
Symposium on Theory of Computing (STOC-2002), pages 767–775, 2002.

35 Eun Jung Kim, Stefan Kratsch, Marcin Pilipczuk, and Magnus Wahlström. Solving hard
cut problems via flow-augmentation. In Proc. 32nd ACM-SIAM Symposium on Discrete
Algorithms (SODA-2021), pages 149–168, 2021.

36 Eun Jung Kim, Stefan Kratsch, Marcin Pilipczuk, and Magnus Wahlström. Directed flow-
augmentation. In Proc. 54th Annual ACM SIGACT Symposium on Theory of Computing
(STOC-2022), pages 938–947, 2022.

37 Eun Jung Kim, Stefan Kratsch, Marcin Pilipczuk, and Magnus Wahlström. Flow-augmentation
III: complexity dichotomy for Boolean CSPs parameterized by the number of unsatisfied
constraints. In Proc. 34th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA-
2023), pages 3218–3228, 2023.

38 Eun Jung Kim, Stefan Kratsch, Marcin Pilipczuk, and Magnus Wahlström. Flow-augmentation
I: directed graphs. CoRR, abs/2111.03450, 2023.

39 Eun Jung Kim, Tomáš Masařík, Marcin Pilipczuk, Roohani Sharma, and Magnus Wahlström.
On weighted graph separation problems and flow-augmentation. CoRR, abs/2208.14841, 2022.

40 Vladimir Kolmogorov, Andrei A. Krokhin, and Michal Rolínek. The complexity of general-
valued CSPs. SIAM Journal on Computing, 46(3):1087–1110, 2017.

41 Andrei A. Krokhin, Peter Jeavons, and Peter Jonsson. Reasoning about temporal relations:
The tractable subalgebras of Allen’s interval algebra. Journal of the ACM, 50(5):591–640,
2003.

42 Andrei A. Krokhin and Jakub Oprsal. An invitation to the promise constraint satisfaction
problem. ACM SIGLOG News, 9(3):30–59, 2022.

43 Victor Lagerkvist. A new characterization of restriction-closed hyperclones. In Proc. 50th
IEEE International Symposium on Multiple-Valued Logic (ISMVL-2020), pages 303–308, 2020.

K. K. Dabrowski, P. Jonsson, S. Ordyniak, G. Osipov, M. Pilipczuk, and R. Sharma 11:19

44 Daniel Lokshtanov, Pranabendu Misra, M. S. Ramanujan, Saket Saurabh, and Meirav Zehavi.
Fpt-approximation for fpt problems. In Proc. 32nd ACM-SIAM Symposium on Discrete
Algorithms (SODA-2021), pages 199–218, 2021.

45 Daniel Lokshtanov, M. S. Ramanujan, and Saket Saurabh. Linear time parameterized
algorithms for subset feedback vertex set. ACM Transactions on Algorithms, 14(1):7:1–7:37,
2018.

46 Daniel Lokshtanov, M. S. Ramanujan, and Saket Saurabh. When recursion is better than
iteration: A linear-time algorithm for acyclicity with few error vertices. In Proc. 29th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA-2018), pages 1916–1933, 2018.

47 Dániel Marx and Igor Razgon. Constant ratio fixed-parameter approximation of the edge
multicut problem. Information Processing Letters, 109(20):1161–1166, 2009.

48 Lenka Mudrová and Nick Hawes. Task scheduling for mobile robots using interval algebra. In
Proc. 2015 IEEE International Conference on Robotics and Automation (ICRA-2015), pages
383–388, 2015.

49 Richard N. Pelavin and James F. Allen. A model for concurrent actions having temporal extent.
In Proc. 6th National Conference on Artificial Intelligence (AAAI-1987), pages 246–250, 1987.

50 Prasad Raghavendra. Optimal algorithms and inapproximability results for every CSP? In
Proc. 40th Annual ACM Symposium on Theory of Computing (STOC-2008), pages 245–254,
2008.

51 Igor Razgon and Barry O’Sullivan. Almost 2-SAT is fixed-parameter tractable. Journal of
Computer and System Sciences, 75(8):435–450, 2009.

52 Fei Song and Robin Cohen. The interpretation of temporal relations in narrative. In Proc. 7th
National Conference on Artificial Intelligence (AAAI-1988), pages 745–750, 1988.

53 Marc B. Vilain and Henry A. Kautz. Constraint propagation algorithms for temporal reasoning.
In Proc. 5th National Conference on Artificial Intelligence (AAAI-1986), pages 377–382, 1986.

54 Dmitriy Zhuk. A proof of the CSP dichotomy conjecture. Journal of the ACM, 67(5):30:1–30:78,
2020.

IPEC 2023

An FPT Algorithm for Temporal Graph Untangling
Riccardo Dondi #

Università degli studi di Bergamo, Italy

Manuel Lafond #

Université de Sherbrooke, Canada

Abstract
Several classical combinatorial problems have been considered and analysed on temporal graphs.
Recently, a variant of Vertex Cover on temporal graphs, called MinTimelineCover, has been
introduced to summarize timeline activities in social networks. The problem asks to cover every
temporal edge while minimizing the total span of the vertices (where the span of a vertex is the
length of the timestamp interval it must remain active in). While the problem has been shown to be
NP-hard even in very restricted cases, its parameterized complexity has not been fully understood.
The problem is known to be in FPT under the span parameter only for graphs with two timestamps,
but the parameterized complexity for the general case is open. We settle this open problem by giving
an FPT algorithm that is based on a combination of iterative compression and a reduction to the
Digraph Pair Cut problem, a powerful problem that has received significant attention recently.

2012 ACM Subject Classification Theory of computation → Parameterized complexity and exact
algorithms; Theory of computation → Graph algorithms analysis; Mathematics of computing →
Graph theory; Theory of computation → Design and analysis of algorithms

Keywords and phrases Temporal Graphs, Vertex Cover, Graph Algorithms, Parameterized Com-
plexity

Digital Object Identifier 10.4230/LIPIcs.IPEC.2023.12

Acknowledgements We thank the referees of the paper that help us to improve the presentation.

1 Introduction

Temporal graphs are emerging as one of the main models to describe the dynamics of complex
networks. They describe how relations (edges) change in a discrete time domain [12, 11],
while the vertex set is not changing. The development of algorithms on temporal graphs has
mostly focused on finding paths or walks and on analyzing graph connectivity [12, 20, 21, 7,
22, 8, 3, 17, 1, 5]. However, several classical problems in computer science have been recently
extended to temporal graphs and one of the most relevant problems in graph theory and
theoretical computer science, Vertex Cover, has been considered in this context [2, 10, 19].

In particular, here we study a variant of Vertex Cover, called Network Untangling,
introduced in [19]. Network Untangling has applications in discovering event timelines
and summarizing temporal networks. It considers a sequence of temporal interactions between
entities (e.g. discussions between users in a social network) and aims to explain the observed
interactions with few (and short) activity intervals of entities, such that each interaction is
covered by at least one of the two entities involved (i.e. at least one of the two entities is
active when an interaction between them is observed).

Network Untangling can be seen as a variant of Vertex Cover, where we search
for a minimum cover of the interactions, called temporal edges. The size of this temporal
vertex cover is based on the definition of span of a vertex, that is the length of vertex activity.
In particular, the span of a vertex is defined as the difference between the maximum and
minimum timestamp where the vertex is active. Hence, if a vertex is active in exactly one

© Riccardo Dondi and Manuel Lafond;
licensed under Creative Commons License CC-BY 4.0

18th International Symposium on Parameterized and Exact Computation (IPEC 2023).
Editors: Neeldhara Misra and Magnus Wahlström; Article No. 12; pp. 12:1–12:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:riccardo.dondi@unibg.it
https://orcid.org/0000-0002-6124-2965
mailto:manuel.lafond@usherbrooke.ca
https://orcid.org/0000-0002-5305-7372
https://doi.org/10.4230/LIPIcs.IPEC.2023.12
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

12:2 An FPT Algorithm for Temporal Graph Untangling

timestamp, it has a span equal to 0. This models the idea that each vertex is present in the
network because we know that they interacted at least once, but that sustained periods of
interaction are relatively rare.

Four combinatorial formulations of Network Untangling have been defined in [19],
varying the definition of vertex activity (a single interval or h ≥ 2 intervals) and the objective
function (minimization of the sum of vertex spans or minimization of the maximum vertex
span). Here we consider the formulation, denoted by MinTimelineCover, where vertex
activity is defined as a single interval and the objective function is the minimization of the
sum of vertex spans. Hence, given a temporal graph, MinTimelineCover asks for a cover
of the temporal edges that has minimum span and such that each vertex is active in one
time interval.

We focus on this specific problem, since it is not known to be FPT or not, while the variant
of the problem where vertex activity is defined as two intervals is known to be NP-hard
when the span is equal to 0 [9]. Hence it is unlikely that this problem variant admits an
FPT algorithm for parameter the span. The MinTimelineCover problem is known to be
NP-hard also in very restricted cases, when each timestamp contains at most one temporal
edge [4], when each vertex has at most two incident temporal edges in each timestamp and the
temporal graph is defined over three timestamps [4], and when the temporal graph is defined
over two timestamps [9]. MinTimelineCover is also known to be approximable within
factor O(T log n), where n is the number of vertices and T is the number of timestamps of the
temporal graph [6]. Note that, since the span of a vertex activity in exactly one timestamp
is equal to 0, MinTimelineCover is trivially in P when the temporal graph is defined on a
single timestamp, since in this case any solution of the problem has span 0. Furthermore,
deciding whether there exists a solution of MinTimelineCover that has span equal to 0
can be decided in polynomial time via a reduction to 2-SAT [19].

MinTimelineCover has been considered also in the parameterized complexity framework.
The definition of span leads to a problem where the algorithmic approaches applied to Vertex
Cover cannot be easily extended for the parameter span of the solution. Indeed, in Vertex
Cover for each edge we are sure that at least one of the endpoints must be included in
the solution, thus at least one of the vertices contributes to the cost of the solution. This
leads to the textbook FPT algorithm of branching over the endpoints of any edge. For
MinTimelineCover, a vertex with span 0 may cover a temporal edge, as the vertex can
be active only in the timestamp where the temporal edge is defined. This makes it more
challenging to design FPT algorithms when the parameter is the span of the solution. In this
case, MinTimelineCover is known to admit a parameterized algorithm only when the input
temporal graph is defined over two timestamps [9], with a parameterized reduction to the
Almost 2-SAT problem. However, the parameterized complexity of MinTimelineCover
for the span parameter on general instances has been left open [9, 4]. The authors of [9]
have also analyzed the parameterized complexity of the variants of Network Untangling
proposed in [19], considering other parameters in addition to the span of the solution: the
number of vertices of the temporal graph, the length of the time domain, and the number of
intervals of vertex activity.

Our contributions. We solve the open question on the parameterized complexity of Min-
TimelineCover by showing that the problem is FPT in parameter k, the span of a solution,
even if the number of timestamps is unbounded. Our algorithm takes time O∗(25k log k),
where the O∗ notation hides polynomial factors. Our algorithm is divided into two phases,
each using a different technique. First, given a temporal graph G, we use a variant of

R. Dondi and M. Lafond 12:3

iterative compression, where we start from a solution S of span at most k on a subgraph of G

induced by a subset of vertices (taken across all timestamps), and then try to maintain such
a solution after adding a new vertex of G to the graph under consideration. This requires
us to reorganize which vertices involved in S should be in the solution or not, and in which
timestamps. One challenge is that since the number of such timestamps is unbounded, there
are too many ways to choose how to include or not include the vertices that are involved
in S. We introduce the notion of a feasible assignment, which allows us to compute how
the vertices in S can be reorganized (see Def. 8 for the formal definition). There are only
2O(k log k) ways of reorganizing the vertices in S. We try each such feasible assignments X,
and we must then find a temporal cover of the whole graph G that “agrees” with X.

This leads to the second phase of the algorithm, which decides if such an agreement cover
exists through a reduction to a variant of a problem called Digraph Pair Cut. In this
problem, we receive a directed graph and forbidden pairs of vertices, and we must delete at
most k arcs so that a specified source vertex does not reach both vertices from a forbidden
pair. It is known that the problem can be solved in time O∗(2k). In this work, we need
a version where the input specifies a set of deletable and undeletable arcs, which we call
Constrained Digraph Pair Cut. The Digraph Pair Cut problem and its variants
have played an important role in devising randomized kernels using matroids [16] and, more
recently, in establishing a dichotomy in the complexity landscape of constraint satisfaction
problems [13, 15]. Here, the problem is useful since it can model the implications of including
a vertex in the solution or not and, in a more challenging way, allows implementing the
notion of cost using our definition of span. We hope that the techniques developed for this
reduction can be useful for other variants of temporal graph cover.

Overview of the algorithm. Our approach is loosely inspired by some ideas from the FPT
algorithm for two timestamps, which is a reduction to Almost 2-SAT [9]. In the latter, one
is given a set of clauses with at most two variables each and must delete a minimum number
of clauses so that those remaining are satisfiable. We do not use Almost 2-SAT directly,
but its usage for two timestamps may help understand the origins of our techniques and the
relevance of our reduction to Digraph Pair Cut.

The reduction from MinTimelineCover on two timestamps to Almost 2-SAT asso-
ciates each vertex vi with a variable x(vi), which is true when one should include vi in a
temporal cover and false otherwise; each edge uivi is associated with a clause x(ui) ∨ x(vi)
(here, vi represents the occurrence of vertex v at timestamp i ∈ {1, 2}). This corresponds to
enforcing the inclusion of ui or vi in our vertex cover, and we can include enough copies of
this clause to make it undeletable. Since our goal is to minimize the number of base vertices
v with both v1 and v2 in the cover, we also add a clause ¬x(v1) ∨ ¬x(v2). Then there is a
temporal cover of G of span at most k if and only if one can delete at most k clauses of the
latter form to make all remaining clauses satisfiable.

For T ≥ 3 timestamps, the clauses of the form x(ui) ∨ x(vi) can still be used to model
the vertex cover requirements, but there seems to be no obvious way to model the span of a
cover. One would need to devise a set of clauses of size two such that choosing an interval of
t vertices in a cover corresponds to deleting t − 1 negative clauses. Our idea is to extend
current FPT algorithms for Almost 2-SAT to accommodate our cost function. In [18],
the authors propose an iterative compression FPT algorithm that starts from a solution
that deletes k + 1 clauses, and modifies it into a solution with k clauses, if possible. The
algorithm relies on several clever, but complicated properties of the dependency graph of the
clauses (in which vertices are literals and arcs are implications implied by the clauses). This

IPEC 2023

12:4 An FPT Algorithm for Temporal Graph Untangling

algorithm seems difficult to adapt to our problem. To our knowledge, the only other FPT
algorithm for Almost 2-SAT is that of [16]. The algorithm of [16] employs a parameterized
reduction to Digraph Pair Cut. At a high level, the idea is to start from an initial guess of
assignment for a well-chosen subset of variables, then to construct the dependency graph of
the clauses. A certain chain of implications is enforced by our initial guess, the vertex pairs
to separate correspond to contradictory literals, and deleting arcs corresponds to deleting
clauses. It turns out that, with some work, we can skip the Almost 2-SAT formulation and
reduce MinTimelineCover to (a variant of) Directed Pair Cut directly by borrowing
some ideas from this reduction. This is not immediate though. The first challenge is that
the aforementioned “well-chosen initial guess” idea cannot be used in our context, and we
must develop new tools to enumerate a bounded number of initial guesses from a partial
solution (which we call feasible assignment). The second challenge is that our reduction to
our variant of Directed Pair Cut needs a specific gadget to enforce our cost scheme, while
remaining consistent with the idea of modeling the dependency graph of the SAT instance
corresponding to the vertex cover problem at hand.

Some of the proofs are omitted due to page limit.

2 Preliminaries

For an integer n, we denote [n] = {1, . . . , n} and for two integers i, j, we denote [i, j] =
{i, i + 1, . . . , j − 1, j} (which is the empty st if i > j). Temporal graphs are defined over a
discrete time domain T , which is a sequence 1, 2 . . . , T of timestamps. A temporal graph is
also defined over a set of vertices, called base vertices, that do not change in the time domain
and are defined in all timestamps, and are associated with vertices, which are base vertices
defined in specific timestamps. We use subscripts to denote the timestamp to which a vertex
belongs to, so, for a base vertex v and t ∈ [T], we use vt to denote the occurrence of v in
timestamp t. A temporal edge connects two vertices, associated with distinct base vertices,
that belong to the same timestamp.

▶ Definition 1. A temporal graph G = (VB , E, T) consists of
1. A time domain T = {1, 2 . . . , T };
2. A set VB of base vertices; VB has a corresponding set V (G) of vertices, which consists

of base vertices in specific timestamps, defined as follows:

V (G) = {vt : v ∈ VB ∧ t ∈ [T]}.

3. A set E = E(G) of temporal edges, which satisfies:

E ⊆ {utvt : u, v ∈ VB , t ∈ [T] ∧ u ̸= v}.

For a directed (static) graph H , we denote by (u, v) an arc from vertex u to vertex v (we
consider only directed static graphs, not directed temporal graphs).

Given a temporal graph G = (VB , E, T) and a set of base vertices B ⊆ VB , we define the
set τ(B) of all vertices of B across all times:

τ(B) = {vt : v ∈ B ∧ t ∈ [T]}.

If B = {v}, we may write τ(v) instead of τ({v}).
For a subset WB ⊆ VB of base vertices, we denote by G[WB] the subgraph induced by

τ(WB), that is, the graph whose vertex set is τ(WB) and whose edge set is {utvt ∈ E :
ut, vt ∈ τ(WB)}. We also use the notation G − WB = G[VB \ WB]. Observe that G[WB] and
G − WB are temporal graphs over the same time domain as G.

In order to define the problem we are interested in, we need to define the assignment of a
set of base vertices.

R. Dondi and M. Lafond 12:5

▶ Definition 2. Consider a temporal graph G = (VB , E, T) and a set WB ⊆ VB of base
vertices. An assignment of WB is a subset X ⊆ τ(WB) such that if up ∈ X and uq ∈ X,
with p, q ∈ [T], then ut ∈ X, for each t ∈ [p, q]. For a base vertex u ∈ WB such that there
exists t ∈ [T] with ut ∈ X, we denote by δ(u, X), ∆(u, X), respectively, the minimum and
maximum timestamp, respectively, such that uδ(u,X), u∆(u,X) ∈ X. If ut does not exist, then
δ(u, X) = ∆(u, X) = 0.

If WB is clear from the context or not relevant, then we may say that X is an assignment,
without specifying WB . Note that, given an assignment X and a set τ(v), for some v ∈ VB ,
then X ∩ τ(v) = {vt : vt ∈ X ∧ vt ∈ τ(v)} contains vertices for v that belong to a contiguous
interval of timestamps. Consider a set I ⊆ [T] of timestamps. An assignment X intersects I

if there exists vt ∈ X such that t ∈ I.
Now, we give the definition of temporal cover.

▶ Definition 3. Given a temporal graph G = (VB , E, T) a temporal cover of G is an
assignment X of VB such that the following properties hold:
1. For each v ∈ VB there exists at least one vt ∈ X, for some t ∈ T .
2. For each utvt ∈ E, with t ∈ [T], at least one of ut, vt is in X.

For a temporal cover X of G, the span of v in X is defined as: sp(v, X) = ∆(v, X)−δ(v, X).
Note that if a temporal cover X contains, for a base vertex v ∈ VB , a single vertex vt, then
sp(v, X) = 0. The span of X, denoted by sp(X), is then defined as:

sp(X) =
∑

v∈VB

sp(v, X).

The definition of temporal cover requires that for each base vertex at least one of its
associated vertices belongs to the cover. This is not strictly necessary, since it might be
possible to cover every temporal edge without this condition. However, this condition
simplifies some of the definitions and proofs below. Note that if an assignment of a base
vertex is not needed to cover temporal edges, we can assign the vertex to some timestamp
without increasing the span.

Now, we are able to define MinTimelineCover (an example is presented in Fig. 1).

▶ Problem 4. (MinTimelineCover)
Input: A temporal graph G = (VB , T , E), an integer k.
Question: Does there exist a temporal cover of G of span at most k?

A temporal cover S ⊆ V (G) of span at most k will sometimes be called a solution. Our
goal is to determine whether MinTimelineCover is FPT in parameter k.

3 An FPT Algorithm

In this section we present our FPT algorithm, which consists of two parts:
1. The iterative compression technique.
2. A reduction to the Constrained Digraph Pair Cut problem.

Before presenting the main steps of our algorithm, we present the main idea and some
definitions. Recall that our parameter, that is the span of a solution of MinTimelineCover,
is denoted by k.

Consider a temporal graph G and assume we have a temporal cover S of span at most
k of the subgraph G − {w}, for some base vertex w ∈ VB. The idea of the iterative
compression step is, starting from S, to show how to decide in FPT time whether there

IPEC 2023

12:6 An FPT Algorithm for Temporal Graph Untangling

v

u

z

w

v1

u1

z1

w1

v2

u2

z2

w2

v3

u3

z3

w3

v4

u4

z4

w4

v5

u5

z5

w5

v6

u6

z6

w6

t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

Figure 1 An example of MinTimelineCover on a temporal graph G consisting of four base
vertices and six timestamps. For each timestamp, we draw the temporal edges of G, for example
for t = 2, the temporal edges are v2u2, v2w2, u2w2, z2w2. Also note that in t = 1 and t = 6 no
temporal edge is defined. A temporal cover X = {v5, u2, u3, u4, z3, z4, w2} is represented with grey
rectangles. Note that δ(v, X) = ∆(v, X) = 5, δ(u, X) = 2, ∆(u, X) = 4, δ(z, X) = 3, ∆(z, X) = 4,
δ(w, X) = ∆(w, X) = 2. It follows that sp(X) = 3.

exists a solution of MinTimelineCover for G. This is done by solving a subproblem, called
Restricted Timeline Cover, where we must modify S to consider w. A solution to this
subproblem is computed by branching on the assignments of base vertices having a positive
span in S and on w, and then reducing the problem to Constrained Digraph Pair Cut.
Restricted Timeline Cover is defined as follows.

▶ Problem 5. (Restricted Timeline Cover)
Input: A temporal graph G = (VB , E, T), a vertex w ∈ VB, an integer k, a temporal cover S

of G − {w} of span at most k.
Output: Does there exist a temporal cover of G of span at most k?

For technical reasons that will become apparent later, we will assume that the temporal
graph contains no edge at timestamps 1 and T , i.e. for every utvt ∈ E, we have t ∈ [2, T − 1]
(as in Fig. 1). In particular, this avoids us to consider different gadget definitions in the
reduction to Constrained Digraph Pair Cut, as the cases where a base vertex is assigned
the first or the last of its associated vertex behaves somehow differently. It is easy to see
that if this is not already the case, we can add two such “dummy” timestamps, where G

does not contain any temporal edge. Indeed, since there are no temporal edges in these two
timestamps, then G has a temporal cover of span at most k if and only if the same graph
with dummy timestamps has a temporal cover of span at most k.

Informally, if we are able to solve Restricted Timeline Cover in FPT time, then we
can obtain an FPT algorithm for MinTimelineCover as well. Indeed, we can first compute
a temporal cover on a small subset of base vertices (for example a single vertex), and then we
can add, one at a time, the other vertices of the graph. This requires at most |VB | iterations,
and each time a vertex is added, we compute a solution of Restricted Timeline Cover
to check whether it is possible to find a temporal cover of span at most k after the addition
of a vertex.

R. Dondi and M. Lafond 12:7

Iterative Compression
We now present our approach based on iterative compression to solve the Restricted
Timeline Cover problem. Given a solution S for G − {w}, we focus on the vertices of VB

that have a positive span in S and vertex w. An example of our approach, that illustrates
the sets of base vertices and vertices used by the algorithm, is presented in Fig. 2.

Consider the input of Restricted Timeline Cover that consists of a temporal graph
G = (VB , E, T), a vertex w ∈ VB, and a temporal cover S of G − {w} of span at most k.
Define the following sets associated with S:

VS = {v ∈ VB : ∃p, q ∈ [T], p < q, such that vp, vq ∈ S } ∪ {w}
V ′

S = {vt : vt ∈ S, v ∈ VS \ {w}} ∪ {wt : t ∈ [T]}.

The set VS is defined as the set of base vertices having span greater than 0 in S, plus
the vertex w. V ′

S contains the vertices in V (G) associated with VS , in particular: (1) the
vertices corresponding to the base vertices in VS \ {w} that are included in S and (2) vertices
corresponding to the base vertex w in every timestamp.

Define the following set IS of timestamps associated with VS \ {w}:

IS = {t ∈ [T] : ut ∈ V ′
S for some u ∈ VS \ {w} }.

Essentially, IS contains those timestamps where the base vertices of VS \ {w}, that is of
span greater than zero, have associated vertices in S. These timestamps are essential for
computing a solution of Restricted Timeline Cover, that is to compute whether there
exists a temporal cover of G of span at most k starting from S. We define now the sets of
base vertices and vertices associated with S having a span equal to 0:

ZS = VB \ VS Z ′
S = S \ V ′

S .

First, we show two easy properties of S and IS on the temporal graph G − {w}.

▶ Lemma 6. Let S be a solution of MinTimelineCover on instance G − {w} and let IS

be the associated set of timestamps. Then |IS | ≤ 2k.

▶ Lemma 7. Let S be a solution of MinTimelineCover on instance G − {w}. Then,
sp(Z ′

S) = 0. Moreover, Z ′
S covers each temporal edge of G − {w} not covered by V ′

S \ τ(w).

Now, we introduce the concept of feasible assignment, which is used to “guess” how S is
rearranged in a solution of Restricted Timeline Cover. Recall that an assignment X

intersects a set IS of timestamps if there exists vt ∈ X such that t ∈ IS .

▶ Definition 8 (Feasible assignment). Consider an instance of Restricted Timeline Cover
that consists of a temporal graph G = (VB , T , E), a vertex w ∈ VB, a temporal cover S

of G − {w} of span at most k, and sets VS , V ′
S and IS associated with S. We say that an

assignment X ⊆ τ(VS) of VS is a feasible assignment (with respect to G, S, and IS) if all of
the following conditions hold:
1. the span of X is at most k;
2. every edge of G[VS] is covered by X;
3. X ∩ τ(w) is a non-empty assignment of {w};
4. for every v ∈ VS \ {w}, at least one of the following holds: (1) X ∩ τ(v) is empty; (2)

X ∩ τ(v) is an assignment of {v} that intersects with IS; or (3) X ∩ τ(v) contains a
vertex vt such that vtwt ∈ E and wt /∈ X ∩ τ(w).

IPEC 2023

12:8 An FPT Algorithm for Temporal Graph Untangling

Given a feasible assignment X, we denote

MS(X) = {v ∈ VS : X ∩ τ(v) ̸= ∅} NS(X) = {v ∈ VS : X ∩ τ(v) = ∅}

Informally, point 4 considers the possible cases for a feasible assignment of the vertices of
a base vertex v ∈ VS \ {w} : none of the associated vertices in IS belongs to the computed
solution (case 4.(1)); some of its associated vertices in IS belongs to the solution (case 4.(2));
or some of the vt vertices are forced, since they belong to an edge vtwt with t ∈ IS , that we
know is not covered by wt (case 4.(3)). Note that these cases are not necessarily mutually
exclusive.

Note that MS(X) and NS(X) form a partition of VS . Also note that G, S, and IS are
fixed in the remainder, so we assume that all feasible assignments are with respect to G, S,
and IS without explicit mention. We now relate feasible assignments to temporal covers.

▶ Definition 9. Let X∗ be a temporal cover of G and let X be a feasible assignment. We
say that X∗ agrees with X if:

for each v ∈ MS(X), X∗ ∩ τ(v) = X ∩ τ(v);
for each v ∈ NS(X) and each t ∈ IS, X∗ contains every neighbor ut of vt such that
ut ∈ τ(ZS).

The intuition of X∗ agreeing with X is as follows. For v ∈ MS(X), X “knows” which
vertices of τ(v) should be in the solution, and we require X∗ to contain exactly those. For
v ∈ NS(X), we interpret that X does not want any vertex vt with t ∈ IS . Thus, to cover
the edges incident to vt that go outside of VS , we require X∗ to contain the other endpoint.
Note an important subtlety: we act “as if” X∗ should not contain vt or other vertices of
NS(X) with timestamp in IS , but the definition does not forbid it. Hence, X∗ can contain a
vertex of NS(X) in some timestamps of IS , as long as X∗ contains also its neighbors (in IS)
outside VS .

The main purpose of feasible assignments and agreement is as follows.

▶ Lemma 10. Let X∗ be a temporal cover of G of span at most k. Then there exists a
feasible assignment X such that X∗ agrees with X.

Proof. Construct X ⊆ X∗ as follows: add X∗ ∩ τ(w) to X, and for v ∈ VS \ {w}, add
X∗ ∩ τ(v) to X if and only if X∗ ∩ τ(v) intersects with the set IS , or if it contains a vertex vt

incident to an edge vtwt ∈ E such that wt /∈ X∗ ∩ τ(w). Note that since X∗ is an assignment
of VB , X is an assignment of VS .

We first focus on arguing that X satisfies each condition of a feasible assignment (Defin-
ition 8). For Condition 1, since X∗ has span at most k and X ⊆ X∗, it is clear that X

also has span at most k. For Condition 3, X∗ ∩ τ(w) is non-empty by the definition of
a temporal cover, and we added X∗ ∩ τ(w) to X. For Condition 4, we explicitly require
in our construction of X that for each v ∈ VS \ {w}, if X ∩ τ(v) is non-empty, then it
is equal to X∗ ∩ τ(v) and it either intersects with IS or covers an edge not covered by
X ∩ τ(w) = X∗ ∩ τ(w).

Let us focus on Condition 2. Let utvt ∈ E(G[VS]). If u = w, then if we did not add wt

to X, X∗ must contain vt and we added X∗ ∩ τ(v) to X, thereby covering the edge. The
same holds if v = w. Assume u ̸= w, v ̸= w, and suppose without loss of generality that X∗

contains ut to cover the edge. Suppose for contradiction that X does not cover utvt. Then
we did not add X∗ ∩ τ(u) to X, which implies that X∗ ∩ τ(u) does not intersect with IS . In
particular, t /∈ IS . Recall that S, the temporal cover of G − {w}, only intersects with τ(u)
and τ(v) in timestamps contained in IS . Hence, S cannot cover utvt, a contradiction. We
deduce that X covers every edge. Therefore, X is a feasible assignment.

R. Dondi and M. Lafond 12:9

v

u

z

v2

u2

z2

v3

u3

z3

v4

u4

z4

v5

u5

z5

t = 2 t = 3 t = 4 t = 5

v2

u2

z2

v3

u3

z3

v4

u4

z4

v5

u5

z5

t = 2 t = 3 t = 4 t = 5

Figure 2 An example of application of iterative compression (timestamps 1 and 6 are not shown
as they are edgeless, also vertex w is not shown, its assignment is defined as in Fig. 1). In the left
part, we represent solution S = {v2, v3, u3, u4, z4}, where the vertices in S are highlighted with grey
rectangles. Note that IS = {2, 3, 4}, VS = {v, u}, V ′

S = {v2, v3, u3, u4}, ZS = {z}, Z′
S = {z4}. In the

right part, we represent in grey a feasible assignment X associated with S, containing vertices u2,
u3, u4; in light grey we highlight N ′

S = {v2}. The sets associated with S and X are: MS = {u},
NS = {v}, N ′

S = {v2}, N ′′
S = {v2, v3, v4}. The reduction to Constrained Digraph Pair Cut

eventually leads to the solution of MinTimelineCover represented in Fig. 1.

It remains to show that X∗ agrees with X. For v ∈ MS(X), X∗ ∩ τ(v) = X ∩ τ(v) by
the construction of X. For v ∈ NS(X), there is no vt ∈ X∗ with t ∈ IS , as otherwise we
would have added X∗ ∩ τ(v) to X. For every such vt, X∗ must contain all of its neighbors in
τ(ZS) to cover the edges, as required by the definition of agreement. ◀

It remains to show that the number of feasible assignments has bounded size and can be
enumerated efficiently. We first show the latter can be achieved through the following steps.
Start with X as an empty set and then apply the following steps (checking that the overall
span is at most k):
(1) Branch into every non-empty assignment Xw of {w} of span at most k. In each branch,

add the chosen subset Xw to X;
(2) For every edge vtwt ∈ E(G[VS]) such that wt /∈ Xw, add vt to X;
(3) For every v ∈ VS \ {w}, such that X ∩ τ(v) = ∅ at this moment, branch into |IS | + 1

options: either add no vertex of τ(v) to X, or choose a vertex vt and add it to X, where
t ∈ IS ;

(4) For every v ∈ VS \ {w} such that X ∩ τ(v) ̸= ∅ at this moment, branch into every
assignment Xv of {v} of span at most k that contains every vertex of X ∩ τ(v) (if no
such assignment exists, abort the current branch). For each such branch, add every
vertex of Xv \ X to X.

▶ Theorem 11. The above steps enumerate every feasible assignment in time O(24k log kT 2kn),
where n = |VB |.

Reducing to Constrained Digraph Pair Cut
Our objective is now to list every feasible assignment and, for each of them, to verify whether
there is a temporal cover that agrees with it. More specifically, consider a feasible assignment
X ⊆ τ(VS). Our goal is to decide whether there is a temporal cover X∗ of span at most
k that agrees with X. Since we branch over every possible feasible assignment X, if there
is a temporal cover X∗ of G of span at most k, then by Theorem 11 our enumeration will
eventually consider an X that X∗ agrees with, and hence we will be able to decide of the
existence of X∗.

IPEC 2023

12:10 An FPT Algorithm for Temporal Graph Untangling

We show that finding X∗ reduces to the Constrained Digraph Pair Cut problem,
as we define it below. For a directed graph H, we denote its set of arcs by A(H) (to avoid
confusion with E(G), which is used for the edges of an undirected graph G). For F ⊆ A(H),
we write H − F for the directed graph with vertex set V (H) and arc set A(H) \ F .

▶ Problem 12. (Constrained Digraph Pair Cut)
Input: A directed graph H = (V (H), A(H)), a source vertex s ∈ V (H), a set of vertex pairs

P ⊆
(

V (H)
2

)
called forbidden pairs, a subset of arcs D ⊆ A(H) called deletable arcs, and

an integer k′.
Output: Does there exist a set of arcs F ⊆ D of H such that |F | ≤ k′ and such that, for

each {u, v} ∈ P , at least one of u, v is not reachable from s in H − F?

It is known that Constrained Digraph Pair Cut can be solved in time O∗(2k′) [16],
but a few remarks are needed before proceeding. In [16], the authors only provide an algorithm
for the vertex-deletion variant, and do not consider deletable/undeletable arcs. It is easy to
make an arc undeletable by adding enough parallel paths between the two endpoints, and we
show at the end of the section that our formulation of Constrained Digraph Pair Cut
reduces to the simple vertex-deletion variant. The vertex-deletion variant also admits a
randomized polynomial kernel, and other FPT results are known for weighted arc-deletion
variants [14].

So let us fix a feasible assignment X for the remainder of the section. We will denote
MS = MS(X) and NS = NS(X). We also consider the following set of vertices associated
with NS :

N ′
S = {v2 : v ∈ NS} N ′′

S = {vt ∈ τ(NS) : t ∈ IS}.

For each base vertex v ∈ NS , we need N ′
S to contain any vertex of τ(v) that belongs to the

time interval [2, T − 1], so we choose v2 arbitrarily. Then, N ′′
S contains those vertices vt,

with t ∈ IS , not chosen by the feasible assignment X. Note that according to our definition
of agreement, a solution X∗ should contain all the neighbors of N ′′

S vertices that are in ZS .
Recall that we have defined ZS = VB \ VS and Z ′

S = S \ V ′
S . By Lemma 7 we know that

Z ′
S covers each temporal edge of G[VB \ {w}] not covered by S ∩ V ′

S , and that sp(Z ′
S) = 0.

We may assume that for each v ∈ ZS , there is exactly one t ∈ [T] such that vt ∈ Z ′
S (there

cannot be more than one since Z ′
S has span 0, and if there is no such t, we can add any vt

without affecting the span). Furthermore, we will assume that for each v ∈ ZS , the vertex
vt in Z ′

S is not v1 nor vT . Indeed, since we assume that the first and last timestamps of G

have no edges, if vt = v1 or vt = vT , then vt covers no edge and we may safely change vp to
another vertex of τ(v).

The following observation will be useful for our reduction to Constrained Digraph
Pair Cut.

▶ Observation 13. Let utvt ∈ E(G) such that u ∈ NS and v /∈ MS. Then v ∈ ZS and, if
ut /∈ N ′′

S , we have vt ∈ Z ′
S.

Now, given a feasible assignment X ⊆ τ(V ′
S), sets MS , NS , N ′

S , N ′′
S , ZS , and Z ′

S , we
present our reduction to the Constrained Digraph Pair Cut problem. We construct an
instance of this problem that consists of the directed graph H = (V (H), A(H)), the set of
forbidden (unordered) pairs P ⊆

(
V (H)

2
)
, and the deletable arcs D ⊆ A(H) by applying the

following steps. The second step in the construction is the most important and is shown in
Figure 3. The intuition of these steps is provided afterwards.

R. Dondi and M. Lafond 12:11

1. add to H the source vertex s;

2. for each v ∈ ZS ∪ NS , let vi be the vertex of Z ′
S ∪ N ′

S , where i ∈ [2, T − 1]. Add to H

the vertices v+
1 , . . . , v+

i−1, v−
i , v+

i+1, . . . , v+
T , the vertices bv,j , cv,j , dv,j , for j ∈ [T] \ {i}, and

the set of arcs shown in Figure 3, that is there are arcs (v+
j , bv,j), (v+

j , cv,j), (cv,j , dv,j),
(dv,j , v−

j), for each j ∈ [T] \ {i} and four directed paths: (1) from bv,i−1 to bv,1, (2) from
cv,1 to cv,i−1, (3) from bv,i+1 to bv,T and (4) from cv,T to cv,i+1.
Add to D the set of deletable arcs (cv,j , dv,j), for j ∈ [T] \ {i}.
Then add the following pairs to P :
a. {dv,h, bv,j}, with 1 ≤ h < j ≤ i − 1;
b. {dv,h, bv,j}, with i + 1 ≤ j < h ≤ T ;
c. {cv,h, dv,j}, with 1 ≤ h ≤ i − 1 ≤ i + 1 ≤ j ≤ T ;
d. {cv,h, dv,j}, with 1 ≤ j ≤ i − 1 ≤ i + 1 ≤ h ≤ T .
Note that we have created T + 3(T − 1) = 4T − 3 vertices in H in this step. The subgraph
of H induced by these vertices will be called the gadget corresponding to v.

3. for each temporal edge utvt ∈ E(G) such that ut, vt ∈ τ(ZS) ∪ (τ(NS) \ N ′′
S), there are

three cases. First note that at least one of ut or vt is in Z ′
S . Indeed, if u, v ∈ ZS , this is

because an element of Z ′
S must cover the temporal edge, and if u ∈ NS , then vt ∈ Z ′

S by
Observation 13 (or if v ∈ NS , ut ∈ Z ′

S). The subcases are then:
a. if ut, vt ∈ Z ′

S ∪ N ′
S , add the pair {u−

t , v−
t } to P ;

b. if ut ∈ Z ′
S ∪ N ′

S , vt /∈ Z ′
S ∪ N ′

S , add the arc (u−
t , v+

t) to H;
c. if vt ∈ Z ′

S ∪ N ′
S , ut /∈ Z ′

S ∪ N ′
S , add the arc (v−

t , u+
t) to H;

4. for each temporal edge utvt ∈ E(G) such that ut ∈ (τ(MS) \ X) ∪ N ′′
S and vt ∈ τ(ZS),

there are two cases:
a. if vt /∈ Z ′

S , add the arc (s, v+
t) to H;

b. if vt ∈ Z ′
S , add the pair {s, v−

t } to P .

Define k′ = k − sp(X). This concludes the construction. We will refer to the elements
1, 2, 3, 4 of the above enumeration as the Steps of the construction. Note that the only
deletable arcs in D are the arcs (cv,j , dv,j) introduced in Step 2.

From here, the interpretation of H is that if we delete arc set F , then
(p1) For vt /∈ Z ′

S ∪ N ′
S we should include vt in X∗ if and only if s reaches v+

t in H − F ;
(p2) For vt ∈ Z ′

S ∪ N ′
S we should include vt in X∗ if and only if s does not reach v−

t in
H − F .

The idea behind the steps of the construction is then as follows (and is somewhat easier
to describe in the reverse order of steps). Step 4 describes an initial set of vertices that s is
forced to reach, which correspond to vertices that are forced in X∗. A vertex vt in τ(ZS) is
forced in X∗ if there is in an edge utvt and ut ∈ τ(MS) but ut /∈ X. By our definition of
agreement, vt is also forced if ut ∈ N ′′

S . Step 4 handles both situations: if vt /∈ Z ′
S , we force

s to reach v+
t with the arc (s, v+

t), which is not deletable. If vt ∈ Z ′
S , then v−

t ∈ V (H), and
s is forced to not reach v−

t by adding {s, v−
t } to P . By (p1) and (p2), both cases correspond

to including vt in X∗. Then, Step 3 ensures that each temporal edge is “covered”: for a
temporal edge utvt, a pair of the form {u−

t , v−
t } in P requires that s does not reach one of

the two, i.e. that we include one in X∗, and an undeletable arc of the form (u−
t , v+

t) enforces
that if s reaches u−

t (i.e. ut /∈ X∗), then s reaches v+
t (i.e. vt ∈ X∗). The reason why Z ′

S is
needed in our construction is that each edge has at least one negative corresponding vertex,
so that no other case needs to be considered in Step 3.

IPEC 2023

12:12 An FPT Algorithm for Temporal Graph Untangling

v+1 v+2 v+i−1 v−i v+i+1 v+T−1 v+T

s

bv,1 bv,2 bv,i−1 bv,i+1 bv,T−1 bv,T

cv,1 cv,2 cv,i−1 cv,i+1 cv,T−1 cv,T

dv,1 dv,2 dv,i−1 dv,i+1 dv,T−1 dv,T

Figure 3 Gadget for vi ∈ Z′
S ∪ N ′

S , where i ∈ [2, T − 1]. We assume that there exist temporal
edges utvt ∈ E(G), where t ∈ {i − 1, i + 1}, such that ut ∈ (τ(MS) \ X) ∪ N ′′

S , vt ∈ τ(ZS) and
vt /∈ Z′

S , thus arcs from s to v+
t are added.The dashed arcs represent deletable arcs.

Finally, Step 2 enforces the number of deleted arcs to correspond to the span of a solution.
That is, it ensures that if we want to add to X∗ a set of h vertices of base vertex v ∈ ZS

to our solution of Restricted Timeline Cover (so with a span equal to h − 1), then
we have to delete h − 1 deletable arcs of the corresponding gadget of H in order to obtain
a solution to Constrained Digraph Pair Cut (and vice-versa). Indeed, consider the
gadget in Fig. 3. If vi is not included in X∗, then in the gadget s reaches h positive vertices
v+

l , . . . , v+
r (and v−

i). It follows that vertices bv,l, . . . , bv,r, cv,l, . . . , cv,r and dv,l, . . . , dv,r are
all reachable from s. The pairs {dv,x, bv,y} defined at Step 2, where either l ≤ x ≤ y ≤ r − 1
if r < i, or l + 1 ≤ x ≤ y ≤ r if l > i, ensures that arcs (cv,j , dv,j), with j ∈ [l, r − 1] in the
former case or with j ∈ [l + 1, r] in the latter case, are deleted.

If vi is included in X∗, then in the gadget s reaches h − 1 positive vertices v+
l , . . . , v+

r ,
with i ∈ [l, r], and must not reach negative vertex v−

i . It follows that vertices bv,l, . . . , bv,r,
cv,l, . . . , cv,r and dv,l, . . . , dv,r are all reachable from s. Then h − 1 arcs (cv,j , dv,j), with
j ∈ [l, r] \ {i}, must be deleted, due to the pairs {dv,x, bv,y}, {cv,x, dv,y} defined at Step 2.

Note that Step 2 is the reason we added dummy timestamps 1 and T . If v1 or vT were
allowed to be in Z ′

S ∪ N ′
S , we would need a different gadget for these cases.

▶ Lemma 14. There exists a solution of Restricted Timeline Cover that agrees with X

if and only if there is F ⊆ D with |F | ≤ k′ such that s does not reach a forbidden pair in
H − F . Moreover, given such a set F , a solution of Restricted Timeline Cover can be
computed in polynomial time.

Sketch of the proof. (⇒) Suppose that there exists a solution X∗ of Restricted Timeline
Cover that agrees with X. By definition of Restricted Timeline Cover, X∗ has span
at most k. Note that for v ∈ MS , the agreement requires that X∗ ∩ τ(v) = X ∩ τ(v), and so
the span of v in X∗ is the same as the span of v in X. Thus∑

v∈ZS∪NS

sp(v, X∗) ≤ k − sp(X) = k′.

R. Dondi and M. Lafond 12:13

We may assume that for every v ∈ VB, at least one of v2, . . . , vT −1 is in X∗, as otherwise
we add one arbitrarily without affecting the span (if only v1 or vT is in X∗, remove it first).
For each v ∈ ZS ∪ NS , consider the gadget corresponding to v in H and delete some of its
dashed arcs as follows (we recommend referring to Figure 3).

First, if only one of τ(v) is in X∗, no action is required on the gadget. So assume
that X∗ ∩ τ(v) has at least two vertices; in the following we denote vl = vδ(v,X∗) and
vr = v∆(v,X∗) the vertices associated with v having minimum and maximum timestamp,
respectively, contained in X∗. We assume that l, r ∈ [2, T − 1] and l < r. Note that
X∗ ∩ τ(v) = {vl, vl+1, . . . , vr}.

Let vi ∈ Z ′
S ∪ N ′

S , where i ∈ [2, T − 1]. Then
suppose that l, r ∈ [2, i − 1], then: delete every arc (cv,q, dv,q), with l ≤ q ≤ r − 1
suppose that with l, r ∈ [i + 1, T − 1], then: delete every arc (cv,q, dv,q), with l + 1 ≤ q ≤ r

suppose that l ∈ [2, i] and r ∈ [i, T −1], then: delete every arc (cv,q, dv,q), with l ≤ q ≤ i−1,
and delete every arc (cv,q, dv,q), with i + 1 ≤ q ≤ r.

We see that by construction for all v ∈ ZS ∪ NS , the number of arcs deleted in the gadget
corresponding to v is equal to the number of vertices in X∗ ∩ τ(v) minus one, that is the
span of v in X∗. Since these vertices have span at most k′, it follows that we deleted at most
k′ arcs from H. Denote by H ′ the graph obtained after deleting the aforementioned arcs.
We argue that in H ′, s does not reach a forbidden pair. To this end, we claim the following.

▷ Claim 15. For v ∈ ZS ∪ NS and t ∈ [T], if s reaches v+
t in H ′, then vt ∈ X∗, and if s

reaches v−
t in H ′, then vt /∈ X∗.

Now, armed with the above claim, we can prove that in H ′, s does not reach both vertices
of a forbidden pair q ∈ P , thus concluding this direction of the proof.

(⇐) Suppose that there is a set F ⊆ D with at most k′ arcs such that s does not reach a
forbidden pair in H − F . Denote H ′ = H − F . We construct X∗ from F , which will also
show that it can be reconstructed from F in polynomial time. Define X∗ ⊆ V (G) as follows:

for each v ∈ MS , add every element of X ∩ τ(MS) to X∗;
for each vt ∈ V (G) \ τ(MS), we add vt to X∗ if and only if one of the following holds: (1)
v+

t ∈ V (H) and s reaches v+
t in H ′; or (2) v−

t ∈ V (H), and s does not reach v−
t in H ′;

for each vj , vh ∈ X∗ with j < h, add vt to X∗ for each t ∈ [j + 1, h − 1].

Note that X∗ agrees with X. Indeed, for v ∈ MS , there is no gadget corresponding to v

in the construction and thus we only add X ∩ τ(v) to X∗. For u ∈ NS , consider ut ∈ N ′′
S

and a neighbor vt of ut in τ(ZS). If vt /∈ Z ′
S , Step 4 adds an undeletable arc from s to v+

t ,
hence s reaches that vertex and we put vt in X∗. If vt ∈ Z ′

S , Step 4 adds {s, v−
t } to P , and

thus s does not reach v−
t in H ′, and again we add vt to X∗. Therefore, we add all the τ(ZS)

neighbors of ut to X∗, and so it agrees with X. We can prove that X∗ covers every temporal
edge of G and that sp(X∗) ≤ k. ◀

Wrapping up
Before concluding, we must show that we are able to use the results of [16] to get an
FPT algorithm for Constrained Digraph Pair Cut, as we have presented it. As we
mentioned, the FPT algorithm in [16] studied the vertex-deletion variant and does not
consider undeletable elements, but this is mostly a technicality. Roughly speaking, in our
variant, it suffices to replace each vertex with enough copies of the same vertex, and replace
each deletable arc (u, v) with a new vertex, adding arcs from the u copies to that vertex,
and arcs from that vertex to the v copies. Deleting (u, v) corresponds to deleting that new
vertex. For undeletable arcs, we apply the same process but repeat it k′ + 1 times.

IPEC 2023

12:14 An FPT Algorithm for Temporal Graph Untangling

▶ Lemma 16. The Constrained Digraph Pair Cut problem can be solved in time
O∗(2k), where k is the number of arcs to delete.

We are able now to prove the main result of our contribution.

▶ Theorem 17. MinTimelineCover on a temporal graph G = (VB , E, T) can be solved in
time O∗(25k log k).

Proof. First, we discuss the correctness of the algorithm we presented. Assume that we
have an ordering on the base vertices of G and that v is the first vertex of this ordering. A
solution S of MinTimelineCover on G[{v}] is equal to S = ∅.

Then for i, with i ∈ [2, |VB |], let Gi be the temporal graph induced by the first i vertices
and let w be the i + 1-th vertex. Given a solution S of MinTimelineCover on instance Gi

of span at most k, we can decide whether there exists a solution of MinTimelineCover
on instance Gi+1 by computing whether there exists a solution X∗ of the Restricted
Timeline Cover problem on instance Gi, w, S. By Lemma 10 and by Theorem 11 if there
exists such an X∗, then there exists a feasible assignment X such that X∗ agrees with X.
By Lemma 14 we can compute, via the reduction to Constrained Digraph Pair Cut,
whether there exists a solution of Restricted Timeline Cover on instance on instance
Gi, w, S, and if so obtain such a solution (if no such solution X∗ exists, then Lemma 14
also says that we will never return a solution, since every feasible assignment X that we
enumerate will lead to a negative instance of Constrained Digraph Pair Cut). Thus
the Restricted Timeline Cover subproblem is solved correctly, and once it is solved on
G|VB |, we have a solution to MinTimelineCover.

Now, we discuss the complexity of the algorithm. We must solve Restricted Timeline
Cover |VB | times. For each iteration, by Theorem 11 we can enumerate the feasible assign-
ments in O(24k log kT 3n) time. For each such assignment, the reduction from Restricted
Timeline Cover to Constrained Digraph Pair Cut requires polynomial time, and
each generated instance can be solved in time O∗(2k). The time dependency on k is thus
O∗(24k log k · 2k), which we simplify to O∗(25k log k). ◀

4 Conclusion

We have presented an FPT algorithm for the MinTimelineCover problem, a variant of
Vertex Cover on temporal graphs recently considered for timeline activities summarizations.
We point out some relevant future directions on this topic: (1) to improve, if possible, the
time complexity of MinTimelineCover by obtaining a single exponential time algorithm (of
the form O∗(ck)); (2) to establish whether MinTimelineCover admits a polynomial kernel,
possibly randomized (which it might, since Constrained Digraph Pair Cut famously
admits a randomized polynomial kernel).

References
1 Eleni C. Akrida, George B. Mertzios, Paul G. Spirakis, and Christoforos L. Raptopoulos.

The temporal explorer who returns to the base. J. Comput. Syst. Sci., 120:179–193, 2021.
doi:10.1016/j.jcss.2021.04.001.

2 Eleni C. Akrida, George B. Mertzios, Paul G. Spirakis, and Viktor Zamaraev. Temporal
vertex cover with a sliding time window. J. Comput. Syst. Sci., 107:108–123, 2020. doi:
10.1016/j.jcss.2019.08.002.

3 Benjamin Merlin Bumpus and Kitty Meeks. Edge exploration of temporal graphs. In Paola
Flocchini and Lucia Moura, editors, Combinatorial Algorithms - 32nd International Workshop,
IWOCA 2021, Ottawa, ON, Canada, July 5-7, 2021, Proceedings, volume 12757 of Lecture Notes
in Computer Science, pages 107–121. Springer, 2021. doi:10.1007/978-3-030-79987-8_8.

https://doi.org/10.1016/j.jcss.2021.04.001
https://doi.org/10.1016/j.jcss.2019.08.002
https://doi.org/10.1016/j.jcss.2019.08.002
https://doi.org/10.1007/978-3-030-79987-8_8

R. Dondi and M. Lafond 12:15

4 Riccardo Dondi. Untangling temporal graphs of bounded degree. Theor. Comput. Sci.,
969:114040, 2023. doi:10.1016/j.tcs.2023.114040.

5 Riccardo Dondi and Mohammad Mehdi Hosseinzadeh. Finding colorful paths in temporal
graphs. In Rosa María Benito, Chantal Cherifi, Hocine Cherifi, Esteban Moro, Luis M.
Rocha, and Marta Sales-Pardo, editors, Complex Networks & Their Applications X - Volume 1,
Proceedings of the Tenth International Conference on Complex Networks and Their Applications
COMPLEX NETWORKS 2021, Madrid, Spain, November 30 - December 2, 2021, volume
1015 of Studies in Computational Intelligence, pages 553–565. Springer, 2021. doi:10.1007/
978-3-030-93409-5_46.

6 Riccardo Dondi and Alexandru Popa. Timeline cover in temporal graphs: Exact and approxim-
ation algorithms. In Sun-Yuan Hsieh, Ling-Ju Hung, and Chia-Wei Lee, editors, Combinatorial
Algorithms - 34th International Workshop, IWOCA 2023, Tainan, Taiwan, June 7-10, 2023,
Proceedings, volume 13889 of Lecture Notes in Computer Science, pages 173–184. Springer,
2023. doi:10.1007/978-3-031-34347-6_15.

7 Thomas Erlebach, Michael Hoffmann, and Frank Kammer. On temporal graph exploration. J.
Comput. Syst. Sci., 119:1–18, 2021. doi:10.1016/j.jcss.2021.01.005.

8 Till Fluschnik, Hendrik Molter, Rolf Niedermeier, Malte Renken, and Philipp Zschoche.
Temporal graph classes: A view through temporal separators. Theor. Comput. Sci., 806:197–
218, 2020. doi:10.1016/j.tcs.2019.03.031.

9 Vincent Froese, Pascal Kunz, and Philipp Zschoche. Disentangling the computational com-
plexity of network untangling. In Luc De Raedt, editor, Proceedings of the Thirty-First
International Joint Conference on Artificial Intelligence, IJCAI 2022, Vienna, Austria, 23-29
July 2022, pages 2037–2043. ijcai.org, 2022. doi:10.24963/ijcai.2022/283.

10 Thekla Hamm, Nina Klobas, George B. Mertzios, and Paul G. Spirakis. The complexity of
temporal vertex cover in small-degree graphs. In Thirty-Sixth AAAI Conference on Artificial
Intelligence, AAAI 2022, Thirty-Fourth Conference on Innovative Applications of Artificial
Intelligence, IAAI 2022, The Twelveth Symposium on Educational Advances in Artificial
Intelligence, EAAI 2022 Virtual Event, February 22 - March 1, 2022, pages 10193–10201.
AAAI Press, 2022.

11 Petter Holme. Modern temporal network theory: a colloquium. The European Physical Journal
B, 88(9):234, 2015.

12 David Kempe, Jon M. Kleinberg, and Amit Kumar. Connectivity and inference problems for
temporal networks. J. Comput. Syst. Sci., 64(4):820–842, 2002. doi:10.1006/jcss.2002.1829.

13 Eun Jung Kim, Stefan Kratsch, Marcin Pilipczuk, and Magnus Wahlström. Directed flow-
augmentation. In Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of
Computing, pages 938–947, 2022.

14 Eun Jung Kim, Stefan Kratsch, Marcin Pilipczuk, and Magnus Wahlström. Directed flow-
augmentation. In Stefano Leonardi and Anupam Gupta, editors, STOC ’22: 54th Annual
ACM SIGACT Symposium on Theory of Computing, Rome, Italy, June 20 - 24, 2022, pages
938–947. ACM, 2022. doi:10.1145/3519935.3520018.

15 Eun Jung Kim, Stefan Kratsch, Marcin Pilipczuk, and Magnus Wahlström. Flow-augmentation
iii: Complexity dichotomy for boolean csps parameterized by the number of unsatisfied
constraints. In Proceedings of the 2023 Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 3218–3228. SIAM, 2023.

16 Stefan Kratsch and Magnus Wahlström. Representative sets and irrelevant vertices: New tools
for kernelization. J. ACM, 67(3):16:1–16:50, 2020. doi:10.1145/3390887.

17 Andrea Marino and Ana Silva. Königsberg sightseeing: Eulerian walks in temporal
graphs. In Paola Flocchini and Lucia Moura, editors, Combinatorial Algorithms - 32nd
International Workshop, IWOCA 2021, Ottawa, ON, Canada, July 5-7, 2021, Proceed-
ings, volume 12757 of Lecture Notes in Computer Science, pages 485–500. Springer, 2021.
doi:10.1007/978-3-030-79987-8_34.

IPEC 2023

https://doi.org/10.1016/j.tcs.2023.114040
https://doi.org/10.1007/978-3-030-93409-5_46
https://doi.org/10.1007/978-3-030-93409-5_46
https://doi.org/10.1007/978-3-031-34347-6_15
https://doi.org/10.1016/j.jcss.2021.01.005
https://doi.org/10.1016/j.tcs.2019.03.031
https://doi.org/10.24963/ijcai.2022/283
https://doi.org/10.1006/jcss.2002.1829
https://doi.org/10.1145/3519935.3520018
https://doi.org/10.1145/3390887
https://doi.org/10.1007/978-3-030-79987-8_34

12:16 An FPT Algorithm for Temporal Graph Untangling

18 Igor Razgon and Barry O’Sullivan. Almost 2-sat is fixed-parameter tractable. J. Comput.
Syst. Sci., 75(8):435–450, 2009. doi:10.1016/j.jcss.2009.04.002.

19 Polina Rozenshtein, Nikolaj Tatti, and Aristides Gionis. The network-untangling problem:
from interactions to activity timelines. Data Min. Knowl. Discov., 35(1):213–247, 2021.
doi:10.1007/s10618-020-00717-5.

20 Huanhuan Wu, James Cheng, Silu Huang, Yiping Ke, Yi Lu, and Yanyan Xu. Path problems in
temporal graphs. Proc. VLDB Endow., 7(9):721–732, 2014. doi:10.14778/2732939.2732945.

21 Huanhuan Wu, James Cheng, Yiping Ke, Silu Huang, Yuzhen Huang, and Hejun Wu. Efficient
algorithms for temporal path computation. IEEE Trans. Knowl. Data Eng., 28(11):2927–2942,
2016. doi:10.1109/TKDE.2016.2594065.

22 Philipp Zschoche, Till Fluschnik, Hendrik Molter, and Rolf Niedermeier. The complexity
of finding small separators in temporal graphs. J. Comput. Syst. Sci., 107:72–92, 2020.
doi:10.1016/j.jcss.2019.07.006.

https://doi.org/10.1016/j.jcss.2009.04.002
https://doi.org/10.1007/s10618-020-00717-5
https://doi.org/10.14778/2732939.2732945
https://doi.org/10.1109/TKDE.2016.2594065
https://doi.org/10.1016/j.jcss.2019.07.006

Budgeted Matroid Maximization: a Parameterized
Viewpoint
Ilan Doron-Arad #

Computer Science Department, Technion, Haifa, Israel

Ariel Kulik #

CISPA Helmholtz Center for Information Security, Saarbrücken, Germany

Hadas Shachnai #

Computer Science Department, Technion, Haifa, Israel

Abstract
We study budgeted variants of well known maximization problems with multiple matroid constraints.
Given an ℓ-matchoid M on a ground set E, a profit function p : E → R≥0, a cost function
c : E → R≥0, and a budget B ∈ R≥0, the goal is to find in the ℓ-matchoid a feasible set S of
maximum profit p(S) subject to the budget constraint, i.e., c(S) ≤ B. The budgeted ℓ-matchoid
(BM) problem includes as special cases budgeted ℓ-dimensional matching and budgeted ℓ-matroid
intersection. A strong motivation for studying BM from parameterized viewpoint comes from the
APX-hardness of unbudgeted ℓ-dimensional matching (i.e., B = ∞) already for ℓ = 3. Nevertheless,
while there are known FPT algorithms for the unbudgeted variants of the above problems, the
budgeted variants are studied here for the first time through the lens of parameterized complexity.

We show that BM parametrized by solution size is W [1]-hard, already with a degenerate single
matroid constraint. Thus, an exact parameterized algorithm is unlikely to exist, motivating the
study of FPT-approximation schemes (FPAS). Our main result is an FPAS for BM (implying an
FPAS for ℓ-dimensional matching and budgeted ℓ-matroid intersection), relying on the notion of
representative set − a small cardinality subset of elements which preserves the optimum up to a
small factor. We also give a lower bound on the minimum possible size of a representative set which
can be computed in polynomial time.

2012 ACM Subject Classification Theory of computation

Keywords and phrases budgeted matching, budgeted matroid intersection, knapsack problems,
FPT-approximation scheme

Digital Object Identifier 10.4230/LIPIcs.IPEC.2023.13

Related Version Full Version: https://arxiv.org/abs/2307.04173 [7]

Funding Ariel Kulik: Research supported by the European Reseach Concil (ERC) consolidator grant
no. 725978 SYSTEMATICGRAPH.

1 Introduction

Numerous combinatorial optimization problems can be interpreted as constrained budgeted
problems. In this setting, we are given a ground set E of elements and a family I ⊆ 2E of
subsets of E known as the feasible sets. We are also given a cost function c : E → R, a profit
function p : E → R, and a budget B ∈ R. A solution is a feasible set S ∈ I of bounded cost
c(S) ≤ B.1 Broadly speaking, the goal is to find a solution S of maximum profit. Notable
examples include budgeted matching [1] and budgeted matroid intersection [3, 20], shortest
weight-constrained path [18], and constrained minimum spanning trees [36].

1 For a function f : A → R and a subset of elements C ⊆ A, define f(C) =
∑

e∈C
f(e).

© Ilan Doron-Arad, Ariel Kulik, and Hadas Shachnai;
licensed under Creative Commons License CC-BY 4.0

18th International Symposium on Parameterized and Exact Computation (IPEC 2023).
Editors: Neeldhara Misra and Magnus Wahlström; Article No. 13; pp. 13:1–13:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:idoron-arad@cs.technion.ac.il
mailto:ariel.kulik@cispa.de
mailto:hadas@cs.technion.ac.il
https://doi.org/10.4230/LIPIcs.IPEC.2023.13
https://arxiv.org/abs/2307.04173
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

13:2 Budgeted Matroid Maximization: Parameterized Viewpoint

a

b

c

U1 U2 U3I1 = {{∅}, {a}, {b}, {c}, {a,b}, {c,b}}

I2 = {{∅}, {a}, {b}, {c}, {a,b}, {a, c}}

I3 = {{∅}, {a}, {b}, {c}, {a,b}, {b, c}}

I = I1 ∩ I2 ∩ I3 = {{∅}, {a}, {b}, {c}, {a,b}}

Figure 1 A 3-dimensional matching viewed as a 3-matroid intersection. Each element in
E ⊂ U1 × U2 × U3 is represented by a path of three vertices, where the paths are distinguished by
different colors, that is E = {a, b, c}. There is a matroid constraint (E, Ii) for each Ui, i = 1, 2, 3.
The feasible sets I for the matching are exactly the common independent sets of Ii, i = 1, 2, 3.

Despite the wide interest in constrained budgeted problems in approximation algorithms,
not much is known about this intriguing family of problems in terms of parameterized com-
plexity. In this work, we study budgeted maximization with the fairly general ℓ-dimensional
matching, ℓ-matroid intersection, and ℓ-matchoid constraints.

An ℓ-dimensional matching constraint is a set system (E, I), where E ⊆ U1× . . .×Uℓ for
ℓ sets U1, . . . , Uℓ. The feasible sets I are all subsets S ⊆ E which satisfy the following. For
any two distinct tuples (e1, . . . , eℓ), (f1, . . . , fℓ) ∈ S and every i ∈ [ℓ] it holds that ei ≠ fi.2
Informally, the input for budgeted ℓ-dimensional matching is an ℓ-dimensional matching
constraint (E, I), profits and costs for the elements in E, and a budget. The objective is to
find a feasible set which maximizes the profit subject to the budget constraint (see below the
formal definition).

We now define an ℓ-matroid intersection. A matroid is a set system (E, I), where E is a
finite set and I ⊆ 2E , such that
∅ ∈ I.
The hereditary property: for all A ∈ I and B ⊆ A it holds that B ∈ I.
The exchange property: for all A, B ∈ I where |A| > |B| there is e ∈ A \ B such that
B ∪ {e} ∈ I.

For a fixed ℓ ≥ 1, let (E, I1), (E, I2), . . . , (E, Iℓ) be ℓ matroids on the same ground set E.
An ℓ-matroid intersection is a set system (E, I) where I = I1 ∩ I2 ∩ . . . ∩ Iℓ. Observe that
ℓ-dimensional matching, where E ⊆ U1 × . . .× Uℓ, is a special case of ℓ-matroid intersection:
For each i ∈ [ℓ], define a partition matroid (E, Ii), where any feasible set S ∈ Ii may contain
each element e ∈ Ui in the i-th coordinate at most once, i.e.,

Ii = {S ⊆ E | ∀(e1, . . . , eℓ) ̸= (f1, . . . , fℓ) ∈ S : ei ̸= fi}.

We give an illustration in Figure 1. It can be shown that (E, Ii) is a matroid for all i ∈ ℓ

(see, e.g., [37]).
The above constraint families can be generalized to the notion of ℓ-matchoid. Informally,

an ℓ-matchoid is an intersection of an unbounded number of matroids, where each element
belongs to at most ℓ of the matroids. Formally, for any ℓ ≥ 1, an ℓ-matchoid on a set
E is a collection M = {Mi = (Ei, Ii)}i∈[s] of s ∈ N matroids, where for each i ∈ [s]
it holds that Ei ⊆ E, and every e ∈ E belongs to at most ℓ sets in {E1, . . . , Es}, i.e.,
|{i ∈ [s] | e ∈ Ei}| ≤ ℓ. A set S ⊆ E is feasible forM if for all i ∈ [s] it holds that S∩Ei ∈ Ii.
Let I(M) = {S ⊆ E | ∀i ∈ [s] : S ∩ Ei ∈ Ii} be all feasible sets of M. For all k ∈ N, we

2 For any k ∈ N let [k] = {1, 2, . . . , k}.

I. Doron-Arad, A. Kulik, and H. Shachnai 13:3

0/1-knapsack

Budgeted ℓ-dimensional matching (BDM)

Budgeted ℓ-matroid intersection (BMI)

Budgeted ℓ-Matchoid (BM)

Figure 2 An overview of constrained budgeted problems. An arrow from problem A to problem
B indicates that A is a special case of B.

useMk ⊆ I(M) to denote all feasible sets of M of cardinality at most k. Clearly, ℓ-matroid
intersection (and also ℓ-dimensional matching) is the special case of ℓ-matchoid where the
s(= ℓ) matroids are defined over the same ground set E.

In the budgeted ℓ-matchoid (BM) problem, we are given an ℓ-matchoid along with a
cost function, profit function, and a budget; our goal is to maximize the profit of a feasible
set under the budget constraint. The budgeted ℓ-matroid intersection (BMI) and budgeted
ℓ-dimensional matching (BDM) are the special cases where the ℓ-matchoid is an ℓ-matroid
intersection and ℓ-dimensional matching, respectively. Each of these problems generalizes
the classic 0/1-knapsack, where all sets are feasible. Figure 2 shows the relations between
the problems. Henceforth, we focus on the BM problem.

Formally, a BM instance is a tuple I = (E,M, c, p, B, k, ℓ), where E is a ground set of
elements, M is an ℓ-matchoid on E, c : E → N>0 is a cost function, p : E → N>0 is a profit
function, B ∈ N>0 is a budget, and k, ℓ ∈ N>0 are integer parameters.3 In addition, each
matroid (Ei, Ii) ∈ M has a membership oracle, which tests whether a given subset of Ei

belongs to Ii or not in a single query. Indeed, with no membership oracle, the representation
size for a matroid over n elements may be exponential in n. A solution of I is a feasible set
S ∈ Mk such that c(S) ≤ B. The objective is to find a solution S of I such that p(S) is
maximized. We consider algorithms parameterized by k and ℓ (equivalently, k + ℓ).

We note that even with no budget constraint (i.e., c(E) ≤ B), where the ℓ-matchoid is
restricted to be a 3-dimensional matching, BM is MAX SNP-complete [26], i.e., it cannot
admit a polynomial time approximation scheme (PTAS) unless P=NP. On the other hand, the
ℓ-dimensional matching and even the ℓ-matchoid problem (without a budget), parameterized
by ℓ and the solution size k, are fixed parameter tractable (FPT) [19, 22]. This motivates
our study of BM through the lens of parameterized complexity. We first observe that BM
parameterized by the solution size is W[1]-hard, already with a uniform matroid where all
sets are feasible (i.e., knapsack parametrized by the cardinality of the solution, k).

▶ Theorem 1. BM is W [1]-hard.

3 We assume integral values for simplicity; our results can be generalized also for real values.

IPEC 2023

13:4 Budgeted Matroid Maximization: Parameterized Viewpoint

By the hardness result in Theorem 1, the best we can expect for BM in terms of paramet-
rized algorithms, is an FPT-approximation scheme (FPAS). An FPAS with parameterization
κ for a maximization problem Π is an algorithm whose input is an instance I of Π and an
ε > 0, which produces a solution S of I of value (1− ε) ·OPT(I) in time f(ε, κ(|I|)) · |I|O(1)

for some computable function f , where |I| denotes the encoding size of I and OPT(I) is
the optimum value of I. We refer the reader to [34, 14] for comprehensive surveys on
parameterized approximation schemes and parameterized approximations in general. To
derive an FPAS for BM, we use a small cardinality representative set, which is a subset
of elements containing the elements of an almost optimal solution for the instance. The
representative set has a cardinality depending solely on ℓ, k, ε−1 and is constructed in FPT
time. Formally,

▶ Definition 2. Let I = (E,M, c, p, B, k, ℓ) be a BM instance, 0 < ε < 1
2 and R ⊆ E. Then

R is a representative set of I and ε if there is a solution S of I such that the following holds.
1. S ⊆ R.
2. p (S) ≥ (1− 2ε) ·OPT(I).

We remark that Definition 2 slightly resembles the definition of lossy kernel [31]. Nonethe-
less, the definition of lossy kernel does not apply to problems in the oracle model, including
BM (see Section 6 for further details).

The main technical contribution of this paper is the design of a small cardinality represent-
ative set for BM. Our representative set is constructed by forming a collection of f(ℓ, k, ε−1)
profit classes, where the elements of each profit class have roughly the same profit. Then, to
construct a representative set for the instance, we define a residual problem for each profit
class which enables to circumvent the budget constraint. These residual problems can be
solved efficiently using a construction of [22]. We show that combining the solutions for
the residual problems, we obtain a representative set. In the following, we use Õ(n) for
O(n · poly(log(n))).

▶ Theorem 3. There is an algorithm that given a BM instance I = (E,M, c, p, B, k, ℓ)
and 0 < ε < 1

2 , returns in time |I|O(1) a representative set R ⊆ E of I and ε such that
|R| = Õ

(
ℓ(k−1)·ℓ · k2 · ε−2)

.

Given a small cardinality representative set, it is easy to derive an FPAS. Specifically,
using an exhaustive enumeration over the representative set as stated in Theorem 3, we can
construct the following FPAS for BM, which naturally applies also for BMI and BDM.

▶ Theorem 4. For any BM instance I = (E,M, c, p, B, k, ℓ) and 0 < ε < 1
2 , there is an

FPAS whose running time is |I|O(1) · Õ
(

ℓk2·ℓ · kO(k) · ε−2k
)

.

Our FPAS cannot be significantly improved even for very restricted ℓ-matchoids. Namely,
even if the ℓ-matchoid is a single matroid there cannot be an FPAS for BMI with running
time polynomial in 1

ε , where ε is the given error parameter [11]. To complement the above
construction of a representative set, we show that even for the special case of an ℓ-dimensional
matching constraint, it is unlikely that a representative set of significantly smaller cardinality
can be constructed in polynomial time. The next result applies to the special case of BDM.

▶ Theorem 5. For any function f : N → N, and c1, c2 ∈ R such that c2 − c1 < 0,
there is no algorithm which finds for a given BM instance I = (E,M, c, p, B, k, ℓ) and
0 < ε < 1

2 a representative set of size O
(
f(ℓ) · kℓ−c1 · 1

εc2

)
of I and ε in time |I|O(1), unless

coNP ⊆ NP/poly.

I. Doron-Arad, A. Kulik, and H. Shachnai 13:5

In the proof of Theorem 1, we use a lower bound on the kernel size of the Perfect
3-Dimensional Matching (3-PDM) problem, due to Dell and Marx [5, 6].4 In our hardness
result, we are able to efficiently construct a kernel for 3-PDM using a representative set for
BM, already for the special case of 3-dimensional matching constraint, uniform costs, and
uniform profits.

Related Work

While BM is studied here for the first time, special cases of the problem have been extensively
studied from both parameterized and approximative points of view. For maximum weighted
ℓ-matchoid without a budget constraint, Huang and Ward [22] obtained a deterministic
FPT algorithm, and algorithms for a more general problem, involving a coverage function
objective rather than a linear objective. Their result differentiates the ℓ-matchoid problem
from the matroid ℓ-parity problem which cannot have an FPT algorithm in general matroids
[32, 24]. Interestingly, when the matroids are given a linear representation, the matroid
ℓ-parity problem admits a randomized FPT algorithm [35, 15] and a deterministic FPT
algorithm [30]. We use a construction of [22] as a building block of our algorithm.

The ℓ-dimensional k-matching problem (i.e., the version of the problem with no budget
parametrized by k and ℓ) has received considerable attention in previous studies. Goyal et
al. [19] presented a deterministic FPT algorithm whose running time is O∗(2.851(ℓ−1)·k) for
the weighted version of ℓ-dimensional k-matching, where O∗ is used to suppress polynomial
factor in the running time. This result improves a previous result of [4]. For the unweighted
version of ℓ-dimensional k-matching, the state of the art is a randomized FPT algorithm
with running time O∗(2(ℓ−2)·k) [2], improving a previous result for the problem [27].

Budgeted problems are well studied in approximation algorithms. As BM is a generaliza-
tion of classic 0/1-knapsack, it is known to be NP-hard. However, while knapsack admits
a fully PTAS (FPTAS) [33], BM is unlikely to admit a PTAS, even for the special case
of 3-dimensional matching with no budget constraint [26]. Consequently, there has been
extensive research work to identify special cases of BM which admit approximation schemes.

For the budgeted matroid independent set (i.e., the special case of BM where the ℓ-
matchoid consists of a single matroid), Doron-Arad et al. [9] developed an efficient PTAS
(EPTAS) using the representative set based technique. This algorithm was later generalized
in [8] to tackle budgeted matroid intersection and budgeted matching (both are special
cases of BM where ℓ = 2), improving upon a result of Berger et al. [1]. For the special case
where the matroid is a laminar matroid, there is an FPTAS [10]. We generalize some of the
technical ideas of [9, 8] to the setting of ℓ-matchoid and parametrized approximations.

Organization of the paper. Section 2 describes our construction of a representative set. In
Section 3 we present our FPAS for BM. Section 4 contains the proofs of the hardness results
given in Theorem 1 and in Theorem 1. In Section 5 we present an auxiliary approximation
algorithm for BM. We conclude in Section 6 with a summary and some directions for future
work.

4 We refer the reader e.g., to [16], for the formal definition of kernels.

IPEC 2023

13:6 Budgeted Matroid Maximization: Parameterized Viewpoint

2 Representative Set

In this section we construct a representative set for BM. Our first step is to round the profits
of a given instance, and to determine the low profit elements that can be discarded without
incurring significant loss of profit. We find a small cardinality representative set from which
an almost optimal solution can be selected via enumeration yielding an FPAS (see Section 3).

We proceed to construct a representative set whose cardinality depends only on ε−1, k,
and ℓ. This requires the definition of profit classes, namely, a partition of the elements into
groups, where the elements in each group have similar profits. Constructing a representative
set using this method requires an approximation of the optimum value of the input BM
instance I. To this end, we use a 1

2ℓ -approximation α = ApproxBM(I) of the optimum value
OPT(I) described below.

▶ Lemma 6. Given a BM instance I = (E,M, c, p, B, k, ℓ), there is an algorithm ApproxBM
which returns in time |I|O(1) a value α such that OPT(I)

2ℓ ≤ α ≤ OPT(I).

The proof of Lemma 6 is given in Section 5. The proof utilizes a known approximation
algorithm for the unbudgeted version of BM [23, 25] which is then transformed into an
approximation algorithm for BM using a technique of [29].

The first step in designing the profit classes is to determine a set of profitable elements.
required for obtaining an almost optimal solution. This set allows us to

construct only a small number of profit classes. We define the set of profitable elements
w.r.t. I, α, and ε as

H[I, α, ε] =
{

e ∈ E | ε · α
k

< p(e) ≤ 2 · ℓ · α
}

. (1)

The upper bound on p(e) is purely technical; it is used later to upper bound the number
of profit classes. When clear from the context, we simply use H = H[I, α, ε]. Consider the
non-profitable elements. The next lemma states that omitting these elements indeed has
small effect on the profit of the solution set.

▶ Lemma 7. For every BM instance I = (E, C, c, p, B, k, ℓ), OPT(I)
2ℓ ≤ α ≤ OPT(I),

0 < ε < 1
2 , and S ∈Mk it holds that p (S \H[I, α, ε]) ≤ ε ·OPT(I).

Proof. We note that

p (S \H[I, α(I), ε]) ≤ k · ε · α
k

= ε · α ≤ ε ·OPT(I).

The first inequality holds since each element in S \H[I, α(I), ε] has profit at most ε·α
k by

(1); in addition, since S ∈ Mk it follows that S contains at most k elements. The second
inequality holds as α ≤ OPT(I). ◀

Using Lemma 7, our representative set can be constructed exclusively from the profitable
elements. We can now partition the profitable elements into a small number of profit classes.
There is a profit class Kr(α) for a suitable range of profit boundaries r and a constant factor
approximation α for OPT. Specifically, let

D(I, ε) =
{

r ∈ N>0
∣∣ (1− ε)r−1 ≥ ε

2 · ℓ · k

}
(2)

be the set of boundaries for the profit classes (defined below). We simplify by D = D(I, ε).
For all r ∈ D, and OPT(I)

2ℓ ≤ α ≤ OPT(I), define the r-profit class as

Kr(α) =
{

e ∈ E

∣∣∣∣ p(e)
2 · ℓ · α ∈

(
(1− ε)r, (1− ε)r−1]}

. (3)

I. Doron-Arad, A. Kulik, and H. Shachnai 13:7

Representative Set R
Exchange Set

R ∩ K1(α)

R ∩ K2(α)

R ∩ K3(α)

R ∩ K4(α)

Figure 3 An illustration of our construction of a representative set R, using a union of exchange
sets, one for each profit class K1(α), K2(α), K3(α), K4(α).

In words, each profit class r ∈ D contains profitable elements (and may contain some elements
that are almost profitable due to our 1

2ℓ -approximation for OPT(I)), where the profits of any
two elements that belong to the r-profit class can differ by at most a multiplicative factor of
(1− ε). We use the following simple upper bound on the number of profit classes.

▶ Lemma 8. For every BM instance I and 0 < ε < 1
2 there are O(k · ℓ · ε−2) profit classes.

Proof. We note that

log1−ε

(ε

2ℓ · k

)
≤

ln
(2ℓ·k

ε

)
− ln (1− ε) ≤

2ℓ · k · ε−1

ε
. (4)

The second inequality follows from x < − ln(1− x), ∀x > −1, x ̸= 0, and ln(y) < y, ∀y > 0.
By (2) the number of profit classes is bounded by

|D| ≤ log1−ε

(ε

2ℓ · k

)
+ 1 = O(k · ℓ · ε−2). (5)

The last inequality follows from (4). ◀

Next, we define an exchange set for each profit class. This facilitates the construction of a
representative set. Intuitively, a subset of elements X forms an exchange set for a profit
class Kr(α) if any feasible set ∆ and element a ∈ (∆ ∩ Kr(α)) \X can be replaced (while
maintaining feasibility) by some element b ∈ (X ∩Kr(α)) \∆ such that the cost of b is upper
bounded by the cost of a. Formally,

▶ Definition 9. Let I = (E,M, c, p, B, k, ℓ) be a BM instance, 0 < ε < 1
2 , OPT(I)

2ℓ ≤ α ≤
OPT(I), r ∈ D(I, ε), and X ⊆ Kr(α). We say that X is an exchange set for I, ε, α, and r

if: For all ∆ ∈Mk and a ∈ (∆ ∩ Kr(α)) \X there is b ∈ (Kr(α) ∩X) \∆ satisfying
c(b) ≤ c(a).
∆− a + b ∈Mk.

The key argument in this section is that if a set R ⊆ E satisfies that R ∩ Kr(α) is an
exchange set for any r ∈ D, then R is a representative set. This allows us to construct a
representative set using a union of disjoint exchange sets, one for each profit class. We give
an illustration in Figure 3.

▶ Lemma 10. Let I = (E,M, c, p, B, k, ℓ) be a BM instance, 0 < ε < 1
2 , OPT(I)

2ℓ ≤ α ≤
OPT(I), and R ⊆ E. If for all r ∈ D = D(I, ε) it holds that R ∩ Kr(α) is an exchange set
for I, ε, α, and r, then R is a representative set of I and ε.

IPEC 2023

13:8 Budgeted Matroid Maximization: Parameterized Viewpoint

For the proof of Lemma 10, we define a substitution of some feasible set G ∈ Mk. We
will use G later only as an optimal solution; however, we can state the following claims for a
general G ∈Mk. We require that a substitution preserves the number of profitable elements
in G from each profit class, so a substitution guarantees a profit similar to the profit of G.

▶ Definition 11. For G ∈Mk and ZG ⊆
⋃

r∈D Kr(α), we say that ZG is a substitution of
G if the following holds.
1. ZG ∈Mk.
2. c(ZG) ≤ c(G).
3. For all r ∈ D it holds that |Kr(α) ∩ ZG| = |Kr(α) ∩G|.

Proof of Lemma 10. We first show that every set G ∈ Mk has a substitution which is a
subset of R.

▷ Claim 12. For any G ∈Mk there is a substitution ZG of G such that ZG ⊆ R.

Proof. Let G ∈Mk and let ZG be a substitution of G such that |ZG ∩R| is maximal among
all substitutions of G; formally, let S(G) be all substitutions of G and let

ZG ∈ {Z ∈ S(G) | |Z ∩R| = max
Z′∈S(G)

|Z ′ ∩R|}.

Since G ∩
⋃

r∈D Kr(α) is in particular a substitution of G it follows that S(G) ̸= ∅; thus,
ZG is well defined. Assume towards a contradiction that there is a ∈ ZG \ R; then, by
Definition 11 there is r ∈ D such that a ∈ Kr(α). Because R ∩ Kr(α) is an exchange set
for I, ε, α, and r, by Definition 9 there is b ∈ (Kr(α) ∩ R) \ ZG such that c(b) ≤ c(a) and
ZG − a + b ∈Mk. Then, the properties of Definition 11 are satisfied for ZG − a + b by the
following.
1. ZG − a + b ∈Mk by the definition of b.
2. c(ZG − a + b) ≤ c(ZG) ≤ c(G) because c(b) ≤ c(a).
3. for all r′ ∈ D it holds that |Kr′(α)∩ (ZG−a + b)| = |Kr′(α)∩ZG| = |Kr′(α)∩G| because

a, b ∈ Kr(α).

By the above, and using and Definition 11, we have that ZG + a− b is a substitution of
G; that is, ZG + a− b ∈ S(G). Moreover,

|R ∩ (ZG − a + b)| > |R ∩ ZG| = max
Z∈S(G)

|Z ∩R|. (6)

The first inequality holds since a ∈ ZG \R and b ∈ R. Thus, we have found a substitution of
G which contains more elements in R than ZG ∈ S(G). A contradiction to the definition of
ZG as a substitution of G having a maximum number of elements in R. Hence, ZG ⊆ R, as
required. ◁

Let G be an optimal solution for I. We complete the proof of Lemma 10 by showing
that a substitution of G which is a subset of R yields a profit at least (1 − 2ε) · OPT(I).
Let H[I, α, ε] = H be the set of profitable elements w.r.t. I, α and ε (as defined in (1)). By
Claim 12, as G ∈Mk, it has a substitution ZG ⊆ R. Then,

p(ZG) ≥
∑
r∈D

p(Kr(α) ∩ ZG)

≥
∑

r∈D s.t. Kr(α) ̸=∅

|Kr(α) ∩ ZG| · min
e∈Kr(α)

p(e)

≥
∑

r∈D s.t. Kr(α) ̸=∅

|Kr(α) ∩G| · (1− ε) · max
e∈Kr(α)

p(e)

≥ (1− ε) · p(G ∩H).

(7)

I. Doron-Arad, A. Kulik, and H. Shachnai 13:9

The third inequality follows from (3), and from Property 3 in Definition 11. The last
inequality holds since for every e ∈ H there is r ∈ D such that e ∈ Kr(α), by (1) and (3).
Therefore,

p(ZG) ≥ (1− ε) · p(G ∩H)
= (1− ε) · (p(G)− p(G \H))
≥ (1− ε) · p(G)− p(G \H)
≥ (1− ε) · p(G)− ε ·OPT(I)
= (1− ε) ·OPT(I)− ε ·OPT(I)
= (1− 2ε) ·OPT(I).

(8)

The first inequality follows from (7). The last inequality holds by Lemma 7. The second
equality holds since G is an optimal solution for I. To conclude, by Properties 1 and 2 in
Definition 11, it holds that ZG ∈Mk, and c (ZG) ≤ c(G) ≤ B; thus, ZG is a a solution for I.
Also, by (8), it holds that p (ZG) ≥ (1− 2ε) ·OPT(I) as required (see Definition 2). ◀

By Lemma 10, our end goal of constructing a representative set is reduced to efficiently
finding exchange sets for all profit classes. This can be achieved by the following result, which
is a direct consequence of Theorem 3.6 in [22]. As the result of [22] refers to a maximization
version of exchange sets, we first present an analogue to Definition 9 for maximization
exchange sets (as in [22]), using our notation.

▶ Definition 13. Let I = (E,M, c, p, B, k, ℓ) be a BM instance, 0 < ε < 1
2 , OPT(I)

2ℓ ≤ α ≤
OPT(I), r ∈ D(I, ε), and X ⊆ Kr(α). We say that X is a maximization exchange set for
I, ε, α, and r if: For all ∆ ∈ Mk and a ∈ (∆ ∩ Kr(α)) \ X there is b ∈ (Kr(α) ∩ X) \∆
satisfying

c(a) ≤ c(b).
∆− a + b ∈Mk.

We remark that the same construction and the proof of Theorem 3.6 in [21] hold for our
exchange sets (in Definition 9) as well. Hence, we have the following.

▶ Lemma 14. Given a BM instance I = (E,M, c, p, B, k, ℓ), 0 < ε < 1
2 , OPT(I)

2ℓ ≤ α ≤
OPT(I), and r ∈ D(I, ε), there is an algorithm ExSet which returns in time Õ

(
ℓ(k−1)·ℓ · k

)
·

|I|O(1) an exchange set X for I, ε, α, and r, such that |X| = Õ
(
ℓ(k−1)·ℓ · k

)
.

Algorithm 1 RepSet(I = (E, M, c, p, B, k, ℓ), ε).

input : A BM instance I, and an error parameter 0 < ε < 1
2 .

output : A representative set R of I and ε.
1 if ℓ(k−1)·ℓ · k2 · ε−2 > |I| then
2 Return E

3 Compute α← ApproxBM(I).
4 for r ∈ D(I, ε) do
5 R← R ∪ ExSet(I, ε, α, r).
6 Return R

IPEC 2023

13:10 Budgeted Matroid Maximization: Parameterized Viewpoint

Using Lemmas 10 and 14, a representative set of I can be constructed as follows. If
the parameters ℓ and k are too high w.r.t. |I|, return the trivial representative set E in
polynomial time. Otherwise, compute an approximation for OPT(I), and define the profit
classes. Then, the representative set is constructed by finding an exchange set for each profit
class. The pseudocode of the algorithm is given in Algorithm 1.

▶ Lemma 15. Given a BM instance I = (E,M, c, p, B, k, ℓ), and 0 < ε < 1
2 , Al-

gorithm 1 returns in time |I|O(1) a representative set R ⊆ E of I and ε such that
|R| = Õ

(
ℓ(k−1)·ℓ · k2 · ε−2)

.

Proof. Clearly, if ℓ(k−1)·ℓ ·k2 ·ε−2 > |I|, then by Step 2 the algorithm runs in time |I|O(1) and
returns the trivial representative set E. Thus, we may assume below that ℓ(k−1)·ℓ ·k2 ·ε−2 ≤ |I|.
The running time of Step 3 is |I|O(1) by Lemma 6. Each iteration of the for loop in Step 4 can
be computed in time Õ(ℓ(k−1)·ℓ · k) · |I|O(1), by Lemma 14. Hence, as we have |D| = |D(I, ε)|
iterations of the for loop, the running time of the algorithm is bounded by

|D|·Õ(ℓ(k−1)·ℓ ·k) ·|I|O(1) ≤ (2ℓ ·k ·ε−2 +1) ·Õ(ℓ(k−1)·ℓ ·k) ·|I|O(1) = Õ
(
ℓ(k−1)·ℓ+1 · k2 · ε−2)

·|I|O(1).

The first inequality follows from (4) and (5). As in this case ℓ(k−1)·ℓ · k2 · ε−2 ≤ |I|, we have
the desired running time.

For the cardinality of R, note that by Lemma 6 OPT(I) ≥ α ≥ OPT(I)
2ℓ . Thus, by

Lemma 14, for all r ∈ D, ExSet(I, ε, α, r) is an exchange set satisfying |ExSet(I, ε, α, r)| =
Õ(ℓ(k−1)·ℓ · k). Then,

|R| ≤ |D| · Õ(ℓ(k−1)·ℓ · k) ≤ (2ℓ · k · ε−2 + 1) · Õ(ℓ(k−1)·ℓ · k) = Õ
(

ℓ(k−1)·ℓ+1 · k2 · ε−2
)

.

The second inequality follows from (4) and (5).
To conclude, we show that R is a representative set. By Lemma 14, for all r ∈ D, it

holds that ExSet(I, ε, α, r) is an exchange set for I, ε, α, and r. Therefore, R ∩ Kr(α) is an
exchange set for I, ε, α, for all r ∈ D. Hence, by Lemma 10, R is a representative set of I

and ε. ◀

▶ Theorem 3. There is an algorithm that given a BM instance I = (E,M, c, p, B, k, ℓ)
and 0 < ε < 1

2 , returns in time |I|O(1) a representative set R ⊆ E of I and ε such that
|R| = Õ

(
ℓ(k−1)·ℓ · k2 · ε−2)

.

Proof of Theorem 3. The statement of the lemma follows from Lemma 15. ◀

3 An FPT Approximation Scheme

In this section we use the representative set constructed by Algorithm 1 to obtain an FPAS
for BM. For the discussion below, fix a BM instance I = (E,M, c, p, B, k, ℓ) and an error
parameter 0 < ε < 1

2 . Given the representative set R for I and ε output by algorithm
RepSet, we derive an FPAS by exhaustive enumeration over all solutions of I within R. The
pseudocode of our FPAS is given in Algorithm 2.

▶ Lemma 16. Given a BM instance I = (E,M, c, p, B, k, ℓ) and 0 < ε < 1
2 , Algorithm 2

returns in time |I|O(1) ·Õ
(

ℓk2·ℓ · k2k · ε−2k
)

a solution for I of profit at least (1−2ε)·OPT(I).

We give the proof at the end of this section. We can now prove our main result.

▶ Theorem 4. For any BM instance I = (E,M, c, p, B, k, ℓ) and 0 < ε < 1
2 , there is an

FPAS whose running time is |I|O(1) · Õ
(

ℓk2·ℓ · kO(k) · ε−2k
)

.

I. Doron-Arad, A. Kulik, and H. Shachnai 13:11

Algorithm 2 FPAS(I = (E, M, c, p, B, k, ℓ), ε).

input : A BM instance I and an error parameter 0 < ε < 1
2 .

output : A solution for I.
1 Initialize an empty solution A← ∅.
2 Construct R← RepSet(I, ε).
3 for F ⊆ R s.t. |F | ≤ k and F is a solution of I do
4 if p (F) > p(A) then
5 Update A← F

6 Return A.

Proof of Theorem 4. The statement of the lemma follows from Lemma 16 by using in
Algorithm 2 an error parameter ε′ = ε

2 . ◀

For the proof of Lemma 16, we use the next auxiliary lemmas.

▶ Lemma 17. Given a BM instance I = (E,M, c, p, B, k, ℓ) and 0 < ε < 1
2 , Algorithm 2

returns a solution for I of profit at least (1− 2ε) ·OPT(I).

Proof. By Lemma 15, it holds that R = RepSet(I, ε) is a representative set of I and ε.
Therefore, by Definition 2, there is a solution S for I such that S ⊆ R, and

p (S) ≥ (1− 2ε) ·OPT(I). (9)

Since S is a solution for I, it follows that S ∈ Mk and therefore |S| ≤ k. Thus, there is
an iteration of Step 3 in which F = S, and therefore the set A returned by the algorithm
satisfies p(A) ≥ p(S) ≥ (1− 2ε) ·OPT(I). Also, the set A returned by the algorithm must
be a solution for I: If A = ∅ the claim trivially follows since ∅ is a solution for I. Otherwise,
the value of A has been updated in Step 5 of Algorithm 2 to be some set F ⊆ R, but this
step is reached only if F is a solution for I. ◀

▶ Lemma 18. Given a BM instance I = (E,M, c, p, B, k, ℓ) and 0 < ε < 1
2 , the running

time of Algorithm 2 is |I|O(1) · Õ
(

ℓk2·ℓ · k2k · ε−2k
)

.

Proof. Let W ′ =
{

F ⊆ R
∣∣ F ∈ Mk, c(F) ≤ B

}
be the solutions considered in Step 3 of

Algorithm 2, and let W =
{

F ⊆ R
∣∣ |F | ≤ k

}
. Observe that the number of iterations of

Step 3 of Algorithm 2 is bounded by |W |, since W ′ ⊆W and for each F ∈W we can verify
in polynomial time if F ∈W ′. Thus, it suffices to upper bound W .

By a simple counting argument, we have that

|W | ≤ (|R|+ 1)k

≤ Õ

((
ℓ(k−1)·ℓ+1 · k2 · ε−2

)k
)

= Õ
(

ℓk2·ℓ · k2k · ε−2k
) (10)

The first equality follows from Lemma 15. Hence, by (10), the number of iterations of the
for loop in Step 3 is bounded by Õ

(
ℓk2·ℓ · k2k · ε−2k

)
. In addition, the running time of

each iteration is at most |I|O(1). Finally, the running time of the steps outside the for
loop is |I|O(1), by Lemma 15. Hence, the running time of Algorithm 2 can be bounded by
|I|O(1) · Õ

(
ℓk2·ℓ · k2k · ε−2k

)
. ◀

Proof of Lemma 16. The proof follows from Lemmas 17 and 18. ◀

IPEC 2023

13:12 Budgeted Matroid Maximization: Parameterized Viewpoint

4 Hardness Results

In this section we prove Theorem 1 and Theorem 1. In the proof of Theorem 1, we use a
reduction from the k-subset sum (KSS) problem. The input for KSS is a set X = {x1, . . . , xn}
of strictly positive integers and two positive integers T, k > 0. We need to decide if there is a
subset S ⊆ [n], |S| = k such that

∑
i∈S xi = T , where the problem is parameterized by k.

KSS is known to be W[1]-hard [12].

▶ Theorem 1. BM is W [1]-hard.

Proof of Theorem 1. Let U be a KSS instance with the set of numbers E = [n], target
value T , and k. We define the following BM instance I = (E,M, c, p, B, k, ℓ).
1. M is a 1-matchoid M = {(E, I)} such that I = 2E . That is, M is a single uniform

matroid whose independent sets are all possible subsets of E.
2. For any i ∈ E = [n] define c(i) = p(i) = xi + 2 ·

∑
j∈[n] xj .

3. Define the budget as B = T + 2k ·
∑

j∈[n] xj .

▷ Claim 19. If there is a solution for U then there is a solution for I of profit B.

Proof. Let S ⊆ [n], |S| = k such that
∑

i∈S xi = T . Then,

c(S) = p(S) =
∑
i∈S

xi + 2 ·
∑

j∈[n]

xj

 = T + |S| · 2 ·
∑

j∈[n]

xj = T + 2k ·
∑

j∈[n]

xj = B.

By the above, and as S ∈Mk, S is also a solution for I of profit exactly B. ◁

▷ Claim 20. If there is a solution for I of profit at least B then there is a solution for U .

Proof. Let F be a solution for I of profit at least B. Then, p(F) = c(F) ≤ B, since F

satisfies the budget constraint. As p(F) ≥ B, we conclude that

p(F) = c(F) = B. (11)

We now show that F is also a solution for U . First, assume towards contradiction that
|F | ̸= k. If |F | < k then

p(F) =
∑
i∈F

xi + |F | · 2 ·
∑

j∈[n]

xj ≤
∑
i∈F

xi + (k − 1) · 2 ·
∑

j∈[n]

xj ≤ 2k ·
∑

j∈[n]

xj < B.

We reach a contradiction to (11). Since F is a solution for I it holds that F ∈ Mk; thus,
|F | ≤ k. By the above, |F | = k. Therefore,∑

i∈F

xi = c(F)− |F | · 2 ·
∑

j∈[n]

xj = c(F)− 2k ·
∑

j∈[n]

xj = B − 2k ·
∑

j∈[n]

xj = T. ◁

By Claims 19 and 20, there is a solution for U if and only if there is a solution for I of
profit at least B. Furthermore, the construction of I can be done in polynomial time in
the encoding size of U . Hence, an FPT algorithm which finds an optimal solution for I can
decide the instance U in FPT time. As KSS is known to be W[1]-hard [12], we conclude that
BM is also W[1]-hard. ◀

I. Doron-Arad, A. Kulik, and H. Shachnai 13:13

In the proof of Theorem 5 we use a lower bound on the kernel size of Perfect ℓ-Dimensional
Matching (ℓ-PDM), due to Dell and Marx [5, 6]. The input for the problem consists of
the finite sets U1, . . . Uℓ and E ⊆ U1 × . . . × Uℓ. Also, we have an ℓ-dimensional matching
constraint (E, I) to which we refer as the associated set system of the instance (i.e., I
contains all subsets S ⊆ E such that for any two distinct tuples (e1, . . . , eℓ), (f1, . . . , fℓ) ∈ S

and every i ∈ [ℓ] it holds that ei ̸= fi). The instance is associated also with the parameter
k = n

ℓ , where n =
∑ℓ

j=1 |Uℓ|. We refer to |E| as the number of tuples in the instance. The
objective is to find S ∈ I such that |S| = k. Let J = (U1, . . . , Uℓ, E) denote an instance of
ℓ-PDM We say J is a “yes” instance if such a set S exists; otherwise, J is a “no” instance.
Observe that the parameter k is set such that if S ∈ I and |S| = k then every element in
U1 ∪ . . . ∪ Uℓ appears in exactly one of the tuples in S.

▶ Lemma 21 (Theorem 1.2 cf. [6]). Let ℓ ≥ 3 and ε > 0. If coNP ̸⊆ NP/poly then ℓ-PDM
does not have a kernel in which the number of tuples is O(kℓ−ε).

▶ Theorem 5. For any function f : N → N, and c1, c2 ∈ R such that c2 − c1 < 0,
there is no algorithm which finds for a given BM instance I = (E,M, c, p, B, k, ℓ) and
0 < ε < 1

2 a representative set of size O
(
f(ℓ) · kℓ−c1 · 1

εc2

)
of I and ε in time |I|O(1), unless

coNP ⊆ NP/poly.

Proof of Theorem 5. Assume coNP ̸⊆ NP/poly. Furthermore, assume towards a contra-
diction that there is a function f : N → N, constants c1, c2, where c2 − c1 < 0, and an
algorithm A that, given a BM instance I = (E,M, c, p, B, k, ℓ) and 0 < ε < 1

2 , finds in time
|I|O(1) a representative set of I and ε of size O

(
f(ℓ) · kℓ−c1 · 1

εc2

)
. We use A to construct a

kernel for 3-PDM.
Consider the following kernelization algorithm for 3-PDM. Let J = (U1, U2, U3, E) be

the 3-PDM input instance. Define n = |U1|+ |U2|+ |U3|, ℓ = 3, and k = n
ℓ . Furthermore,

let (E, I) be the set system associated with the instance, and let M be an ℓ-matchoid
representing the set system (E, I). Run A on the BM instance I = (E,M, ,̧p, B, k, ℓ) with
ε = 1

3k , where c(e) = p(e) = 1 for all e ∈ E and B = k. Let R ⊆ E be the output of A.
Return the 3-PDM instance J ′ = (U1, U2, U3, R).

Since A runs in polynomial time, the above algorithm runs in polynomial time as well.
Moreover, as k = n

3 and R ⊆ E, it follows that the returned instance can be encoded using
O(k4) bits. Let (R, I ′) be the set system associated with J ′. Since R ⊆ E, it follows that
I ′ ⊆ I. Hence, if there is S ∈ I ′ such that |S| = k, then S ∈ I as well. That is, if J ′ is a
“yes” instance, so is J .

For the other direction, assume that J is a “yes” instance. That is, there is S ∈ I such
that |S| = k. Then S is a solution for the BM instance I (observe that c(S) = |S| = k = B).
Therefore, as R is a representative set of I and ε = 1

3k , there is a solution T for I such that
T ⊆ R, and

p(T) ≥ (1− 2ε) ·OPT(I) ≥ (1− 2ε) · p(S) =
(

1− 2
3k

)
· p(S) =

(
1− 2

3k

)
· k = k − 2

3 .

Since the profits are integral we have that |T | = p(T) ≥ k. Furthermore |T | ≤ k (since T

is a solution for I), and thus |T | = k. Since T ∈ I (as T is a solution for I) and T ⊆ R, it
trivially holds that T ∈ I ′. That is, T ∈ I ′ and |T | = k. Hence, J ′ is a “yes” instance. We
have showed that the above procedure is indeed a kernelization for 3-PDM.

Now, consider the size of R. Since A returns a representative set of size
O

(
f(ℓ) · kℓ−c1 · 1

εc2

)
it follows that

|R| = O
(
f(3) · k3−c1 · (3k)c2

)
= O

(
k3−c1+c2

)
.

IPEC 2023

13:14 Budgeted Matroid Maximization: Parameterized Viewpoint

As c2 − c1 < 0, we have a contradiction to Lemma 21. Thus, for any function f : N → N
and constants c1, c2 satisfying c2 − c1 < 0, there is no algorithm which finds for a given
BM instance I = (E,M, c, p, B, k, ℓ) and 0 < ε < 1

2 a representative set of I and ε of size
O

(
f(ℓ) · kℓ−c1 · 1

εc2

)
in time |I|O(1). ◀

5 A Polynomial-time 1
2·ℓ-Approximation for BM

In this section we prove Lemma 6. The proof combines an existing approximation algorithm
for the unbudgeted version of BM [23, 25] with the Lagrangian relaxation technique of [29].
As the results in [23, 25] are presented in the context of ℓ-extendible set systems, we first
define these systems and use a simple argument to show that such systems are generalizations
of matchoids. We refer the reader to [13] for further details about ℓ-extendible systems.

▶ Definition 22. Given a finite set E, I ⊆ 2E, and ℓ ∈ N, we say that (E, I) is an ℓ-
extendible system if for every S ∈ I and e ∈ E \ S there is T ⊆ S, where |T | ≤ ℓ, such that
(S \ T) ∪ {ℓ} ∈ I.

The next lemma shows that an ℓ-matchoid is in fact an ℓ-extendible set system.

▶ Lemma 23. For any ℓ ∈ N>0 and an ℓ-Matchoid M = {Mi = (Ei, Ii)}i∈[s] on a set E, it
holds that (E, I(M)) is an ℓ-extendible set system.

Proof. Let S ∈ I(M) and e ∈ E \ S. As M is an ℓ-matchoid, there is H ⊆ [s] of cardinality
|H| ≤ ℓ such that for all i ∈ [s] \ H it holds that e /∈ Ei and for all i ∈ H it holds that
e ∈ Ei. Since for all i ∈ H it holds that (Ei, Ii) is a matroid, either (S ∩ Ei) ∪ {e} ∈ Ii,
or there is ai ∈ S ∩ Ei such that ((S ∩ Ei) \ {ai}) ∪ {e} ∈ Ii (this follows by repeatedly
adding elements from S ∩ Ei to {e} using the exchange property of the matroid (Ei, Ii)).
Let L = {i ∈ H | (S ∩ Ei) ∪ {e} /∈ Ii}. Then, there are |L| elements T = {ai}i∈L such
that for all i ∈ L it holds that ((S ∩ Ei) \ {ai}) ∪ {e} ∈ Ii and for all i ∈ H \ L it holds
that (S ∩ Ei) ∪ {e} ∈ Ii. Thus, it follows that (S \ T) ∪ {e} ∈ I(M) by the definition of a
matchoid. Since |T | = |L| ≤ |H| ≤ ℓ, we have the statement of the lemma. ◀

Proof of Lemma 6. Consider the BM problem with no budget constraint (equivalently,
c(E) ≤ B) that we call the maximum weight matchoid maximization (MWM) problem. By
Lemma 23, MWM is a special case of the maximum weight ℓ-extendible system maximization
problem, which admits 1

ℓ -approximation [23, 25].5 Therefore, using Theorem 3.1 in [29],
we have the following. There is an algorithm that, given some ε > 0, returns a solution
for the BM instance I of profit at least

(1
ℓ

1
ℓ +1 − ε

)
· OPT(I), and whose running time is

|I|O(1) ·O(log(ε−1)). Now, we can set ε =
1
ℓ

1
ℓ +1 −

1
2ℓ ; then, the above algorithm has a running

time |I|O(1), since ε−1 is polynomial in ℓ and ℓ ≤ |I|. Moreover, the algorithm returns a
solution S for I, such that

OPT(I) ≥ p(S) ≥
(1

ℓ
1
ℓ + 1

− ε

)
·OPT(I) = 1

2ℓ
·OPT(I).

To conclude, we define the algorithm ApproxBM which returns α = p(S). By the above
discussion, OPT(I) ≥ α ≥ OPT(I)

2ℓ , and the running time of ApproxBM is |I|O(1). ◀

5 The algorithm of [23] can be applied also in the more general setting of ℓ-systems. For more details on
such set systems, see, e.g., [13].

I. Doron-Arad, A. Kulik, and H. Shachnai 13:15

6 Discussion

In this paper we present an FPT-approximation scheme (FPAS) for the budgeted ℓ-matchoid
problem (BM). As special cases, this yields FPAS for the budgeted ℓ-dimensional matching
problem (BDM) and the budgeted ℓ-matroid intersection problem (BMI). While the un-
budgeted version of BM has been studied earlier from parameterized viewpoint, the budgeted
version is studied here for the first time.

We show that BM parameterized by the solution size is W [1]-hard already with a
degenerate matroid constraint (Theorem 1); thus, an exact FPT time algorithm is unlikely
to exist. Furthermore, the special case of unbudgeted ℓ-dimensional matching problem is
APX-hard, already for ℓ = 3, implying that PTAS for this problem is also unlikely to exist.
These hardness results motivated the development of an FPT-approximation scheme for BM.

Our FPAS relies on the notion of representative set − a small cardinality subset of the
ground set of the original instance which preserves the optimum value up to a small factor.
We note that representative sets are not lossy kernels [31] as BM is defined in an oracle model;
thus, the definitions of kernels or lossy kernels do not apply to our problem. Nevertheless,
for some variants of BM in which the input is given explicitly (for instance, this is possible
for BDM) our construction of representative sets can be used to obtain an approximate
kernelization scheme.

Our results also include a lower bound on the minimum possible size of a representative
set for BM which can be computed in polynomial time (Theorem 5). The lower bound is
based on the special case of the budgeted ℓ-dimensional matching problem (BDM). We note
that there is a significant gap between the size of the representative sets found in this paper
and the lower bound. This suggests the following questions for future work.

Is there a representative set for the special case of BDM whose size matches the lower
bound given in Theorem 5?
Can the generic structure of ℓ-matchoids be used to derive an improved lower bound on
the size of a representative set for general BM instances?

The budgeted ℓ-matchoid problem can be naturally generalized to the d-budgeted ℓ-
matchoid problem (d-BM). In the d-budgeted version, both the costs and the budget are
replaced by d-dimensional vectors, for some constant d ≥ 2. A subset of elements is feasible
if it is an independent set of the ℓ-matchoid, and the total cost of the elements in each
dimension is bounded by the budget in this dimension. The problem is a generalization of
the d-dimensional knapsack problem (d-KP), the special case of d-BM in which the feasible
sets of the matchoid are all subsets of E. A PTAS for d-KP was first given in [17], and the
existence of an efficient polynomial time approximation scheme was ruled out in [28]. PTASs
for the special cases of d-BM in which the matchoid is a single matroid, matroid intersection
or a matching constraint were given in [3, 20]. It is likely that the lower bound in [28] can
be used also to rule out the existence of an FPAS for d-BM. However, the question whether
d-BM admits a (1− ε)-approximation in time O

(
f(k + ℓ) · ng(ε)), for some functions f and

g, remains open.

IPEC 2023

13:16 Budgeted Matroid Maximization: Parameterized Viewpoint

References
1 André Berger, Vincenzo Bonifaci, Fabrizio Grandoni, and Guido Schäfer. Budgeted matching

and budgeted matroid intersection via the gasoline puzzle. Mathematical Programming,
128(1):355–372, 2011.

2 Andreas Björklund, Thore Husfeldt, Petteri Kaski, and Mikko Koivisto. Narrow sieves for
parameterized paths and packings. Journal of Computer and System Sciences, 87:119–139,
2017.

3 Chandra Chekuri, Jan Vondrák, and Rico Zenklusen. Multi-budgeted matchings and matroid
intersection via dependent rounding. In Proceedings of the twenty-second annual ACM-SIAM
symposium on Discrete Algorithms, pages 1080–1097. SIAM, 2011.

4 Jianer Chen, Qilong Feng, Yang Liu, Songjian Lu, and Jianxin Wang. Improved deterministic
algorithms for weighted matching and packing problems. Theoretical computer science,
412(23):2503–2512, 2011.

5 Holger Dell and Dániel Marx. Kernelization of packing problems. In Proceedings of the
twenty-third annual ACM-SIAM symposium on Discrete Algorithms, pages 68–81. SIAM, 2012.

6 Holger Dell and Dániel Marx. Kernelization of packing problems. arXiv preprint
arXiv:1812.03155, 2018.

7 Ilan Doron-Arad, Ariel Kulik, and Hadas Shachnai. Budgeted matroid maximization: a
parameterized viewpoint. arXiv preprint arXiv:2307.04173, 2023.

8 Ilan Doron-Arad, Ariel Kulik, and Hadas Shachnai. An EPTAS for budgeted matching and
budgeted matroid intersection via representative sets. In 50th International Colloquium on
Automata, Languages, and Programming (ICALP), 2023.

9 Ilan Doron-Arad, Ariel Kulik, and Hadas Shachnai. An EPTAS for budgeted matroid
independent set. In Symposium on Simplicity in Algorithms (SOSA), pages 69–83, 2023.

10 Ilan Doron-Arad, Ariel Kulik, and Hadas Shachnai. An FPTAS for budgeted laminar matroid
independent set. Operations Research Letters, 51(6):632–637, 2023. doi:10.1016/j.orl.2023.
10.005.

11 Ilan Doron-Arad, Ariel Kulik, and Hadas Shachnai. Tight lower bounds for weighted matroid
problems. arXiv preprint arXiv:2307.07773, 2023.

12 Rod G Downey and Michael R Fellows. Fixed-parameter tractability and completeness ii: On
completeness for W[1]. Theoretical Computer Science, 141(1-2):109–131, 1995.

13 Moran Feldman, Joseph Naor, Roy Schwartz, and Justin Ward. Improved approximations for k-
exchange systems. In Algorithms–ESA 2011: 19th Annual European Symposium, Saarbrücken,
Germany, September 5-9, 2011. Proceedings 19, pages 784–798. Springer, 2011.

14 Andreas Emil Feldmann, Euiwoong Lee, and Pasin Manurangsi. A survey on approximation
in parameterized complexity: Hardness and algorithms. Algorithms, 13(6):146, 2020.

15 Fedor V Fomin, Daniel Lokshtanov, Fahad Panolan, and Saket Saurabh. Efficient computation
of representative families with applications in parameterized and exact algorithms. Journal of
the ACM (JACM), 63(4):1–60, 2016.

16 Fedor V Fomin, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi. Kernelization: theory
of parameterized preprocessing. Cambridge University Press, 2019.

17 Alan M Frieze, Michael RB Clarke, et al. Approximation algorithms for the m-dimensional
0-1 knapsack problem: worst-case and probabilistic analyses. European Journal of Operational
Research, 15(1):100–109, 1984.

18 Michael R Garey and David S Johnson. Computers and intractability, volume 174. freeman
San Francisco, 1979.

19 Prachi Goyal, Neeldhara Misra, Fahad Panolan, and Meirav Zehavi. Deterministic algorithms
for matching and packing problems based on representative sets. SIAM Journal on Discrete
Mathematics, 29(4):1815–1836, 2015.

20 Fabrizio Grandoni and Rico Zenklusen. Approximation schemes for multi-budgeted independ-
ence systems. In European Symposium on Algorithms, pages 536–548. Springer, 2010.

https://doi.org/10.1016/j.orl.2023.10.005
https://doi.org/10.1016/j.orl.2023.10.005

I. Doron-Arad, A. Kulik, and H. Shachnai 13:17

21 Chien-Chung Huang and Justin Ward. FPT-algorithms for the ℓ-matchoid problem with a
coverage objective. arXiv preprint arXiv:2011.06268, 2020.

22 Chien-Chung Huang and Justin Ward. FPT-algorithms for the ℓ-matchoid problem with a
coverage objective. SIAM Journal on Discrete Mathematics, 2023.

23 Th Jenkyns. The efficacy of the "greedy" algorithm. In Proc. 7th Southeastern Conf. on
Combinatorics, Graph Theory and Computing, pages 341–350, 1976.

24 Per M Jensen and Bernhard Korte. Complexity of matroid property algorithms. SIAM Journal
on Computing, 11(1):184–190, 1982.

25 Stasys Jukna. Extremal combinatorics: with applications in computer science, volume 571.
Springer, 2011.

26 Viggo Kann. Maximum bounded 3-dimensional matching is max snp-complete. Information
Processing Letters, 37(1):27–35, 1991.

27 Ioannis Koutis and Ryan Williams. Limits and applications of group algebras for parameterized
problems. In Automata, Languages and Programming: 36th International Colloquium, ICALP
2009, Rhodes, Greece, July 5-12, 2009, Proceedings, Part I 36, pages 653–664. Springer, 2009.

28 Ariel Kulik and Hadas Shachnai. There is no EPTAS for two-dimensional knapsack. Information
Processing Letters, 110(16):707–710, 2010.

29 Ariel Kulik, Hadas Shachnai, and Gal Tamir. On lagrangian relaxation for constrained
maximization and reoptimization problems. Discrete Applied Mathematics, 296:164–178, 2021.

30 Daniel Lokshtanov, Pranabendu Misra, Fahad Panolan, and Saket Saurabh. Deterministic
truncation of linear matroids. ACM Transactions on Algorithms (TALG), 14(2):1–20, 2018.

31 Daniel Lokshtanov, Fahad Panolan, MS Ramanujan, and Saket Saurabh. Lossy kernelization.
In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, pages
224–237, 2017.

32 László Lovász. Matroid matching and some applications. Journal of Combinatorial Theory,
Series B, 28(2):208–236, 1980.

33 Silvano Martello and Paolo Toth. Knapsack problems: algorithms and computer implementa-
tions. John Wiley & Sons, Inc., 1990.

34 Dániel Marx. Parameterized complexity and approximation algorithms. The Computer Journal,
51(1):60–78, 2008.

35 Dániel Marx. A parameterized view on matroid optimization problems. Theoretical Computer
Science, 410(44):4471–4479, 2009.

36 Ram Ravi and Michel X Goemans. The constrained minimum spanning tree problem. In
Scandinavian Workshop on Algorithm Theory, pages 66–75. Springer, 1996.

37 Alexander Schrijver et al. Combinatorial optimization: polyhedra and efficiency, volume 24.
Springer, 2003.

IPEC 2023

Computing Complexity Measures of Degenerate
Graphs
Pål Grønås Drange #

University of Bergen, Norway

Patrick Greaves #

Birkbeck, University of London, UK

Irene Muzi #

Birkbeck, University of London, UK

Felix Reidl #

Birkbeck, University of London, UK

Abstract
We show that the VC-dimension of a graph can be computed in time n⌈log d+1⌉dO(d), where d is
the degeneracy of the input graph. The core idea of our algorithm is a data structure to efficiently
query the number of vertices that see a specific subset of vertices inside of a (small) query set.
The construction of this data structure takes time O(d2dn), afterwards queries can be computed
efficiently using fast Möbius inversion.

This data structure turns out to be useful for a range of tasks, especially for finding bipartite
patterns in degenerate graphs, and we outline an efficient algorithm for counting the number of
times specific patterns occur in a graph. The largest factor in the running time of this algorithm
is O(nc), where c is a parameter of the pattern we call its left covering number.

Concrete applications of this algorithm include counting the number of (non-induced) bicliques in
linear time, the number of co-matchings in quadratic time, as well as a constant-factor approximation
of the ladder index in linear time.

Finally, we supplement our theoretical results with several implementations and run experiments
on more than 200 real-world datasets – the largest of which has 8 million edges – where we obtain
interesting insights into the VC-dimension of real-world networks.

2012 ACM Subject Classification Mathematics of computing → Graph algorithms

Keywords and phrases vc-dimension, datastructure, degeneracy, enumerating

Digital Object Identifier 10.4230/LIPIcs.IPEC.2023.14

Related Version Full Version: https://arxiv.org/abs/2308.08868

Supplementary Material
Software (Source code): https://github.com/microgravitas/mantis-shrimp

archived at swh:1:dir:74c67c5dffc03a1c1383be7947d7def7cc0d4798

Funding Pål Grønås Drange: Supported by the Research council of Norway, grant number 329745:
Machine Teaching for Explainable AI.

© Pål Grønås Drange, Patrick Greaves, Irene Muzi, and Felix Reidl;
licensed under Creative Commons License CC-BY 4.0

18th International Symposium on Parameterized and Exact Computation (IPEC 2023).
Editors: Neeldhara Misra and Magnus Wahlström; Article No. 14; pp. 14:1–14:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:Pal.Drange@uib.no
https://orcid.org/0000-0001-7228-6640
mailto:p.greaves@bbk.ac.uk
mailto:i.muzi@bbk.ac.uk
https://orcid.org/0000-0003-2410-6523
mailto:f.reidl@bbk.ac.uk
https://orcid.org/0000-0002-2354-3003
https://doi.org/10.4230/LIPIcs.IPEC.2023.14
https://arxiv.org/abs/2308.08868
https://github.com/microgravitas/mantis-shrimp
https://archive.softwareheritage.org/swh:1:dir:74c67c5dffc03a1c1383be7947d7def7cc0d4798;origin=https://github.com/microgravitas/mantis-shrimp;visit=swh:1:snp:aa86c708e740e4bf61aba2eedca6a689c56217c1;anchor=swh:1:rev:b45f2d7521ee738e721636bde744b595c98005bf
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

14:2 Computing Complexity Measures of Degenerate Graphs

1 Introduction

Our work began with the simple question: What is the Vapnik–Chervonenkis (VC) dimension
of real-world networks? That is, what is the largest vertex set X such that every subset X ′ ⊆
X is the neighbourhood (when restricted to X) of some vertex in the network?

This parameter, developed in the context of learning theory, happens to be extremely
useful in the theory of sparse graphs (e.g. [11]) and is one possible method of capturing the
“complexity” of an object. It is therefore a natural statistic to consider when a) trying to
categorise networks and b) identifying structural properties that can be leveraged to design
efficient algorithms.

As the best-known general algorithm to compute the VC-dimension of a graph
takes O(nlog n) time, and in fact the problem being LOGNP-complete [16], we investig-
ated whether a better algorithm is possible if we assume our input graph to be sparse, more
precisely, to be d-degenerate. This choice is motivated by the observation that the degeneracy
for most real-world networks is small (see e.g. [7] and our results in the full version [9]).

Our first achievement is an algorithm that computes the VC-dimension of a d-degenerate
graph in time O(n⌈log d+1⌉dO(d)). A core concept is a novel data structure which enables us
to efficiently query the size of the intersection of several neighbourhoods for a small set of
vertices, described in Section 3, which we use to quickly determine whether a given candidate
set is shattered by its neighbours.

But the general idea of this algorithm can be generalised to other bipartite “patterns”
like bicliques, co-matchings, and ladders (defined in Section 2.2). These objects are also
closely related to notions of “complexity” of graphs. They appear, for example, in the study
of graph width measures [10] and algorithm design for sparse classes [13] (see also there for
connections to stability theory). Our general pattern-finding algorithm presented in Section 3
can count bicliques in linear time, co-matchings in quadratic time and find partial ladders in
linear time, see Section 4 for these and further results.

Dense structures like cliques or bicliques are famously important in the analysis of
networks, and we suggest that co-matchings and ladders might be of similar interest – but
without a program to compute them, we cannot hope for these statistics to be trialled in
practice. We therefore implemented algorithms to compute the VC-dimension, ladder index,
maximum biclique1 and maximum co-matching of a graph. To establish their practicality,
we ran these four algorithms on 206 real-world networks from various sources, see Section 5.
The VC-dimension algorithm in our experiments terminated within 10 minutes on networks
with up to ∼33K vertices, the other three on networks up to ∼93K vertices. This is already
squarely in the region of “practical” for certain types of networks and we believe that with
further engineering – in particular to improve space efficiency – our implementation can be
used to compute these statistics on much larger networks.

Prior work. We briefly mention a few relevant previous articles on the subject. Eppstein,
Löffler, and Strash [12] gave an algorithm for enumerating maximal cliques in d-degenerate
graphs in O(dn3d/3) time, i.e., fixed-parameter tractable time when parameterized by the
degeneracy. They also give experimental results showing that their algorithm works well on
large real-world networks. Bera, Pashanasangi, and Seshadhri [1], extending the classic result

1 There are probably faster programs to compute bicliques in practice, we compute this statistic here as a
baseline.

P. G. Drange, P. Greaves, I. Muzi, and F. Reidl 14:3

by Chiba and Nishizeki [6], show that for all patterns H of size less than six, we can count
the number of appearances of H in a d-degenerate graph G in time O(m · dk−2), where m

is the number of edges in G and k is the number of vertices in H. Recently, Bressan, and
Roth [3] gave algorithms for counting copies of a graph H in a d-degenerate graph G in time
f(d, k) · nim(H) log n, for some function f , where k again is the number of vertices in H, n

the number of vertices in G, and im(H) is the size of a largest induced matching in H.

2 Preliminaries

For an integer k, we use [k] as a short-hand for the set {0, 1, 2, . . . , k − 1}. We use black-
board bold letters like X to denote sets X associated with a total order <X. The index
function ιX : X → N maps elements of X to their corresponding position in X. We extend
this function to sets via ιX(S) = {ιX(s) | s ∈ S}. For any integer i ∈ [|X|] we write X[i] to
mean the ith element in the ordered set. An index set I for X is simply a subset of [|X|] and
we extend the index notation to sets via X[I] := {X[i] | i ∈ I}. We write π(H) for the set of
all permutations of H.

For a graph G we use V (G) and E(G) to refer to its vertex- and edge-set, respectively.
We used the short hands |G| := |V (G)| and ∥G∥ := |E(G)|.

An ordered graph is a pair G = (G, <) where G is a graph and < a total ordering of V (G).
We write <G to denote the ordering for a given ordered graph and extend this notation to
the derived relations ⩽G, >G, ⩾G.

We use the same notations for graphs and ordered graphs, additionally we write N−(u) :=
{v ∈ N(u) | v <G u} for the left neighbourhood and N+(u) := {v ∈ N(u) | v >G u} for the
right neighbourhood of a vertex u ∈ G. We further use d−

G (u) and d+
G(u) for the left and

right degree, as well as ∆−(G) := maxu∈G d−
G (u) and ∆+(G) := maxu∈G d+

G (u). We omit the
graphs in the subscripts if clear from the context.

A graph G is d-degenerate if there exists an ordering G such that ∆−(G) ⩽ d. An
equivalent definition is that a graph is d-degenerate if every subgraph has a vertex of degree
at most d. The number of edges in a d-degenerate graph is bounded by dn and many
important sparse graph classes – bounded treewidth, planar graphs, graphs excluding a
minor – have finite degeneracy. The degeneracy ordering of a graph can be computed in time
O(n + m) [15], and O(dn) for d-degenerate graphs.

Let F ⊆ 2U be a set family over U . We define the intersection of a set family with
set X ⊆ U as F ∩X := {F ∩X | F ∈ F}. A set X ⊆ U is then shattered by F if F ∩X = 2X .
The graph representation of a set family F is the bipartite graph G(F) = (F , U, E) where
for each F ∈ F and x ∈ U we have the edge Fx ∈ E iff x ∈ F . In the other direction, we
define for a graph G its neighbourhood set system F(G) := {N(v) | v ∈ G}.

The Vapnik–Chervonenkis dimension (VC-dimension) of a set family F ⊆ 2U is the size
of the largest set in U that is shattered by F and we write this quantity as vc(F). The
VC-dimension of a graph G is defined as the VC-dimension of its neighbourhood set system,
i.e. vc(G) := vc(F(G)).

2.1 Set dictionaries

In the following we will make heavy use of data structures that model functions of the
form f : 2U → Z for some universe U . Since the arguments in our use-case are assumed
to be small, we use prefix-tries [17] in our theoretical analysis (see notes on practical
implementations below):

IPEC 2023

14:4 Computing Complexity Measures of Degenerate Graphs

▶ Definition 1 (Subset dictionary). Let U be a set and let U be an arbitrary total order of U .
A subset dictionary D over U associates a key X ⊆ U with an integer D[X] by storing the
sequence X of X under <U in a prefix trie.

Accordingly, insertion/update/deletion of a value for a key X takes time O(|X|) if we
can assume the key X to be present in some canonical order. Our algorithms all work
on graphs imbued with a (degeneracy) ordering and we will sort the left-neighbourhood
N−(•) of each vertex according to this global ordering, which we will simply call “sorting
the left-neighbourhoods” for brevity. Subsets of these left-neighbourhoods are assumed to
inherit this ordering, which covers all operations that we will need in our algorithms, which
in conclusion means that we can assume that all sets used as keys in subset dictionaries have
a canonical ordering.

Unless otherwise noted, we will use the convention that D[X] = 0 for all keys X that
have not been inserted into D.

2.2 Bipartite patterns and left-covers
▶ Definition 2 (Pattern). A pattern H is a complete graph whose edges are partitioned
into sets B, R, and W (black, red and white). We say that a graph G contains H (or H

appears in G) if there exists a vertex set S ⊆ V (G) and a bijection ϕ : V (H)→ S such that
uv ∈ B =⇒ ϕ(u)ϕ(v) ∈ E(G) and uv ∈ R =⇒ ϕ(u)ϕ(v) ̸∈ E(G).

We say that a pattern H is bipartite if the vertex set of H can be partitioned into two
sets X, Y such that all edges inside of X and inside of Y are white.

For a vertex v ∈ V (H) we write N(v) to denote its neighbours according to the black edge
relation only. An ordered pattern H is a pattern whose vertex set comes with a linear order
<H. Given a vertex v ∈ H, we write N−(u) := {v ∈ N(u) | v <H u}.

A ladder (sometimes called a chain graph) Ln of size n is a bipartite pattern defined on
two vertex sequences A = (ai)i∈[n] and B = (bi)i∈[n], where aibj ∈ B if i > j and aibj ∈ R

otherwise. Note that for any 1 ⩽ l ⩽ r ⩽ n the subgraph induced by the sequences (ai)i∈[l,r]
and (bi)i∈[l,r] induces a ladder. A semi-ladder L̃n has the same black edges, but only the
edges aibi, i ∈ [n] are red. All the remaining edges are white:

a1 a2 a3 a4 a5 a6

b1 b2 b3 b4 b5 b6

a1 a2 a3 a4 a5 a6

b1 b2 b3 b4 b5 b6

The Ladder index of a graph G is the largest n such that G contains the pattern Ln.
A co-matching Mn (also called crown) has black edges aibj for i ̸= j and red edges aibi

for i ∈ [n].

a1 a2 a3 a4 a5 a6

b1 b2 b3 b4 b5 b6

Finally, the shattered pattern Un of size n has a side S (the shattered set) of size n and a
side W (the witness set) of size 2n. We index the vertices of W by subsets I ⊆ S, then the
vertex wI has black edges into I and red edges into S \ I:

P. G. Drange, P. Greaves, I. Muzi, and F. Reidl 14:5

s1 s2 s3

w∅ w1 w2 w3 w12 w13 w23 w123

▶ Definition 3 (Left-cover, left-covering number). Given an ordered bipartite pattern H with
bipartition (X, Y), a left-cover is a set of vertices C ⊆ V (H) such that either X ⊆ N−(C)∪C

or Y ⊆ N−(C)∪C. The left-covering number lc(H) is the minimum size of a left cover of H.
For an (unordered) pattern H we define its left-covering number as

lc(H) := max
H∈π(H)

lc(H).

Note that we include the covering set C itself in the cover, this is necessary since for a given
ordering of a pattern some vertices might not have right neighbours and can therefore not be
covered by left neighbourhoods.

The left-covering number of a pattern is the first important measure that will influence the
running time of the main algorithm presented later. The second important measure relates
to the number of non-isomorphic “half”-ordered patterns we can obtain from a bipartite
pattern, that is, how many distinct objects we find by ordering one partition. A useful tool
to concretise this notion is the following function:

▶ Definition 4 (Signature). Let H be a bipartite pattern with bipartition (X, Y) and let Z be
an ordering of Z ∈ {X, Y }. Then the signature σZ(H) is defined as the multiset

σZ(H) := {{ιZ(N(u)) | u ∈ (X ∪ Y) \ Z}}.

For orderings Z,Z′ ∈ π(Z) we define the equivalence relation

Z ∼H Z′ ⇐⇒ σZ(H) = σZ′(H).

▶ Definition 5 (Half-ordering asymmetry). Given a bipartite pattern H with bipartition (X, Y)
and a partite set Z ∈ {X, Y }, we define the half-ordering asymmetry hoa(H, Z) as the
number of equivalence classes under the ∼H relation

hoa(H, Z) := |π(Z)/ ∼H | .

We further define the half-ordering asymmetry of H as

hoa(H) := max{hoa(H, X), hoa(H, Y)}.

Alternatively, hoa(H, Z) := |{σZ(H) | Z ∈ π(Z)}|.

3 A general pattern-finding algorithm

We first describe a general-purpose algorithm for finding patterns in degenerate graphs.
Afterwards, we will describe more specialised algorithms using similar ideas to find specific
patterns.

▶ Theorem 6. Let G be a d-degenerate graph and let H be a bipartite pattern with bipartition
(X, Y) where |X| ⩾ |Y |. Then after a preprocessing time of O(|X|lc(H)|H|! + d2dn), we can
in time O

(
nlc(H)(4d lc(H))|X|d|X|3 hoa(H)

)
count how often H appears in G.

IPEC 2023

14:6 Computing Complexity Measures of Degenerate Graphs

The main ingredient of our algorithm will be the following data structure:

▶ Theorem 7. Let G be an ordered graph on n vertices with degeneracy d. After a prepro-
cessing time of O(d2dn), we can, for any given S ⊆ V (G), compute a subset dictionary QS

in time O(|S|2|S| + d|S|2) which for any X ⊆ S ⊆ V (G) answers the query

QS [X] :=
∣∣{v ∈ G | S ∩N(v) = X}

∣∣
in time O(|X|).

▶ Lemma 8. Let G be an ordered graph with degeneracy d. Then in time O(d2dn) we can
compute a subset dictionary R over V (G) which for any X ⊆ V (G) answers the query

R[X] :=
∣∣{v ∈ G | X ⊆ N−(v)}

∣∣
in time O(|X|).

Proof. Given G as input, we compute R as follows:
Initialize R as an empty trie storing integers;
for u ∈ G do

for X ⊆ N−(u) do
R[X]← R[X] + 1 // Non-existing keys are treated as zero

return R;
Note that every update of the data structure with key X takes time O(|X|), since |X| ⩽ d

it follows that the total initialisation time is bounded by O(d2dn). ◀

▶ Lemma 9. Let G be an ordered graph with degeneracy d and let S ⊆ V (G). If we assume
the subset dictionary R of Lemma 8 is given, we can construct in time O(|S|2|S| + d|S|2) a
subset dictionary QS over S which for X ⊆ S answer the query

QS [X] :=
∣∣{v ∈ G | S ∩N(v) = X}

∣∣
in time O(|X|).

Proof. We first construct an auxiliary subset dictionary Q̂ which for X ⊆ S answers the
query

Q̂S [X] :=
∣∣{v ∈ G | S ∩N−(v) = X}

∣∣
in time O(|X|). We first prove the following claim which implies that Q̂S is the (upwards)
Möbius inversion of R over S and hence can be computed in time O(|S|2|S|) using Yate’s
algorithm [18, 14, 2].

▷ Claim 10.
∣∣{v ∈ G | S ∩N−(v) = X}

∣∣ =
∑

X⊆Y ⊆S(−1)|Y \X|R[Y],

Proof. First consider v ̸⩾G X. Then X cannot be contained in N−(v) and therefore v does
not contribute to the left-hand side. Note that v is not counted by R[Y] for any Y ⊇ X,
therefore v does not contribute to the right-hand side.

Consider therefore v ⩾G X. First, assume that S∩N−(v) = X and therefore v contributes
to the left-hand side. Then v is counted on the right-hand side exactly once by the term
R[X] which has a positive sign.

P. G. Drange, P. Greaves, I. Muzi, and F. Reidl 14:7

Consider now v with S ∩ N−(v) ̸= X. If X ̸⊆ N−(v), then v does not contribute to
the left-hands side and it is not counted by any term R[Y], Y ⊇ X on the right-hand side.
We are therefore left with vertices v where I := S ∩N−(v) satisfies X ⊂ I. Note that I is
counted by every term R[Y] with X ⊆ Y ⊆ I. Since∑

X⊆Y ⊆I

(−1)(Y \X) =
∑

0⩽k⩽|I\X|

(−1)k

(
|I \X|

k

)
= 0

we conclude that these counts of v cancel out and contribute a sum-total of zero to the
right-hand side. This covers all cases and we conclude that the claim holds. ◁

It remains to be shown how the query QS [X] can be computed using Q̂S [X]. To this end,
consider a vertex v ∈ G where S ∩N(v) ̸= S ∩N−(v) as these contribute to Q̂S [X] but must
not be counted by QS [X]. Note that any such vertex must be contained in N−(S) since v has
at least one right-neighbour in S. Accordingly, we apply the following correction to Q̂S [X]:

Let QS = Q̂S

for u ∈ N−(S) do
QS [N−(u) ∩ S]← QS [N−(u) ∩ S]− 1
QS [N(u) ∩ S]← QS [N(u) ∩ S] + 1

This correction takes time O(d|S|2). ◀

We are now ready to describe the pattern-counting algorithm.

Proof of Theorem 6. The problem is trivial for |X| = 1 since then the pattern is either a
single edge or anti-edge. Thus assume |X| ⩾ 2 in the following, in particular for the running
time calculations.

We first compute the left-covering number lc(H) by simply brute-forcing all orderings of H

in time O(|H|! ·max{|X|, |Y |}lc(H)) = O(|H|!|X|lc(H)). At the same time, whenever we find
that a specific ordering H has a minimal left-covering of X, then we add the signature σX(H)
with X := H[X] to a collection X . Similarly, if we find that a minimal left-covering in H
covers Y we add the signature σY(H) with Y := H[Y] to a collection Y. We will later use
that |X | ⩽ hoa(H, X) and |Y| ⩽ hoa(H, Y).

We now compute an ordering G for G of degeneracy d in time O(dn), sort the left-
neighbourhoods in time O(d log d ·n) time and compute the data structure R as per Lemma 8
in time O(d2dn). If we want to compute the number of times H appears in G, we further
need to initialise a subset dictionary K.

We now iterate through all subsets C ⊆ V (G) of size lc(H) and for each such set
we iterate through all subsets Z ⊆ N−

G (C) ∪ C of size |X| or |Y |, in total this takes
time O(nlc(H)((d+1) lc(H))|X|). We describe the remainder of the algorithm for a set X = Z

of size |X|, the procedure for a set Y works analogously. Let X be the ordering of X in G.
To verify that X can be completed into a pattern H in G, we compute the data struc-

ture QX in time O(|X|2|X| + d|X|2) as per Theorem 7. To check whether H exists in G, we
iterate through all signatures σ ∈ X and test whether QX [X[A]] > 0 for all index sets A ∈ σ,
this takes time O(|X ||X||Y |), in total the verification step for X takes time

O
(
(|X|2|X| + d|X|2) · |X ||X||Y |

)
= O

(
d|X|32|X| hoa(H)

)
where we used that |X| ⩾ |Y | and |X| ⩾ 2. This bound also holds for checking Y since |X |+
|Y| ⩽ 2 hoa(H). Finally, if we exhaust all orderings of H without finding the pattern, we
report that it does not exist in G.

IPEC 2023

14:8 Computing Complexity Measures of Degenerate Graphs

To count in how many ways X can be extended into the pattern H in G, we compute

cH,X :=
∑
σ∈X

∏
A(k)∈σ

(
QX [X[A]]

k

)

where k denotes the multiplicity of A in the multiset σ. Note, however, that we have to take
care not to double-count the contribution of X to the overall count as we might encounter the
set X multiple times. To that end, we record the intermediate result by setting K[X] := cH,X

and we forgo the above computation if X exists already as a key in K. The computation
of cH,X and this additional book keeping takes time O(|X|+ |X ||X||Y |), in total we arrive at
the same running time O

(
d|X|32|X| hoa(H)

)
like for the decision variant. After exhausting

all orderings of H we report back the number of times H appears in G as the sum of all
entries of K.

The total running time of either variant of the algorithm is, as claimed,

O
(
|X|lc(H)|H|! + d2dn + dn + nlc(H)((d + 1) lc(H)

)|X| · d|X|32|X| hoa(H)
)

= O
(
|X|lc(H)|H|! + d2dn + nlc(H)(4d lc(H))|X|d|X|3 hoa(H)

)
. ◀

4 Concrete applications

4.1 Finding bicliques and co-matchings
We note that lc(Kt,t) = 1 and hoa(Kt,t) = 1, therefore the application of Theorem 6 gives
the following:

▶ Corollary 11. Let G be a d-degenerate graph. Then we can compute the number of biclique
patterns Ks,t (s ⩾ t) in time O

(
s · (2s)! + d2dn + n(4d)sds3)

.

Let M t be a co-matching on 2t vertices. We will assume in the following that the partite
sets of M t are X := (x1, . . . , xt) and Y := (y1, . . . , yt) so that the edges xiyi for i ∈ [t] are
forbidden.

▶ Lemma 12. lc(M t) = 2 and hoa(M t) = 1.

Proof. Let M̄t be an ordering of M t and let z be the last vertex in that order. Then N−(z)
covers all vertices of one partite set except one vertex z′. Thus {z, z′} is a left-cover of M̄t.

To determine the half-ordering asymmetry, note that for every ordering Z of Z ∈ {X, Y }
the signature σZ(M t) is simply the set

([t]
t−1

)
, so the total number of signatures is one. ◀

▶ Corollary 13. Let G be a d-degenerate graph. Then we can compute the number of
co-matching patterns M t in time O

(
t2(2t)! + d2dn + n2(8d)tdt3)

.

4.2 Finding shattered sets
A direct application of Theorem 6 to locate a shattered pattern Ut is unsatisfactory as the
running time will include a factor of nt since lc(Ut) = t. By the following observation, we
can bound t by the degeneracy of the graph, but we can greatly improve the running time
by further adjusting the algorithm.

▶ Observation 14. Let G be a d-degenerate graph. Then vc(G) ⩽ d + 1.

P. G. Drange, P. Greaves, I. Muzi, and F. Reidl 14:9

Proof. Assume S ⊆ V (G) is shattered by W ⊆ V (G), with S = |vc(G)|. Let W ′ ⊆ W be
those witnesses that have |S|−1 neighbours in S. Then G[W ′∪S] induces a graph of minimum
degree |S| − 1 and we must have that |S| − 1 ⩽ d and accordingly vc(G) = |S| ⩽ d + 1. ◀

The core observation that allows further improvements is that many orderings of Ud+1
have degeneracy larger than d and can therefore not appear in a d-degenerate graph. In
particular, the ordering in which all witnesses of Ud+1 appear before the shattered set has
degeneracy 2d+1 and can therefore be ruled out. We refine this idea further in the following
lemma.

▶ Lemma 15. Let G be a d-degenerate ordering of a graph G. Let G contain the shattered
pattern Ut and let Ut := G[Ut] be its ordering. Then lc(Ut) ⩽ ⌈log d + 1⌉. Specifically, we
either have that t ⩽ ⌈log d + 1⌉ or that Ut can be covered by ⌈log d + 1⌉ witness vertices.

Proof. Let S = (s1, . . . , st) and W = (w1, . . . , w2t) be the vertices of Ut in G and let the
indices of the variables reflect the ordering of the corresponding vertices in Ut.

Partition the set S into p := ⌈log d + 1⌉ sets S1, . . . , Sp such that each set has size at least
⌊t/p⌋ and at most ⌈t/p⌉. For each set Si define the set of “apex”-witnesses Ai := {w ∈W |
N(w) ⊃ Si}. Note that, for all i ∈ [p],

|Ai| = 2|S\Si| ⩾ 2t−⌈t/p⌉ = 2⌈t p−1
p ⌉.

We call a set Ai good if maxG Ai > maxG Si, that is, at least one apex vertex from Ai can
be found to the right of Si. We now distinguish two cases:

Case 1. All Ai, i ∈ [p], are good.
It follows that Ut can be left-covered by taking one vertex from each Ai, i ∈ [p]. We conclude
that lc(Ut) ⩽ p = ⌈log d + 1⌉.

Case 2. Some Ai, i ∈ [p], is not good.
Let u = maxG Si be the last vertex in Si, note that Ai ⩽G u and accordingly Ai ⊆ N−(u).
But then we must have that |Ai| ⩽ d and accordingly that

2⌈t p−1
p ⌉ ⩽ d ⇐⇒ ⌈tp− 1

p
⌉ ⩽ log d =⇒ t

p− 1
p

⩽ log d ⇐⇒ t ⩽
p

p− 1 log d

⇐⇒ t ⩽
⌈log d + 1⌉
⌈log d + 1⌉ − 1 log d = log d

⌈log d⌉
⌈log d + 1⌉ ⩽ ⌈log d + 1⌉.

We therefore find that lc(Ut) ⩽ |S| ⩽ ⌈log d + 1⌉. ◀

▶ Theorem 16. Let G be a d-degenerate graph on n vertices. Then we can determine the
VC-dimension of its neighbourhood set system F(G) in time O(n⌈log d+1⌉dd+2(2d log d)d+1).

Proof. We first compute an ordering G of G with degeneracy d in time O(dn) and sort all
left-neighbourhoods in time O(d log d · n). Let p := ⌈log d + 1⌉ in the following.

Let Ut = (S, W) be a shattered set of size t ⩽ d+1 in G. By Lemma 15 we then have that
lc(Ut) ⩽ p. Therefore to locate the set S we first guess up to p vertices and then exhaustively
search through their (closed) left-neighbourhoods in time(

n

p

)(
dp

t

)
⩽

(en

p

)p(edp

t

)t

= O
(

n⌈log d+1⌉(d log d)d+1
)

.

IPEC 2023

14:10 Computing Complexity Measures of Degenerate Graphs

Now that we can locate S we apply Theorem 7 in order to verify that S is indeed shattered:
For each candidate set S from the previous step, we compute a subset dictionary QS in
time O(|S|2|S| + d|S|2) = O(d2d) and then check whether QS [X] > 0 for each X ⊆ S. This
latter step takes time O(|S|2|S|) and is therefore subsumed by the construction time of QS .
We conclude that the algorithm runs in total time

O(d log d ·n)+O(d2dn)+O
(

n⌈log d+1⌉(d log d)d+1 · d2d
)

= O
(

n⌈log d+1⌉dd+2(2d log d)d+1
)

as claimed. ◀

We note that the exponent of ⌈log d + 1⌉ in the running time is almost tight:

▶ Theorem 17. Graph VC-dimension parameterized by the degeneracy d of the input
graph cannot be solved in time f(d) · no(log d) unless all problems in SNP can be solved in
subexponential time.

Proof. We adapt the W[1]-hardness reduction from k-Clique to VC-dimension by Downey,
Evans, and Fellows [8] and combine it with the result by Chen et al. [5, 4] which states that
k-Clique cannot be solved in time f(k)no(k) unless all problems in SNP admit subexponential-
time algorithms.

Given an instance (H, k) for k-Clique, we construct a graph G as follows. We first
create k copies V1, . . . , Vk of V (H). For v ∈ H, let us denote its copies by v(1), . . . , v(k)

with v(i) ∈ Vi for i ∈ [k]. We now add the following vertices and edges:
A single isolated vertex w0,
a vertex set W1 which contains one pendant vertex for each v(i), v ∈ H and i ∈ [k],
a vertex set W2 which for each edge uv ∈ H contains

(
k
2
)

vertices wij
uv, i, j ∈ [k], each of

which u(i) and v(j) as its only neighbours, and
a vertex set A which for each index set I ⊆ [k] contains a vertex aI which is connected to
all vertices in Vi for each i ∈ I.

Note that the graph is bipartite with partite sets V := V1 ∪ · · · ∪ Vk and W := W1 ∪W2 ∪A.
Let us first show that if H contains a clique of size k then G contains a shattered set of

size k. Let u1, . . . , uk be distinct vertices that form a complete graph in H. We claim that
then the set S := {u(1)

1 , . . . , u
(k)
k } is shattered in G. First, note that for every subset X ⊂ S,

|X| ⩾ 3, there exists a witness vertex a ∈ A such that N(a) ∩ S = X. For the empty
set we have the witness w0, for every singleton subset {u} ⊆ S we have that the pendant
vertex p ∈ N(u) ∩W1 witnesses {u}. Therefore, only subsets of size exactly two need to be
witnesses to shatter S. Consider {u(i)

i , u
(j)
j } ⊆ S for i ̸= j. Since uiuj ∈ H , the vertex wij

uiuj

exists in W2 and its neighbourhood in S is exactly {u(i)
i , u

(j)
j }. We conclude that all subsets

of size two in S are witnessed as well and therefore S is shattered.
In the other direction, assume that G contains a shattered set (S, W) of size k. Without

loss of generality, assume that k ⩾ 3.

▷ Claim 18. S ⊆ V and W ⊆ W .

Proof. Since G is bipartite we either have that S ⊆ V and W ⊆ W or that S ⊆ W and W ⊆ V .
Let us now show that the latter is impossible.

Since k ⩾ 3 we have that every vertex in S has degree at least four. Accordingly, W

cannot contain vertices from W1 or W2, which leaves us with W ⊆ A. However, all vertices
in Vi, i ∈ [k], have the exact same neighbours in A. Therefore only k subsets of A are
witnessed by vertices in V and therefore the largest shattered set in A has size at most log k.
We conclude that S cannot be contained in A and the claim holds. ◁

P. G. Drange, P. Greaves, I. Muzi, and F. Reidl 14:11

We now claim that |S ∩ Vi| = 1 for all i ∈ [k]. Assume otherwise, so let u(i), v(i) ∈ S for
some i ∈ [k]. But then the set {ui, vi} cannot be witnessed: not by a vertex from W1, since
it only contains vertices with one neighbour, not by a vertex from W2, since these vertices
each have at most one neighbour in each set Vi, and not by a vertex from A since we need
all 2k −

(
k
2
)
− k − 1 vertices of A to witness subsets of S of size at least three.

Therefore S intersects each Vi in exactly one vertex. Since S is shattered, every sub-
set {u(i), v(j)}, i ̸= j, is shattered. By the same logic as above, this can only be due to
a witness wij

uv ∈ W2 and therefore uv ∈ H. We conclude that indeed u1, . . . , uk induce a
complete graph in H, as claimed.

Finally, we need to determine the degeneracy of G. Consider the following elimination
sequence: We first delete all of {w0} ∪W1 ∪W2, all of which have degree at most two. Note
now that all vertices in V have at most |A| < 2k neighbours in A, so we delete V and then A.
In total, the maximum degree we encountered in this deletion sequence is < 2k.

Assume we could solve Graph VC-Dimension in time f(d)no(log d). In the above
reduction the degeneracy of the constructed graph is d < 2k, thus this running time for
Graph VC-Dimension would imply a running time of

f(d) · no(log d) = f(2k) · no(log 2k) = f(2k) · no(k)

for k-Clique. We conclude that VC-dimension parameterized by the degeneracy of the
input graph cannot be solved in time f(d)no(log d) unless all problems in SNP can be solved
in subexponential time. ◀

We note that Lemma 15 allows us to approximate the VC-dimension of degenerate graphs.

▶ Theorem 19. Let G be a d-degenerate graph on n vertices. Then for any 0 < ε ⩽ 1 we
can approximate the VC-dimension of G in time O(d2d(2n)⌈ε(1+log d)⌉) within a factor of ε.

Proof. We first compute a d-degenerate ordering G of G in time O(dn) and sort its left-
neighbourhoods in time O(d log d · n). Let Ut = (S, W) be the largest shattered set in G

and let Ut be its ordering in G. We further prepare the use of Theorem 7 by computing the
necessary data structure in time O(d2dn).

Let c := ⌈ε(1 + log d)⌉. The algorithm now iterates over all C ⊆ V (G) of size c and
searches the left-neighbourhood L := N−[C] for a shattered set by first computing a subset
dictionary QL in time O(d2d) and then finding the largest shattered subset S ⊆ L by
brute-force in time O(|L|2|L|) = O(cd2cd).

We claim that this simple algorithm computes the claimed approximation of the VC-
dimension. By Lemma 15 we either have that t ⩽ log d + 1 or that Ut can be left-covered
by log d + 1 witness vertices. In the first case, our algorithm will trivally locate an ε-fraction
of a maximal solution since it tests every set of size c. In the second case, the shattered set S

of Ut is covered by the left-neighbourhood of witness vertices w1, . . . , wp ∈W for p := log d+1.
Then by simple averaging, there exist c witnesses W ′ such that |N−[W ′] ∩ S| ⩾ c|S|/p =
ct/(log d + 1). Since the above algorithm will find the shattered set N−[W] ∩ S when
inspecting the left-neighbourhood of W , we conclude that it will output at least a value
of ct/(log d + 1). In either case the approximation factor is c

1+log d ⩾ ε, as claimed. ◀

We would like to highlight the special case of c = 1 of the above theorem as it provides us
with a linear-time approximation of the VC-dimension, which is probably a good starting
point for practical applications:

▶ Corollary 20. Let G be a d-degenerate graph on n vertices. Then we can approximate the
VC-dimension of G in time O(d2dn) within a factor of 1

1+log d .

IPEC 2023

14:12 Computing Complexity Measures of Degenerate Graphs

4.3 Approximating the ladder and semi-ladder index
Before we proceed, we note that degenerate graphs cannot contain arbitrarily long ladders:

▶ Observation 21. If G is d-degenerate then G cannot contain a ladder of length 2d + 2.

Proof. Note that a ladder of length t contains a complete bipartite graph K⌊t/2⌋,⌊t/2⌋, i.e. a
subgraph of minimum degree ⌊t/2⌋. Therefore t < 2d + 2. ◀

Again we find that a direct application of Theorem 6 to ladder patterns does not yield a
satisfying running time since lc(Lt) ≈ t/2. However, we can always left-cover a large portion
of a ladder with only one vertex:

▶ Observation 22. Let (A, B) induce a ladder of length t in G. For every ordering G of G

there exists a vertex u ∈ A ∪B such that |N−(u) ∩ (A ∪B)| ⩾ ⌊t/2⌋.

Proof. Let A′ := (ai)i⩾t/2 and B′ := (bi)i⩽t/2, then G[A′∪B′] contains a biclique with partite
sets A′, B′. Let u ∈ A′ ∪B′ be the largest vertex according to <G, then N−(u) ∩ (A′, B′) is
either all of A′ or all of B′. In either case the claim holds. ◀

▶ Theorem 23. Let G be a d-degenerate graph on n vertices and let t be its ladder-index.
Then we can in time O(d28d · n) decide whether G contains a ladder of size at least ⌊t/2⌋.

Proof. We compute a degeneracy ordering G of G and initialize the data structure R as per
Lemma 8 in time O(2dn).

Let (A, B) induce a ladder of maximum size t in G, by Observation 21 we have that
t ⩽ 2d + 1. By Observation 22, there exists a vertex u ∈ A ∪B such that N−(u) contains
either A′ := (ai)i⩾t/2 or B′ := (bi)i⩾t/2. Wlog assume A′ ⊆ N−(u) and let k := |A′|. We
guess u in O(n) time and A′ ⊆ N−(u) in time O(2d). To verify that A′ can be completed
into a ladder, we compute the data structure QA′ in time O(k2k + dk) using Lemma 9.

Finally, we verify that there exists a sequence of subsets A′
1 ⊂ A′

2 ⊂ . . . ⊂ A′
k = A′ where

QA′ [A′
k] > 0 for all i ∈ [k]; as each lookup in QA′ has cost equal to the size of the query set

this will take time proportional to
∑k

i=0 i
(

k
i

)
= k2k−1 in the worst case (where we have to

query all subsets of A′ before finding the sequence). Since k := ⌊t/2⌋, the total running time
of this algorithm is

O(2dn) + O
(

2dn · (k2k + dk) · k2k−1
)

= O
(

2dk2k(k2k + dk) · n
)

.

We can simplify this expression further by using that k ⩽ d which leads us to the claimed
running time of O(d28d · n) ◀

5 Implementation and experiments

Based on the above theoretical ideas, we implemented algorithms2 to compute the VC-
dimension, find the largest biclique, co-matchings (within an additive error of 1) and ladder
(within a factor 2). The last three algorithms all simply check the left-neighbourhood for the
respective structure. Aside from optimisations of the involved data structures we will not
describe these algorithms in further detail.

We observe that for practical purposes the data structure R can be computed progressively:
if we know that our algorithm currently only needs to compute QS from R (as per Lemma 9)
with |S| = k (k ⩽ d), then it is enough to only count sets of size ⩽ k in R. We can achieve this

2 Source code available under https://github.com/microgravitas/mantis-shrimp/

https://github.com/microgravitas/mantis-shrimp/

P. G. Drange, P. Greaves, I. Muzi, and F. Reidl 14:13

in time O(
(

d
k

)
n), which is far preferable to using O(2dn) time to insert all left-neighbourhood

subsets into R. If k remains much smaller than d, this improves our running time and space
consumption substantially.

The second important optimisation regards subset dictionaries. While tries are useful
in our theoretical analysis, in practice we opted to use bitsets for the data structures QS ,
as their universe S can assumed to be small. Bitsets also allow for a very concise and fast
implementation of the fast Möbius inversion, which needs to happen very frequently inside
the hot loop of the search algorithms.

The algorithm to compute the VC-dimension includes a few simple optimisations that
vastly improved its performance. Note that if we are currently searching for a shattered
set of size k, then a candidate vertex for a shattered set of size k must have at least

(
k−1
i−1

)
neighbours of degree at least i, for 1 ⩽ i ⩽ k − 1. Our algorithm recomputes the set of
remaining candidates each time it finds a larger shattered set. The (progressive) computation
of the data structure R can then also be restricted to only those left-neighbourhoods subsets
which only contain candidate vertices.

Accordingly, the algorithm performs well if it finds large shattered sets fast. To that end,
it first only looks at k-subsets of left-neigbhourhoods of single vertices. Once that search
is exhausted, it considers left-neighbourhoods of pairs, then triplets, etc. up to ⌈log d + 1⌉
vertices (as per Lemma 15). As this search is very expensive once we need to consider the
joint left-neighbourhood of several vertices, the algorithm estimates the work needed and
compares it against simply brute-forcing all k-subsets of the remaining candidates. Since the
number of candidates shrinks quite quickly in practice, the algorithm usually concludes with
such a final exhaustive search.

5.1 Results

10 100 1K 10K 100K 1M
Number of vertices

0.01s

0.1s

1s

10s

1m

5m
10m

Co
m

pu
ta

tio
n

tim
e

(s
)

VC dim
Ladder
Biclique
Co-matching

d = 1
d = 25
d = 100

Figure 1 Running times of all four algorithms on a collection of 206 networks. The size of the
circles indicates the degeneracy of the networks, triangles indicate that program timed out on the
network after 10 minutes.

IPEC 2023

14:14 Computing Complexity Measures of Degenerate Graphs

We implemented all four algorithms in Rust and tested them on a diverse collection of 206
networks3, using a PC with a AMD Ryzen 3 2200G CPU and 24 GB RAM. The primary
goal of our experiments was to verify that the data structures and algorithms in this paper
could be of practical use, therefore we ran each algorithm only once per network4 and timed
out after 10 minutes.

Of all the four measures, computing the VC-dimension is, unsuprisingly, the most
computationally challenging and the program timed out or ran out of memory for networks
larger than a few ten-thousand nodes or of degeneracy higher than 24. The broad summary
of the results looks as follows (Figure 1 visualises these results in more detail):

Statistics Completed Max size (n) Max degeneracy

VC-dimension 126 33266 (BioGrid-Chemicals) 24 (wafa-eies)
Biclique 176 935591 (teams) 191 (BioGrid-All)
Co-matching 179 935591 (teams) 255 (dogster_friendships)
Ladder index 187 935591 (teams) 191 (BioGrid-All)

0 1

d = 1
d = 10
d = 24

iscas89-s35932BioGrid-Chemicals

wafa-eies

netscience

capitalist

BioGrid-Fret

Figure 2 VC-dimension of networks normalized by their degeneracy + 1. Networks with large
degeneracy tend towards the left, meaning that the VC-dimension does not increase proportionally
to the degeneracy.

We are also interested in typical values of the VC-dimension of networks and how it
compares to the degeneracy. This topic deserves a deeper investigation, but we can report
some preliminary results here for those networks where our program terminated before
the timeout. In Figure 2 we normalised the VC-dimension by the degeneracy-plus-one, so
values close to one indicate that the VC-dimension is on the order of the degeneracy while
values close to zero indicate that it is much smaller than the degeneracy. We see a clear
tendency that networks with larger degeneracy tend towards zero, which we interpret as the
VC-dimension “growing slower” than the degeneracy in typical networks.

3 https://github.com/microgravitas/network-corpus
4 The variance in running times was on the orders of seconds.

https://github.com/microgravitas/network-corpus

P. G. Drange, P. Greaves, I. Muzi, and F. Reidl 14:15

6 Conclusion

On the theoretical side, we outlined a general bipartite pattern-finding and -counting algorithm
in degenerate graphs. Its running time crucially depends on two complexity measures of
patterns, namely the left-covering number and the half-ordering asymmetry. These general
algorithms can be further improved for specific patterns, which we exemplify for shattered
set, ladder, co-matching and biclique patterns. Our results also include improved running
times when the input graphs are of bounded degeneracy.

On the experimental side, we demonstrate that this style of algorithm is feasible and
practical for computation on real-world networks, which often exhibit low degeneracy. The
experiments also suggest that the VC-dimension of networks tends to be a very small
parameter, which makes it an interesting target for the development of fast algorithms that
exploit low VC-dimension.

References
1 Suman K. Bera, Noujan Pashanasangi, and C. Seshadhri. Linear time subgraph counting,

graph degeneracy, and the chasm at size six. In Thomas Vidick, editor, 11th Innovations in
Theoretical Computer Science Conference (ITCS 2020), volume 151, pages 38:1–38:20. Schloss
Dagstuhl–Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.ITCS.2020.38.

2 Andreas Björklund, Thore Husfeldt, and Mikko Koivisto. Set Partitioning via Inclusion-
Exclusion. SIAM Journal on Computing, 39(2):546–563, 2009. doi:10.1137/070683933.

3 Marco Bressan and Marc Roth. Exact and Approximate Pattern Counting in Degenerate
Graphs: New Algorithms, Hardness Results, and Complexity Dichotomies. In 2021 IEEE
62nd Annual Symposium on Foundations of Computer Science (FOCS), pages 276–285, 2022.
doi:10.1109/FOCS52979.2021.00036.

4 Jianer Chen, Xiuzhen Huang, Iyad A. Kanj, and Ge Xia. On the computational hardness
based on linear FPT-reductions. Journal of Combinatorial Optimization, 11(2):231–247, 2006.
doi:10.1007/s10878-006-7137-6.

5 Jianer Chen, Xiuzhen Huang, Iyad A. Kanj, and Ge Xia. Strong computational lower bounds
via parameterized complexity. Journal of Computer and System Sciences, 72(8):1346–1367,
2006. doi:10.1016/j.jcss.2006.04.007.

6 Norishige Chiba and Takao Nishizeki. Arboricity and Subgraph Listing Algorithms. SIAM
Journal on Computing, 14(1):210–223, 1985. doi:10.1137/0214017.

7 Erik D. Demaine, Felix Reidl, Peter Rossmanith, Fernando Sánchez Villaamil, Somnath Sikdar,
and Blair D. Sullivan. Structural sparsity of complex networks: Bounded expansion in random
models and real-world graphs. Journal of Computer and System Sciences, 105:199–241, 2019.

8 Rodney G. Downey, Patricia A. Evans, and Michael R. Fellows. Parameterized learning
complexity. In Proceedings of the sixth annual conference on Computational learning theory,
pages 51–57, 1993.

9 Pål Grønås Drange, Patrick Greaves, Irene Muzi, and Felix Reidl. Computing complexity
measures of degenerate graphs. CoRR, arXiv:2308.08868 [cs.DS], 2023. doi:10.48550/arXiv.
2308.08868.

10 Eduard Eiben, Robert Ganian, Thekla Hamm, Lars Jaffke, and O-joung Kwon. A Unifying
Framework for Characterizing and Computing Width Measures. In 13th Innovations in
Theoretical Computer Science Conference (ITCS 2022), volume 215, pages 63:1–63:23. Schloss
Dagstuhl–Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.ITCS.2022.63.

11 Kord Eickmeyer, Archontia C. Giannopoulou, Stephan Kreutzer, O-joung Kwon, Michał
Pilipczuk, Roman Rabinovich, and Sebastian Siebertz. Neighborhood Complexity and Kernel-
ization for Nowhere Dense Classes of Graphs. In 44th International Colloquium on Automata,
Languages, and Programming (ICALP 2017), volume 80, pages 63:1–63:14. Schloss Dagstuhl–
Leibniz-Zentrum für Informatik, 2017. doi:10.4230/LIPIcs.ICALP.2017.63.

IPEC 2023

https://doi.org/10.4230/LIPIcs.ITCS.2020.38
https://doi.org/10.1137/070683933
https://doi.org/10.1109/FOCS52979.2021.00036
https://doi.org/10.1007/s10878-006-7137-6
https://doi.org/10.1016/j.jcss.2006.04.007
https://doi.org/10.1137/0214017
https://doi.org/10.48550/arXiv.2308.08868
https://doi.org/10.48550/arXiv.2308.08868
https://doi.org/10.4230/LIPIcs.ITCS.2022.63
https://doi.org/10.4230/LIPIcs.ICALP.2017.63

14:16 Computing Complexity Measures of Degenerate Graphs

12 David Eppstein, Maarten Löffler, and Darren Strash. Listing all maximal cliques in large
sparse real-world graphs. ACM Journal of Experimental Algorithmics, 18:3.1:3.1–3.1:3.21,
2013. doi:10.1145/2543629.

13 Grzegorz Fabiański, Michał Pilipczuk, Sebastian Siebertz, and Szymon Toruńczyk. Progressive
algorithms for domination and independence. In 36th International Symposium on Theoretical
Aspects of Computer Science (STACS 2019), volume 126, pages 27:1–27:16. Schloss Dagstuhl–
Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPIcs.STACS.2019.27.

14 Donald E. Knuth. Art of computer programming, volume 2: Seminumerical algorithms.
Addison–Wesley Professional, 2014.

15 David W. Matula and Leland L. Beck. Smallest-last ordering and clustering and graph coloring
algorithms. Journal of the ACM, 30(3):417–427, 1983. doi:10.1145/2402.322385.

16 Christos H. Papadimitriou and Mihalis Yannakakis. On limited nondeterminism and the
complexity of the VC dimension. Journal of Computer and System Sciences, 53(2):161–170,
1996.

17 Robert Sedgewick and Kevin Wayne. Algorithms, 4th edition. Addison–Wesley, 2011.
18 Frank Yates. The design and analysis of factorial experiments. Imperial Bureau of Soil Science,

1937.

https://doi.org/10.1145/2543629
https://doi.org/10.4230/LIPIcs.STACS.2019.27
https://doi.org/10.1145/2402.322385

P.G
.D

range,P.G
reaves,I.M

uzi,and
F.R

eidl
14:17

A Complete results

For space reasons, some of the network names are abbreviated below. Abbreviated names are marked in gray. Some of the rows have been deferred
to the full version of the paper [9].

Running time Statistics
n m δ d̄ deg ∆ VC-dim biclique crown ladder VC-dim biclique crown ladder

Network

AS-oregon-1 11174 23409 2389 4.2 17 2389 600.09 342.08 175.43 2.42 [5,18] 12 [13,14] [17,35]
AS-oregon-2 11461 32730 2432 5.7 31 2432 600.40 167.57 201.43 174.27 [6,32] [7,31] [7,32] [7,63]
BG-AC-Luminescence 1840 2312 376 2.5 6 376 0.25 0.04 0.03 0.02 4 5 7 [6,13]
BG-AC-Rna 13765 42815 3572 6.2 54 3572 600.21 601.05 601.38 601.54 [4,55] [5,54] [5,55] [5,109]
BG-AC-Western 21028 64046 535 6.1 17 535 600.08 600.30 600.29 21.70 [5,18] [7,17] [9,18] [17,35]
BG-Biochemical-Activity 8620 17746 427 4.1 11 427 600.11 1.55 3.59 0.18 [5,12] 8 [7,8] [11,23]
BG-Bos-Taurus 454 424 27 1.9 3 27 0.02 0.01 0.01 0.01 2 3 [3,4] [3,7]
BG-C.-Elegans 6394 23646 522 7.4 64 522 600.21 399.05 214.18 390.57 [4,65] [6,64] [5,65] [6,129]
BG-Canis-Familiaris 143 125 90 1.7 2 90 0.01 0.01 0.01 0.01 2 2 3 [2,5]
BG-Chemicals 33266 28093 413 1.7 1 413 0.18 0.10 0.11 0.17 1 [0,1] 2 [0,3]
BG-Co-Localization 3543 4452 63 2.5 6 63 240.56 0.08 0.02 0.02 3 5 7 [6,13]
BG-Co-Purification 4326 5970 1972 2.8 12 1972 10.21 0.18 0.07 0.06 4 6 13 [12,25]
BG-Cricetulus-Griseus 69 57 30 1.7 1 30 0.01 0.01 0.01 0.01 1 [0,1] 2 [0,3]
BG-D.-Discoideum-Ax4 27 20 4 1.5 1 4 0.01 0.01 0.01 0.01 1 [0,1] 2 [0,3]
BG-D.-Growth-Defect 1447 2193 213 3.0 5 213 0.09 0.04 0.03 0.02 4 4 6 [5,11]
BG-D.-Melanogaster 9330 60556 303 13.0 83 303 600.32 538.71 553.50 566.57 [4,84] [5,83] [5,84] [5,167]
BG-E.-Nidulans-Fgsc-A4 64 62 44 1.9 2 44 0.01 0.01 0.00 0.01 2 2 3 [2,5]
BG-E.-Coli-K12-Mg1655 1273 1889 58 3.0 5 58 17.95 0.05 0.02 0.04 3 4 6 [5,11]
BG-Far-Western 1199 1089 60 1.8 3 60 0.05 0.03 0.01 0.02 3 3 4 [3,7]
BG-Fret 1700 2395 51 2.8 19 51 80.71 600.09 126.45 7.04 4 [11,19] [17,18] [19,39]
BG-Hepatitus-C-Virus 136 134 133 2.0 1 133 0.01 0.01 0.01 0.01 1 [0,1] 2 [0,3]
BG-Homo-Sapiens 24093 369767 2882 30.7 71 2882 329.05 338.13 343.83 346.77 [3,72] [3,71] [3,72] [3,143]
BG-HSV-1 178 208 40 2.3 3 40 0.01 0.02 0.01 0.01 3 3 4 [3,7]

Continued on next page

IP
E

C
2023

14:18
C

om
puting

C
om

plexity
M

easures
of

D
egenerate

G
raphs

Running time Statistics
Network n m δ d̄ deg ∆ VC-dim biclique crown ladder VC-dim biclique crown ladder

BG-HSV-5 121 107 27 1.8 1 27 0.01 0.01 0.01 0.01 1 [0,1] 2 [0,3]
BG-HSV-8 716 691 119 1.9 3 119 0.01 0.01 0.01 0.01 2 3 [3,4] [3,7]
BG-HPV-16 173 186 93 2.2 2 93 0.01 0.01 0.01 0.01 2 2 [2,3] [2,5]
Cannes2013 438089 835892 15169 3.8 27 15169 600.79 144.70 149.74 142.22 [5,28] [6,27] [6,28] [6,55]
CoW-interstate 182 319 25 3.5 4 25 0.03 0.00 0.01 0.01 3 4 [3,4] [4,9]
EU-email-core 986 16064 345 32.6 34 345 600.86 164.82 163.41 122.48 [5,35] [6,34] [6,35] [6,69]
JDK_dependency 6434 53658 5923 16.7 65 5923 600.41 453.02 600.99 601.73 [4,66] [5,65] [5,66] [5,131]
NZ_legal 2141 15739 429 14.7 25 429 600.36 110.96 128.55 146.23 [6,26] [7,25] [7,26] [7,51]
Noordin-terror-loc 127 190 18 3.0 3 18 0.01 0.01 0.01 0.01 3 3 [3,4] [3,7]
Noordin-terror-orgas 129 181 21 2.8 3 21 0.01 0.01 0.01 0.01 3 3 [3,4] [3,7]
ODLIS 2900 16377 592 11.3 12 592 600.03 48.04 13.49 0.44 [5,13] 6 [9,10] [12,25]
Opsahl-forum 899 7036 128 15.7 14 128 600.02 80.31 113.04 1.66 [5,15] 5 [6,7] [14,29]
Y2H_union 1966 2705 89 2.8 4 89 42.11 0.01 0.03 0.04 3 4 5 [4,9]
Yeast 2361 7182 66 6.1 10 66 600.04 0.23 0.08 0.05 [4,11] 7 [9,10] [10,21]
actor_movies 511463 1470404 646 5.7 14 646 600.36 600.51 600.46 105.76 [5,15] [7,14] [6,15] [14,29]
airlines 235 1297 130 11.0 13 130 0.20 2.85 0.46 0.09 5 8 [11,12] [13,27]
american_revolution 141 160 59 2.3 3 59 0.01 0.01 0.01 0.01 3 3 [2,3] [3,7]
autobahn 374 478 5 2.6 2 5 0.01 0.05 0.01 0.01 2 2 3 [2,5]
bahamas 219856 246291 14902 2.2 6 14902 600.12 1.59 1.97 1.80 [3,7] 6 [3,4] [6,13]
bergen 53 272 32 10.3 9 32 0.06 0.06 0.01 0.01 4 6 [8,9] [9,19]
bitcoin-otc-positive 5573 18591 788 6.7 20 788 600.14 600.45 600.24 46.50 [6,21] [8,20] [10,21] [20,41]
bn-fly-d._medulla_1 1781 8911 927 10.0 18 927 600.04 600.17 600.15 11.17 [5,19] [8,18] [8,19] [18,37]
boards_gender_2m 4220 5598 45 2.7 4 45 600.10 1.10 0.06 0.04 [3,5] 4 [3,4] [4,9]
ca-CondMat 23133 93439 279 8.1 25 279 600.05 600.65 208.73 600.65 [4,26] [14,25] 26 [18,51]
ca-HepPh 12006 118489 491 19.7 238 491 600.21 600.33 600.13 600.17 [3,239] [3,238] [3,239] [3,477]
celegans 297 2148 134 14.5 10 134 1.72 1.08 0.42 0.10 5 7 [8,9] [10,21]
chess 7301 55899 181 15.3 29 181 182.00 130.97 138.03 157.14 [6,30] [6,29] [6,30] [6,59]
cit-HepTh 27769 352285 2468 25.4 37 2468 180.07 189.90 194.29 106.40 [4,38] [4,37] [4,38] [3,75]
codeminer 724 1015 55 2.8 4 55 0.14 0.03 0.01 0.01 3 4 [4,5] [4,9]
columbia-mobility 863 4147 228 9.6 9 228 600.11 0.20 0.03 0.03 [4,10] 6 10 [9,19]

Continued on next page

P.G
.D

range,P.G
reaves,I.M

uzi,and
F.R

eidl
14:19

Running time Statistics
Network n m δ d̄ deg ∆ VC-dim biclique crown ladder VC-dim biclique crown ladder

cora_citation 23166 89157 377 7.7 13 377 600.11 7.72 2.57 0.91 [5,14] 9 [10,11] [13,27]
countries 592414 624402 110602 2.1 6 110602 600.14 9.49 10.88 9.75 [4,7] 5 [4,5] [6,13]
diseasome 1419 2738 84 3.9 11 84 1.70 0.14 0.04 0.04 4 6 12 [11,23]
dogster_friendships 426820 8546581 46505 40.0 255 46505 600.38 600.57 600.00 600.44 [1,256] [0,255] [1,256] [0,511]
dolphins 62 159 12 5.1 4 12 0.02 0.01 0.01 0.01 3 3 5 [4,9]
edinburgh_assoc._thes. 23132 297094 1062 25.7 34 1062 112.09 119.67 123.49 128.27 [3,35] [3,34] [3,35] [3,69]
email-Enron 36692 183831 1383 10.0 43 1383 213.38 219.83 223.53 219.47 [4,44] [4,43] [4,44] [4,87]
exnet-water 1893 2416 10 2.6 2 10 0.01 0.02 0.06 0.03 2 2 3 [2,5]
facebook-links 63731 817090 1098 25.6 52 1098 221.29 229.98 233.75 237.25 [3,53] [3,52] [3,53] [3,105]
foldoc 13356 91471 728 13.7 12 728 600.10 1.39 9.93 1.33 [5,13] 12 [9,10] [12,25]
foodweb-otago 141 832 45 11.8 14 45 75.41 2.43 11.06 0.26 4 12 [7,8] [14,29]
football 115 613 12 10.7 8 12 0.10 0.12 0.01 0.02 4 4 9 [8,17]
haggle 274 2124 101 15.5 39 101 600.11 551.34 533.96 550.92 [4,40] [8,39] [8,40] [8,79]
hex 331 930 6 5.6 3 6 0.01 0.02 0.01 0.01 3 2 [3,4] [3,7]
hypertext_2009 113 2196 98 38.9 28 98 600.15 146.97 150.88 134.22 [5,29] [9,28] [9,29] [9,57]
ia-infect-dublin 410 2765 50 13.5 17 50 600.10 65.59 1.60 0.94 [4,18] 9 [16,17] [17,35]
ia-reality 6809 7680 261 2.3 5 261 26.27 0.09 0.05 0.06 4 4 [5,6] [5,11]
iscas89-s1238 416 625 18 3.0 2 18 0.01 0.01 0.01 0.01 2 2 [2,3] [2,5]
iscas89-s13207 2492 3406 37 2.7 4 37 0.01 0.02 0.02 0.02 4 4 [4,5] [4,9]
iscas89-s1423 423 554 17 2.6 2 17 0.01 0.01 0.01 0.01 2 2 [2,3] [2,5]
iscas89-s1494 473 796 56 3.4 3 56 0.07 0.01 0.01 0.01 3 3 [3,4] [3,7]
iscas89-s15850 3247 4004 25 2.5 4 25 0.08 0.02 0.02 0.02 3 4 [3,4] [4,9]
iscas89-s298 92 131 11 2.8 2 11 0.01 0.01 0.01 0.01 2 2 [2,3] [2,5]
iscas89-s344 100 122 9 2.4 2 9 0.01 0.02 0.01 0.01 2 2 [2,3] [2,5]
iscas89-s349 102 127 9 2.5 2 9 0.01 0.01 0.01 0.01 2 2 [2,3] [2,5]
iscas89-s382 116 168 18 2.9 2 18 0.01 0.02 0.01 0.01 2 2 [2,3] [2,5]
iscas89-s38417 9500 10635 39 2.2 4 39 7.11 0.20 0.15 0.17 4 2 [4,5] [4,9]
iscas89-s400 121 182 19 3.0 2 19 0.01 0.01 0.01 0.01 2 2 [2,3] [2,5]
iscas89-s420 129 145 9 2.2 2 9 0.01 0.01 0.01 0.01 2 2 [2,3] [2,5]
iscas89-s444 134 206 19 3.1 2 19 0.01 0.01 0.01 0.01 2 2 3 [2,5]

Continued on next page

IP
E

C
2023

14:20
C

om
puting

C
om

plexity
M

easures
of

D
egenerate

G
raphs

Running time Statistics
Network n m δ d̄ deg ∆ VC-dim biclique crown ladder VC-dim biclique crown ladder

iscas89-s526 160 270 12 3.4 3 12 0.02 0.01 0.01 0.01 3 3 [2,3] [3,7]
iscas89-s526n 159 268 12 3.4 3 12 0.02 0.01 0.01 0.01 3 3 [3,4] [3,7]
iscas89-s713 137 180 12 2.6 3 12 0.01 0.01 0.01 0.01 3 2 [2,3] [3,7]
iscas89-s820 239 480 48 4.0 3 48 0.03 0.01 0.01 0.01 3 3 [3,4] [3,7]
iscas89-s832 245 498 49 4.1 3 49 0.03 0.01 0.01 0.01 3 3 [3,4] [3,7]
iscas89-s9234 1985 2370 18 2.4 4 18 0.07 0.04 0.02 0.01 3 4 [3,4] [4,9]
iscas89-s953 332 454 12 2.7 2 12 0.01 0.01 0.01 0.01 2 2 [2,3] [2,5]
lederberg 8324 41532 1103 10.0 15 1103 600.11 600.11 600.08 5.88 [5,16] [7,15] [9,16] [15,31]
lesmiserables 77 254 36 6.6 9 36 0.27 0.06 0.01 0.01 3 6 10 [9,19]
link-pedigree 898 1125 14 2.5 2 14 0.01 0.01 0.01 0.01 2 2 [2,3] [2,5]
livemocha 104103 2193083 2980 42.1 92 2980 308.64 318.47 325.14 326.65 [2,93] [2,92] [2,93] [2,185]
loc-brightkite_edges 58228 214078 1134 7.4 52 1134 381.48 385.52 393.61 346.98 [5,53] [5,52] [5,53] [5,105]
mg_casino 109 326 94 6.0 9 94 0.06 0.03 0.01 0.01 3 5 10 [9,19]
mg_forrestgump 94 271 89 5.8 8 89 0.07 0.01 0.01 0.01 3 4 9 [8,17]
mg_godfatherII 78 219 34 5.6 8 34 0.05 0.01 0.01 0.01 3 5 9 [8,17]
minnesota 2642 3303 5 2.5 2 5 0.02 0.02 0.03 0.03 2 2 3 [2,5]
moreno_health 2539 10455 27 8.2 7 27 600.10 0.12 0.07 0.07 [4,8] 5 [7,8] [7,15]
movies 101 192 19 3.8 3 19 0.01 0.01 0.01 0.01 3 2 [3,4] [3,7]
muenchen-bahn 447 578 13 2.6 2 13 0.01 0.02 0.01 0.01 2 [0,1] [2,3] [2,5]
munin 1324 1397 66 2.1 3 66 0.30 0.03 0.01 0.01 2 3 [2,3] [3,7]
offshore 278877 505965 37336 3.6 13 37336 600.11 2.14 583.20 2.50 [5,14] 13 [9,10] [13,27]
openflights 2939 15677 242 10.7 28 242 600.11 89.14 147.54 144.73 [5,29] [7,28] [7,29] [7,57]
paradise 542102 794545 35359 2.9 23 35359 600.21 601.52 600.31 601.57 [5,24] [22,23] [6,24] [23,47]
photoviz_dynamic 376 610 29 3.2 4 29 0.20 0.02 0.01 0.01 3 3 [3,4] [4,9]
pigs 492 592 39 2.4 2 39 0.01 0.01 0.01 0.01 2 2 [2,3] [2,5]
polbooks 105 441 25 8.4 6 25 0.05 0.01 0.01 0.01 4 5 [6,7] [6,13]
pollination-carlinville 1500 15255 157 20.3 18 157 600.04 600.37 600.30 68.80 [5,19] [6,18] [6,19] [18,37]
ratbrain 503 23030 497 91.6 67 497 600.50 538.67 601.38 600.83 [4,68] [5,67] [5,68] [5,135]
reactome 6327 147547 855 46.6 191 855 600.17 600.17 600.21 600.23 [3,192] [3,191] [3,192] [3,383]
residence_hall 217 1839 56 16.9 11 56 600.10 2.54 0.13 0.09 [4,12] 6 [10,11] [11,23]

Continued on next page

P.G
.D

range,P.G
reaves,I.M

uzi,and
F.R

eidl
14:21

Running time Statistics
Network n m δ d̄ deg ∆ VC-dim biclique crown ladder VC-dim biclique crown ladder

roget-thesaurus 1010 3648 28 7.2 6 28 228.14 0.13 0.03 0.02 4 3 [6,7] [6,13]
slashdot_threads 51083 117378 2915 4.6 14 2915 600.13 600.17 600.14 13.23 [5,15] [5,14] [6,15] [14,29]
soc-advogato 5167 39432 807 15.3 25 807 600.47 145.63 146.80 145.69 [5,26] [6,25] [6,26] [6,51]
soc-gplus 23628 39194 2761 3.3 12 2761 600.04 4.74 25.84 0.28 [6,13] 9 [7,8] [12,25]
soc-hamsterster 2426 16630 273 13.7 24 273 600.10 83.26 131.04 229.61 [5,25] [11,24] [23,25] [24,49]
sp_data_school_day_2 238 5539 88 46.5 33 88 600.31 159.31 159.79 165.56 [5,34] [6,33] [7,34] [7,67]
teams 935591 1366466 2671 2.9 9 2671 600.24 256.73 275.42 19.94 [6,10] 6 [6,7] [9,19]
twittercrawl 3656 154824 1084 84.7 143 1084 600.46 600.68 600.37 600.47 [3,144] [3,143] [3,144] [3,287]
unicode_languages 868 1255 141 2.9 4 141 1.06 0.94 0.01 0.02 3 4 [3,4] [4,9]
wafa-ceos 26 93 22 7.2 5 22 0.01 0.01 0.01 0.01 3 3 [5,6] [5,11]
wafa-hightech 21 159 20 15.1 12 20 0.17 0.40 0.13 10.16 3 7 [10,11] [8,17]
wafa-padgett 15 27 8 3.6 3 8 0.01 0.01 0.01 0.01 2 2 [3,4] [3,7]
web-google 1299 2773 59 4.3 17 59 600.02 50.40 0.58 0.71 [3,18] 9 18 [17,35]
wikipedia-norm 1881 15372 455 16.3 22 455 600.14 482.15 161.62 140.63 [6,23] [10,22] [11,23] [11,45]
win95pts 99 112 9 2.3 2 9 0.01 0.01 0.01 0.01 2 2 3 [2,5]
word_adjacencies 112 425 49 7.6 6 49 0.01 0.03 0.01 0.01 4 4 [5,6] [6,13]
zewail 6651 54182 331 16.3 18 331 600.09 601.22 601.20 96.19 [5,19] [9,18] [10,19] [18,37]

IP
E

C
2023

An Improved Kernelization Algorithm for Trivially
Perfect Editing
Maël Dumas Ñ

Univ. Orléans, INSA Centre Val de Loire, LIFO EA 4022, F-45067 Orléans, France

Anthony Perez Ñ

Univ. Orléans, INSA Centre Val de Loire, LIFO EA 4022, F-45067 Orléans, France

Abstract
In the Trivially Perfect Editing problem one is given an undirected graph G = (V, E) and an
integer k and seeks to add or delete at most k edges in G to obtain a trivially perfect graph. In a
recent work, Dumas et al. [16] proved that this problem admits a kernel with O(k3) vertices. This
result heavily relies on the fact that the size of trivially perfect modules can be bounded by O(k2)
as shown by Drange and Pilipczuk [14]. To obtain their cubic vertex-kernel, Dumas et al. [16] then
showed that a more intricate structure, so-called comb, can be reduced to O(k2) vertices. In this
work we show that the bound can be improved to O(k) for both aforementioned structures and
thus obtain a kernel with O(k2) vertices. Our approach relies on the straightforward yet powerful
observation that any large enough structure contains unaffected vertices whose neighborhood remains
unchanged by an editing of size k, implying strong structural properties.

2012 ACM Subject Classification Theory of computation → Parameterized complexity and exact
algorithms

Keywords and phrases Parameterized complexity, kernelization algorithms, graph modification,
trivially perfect graphs

Digital Object Identifier 10.4230/LIPIcs.IPEC.2023.15

1 Introduction

In the Trivially Perfect Editing problem one is given an undirected graph G = (V, E)
and an integer k and seeks to edit (add or delete) at most k edges in G so that the resulting
graph is trivially perfect (i.e. does not contain any cycle on four vertices nor path on four
vertices as an induced subgraph). More formally we consider the following problem:

Trivially Perfect Editing

Input: A graph G = (V, E), a parameter k ∈ N
Question: Does there exist a set F ⊆ [V]2 of size at most k, such that the graph
H = (V, E△F) is trivially perfect?

Here [V]2 denotes the set of all pairs of elements of V and E△F = (E ∪ F) \ (E ∩ F)
is the symmetric difference between sets E and F . We define similarly the deletion (resp.
completion) variant of the problem by only allowing to delete (resp. add) edges. Graph
modification covers a broad range of well-studied problems that find applications in various
areas. For instance, Trivially Perfect Editing has been used to define the community
structure of complex networks by Nastos and Gao [31] and is closely related to the well-
studied graph parameter tree-depth [21, 33]. Theoretically, some of the earliest NP-Complete
problems are graph modification problems [26, 20]. Regarding edge (graph) modification
problems, one of the most notable one is the Minimum Fill-in problem which aims at adding

© Maël Dumas and Anthony Perez;
licensed under Creative Commons License CC-BY 4.0

18th International Symposium on Parameterized and Exact Computation (IPEC 2023).
Editors: Neeldhara Misra and Magnus Wahlström; Article No. 15; pp. 15:1–15:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.univ-orleans.fr/lifo/membres/dumas/
https://www.univ-orleans.fr/lifo/Members/Anthony.Perez/
https://doi.org/10.4230/LIPIcs.IPEC.2023.15
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

15:2 An Improved Kernelization Algorithm for Trivially Perfect Editing

edges to a given graph to obtain a chordal graph (i.e. a graph that does not contain any
induced cycle of length at least 4). In a seminal result, Kaplan et al. [25] proved that Mininum
Fill-in admits a parameterized algorithm as well as a kernel containing O(k3) vertices.
This result was later improved to O(k2) vertices by Natanzon et al. [32]. Parameterized
complexity and kernelization algorithms provide a powerful theoretical framework to cope
with decision problems.

Parameterized complexity

A parameterized problem Π is a language of Σ∗ ×N, where Σ is a finite alphabet. An instance
of a parameterized problem is a pair (I, k) with I ⊆ Σ∗ and k ∈ N, called the parameter.
A parameterized problem is said to be fixed-parameter tractable if it can be decided in
time f(k) · |I|O(1). An equivalent definition of fixed-parameter tractability is the notion
of kernelization. Given an instance (I, k) of a parameterized problem Π, a kernelization
algorithm for Π (kernel for short) is a polynomial-time algorithm that outputs an equivalent
instance (I ′, k′) of Π such that |I ′| ⩽ h(k) for some function h depending on the parameter
only and k′ ⩽ k. It is well-known that a parameterized problem is fixed-parameter tractable
if and only if it admits a kernelization algorithm (see e.g. [19]). Problem Π is said to admit
a polynomial kernel whenever h is a polynomial.

Related work

Since the work of Kaplan et al. [25] many polynomial kernels for edge modification problems
have been devised (see e.g. [3, 2, 12, 24, 1, 14, 27, 15, 11]). There is also evidence that under
some reasonable theoretical complexity assumptions, some graph modification problems do
not admit polynomial kernels [28, 23, 8, 30]. We refer the reader to a recent comprehensive
survey on kernelization for edge modification problems by Crespelle et al. [9]. The Trivially
Perfect Editing problem has been well-studied in the literature [5, 22, 4, 1, 14, 16, 29,
31]. Recall that trivially perfect graphs are a subclass of chordal graphs that additionally
do not contain any path on four vertices as an induced subgraph. These graphs are
also known as quasi-threshold graphs. We note here that while the NP-Completeness of
completion and deletion toward trivially perfect graphs has been known for some time [34, 6],
the NP-Completeness of Trivially Perfect Editing remained open until the work
of Nastos and Gao [31]. Thanks to a result of Cai [7] stating that graph modification
toward any graph class characterized by a finite set of forbidden induced subgraphs is fixed-
parameter tractable, Trivially Perfect Editing is fixed-parameter tractable. Regarding
kernelization algorithms, Drange and Pilipczuk [14] provided a kernel containing O(k7)
vertices, a result that was recently improved to O(k3) vertices by Dumas et al. [16]. These
results also work for the deletion and completion variants. For the latter problem, a recent
result by Bathie et al. [1] improves the bound to O(k2) vertices.

As part of the proof for the size of their cubic vertex-kernel, Dumas et al. [16] subsequently
showed the following result. The structures used in Theorem 1 shall be defined later.

▶ Theorem 1 ([16]). Let (G, k) be an instance1 of Trivially Perfect Editing such that
the sizes of its trivially perfect modules and combs are bounded by p(k) and c(k), respectively.
If (G, k) is a Yes-instance then G has O(k2 + k · (p(k) + c(k))) vertices.

1 As we shall see Section 3.1 the instance also needs to be further reduced under standard reduction rules.

M. Dumas and A. Perez 15:3

The proof of [16, Theorem 1] actually implies an O(k3 + k · (p(k) + c(k))) bound and
needs a small adjustment for Theorem 1 to hold. We give a detailed proof of Theorem 1 for
the sake of completeness (Section 3.2).

The cubic vertex-kernel of Dumas et al. [16] relied on a result of Drange and Pilipczuk [14]
that proved that p ∈ O(k2) and then used new reduction rules implying that c ∈ O(k2).

Our contribution

We provide reduction rules and structural properties on trivially perfect graphs that will
imply an O(k) bound for both functions p and c of Theorem 1. These new reduction rules
allow us to prove the existence a quadratic vertex-kernel for Trivially Perfect Editing.
To bound the size of trivially perfect modules by O(k), we first reduce the ones that contain
a large matching of non-edges with the use of a simple reduction rule. To bound the ones
that do not contain such structures, we will rely on so-called combs, introduced by Dumas et
al. [16]. Combs correspond to parts of the graph that induce trivially perfect graphs (but
not necessarily modules) with strong properties on their neighborhoods. They are composed
of two main parts, called the shaft and the teeth, that will be independently reduced to a
size linear in k. The reduction rule dealing with shafts will ultimately allow us to bound the
size of trivially perfect modules with no large matching of non-edges. Our approach relies
on the straightforward yet powerful observation that any large enough structure contains
unaffected vertices whose neighborhood remains unchanged by an editing of size k. Finally,
we note that our kernel works for both the deletion and completion variants of the problem.

Outline

Section 2 presents some preliminary notions and structural properties on (trivially perfect)
graphs. Section 3 describes known as well as our additional reduction rules to obtain the
claimed kernelization algorithm while Section 4 explain why our kernel is safe for the deletion
variant of the problem. We conclude with some perspectives in Section 5.

2 Preliminaries

We consider simple, undirected graphs G = (V, E) where V denotes the vertex set of
G and E ⊆ [V]2 its edge set. We will sometimes use V (G) and E(G) to clarify the
context. The open (respectively closed) neighborhood of a vertex u ∈ V is denoted by
NG(u) = {v ∈ V | {u, v} ∈ E} (respectively NG[u] = NG(u) ∪ {u}). Given a subset of
vertices S ⊆ V the neighborhood of S is defined as NG(S) = ∪v∈SNG(v) \ S. Similarly,
given a vertex u ∈ V and S ⊆ V we let NS(u) = NG(u) ∩ S. In all aforementioned cases we
forget the subscript mentioning graph G whenever the context is clear. Given a subset of
vertices S ⊆ V we denote by G[S] the subgraph induced by S, that is G[S] = (S, ES) where
ES = {uv ∈ E : u ∈ S, v ∈ S}. In a slight abuse of notation, we use G \ S to denote the
induced subgraph G[V \ S]. A connected component is a maximal subset of vertices S ⊆ V

such that G[S] is connected. A module of G is a set M ⊆ V such that for all u, v ∈ M it
holds that N(u)\M = N(v)\M . Two vertices u and v are true twins whenever N [u] = N [v],
and a critical clique is a maximal set of true twins. A vertex u ∈ V is universal if NG[u] = V .
The set of universal vertices forms a clique and is called the universal clique of G. A graph
is trivially perfect if and only if it does not contain any C4 (a cycle on 4 vertices) nor P4 (a
path on 4 vertices) as an induced subgraph. In the remainder of this section we describe

IPEC 2023

15:4 An Improved Kernelization Algorithm for Trivially Perfect Editing

characterizations and structural properties of trivially perfect graphs. The first one relies on
the well-known fact that any connected trivially perfect graph contains a universal vertex
(see e.g. [36]).

▶ Definition 2 (Universal clique decomposition, [13]). A universal clique decomposition (UCD)
of a connected graph G = (V, E) is a pair T =

(
T = (VT , ET), B = {Bt}t∈VT

)
where T is a

rooted tree and B is a partition of the vertex set V into disjoint nonempty subsets such that:
if {v, w} ∈ E and v ∈ Bt, w ∈ Bs then s and t are on a path from a leaf to the root, with
possibly s = t,
for every node t ∈ VT , the set Bt of vertices is the universal clique of the induced subgraph
G[

⋃
s∈V (Tt) Bs], where Tt denotes the subtree of T rooted at t.

A simple way of understanding Definition 2 is to observe that such a decomposition can
be obtained by removing the set U of universal vertices of G and then recursively repeating
this process on every trivially perfect connected component of G \ U . Drange et al. [13]
showed that a connected graph admits a UCD if and only if it is trivially perfect. Using the
notion of UCD, Dumas et al. [16] proved the following characterization for trivially perfect
graphs that will be heavily used in our reduction rules. A collection of subsets F ⊆ 2U over
some universe U is a nested family if A ⊆ B or B ⊆ A holds for any A, B ∈ F .

▶ Lemma 3 ([16]). Let G = (V, E) be a graph, S ⊆ V a maximal clique of G and {K1, ..., Kr}
the set of connected components of G\S. The graph G is trivially perfect if and only if the
following conditions are verified:

(i) G[S ∪ Ki] is trivially perfect, 1 ⩽ i ⩽ r

(ii)
⋃

1⩽i⩽r{NG(Ki)} is a nested family
(iii) ∀u ∈ Ki, ∀v ∈ NG(Ki), {u, v} ∈ E, 1 ⩽ i ⩽ r. In other words, Ki is a module of G.

In the remainder of this paper, a k-editing of G into a trivially perfect graph is a set
F ⊆ [V]2 such that |F | ⩽ k and the graph H = (V, E△F) is trivially perfect. Here
E△F = (E ∪ F) \ (E ∩ F) denotes the symmetric difference between sets E and F . For
the sake of readability, we simply speak of k-editing of G. We say that F is a k-completion
(resp. k-deletion) when H = (V, E ∪ F) (resp. H = (V, E \ F)) is trivially perfect. A vertex
is affected by a k-editing F if it is contained in some pair of F and unaffected otherwise.

Packing, anti-matching and blow-up

We now define some structures and operators that will be useful for our kernelization
algorithm. We assume in the remainder of this section that we are given a graph G = (V, E).
The notion of r-packing will be used in reduction rules to ensure the existence of unaffected
vertices in ordered sets of critical cliques or of trivially perfect modules.

▶ Definition 4 (r-packing). Let S = {C1, . . . , Cq} be an ordered collection of pairwise disjoint
subsets of V . We say that C ⊆ S is a r-packing of S if C = {C1, . . . , Cp} for 1 ⩽ p ⩽ q,∑p

i=1 |Ci| ⩾ r and the number of vertices contained in C is minimum for this property.

In a slight abuse of notation we use C to denote both {C1, . . . , Cp} and the set ∪p
i=1Ci.

▶ Observation 5. Let S = {C1, . . . , Cq} be an ordered collection of pairwise disjoint subsets
of V such that |Cj | ⩽ c, for 1 ⩽ j ⩽ q and some integer c > 0. Let C = {C1, . . . , Cp} be a
r-packing of S. Then

∑p
i=1 |Ci| ⩽ r + (c − 1).

Proof. Since
∑p

i=1 |Ci| ⩾ r and the number of vertices in C is minimum for this property we
have that

∑p−1
i=1 |Ci| ⩽ r − 1. The result follows from the fact that |Cp| ⩽ c. ◀

M. Dumas and A. Perez 15:5

▶ Definition 6 (Anti-matching). An anti-matching of G is a set of pairwise disjoint pairs
{u, v} of vertices of G such that {u, v} ̸∈ E.

In a slight abuse of notation we denote by V (D) the set of vertices contained in pairs of an
anti-matching D.

▶ Observation 7. Let (G, k) be a Yes-instance of Trivially Perfect Editing and M be
a module containing a (k + 1)-sized anti-matching. Let F be a k-editing of G and H = G△F .
Then NG(M) is a clique in H.

Proof. Let D = {{ui, vi} | 1 ⩽ i ⩽ k + 1} be a (k + 1)-sized anti-matching of M . Assume
for a contradiction that NG(M) is not a clique in H and let {u, v} be a non-edge of H

with u, v ∈ NG(M). Since |F | ⩽ k there exists 1 ⩽ j ⩽ k + 1 such that {uj , vj} /∈ F and
for every x ∈ V (G) \ M , {uj , x}, {vj , x} /∈ F . Hence {uj , u, vj , v} induces a C4 in H, a
contradiction. ◀

We conclude this section by introducing a gluing operation on trivially perfect graphs,
namely blow-up, that will ease the design of some reduction rules.

▶ Definition 8 (Blow-up). Let u be a vertex of G = (V, E) and H = (VH , EH) be any graph.
The blow-up of G by H at u, denoted G(u → H) is the graph obtained by replacing u by H

in G. More formally:

G(u → H) =
(
(V \ {u}) ∪ VH , E(G \ {u}) ∪ EH ∪ (VH × NG(u)

)
▶ Proposition 9. Assume that G is trivially perfect and let u be a vertex of G such that
NG[u] is a clique. For any trivially perfect graph H, the graph G(u → H) is trivially perfect.

Proof. Let S ⊆ V \{u} be any maximal clique of G containing NG(u). We apply the forward
direction of Lemma 3 on S to obtain components {K1, . . . , Kr} that are modules such that
G[S ∪ Ki] is trivially perfect for every 1 ⩽ i ⩽ r and

⋃
1⩽i⩽r{NG(Ki)} is a nested family.

Note that by construction and w.l.o.g., we may assume K1 = {u}. The result then directly
follows from the reverse direction of Lemma 3 by replacing K1 by H. ◀

3 Reduction rules

In the remainder of this section we assume that we are given an instance (G = (V, E), k) of
Trivially Perfect Editing.

3.1 Standard reduction rules
We first describe some well-known reduction rules [2, 3, 14, 16] that are essential to obtain a
vertex-kernel using Theorem 1 [16]. We will assume in the remainder of this work that the
instance at hand is reduced under Rules 1 and 2, meaning that none of them applies to the
instance.

▶ Rule 1. Let C ⊆ V be a connected component of G such that G[C] is trivially perfect.
Remove C from G.

▶ Rule 2. Let K ⊆ V be a critical clique of G such that |K| > k + 1. Remove |K| − (k + 1)
arbitrary vertices in K from G.

▶ Lemma 10 (Folklore, [2, 14]). Rules 1 and 2 are safe and can be applied in polynomial
time.

IPEC 2023

15:6 An Improved Kernelization Algorithm for Trivially Perfect Editing

3.2 An O(k) bound on the size of trivially perfect modules
Using an additional reduction rule bounding the size of independent sets in any trivially
perfect module by O(k), Drange and Pilipczuk [14] proved that such modules can be reduced
to O(k2) vertices. We strengthen this result by proving that trivially perfect modules
can further be reduced to O(k) vertices. We first deal with modules that contain a large
anti-matching.

▶ Rule 3. Let M ⊆ V be a trivially perfect module of G. If G[M] contains a (k + 1)-sized
anti-matching D, then remove the vertices contained in M \ V (D).

▶ Lemma 11. Rule 3 is safe.

Proof. Let G′ = (V ′, E′) be the graph obtained after application of Rule 3. We need to prove
that (G = (V, E), k) is a Yes-instance if and only if (G′ = (V ′, E′), k) is a Yes-instance.
The forward direction is straightforward since G′ is an induced subgraph of G and trivially
perfect graphs are hereditary. We now consider the reverse direction. Let M ′ = V (D), the
set of vertices kept by Rule 3. Moreover, let F ′ be a k-editing of G′ and H ′ = G′△F ′. We
will construct a k-editing F ∗ of G. Note that since the pairs contained in an anti-matching
are disjoint (Definition 6), |M ′| = 2(k + 1). Moreover, since |F ′| ⩽ k there are at most 2k

affected vertices. Hence let u be an unaffected vertex of M ′. By Observation 7 and since M ′

contains a (k + 1)-sized anti-matching we have that NG′(M ′) is a clique in H ′. The graph
Hu = H ′ \ (M ′ \ {u}) is trivially perfect by heredity and NHu

(u) = NG′(M ′). It follows that
NHu

(u) is a clique and Proposition 9 implies that the graph H = Hu(u → M) is trivially
perfect. Let F ∗ be the editing such that H = G△F ∗. Since u is unaffected by F ′ and u ∈ M

we have NHu
(u) = NG(M). Hence, since M is a module in G we have that NH(v) = NG(v)

for every vertex v ∈ M , implying that F ∗ ⊆ F ′. This concludes the proof. ◀

In order to bound the size of any trivially perfect module by O(k), we actually prove a
more general reduction rule that will be useful for the rest of our kernelization algorithm.
This rule operates on a more intricate structure, so-called comb [16], that induces a trivially
perfect graph but not necessarily a module.

Vp Vf

R1

C1

R2

C2

Rl

Cl
C

R
Figure 1 A comb of a graph G = (V, E) with shaft C and teeth R. Each set Ci is a critical clique

while each set Ri induces a (possibly disconnected) trivially perfect module, 1 ⩽ i ⩽ l. Notice that
the sets Vp and Vf might be adjacent to some other vertices of the graph.

M. Dumas and A. Perez 15:7

▶ Definition 12 (Comb [16]). A pair (C, R) of disjoint subsets of V is a comb of G if:
G[C] is a clique that can be partitioned into l critical cliques {C1, ..., Cl}
R can be partitioned into l non-empty non-adjacent trivially perfect modules {R1, ..., Rl}
NG(Ci) ∩ R =

⋃l
j=i Rj and NG(Ri) ∩ C =

⋃i
j=1 Cj for 1 ⩽ i ⩽ l

there exist two (possibly empty) subsets of vertices Vf , Vp ⊆ V (G)\{C ∪ R} such that:
∀x ∈ C, NG(x)\(C ∪ R) = Vp ∪ Vf and
∀y ∈ R, NG(y)\(C ∪ R) = Vp.

Given a comb (C, R), C is called the shaft of the comb and R the teeth of the comb. See
Figure 1 for an illustration of Definition 12. Recall that we assume that the graph is reduced
under Rule 2, which means that |Ci| ⩽ k + 1 for 1 ⩽ i ⩽ l. Dumas et al. [16] showed the
following proposition on the structure of combs.

▶ Proposition 13 ([16]). Given a comb (C, R) of G, the subgraph G[C ∪R] is trivially perfect.
Moreover the sets Vp and Vf , and the ordered partitions (C1, . . . , Cl) of C and (R1, . . . , Rl)
of R are uniquely determined.

In the following we assume that any comb (C, R) is given with the ordered partitions
(C1, . . . , Cl) of C and (R1, . . . , Rl) of R. We note here that Definition 12 slightly differs from
the one given in [16] where the set Vf was required to be non-empty for technical reasons.
Dropping this constraint will ease the presentation of our reduction rules.

We now give several observations that will help understand Definition 12, in particular
its relation to trivially perfect modules. Given a trivially perfect graph G = (V, E) and its
UCD TG = (T, B), one can construct a comb (C, R) of G by simply taking a path P from a
node v1 of T to one of its descendent vl. The shaft C are the vertices in bags of this path,
the teeth R are the bags of subtrees rooted in the children (not on P) of any node on the
path P . We can observe that in this case, Vp corresponds to vertices in the bags on the path
from the parent of v1 to the root of T and that Vf is empty.

In particular, the vertex set of any connected trivially perfect graph can be partitioned
into a comb (C, R) by taking a path from the root of its UCD to one of its leaves. This
means that when Vp = Vf = ∅, Definition 12 corresponds to a connected trivially perfect
graph. Similarly, if only the set Vf is empty then Definition 12 corresponds to a connected
trivially perfect module since for every u ∈ C ∪ R it holds that NG(u) \ (C ∪ R) = Vp.

The following directly comes from the definition of a comb and is verified whether sets
Vp and Vf are empty or not.

▶ Observation 14. The set of vertices C (resp. R) is a module of G \ R (resp. G \ C).

We will show that combs can be safely reduced to O(k) vertices. We first focus on combs
having a large shaft, which will allow us to reduce trivially perfect modules with small
anti-matching to O(k) vertices (Lemma 20). Then we turn our attention to combs with many
vertices in the teeth to bound the size of every comb to O(k) vertices (Lemma 25).

Combs with large shafts

Dumas et al. [16] showed that the length of a comb (i.e. the number l of different critical
cliques in the shaft) can be reduced linearly in k. However, as critical cliques contain O(k)
vertices by Rule 2, it only allowed the authors to bound the number of vertices in shafts of
combs to O(k2). Rule 4 presented in this section keeps two sets Ca and Cb containing a linear
number (in k) of vertices at the beginning and at the end of the shaft, allowing to bound

IPEC 2023

15:8 An Improved Kernelization Algorithm for Trivially Perfect Editing

its size linearly in k. The two sets Ca and Cb will be large enough to ensure the existence
of two vertices that will be unaffected by a given k-editing of the graph. We will use such
vertices to prove that there exists a k-editing of the graph that does not affect any vertex in
the shaft lying between Ca and Cb, implying the safeness of the rule.

▶ Rule 4. Let (C, R) be a comb of G such that there exist disjoint (2k + 1)-packings Ca of
{C1, . . . , Cl} and Cb of {Cl, Cl−1, . . . , C1}. Remove C ′ = C \ (Ca ∪ Cb) from G.

▶ Lemma 15. Rule 4 is safe.

Proof. Let G′ = G \ C ′ be the graph obtained after application of Rule 4. Since G′ is an
induced subgraph of G and since trivially perfect graphs are hereditary, any k-editing of G is
a k-editing of G′.

For the reverse direction, let F ′ be a k-editing of G′ and H ′ = G′△F ′. We will construct
a k-editing F ∗ of G. Let ca and cb be unaffected vertices in Ca and Cb, respectively. Note
that both sets contain at least 2k + 1 vertices and that F ′ affects at most 2k vertices, hence
ca and cb are well-defined. Let Ca and Cb be the critical cliques of C containing ca and cb,
1 ⩽ a < b ⩽ l. Moreover, let C◦ = Ca+1 ∪ . . . ∪ Cb−1 and R◦ = Ra ∪ . . . ∪ Rb−1. Similarly,
let C< = C1 ∪ . . . ∪ Ca, C> = Cb ∪ . . . ∪ Cl and R> = Rb ∪ . . . ∪ Rl These sets are depicted
Figure 2. Finally, let G◦ = G \ C◦ and H◦ = H ′ \ C◦. Notice in particular that H◦ is trivially
perfect and that C ′ ⊆ C◦.

R1

C1 Ca Cb Cl

Ra Rb Rl

R◦

C< C>C◦

R>

Figure 2 Illustration of the comb and the sets used in the proof of Lemma 15. The circles are
critical cliques of the shaft and the triangles are teeth. The red vertices correspond to ca and cb,
the light blue rectangles correspond to sets Ca and Cb and the light red rectangle corresponds to C′,
which is removed by Rule 4.

Let F◦ ⊆ F ′ be the k-editing such that H◦ = G◦△F◦ and S◦ be a maximal clique
of H◦ containing {ca, cb}. Notice that since ca and cb are unaffected, S◦ is included in
NG◦({ca, cb}) = C ∪ Vp ∪ Vf ∪ R>. We use Lemma 3 on S◦ to obtain a set of connected
components {K1, . . . , Kr} of H◦ \ S◦ such that {K1, . . . , Kr} are modules in H◦ whose
(possibly empty) neighborhoods in S◦ form a nested family. We first modify F◦ to obtain a
k-editing of G◦ where vertices of R◦ are affected uniformly.

▷ Claim 16. There exists a k-editing F ∗ of G◦ such that, in H∗ = G◦△F ∗, R◦ is a module
and H∗[R◦] = G[R◦].

Proof. We begin with several useful observations. First, R◦ is a module in G◦ since R ⊃ R◦
is a module in G\C (Observation 14) and vertices of R◦ are adjacent to C< and non adjacent
to C>. Next, since any component Ki is a module in H◦, 1 ⩽ i ⩽ r, and since ca and cb

are unaffected by F◦, we have NH◦(Ki) ∩ {ca, cb} = NG◦(Ki) ∩ {ca, cb}. In other words,
vertices in a same component Ki must have the same adjacency with {ca, cb} in G◦ and in

M. Dumas and A. Perez 15:9

H◦. Similarly, no vertex v ∈ R◦ belongs to S◦ since NG◦(v) ∩ {cb} = ∅. Moreover, the only
vertices of G◦ that are adjacent to ca but not cb are exactly those of R◦. Hence for any
vertex v◦ ∈ R◦ it holds that NH◦(v◦) ⊆ S◦ ∪ R◦.

Assume now that R◦ is not a module in H◦ and let v◦ ∈ R◦ be a vertex contained
in the least number of pairs of F◦ with the other element in S◦. Consider the graph
H̃ = H◦ \ (R◦ \ {v◦}), which is trivially perfect by heredity. Since NH◦(v◦) ⊆ S◦ ∪ R◦,
it follows that NH̃(v◦) ⊆ S◦ is a clique. Hence Proposition 9 implies that the graph
H∗ = H̃(v◦ → G[R◦]) is trivially perfect. Let F ∗ be the editing such that H∗ = G◦△F ∗. By
the choice of v◦ we have |F ∗| ⩽ |F◦|. It follows that F ∗ is a desired k-editing, concluding the
proof of Claim 16. ◁

We henceforth consider H∗ = G◦△F ∗ where F ∗ is the k-editing from Claim 16. Note
that the components around S◦ may be different in H◦ \ S◦ and H∗ \ S◦. In a slight abuse
of notation, we still define these components by {K1, . . . , Kr}. Recall that {K1, . . . , Kr} are
modules in H∗ whose (possibly empty) neighborhoods in S◦ form a nested family.

▷ Claim 17. The graph H = G△F ∗ is trivially perfect.

Proof. The graph H corresponds to H∗ where vertices of C◦ have been added with the same
neighborhood as in G. Let us first observe that S = S◦ ∪C◦ is a maximal clique in H . Indeed,
C◦ is a clique by definition and S◦ ⊆

(
C ∪ Vp ∪ Vf ∪ R>

)
⊆ NH(C◦) = NG(C◦) (recall that

C is adjacent to Vp ∪ Vf by Definition 12 and that vertices of C◦ are adjacent to every vertex
of R>). Hence components {K1, . . . , Kr} defined in H∗ \ S◦ are the same in H \ S and their
neighborhoods are nested in S◦. We split {K1, . . . , Kr} into three types components w.r.t
their adjacencies with {ca, cb}, namely:
1. α-components that are non-adjacent to both ca and cb

2. β-components that are adjacent to ca but not cb

3. δ-components that are adjacent to both ca and cb

In what follows we let Kα, Kβ and Kδ denote any α-, β- and δ-component, respectively.
Note that NH∗(Kα) ⊆ NH∗(Kβ) ⊆ NH∗(Kδ) ⊆ S◦ holds by construction. Recall that since
ca and cb are unaffected by F ∗, NG(Ki) ∩ {ca, cb} = NH(Ki) ∩ {ca, cb} for any Ki. We claim
that {NH(Ki) | 1 ⩽ i ⩽ r} is a nested family. Note that Lemma 3 will imply the result
since S is a maximal clique in H. To sustain this claim, recall that the neighborhoods of
vertices of C◦ are identical in G and H. Moreover, NH [cb] ⊆ NH [C◦] ⊆ NH [ca] holds as
these vertices are unaffected by F ∗. It follows that α-components (resp. δ-components) are
non-adjacent (resp. adjacent) to every vertex of C◦ in H. This means in particular that the
neighborhoods of both α- and δ-components are nested in S. Moreover we can observe that
vertices of β-components are exactly the ones of R◦ since they are the only ones that are
adjacent to ca but not cb in G. Hence, in H, we still have:

NH(Kα) ⊆ NH(Kβ) ⊆ NH(Kδ)

It remains to prove that the neighborhoods of β-components are nested in S. Let w.l.o.g.
{K1, . . . , Kp}, 1 ⩽ p ⩽ r be the β-components. By definition of a comb, the β-components
(which are also R◦) can be ordered w.r.t. the inclusion of their neighborhood in G[C◦]. We
can assume w.l.o.g. that the ordering is NG[C◦](K1) ⊆ . . . ⊆ NG[C◦](Kp). Moreover we can
observe that for any β-component Ki we have NG[C◦](Ki) = NH[C◦](Ki), 1 ⩽ i ⩽ p. Since
R◦ is a module in H∗ by Claim 16 and since vertices of β-components are exactly those of R◦,
it follows that the neighborhoods of β-components are nested. Hence {NH(Ki) | 1 ⩽ i ⩽ r}
is a nested family and H is a trivially perfect graph by Lemma 3. ◁

IPEC 2023

15:10 An Improved Kernelization Algorithm for Trivially Perfect Editing

By Claim 17 the graph H = G△F ∗ is trivially perfect and as |F ∗| ⩽ k, it follows that
F ∗ is a k-editing of G, concluding the proof of Lemma 15. ◀

▶ Observation 18. Assume that the instance (G, k) is reduced under Rules 2 and 4. For any
comb (C, R) of G it holds that |C| ⩽ 6k + 2.

Proof. Since G is reduced under Rule 2 every critical clique Ci of the shaft contains at most
k + 1 vertices, 1 ⩽ i ⩽ l. By Observation 5, any (2k + 1)-packing of {C1, . . . , Cl} (resp.
{Cl, . . . , C1}) contains at most 3k + 1 vertices. It follows that |C| ⩽ 6k + 2 since otherwise
one could find two disjoint (2k + 1)-packings of {C1, . . . , Cl} and of {Cl, . . . , C1} and Rule 4
would apply. ◀

We are now ready to show how to reduce the size of any trivially perfect module. We
need a combinatorial result that will be useful to obtain the claimed bound.

▶ Lemma 19. Let G = (V, E) be a connected trivially perfect graph and α be the size of a
maximum anti-matching of G. There exists a comb (C, R) of G such that V = C ∪ R and
|R| ⩽ 4α. Moreover, such a comb can be computed in polynomial time.

Proof. We provide a constructive proof that will directly imply the last part of the result.
Recall that any trivially perfect graph contains a universal vertex and let U1 ⊆ V (G) be the
universal clique of G. Let R1

1, . . . , R1
p1

denote the connected components of G \ U1. Since G

does not contain any (α + 1)-sized anti-matching, there is at most one set R1
i , 1 ⩽ i ⩽ p1

such that |R1
i | > α (as there is no edge between R1

i and R1
j , 1 ⩽ i < j ⩽ p1).

Assume without loss of generality that |R1
1| > α. We add all vertices of ∪p1

i=2R1
i to some

set R< and we will repeat this process on G[R1
1] until every connected component is smaller

than α. More formally, at step j > 1, for the trivially perfect graph Gj = G[Rj−1
1], let Uj be

its universal clique and Rj
1, . . . , Rj

pj
be the connected components of Gj \ Uj . Let Rj

1 be the
one of size greater than α if it exists, if it does not, stop the process and let l be the last
step. In particular, |Rl

i| ⩽ α, 1 ⩽ i ⩽ pl. Let R< =
⋃l−1

j=1
⋃pj

i=2 Rj
i and R> = Rl

1 ∪ · · · ∪ Rl
pl

.
Recall that |Rl−1

1 | > α by construction. This implies that |R<| ⩽ α since otherwise
G[R< ∪ Rl−1

1] would contain a (α + 1)-sized anti-matching. We claim that |R>| ⩽ 3α. To
support this claim, let us consider the (α + 1)-packing {Rl

1, . . . , Rl
q} of {Rl

1, . . . , Rl
pl

} and let
R′ =

⋃q
i=1 Rl

i be its vertices. Let R′′ = R> \ R′. Recall that l is the last step of the process
and |Rl

i| ⩽ α for 1 ⩽ i ⩽ pl. Hence by Observation 5 it holds that |R′| ⩽ 2α. Thus, we have
that |R′′| ⩽ α since otherwise G[R′ ∪ R′′] would contain a (α + 1)-sized anti-matching, a
contradiction. Hence |R>| = |R′| + |R′′| ⩽ 3α.

To obtain a comb for G we consider the set C = {U1, . . . , Ul} as the shaft (recall that
U1 is the universal clique of G and that Uj denotes the universal clique of G[Rj−1

1] at every
step 1 < j ⩽ l). Moreover, for every 1 ⩽ j < l, the tooth Rj is equal to Rj

2 ∪ . . . ∪ Rj
pj

,
the last tooth Rl being R>. By construction (C, R =

⋃l
j=1 Rj) is a comb of G such that

|R| = |R<| + |R>| ⩽ 4α. This concludes the proof. ◀

▶ Lemma 20. Assume that the instance (G, k) is reduced under Rules 1–4 and let M be a
trivially perfect module of G. Then M contains at most 11k + 2 vertices.

Proof. Observe that if M contains an anti-matching of size more than k, then it is reduced
under Rule 3 and contains 2k + 2 vertices. Hence, suppose that M does not contain a
(k + 1)-sized anti-matching. Assume first that G[M] is connected. Let (C, R) be a comb
obtained through Lemma 19, such that C ∪ R = M and |R| ⩽ 4k. By Observation 18 we
have that |C| ⩽ 6k + 2. It follows that |M | ⩽ |C| + |R| ⩽ 10k + 2.

M. Dumas and A. Perez 15:11

To conclude it remains to deal with the case where G[M] is disconnected. Let
{M1, . . . , Mp} denote the connected components of G[M]. As M does not contain a (k + 1)-
sized anti-matching, at most one of its connected component has size greater than k, we may
assume w.l.o.g. that it is M1, if existent. Let C be the (k + 1)-packing of {M1, . . . , Mp}. As
|M1| ⩽ 10k + 2 and |Mi| ⩽ k for 2 ⩽ i ⩽ p, we have that |C| ⩽ 10k + 2. Moreover, since M

does not contain any (k + 1)-sized anti-matching, |M \ C| ⩽ k and thus |M | ⩽ 11k + 2. This
concludes the proof. ◀

3.3 Combs with large teeth
We now turn our attention to the case were a given comb contains many vertices in its teeth.
The arguments are somewhat symmetric to the ones used in the proof of Lemma 15. The
main difference lies in the fact that the information provided by unaffected vertices differ
when they are contained in the teeth rather than in the shaft.

▶ Rule 5. Let (C, R) be a comb of G such that there exist three disjoint sets Ra, Rb and Rc

where:
Ra is a (2k + 1)-packing of {R1, . . . , Rl},
Rc = {Rl, . . . , Rq} is a (2k + 1)-packing of {Rl, . . . , R1},
Rb is a (2k + 1)-packing of {Rq−1, . . . , R1},

Remove R′ = R \ (Ra ∪ Rb ∪ Rc) from G.

▶ Lemma 21. Rule 5 is safe.

Proof. Let G′ = G \ R′ be the graph obtained after application of Rule 5. Since G′ is an
induced subgraph of G and since trivially perfect graphs are hereditary, any k-editing of G is
a k-editing of G′.

For the reverse direction, let F ′ be a k-editing of G′ and H ′ = G′△F ′. We will construct
a k-editing F ∗ of G. Let ra, rb and rc be unaffected vertices in Ra, Rb and Rc, respectively.
Note that these vertices exist as these sets contain at least 2k + 1 vertices and F ′ affects at
most 2k vertices. Let Ra, Rb and Rc, 1 ⩽ a < b < c ⩽ l, be the teeth of R containing ra,
rb and rb, respectively (these sets are well-defined since the packings Ra, Rb and Rc are
disjoint). Moreover, since ra, rb and rc are unaffected by F ′ their neighborhoods are equal
in G′ and H ′ and hence

(
NH′(ra) \ Ra

)
⊆

(
NH′(rb) \ Rb

)
⊆

(
NH′(rc) \ Rc

)
.

▷ Claim 22. The set NH′(rb) \ Rb is a clique in H ′.

Proof. Assume for a contradiction that NH′(rb) \ Rb contains a non-edge {u, v}. Recall that
there is no edge between Rb and Rc. Hence, since

(
NH′(rb) \ Rb

)
⊆

(
NH′(rc) \ Rc

)
we have

that the set {rb, u, v, rc} induces a C4 in H ′, a contradiction. ◁

Let R◦ = Ra+1 ∪ . . . ∪ Rb−1 and C◦ = Ca+1 ∪ . . . ∪ Cb. Similarly, let C< = C1 ∪ . . . ∪ Ca,
R< = R1 ∪ . . . ∪ Ra and R> = Rb ∪ . . . ∪ Rl. Finally, let G◦ = G \ R◦ and H◦ = H ′ \ R◦.
These sets are depicted Figure 3. Notice in particular that H◦ is trivially perfect and that
R′ ⊆ R◦. Let F◦ ⊆ F ′ be the k-editing such that H◦ = G◦△F◦. We first modify F◦ to obtain
a k-editing of G◦ where every vertex of C◦ is affected uniformly.

▷ Claim 23. There exists a k-editing F ∗ of G◦ such that, in H∗ = G◦△F ∗, C◦ is a clique
module.

IPEC 2023

15:12 An Improved Kernelization Algorithm for Trivially Perfect Editing

R1

C1 Ca Cb Cc

Ra Rb Rc

C◦C<

R< R>R◦

Cl

Rl

Figure 3 Illustration of the comb and the sets used in the proof of Lemma 21. The circles are
critical cliques of the shaft and the triangles are teeth. The red vertices correspond to ra, rb and rc,
the light blue rectangles correspond to sets Ra, Rb and Rc and the light red rectangle corresponds
to R′, which is removed by Rule 5.

Proof. Note that C◦ is a critical clique in G◦ since C ⊃ C◦ is a module in G\R (Observation 14)
and vertices of C◦ are non-adjacent to vertices of R< and adjacent to vertices of R>. Assume
now that C◦ is not a clique module in H◦ and let v◦ ∈ C◦ be a vertex contained in the least
number of pairs of F◦. Consider the graph H ′

◦ = H◦ \ (C◦ \ {v◦}), which is trivially perfect
by heredity, and let H∗ be the graph obtained from H ′

◦ by adding vertices of C◦ \ {v◦} as
true twins of v◦. Let F ∗ be the editing such that H∗ = G◦△F ∗. The graph H∗ is trivially
perfect as the class of trivially perfect graphs is closed under true twin addition. It follows
from construction that C◦ is a clique module in H∗ and by the choice of v◦, |F ∗| ⩽ |F◦|. ◁

We henceforth consider H∗ = G◦△F ∗ where F ∗ is the editing from Claim 23. We now
show that vertices of R◦ can be added into H∗ while ensuring it remains trivially perfect.

▷ Claim 24. The graph H = G△F ∗ is trivially perfect.

Proof. We start by removing the vertices of Rb \ {rb} from H∗, which will give us more
control on the neighborhood of rb and ease some arguments. Let H̃ = H∗ \ (Rb \ {rb}),
this graph is trivially perfect by heredity. Let S be a maximal clique of H̃ containing
rb. By Claim 22, NH̃(rb) is a clique and since rb is unaffected by F ∗ we have that S =
NH̃ [rb] = C< ∪ C◦ ∪ Vp ∪ {rb}. We use Lemma 3 on S to obtain a set of connected
components {K1, . . . , Kr} of H̃ \S such that {K1, . . . , Kr} are modules in H̃ whose (possibly
empty) neighborhoods in S form a nested family. We further split components {K1, . . . , Kr}
into two types: Ki is an α-component if NH̃(Ki) ⊆

(
NH̃(ra) ∩ S

)
and a β-component

otherwise, 1 ⩽ i ⩽ r. Since NH̃(ra) ∩ S = Vp ∪ C< we have that, for any α-component Kα,
NH̃(Kα) ⊆ Vp ∪ C<. Moreover, since S = NH̃ [rb] and since C◦ is a clique module in H̃ by
Claim 23, every β-component Kβ satisfies NH̃(Kβ) = Vp ∪ C< ∪ C◦ = S \ {rb}.

Observe now that (Vp ∪ C<) ⊆ NG(R◦) ⊆ S \ {rb}. In other words, the neighborhood
of any tooth of R◦ contains the neighborhood of any α-component and is contained in the
neighborhood of any β-component. Moreover the neighborhoods of the teeth of R◦ are nested
in G by definition of a comb. It follows that the vertices of R◦ can be safely added to H̃

with the same neighborhood as they have in G, ensuring that the resulting graph Hb is
trivially perfect. It remains to add the vertices of Rb back into the graph. By Claim 22
and Proposition 9, the graph H = Hb(rb → G[Rb]) is trivially perfect. ◁

By Claim 24 the graph H = G△F ∗ is trivially perfect and as |F ∗| ⩽ k, it follows that
F ∗ is a k-editing of G, concluding the proof of Lemma 21. ◀

M. Dumas and A. Perez 15:13

▶ Lemma 25. Assume that the instance (G, k) is reduced under Rules 1–5. Let (C, R) be a
comb of G. Then |C ∪ R| = O(k).

Proof. First, note that |C| ⩽ 6k + 2 thanks to Observation 18. We proceed in the same
fashion to bound the size of R. As the teeth of a comb are trivially perfect modules, Lemma 20
implies that |Ri| ⩽ 11k + 2, 1 ⩽ i ⩽ l. Hence by Observation 5 any (2k + 1)-packing of
{R1, . . . , Rl} requires at most 13k + 2 vertices. It follows that |R| ⩽ 39k + 6 since otherwise
one could find three disjoint (2k + 1)-packings of R that meet the requirements of Rule 5.
Altogether we obtain that |C ∪ R| ⩽ 45k + 8 which concludes the proof. ◀

3.4 Reducing the graph exhaustively
We conclude this section by showing that the graph can be reduced in polynomial time.

▶ Lemma 26. There is a polynomial time algorithm that outputs an instance G′ = (V ′, E′)
such that none of Rules 1 to 5 applies.

Proof. First, Rules 1 and 2 can be applied in polynomial time thanks to Lemma 10. We
now need to apply the other rules on trivially perfect modules and combs. For the modules,
it is sufficient to reduce strong modules, which are modules that do not overlap with other
modules. We can enumerate strong modules in linear time [35]. For each strong module M

we can check in polynomial time if it is trivially perfect. We can moreover check if M contains
a (k + 1)-sized anti-matching by finding a maximum matching in the complement graph
G[M], for instance using Edmonds’ algorithm [17]. If M has a large anti-matching, then we
can apply Rule 3. Otherwise, if |M | ⩾ 11k + 2 then it can be reduced using Rule 4. Indeed,
G[M] contains in this case at most one connected component M ′ with more than k vertices,
such that |M \ M ′| ⩽ k (since otherwise M would contain a (k + 1)-sized anti-matching).
We compute a comb (C, R) through Lemma 19 in G[M ′], with |R| ⩽ 4k. It follows that
|C| > 6k + 2 and Observation 18 implies that Rule 3 applies.

It remains to show that the combs not included in a trivially perfect module can be
reduced in polynomial time. In order to do this Dumas et al. [16] showed that so-called
critical combs can be enumerated in polynomial time, a critical comb being an inclusion-wise
maximal comb where Vf ̸= ∅ and R ∪ C ∪ Vf does not induce a trivially perfect module.
In particular, critical combs contain every comb not included in a trivially perfect module.
Hence it is sufficient to only reduce these combs. Given a critical comb, Rules 4 and 5 can
be applied in polynomial time. This concludes the proof. ◀

Combining Theorem 1 and Lemmata 20, 25, and 26 we obtain the main result of this
work.

▶ Theorem 27. Trivially Perfect Editing admits a kernel with O(k2) vertices.

Proof. We give a formal proof of Theorem 1 for the sake of completeness. Note that most
arguments and notations are extracted from the proof of [16, Theorem 1]. Recall that
c(k) and p(k) are functions defined as, respectively, the maximum size of a trivially perfect
module in and a comb of G in Theorem 1. Let (G = (V, E), k) be a reduced yes-instance of
Trivially Perfect Editing and F a k-editing set of G. Let H = G△F and T = (T, B)
the universal clique decomposition of H . The graph G is not necessarily connected, thus T is
a forest. Let A be the set of nodes t ∈ V (T) such that the bag Bt contains a vertex affected
by F . Since |F | ⩽ k, we have |A| ⩽ 2k. Let A′ ⊆ V (T) be the least common ancestor closure
of A plus the root of each connected component of T . The least common ancestor closure

IPEC 2023

15:14 An Improved Kernelization Algorithm for Trivially Perfect Editing

is obtained as follows: start with A′ = A and while there is u, v ∈ A′ whose least common
ancestor w (in T) is not in A′, add w to A′. According to [18, Lemma 1] the least common
ancestor closure of A is of size at most 2|A|. Moreover, Rule 1 implies that there are at most
2k connected components in H and thus 2k roots, hence |A′| ⩽ 6k.

Let D be a connected component of T \ A′. We can observe that, by construction of A′,
only three cases are possibles:

NT (D) = ∅ (D is a connected component of T).
NT (D) = {a} (D is a subtree of T whose parent is a ∈ A′).
NT (D) = {a1, a2} with one of the nodes a1, a2 ∈ A′ being an ancestor of the other in T .

Dumas et al. [16] denote these connected components as respectively of type 0, 1 or 2. For
D ⊆ V (T), let W (D) =

⋃
t∈D Bt denote the set of vertices of G corresponding to bags of D.

There is no connected component of type 0 or else W (D) would be a connected component
of G inducing a trivially perfect graph. Rule 1 would have been applied to this component,
contradicting the fact that G is a reduced instance.

Now consider the set of type 1 components D1, D2, . . . , Dr of T \ A′ attached in T to the
same node a ∈ A′. Dumas et al. [16] showed that Wa = W (D1) ∪ W (D2) ∪ · · · ∪ W (Dr) is
a trivially perfect module of G. By Lemma 20, we have |Wa| = c(k). There are at most
|A′| ⩽ 6k such sets Wa, thus the set of vertices of G in bags of type 1 components is of size
O(k · c(k)).

Now consider the type 2 connected components D of T \A′ which have two neighbors in T .
Let a1 and a2 be these neighbors, one being the ancestor of the other, say a1 is the ancestor
of a2. Let {a1, t1, . . . , tl, a2} be the path from a1 to a2 in the tree. The component D can
be seen as a comb of shaft (Bt1 , . . . , Btl

). More precisely, by construction of the universal
clique decomposition, W (D) can be partitioned into a comb (C, R) of H: the critical clique
decomposition of C is (C1 = Bt1 , . . . , Cl = Btl

), and each Ri corresponds to the union of
bags of the subtrees rooted at ti which do not contain Bti+1 , for 1 ⩽ i < l, and to the union
of bags of the subtrees rooted at tl which do not contain a2, for i = l. Since (C, R) was not
affected by F , it is also a comb of G. Thus for each type 2 component D, W (D) contains
p(k) vertices. Since T is a forest, it can contain at most |A′| − 1 ⩽ 6k − 1 such components in
T \ A′. Therefore the set of bags containing type 2 connected components of T \ A′ contains
O(k · p(k)) vertices.
It remains to bound the set of vertices of G which are in bags of A′. The vertices corresponding
to nodes of A′\A are critical cliques of G, and are hence of size at most k + 1 by Rule 2.
Thus the set of vertices in bags of A′\A is of size O(k2). We conclude by showing a similar
bound for vertices in bags of A. Such vertices induce critical cliques in H but not necessarily
in G. However, note that in each such critical clique the set of vertices not affected by F

correspond to clique modules in G (not necessarily maximal). Such vertices are contained in
exactly one critical clique of G and have thus been reduced by Rule 2. It follows that the set
of affected critical cliques of H contains at most 2k + 2k · (k + 1) vertices. Altogether we
obtain that |V (G)| = O(k2 + k · (p(k) + c(k))) which concludes the proof of Theorem 1. To
obtain Theorem 27 we simply recall that Lemmata 20 and 25 imply that c(k) = O(k) and
p(k) = O(k), respectively. ◀

4 The deletion variant

As mentioned in the introduction, a quadratic vertex-kernel is known to exist for Trivially
Perfect Completion [1]. The results presented Section 3 can be adapted to prove that
Trivially Perfect Deletion also admits a quadratic vertex-kernel by simply replacing
any mention of “editing” by “deletion”.

M. Dumas and A. Perez 15:15

More precisely, one can see that in order to prove the safeness of Rules 3–5, the k-editing
F ∗ for the original graph that is derived from a k-editing F ′ for the reduced instance only
uses operations that were done by F ′. In particular, if F ′ only contains non-edges then so
does F ∗, meaning that it is a valid solution. Together with the fact that Rules 1 and 2 are
safe for the deletion variant, we obtain the following.

▶ Theorem 28. Trivially Perfect Deletion admits a kernel with O(k2) vertices.

We conclude by mentioning that Theorem 27 also holds for Trivially Perfect Com-
pletion for the same reasons as the deletion variant. However, a vertex-kernel with O(k2) is
already known for this problem [1]. Moreover, the constant factor on the number of vertices
is smaller than the one of our kernel.

5 Conclusion

In this work we improved known kernelization algorithms for the Trivially Perfect
Editing and Trivially Perfect Deletion problems, providing a quadratic vertex-kernel
for both of them. This matches the best known bound for the completion variant [1].
Improving upon these bounds is an appealing challenge that may require a novel approach.
On the other hand, it would be interesting to develop lower bounds for kernelization on such
problems. Finally, even if the use of unaffected vertices in the design of reduction rules is
common, its combination with the structural properties of trivially perfect graphs in terms
of their maximal cliques allowed us to design stronger reduction rules. We hope that the
approach presented in this work may lead to finding or improving kernelization algorithms
for some related problems. Let us for instance mention the cubic vertex-kernel for Proper
Interval Completion [3] and the quartic one for Ptolemaic Completion [10] that
might be appropriate candidates.

References
1 Gabriel Bathie, Nicolas Bousquet, Yixin Cao, Yuping Ke, and Théo Pierron. (Sub) linear kernels

for edge modification problems toward structured graph classes. Algorithmica, 84(11):3338–
3364, 2022. doi:10.1007/s00453-022-00969-1.

2 Stéphane Bessy, Christophe Paul, and Anthony Perez. Polynomial kernels for 3-leaf power
graph modification problems. Discrete Applied Mathematics, 158(16):1732–1744, 2010. doi:
10.1016/j.dam.2010.07.002.

3 Stéphane Bessy and Anthony Perez. Polynomial kernels for proper interval completion and
related problems. Information and Computation, 231:89–108, 2013. doi:10.1016/j.ic.2013.
08.006.

4 Ulrik Brandes, Michael Hamann, Luise Häuser, and Dorothea Wagner. Skeleton-based
clustering by quasi-threshold editing. In Algorithms for Big Data: DFG Priority Program
1736, pages 134–151. Springer, 2023. doi:10.1007/978-3-031-21534-6_7.

5 Ulrik Brandes, Michael Hamann, Ben Strasser, and Dorothea Wagner. Fast quasi-threshold
editing. In Proceedings of the 23rd European Symposium on Algorithms, ESA, pages 251–262,
2015. doi:10.1007/978-3-662-48350-3_22.

6 Pablo Burzyn, Flavia Bonomo, and Guillermo Durán. NP-completeness results for edge
modification problems. Discrete Applied Mathematics, 154(13):1824–1844, 2006. doi:10.1016/
j.dam.2006.03.031.

7 Leizhen Cai. Fixed-parameter tractability of graph modification problems for hereditary
properties. Information Processing Letters, 58(4):171–176, 1996. doi:10.1016/0020-0190(96)
00050-6.

IPEC 2023

https://doi.org/10.1007/s00453-022-00969-1
https://doi.org/10.1016/j.dam.2010.07.002
https://doi.org/10.1016/j.dam.2010.07.002
https://doi.org/10.1016/j.ic.2013.08.006
https://doi.org/10.1016/j.ic.2013.08.006
https://doi.org/10.1007/978-3-031-21534-6_7
https://doi.org/10.1007/978-3-662-48350-3_22
https://doi.org/10.1016/j.dam.2006.03.031
https://doi.org/10.1016/j.dam.2006.03.031
https://doi.org/10.1016/0020-0190(96)00050-6
https://doi.org/10.1016/0020-0190(96)00050-6

15:16 An Improved Kernelization Algorithm for Trivially Perfect Editing

8 Leizhen Cai and Yufei Cai. Incompressibility of H-free edge modification problems. Algorith-
mica, 71(3):731–757, 2015. doi:10.1007/s00453-014-9937-x.

9 Christophe Crespelle, Pål Grønås Drange, Fedor V. Fomin, and Petr Golovach. A survey of
parameterized algorithms and the complexity of edge modification. Computer Science Review,
48:100556, 2023. doi:10.1016/j.cosrev.2023.100556.

10 Christophe Crespelle, Benjamin Gras, and Anthony Perez. Completion to chordal distance-
hereditary graphs: a quartic vertex-kernel. In Proceedings of the 47th International Workshop
on Graph-Theoretic Concepts in Computer Science, WG, pages 156–168, 2021. doi:10.1007/
978-3-030-86838-3_12.

11 Christophe Crespelle, Rémi Pellerin, and Stéphan Thomassé. A quasi-quadratic vertex kernel
for cograph edge editing, 2022. arXiv:2212.14814.

12 Pål Grønås Drange, Markus Fanebust Dregi, Daniel Lokshtanov, and Blair D. Sullivan. On
the threshold of intractability. Journal of Computer and System Sciences, 124:1–25, 2022.
doi:10.1016/j.jcss.2021.09.003.

13 Pål Grønås Drange, Fedor V. Fomin, Michał Pilipczuk, and Yngve Villanger. Exploring
the subexponential complexity of completion problems. ACM Transactions on Computation
Theory, 7(4):1–38, 2015. doi:10.1145/2799640.

14 Pål Grønås Drange and Michał Pilipczuk. A polynomial kernel for trivially perfect editing.
Algorithmica, 80(12):3481–3524, 2018. doi:10.1007/s00453-017-0401-6.

15 Maël Dumas, Anthony Perez, and Ioan Todinca. Polynomial kernels for strictly chordal edge
modification problems. In Proceedings of the 16th International Symposium on Parameterized
and Exact Computation, IPEC, pages 17:1–17:16, 2021. doi:10.4230/LIPIcs.IPEC.2021.17.

16 Maël Dumas, Anthony Perez, and Ioan Todinca. A cubic vertex-kernel for trivially perfect
editing. Algorithmica, 85(4):1091–1110, 2023. doi:10.1007/s00453-022-01070-3.

17 Jack Edmonds. Paths, trees, and flowers. Canadian Journal of mathematics, 17:449–467, 1965.
doi:10.4153/CJM-1965-045-4.

18 Fedor V. Fomin, Daniel Lokshtanov, Neeldhara Misra, and Saket Saurabh. Planar F-deletion:
Approximation, kernelization and optimal FPT algorithms. In Proceedings of the 53rd Annual
IEEE Symposium on Foundations of Computer Science, FOCS, pages 470–479, 2012. doi:
10.1109/FOCS.2012.62.

19 Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi. Kernelization: theory
of parameterized preprocessing. Cambridge University Press, 2019.

20 Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman, 1979.

21 Martin Charles Golumbic. Trivially perfect graphs. Discrete Mathematics, 24(1):105–107,
1978. doi:10.1016/0012-365X(78)90178-4.

22 Lars Gottesbüren, Michael Hamann, Philipp Schoch, Ben Strasser, Dorothea Wagner, and Sven
Zühlsdorf. Engineering exact quasi-threshold editing. In Proceedings of the 18th International
Symposium on Experimental Algorithms, SEA, pages 10:1–10:14, 2020. doi:10.4230/LIPIcs.
SEA.2020.10.

23 Sylvain Guillemot, Frédéric Havet, Christophe Paul, and Anthony Perez. On the (non-)existence
of polynomial kernels for Pl-free edge modification problems. Algorithmica, 65(4):900–926,
2013. doi:10.1007/s00453-012-9619-5.

24 Jiong Guo. Problem kernels for NP-complete edge deletion problems: Split and related graphs.
In Proceedings of the 18th International Symposium on Algorithms and Computation, ISAAC,
pages 915–926, 2007. doi:10.1007/978-3-540-77120-3_79.

25 Haim Kaplan, Ron Shamir, and Robert E. Tarjan. Tractability of parameterized completion
problems on chordal, strongly chordal, and proper interval graphs. SIAM Journal on Computing,
28(5):1906–1922, 1999. doi:10.1137/S0097539796303044.

26 Richard M. Karp. Reducibility among combinatorial problems. In Complexity of Computer
Computations, pages 85–103. Springer, 1972. doi:10.1007/978-1-4684-2001-2_9.

https://doi.org/10.1007/s00453-014-9937-x
https://doi.org/10.1016/j.cosrev.2023.100556
https://doi.org/10.1007/978-3-030-86838-3_12
https://doi.org/10.1007/978-3-030-86838-3_12
https://arxiv.org/abs/2212.14814
https://doi.org/10.1016/j.jcss.2021.09.003
https://doi.org/10.1145/2799640
https://doi.org/10.1007/s00453-017-0401-6
https://doi.org/10.4230/LIPIcs.IPEC.2021.17
https://doi.org/10.1007/s00453-022-01070-3
https://doi.org/10.4153/CJM-1965-045-4
https://doi.org/10.1109/FOCS.2012.62
https://doi.org/10.1109/FOCS.2012.62
https://doi.org/10.1016/0012-365X(78)90178-4
https://doi.org/10.4230/LIPIcs.SEA.2020.10
https://doi.org/10.4230/LIPIcs.SEA.2020.10
https://doi.org/10.1007/s00453-012-9619-5
https://doi.org/10.1007/978-3-540-77120-3_79
https://doi.org/10.1137/S0097539796303044
https://doi.org/10.1007/978-1-4684-2001-2_9

M. Dumas and A. Perez 15:17

27 Christian Komusiewicz and Johannes Uhlmann. A cubic-vertex kernel for flip consensus tree.
Algorithmica, 68(1):81–108, 2014. doi:10.1007/s00453-012-9663-1.

28 Stefan Kratsch and Magnus Wahlström. Two edge modification problems without polynomial
kernels. Discrete Optimization, 10(3):193–199, 2013. doi:10.1016/j.disopt.2013.02.001.

29 Yunlong Liu, Jianxin Wang, Jie You, Jianer Chen, and Yixin Cao. Edge deletion problems:
Branching facilitated by modular decomposition. Theoretical Computer Science, 573:63–70,
2015. doi:10.1016/j.tcs.2015.01.049.

30 Dániel Marx and R.B. Sandeep. Incompressibility of H-free edge modification problems:
Towards a dichotomy. Journal of Computer and System Sciences, 125:25–58, 2022. doi:
10.1016/j.jcss.2021.11.001.

31 James Nastos and Yong Gao. Familial groups in social networks. Social Networks, 35(3):439–
450, 2013. doi:10.1016/j.socnet.2013.05.001.

32 Assaf Natanzon, Ron Shamir, and Roded Sharan. A polynomial approximation algorithm
for the minimum fill-in problem. SIAM Journal on Computing, 30(4):1067–1079, 2000.
doi:10.1137/S0097539798336073.

33 Jaroslav Nešetřil and Patrice Ossona De Mendez. On low tree-depth decompositions. Graphs
and combinatorics, 31(6):1941–1963, 2015. doi:10.1007/s00373-015-1569-7.

34 Roded Sharan. Graph modification problems and their applications to genomic research. PhD
thesis, Tel-Aviv University, 2002.

35 Marc Tedder, Derek Corneil, Michel Habib, and Christophe Paul. Simpler linear-time modular
decomposition via recursive factorizing permutations. In : Proceedings of the 35th International
Colloquium on Automata, Languages, and Programming, ICALP, pages 634–645, 2008. doi:
10.1007/978-3-540-70575-8_52.

36 Jing-Ho Yan, Jer-Jeong Chen, and Gerard J. Chang. Quasi-threshold graphs. Discrete applied
mathematics, 69(3):247–255, 1996. doi:10.1016/0166-218X(96)00094-7.

IPEC 2023

https://doi.org/10.1007/s00453-012-9663-1
https://doi.org/10.1016/j.disopt.2013.02.001
https://doi.org/10.1016/j.tcs.2015.01.049
https://doi.org/10.1016/j.jcss.2021.11.001
https://doi.org/10.1016/j.jcss.2021.11.001
https://doi.org/10.1016/j.socnet.2013.05.001
https://doi.org/10.1137/S0097539798336073
https://doi.org/10.1007/s00373-015-1569-7
https://doi.org/10.1007/978-3-540-70575-8_52
https://doi.org/10.1007/978-3-540-70575-8_52
https://doi.org/10.1016/0166-218X(96)00094-7

From Data Completion to Problems on
Hypercubes: A Parameterized Analysis of the
Independent Set Problem
Eduard Eiben #

Department of Computer Science, Royal Holloway, University of London, Egham, UK

Robert Ganian #

Algorithms and Complexity Group, TU Wien, Austria

Iyad Kanj #

School of Computing, DePaul University, Chicago, IL, USA

Sebastian Ordyniak #

School of Computing, University of Leeds, UK

Stefan Szeider #

Algorithms and Complexity Group, TU Wien, Austria

Abstract
Several works have recently investigated the parameterized complexity of data completion problems,
motivated by their applications in machine learning, and clustering in particular. Interestingly, these
problems can be equivalently formulated as classical graph problems on induced subgraphs of powers
of partially-defined hypercubes.

In this paper, we follow up on this recent direction by investigating the Independent Set problem
on this graph class, which has been studied in the data science setting under the name Diversity.
We obtain a comprehensive picture of the problem’s parameterized complexity and establish its
fixed-parameter tractability w.r.t. the solution size plus the power of the hypercube.

Given that several such FO-definable problems have been shown to be fixed-parameter tractable
on the considered graph class, one may ask whether fixed-parameter tractability could be extended
to capture all FO-definable problems. We answer this question in the negative by showing that FO
model checking on induced subgraphs of hypercubes is as difficult as FO model checking on general
graphs.

2012 ACM Subject Classification Theory of computation → Parameterized complexity and exact
algorithms

Keywords and phrases Independent Set, Powers of Hypercubes, Diversity, Parameterized Complexity,
Incomplete Data

Digital Object Identifier 10.4230/LIPIcs.IPEC.2023.16

Funding Robert Ganian: Robert Ganian acknowledges support from Project No. Y1329 of the
Austrian Science Fund (FWF).
Iyad Kanj: Iyad Kanj acknowledges support from DePaul University through URC grant 602061.
Sebastian Ordyniak: Project EP/V00252X/1 of the Engineering and Physical Sciences Research
Council (EPSRC).
Stefan Szeider : Stefan Szeider acknowledges support from Project No. P36420 of the Austrian
Science Fund (FWF).

© Eduard Eiben, Robert Ganian, Iyad Kanj, Sebastian Ordyniak, and Stefan Szeider;
licensed under Creative Commons License CC-BY 4.0

18th International Symposium on Parameterized and Exact Computation (IPEC 2023).
Editors: Neeldhara Misra and Magnus Wahlström; Article No. 16; pp. 16:1–16:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:eduard.eiben@gmail.com
https://orcid.org/0000-0003-2628-3435
mailto:rganian@gmail.com
https://orcid.org/0000-0002-7762-8045
mailto:ikanj@cdm.depaul.edu
https://orcid.org/0000-0003-1698-8829
mailto:sordyniak@gmail.com
https://orcid.org/0000-0003-1935-651X
mailto:sz@ac.tuwien.ac.at
https://orcid.org/0000-0001-8994-1656
https://doi.org/10.4230/LIPIcs.IPEC.2023.16
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

16:2 From Data Completion to Problems on Hypercubes

1 Introduction

Recently, there has been an increasing interest in studying the parameterized complexity
of clustering problems motivated by their applications in machine learning [2, 3, 4, 5, 6,
17, 19, 20, 25, 26, 29, 39, 40], particularly their applications to fundamental clustering
problems [1, 28, 41, 44]. In many of these clustering problems, we are given a set of d-
dimensional vectors over the Boolean/binary domain, where the vectors are regarded as rows
of a matrix. It is worth noting that due to the applications of such problems in incomplete-
data settings, a number of past works on the topic also studied settings where some of the
entries in these vectors are unknown [30, 19, 20, 29, 17, 8, 9, 10, 21, 37]. The objective is to
determine if these vectors (or, in the incomplete-data setting, their completions) satisfy some
desirable clustering properties. Examples of such properties include admitting a partitioning
into k clusters each of diameter (or radius) at most r (for some given k, r ∈ N), or admitting a
k-cluster of diameter (or radius) at most r, where the distance under consideration is typically
the Hamming distance [12, 16, 19, 20, 23, 32, 33, 34, 35]; here, a k-cluster of diameter r is a
set of k points which have pairwise distance of at most r.

As it turns out, many of these well-studied clustering problems can be formulated as
classical graph problems on induced subgraphs of powers of the hypercube graph. For
instance, finding a cluster of diameter at most r ∈ N, for a given r, is equivalent to the
Clique problem defined on the subgraph of the r-th power of the hypercube that is induced
by the subset of hypercube vertices corresponding to the given input vectors. Similarly,
partitioning the set of vectors into k clusters each of diameter at most r, for some given
r, k ∈ N, is equivalent to the partitioning into k cliques problem on the same graph class,
whereas partitioning the set of vectors into clusters, each of radius at most r with respect
to some vector in the set, is equivalent to the k-dominating set problem on the same graph
class described above. We remark that, to the best of our knowledge, this graph class is not
a subclass of commonly studied graph classes and has not been considered in previous works
pertaining to algorithmic upper or lower bounds for graph-theoretic problems.

Contribution. In this paper, we study the parameterized complexity of another classical
graph problem defined on induced subgraphs of powers of the hypercube: the Independent
Set problem. In the context of data analytics, the problem arises when studying the “diversity”
of a given set of vectors, a notion that can be viewed as the opposite of minimising the number
of clusters in a cluster partitioning of the set of vectors (in fact, in the area of data analytics
this is studied directly under the nomenclature diversity or dispersion [11, 31, 45]). More
precisely, motivated by the aforementioned extensive interest in the analysis of incomplete
data, we focus on the more general incomplete data setting. We refer to this problem as
Pow-Hyp-IS-Completion: given a set of Boolean vectors with some missing entries and
integers k and r, the goal is to complete the missing entries so that the resulting set of
vectors contains a subset S of k vectors such that the Hamming distance between each pair
is at least r + 1 (or to correctly determine that such a set does not exist).

The main contribution of this paper is a complete characterisation of the parameterized
complexity of Pow-Hyp-IS-Completion w.r.t. the two parameters k and r: we provide a
fixed-parameter algorithm for Pow-Hyp-IS-Completion when parameterized by k + r, and
complement this positive result with intractability results for the cases where any of these two
parameters is dropped. In particular, we show that the problem is NP-complete already for
r = 2 – that is, the problem is paraNP-hard parameterized by r, and W[1]-hard parameterized
by k alone. Interestingly, the FPT result shows that the parameterized complexity of the

E. Eiben, R. Ganian, I. Kanj, S. Ordyniak, and S. Szeider 16:3

problem is independent of any restrictions on the number or the structure of the missing
entries in the input vectors – contrasting many of the previous results on clustering incomplete
data [30, 19, 20, 29]. We remark that even the fixed-parameter tractability of the problem in
the complete data setting (i.e., where all entries are known) is non-obvious, but follows as an
immediate corollary of our result.

For our final contribution, we revisit the observation that several of the complete-data
clustering problems recently considered in the literature (e.g., see [19, 20]) reduce to well-
known graph problems on the class of induced subgraphs of powers of the hypercube. Since
it was shown that all of these graph problems are fixed-parameter tractable when restricted
to this graph class and the graph problems are expressible in First Order Logic (FO), a
natural question to ask is whether these FPT results can be generalised to any graph problem
expressible in FO logic. We resolve this question in the negative.

Related Work. The problem of computing the diversity of a data set, which forms the
underpinning of our study of Pow-Hyp-IS-Completion, has been studied in a variety of
different contexts and settings. For instance, Ceccarello, Pietracaprina, Pucci and Upfal
studied approximation algorithms for the problem [11]. Gawrychowski, Krasnopolsky, Mozes,
and Weimann obtained a linear-time algorithm for the problem when the data set is repres-
ented as a tree [31], improving upon the previous polynomial-time algorithm of Bhattacharya
and Houle [7]. Sacharidis, Mehta, Skoutas, Patroumpas and Voisard provided heuristics for
dynamic versions of the problem [45].

More broadly, there is extensive work on problems arising in the context of incomplete
data. Hermelin and Rozenberg [38] studied the Closest String with Wildcards problem,
which can be seen as the problem of finding a data completion and a center to a minimum-
radius cluster containing all the data points. Koana, Froese and Niedermeier [39] recently
revisited the earlier work of Hermelin and Rozenberg [38] and obtained, among other results,
a fixed-parameter algorithm for that problem parameterized by the radius plus the maximum
number of missing entries per row; see also the related work of the same authors [40]. Eiben
et al. considered a number of different clustering problems in the presence of incomplete
data [18, 19], and a subset of these authors previously investigated the fundamental Matrix
Completion problem in the same setting [30]. The parameterized complexity of k-means
clustering on incomplete data was investigated by Eiben et al. [17] and Ganian et al. [29].

2 Preliminaries

Problem Terminology and Definition

Let a⃗ and b⃗ be two vectors in {0, 1,□}d, where □ is used to represent coordinates whose value
is unknown (i.e., missing entries). We denote by ∆(⃗a, b⃗) the set of coordinates in which a⃗

and b⃗ are guaranteed to differ, i.e., ∆(⃗a, b⃗) = { i | (⃗a[i] = 1 ∧ b⃗[i] = 0) ∨ (⃗a[i] = 0 ∧ b⃗[i] = 1) },
and we denote by δ(⃗a, b⃗) the Hamming distance between a⃗ and b⃗ measured only between
known entries, i.e., |∆(⃗a, b⃗)|. Moreover, for a subset D′ ⊆ [d] of coordinates, we denote by
a⃗[D′] the vector a⃗ restricted to the coordinates in D′.

Let M ⊆ {0, 1}d and let [d] = {1, . . . , d}. For a vector a⃗ ∈ M and t ∈ N, we denote by
Nt(⃗a) the t-Hamming neighbourhood of a⃗, i.e., the set { b⃗ ∈ M | δ(⃗a, b⃗) ≤ t } and by Nt(M)
the set

⋃
a⃗∈M Nt(⃗a). We say that M∗ ⊆ {0, 1}d is a completion of M ⊆ {0, 1,□}d if there is

a bijection α : M → M∗ such that for all a⃗ ∈ M and all i ∈ [d] it holds that either a⃗[i] = □
or α(⃗a)[i] = a⃗[i].

We now proceed to give the formal definition of the problem under consideration:

IPEC 2023

16:4 From Data Completion to Problems on Hypercubes

Pow-Hyp-IS-Completion
Input: A set M with elements from {0, 1,□}d and k, r ∈ N.
Question: Is there a completion M∗ of M and a subset S of M∗ with |S| = k such that,

for any two vectors a, b ∈ S, we have δ(a, b) ≥ r + 1?

Observe that in a matrix representation of the above problem, we can represent the input
matrix as a set of vectors where each row of the matrix corresponds to one element in our
set.

We remark that even though the statements are given in the form of decision problems,
all tractability results presented in this paper are constructive and the associated algorithms
can also output a solution (when it exists) as a witness, along with the decision. In the case
where we restrict the input to vectors over {0, 1}d (i.e., where all entries are known), we
omit “-Completion” from the problem name.

Parameterized Complexity

The basic motivation behind parameterized complexity is to find a parameter that describes
the structure of the problem instance such that the combinatorial explosion can be confined
to this parameter. More formally, a parameterized problem Q is a subset of Ω∗ × N, where
Ω is a fixed finite alphabet. Each instance of Q is a pair (I, κ), where κ ∈ N is called the
parameter. A parameterized problem Q is fixed-parameter tractable (FPT) [24, 14, 13], if
there is an algorithm, called an FPT-algorithm, that decides whether an input (I, κ) is a
member of Q in time f(κ) · |I|O(1), where f is a computable function and |I| is the input
instance size. The class FPT denotes the class of all fixed-parameter tractable parameterized
problems.

A parameterized problem Q is FPT-reducible to a parameterized problem Q′ if there
is an algorithm, called an FPT-reduction, that transforms each instance (I, κ) of Q into
an instance (I ′, κ′) of Q′ in time f(κ) · |I|O(1), such that κ′ ≤ g(κ) and (I, κ) ∈ Q if and
only if (I ′, κ′) ∈ Q′, where f and g are computable functions. Based on the notion of FPT-
reducibility, a hierarchy of parameterized complexity, the W-hierarchy =

⋃
t≥0 W[t], where

W[t] ⊆ W[t + 1] for all t ≥ 0, has been introduced, in which the 0-th level W[0] is the class
FPT. The notions of hardness and completeness have been defined for each level W[i] of the
W-hierarchy for i ≥ 1 [14, 13]. It is commonly believed that W[1] ≠ FPT (see [14, 13]). The
W[1]-hardness has served as the main working hypothesis of fixed-parameter intractability.
A problem is paraNP-hard if it is NP-hard for a constant value of the parameter [24].

Sunflowers

A sunflower in a set family F is a subset F ′ ⊆ F such that all pairs of elements in F ′ have
the same intersection.

▶ Lemma 1 ([22, 24]). Let F be a family of subsets of a universe U , each of cardinality
exactly b, and let a ∈ N. If |F| ≥ b!(a − 1)b, then F contains a sunflower F ′ of cardinality at
least a. Moreover, F ′ can be computed in time polynomial in |F|.

3 The Parameterized Complexity of Pow-Hyp-IS-Completion

Our aim for Pow-Hyp-IS-Completion is to establish fixed-parameter tractability paramet-
erized by k + r (i.e., regardless of the structure or number of missing entries). As our first
step, we show that all rows in an arbitrary instance (M, k, r) can be, w.l.o.g., assumed to
contain at most O(k · r) many □’s.

E. Eiben, R. Ganian, I. Kanj, S. Ordyniak, and S. Szeider 16:5

Next, we observe that if M is sufficiently large and the r-Hamming neighbourhood of each
vector is upper-bounded by a function of k + r, then – since the number of □’s is bounded
– (M, k, r) is a YES-instance. The argument here is analogous to the classical argument
showing that Independent Set is trivial on large bounded-degree graphs.

On a high level, we would now like to find and remove an “irrelevant vector” from M –
since here the number of □’s on every row is bounded, any instance reduced in this way to
only contain a bounded number of vectors can be solved via a brute-force fixed-parameter
procedure. However, finding an irrelevant vector is rather challenging, primarily because the
occurrence of □’s is not restricted. Instead, we develop a more powerful set representation
F ′ for vectors in the instance which also uses elements to keep track of the presence of □’s
in the neighbours of v⃗. We can then apply the Sunflower Lemma to find a sufficiently-large
sunflower in F ′, and in the core of the proof we argue that (1) such a sunflower consists of at
most a bounded number of “important petals” (which can be identified in polynomial time),
and (2) any petal that is not important represents an irrelevant vector.

3.1 Dealing with Unstructured Missing Data
In this subsection, we design an algorithm for Pow-Hyp-IS-Completion which remains
efficient even when the number and placement of unknown entries is not explicitly restricted
on the input.

We begin with a simple lemma that allows us to deal with vectors (i.e., rows) with a large
number of missing entries. For brevity, let a k-diversity set be a set containing k vectors
which have pairwise Hamming distance at least r + 1.

▶ Lemma 2. Let I = (M, k, r) be an instance of Pow-Hyp-IS-Completion where k ≥ 1
and let v⃗ ∈ M be a vector containing more than (k − 1) · (r + 1)-many □’s. Then I is
a YES-instance if and only if I ′ = (M \ {v⃗}, k − 1, r) is a YES-instance. Moreover, a
completion and k-diversity set for I can be computed from a completion and (k − 1)-diversity
set for I ′ in linear time.

Proof. The forward direction is trivial: for any completion M∗ of M and k-diversity set S

in M∗, we can obtain a (k − 1)-diversity set and completion for I ′ by simply removing v⃗

from M∗ and S.
For the backward direction, consider a completion M ′∗ of M ′ = M \ v⃗ and a (k − 1)-

diversity set S = {s⃗1, . . . , ⃗sk−1} in M ′∗. Let us choose an arbitrary set C of (k − 1) · (r + 1)
coordinates in v⃗ that all contain □, and let us then partition C into k-many subsets α1, . . . , αk

each containing precisely r + 1 coordinates. Now consider the vector v⃗∗ obtained from v⃗ as
follows:

for each i ∈ [k − 1] and every coordinate j ∈ αi, set v⃗∗[j] to the opposite value of s⃗i[j]
(i.e., v⃗∗[j] = 1 if and only if s⃗i[j] = 0);
for every other coordinate j of v⃗∗, we set v⃗∗[j] = v⃗[j] if v⃗[j] ̸= □ and v⃗∗[j] = 0 otherwise.

Clearly, M∗ = M ′∗ ∪ {v⃗∗} is a completion of M . Moreover, since v⃗∗ differs from each
vector in S in at least r + 1 coordinates, S ∪ {v⃗∗} is a k-diversity set in M∗. ◀

Next, we show that instances which are sufficiently large and where each vector only
“interferes with” a bounded number of other vectors are easy to solve. For ease of presentation,
let ζ(k, r, t) = 3(k−1)·(r+1) · t! ·

(
(k − 1) ·

(
3(k − 1) · (r + 1) + r + t

))t

be the exact meaning
of “sufficiently large” in this case.

IPEC 2023

16:6 From Data Completion to Problems on Hypercubes

▶ Lemma 3. Let I = (M, k, r) be an instance of Pow-Hyp-IS-Completion. If |M | ≥
k · r · ζ(k, r, r) and |Nt(v⃗)| < ζ(k, r, t) for every v⃗ ∈ M and t ≤ r, then a k-diversity set in I
can be found in polynomial time.

Proof. One can find a solution to I by iterating the following greedy procedure k times:
choose an arbitrary vector v⃗, add it into a solution, and delete all other vectors with Hamming
distance at most r from v⃗. By the bound on |Nt(v⃗)|, each choice of v⃗ will only lead to the
deletion of at most r · ζ(k, r, r) vectors from M . Moreover, since δ measures the Hamming
distance only between known entries, any completion of the missing entries can only increase
(and never decrease) the Hamming distance between vectors. Hence, the size of M together
with the bounded size of the Hamming neighbourhood of v⃗ guarantee that this procedure will
find a solution of cardinality k in I which will remain valid for every completion of M . ◀

We can now move on to the main part of the proof: a procedure which either outputs a
solution outright or finds an irrelevant vector.

▶ Lemma 4. Let I = (M, k, r) be an instance of Pow-Hyp-IS-Completion such that
|Nt(v⃗)| ≥ ζ(k, r, t) for some vector v⃗ ∈ M and t ≤ r and such that each vector in M contains
at most (k − 1) · (r + 1) □’s. There is a polynomial-time procedure that finds a vector f⃗ ∈ M

satisfying the following properties:
(M, k, r) is a YES-instance if and only if I ′ = (M \ {f⃗}, k, r) is a YES-instance, and
A completion and diversity set for I can be computed from a solution and diversity set
for I ′ in linear time.

Proof. We will begin by constructing a set system over the neighbourhood of v⃗. Let
Z = { z ∈ [d] | v⃗[z] = □ } be the set of coordinates where v⃗ is incomplete. Clearly, since
|Nt(v⃗)| ≥ 3(k−1)·(r+1)·t!·

(
(k−1)·

(
3(k−1)·(r+1)+r+t

))t

and |Z| ≤ (k−1)·(r+1), we can find

a subset N ⊆ Nt(v⃗) of vectors whose cardinality is at least t!·
(

(k−1)·
(

3(k−1)·(r+1)+r+t
))t

such that all vectors in N are the same on the coordinates in Z, i.e., ∀x⃗, y⃗ ∈ N : ∀z ∈ Z :
x⃗[z] = y⃗[z].

Now, let F be a set containing 2 elements for each coordinate j ∈ [d] \ Z of vectors in
M : the element □j and the element Dj . We construct a set system F over F as follows: for
each vector x⃗ ∈ N , we add a set x̂ to F that contains:

□j if and only if x⃗[j] = □, and
Dj if and only if x⃗[j] ̸= v⃗[i].

Observe that, since x⃗ contains at most (k − 1) · (r + 1) □’s by assumption and since x⃗

differs from v⃗ in at most t-many completed coordinates, every set in F has cardinality at
most (k − 1) · (r + 1) + t. This means we can apply Lemma 1 to find a sunflower F ′ in
F of cardinality at least (k − 1) ·

(
3(k − 1) · (r + 1) + r + t

)
+ 1; for ease of presentation,

we will identify the elements of F ′ with the vectors they represent. Let f⃗ be an arbitrarily
chosen vector from F ′; we claim that f⃗ satisfies the properties claimed in the lemma, and to
complete the proof it suffices to establish this claim.

The backward direction is trivial: if I ′ is a YES-instance then clearly I is a YES-instance
as well. It is also easy to observe that a completion and diversity set for I can be computed
from a solution and diversity set for I ′ in linear time (adding a vector does not change the
validity of a solution). What we need to show is that if I is a YES-instance, then so is I ′

(i.e., (M \ {f⃗}, k, r)); moreover, this final claim clearly holds if I admits a solution that does
not contain f⃗ .

E. Eiben, R. Ganian, I. Kanj, S. Ordyniak, and S. Szeider 16:7

So, assume that M admits a completion M∗ which contains a k-diversity set S =
{f⃗ , s⃗1, . . . , ⃗sk−1}. Let C be the core of the sunflower F ′, and note that all vectors in F ′ have
precisely the same content in the coordinates in C.

Finding a replacement for f⃗ . We would now like to argue that, for some completion which
we will define later, F ′ contains a vector that can be used to replace f⃗ in the solution.

Let s⃗i ∈ S be an arbitrary vector. First, let us consider the case that, in M , s⃗i differs
from v⃗ in more than 3(k − 1) · (r + 1) + r + t coordinates (i.e., v⃗[j] ̸= s⃗i[j] in M for at least
3(k − 1) · (r + 1) + r + t choices of j). Then every vector in F ′ will have Hamming distance
greater than r from s⃗i regardless of the completion.

Indeed, for every vector f ′ ∈ F ′ there are at most 3(k − 1) · (r + 1) coordinates j such
that at least one of v⃗[j], s⃗i[j], f⃗ ′, meaning that there are at least r + t other coordinates
where v⃗ differs from s⃗i and which are guaranteed to be complete – and since δ(f⃗ ′, v⃗) = t, f⃗ ′

it must hold that δ(f⃗ ′, s⃗i) > r (by the triangle inequality). Hence indeed every vector in F ′

must have distance at least r + 1 from s⃗i, and in this case we will create a set Si = ∅ (the
meaning of this will become clear later).

Now, consider the converse case, i.e., that s⃗i differs from v⃗ in at most 3(k−1)·(r+1)+r+t

coordinates. We may now extend the sunflower F ′ by adding a set representation of s⃗i, i.e.,
a set Qi which contains □j if and only if s⃗i[j] = □ and Dj if and only if s⃗i[j] ̸= v⃗[i] (for all
j ∈ [d] \ Z). Observe that |Qi| ≤ 3(k − 1) · (r + 1) + r + t, and in particular Qi \ C intersects
with at most 3(k − 1) · (r + 1) + r + t elements of F ′. Let Si be the set of all such elements,
i.e., elements of F ′ which have a non-empty intersection with Qi outside of the core (formally,
with Qi \ C).

To conclude the proof, we will show that there is a completion M ′∗ of M ′ such that any
arbitrarily chosen vector f⃗ ′ in the non-empty set F ′ \ ({f⃗} ∪

⋃
i∈[k−1] Si) can replace f⃗ in

the k-diversity set S.

Arguing Replaceability. Consider a new completion M ′∗ of M \ f⃗ obtained as follows:
For each vector w⃗ ∈ F ′ \ S, we complete

1. the □’s in C ∪ Z precisely in the same way as f⃗ , and
2. for every other □ at coordinate j, we set w⃗[j] = −(v⃗[j] − 1) (i.e., to the opposite of v⃗;

recall that v⃗[j] ̸= □ since j ̸∈ Z);
all other □’s in all other vectors in M \ f⃗ are completed in precisely the same way as in
M∗.

Since M ′∗ precisely matches M∗ on all vectors in S \ f⃗ , it follows that S \ f⃗ is a (k − 1)-
diversity set in M ′∗. Moreover, consider for a contradiction that δ(f⃗ ′, s⃗i) ≤ r for some
s⃗i ∈ S after completion, i.e., in M ′∗. Then clearly s⃗i could not differ from v⃗ in more than
3(k − 1) · (r + 1) + r + t coordinates in M ′, since – as we already argued – in this case every
vector in F ′ will have Hamming distance greater than r from s⃗i regardless of the completion.

Hence, we must be in the case where s⃗i differed from v⃗ in at most 3(k − 1) · (r + 1) + r + t

coordinates in M ′. Now consider how δ(f⃗ ′, s⃗i) differs from δ(f⃗ , s⃗i). First of all, there is no
difference between these two distances on the coordinates in Z ∪ C due to our construction of
M ′∗ and choice of N . For the remaining coordinates, we will consider separately the set X of
coordinates in the petals of f⃗ and f⃗ ′ (i.e., the set { j ∈ [d]\(Z∪C) | f⃗ [j] ̸= v⃗[j]∨f⃗ ′[j] ̸= v⃗[j] }),
and the set Y = [d]\(C∪Z∪X) of all remaining coordinates. It follows that v⃗[j] = f⃗ [j] = f⃗ ′[j]
for all coordinates j ∈ Y , and hence there is no difference between the two distances on these
coordinates either.

IPEC 2023

16:8 From Data Completion to Problems on Hypercubes

So, all that is left is to consider the difference between δ(f⃗ ′, s⃗i) and δ(f⃗ , s⃗i) on the
coordinates in X. Among these coordinates, f⃗ can only differ from s⃗i in at most t − |C|
many coordinates – notably in the coordinates of its own petal – because the coordinates in
the petal of f⃗ ′ do not intersect with Qi. On the other hand, our construction guarantees
that f⃗ ′ differs from s⃗i in at least t − |C| coordinates in X; more precisely, on all coordinates
in the petal of f⃗ ′, since on these coordinates (1) s⃗i is equal to v⃗ and (2) f⃗ ′ differs from v⃗.

In summary, we conclude that δ(f⃗ ′, s⃗i) ≥ δ(f⃗ , s⃗i) and hence (S\{f⃗})∪{f⃗ ′} is a k-diversity
set in M ′∗, as claimed. ◀

We can now establish our main result for Pow-Hyp-IS-Completion.

▶ Theorem 5. Pow-Hyp-IS-Completion is fixed-parameter tractable parameterized by
k + r.

Proof. The algorithm proceeds as follows. Given an instance I = (M, k, r) of Pow-Hyp-IS-
Completion, it first checks whether M contains a vector with more than (k − 1) · (r + 1) □’s;
if yes, it applies Lemma 2 and restarts on the reduced instance. Second, it checks whether
|M | ≥ k · r · ζ(k, r, r); if not, it uses the fact that the number of □’s and the number of rows
is bounded by a function of the parameter to find a completion and a k-diversity set in I (or
determine that one does not exist) by brute force.

Third, it checks whether each vector v⃗ satisfies |Nt(v⃗)| < ζ(k, r, t) for every t ∈ [r]; if
yes, then it solves I by invoking Lemma 3. Otherwise, it invokes Lemma 4 to reduce the
cardinality of M by 1 and restarts. If the algorithm eventually terminates with a “NO”, then
we know that the initial input was a NO-instance; otherwise, it will output a solution which
can be transformed into a solution for the original input by the used lemmas. ◀

3.2 Lower Bounds
▶ Theorem 6. Pow-Hyp-IS is NP-complete and W[1]-hard parameterized by k.

Proof. We prove both NP-hardness and W[1]-hardness results by giving a polynomial-time
FPT reduction from Independent Set (IS), which is W[1]-hard [14].

Let (G, k) be an instance of IS, where V (G) = {v1, . . . , vn}, and let m = E(G). Fix an
arbitrary ordering O = (e1, . . . , em) of the edges in E(G).

For each vertex vi ∈ V (G), define a vector a⃗i ∈ {0, 1}m by setting a⃗i[j] = 1 if vi is
incident to ej and a⃗i[j] = 0 otherwise. Now expand the set of coordinates of these vectors by
adding to each of them n(n − 1) new coordinates, n − 1 coordinates for each vi, i ∈ [n]; we
refer to the n − 1 (extra) coordinates of vi as the “private” coordinates of vi. For each vi,
i ∈ [n], set n − 1 − deg(vi) many coordinates among the private coordinates of vi to 1, and
all other new coordinates of vi to 0. Let M = {a⃗i | i ∈ [n]} be the set of expanded vectors,
where a⃗i ∈ {0, 1}m+n(n−1), for i ∈ [n]. The reduction from IS to Pow-Hyp-IS produces the
instance I = (M, k, 2n − 4) of Pow-Hyp-IS; clearly, this reduction is a polynomial-time
FPT-reduction.

Observe that, for any two distinct vertices vi, vj ∈ V (G), δ(a⃗i, a⃗j) = 2n − 2 if vi and vj

are nonadjacent and δ(a⃗i, a⃗j) = 2n − 4 if vi and vj are adjacent.
The proof that (G, k) is a Yes-instance of IS iff (M, k, 2n − 4) is a Yes-instance of

Pow-Hyp-IS is now straightforward. ◀

▶ Theorem 7. Pow-Hyp-IS is NP-complete even when r = 2.

E. Eiben, R. Ganian, I. Kanj, S. Ordyniak, and S. Szeider 16:9

Proof. We reduce from the Independent Set problem (which is NP-complete). Let (G, k)
be an instance of Independent Set and let G′ be the graph obtained from G after
subdividing every edge exactly twice. We first observe that G has an independent set of size
at least k if and only if G′ has an independent set of size at least |E(G)| + k. This is because
if I ⊆ V (G) is an independent set of G, then we can add one of the subdivision vertices for
every edge of G because I does not contain both endpoints of an edge. On the other hand, if
I ⊆ V (G′) is an independent set of G′, then we can assume without loss of generality that I

does not contain both endpoints of an edge in G because we could easily transform I into an
independent set of the same size by replacing one of the endpoints of such an edge with a
subdivided vertex.

Next we construct an instance I = (M, |E(G)|+k, 2) of Pow-Hyp-IS in polynomial-time
such that G′ has an independent set of size at least |E(G)| − k if and only if I is a Yes-
instance. We set d = 2|V (G)| and obtain M as follows. Let V (G) = {v1, . . . , vn}. For every
vi ∈ V (G), we add the vector v⃗i that is 1 at the two coordinates i and i + 1 and otherwise 0.
Moreover, for every e = vivj ∈ E(G), we add the vector e1 that is 1 at the coordinates i,
i + 1, and j and the vector e2 that is 1 at the coordinates j, j + 1, and i. This completes
the construction of I. The equivalence now follows because two vectors in M have distance
at most r = 2 if and only if their corresponding vertices in G′ are adjacent; here e1 and e2

correspond to the two subdivision vertices on the edge e. ◀

4 On Graph Problems on Induced Subgraphs of the Hypercubes

In this section, we discuss the implications of the results in the previous section for fundamental
problems defined on induced subgraphs of powers of the hypercube graph.

In particular, the d-dimensional hypercube graph is the graph Qd whose vertex set is the
set of all Boolean d-dimensional vectors, and two vertices are adjacent if and only if their
two vectors differ in precisely 1 coordinate. We can then define the class Qr

d as the class of
all graphs that are induced subgraphs of the r-th power of Qd. We note that, in line with
the commonly used definition of hypercube graphs [15, 27], we consider the vertices in Qr

d to
be vectors and hence every graph G ∈ Qr

d contains an explicit characterisation of its vertices
as vectors.

In this setting, it is straightforward to observe that Pow-Hyp-IS is precisely the In-
dependent Set problem on Qr

d. Moreover, the clustering problems In-Clustering,
Diam-Clustering, and Large Diam-Cluster considered in [19, 20] are precisely the
Dominating Set, Partition Into Cliques, and Clique problems, respectively, on
Qr

d. Therefore, all the upper and lower bound results derived in this paper and in [19, 20]
pertaining to these clustering problems hold true for their corresponding graph problems
on Qr

d.

▶ Corollary 8. Given r, d, k ∈ N and a graph G ∈ Qr
d, determining whether G has a:

dominating set of size k is FPT parameterized by k + r;
partition into k cliques is FPT parameterized by k + r;
independent set of size k is FPT parameterized by k + r;
clique of size k is FPT parameterized by r.

We note that all the tractability results outlined in Corollary 8 are tight, which follows
from the lower-bound results obtained in Section 3.2 and in [19, 20], in the sense that
dropping any parameter from our parameterizations leads to an intractable problem.

IPEC 2023

16:10 From Data Completion to Problems on Hypercubes

Observing that three of the graph properties in the problems discussed above are ex-
pressible in First Order Logic (FO) and result in FO formulas whose length is a function of
the parameter k, an interesting question that ensues from the above discussion is whether
these positive results can be extended to the generic problem of First-Order Model Check-
ing [43, 36], formalised below. We will show next that the answer to this question is negative
– and, in fact, remains negative even when we restrict ourselves to induced subgraphs of
hypercubes (i.e., for r = 1).

Q-FO-Model-Checking
Input: A first-order (FO) formula ϕ, integers d, r, and a graph G ∈ Qr

d.
Parameter: |Φ|
Question: Does G |= Φ?

We denote by FO-Model-Checking the general FO Model Checking problem on graphs,
i.e., C-FO-Model-Checking with C being the class of all graphs.

▶ Lemma 9. Let H be an arbitrary graph. There is a graph G ∈ Q1
|V (H)|+|E(H)| such that

G is isomorphic to the graph H ′ obtained from H after subdividing every edge of H exactly
once and attaching a leaf to every vertex resulting from a subdivision. Moreover, G can be
computed from H in polynomial time.

Proof. Let n = |V (H)| and m = |E(H)|. To prove the lemma, we construct a matrix
representation M ∈ {0, 1}n+m of H ′ which has one row (vector) for every vertex in H and
where two vertices in H ′ are adjacent if and only if their corresponding rows in M have
Hamming distance at most 1. Let v1, . . . , vn be an arbitrary ordering of the vertices of
H, and e1, . . . , em be an arbitrary ordering of its edges. Then, M contains one row ri for
every i ∈ [n] that is 1 at its i-th entry and 0 at all other entries. Moreover, for every edge
eℓ = {vi, vj} ∈ E(H), M contains the following two rows:

the row re (corresponding to the degree-3 vertex in H ′ obtained from e) that is 1 at the
i-th and j-th entries, and 0 at all other entries; and
the row r′

e (corresponding to the leaf in H ′ obtained from e) that is 1 at the i-th, j-th,
and (n + ℓ)-th entries, and 0 at all other entries.

This completes the construction of M . Clearly, two rows in M have Hamming distance at
most one if and only if their corresponding vertices in H ′ are adjacent, as required. ◀

▶ Theorem 10. Q-FO-model-checking is W[t]-hard for every t ∈ N∗.

Proof. We give a parameterized reduction from FO Model Checking, which is W[t]-hard
for every t ∈ N∗. Let I := (Φ, H) be an instance of FO Model Checking. We will show
the theorem by constructing the equivalent instance I ′ := (Φ′, G) such that G ∈ Q1

d and
|Φ| ≤ f(|Φ′|) for some computable function f and value d that is polynomially bounded in
the input size. G is obtained from H in the same manner as in Lemma 9. Moreover, Φ′ is
obtained from Φ as follows:

Let ϕV (x) be the formula that holds for a variable x if and only if x corresponds to one
of the original vertices in G, i.e., ϕV (x) := ∀yE(x, y)∃z ̸= x ∧ E(y, z);
replace every subformula of the form ∃xϕ (for some variable x and some subformula ϕ of
Φ) with the formula ∃xϕV (x) ∧ ϕ;
replace every subformula of the form ∀xϕ (for some variable x and some subformula ϕ of
Φ) with the formula ∀xϕV (x) → ϕ; and
replace every atom E(x, y), where E is the adjacency predicate and x and y are variables,
with the formula ∃sE(x, s) ∧ E(s, y) ∧ x ̸= y.

It is straightforward now to show that H |= Φ if and only if G |= Φ′, and that |Φ′| ≤ 20|Φ|.
Moreover, because of Lemma 9, G′ ∈ Q1

d, as required. ◀

E. Eiben, R. Ganian, I. Kanj, S. Ordyniak, and S. Szeider 16:11

5 Conclusion

In this paper, we studied the parameterized complexity of the classical Independent
Set problem on induced subgraphs of powers of hypercubes, but with the additional
complication that the “positions” of the vertices in the hypercube representation may be
partially unknown. We considered the two most natural parameters for the problem: the
size k of the independent set and the power r of the hypercube, and provided a complete
characterisation of the problem’s complexity w.r.t. k and r. We also performed a meta-
investigation of the parameterized complexity of graph problems on this graph class that are
expressible in FO logic and showed the existence of such problems that are parameterized
intractable.

A natural future direction of our work is to study the parameterized complexity of other
graph problems on this class, in particular those that have applications in clustering. One
famous open problem that comes to mind is the p-center problem [16, 32]. The problem can
be formulated similarly to the above setting, with the exception of allowing the selection of
vertices to be from the whole hypercube, as opposed to restricting them to the input subgraph.
In particular, the well-known p-centers problem reduces to the k-dominating set problem in
the r-th power of the hypercube graph, but where the k vertices in the dominating set are
not restricted to the input subgraph, but can be chosen from Qd. This problem was shown
to be FPT parameterized by k + r [20]. An intriguing NP-hard restriction of the problem
is the problem slice corresponding to p = 1, or what is known as the 1-center problem, or
equivalently, the Closest String problem [32, 42]. The parameterized complexity of the
problem paramertized by each of k and r alone remain important open questions.

References

1 Charu C. Aggarwal and Chandan K. Reddy. Data Clustering: Algorithms and Applications.
Chapman & Hall/CRC, 1st edition, 2013.

2 Sayan Bandyapadhyay, Fedor V. Fomin, Petr A. Golovach, William Lochet, Nidhi Purohit,
and Kirill Simonov. How to find a good explanation for clustering? In Thirty-Sixth AAAI
Conference on Artificial Intelligence, AAAI 2022, Thirty-Fourth Conference on Innovative
Applications of Artificial Intelligence, IAAI 2022, The Twelveth Symposium on Educational
Advances in Artificial Intelligence, EAAI 2022 Virtual Event, February 22 - March 1, 2022,
pages 3904–3912. AAAI Press, 2022.

3 Sayan Bandyapadhyay, Fedor V. Fomin, Petr A. Golovach, Nidhi Purohit, and Kirill Simonov.
FPT approximation for fair minimum-load clustering. In Holger Dell and Jesper Nederlof,
editors, 17th International Symposium on Parameterized and Exact Computation, IPEC 2022,
September 7-9, 2022, Potsdam, Germany, volume 249 of LIPIcs, pages 4:1–4:14. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2022.

4 Sayan Bandyapadhyay, Fedor V. Fomin, Petr A. Golovach, Nidhi Purohit, and Kirill Simonov.
Lossy kernelization of same-size clustering. In Alexander S. Kulikov and Sofya Raskhodnikova,
editors, Computer Science - Theory and Applications - 17th International Computer Science
Symposium in Russia, CSR 2022, Virtual Event, June 29 - July 1, 2022, Proceedings, volume
13296 of Lecture Notes in Computer Science, pages 96–114. Springer, 2022.

5 Sayan Bandyapadhyay, Fedor V. Fomin, Petr A. Golovach, and Kirill Simonov. Parameterized
complexity of feature selection for categorical data clustering. In Filippo Bonchi and Simon J.
Puglisi, editors, 46th International Symposium on Mathematical Foundations of Computer
Science, MFCS 2021, August 23-27, 2021, Tallinn, Estonia, volume 202 of LIPIcs, pages
14:1–14:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.

IPEC 2023

16:12 From Data Completion to Problems on Hypercubes

6 Sayan Bandyapadhyay, Fedor V. Fomin, and Kirill Simonov. On coresets for fair clustering
in metric and Euclidean spaces and their applications. In Nikhil Bansal, Emanuela Merelli,
and James Worrell, editors, 48th International Colloquium on Automata, Languages, and
Programming, ICALP 2021, July 12-16, 2021, Glasgow, Scotland (Virtual Conference), volume
198 of LIPIcs, pages 23:1–23:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.

7 Binay K. Bhattacharya and Michael E. Houle. Generalized maximum independent sets for
trees in subquadratic time. In Alok Aggarwal and C. Pandu Rangan, editors, Algorithms and
Computation, 10th International Symposium, ISAAC ’99, Chennai, India, December 16-18,
1999, Proceedings, volume 1741 of Lecture Notes in Computer Science, pages 435–445. Springer,
1999.

8 Emmanuel J. Candès and Yaniv Plan. Matrix completion with noise. Proceedings of the IEEE,
98(6):925–936, 2010.

9 Emmanuel J. Candès and Benjamin Recht. Exact matrix completion via convex optimization.
Foundations of Computational Mathematics, 9(6):717–772, 2009.

10 Emmanuel J. Candès and Terence Tao. The power of convex relaxation: near-optimal matrix
completion. IEEE Trans. Information Theory, 56(5):2053–2080, 2010.

11 Matteo Ceccarello, Andrea Pietracaprina, Geppino Pucci, and Eli Upfal. MapReduce and
streaming algorithms for diversity maximization in metric spaces of bounded doubling dimen-
sion. PVLDB, 10(5):469–480, 2017.

12 Moses Charikar and Rina Panigrahy. Clustering to minimize the sum of cluster diameters.
Journal of Computer and System Sciences, 68(2):417–441, 2004.

13 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.

14 Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity.
Texts in Computer Science. Springer, 2013. doi:10.1007/978-1-4471-5559-1.

15 Tomáš Dvořák and Petr Gregor. Hamiltonian paths with prescribed edges in hypercubes.
Discrete Mathematics, 307(16):1982–1998, 2007.

16 M.E Dyer and A.M Frieze. A simple heuristic for the p-centre problem. Oper. Res. Lett.,
3(6):285–288, 1985.

17 Eduard Eiben, Fedor V. Fomin, Petr A. Golovach, William Lochet, Fahad Panolan, and
Kirill Simonov. EPTAS for k-means clustering of affine subspaces. In Dániel Marx, editor,
Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms, SODA 2021, Virtual
Conference, January 10 - 13, 2021, pages 2649–2659. SIAM, 2021.

18 Eduard Eiben, Robert Ganian, Iyad Kanj, Sebastian Ordyniak, and Stefan Szeider. The
parameterized complexity of clustering incomplete data. In Thirty-Fifth AAAI Conference
on Artificial Intelligence, AAAI 2021, pages 7296–7304. AAAI Press, 2021. URL: https:
//ojs.aaai.org/index.php/AAAI/article/view/16896, doi:10.1609/aaai.v35i8.16896.

19 Eduard Eiben, Robert Ganian, Iyad Kanj, Sebastian Ordyniak, and Stefan Szeider. Finding a
cluster in incomplete data. In Shiri Chechik, Gonzalo Navarro, Eva Rotenberg, and Grzegorz
Herman, editors, 30th Annual European Symposium on Algorithms, ESA 2022, September 5-9,
2022, Berlin/Potsdam, Germany, volume 244 of LIPIcs, pages 47:1–47:14. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2022.

20 Eduard Eiben, Robert Ganian, Iyad Kanj, Sebastian Ordyniak, and Stefan Szeider. On the
parameterized complexity of clustering problems for incomplete data. Journal of Computer
and System Sciences, 134:1–19, 2023.

21 Ehsan Elhamifar and René Vidal. Sparse subspace clustering: Algorithm, theory, and
applications. IEEE Trans. Pattern Anal. Mach. Intell., 35(11):2765–2781, 2013.

22 Paul Erdös and Richard Rado. Intersection theorems for systems of sets. Journal of the
London Mathematical Society, 1(1):85–90, 1960.

23 Tomás Feder and Daniel Greene. Optimal algorithms for approximate clustering. In Proceedings
of the Twentieth Annual ACM Symposium on Theory of Computing, STOC ’88, pages 434–444.
ACM, 1988.

https://doi.org/10.1007/978-1-4471-5559-1
https://ojs.aaai.org/index.php/AAAI/article/view/16896
https://ojs.aaai.org/index.php/AAAI/article/view/16896
https://doi.org/10.1609/aaai.v35i8.16896

E. Eiben, R. Ganian, I. Kanj, S. Ordyniak, and S. Szeider 16:13

24 Jörg Flum and Martin Grohe. Parameterized Complexity Theory, volume XIV of Texts in
Theoretical Computer Science. An EATCS Series. Springer, Berlin, 2006.

25 Fedor V. Fomin, Petr A. Golovach, Tanmay Inamdar, Nidhi Purohit, and Saket Saurabh.
Exact exponential algorithms for clustering problems. In Holger Dell and Jesper Nederlof,
editors, 17th International Symposium on Parameterized and Exact Computation, IPEC 2022,
September 7-9, 2022, Potsdam, Germany, volume 249 of LIPIcs, pages 13:1–13:14. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2022.

26 Fedor V. Fomin, Petr A. Golovach, and Kirill Simonov. Parameterized k-clustering: Tractability
island. J. Comput. Syst. Sci., 117:50–74, 2021.

27 John P. Hayes Frank Harary and Horng-Jyh Wu. A survey of the theory of hypercube graphs.
Comput. Math. Appl., 15(4):277–289, 1988.

28 Guojun Gan, Chaoqun Ma, and Jianhong Wu. Data clustering - theory, algorithms, and
applications. SIAM, 2007.

29 Robert Ganian, Thekla Hamm, Viktoriia Korchemna, Karolina Okrasa, and Kirill Simonov.
The complexity of k-means clustering when little is known. In Kamalika Chaudhuri, Stefanie
Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato, editors, Proceedings of the
39th International Conference on Machine Learning, volume 162 of Proceedings of Machine
Learning Research, pages 6960–6987, 2022.

30 Robert Ganian, Iyad Kanj, Sebastian Ordyniak, and Stefan Szeider. Parameterized algorithms
for the matrix completion problem. In ICML, volume 80 of JMLR Workshop and Conference
Proceedings, pages 1642–1651, 2018.

31 Pawel Gawrychowski, Nadav Krasnopolsky, Shay Mozes, and Oren Weimann. Dispersion
on Trees. In Kirk Pruhs and Christian Sohler, editors, 25th Annual European Symposium
on Algorithms (ESA 2017), volume 87 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 40:1–40:13. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2017.

32 Leszek Ga̧sieniec, Jesper Jansson, and Andrzej Lingas. Efficient approximation algorithms for
the Hamming center problem. In Proceedings of the Tenth Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 905–906, 1999.

33 Leszek Ga̧sieniec, Jesper Jansson, and Andrzej Lingas. Approximation algorithms for Hamming
clustering problems. Journal of Discrete Algorithms, 2(2):289–301, 2004.

34 Teofilo F. Gonzalez. Clustering to minimize the maximum intercluster distance. Theoretical
Computer Science, 38:293–306, 1985.

35 Jens Gramm, Rolf Niedermeier, and Peter Rossmanith. Fixed-parameter algorithms for
CLOSEST STRING and related problems. Algorithmica, 37(1):25–42, 2003.

36 Martin Grohe, Stephan Kreutzer, and Sebastian Siebertz. Deciding first-order properties of
nowhere dense graphs. J. ACM, 64(3):17:1–17:32, 2017.

37 Moritz Hardt, Raghu Meka, Prasad Raghavendra, and Benjamin Weitz. Computational limits
for matrix completion. In Proceedings of The 27th Conference on Learning Theory, volume 35
of JMLR Workshop and Conference Proceedings, pages 703–725. JMLR.org, 2014.

38 Danny Hermelin and Liat Rozenberg. Parameterized complexity analysis for the closest string
with wildcards problem. Theoretical Computer Science, 600:11–18, 2015.

39 Tomohiro Koana, Vincent Froese, and Rolf Niedermeier. Parameterized algorithms for matrix
completion with radius constraints. In Inge Li Gørtz and Oren Weimann, editors, 31st Annual
Symposium on Combinatorial Pattern Matching, CPM 2020, June 17-19, 2020, Copenhagen,
Denmark, volume 161 of LIPIcs, pages 20:1–20:14. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2020.

40 Tomohiro Koana, Vincent Froese, and Rolf Niedermeier. The complexity of binary matrix
completion under diameter constraints. J. Comput. Syst. Sci., 132:45–67, 2023.

41 Jure Leskovec, Anand Rajaraman, and Jeffrey David Ullman. Mining of Massive Datasets.
Cambridge University Press, New York, NY, USA, 2nd edition, 2014.

42 Ming Li, Bin Ma, and Lusheng Wang. On the closest string and substring problems. J. ACM,
49(2):157–171, 2002.

IPEC 2023

16:14 From Data Completion to Problems on Hypercubes

43 Leonid Libkin. Elements of Finite Model Theory. Texts in Theoretical Computer Science. An
EATCS Series. Springer, 2004.

44 Boris Mirkin. Clustering For Data Mining: A Data Recovery Approach. Chapman & Hall/CRC,
2005.

45 Dimitris Sacharidis, Paras Mehta, Dimitrios Skoutas, Kostas Patroumpas, and Agnès Voisard.
Selecting representative and diverse spatio-textual posts over sliding windows. In Proceedings of
the 30th International Conference on Scientific and Statistical Database Management, SSDBM
2018, Bozen-Bolzano, Italy, July 09-11, 2018, pages 17:1–17:12, 2018.

Approximate Monotone Local Search for Weighted
Problems
Barış Can Esmer #

CISPA Helmholtz Center for Information Security, Saarbrücken, Germany
Saarbrücken Graduate School of Computer Science, Saarland Informatics Campus, Germany

Ariel Kulik #

CISPA Helmholtz Center for Information Security, Saarbrücken, Germany

Dániel Marx #

CISPA Helmholtz Center for Information Security, Saarbrücken, Germany

Daniel Neuen #

University of Bremen, Germany

Roohani Sharma #

Max Planck Institute for Informatics, Saarland Informatics Campus, Saarbrücken, Germany

Abstract
In a recent work, Esmer et al. describe a simple method – Approximate Monotone Local Search
– to obtain exponential approximation algorithms from existing parameterized exact algorithms,
polynomial-time approximation algorithms and, more generally, parameterized approximation
algorithms. In this work, we generalize those results to the weighted setting.

More formally, we consider monotone subset minimization problems over a weighted universe of
size n (e.g., Vertex Cover, d-Hitting Set and Feedback Vertex Set). We consider a model
where the algorithm is only given access to a subroutine that finds a solution of weight at most
α · W (and of arbitrary cardinality) in time ck · nO(1) where W is the minimum weight of a solution
of cardinality at most k. In the unweighted setting, Esmer et al. determine the smallest value d

for which a β-approximation algorithm running in time dn · nO(1) can be obtained in this model.
We show that the same dependencies also hold in a weighted setting in this model: for every fixed
ε > 0 we obtain a β-approximation algorithm running in time O ((d + ε)n), for the same d as in the
unweighted setting.

Similarly, we also extend a β-approximate brute-force search (in a model which only provides
access to a membership oracle) to the weighted setting. Using existing approximation algorithms
and exact parameterized algorithms for weighted problems, we obtain the first exponential-time
β-approximation algorithms that are better than brute force for a variety of problems including
Weighted Vertex Cover, Weighted d-Hitting Set, Weighted Feedback Vertex Set and
Weighted Multicut.

2012 ACM Subject Classification Theory of computation → Approximation algorithms analysis;
Mathematics of computing → Approximation algorithms

Keywords and phrases parameterized approximations, exponential approximations, monotone local
search

Digital Object Identifier 10.4230/LIPIcs.IPEC.2023.17

Related Version Full Version: https://arxiv.org/abs/2308.15306

Funding Ariel Kulik: This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 852780-ERC (SUBMODULAR).
Dániel Marx: Research supported by the European Research Council (ERC) consolidator grant
No. 725978 SYSTEMATICGRAPH.

© Barış Can Esmer, Ariel Kulik, Dániel Marx, Daniel Neuen, and Roohani Sharma;
licensed under Creative Commons License CC-BY 4.0

18th International Symposium on Parameterized and Exact Computation (IPEC 2023).
Editors: Neeldhara Misra and Magnus Wahlström; Article No. 17; pp. 17:1–17:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:baris-can.esmer@cispa.de
https://orcid.org/0000-0001-5694-1465
mailto:ariel.kulik@cispa.de
https://orcid.org/0000-0002-0533-3926
mailto:marx@cispa.de
https://orcid.org/0000-0002-5686-8314
mailto:dneuen@uni-bremen.de
https://orcid.org/0000-0002-4940-0318
mailto:rsharma@mpi-inf.mpg.de
https://orcid.org/0000-0003-2212-1359
https://doi.org/10.4230/LIPIcs.IPEC.2023.17
https://arxiv.org/abs/2308.15306
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

17:2 Approximate Monotone Local Search for Weighted Problems

1 Introduction

In this work, we are interested in subset problems, where the goal is to find a subset of a
given n-sized universe U that satisfies some property Π (e.g., Vertex Cover, Hitting
Set, Feedback Vertex Set, Mulitcut). Such problems can trivially be solved in time
O∗(2n)1, and in the past decades there has been great interest in designing algorithms that
beat this exhaustive search and run in time O∗ (dn) for as small 1 < d < 2 as possible
(see, e.g., [16]). On the other hand, many of the considered problems admit polynomial-
time α-approximation algorithms for some constant α > 1 (e.g., Vertex Cover admits a
polynomial-time 2-approximation [5]). To bridge the gap between exact exponential-time
algorithms and polynomial-time α-approximation algorithms for some possibly large constant
α, there has been recent interest in exponential-time approximation algorithms [2,4,6,9–12,19]
to obtain approximation ratios that are better than what is considered possible in polynomial
time.

In a recent work, Esmer et al. [12] describe a simple method – Approximate Monotone
Local Search – to obtain exponential-time approximation algorithms for certain subset
problems from existing parameterized exact algorithms, polynomial-time approximation
algorithms and, more generally, parameterized approximation algorithms. More precisely,
the focus in [12] lies on subset minimization problems where, given a universe U with n

elements, we are aiming to find a set S ⊆ U of minimum cardinality satisfying some property
Π. To allow for approximation algorithms, we restrict to monotone problems, i.e., the
family F of solution sets is closed under taking supersets. In this setting, a β-approximation
algorithm is asked to return a solution set S ∈ F such that |S| ≤ β · |OPT| where OPT
denotes a solution of minimum size. Given access to a parameterized α-approximation
algorithm running in time O∗(ck) (where the parameter k denotes the size of the desired
optimal solution), Esmer et al. [12] determine the best possible value d = amls(α, c, β)
such that a β-approximation algorithm running in time O∗(dn) can be obtained. Using
existing parameterized approximation algorithms, which in particular include polynomial-time
approximation and exact parameterized algorithms, this leads to the fastest exponential-time
approximation algorithms for a variety of problems including Vertex Cover, d-Hitting
Set, Feedback Vertex Set and Odd Cycle Transversal.

In this work, we are interested in weighted monotone subset minimization problems.
Here, the universe U is additionally equipped with a weight function w : U → N and we are
asking for a solution set S ∈ F of minimum weight w(S) :=

∑
u∈S w(u). Accordingly, in a

β-approximation algorithm, we are seeking a solution set S ∈ F such that w(S) ≤ β · w(OPT)
where OPT denotes a solution of minimum weight. Looking at [12], it can be observed that
the obtained algorithms only extend to the weighted setting for the special case α = β = 1.
Indeed, in this particular case Fomin, Gaspers, Lokshtanov and Saurabh [15] already show in
an earlier work that an exact parameterized algorithm running in time O∗(ck) can be turned
into an exact exponential-time algorithm running time O∗((2 − 1

c)n). As already pointed
out in [15], the result also holds in a weighted setting and implies exact exponential-time
algorithms for, e.g., d-Hitting Set and Feedback Vertex Set. On the other hand, for
β > 1, the algorithm presented in [12] does not work in a weighted setting. In a nutshell, the
main idea in [12] is to randomly sample a set of vertices X and to bound the probability that
it contains a sufficiently large portion of an optimum solution OPT. However, in a weighted
setting, such an approach is destined to fail since even adding a single element of large weight
to an optimum solution may lead to an unbounded approximation factor.

1 The O∗ notation hides polynomial factors in the expression.

B. C. Esmer, A. Kulik, D. Marx, D. Neuen, and R. Sharma 17:3

The main contribution of this work is to adapt the tools from [12] to the weighted setting.
Given a parameterized α-approximation algorithm running in time O∗(ck) for a weighted
subset minimization problem (where the parameter k still denotes the size of the desired
optimal solution, we give additional details in the next paragraph), for every fixed ε > 0 we
obtain a β-approximation algorithm running in time O ((amls(α, c, β) + ε)n). Note that this
matches the corresponding bound in the unweighted setting up to the additive ε in the base
of the exponent in the running time.

To state our main result more precisely, let us formalize the requirements for the parame-
terized α-approximation algorithm. Similar to [12], we require an α-approximate extension
algorithm. Such an algorithm receives as input a set X ⊆ U and a number k ≥ 0. If
there is an extension S ⊆ U to a solution set (i.e., X ∪ S ∈ F) of size at most k, then
the algorithm outputs a set T ⊆ U such that X ∪ T ∈ F and w(T) ≤ α · w(S∗) where S∗

is a minimum-weight extension of X of size at most k. Note that the size of T does not
need to be bounded in k; the parameter k only restricts the size of an “optimum solution”
which we compare against. For example, the polynomial-time 2-approximation algorithm for
Weighted Vertex Cover [5] immediately results in a 2-approximate extension algorithm:
given a graph G, X ⊆ V (G) and k ≥ 0, we apply the 2-approximation algorithm to G − X

and return the output T ⊆ V (G) (this algorithm behaves independently of k). With this,
our main result can informally be stated as follows.

Suppose a weighted monotone subset minimization problem admits an α-approximate
extension algorithm running in time O∗(ck). Then there is a β-approximation algorithm
running in time O∗((amls(α, c, β) + ε)n) for every ε > 0.

The basic idea to achieve this result is to partition the universe U into subsets Ui of
elements of roughly the same weight. We apply the results from [12] to each of the sets Ui

separately which results in a “query set” for Ui, i.e., a set of queries made by the algorithm
from [12] to the α-approximate extension algorithm. The crucial observation is that these
queries are made in a non-adaptive way, i.e., the “query set” only depends on the set Ui. We
then combine the “query sets” for the blocks Ui into a query set for the whole weighted set
U . In particular, the results from [12] are only used in a black-box manner.

For many problems such as Vertex Cover [5], d-Hitting Set [5] and Feedback
Vertex Set [3], polynomial-time approximation algorithms directly extend to the weighted
setting, and provide α-approximate extension algorithms as discussed above. On the other
hand, while many parameterized exact algorithms do not directly extend to the weighted
setting, several problems have been studied in the weighted setting. For example, for
Weighted Vertex Cover [21] provides a O∗(1.363k) algorithm that, given a vertex-
weighted graph and a number k ≥ 0, returns a vertex cover of weight at most W where
W is the minimum weight of a vertex cover of size at most k (if there is no vertex cover
of size at most k, the algorithm reports failure). As before, to obtain a 1-approximate
extension subroutine, we apply the algorithm to the graph G − X (where X is the input set
for the extension subroutine). Similar results are also available for Weighted d-Hitting
Set [14, 21] and Weighted Feedback Vertex Set [1]. Also, some simple branching
algorithms immediately extend to the weighted setting (e.g., deletion to H-free graphs where
H is a finite set of forbidden induced subgraphs). Finally, we can also rely on parameterized
approximation algorithms. For example, [18] provides such algorithms for several problems
including Weighted Directed FVS and Weighted Multicut.

IPEC 2023

17:4 Approximate Monotone Local Search for Weighted Problems

We remark that there are also FPT algorithms for other parameterizations in the weighted
setting. For example, Niedermeier and Rossmanith [20] show that Weighted Vertex
Cover is fixed-parameter tractable parameterized by the weight W of a minimum-weight
vertex cover. However, such subroutines are not useful in our setting since we aim to bound
the running time of our approximation algorithms with respect to the number of vertices.

Similar to [12], we compare our algorithms to a brute-force search. Here, we consider
a setting where the weighted monotone subset minimization problem can only be accessed
via a membership oracle, i.e., given a set X ⊆ U , we can test (in polynomial time) whether
X is a solution set. For every β ≥ 1 we define brute(β) := 1 + exp

(
−β · H

(
1
β

))
where

H(β) := −β ln β − (1 − β) ln(1 − β) denotes the entropy function. In [11] it has been
shown that, in the unweighted setting, there is a β-approximation algorithm running in time
O∗((brute(β))n) that only exploits a membership test. We also extend this result to the
weighted setting, i.e., we show that any weighted monotone subset minimization problem
can be solved in time (brute(β))n+o(n) given only a membership oracle.

Esmer et al. [12] show that amls(α, c, β) < brute(β) for all α, c ≥ 1 and β > 1. Since
the same bounds are achieved in the weighted setting, all algorithms obtained above are
strictly faster than the brute-force β-approximation algorithm. In particular, we obtain
exponential-time approximation algorithms that are faster than the approximate brute-force
search for the weighted versions of Vertex Cover, d-Hitting Set, Feedback Vertex
Set, Tournament FVS, Subset FVS, Cluster Graph Vertex Deletion, Cograph
Vertex Deletion, Split Vertex Deletion, Partial Vertex Cover, Directed
Feedback Vertex Set, Directed Subset FVS, Directed Odd Cycle Transversal
and Multicut (all problems are defined in Appendix B).

Organization
The paper is organized as follows. In Section 2 we state the problems we want to address,
provide the necessary definitions and notation, and formally state our main results. In
Section 3, we demonstrate how our methods can be applied to specific problems to obtain
exponential-time approximation algorithms. Section 4 contains the proof of Theorem 3, our
result on exponential-time approximation algorithms for the WeightedSM problem in the
membership model. Similarly, Section 5 contains the proof of Theorem 8, our result on
exponential-time approximation algorithms for the WeightedSM problem in the extension
model. Finally, in Section 6 we conclude the paper by summarizing our main contributions
and key findings.

2 Our Results

To formally state our results we use an abstract notion of a problem and oracle-based
computational models. Let U be a finite set of elements. We use n to denote the cardinality
of U . A set system F of U is a family F ⊆ 2U of subsets of U . We say the set system F is
monotone if (i) U ∈ F and (ii) for all T ⊆ S ⊆ U , if T ∈ F then S ∈ F as well.

An instance of the Weighted Monotone Subset Minimization problem (WeightedSM)
is a triplet (U, w, F) where U is a finite set, w : U → N is a weight function over the
elements of U , and F is a monotone set system of U . The set of solutions is F and
the objective is to find S ∈ F with minimum total weight w(S) :=

∑
u∈S w(u). We use

opt(U, w, F) := min{w(S) | S ∈ F} to denote the optimum value of a solution to the
WeightedSM instance (U, w, F). We refer to the special case in which w(u) = 1 for all
u ∈ U as the Unweighted Monotone Subset Minimization problem (UnweightedSM).

B. C. Esmer, A. Kulik, D. Marx, D. Neuen, and R. Sharma 17:5

The Weighted Monotone Subset Minimization problem is a meta-problem which captures
multiple well studied problems as special cases, e.g., Weighted Vertex Cover, Weighted
Feedback Vertex Set and Weighted Multicut. We study the problem using two
computational models. In both models the set U and the weight function w are given as
part of the input. The set F can only be accessed using an oracle, and the models differ in
the type of supported oracle queries.

2.1 Membership Oracles and Weighted Approximate Brute Force
In the membership model the input to the algorithm is a universe U and a weight func-
tion w : U → N. Additionally, the algorithm has access to a membership oracle for a monotone
set system F of U , that is, the algorithm can check if a subset S ⊆ U satisfies S ∈ F in a
single step. For every α ≥ 1, we say an algorithm is an α-approximation for WeightedSM
(UnweightedSM) in the membership model if for every WeightedSM (UnweightedSM)
instance (U, w, F) the algorithm returns a set S ∈ F such that w(S) ≤ α · opt(U, w, F).

One can easily attain a 1-approximation algorithm for WeightedSM in the membership
model by iterating over all subsets of U and querying the oracle for each. This leads to
an algorithm with running time O∗(2n). Moreover, it can be easily shown there is no
1-approximation algorithm for WeightedSM (or for UnweightedSM) in the membership
model which runs in time O ((2 − ε)n). We refer to this algorithm as the (exact) brute force.

Intuitively, for every α > 1, it should be possible to design an α-approximation algorithm
for WeightedSM and UnweightedSM in the membership model which runs in time O(cn)
for some c < 2. However, the value of the optimal c in this setting is not obvious. In [11] the
authors studied UnweightedSM in the membership model and pinpointed the right value
of c. For every α ≥ 1 we define

brute(α) = 1 + exp
(

−α · H
(

1
α

))
, (1)

where H(x) = −x ln(x) − (1 − x) ln(1 − x) is the entropy function.

▶ Lemma 1 ([11, Theorem 5.1]). For every α ≥ 1 the following holds.
1. There is a deterministic α-approximation algorithm for UnweightedSM in the member-

ship model which runs in time (brute(α))n · nO(1).
2. Let ε > 0. There is no α-approximation algorithm for UnweightedSM in the member-

ship model which runs in time (brute(α) − ε)n · nO(1).

As the algorithmic result in Lemma 1 can be viewed as an approximate analogue of the
brute-force algorithm, it is commonly referred as α-approximate brute force. The lower bound
given in [11] also holds if the algorithm is allowed to use randomization. As WeightedSM
is a generalization of UnweightedSM, the following corollary is an immediate consequence
of Lemma 1.

▶ Corollary 2. For every α ≥ 1 and ε > 0 there is no α-approximation algorithm for
WeightedSM in the membership model which runs in time (brute(α) − ε)n · nO(1).

As the bound in Lemma 1 also holds if randomization is allowed, the same holds true for
the bound in Corollary 2. Our first result is a generalization of the approximate brute-force
algorithm of [11] for the weighted setting. That is, we provide an algorithm which matches
the lower bound in Corollary 2 up to a sub-exponential factor.

IPEC 2023

17:6 Approximate Monotone Local Search for Weighted Problems

▶ Theorem 3 (Weighted Approximate Brute Force). For every α > 1 there is an α-
approximation algorithm for WeightedSM in the membership model which runs in time
(brute(α))n+o(n).

The proof of Theorem 3 is based on a rounding of the weight function w and utilizes a
construction from [11] which is applied to each of the rounded weight classes.

2.2 Extension Oracles and Weighted Approximate Monotone Local
Search

Our second computational model deals with extension oracles. The input for these oracles is
a set S ⊆ U and a number ℓ ∈ N≥0 and the output is an extension of S, that is, a set X ⊆ U

such that S ∪ X ∈ F . Furthermore, the returned set X is guaranteed to have a small weight
in comparison to the minimum-weight extension of S which contains at most ℓ elements. For
multiple problems, such as Vertex Cover and Feedback Vertex Set, these oracles can
be implemented using existing parameterized algorithms which have a running time of the
form cℓ · nO(1). We therefore associate a running time of cℓ with the query (S, ℓ). The formal
definition of extension oracles is as follows.

▶ Definition 4 (Extension Oracle). Let (U, w, F) be a WeightedSM instance and let α ≥ 1.
An α-extension oracle for (U, w, F) is a function Ext : 2U × N≥0 → 2U such that for every
S ⊆ U and ℓ ∈ N≥0 the following holds:
1. Ext(S, ℓ) ∪ S ∈ F .
2. w (Ext(S, ℓ)) ≤ α · min{w(X) | X ⊆ U, |X| ≤ ℓ, X ∪ S ∈ F} (we set min ∅ = ∞).

In the (α, c)-extension model the input for the algorithm is a finite set U and a weight
function w : U → N. Furthermore, the algorithm is given oracle access to an α-extension oracle
Ext of (U, w, F) for some monotone set system F of U . For every β ≥ 1, we say an algorithm
is a β-approximation algorithm for WeightedSM (UnweightedSM) in the (α, c)-extension
model if for every WeightedSM (UnweightedSM) instance (U, w, F) and α-extension
oracle Ext of the instance, the algorithm returns T ∈ F such that w(T) ≤ β · opt(U, w, F).
The running time of an algorithm in this model is the number of computations steps plus cℓ

for every query (S, ℓ) issued to the oracle during the execution. Following the standard worst-
case analysis convention, we say an algorithm runs in time f(n) if for every WeightedSM
instance (U, w, F) and α-extension oracle Ext of the instance the algorithm runs in time at
most f (|U |).

The (α, c)-extension model is studied in [12] for the special case of UnweightedSM.
The authors of [12] provide a deterministic β-approximation algorithm in the (α, c)-extension
model, known as deterministic approximate monotone local search, which runs in time
(amls(α, c, β))n+o(n), where amls(α, c, β) is defined as the optimal value of a continuous
optimization problem. Throughout the paper we use amls to denote this function. We
provide the formal definition of amls in the full version of the paper for completeness. We
note that this formal definition is not required for the understanding of the results in this
paper. It is also shown in [12] that the value of amls(α, c, β) can be computed up to precision
of ε in time polynomial in the encoding length of α, c, β and ε.

This algorithmic result is complemented in [12] with a matching lower bound.

▶ Lemma 5 ([12]). For every α, β, c ≥ 1 and ε > 0 there is no deterministic β-approximation
for UnweightedSM in the (α, c)-extension model which runs in time (amls(α, c, β) − ε)n ·
nO(1).

B. C. Esmer, A. Kulik, D. Marx, D. Neuen, and R. Sharma 17:7

Furthermore, it is shown that the running time of the deterministic approximate monotone
local search is better than brute force for every β > 1.

▶ Lemma 6 ([12]). For all α, c ≥ 1 and β > 1 it holds that amls(α, c, β) < brute(β).

The results of [12] also include a randomized algorithm which omits the subexponential
factor in the running time and the lower bound also holds for randomized algorithms. In [12]
the authors use the deterministic approximate monotone local search algorithm to obtain
exponential-time approximation algorithms for multiple unweighted problems such as Vertex
Cover and Feedback Vertex Set. We generalize the algorithmic results of [12] to the
weighted setting and similarly use it to obtain exponential-time approximation algorithms
for weighted variants of the mentioned problems (see Section 3).

Since UnweightedSM is a special case of WeightedSM, Lemma 5 immediately implies
the following

▶ Corollary 7. For every α, c, β ≥ 1 and ε > 0 there is no deterministic β-approximation for
WeightedSM in the (α, c)-extension model which runs in time (amls(α, c, β) − ε)n · nO(1).

Our second result is an algorithm which matches the running time in Corollary 7 up to
an additive term of ε in the base of the running time.

▶ Theorem 8 (Weighted Approximate Monotone Local Search). For every α, c ≥ 1, β > 1 and
ε > 0 there is a deterministic β-approximation for WeightedSM in the (α, c)-extension
model which runs in time O ((amls(α, c, β) + ε)n).

The proof of Theorem 8 is similar to the one of Theorem 3. It applies rounding to the
weights on the elements, and then utilizes a construction from [12] for each of the weight
classes.

The result of Theorem 8 only applies for β > 1. If α = β = 1 the result of [15] can be used
to obtain an exact algorithm with running time nO(1) ·

(
2 − 1

c

)n. For α > β = 1 Corollary 7
implies that the best possible running time is O∗(2n) which can be attained by brute force.

3 Applications

Our results provide exponential-time approximation algorithms for a variety of weighted
vertex-deletions problems. For illustration purposes, let us first focus on the Weighted
Vertex Cover problem where we are given a graph G with vertex weights w : V (G) → N,
and we ask for a vertex cover S ⊆ V (G) of minimum weight w(S) =

∑
v∈S w(v). It is

well-known that Weighted Vertex Cover admits a polynomial-time 2-approximation
algorithm [5]. Also, the problem can be solved exactly in time O∗(1.238n) [22].

For the unweighted version Unweighted Vertex Cover, Bourgeois, Escoffier and
Paschos [6] designed several exponential-time approximation algorithms for approximation
ratios in the range (1, 2). For example, they obtain a 1.1-approximation algorithm running in
time O∗(1.127n) where n denotes the number of vertices of the input graph. These running
times are further improved in [11, 12] using the framework of Approximate Monotone Local
Search. Indeed, the fastest known 1.1-approximation algorithm for Unweighted Vertex
Cover runs in time O∗(1.113n) [12].

For the weighted version, no such results have been obtained so far. We use Theorem 8
to design the first exponential β-approximation algorithms for Weighted Vertex Cover
for all β ∈ (1, 2). For the extension oracle, we can rely on the well-known polynomial-time
2-approximation algorithm. Given a set S ⊆ V (G), we delete all vertices in S and apply the

IPEC 2023

17:8 Approximate Monotone Local Search for Weighted Problems

1 1.2 1.4 1.6 1.8 2

1

1.2

1.4

1.6

1.8

2

approximation ratio

brute
α = 1.0, c = 1.363
α = 2.0, c = 1.0

1 1.2 1.4 1.6 1.8 2

1

1.1

1.2

approximation ratio

α = 1.0, c = 1.363
α = 2.0, c = 1.0

Unweighted VC

Figure 1 The left figure shows running times for Weighted Vertex Cover and the right side
provides a comparison to Unweighted Vertex Cover. A dot at (β, d) means that the respective
algorithm outputs an β-approximation in time O∗(dn).

Table 1 The table shows the running times for Weighted Vertex Cover (second and third row)
and Unweighted Vertex Cover (last row). An entry d in column β means that the respective
algorithm outputs a β-approximation in time O∗(dn).

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9
brute 1.716 1.583 1.496 1.433 1.385 1.347 1.317 1.291 1.269

(α = 1, c = 1.363) 1.158 1.123 1.103 1.089 1.078 1.07 1.064 1.058 1.054
(α = 2, c = 1) 1.659 1.485 1.366 1.277 1.208 1.151 1.104 1.064 1.03

Unweighted VC 1.113 1.062 1.036 1.02 1.01 1.005 1.002 1.0004 1.00005

2-approximation algorithm to the graph G − S which outputs a vertex cover X such that
w(X) ≤ 2 · w(OPT) where OPT denotes a minimum vertex cover of G − S. As a result, we
can implement a 2-extension oracle in polynomial time which corresponds (up to polynomial
factors) to cost c = 1. So Theorem 8 results in a β-approximation algorithm for Weighted
Vertex Cover which runs in time O∗((amls(α, c, β) + ε)n) for every β > 1, where α = 2
and c = 1. A visualization is given in Figure 1.

Instead of using a polynomial-time 2-approximation algorithm, we can also rely on
existing FPT algorithms for Weighted Vertex Cover to simulate the extension oracle.
Let us point out that different parameterizations have been considered for Weighted
Vertex Cover in the literature. For example, Niedermeier and Rossmanith [20] give FPT
algorithms for Weighted Vertex Cover parameterized by the weight of the optimal
solution. However, in light of the computational model introduced above, we require FPT
algorithms parameterized by the size of the solution. Given a graph G with vertex weights
w : V (G) → N and an integer k ≥ 0, we ask for a vertex cover of weight at most W where W

is the minimum weight of a vertex cover of size at most k. The best known FPT algorithm
(parameterized by k) for this problem runs in time 1.363k · nO(1) [21]. This algorithm
provides an extension algorithm with parameters α = 1 and c = 1.363. Using Theorem 8,
we obtain a β-approximation algorithm for Weighted Vertex Cover running in time
O∗((amls(α, c, β) + ε)n). For β = 1.1, we obtain a running time of O∗(1.158n).

B. C. Esmer, A. Kulik, D. Marx, D. Neuen, and R. Sharma 17:9

Table 2 List of weighted deletion problems admitting a single-exponential parameterized algorithm
running in time O∗(ck

1) and/or a polynomial-time α2-approximation algorithm. The problems
Tournament FVS, Cluster Graph Vertex Deletion, Cograph Vertex Deletion and Split
Vertex Deletion can be easily reduced to d-Hitting Set for appropriate values of d by exploiting
known characterizations in terms of forbidden induced subgraphs. Additionally, for Tournament
FVS we can rely on iterative compression to obtain a O∗(2k) algorithm (see, e.g., [8]).

Problem c1 det. α2 det.
Vertex Cover 1.363 [21] ✓ 2 [5] ✓

FVS 3.618 [1] ✓ 2 [3] ✓

Tournament FVS 2.0 ✓ 3 ✓

Subset FVS - ✓ 8 [13] ✓

3-Hitting Set 2.168 [21] ✓ 3 [5] ✓

d-Hitting Set (d ≥ 4) d − 0.832 [14] ✓ d [5] ✓

Cluster Graph Vertex Deletion 2.168 ✓ 3 ✓

Cograph Vertex Deletion 3.168 ✓ 4 ✓

Split Vertex Deletion 4.168 ✓ 5 ✓

Partial Vertex Cover - ✓ 2 [7] ✓

We provide running times for selected approximation ratios for both algorithms in Table
1 and a graphical comparison in Figure 1. We also compare the running times to the
approximate brute-force search and the best algorithms in the unweighted setting [12]. It can
be observed that the second algorithm (using the FPT algorithm as an extension subroutine)
is faster for β ≲ 1.82. Also, there is still a noticeable gap to the unweighted setting. This
can be mainly explained by the fact that the approximation algorithm for the unweighted
setting [12] relies on parameterized approximation algorithms for Unweighted Vertex
Cover [17] which are currently unavailable in the weighted setting.

We stress that our results are not limited to Weighted Vertex Cover, but they are
applicable to various vertex-deletion problems including Weighted Feedback Vertex
Set and Weighted d-Hitting Set (see Figure 2). Table 2 gives an overview on problems
for which we obtain exponential approximation algorithms by simulating the extension
oracle by an FPT algorithm (parameterized by solution size) running in time ck

1 · nO(1) or
a polynomial-time α2-approximation algorithm. For all the problems listed in Table 2, we
obtain the first exponential β-approximation algorithms for all β ∈ (1, α2). Observe that
these algorithms always outperform the approximate brute-force search by Lemma 6. We
provide data on the running times of these algorithms in the full version of the paper.

Finally, let us point out that our methods are also applicable if there is a parameterized
approximation algorithm for a weighted vertex deletion problem, i.e., an α-approximation
algorithm running time ck ·nO(1). In [18], such algorithms have been obtained for Weighted
Directed Feedback Vertex Set, Weighted Directed Subset FVS, Weighted
Directed Odd Cycle Transversal and Weighted Multicut. As a result, we also
obtain exponential β-approximation algorithms for these problems that outperform the
approximate brute-force search.

4 Weighted Approximate Brute Force

In this section we prove Theorem 3. The algorithm is based on the notion of covering families.

▶ Definition 9 (Covering Family). Let U be a finite set, w : U → N be a weight function and
α ≥ 1. We say C ⊆ 2U is an α-covering family of U and w if for every S ⊆ U there exists
T ∈ C such that S ⊆ T and w(T) ≤ α · w(S).

IPEC 2023

17:10 Approximate Monotone Local Search for Weighted Problems

1 1.2 1.4 1.6 1.8 2

1

1.2

1.4

1.6

1.8

2

approximation ratio

brute
α = 1.0, c = 3.618
α = 2.0, c = 1.0

(a) Feedback Vertex Set.

1 1.5 2 2.5 3

1

1.2

1.4

1.6

1.8

2

approximation ratio

brute
α = 1.0, c = 2.168
α = 3.0, c = 1.0

(b) 3-Hitting Set.

Figure 2 The figure shows running times for Feedback Vertex Set and 3-Hitting Set. A
dot at (β, d) means that the respective algorithm outputs an β-approximation in time O∗(dn).

An α-covering family C can be easily used to attain an α-approximation algorithm in the
membership model as follows. The algorithm constructs the covering family C and uses the
membership oracle to compute C ∩ F using |C| queries. The algorithm then returns the
set Q ∈ C ∩ F of minimum weight. To show correctness, consider a set S ∈ F such that
w(S) = opt(U, w, F). Since C is an α-covering family there is T ∈ C such that S ⊆ T and
w(T) ≤ α ·w(S) = α ·opt(U, w, F). Since F is monotone it holds that T ∈ F , thus T ∈ C ∩F ,
and we conclude that the algorithm returns a set of weight at most α · opt(U, w, F). The
running time of the algorithm, up to polynomial factors, is the construction time of C plus |C|.

By the above argument, the proof of Theorem 3 boils down to the construction of α-
covering families. To this end, we show the next result. Recall that n denotes the size of the
universe U .

▶ Lemma 10. There exists an algorithm which given a finite set U , a weight function
w : U → N and α > 1, constructs an α-covering family C of U and w such that |C| ≤
(brute(α))n+o(n). Furthermore, the running time of the algorithm is (brute(α))n+o(n).

Using the argument above, Theorem 3 is an immediate consequence of Lemma 10. The
construction of the covering family in Lemma 10 is based on a rounding of the weight function
and a reduction to covering families in the unweighted case. The construction of such families
is implicitly given in [11].

▶ Lemma 11 ([11]). There exists an algorithm which given a finite set U and α > 1
returns an α-covering family C of U and the uniform weight function w : U → {1} such that
|C| ≤ (brute(α))n · nO(1). Furthermore, the algorithm runs in time (brute(α))n · nO(1).

The proof of Lemma 10 is based on the following seemingly weaker version of Lemma 10.

▶ Lemma 12. There exists an algorithm A which given a finite set U , a weight function
w : U → N, β > 1 and 0 < δ < 1, constructs a (1 + δ) · β-covering family C of U and w
such that |C| ≤ (brute(β))n · nO(1

δ log(n
δ)). Furthermore, the running time of the algorithm is

(brute(β))n · nO(1
δ log(n

δ)).

B. C. Esmer, A. Kulik, D. Marx, D. Neuen, and R. Sharma 17:11

Proof. The algorithm A works as follows:
Define γ := 1 + δ

2 > 1. For i ≥ 0 let

Ui := {u ∈ U | γi ≤ w(u) < γi+1} (2)

and ni := |Ui|. Let I := {i ∈ Z≥0 | Ui ̸= ∅} denote the set of indices i ≥ 0 for which Ui is
non-empty. Note that |I| ≤ n.
For each i ∈ I construct a β-covering family Ci of the universe Ui and the uniform weight
function using Lemma 11.
Define d := ⌈(2/δ) · log(2n/δ)⌉ and for each k ∈ I, let Ik := {i ∈ I | k − d ≤ i ≤ k} denote
the indices in I between k − d and k.
For every k ∈ I, let rk := |Ik| and define

Wk :=
⋃

i∈ I : 1≤i<k−d

Ui and

Qk :=
{

Wk ∪ E1 ∪ . . . ∪ Erk

∣∣∣∣∣ (E1, . . . , Erk
) ∈

∏
i∈Ik

Ci

}
.

Return the set C :=
⋃

k∈I Qk.

▷ Claim 13. The algorithm A returns a (1 + δ) · β-covering family of U and w.

Proof. Let us pick a set S ⊆ U . We show that there exists T ∈ C such that S ⊆ T and
w(T) ≤ (1 + δ) · β · w(S).

By the definition of γ and d, it holds that

γd ≥
(

1 + δ

2

)(2/δ)·log(2n/δ)
≥ 2log(2n/δ) = 2n

δ
(3)

using that (1 + 1
x)x ≥ 2 for all x ≥ 1. Let k ∈ I be the largest index such that S ∩ Uk ≠ ∅.

It holds that

w(Wk) < n · γk−d ≤ δ

2 · γk ≤ δ

2 · w(S) (4)

where the first inequality follows from the fact that |Wk| ≤ n and each u ∈ Wk belongs to
a set Ui where i ≤ k − d − 1 and therefore w(u) < γk−d−1+1 = γk−d by (2). The second
inequality follows from (3) and finally the last inequality holds because by definition of k,
there exists u ∈ S ∩ Uk such that w(u) ≥ γk by (2).

For every i ∈ Ik define Si := S ∩ Ui. Since Ci is a β-covering family of Ui and the uniform
weight function, for each i ∈ Ik there exists Ti ∈ Ci such that Si ⊆ Ti and |Ti| ≤ β · |Si|.
Hence, for all i ∈ Ik it holds that

w(Ti) ≤ γi+1 · |Ti| ≤ γi+1 · β · |Si| ≤ γ · β · w(Si) (5)

where the first inequality follows from the fact that Ti ⊆ Ui and (2), the second inequality
follows from the definition of Ti and finally the last one again follows from the fact that
Si ⊆ Ui and (2).

Let T :=
⋃

i∈Ik
Ti and define

T :=
(

Wk ∪ T

)
∈ Qk ⊆ C.

IPEC 2023

17:12 Approximate Monotone Local Search for Weighted Problems

Then we have

S = S ∩ U = S ∩

(⋃
i∈I

Ui

)
=
(

S ∩
(

∪i∈I:i<k−dUi

))
∪
(

S ∩
(

∪i∈Ik
Ui

))

= (S ∩ Wk) ∪

(⋃
i∈Ik

(S ∩ Ui)
)

⊆ Wk ∪

(⋃
i∈Ik

Ti

)
= T.

Finally, it also holds that

w(T) = w(Wk) +
∑
i∈Ik

w(Ti)

≤ δ

2 · w(S) +
∑
i∈Ik

γ · β · w(Si) by (4) and (5)

≤ δ

2 · β · w(S) + γ · β · w(S)

≤ (1 + δ) · β · w(S).

This shows that C is a (1 + δ) · β-covering family of U and w. ◁

▷ Claim 14.

|C| ≤ (brute(β))n · nO(1
δ ·log(n

δ)).

Proof. By Lemma 11, for each i ∈ I it holds that

|Ci| ≤ (brute(β))ni · nc
i (6)

for some c > 0. Thus, for every k ∈ I,

|Qk| ≤

∣∣∣∣∣∏
i∈Ik

Ci

∣∣∣∣∣ =
∏
i∈Ik

|Ci| ≤
∏
i∈Ik

(brute(β))ni · nc
i

= (brute(β))
∑

i∈Ik
ni · n

c·|Ik|
i

≤ (brute(β))n · nc·(d+1)

= (brute(β))n · nO(1
δ ·log(n

δ)).

Finally, we have that

|C| =

∣∣∣∣∣⋃
k∈I

Qk

∣∣∣∣∣ ≤
∑
k∈I

|Qk| = (brute(β))n · nO(1
δ ·log(n

δ))

since |I| ≤ n. ◁

▷ Claim 15. The running time of A is (brute(β))n · nO(1
δ ·log(n

δ)).

B. C. Esmer, A. Kulik, D. Marx, D. Neuen, and R. Sharma 17:13

Proof. The construction of {Ci}i∈I takes∑
i∈I

(brute(β))ni · n
O(1)
i ≤ (brute(β))n · nO(1) (7)

which follows from Lemma 11. Finally, the construction of C takes time proportional to the
size of C where we have

|C| = (brute(β))n · nO(1
δ ·log(n

δ))

by Claim 14. All in all, the running time of A is upper bounded by (brute(β))n ·nO(1
δ ·log(n

δ)).

◁

The lemma follows from Claims 13–15. ◀

To prove Lemma 10, we combine Lemma 12 with the following technical lemma.

▶ Lemma 16. Let f : I → R be a continuous function on an open interval I ⊆ R and let
α > 1 such that α ∈ I. Define β(n) := α − 1

log(n) and δ(n) := α
β(n) − 1 for all n ∈ N. Then it

holds that

f
(
β(n)

)n · n
O
(

1
δ(n) ·log

(
n

δ(n)

))
= f(α)n+o(n).

The proof of Lemma 16 is given in the full version of the paper.

Proof of Lemma 10. We claim that the algorithm A from Lemma 12 with β := α − 1
log(n)

and δ := α
β − 1 satisfies the properties listed in Lemma 10. Note that β and δ are functions

of n, but we write β and δ instead of β(n) and δ(n) for the sake of readability.
Observe that we have (1 + δ) · β = α

β · β = α. Hence, by Lemma 12, the set returned
by A is an α-covering family C of U and w such that |C| ≤ (brute(β))n · nO(1

δ log(n
δ)). The

running time of the algorithm is also bounded by (brute(β))n · nO(1
δ ·log(n

δ)).
By (1), brute(x) is a continuous function of x because the entropy function is continuous.

Therefore by Lemma 16 it holds that (brute(β))n · nO(1
δ log(n

δ)) = (brute(α))n+o(n) which
proves the lemma. ◀

5 Weighted Monotone Local Search

In this section we prove Theorem 8. The proof presented here follows the outline of the proof
of Theorem 3 in Section 4, using the concept of an (α, β)-extension family, an adaptation of
the term α-covering family presented in Section 4 to the setting of extension oracles. While
the items in a covering family are queries to a membership oracle, and hence are subsets
of U , the items in an extension family represent queries to the extension oracle, and thus are
pairs (T, ℓ) of a subset T of U and a non-negative integer ℓ. A reduction to a construction
from [12] is used to build the extension family, and the extension family itself can be trivially
used to attain a β-approximation algorithm for WeightedSM.

▶ Definition 17 (Extension Family). Let U be a finite set and w : U → N be a weight function.
Furthermore, let α, β ≥ 1. We say E ⊆ 2U × N is an (α, β)-extension family of U and w if
for every S ⊆ U there exists (T, ℓ) ∈ E which satisfies the following:

IPEC 2023

17:14 Approximate Monotone Local Search for Weighted Problems

|S \ T | ≤ ℓ,

w(T) + α · w(S \ T) ≤ β · w(S). (8)

Let c ≥ 1. The c-cost of an (α, β)-extension family E of U and w is defined as costc(E) :=∑
(T,ℓ)∈E cℓ. The proof of Theorem 8 relies on the following lemma.

▶ Lemma 18. Let α, c ≥ 1, β > 1 and ε > 0. Then there is an algorithm which given a
finite set U and a weight function w : U → N returns an (α, β)-extension family E of U

and w such that costc(E) = O
((

amls(α, c, β) + ε
)n)

. Furthermore, the running time of

the algorithm is O
((

amls(α, c, β) + ε
)n)

.

Before heading to the proof of Lemma 18, we show how the lemma can be used to prove
Theorem 8.

Proof of Theorem 8. Let α, c ≥ 1, β > 1 and ε > 0. Consider the following algorithm A :
Given the input (U, w, F), use Lemma 18 with α, β, c and ε to construct an (α, β)-extension
family E of U and w.
Let Ext be the α-extension oracle. For each (Ti, ℓi) ∈ E , use Ext to compute Xi :=
Ext(Ti, ℓi).
Define T := {Ti ∪ Xi | (Ti, ℓi) ∈ E} and return a set in T with the minimum weight, i.e.,
a set T ∈ T such that w(T) = min{w(Y) | Y ∈ T }.

The algorithm A first creates an (α, β)-extension family E . Then it goes over all elements
(Ti, ℓi) ∈ E and queries the oracle with (Ti, ℓi). So the running time of this algorithm in the
(α, c)-extension model is equal to the running time of the algorithm from Lemma 18 plus cℓi

for every query (Ti, ℓi), i.e., the cost of the extension family E . By Lemma 18 this value is at
most

(amls(α, c, β) + ε)n + costc(E) = O
(

(amls(α, c, β) + ε)n
)

+ O
(

(amls(α, c, β) + ε)n
)

= O
(

(amls(α, c, β) + ε)n
)

▷ Claim 19. The algorithm A is a deterministic β-approximation for WeightedSM in the
(α, c)-extension model.

Proof. Let R ∈ T be the set returned by the algorithm. Note that by definition of T ,
R = Tj ∪ Xj for some (Tj , ℓj) ∈ E and Xj = Ext(Tj , ℓj). In particular, R = Tj ∪ Xj =
Tj ∪ Ext(Tj , ℓj) ∈ F (see Definition 4).

Let S ∈ F be a set with minimum weight in F , i.e., w(S) = min{w(Y) | Y ∈ F} =
opt(U, w, F). Since E is an (α, β)-extension family, there exists (Ti, ℓi) ∈ E such that S, Ti

and ℓi satisfy (8) for T = Ti and ℓ = ℓi. Moreover, observe that

S \ Ti ∈ {X ⊆ U | |X| ≤ ℓi, X ∪ Ti ∈ F}

because S ⊆ (S \ Ti) ∪ Ti ∈ F . Hence, by the definition of Ext and (Ti, ℓi), it follows that

w(Xi) = w (Ext(Ti, ℓi)) ≤ α · min {w(X) | X ⊆ U, |X| ≤ ℓi, X ∪ Ti ∈ F}
≤ α · w (S \ Ti)
≤ β · w(S) − w(Ti).

B. C. Esmer, A. Kulik, D. Marx, D. Neuen, and R. Sharma 17:15

Finally, we have

w(R) = min{w(Y) | Y ∈ T }
≤ w(Ti ∪ Xi)
≤ w(Ti) + w(Xi)
≤ β · w(S)
= β · opt(U, w, F)

which proves the claim. ◁

This shows that the algorithm A is a deterministic β-approximation for WeightedSM
in the (α, c)-extension model with the running time given in Theorem 8. ◀

The proof of Lemma 18 relies on the following construction for extension families in the
unweighted case which is implicitly given in [12].

▶ Lemma 20 ([12]). Let α, c ≥ 1 and β > 1. Then there is a deterministic algorithm
which given a finite set U , returns an (α, β)-extension family E of U and the uniform weight

function w : U → {1} such that costc(E) ≤
(

amls(α, c, β)
)n+o(n)

. Furthermore, the running

time of the algorithm is
(

amls(α, c, β)
)n+o(n)

.

In a manner analogous to Section 4, we begin by introducing Lemma 21, which presents
a slightly weaker form of Lemma 18. Within Lemma 21, ζ takes the place of the previously
mentioned β from Lemma 18. Subsequently, in the proof of Lemma 18, we set the value of ζ

as a function of β.

▶ Lemma 21. Let α, c ≥ 1, ζ > 1 and 0 < δ < 1. Then there is an algorithm which given a
finite set U and a weight function w : U → N returns an (α, (1 + δ) · ζ)-extension family E

of U and w such that costc(E) ≤
(

amls(α, c, ζ)
)n+o(n)

. Furthermore, the running time of

the algorithm is
(

amls(α, c, ζ)
)n+o(n)

.

As already indicated above, the proof of Lemma 21 is similar to the proof of Lemma 12.
The algorithm used to compute the desired extension family is given in Algorithm 1. The
full proof of Lemma 21 can be found in Appendix A. Lastly, we use the following property of
the function amls.

▶ Lemma 22. For every fixed α > 1 and c > 1, amls(α, c, x) is a continuous function of x

on the interval (1, ∞).

The proof of Lemma 22 is given in the full version of the paper.

Proof of Lemma 18. Let α, c ≥ 1, β > 1 and ε > 0. Since amls(α, c, ζ) is continuous in
ζ by Lemma 22, there exists a ζ ′ ∈ (1, β) such that amls(α, c, ζ ′) < amls(α, c, β) + ε

2 . To
prove the lemma, we use the algorithm from Lemma 21 (i.e., Algorithm 1) with ζ := ζ ′ and
δ := β/ζ − 1.

Note that we have (1 + δ) · ζ = (β/ζ) · ζ = β. Hence, by Lemma 21, the set E returned
by Algorithm 1 is an

(
α, β

)
-extension family of U and w such that

costc(E) ≤
(

amls(α, c, ζ ′)
)n+o(n)

≤
(

amls(α, c, β) + ε

2

)n+o(n)
= O

(
(amls(α, c, β) + ε)n

)

IPEC 2023

17:16 Approximate Monotone Local Search for Weighted Problems

Algorithm 1 Extension Family for Arbitrary Weight Functions.
Configuration: α ≥ 1, c ≥ 1, ζ > 1 and 0 < δ < 1
Input: A universe U , weight function w : U → N

1: Define γ := 1 + δ
2 > 1. For i ≥ 0 let

Ui := {u ∈ U | γi ≤ w(u) < γi+1} (9)

and ni := |Ui|. Let I := {i ∈ Z≥0 | Ui ≠ ∅} denote the set of indices i ≥ 0 for which Ui is
non-empty. Note that |I| ≤ n.

2: For each i ∈ I construct an
(

α, ζ
)

-extension family Ei of the universe Ui and the uniform
weight function using Lemma 20 with respect to α, c and ζ.

3: Define d := ⌈(2/δ) · log(2n/δ)⌉ and for each k ∈ I, let Ik := {i ∈ I | k − d ≤ i ≤ k} denote
the indices in I between k − d and k.

4: For every k ∈ I, let rk := |Ik| and define

Wk :=
⋃

i∈I : 1≤i<k−d

Ui and

Qk :=

{(
Wk ∪ E1 ∪ . . . ∪ Erk , ℓ1 + . . . + ℓrk

) ∣∣∣∣∣ ((E1, ℓ1) , . . . , (Erk , ℓrk)
)

∈
∏
i∈Ik

Ei

}
.

5: Return the set E :=
⋃

k∈I Qk.

Finally, the running time of the algorithm is also bounded by(
amls(α, c, ζ ′)

)n+o(n)
= O

(
(amls(α, c, β) + ε)n

)
which proves the lemma. ◀

6 Discussion

In this paper, we study weighted monotone subset minimization problems, where given a
universe U with n elements and a weight function w : U → N, the goal is to find a subset
S ⊆ U which satisfies a certain fixed property and has a minimum weight. For such problems,
we show that the Approximate Monotone Local Search framework of Esmer et al. [12] can
be extended to the weighted setting. In particular, given a parameterized α-approximate
extension algorithm, that runs in time ck · nO(1) and outputs a solution whose weight is
at most β · w(OPT) where OPT is a solution of size at most k and minimum weight, one
can design an exponential β-approximation algorithm that runs faster than the proposed
(natural) brute-force algorithm.

Note that for most of our applications, the parameterized approximation algorithms that
are available in the literature [1,14,18,21] provide bi-objective guarantees which are stronger
than the requirements from the α-approximate extension algorithm. In particular, these
algorithms run in time ck · nO(1) and output a solution of size at most γ · k and weight
at most β · W , if a solution of size at most k and weight at most W exists. That is, they
(approximately) optimize the size and weight of the output solution simultaneously.

This leads to the following natural question. Consider more restrictive weighted monotone
subset minimization problems where given a universe U on n vertices, a weight function w
on the elements of the universe, the goal is to find a subset of the universe of size at most k

B. C. Esmer, A. Kulik, D. Marx, D. Neuen, and R. Sharma 17:17

that minimizes the weight and satisfies a certain fixed property. What is the analogue of
brute-force in this setting? Can bi-objective parameterized approximation algorithms for
weighted monotone subset minimization problems be used to design faster (than brute force)
exponential approximation algorithms in this restrictive setting? What happens if we extend
this setting to a bi-criteria optimization setting?

References
1 Akanksha Agrawal, Sudeshna Kolay, Daniel Lokshtanov, and Saket Saurabh. A faster FPT

algorithm and a smaller kernel for block graph vertex deletion. In Evangelos Kranakis,
Gonzalo Navarro, and Edgar Chávez, editors, LATIN 2016: Theoretical Informatics - 12th
Latin American Symposium, Ensenada, Mexico, April 11-15, 2016, Proceedings, volume
9644 of Lecture Notes in Computer Science, pages 1–13. Springer, 2016. doi:10.1007/
978-3-662-49529-2_1.

2 Sanjeev Arora, Boaz Barak, and David Steurer. Subexponential algorithms for unique games
and related problems. J. ACM, 62(5):42:1–42:25, 2015. doi:10.1145/2775105.

3 Vineet Bafna, Piotr Berman, and Toshihiro Fujito. A 2-approximation algorithm for the
undirected feedback vertex set problem. SIAM J. Discret. Math., 12(3):289–297, 1999. doi:
10.1137/S0895480196305124.

4 Nikhil Bansal, Parinya Chalermsook, Bundit Laekhanukit, Danupon Nanongkai, and Jesper
Nederlof. New tools and connections for exponential-time approximation. Algorithmica,
81(10):3993–4009, 2019. doi:10.1007/s00453-018-0512-8.

5 Reuven Bar-Yehuda and Shimon Even. A linear-time approximation algorithm for the weighted
vertex cover problem. J. Algorithms, 2(2):198–203, 1981. doi:10.1016/0196-6774(81)
90020-1.

6 Nicolas Bourgeois, Bruno Escoffier, and Vangelis Th. Paschos. Approximation of max inde-
pendent set, min vertex cover and related problems by moderately exponential algorithms.
Discret. Appl. Math., 159(17):1954–1970, 2011. doi:10.1016/j.dam.2011.07.009.

7 Nader H. Bshouty and Lynn Burroughs. Massaging a linear programming solution to give a
2-approximation for a generalization of the vertex cover problem. In Michel Morvan, Christoph
Meinel, and Daniel Krob, editors, STACS 98, 15th Annual Symposium on Theoretical Aspects
of Computer Science, Paris, France, February 25-27, 1998, Proceedings, volume 1373 of Lecture
Notes in Computer Science, pages 298–308. Springer, 1998. doi:10.1007/BFb0028569.

8 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

9 Marek Cygan, Lukasz Kowalik, and Mateusz Wykurz. Exponential-time approximation of
weighted set cover. Inf. Process. Lett., 109(16):957–961, 2009. doi:10.1016/j.ipl.2009.05.
003.

10 Bruno Escoffier, Vangelis Th. Paschos, and Emeric Tourniaire. Super-polynomial approximation
branching algorithms. RAIRO Oper. Res., 50(4-5):979–994, 2016. doi:10.1051/ro/2015060.

11 Barış Can Esmer, Ariel Kulik, Dániel Marx, Daniel Neuen, and Roohani Sharma. Faster
exponential-time approximation algorithms using approximate monotone local search. In Shiri
Chechik, Gonzalo Navarro, Eva Rotenberg, and Grzegorz Herman, editors, 30th Annual Euro-
pean Symposium on Algorithms, ESA 2022, September 5-9, 2022, Berlin/Potsdam, Germany,
volume 244 of LIPIcs, pages 50:1–50:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2022. doi:10.4230/LIPIcs.ESA.2022.50.

12 Barış Can Esmer, Ariel Kulik, Dániel Marx, Daniel Neuen, and Roohani Sharma. Opti-
mally repurposing existing algorithms to obtain exponential-time approximations. CoRR,
abs/2306.15331, 2023. To be published at SODA 2024. arXiv:2306.15331, doi:10.48550/
arXiv.2306.15331.

IPEC 2023

https://doi.org/10.1007/978-3-662-49529-2_1
https://doi.org/10.1007/978-3-662-49529-2_1
https://doi.org/10.1145/2775105
https://doi.org/10.1137/S0895480196305124
https://doi.org/10.1137/S0895480196305124
https://doi.org/10.1007/s00453-018-0512-8
https://doi.org/10.1016/0196-6774(81)90020-1
https://doi.org/10.1016/0196-6774(81)90020-1
https://doi.org/10.1016/j.dam.2011.07.009
https://doi.org/10.1007/BFb0028569
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1016/j.ipl.2009.05.003
https://doi.org/10.1016/j.ipl.2009.05.003
https://doi.org/10.1051/ro/2015060
https://doi.org/10.4230/LIPIcs.ESA.2022.50
https://arxiv.org/abs/2306.15331
https://doi.org/10.48550/arXiv.2306.15331
https://doi.org/10.48550/arXiv.2306.15331

17:18 Approximate Monotone Local Search for Weighted Problems

13 Guy Even, Joseph Naor, and Leonid Zosin. An 8-approximation algorithm for the subset
feedback vertex set problem. SIAM J. Comput., 30(4):1231–1252, 2000. doi:10.1137/
S0097539798340047.

14 Fedor V. Fomin, Serge Gaspers, Dieter Kratsch, Mathieu Liedloff, and Saket Saurabh. Iterative
compression and exact algorithms. Theor. Comput. Sci., 411(7-9):1045–1053, 2010. doi:
10.1016/j.tcs.2009.11.012.

15 Fedor V. Fomin, Serge Gaspers, Daniel Lokshtanov, and Saket Saurabh. Exact algorithms via
monotone local search. J. ACM, 66(2):8:1–8:23, 2019. doi:10.1145/3284176.

16 Fedor V. Fomin and Dieter Kratsch. Exact Exponential Algorithms. Texts in Theoretical
Computer Science. An EATCS Series. Springer, 2010. doi:10.1007/978-3-642-16533-7.

17 Ariel Kulik and Hadas Shachnai. Analysis of two-variable recurrence relations with application
to parameterized approximations. In Sandy Irani, editor, 61st IEEE Annual Symposium on
Foundations of Computer Science, FOCS 2020, Durham, NC, USA, November 16-19, 2020,
pages 762–773. IEEE, 2020. doi:10.1109/FOCS46700.2020.00076.

18 Daniel Lokshtanov, Pranabendu Misra, M. S. Ramanujan, Saket Saurabh, and Meirav Zehavi.
FPT-approximation for FPT problems. In Dániel Marx, editor, Proceedings of the 2021
ACM-SIAM Symposium on Discrete Algorithms, SODA 2021, Virtual Conference, January 10
- 13, 2021, pages 199–218. SIAM, 2021. doi:10.1137/1.9781611976465.14.

19 Pasin Manurangsi and Luca Trevisan. Mildly exponential time approximation algorithms for
vertex cover, balanced separator and uniform sparsest cut. In Eric Blais, Klaus Jansen, José
D. P. Rolim, and David Steurer, editors, Approximation, Randomization, and Combinatorial
Optimization. Algorithms and Techniques, APPROX/RANDOM 2018, August 20-22, 2018
- Princeton, NJ, USA, volume 116 of LIPIcs, pages 20:1–20:17. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2018. doi:10.4230/LIPIcs.APPROX-RANDOM.2018.20.

20 Rolf Niedermeier and Peter Rossmanith. On efficient fixed-parameter algorithms for weighted
vertex cover. J. Algorithms, 47(2):63–77, 2003. doi:10.1016/S0196-6774(03)00005-1.

21 Hadas Shachnai and Meirav Zehavi. A multivariate framework for weighted FPT algorithms.
J. Comput. Syst. Sci., 89:157–189, 2017. doi:10.1016/j.jcss.2017.05.003.

22 Magnus Wahlström. A tighter bound for counting max-weight solutions to 2sat instances. In
Martin Grohe and Rolf Niedermeier, editors, Parameterized and Exact Computation, Third
International Workshop, IWPEC 2008, Victoria, Canada, May 14-16, 2008. Proceedings,
volume 5018 of Lecture Notes in Computer Science, pages 202–213. Springer, 2008. doi:
10.1007/978-3-540-79723-4_19.

A Missing Proofs from Section 5

The proof of Lemma 21 contains repeated arguments from the proof of Lemma 12. To
enhance the overall readability and reduce the notational burden, we keep the common
arguments in both proofs. Finally, we need the following technical lemma whose proof is
given in the full version of the paper.

▶ Lemma 23. Let g, d : N → N be two functions such that g ∈ n + o(n) and d ∈ o(n).
We define f : N → N via

f(n) = max
n=n1+···+nd(n)

d(n)∑
i=1

g(ni).

Then f ∈ n + o(n).

Proof of Lemma 21. We claim that Algorithm 1 satisfies the conditions stated in the lemma.

▷ Claim 24. The set E returned by Algorithm 1 is an
(
α, (1 + δ) · ζ

)
-extension family of U

and w.

https://doi.org/10.1137/S0097539798340047
https://doi.org/10.1137/S0097539798340047
https://doi.org/10.1016/j.tcs.2009.11.012
https://doi.org/10.1016/j.tcs.2009.11.012
https://doi.org/10.1145/3284176
https://doi.org/10.1007/978-3-642-16533-7
https://doi.org/10.1109/FOCS46700.2020.00076
https://doi.org/10.1137/1.9781611976465.14
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2018.20
https://doi.org/10.1016/S0196-6774(03)00005-1
https://doi.org/10.1016/j.jcss.2017.05.003
https://doi.org/10.1007/978-3-540-79723-4_19
https://doi.org/10.1007/978-3-540-79723-4_19

B. C. Esmer, A. Kulik, D. Marx, D. Neuen, and R. Sharma 17:19

Proof. Let S ⊆ U be a set. We argue that there exists (T, ℓ) ∈ E such that S, T and ℓ satisfy
(8). By the definition of γ and d, it holds that

γd ≥
(

1 + δ

2

)(2/δ)·log(2n/δ)
≥ 2log(2n/δ) = 2n

δ
(10)

using that (1 + 1
x)x ≥ 2 for all x ≥ 1. Let k ∈ I be the largest index such that S ∩ Uk ≠ ∅.

It holds that

w(Wk) < n · γk−d ≤ δ

2 · γk ≤ δ

2 · w(S) (11)

where the first inequality follows from the fact that |Wk| ≤ n and each u ∈ Wk belongs to
a set Ui where i ≤ k − d − 1 and therefore w(u) < γk−d−1+1 = γk−d by (9). The second
inequality follows from (10) and finally the last inequality holds because by the definition of
k, there exists u ∈ S ∩ Uk such that w(S) ≥ w(u) ≥ γk by (9).

For i ∈ Ik let Si := S ∩ Ui. Since Ei is an (α, ζ)-extension family of Ui and the uniform
weight function, for each i ∈ Ik there exists (Ti, ℓi) ∈ Ei such that

|Si \ Ti| ≤ ℓi

|Ti| + α · |Si \ Ti| ≤ ζ · |Si|. (12)

Let T :=
⋃

i∈Ik
Ti and define

T := Wk ∪ T

ℓ :=
∑
i∈Ik

ℓi.

By definition of Qk in Algorithm 1 it holds that (T, ℓ) ∈ Qk ⊆ E . Observe that

S \ T = (S \ T) ∩ U

= (S \ T) ∩

(
Wk ∪

(⋃
i∈Ik

Ui

))

=
(

(S \ T) ∩ Wk

)
∪

(
(S \ T) ∩

(⋃
i∈Ik

Ui

))

= (S \ T) ∩
(⋃

i∈Ik

Ui

)
=
⋃

i∈Ik

(Ui ∩ (S \ T))

=
⋃

i∈Ik

Si \ Ti (13)

where the second equality follows from S ⊆
⋃

1≤i≤k Ui = Wk ∪
(⋃

k−d≤i≤k Ui

)
and the fourth

inequality holds because Wk ⊆ T which further implies (S \ T) ∩ Wk = ∅. Therefore it holds
that

|S \ T | =

∣∣∣∣∣ ⋃
i∈Ik

Si \ Ti

∣∣∣∣∣ ≤
∑
i∈Ik

|Si \ Ti| ≤
∑
i∈Ik

ℓi = ℓ.

where the second inequality follows from (12).

IPEC 2023

17:20 Approximate Monotone Local Search for Weighted Problems

For all i ∈ Ik we also have that

w(Ti) + α · w(Si \ Ti) ≤ |Ti| · γi+1 + α · γi+1 · |Si \ Ti|
≤ γi+1 · (|Ti| + α · |Si \ Ti|)
≤ γi+1 · ζ · |Si|
≤ ζ · γ · w(Si) (14)

where the third inequality follows from (12). Therefore we have that

w(T) + α · w(S \ T) = w(Wk) + w
(⋃

i∈Ik

Ti

)
+ α · w (S \ T)

≤ w(Wk) +
∑
i∈Ik

(
w(Ti) + α · w(Si \ Ti)

)
by (13)

<
δ

2 · w(S) +
∑
i∈Ik

(
w(Ti) + α · w(Si \ Ti)

)
by (11)

≤ δ

2 · w(S) +
∑
i∈Ik

ζ · γ · w(Si) by (14)

< ζ · δ

2 · w(S) +
∑
i∈Ik

ζ · γ · w(Si) since ζ > 1

≤ ζ · δ

2 · w(S) + ζ · γ · w(S)

≤ (1 + δ) · ζ · w(S)

which proves the claim. ◁

▷ Claim 25.

costc(E) ≤
(

amls(α, c, ζ)
)n+o(n)

.

Proof. By Lemma 20, for each i ∈ I it holds that

costc(Ei) ≤
(

amls(α, c, ζ)
)ni+o(ni)

. (15)

For i ∈ Z≥0 \I we define Ei = {(∅, 0)}. By doing so, we can make the assumption, without
loss of generality, that Ei is nonempty for all i ∈ Z≥0. Note that this assumption does not
have any effect on the value of costc and it simplifies the following analysis. Also let E
denote the Cartesian product of Ek−d up to Ek, i.e., E :=

∏
i∈{k−d,...,k} Ei.

With this assumption, for all k ∈ I, we have

costc(Qk) =
∑(

(Ek−d,ℓk−d),...,(Ek−1,ℓk−1),(Ek,ℓk)
)

∈E

cℓk−d+...+ℓk−1+ℓk

=
∑(

(Ek−d,ℓk−d),...,(Ek−1,ℓk−1),(Ek,ℓk)
)

∈E

cℓk−d · . . . · cℓk−1 · cℓk

=
k∏

j=k−d

∑
(E,ℓ)∈Ej

cℓ

B. C. Esmer, A. Kulik, D. Marx, D. Neuen, and R. Sharma 17:21

=
k∏

j=k−d

costc(Ej)

=
∏

j∈Ik

costc(Ej)

By (15) we obtain

costc(Qk) =
∏
i∈Ik

costc (Ei)

≤
∏
i∈Ik

(
amls(α, c, ζ)

)ni+o(ni)

=
(

amls(α, c, ζ)
)n+o(n)

where the last step follows from Lemma 23.
Finally, it holds that

costc(E) = costc

(⋃
k∈I

Qk

)
≤
∑
k∈I

costc (Qk) =
(

amls(α, c, ζ)
)n+o(n)

since |I| ≤ n. ◁

▷ Claim 26. The running time of Algorithm 1 is
(

amls(α, c, ζ)
)n+o(n)

.

Proof. The construction of {Ei}i∈I takes time∑
i∈I

(
amls(α, c, ζ)

)ni+o(ni)
≤
(

amls(α, c, ζ)
)n+o(n)

by Lemma 20.
Finally, the construction of each Qk takes time proportional to its size, which is upper

bounded by costc(Qk). Then, the construction of E takes at most time O(costc(E)), where
we have

costc(E) ≤
(

amls(α, c, ζ)
)n+o(n)

by Claim 25. All in all, the running time of Algorithm 1 is upper bounded by(
amls(α, c, ζ)

)n+o(n)
. ◁

The lemma follows from Claims 24–26. ◀

B Problem Definitions

In this section, we give the problem definitions of all the problems discussed in the paper. For
simplicity, we define the problems in their unweighted version. In the weighted version, the
vertices are equipped with weights and we are looking for a solution S of minimum weight.

Vertex Cover (VC)
Input: An undirected graph G.
Question: Find a minimum set S of vertices of G such that G − S has no edges.

IPEC 2023

17:22 Approximate Monotone Local Search for Weighted Problems

Partial Vertex Cover (PVC)
Input: An undirected graph G and an integer t ≥ 0.
Question: Find a minimum set S of vertices of G such that G−S has at most |E(G)|− t

many edges.

d-Hitting Set (d-HS)
Input: A universe U and set family F ⊆

(
U

≤d

)
.

Question: Find a minimum set S ⊆ U such that for each F ∈ F , S ∩ F ̸= ∅.

Feedback Vertex Set (FVS)
Input: An undirected graph G.
Question: Find a minimum set S of vertices of G such that G − S is an acyclic graph.

Subset Feedback Vertex Set (Subset FVS)
Input: An undirected graph G and a set T ⊆ V (G).
Question: Find a minimum set S of vertices of G such that G − S has no cycle that
contains at least one vertex of T .

Tournament Feedback Vertex Set (TFVS)
Input: A tournament graph G.
Question: Find a minimum set S of vertices of G such that G − S is an acyclic
tournament.

Directed Feedback Vertex Set (DFVS)
Input: A directed graph G.
Question: Find a minimum set S of vertices of G such that G − S is a directed acyclic
graph.

Directed Subset Feedback Vertex Set (Subset DFVS)
Input: A directed graph G and a set T ⊆ V (G).
Question: Find a minimum set S of vertices of G such that G − S has no directed cycle
that contains at least one vertex of T .

Directed Odd Cycle Transversal (DOCT)
Input: A directed graph G.
Question: Find a minimum set S of vertices of G such that G − S has no directed cycle
of odd length.

Multicut
Input: An undirected graph G and a set P ⊆ V (G) × V (G).
Question: Find a minimum set S of vertices of G such that G − S has no path from u

to v for any (u, v) ∈ P

For the next problems, we require some additional definitions. A graph G is cluster graph
if every connected component of G is a complete graph. A cograph is a graph G which does
not contain P4 (a path on 4 vertices) is an induced subgraph. Finally, a graph G is a split
graph if the vertex set can be partitioned into two sets V (G) = I ⊎ C such that I is an
independent set and C is a clique in G.

B. C. Esmer, A. Kulik, D. Marx, D. Neuen, and R. Sharma 17:23

Cluster Graph Vertex Deletion
Input: An undirected graph G.
Question: Find a minimum set S of vertices of G such that G − S is a cluster graph.

Cograph Vertex Deletion
Input: An undirected graph G.
Question: Find a minimum set S of vertices of G such that G − S is a cograph.

Split Vertex Deletion
Input: An undirected graph G.
Question: Find a minimum set S of vertices of G such that G − S is a split graph.

IPEC 2023

Consistency Checking Problems: A Gateway to
Parameterized Sample Complexity
Robert Ganian # Ñ

Technische Universität Wien, Austria

Liana Khazaliya # Ñ

Technische Universität Wien, Austria

Kirill Simonov # Ñ

Hasso Plattner Institute, Universität Potsdam, Germany

Abstract
Recently, Brand, Ganian and Simonov introduced a parameterized refinement of the classical
PAC-learning sample complexity framework. A crucial outcome of their investigation is that for a
very wide range of learning problems, there is a direct and provable correspondence between fixed-
parameter PAC-learnability (in the sample complexity setting) and the fixed-parameter tractability of
a corresponding “consistency checking” search problem (in the setting of computational complexity).
The latter can be seen as generalizations of classical search problems where instead of receiving a
single instance, one receives multiple yes- and no-examples and is tasked with finding a solution
which is consistent with the provided examples.

Apart from a few initial results, consistency checking problems are almost entirely unexplored from
a parameterized complexity perspective. In this article, we provide an overview of these problems
and their connection to parameterized sample complexity, with the primary aim of facilitating
further research in this direction. Afterwards, we establish the fixed-parameter (in)-tractability for
some of the arguably most natural consistency checking problems on graphs, and show that their
complexity-theoretic behavior is surprisingly very different from that of classical decision problems.
Our new results cover consistency checking variants of problems as diverse as (k-)Path, Matching,
2-Coloring, Independent Set and Dominating Set, among others.

2012 ACM Subject Classification Theory of computation → Parameterized complexity and exact
algorithms

Keywords and phrases consistency checking, sample complexity, fixed-parameter tractability

Digital Object Identifier 10.4230/LIPIcs.IPEC.2023.18

Related Version Full Version: https://arxiv.org/abs/2308.11416

Funding Robert Ganian: Austrian Science Fund (FWF) [Y1329].
Liana Khazaliya: Vienna Science and Technology Fund (WWTF) [10.47379/ICT22029]; Austrian Sci-
ence Fund (FWF) [Y1329]; European Union’s Horizon 2020 COFUND programme [LogiCS@TUWien,
grant agreement No. 101034440].
Kirill Simonov: DFG Research Group ADYN via grant DFG 411362735.

1 Introduction

While the notion of time complexity is universally applicable and well studied across the
whole spectrum of theoretical computer science, on its own it cannot capture the performance
of the kinds of algorithms typically studied in the context of machine learning: learning
algorithms. That is the domain of sample complexity, and here we will focus on the notion
of (efficient) PAC learning [19, 13] – arguably the most classical, fundamental and widely
known sample complexity framework. An important trait of PAC learning is that while it

© Robert Ganian, Liana Khazaliya, and Kirill Simonov;
licensed under Creative Commons License CC-BY 4.0

18th International Symposium on Parameterized and Exact Computation (IPEC 2023).
Editors: Neeldhara Misra and Magnus Wahlström; Article No. 18; pp. 18:1–18:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:rganian@gmail.com
https://www.ac.tuwien.ac.at/people/rganian/
https://orcid.org/0000-0002-7762-8045
mailto:lkhazaliya@ac.tuwien.ac.at
https://www.ac.tuwien.ac.at/people/lkhazaliya/
https://orcid.org/0009-0002-3012-7240
mailto:kirillsimonov@gmail.com
https://hpi.de/friedrich/people/kirill-simonov.html
https://orcid.org/0000-0001-9436-7310
https://doi.org/10.4230/LIPIcs.IPEC.2023.18
https://arxiv.org/abs/2308.11416
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

18:2 Consistency Checking Problems: A Gateway to Parameterized Sample Complexity

is built on different principles than time complexity, the two frameworks are connected in
a way which allows us to translate intractability and tractability results from one domain
to another. It is precisely this connection that gave rise to famous lower bounds in the
PAC learning setting, such as the inability to efficiently and properly learn 3-term DNF and
3-clause CNF formulas [17, 2] under the assumption that P ̸= NP, and consistency checking
problems form the pillar of this connection.

Given the success of parameterized complexity as a concept generalizing classical time
complexity analysis, it would seem natural to ask whether its principles can also be used to
obtain a deeper understanding of efficient PAC-learnability. Brand, Ganian and Simonov [6]
very recently introduced the foundations for a parameterized theory of PAC learning, which
crucially also includes a bridge to parameterized complexity theory in the usual time
complexity setting. The primary goal of this article is to show how the parameterized
complexity paradigm can be used to draw new boundaries of tractability in the PAC learning
domain, and to provide the parameterized algorithms community with an understanding
of the parameterized consistency checking problems which allow us to travel between the
sample and time complexity settings in the parameterized regime. We showcase the tools
that can be used to deal with parameterized consistency checking problems and the obstacles
that await there in the domain of graph problems, where we obtain new algorithmic upper
and lower bounds for consistency checking variants of multiple natural problems on graphs.

A Gentle Introduction to PAC Learning. It will be useful to set the stage with a high-level
and informal example of the setting in which PAC learning operates1. Let us imagine we
would like to “learn” a way of labeling points in a plane as either “good” or “bad”, knowing
that the good points are precisely those contained in some unknown axis-parallel rectangle
R in the plane. A learning algorithm in the PAC regime would be allowed to ask for a
set of correctly labeled sample points, each of which would be drawn from some unknown
distribution D, and would attempt to use these to “learn” R (so that it can use it to label any
point that it looks at, even those which were not given as samples). This mental experiment
is useful since it immediately clarifies that

there is some probability that a PAC learning algorithm completely fails, since the samples
we receive could be non-representative (for instance, there is a non-zero probability that
even if D is uniform and R is small, the sample points could all be drawn from inside R),
and
even if a PAC learning algorithm intuitively “works correctly”, it is essentially guaranteed
that it will not classify some samples (i.e., the sample points) correctly (for instance,
there could be points that lie close to the exact boundary of R which are unlikely to be
drawn as samples based on D, making it impossible to obtain the exact position of R).

Given these natural limitations, we can informally explain what it means for a learning
problem to be efficiently PAC-learnable: it admits an algorithm which
1. takes as input a sample size n, a confidence measure δ and an accuracy measure ε,
2. runs in time (n + 1

δ + 1
ε)O(1) and asks for (n + 1

δ + 1
ε)O(1) samples, and then

3. outputs something which will, with probability at least 1 − δ, “work correctly” in almost
all cases (measured by ε).

It needs to be clarified that beyond the study of efficient PAC learnability, a substantial
amount of fundamental work in the PAC learning direction has also been carried out on
whether a problem is PAC learnable at all [4, 12, 1], on the distinction between so-called

1 Formal definitions are provided in Section 2.

R. Ganian, L. Khazaliya, and K. Simonov 18:3

proper and improper learning [13, 5], and on many other aspects and considerations that lie
outside of the scope of this paper. Here, our focus lies on how the gap between efficient and
“non-efficient” PAC-learnability of learning problems can be bridged by the parameterized
PAC learning framework of Brand, Ganian and Simonov [6], and the associated study of
consistency checking problems.

To illustrate how parameterized complexity can be used here, let us turn to a different
example of a simple learning problem that is based on the idea of representing cyber-attacks
as graphs proposed, e.g., by Sheyner and Wing [18, 21]. Assume we have a network consisting
of n nodes which is protected by k hidden defense nodes. A cyberattack on this network can
be represented as a set of edges over the n nodes, and is evaluated as successful if and only if
an edge in that attack is not incident to any defense node (i.e., an attack fails if and only
if the defense nodes form a vertex cover of the attack edges). Individual samples represent
attacks made on the network, and the learning task is to identify all the defense nodes. This
problem corresponds to Vertex Cover Learning [8], which Brand, Ganian and Simonov
showed to admit a PAC learning algorithm which requires polynomially many samples but
time 2k · (n + 1

δ + 1
ε)O(1) where k is the size of the sought-after vertex cover [6]. This is a

prototypical representative of the class FPT-PACtime. We remark that in the context of PAC
learning, one explicitly distinguishes between the time required by the learning algorithm and
the number of samples it uses, as the latter may in some contexts be much more difficult to
obtain. A picture of the parameterized complexity landscape above efficient PAC learnability
is provided later together with the formal definitions (see Figure 1).

Crucially, whenever we are dealing with a learning problem Plearn where the size of the
hypothesis space (i.e., the number of “possible outputs”) is upper-bounded by a certain
function (see Theorem 11), the parameterized sample complexity of Plearn can be directly
and formally linked to the parameterized time complexity of the consistency checking variant
Pcons of the same problem [6], where the task is to compute a “solution” (a hypothesis)
which is consistent with a provided set of positive and negative examples. This motivates
the systematic study of parameterized consistency checking problems, an area which has
up to now remained almost entirely unexplored from the perspective of fixed-parameter
(in-)tractability.

The Parameterized Complexity of Consistency Checking on Graphs. A few initial examples
of parameterized consistency checking problems have been solved by the theory-building
work of Brand, Ganian and Simonov [6]; in particular, they showed that consistency checking
for vertex-deletion problems where the base class H can be characterized by a finite set of
forbidden induced subgraphs is fixed-parameter tractable (which implies the aforementioned
fact that Vertex Cover Learning is in FPT-PACtime), but no analogous result can be
obtained for all classes H characterized by a finite set of forbidden minors unless FPT ̸= W[1].

In this article, we expand on these results by establishing the fixed-parameter (in-)
tractability of consistency checking for several other classical graph problems whose decision
versions are well-known to the parameterized complexity community. The aim here is to
showcase how parameterized upper- and lower-bound techniques fare when dealing with
these new kinds of problems.

It is important to note that the tractability of consistency checking requires the tractability
of the corresponding decision/search problem (as the latter can be seen as a special case of
consistency checking), but the former can be much more algorithmically challenging than the
latter: many trivial decision problems become computationally intractable in the consistency
checking regime. We begin by illustrating this behavior on the classical 2-Coloring problem,

IPEC 2023

18:4 Consistency Checking Problems: A Gateway to Parameterized Sample Complexity

i.e., the task of partitioning the vertices of the graph into two independent sets. We show
that while consistency checking for 2-Coloring is intractable (and hence a 2-coloring is
not efficiently PAC-learnable), consistency checking for Split Graph, i.e., the task of
partitioning the vertices into an independent set and a clique, is polynomial-time tractable.

Moving on to parameterized problems, we begin by considering three classical edge search
problems, notably Matching, (k-)Path and Edge Clique Cover. In the classical decision
or search settings, the first problem is polynomial-time solvable while the latter two admit
well-known fixed-parameter algorithms. Interestingly, we show that consistency checking for
the former two problems is W[2]-hard2, but is fixed-parameter tractable for the third, i.e.,
Edge Clique Cover.

Next, we turn our attention to the behavior of two classical vertex search problems,
specifically Independent Set and Dominating Set. While both problems are fixed-
parameter intractable already in the classical search regime, here we examine their behavior
on bounded-degree graphs (where they are well-known to be fixed-parameter tractable).
Again, the consistency checking variants of these problems on bounded-degree graphs exhibit
a surprising complexity-theoretic behavior: Dominating Set is FPT, but Independent
Set is W[2]-hard even on bounded-degree graphs.

As the final contribution of the paper, we show that most of the aforementioned consistency
checking lower bounds can be overcome if one additionally parameterizes by the number of
negative samples. In particular, we obtain fixed-parameter consistency checking algorithms
for 2-Coloring, Matching and (k-)Path when we additionally assume that the number of
negative samples is upper-bounded by the parameter. On the other hand, Independent Set
remains fixed-parameter intractable (at least W[1]-hard) even under this additional restriction.
As our final result, we show that Independent Set becomes fixed-parameter tractable
if we instead consider the total number of samples (i.e., both positive and negative) as an
additional parameter. The proofs of these results are more involved than those mentioned
in the previous paragraphs and rely on auxiliary graph constructions in combination with
color coding. We remark that the parameterization by the number of negative samples in
the consistency checking regime could be translated into a corresponding parameterization
of the distribution in the PAC learning framework. A summary of our individual results for
consistency checking problems is provided in Table 1.

Related Work. The connection between parameterized learning problems and parameterized
consistency checking was also hinted at in previous works that studied the (parameterized)
sample complexity of learning juntas [3] or learning first-order logic [20]. Moreover, the
problem of computing optimal decision trees, which has received a significant amount of
recent attention [16, 10], can also be seen as a consistency checking problem where the
sought-after solution is a decision tree.

For space reasons, results marked with a “⋆” are proved in the Full Version3.

2 Preliminaries

We assume familiarity with basic graph terminology [9] and parameterized complexity
theory [7]. We use [t] to denote the set {1, . . . , t}. For brevity, we will denote sets of tuples of
the form {(α1, β1), . . . , (αt, βt)} as (αi, βi)i∈[t], and the set of two-element subsets of a set Z

2 More precisely, a fixed-parameter algorithm for either of these problems would imply FPT=W[1] (see
Section 4).

3 https://arxiv.org/abs/2308.11416

https://arxiv.org/abs/2308.11416

R. Ganian, L. Khazaliya, and K. Simonov 18:5

Table 1 An overview of the concrete results obtained for consistency checking problems in this
article, where the columns provide a comparison between the complexity of the decision/search
variant, the consistency checking variant, and the consistency checking variant where the number
of negative samples is taken as an additional parameter. Problems marked with “[degree]” are
considered over bounded-degree input graphs/samples, and the “⋆” marks that the problem becomes
fixed-parameter tractable when additionally parameterized by the total number of samples. The
lower bounds stated in the table are simplified; the precise formal statements are provided in the
appropriate theorems.

Problem Decision/Search Consistency Checking Consistency Checking[samples]
2-Coloring P NP-hard (Thm. 12) FPT (Thm. 16)
Split Graph P P (Thm. 14) —
Matching P W[2]-hard (Thm. 17) FPT (Thm. 20)
(k)-Path FPT W[2]-hard (Thm. 18) FPT (Thm. 20)
Edge Clique Cover FPT FPT (Thm. 19) —
Independent Set[degree] FPT W[2]-hard (Thm. 22) W[1]-hard⋆ (Thm. 24, 25)
Dominating Set[degree] FPT FPT (Thm. 23) —

as
(

Z
2
)
. As basic notation and terminology, we set {0, 1}∗ =

⋃
m∈N{0, 1}m. A distribution on

{0, 1}n is a mapping Dn : {0, 1}n → [0, 1] such that
∑

x∈{0,1}n Dn(x) = 1, and the support
of Dn is the set supp Dn = {x | Dn(x) > 0}.

2.1 Consistency Checking
While the original motivation for consistency checking problems originates from specific
applications in PAC learning, one can define a consistency checking version of an arbitrary
search problem.

In a search problem, we are given an instance I ∈ {0, 1}∗, and the task is to find a
solution S ∈ {0, 1}∗, where the solution is verified by a predicate ϕ(·, ·), so that ϕ(I, S) is
true if and only if S is a solution to I. Since our focus here will lie on problems which are in
NP, the predicate ϕ(·, ·) will in all cases be polynomial-time computable. In the context of
graph problems, I will typically be a graph (possibly with some auxiliary information such
as edge weights or the bound on solution size), and S could be a set of vertices, a set of
edges, a partitioning of the vertex set, etc. For example, in the search version of the Vertex
Cover problem the input is a graph G together with a bound k on the size of the target
vertex cover, potential solutions are subsets of V (G), and a subset S is a solution if and only
if the size of S is k and S covers all edges of the graph G. One can then write the verifying
predicate as

ϕ ((G, k), S) = (S ⊂ V (G)) ∧ (|S| = k) ∧ (∀{u, v} ∈ E(G), {u, v} ∩ S ̸= ∅).

For a search problem P , we define the corresponding consistency checking problem Pcons
as follows. Instead of receiving a single instance I ∈ {0, 1}∗ as input, we receive a set of
labeled samples I = {(I1, λ1), (I2, λ2), . . . , (It, λt)} where each Ii, i ∈ [t], is an element of
{0, 1}∗ and λi ∈ {0, 1}. The task is to compute a (consistent) solution S ⊂ {0, 1}∗ such that
ϕ(Ii, S) holds if and only if λi = 1, for each i ∈ [t], or to correctly determine that no such
solution exists.

IPEC 2023

18:6 Consistency Checking Problems: A Gateway to Parameterized Sample Complexity

In the example of Vertex Cover, for each i ∈ [t], the instance is the pair (Gi, ki), so
that the target solution has to be a vertex subset4 of V (Gi), of size ki, and it has to cover
all edges of Gi, for each i ∈ [t]. Since vertices in all Gi’s and S are implicitly associated
with their respective counterparts in the other graphs, we can instead treat the graphs Gi

as defined over the same vertex set. Also, for instances i ∈ [t] where λi = 1, if their values
of ki mismatch, then there is clearly no solution; and for those i ∈ [t] with λi = 0, if the
value ki does not match the respective value of a positive sample, then the condition for
λi is always satisfied. Therefore, we can equivalently reformulate the consistency checking
version of Vertex Cover as follows: Given the vertex set V , a number k, and a sequence
of labeled edge sets (E1, λ1), . . . , (Et, λt), over V , is there a subset S ⊂ V of size exactly k,
so that S covers all edges of Ei if and only if λi = 1, for each i ∈ [t]?

One can immediately observe that the polynomial-time tractability of a search problem is
a prerequisite for the polynomial-time tractability of the corresponding consistency checking
problem. At the same time, the exact definition of the search problem (and in particular
the solution S) can have a significant impact on the complexity of the consistency checking
problem. We remark that there are two possible ways one can parameterize a consistency
checking problem: one either uses the parameter to restrict the sought-after solution S, or
the input I. Each of these approaches can be tied to a parameterization of the corresponding
PAC learning problem (see Subsection 2.3).

Formally, we say that (Pcons, κ, λ) is a parameterized consistency checking problem, where
Pcons is a consistency checking problem, κ maps solutions S ∈ {0, 1}∗ to natural numbers,
and λ maps lists of labeled instances ((I1, λ1), . . . , (It, λt)), Ii ∈ {0, 1}∗, λi ∈ {0, 1}, to
natural numbers. The input is then a list of labeled instances L = ((I1, λ1), . . . , (It, λt))
together with parameters k, ℓ, such that ℓ = λ(L), and the task is to find a consistent solution
S with κ(S) = k. For example, k could be a size bound on the targeted solution, and ℓ could
be the maximum degree in any of the given graphs or the number of instances with λi = 0.

2.2 PAC-Learning
The remainder of this section is dedicated to a more formal introduction of the foundations
of parameterized PAC learning theory and its connection to parameterized consistency
checking problems. We note that while the content of the following subsections is important
to establish the implications and corollaries of the results obtained in the article, readers
who are interested solely in the obtained complexity-theoretic upper and lower bounds for
consistency checking problems can safely skip them and proceed directly to Section 3.

To make the connection between consistency checking problems and parameterized
sample complexity clear, we first recall the formalization of the classical theory of PAC
learning [19, 14].

▶ Definition 1. A concept is an arbitrary Boolean function c : {0, 1}n → {0, 1}. An
assignment x ∈ {0, 1}n is called a positive sample for c if c(x) = 1, and a negative sample
otherwise. A concept class C is a set of concepts. For every m ∈ N, we write Cm = C ∩ Bm,
where Bm is the set of all m-ary Boolean functions.

▶ Definition 2. Let C be a concept class. A surjective mapping ρ : {0, 1}∗ → C is called a
representation scheme of C.

We call each r with ρ(r) = c a representation of concept c.

4 The property of being a subset is given by the implicit encoding in {0, 1}∗, e.g., vertices in all V (Gi)
and S are indexed by integers, and is defined in the same way across all instances. We thus say that S
could be a subset of all V (Gi) even though, formally speaking, these are disjoint sets.

R. Ganian, L. Khazaliya, and K. Simonov 18:7

▶ Definition 3. A learning problem is a pair (C, ρ), where C is a concept class and ρ is a
representation scheme for C.

▶ Definition 4. A learning algorithm for a learning problem (C, ρ) is a randomized algorithm
such that:
1. It obtains the values n, ε, δ as inputs, where n is an integer and 0 < ε, δ ≤ 1 are rational

numbers.
2. It has access to a hidden representation r∗ of some concept c∗ = ρ(r∗) and a hidden

distribution Dn on {0, 1}n through an oracle that returns labeled samples (x, c∗(x)), where
x ∈ {0, 1}n is drawn at random from Dn.

3. The output of the algorithm is a representation of some concept, called its hypothesis.

When dealing with individual instances of a learning problem, we will use s = |r∗| to
denote the size of the hidden representation.

▶ Definition 5. Let A be a learning algorithm. Fix a hidden hypothesis c∗ and a distribution
on {0, 1}n. Let h be a hypothesis output by A and c = ρ(h) be the concept h represents. We
define

errh = Px∼Dn(c(x) ̸= c∗(x))

as the probability of the hypothesis and the hidden concept disagreeing on a sample drawn
from Dn, the so-called generalization error of h under Dn.

The algorithm A is called probably approximately correct (PAC) if it outputs a hypothesis
h such that errh ≤ ε with probability at least 1 − δ.

Usually, learning problems in this framework are regarded as tractable if they are PAC-
learnable within polynomial time bounds. More precisely, we say that a learning problem L

is efficiently PAC-learnable if there is a PAC algorithm for L that runs in time polynomial
in n, s, 1/ε and 1/δ.

Consider now a classical search problem P and its consistency checking version Pcons. One
can naturally define the corresponding learning problem Plearn: For a solution S ∈ {0, 1}∗,
let ϕ(·, S) be a concept and S its representation; this describes the concept class and its
representation scheme. Going back to the Vertex Cover example, for each graph size N ,
the concepts are represented by subsets of [N] (encoded in binary). For a subset S ⊂ [N],
the respective concept cS is a binary function that, given the encoding of an instance E,
returns 1 if and only if S is a vertex cover of G = ([N], E) of size k, where [N] is treated as
the respective “ground” vertex set of size N . A PAC-learning algorithm for this problem is
thus given a vertex set V = [N], an integer k, and an oracle that will produce a sequence of
samples (E1, λ1), . . . , (Et, λt), where the instances Ei are drawn from a hidden distribution
D. With probability at least (1 − δ), the algorithm has to return a subset S ⊂ [N] that is
consistent with an instance sampled from D with probability at least (1 − ε). In fact, for
Vertex Cover and many other problems, it is sufficient to return a hypothesis that is
consistent only with the seen samples (Ei, λi), i ∈ [t]; this is formalized in the next subsection.

Naturally, we do not expect the learning version of Vertex Cover to be efficiently
PAC-learnable, as even finding a vertex cover of a certain size in a single instance is NP-hard.
This motivates the introduction of parameters into the framework, which is presented next.
We also recall the complexity reductions between (parameterized) consistency checking
problem and its respective (parameterized) learning problem, which in particular allows to
formally transfer the hardness results such as NP-hardness above.

IPEC 2023

18:8 Consistency Checking Problems: A Gateway to Parameterized Sample Complexity

Remark. A more general definition of learning problems is sometimes considered in the
literature, where the output of a learning algorithm need not necessarily be from the same
concept class C (e.g., it can be a sub- or a super-class of C). This is usually called improper
learning, as opposed to the classical setting of proper learning defined above and considered
in this article.

2.3 Parameterized PAC-Learning
We now define parameterized learning problems and recall the connection to the consistency
checking problems, as given by the framework of Brand, Ganian, and Simonov [6]. For
brevity, we omit some of the less important technical details; interested readers can find the
full technical exposition in the full description of the framework [6].

First we note that in parameterized PAC-learning, both the hidden concept and the hidden
distribution can be parameterized, which is formally represented in the next definitions. We
call a function κ from representations in {0, 1}∗ to natural numbers parameterization of
representations, and a function λ assigning a natural number to every distribution on {0, 1}n

for each n parameterization of distributions.

▶ Definition 6 (Parameterized Learning Problems). A parameterized learning problem is
a learning problem (C, ρ) together with a pair (κ, λ), called its parameters, where κ is a
parameterization of representations and λ is a parameterization of distributions.

▶ Definition 7 (Parameterized Learning Algorithm). A parameterized learning algorithm for
a parameterized learning problem (C, ρ, κ, λ) is a learning algorithm for (C, ρ) in the sense of
Definition 4. In addition to n, ε, δ, a parameterized learning algorithm obtains two inputs k

and ℓ, which are promised to satisfy k = κ(r∗) as well as ℓ = λ(Dn), and the algorithm is
required to always output a hypothesis h satisfying κ(h) ≤ k.

Let poly(·) denote the set of functions that can be bounded by non-decreasing
polynomial functions in their arguments. Furthermore, fpt(x1, . . . , xt; k1, . . . , kt) and
xp(x1, . . . , xt; k1, . . . , kt) denote those functions bounded by f(k1, . . . , kt) · p(x1, . . . , xt)
and p(x1, . . . , xt)f(k1,...,kt), respectively, for any non-decreasing computable function f in
k1, . . . , kt and p ∈ poly(x1, . . . , xt).

▶ Definition 8 ((T, S)-PAC Learnability). Let T (n, s, 1/ε, 1/δ, k, ℓ), S(n, s, 1/ε, 1/δ, k, ℓ) be
any two functions taking on integer values, and non-decreasing in all of their arguments.

A parameterized learning problem L = (C, ρ, {Rk}k∈N, λ) is (T, S)-PAC learnable if there
is a PAC learning algorithm for L that runs in time O(T (n, s, 1/ε, 1/δ, k, ℓ)) and queries the
oracle at most O(S(n, s, 1/ε, 1/δ, k, ℓ)) times.

We denote the set of parameterized learning problems that are (T, S)-PAC learnable
by PAC[T, S]. This is extended to sets of functions S, T through setting PAC[T, S] =⋃

S∈S,T ∈T PAC[T, S].

▶ Definition 9. Define the complexity classes as follows:

FPT-PACtime = PAC[fpt, poly],
FPT-PAC = PAC[fpt, fpt],

XP-PACtime = PAC[xp, poly],
XP-PAC = PAC[xp, xp],

where we fix
poly = poly(n, s, 1/ε, 1/δ, k, ℓ), fpt = fpt(n, s, 1/ε, 1/δ; k, ℓ), xp = xp(n, s, 1/ε, 1/δ; k, ℓ).

R. Ganian, L. Khazaliya, and K. Simonov 18:9

PAC

XP-PAC

XP-PACtime FPT-PAC
FPT-PACtime

efficient PAC

Figure 1 A schematic view of the parameterized learning classes defined in Definition 9.

There are examples of natural problems falling into each of these classes [6]. In addition
to the above, there is a fifth class that may be considered here: PAC[xp, fpt]. However, we are
not aware of any natural problems residing there that are not given by the “lower” classes.

Figure 1 provides an overview of these complexity classes and their relationships.

2.4 Consistency Checking for PAC-Learning

We now recall the results tying the complexity of (parameterized) PAC-learning to (paramet-
erized) consistency checking. We have already shown that a consistency checking problem can
be transformed into a learning problem, by viewing the hidden solution as the representation
of the hidden concept; the same operation can also be done the other way around. Moreover,
this transformation can be performed while respecting the parameters. Let Pcons be a
consistency checking problem, and let Plearn be the respective learning problem. Consider a
parameterized version (Pcons, κ + λ) of Pcons, where κ maps solutions S ∈ {0, 1}∗ to natural
numbers, and λ maps lists of labeled instances ((I1, λ1), . . . , (It, λt)), Ii ∈ {0, 1}∗, λi ∈ {0, 1},
to natural numbers. The parameterized learning problem is then (Plearn, κ, λ′), where κ is
given by the same function is the parameterization of representations, as representations of
concepts are exactly the solutions in the original search problem, and λ′(D) for a distribution
D is the maximum value of λ(L), where L is any set of labeled instances produced by
sampling from D.

It is well-known that, under the assumption that the hypothesis space is not too large,
there is an equivalence between a learning problem being PAC-learnable and the corresponding
consistency checking problem being solvable in randomized polynomial time [17]. Brand,
Ganian and Simonov proved a generalization of this equivalence in the parameterized sense [6],
which we recall next

▶ Theorem 10 (Corollary of Theorem 3.17 [6]). Let Pcons be a parameterized consistency
checking problem, and Plearn = (C, ρ, κ, λ) be its matching parameterized learning problem,
where λ depends only on the support of the distribution.

If Plearn is in FPT-PAC, then Pcons is in FPT.
Similarly, if Plearn is in XP-PAC, then Pcons is in XP.

▶ Theorem 11 (Corollary of Theorem 3.19 [6]). Let Pcons be a parameterized consistency
checking problem, and Plearn = (C, ρ, κ, λ) be its matching parameterized learning problem.
Denote the set of representations of concepts in C ∈ C of arity n with κ(C) = k by Hn,k.

If Pcons is in FPT and log |Hn,k| ∈ fpt(n; k), then L is in FPT-PACtime.
Similarly, if Pcons is in XP and log |Hn,k| ∈ xp(n; k), then L is in XP-PACtime.

IPEC 2023

18:10 Consistency Checking Problems: A Gateway to Parameterized Sample Complexity

t f

x1 x2 x3 xn

t f

x1 x2 x3 xn

t f

x1 x2 x3 xn

Figure 2 For the SAT instance φ = (x1 ∨ x2 ∨ x3 ∨ xn) ∧ (x1 ∨ x2 ∨ xn), n = 4 the correspondent
ConsCheck: 2-Coloring instance I = {V, {(E+, 1), (EC1 , 0), (EC2 , 0)}}, V = {t, f, x1, x2, x3, xn}.

The theorems above allow us to automatically transfer parameterized algorithmic upper
and lower bounds for the consistency checking into upper and lower bounds for parameterized
learning problems, respectively. If a parameterized consistency checking problem is efficiently
solvable by a parameterized algorithm, by Theorem 11 we get that the parameterized learning
problem is efficiently solvable. Note that in the problems considered in this paper the solution
is always a set of vertices/edges, or a partition into such sets, thus log |Hn,k| is always
polynomial.

On the other hand, Theorem 11 tells us that an efficient algorithm for a parameterized
learning problem implies an efficient algorithm for the corresponding paramerized consistency
checking problem. Turning this around, we see that lower bounds on consistency checking
imply lower bounds for learning. That is, if Pcons is W[1]-hard, then Plearn is not in
FPT-PACtime unless FPT = W[1].

3 Partitioning Problems: 2-Coloring and Split Graphs

We begin our investigation by using two basic vertex bipartition problems on graphs to
showcase some of the unexpected complexity-theoretic behavior of consistency checking
problems. Let us first consider 2-Coloring, i.e., the problem of partitioning the vertex
set into two independent sets. There are two natural ways one can formalize 2-Coloring
as a search problem: either one asks for a vertex set X such that both X and the set of
vertices outside of X are independent (i.e., they form a proper 2-coloring), or one asks for
two independent sets X, Y which form a bipartition of the vertex set. Here, we consider the
former variant since it has a slightly smaller hypothesis space5.

ConsCheck: 2-Coloring
Input: I = {V, (Ei, λi)i∈[t]} where for each i ∈ [t], Gi = (V, Ei) is a graph and λi ∈ {0, 1}.
Output: A set X ⊆ V such that for each i ∈ [t], (X, V \ X) forms
a proper 2-coloring of Gi if and only if λi = 1.

As our first result, we show that ConsCheck: 2-Coloring is NP-hard.

▶ Theorem 12. There is no polynomial-time algorithm that solves ConsCheck: 2-Coloring
unless P = NP.

Proof. We present a reduction that takes an n-variable instance φ of the Satisfability
problem (SAT) and constructs an instance I of ConsCheck: 2-Coloring which admits a
solution if and only if φ is satisfiable. Let C denote the set of clauses of φ.

5 In general, the precise definition of the sought-after object can be of great importance in the context
of consistency checking; this is related to the well-known fact that the selection of a hypothesis space
can have a fundamental impact on PAC learnability. However, in our case the proofs provided in this
section can also be used to obtain the same results for the latter variant.

R. Ganian, L. Khazaliya, and K. Simonov 18:11

Construction. First, we set the vertex set V in I to be {f, t, x1, x2, . . . , xn}. For each clause
C ∈ C, we construct an edge set EC as follows. For each i ∈ [n], if a true (false) assignment
of xi satisfies C, then we add the edge txi (fxi) to EC . For each such edge set EC , we set
λC = 0. Finally, we add to I a positive sample (E+, 1) such that E+ = {tf}. An illustration
is provided in Figure 2.

Correctness. Suppose, given an instance φ of SAT, that the reduction described above
returns I = {V, (Ei, λi)}i∈C∪{+} as an instance of ConsCheck: 2-Coloring.

Assume that φ admits a satisfying assignment A : {xi}i∈[n] → {True, False}. Consider
the colloring χ : V → {blue, red} such that χ(t) = red, χ(f) = blue, and for each i ∈ [n],
χ(xi) = red if and only if A(xi) = True.

First, the sample (E+, 1) of I is consistent with the coloring χ, since its only edge ft was
colored properly. Then, for each C ∈ C, the sample (EC , 0) must be consistent with χ, i.e.,
there exists at least one edge in EC with same colored endpoints. Indeed, there must exist a
variable xi is such that A(xi) satisfies φ.

Then, by the construction of I instance, if xi = True (xi = False) satisfies C then
txi ∈ EC (fxi ∈ EC) and hence both xi and t are red (both xi and f are blue) under the
constructed coloring χ.

For the other direction, suppose that there is a coloring χ : V → {blue, red} that is
consistent with the instance I of ConsCheck: 2-Coloring. Then χ(t) ̸= χ(f) due to the
construction of (E+, 1) ∈ I; without loss of generality, let χ(t) = red, χ(f) = blue. We
retrieve a variable assignment A for φ in the following way. Recall that for each C ∈ C, the
coloring χ is consistent with the sample (EC , 0). Since the edge ft has a proper coloring,
at least one vertex xi has an edge to either t or f such that both its endpoints are colored
the same way. If this edge is xif (xit), then let A(xi) = False (A(xi) = True). If this only
results in a partial assignment, we extend this to a complete assignment of all variables in φ

by assigning the remaining variables arbitrarily.
We conclude by arguing that the resulting assignment A has to satisfy φ. Let us consider

an arbitrary clause C ∈ C and an edge in the corresponding edge set EC with same colored
endpoints, w.l.o.g. xif . Then, by the way we defined the assignment, A(xi) = False. But
by our construction, the edge xif ∈ EC only if xi = False satisfies the clause C. Thus, the
clause C is satisfied by the assignment A. Following the same argument, each clause C ∈ C,
and accordingly the instance φ, is satisfied. ◀

It is worth noting that the graphs constructed by the reduction underlying Theorem 12
are very simple – in fact, even the graph induced by the union of all edges occurring in
the instances of ConsCheck: 2-Coloring produced by the reduction has a vertex cover
number of 2. This essentially rules out tractability via most standard structural graph
parameters. A similar observation can also be made for most other consistency checking
lower bounds obtained within this article.

As an immediate corollary of Theorem 12, we obtain that the corresponding learning
problem is not efficiently PAC-learnable [2]. To provide a concrete example of the formal
transition from consistency checking to the corresponding learning problem described in
Section 2.2, we state the problem: In 2-Coloring Learning, we are given (1) a set V of
vertices, a confidence measure δ and an accuracy measure ε, (2) have access to an oracle
that can be queried to return labeled samples of the form (E, λ) where E is an edge set over
V and λ ∈ {0, 1} according to some hidden distribution, and (3) are asked to return a vertex
subset X ⊆ V , whereas a sample E is evaluated as positive for X if and only if (X, V \ X)
forms a 2-coloring on (V, E).

IPEC 2023

18:12 Consistency Checking Problems: A Gateway to Parameterized Sample Complexity

▶ Corollary 13. 2-Coloring Learning is not efficiently PAC-learnable unless P = NP.

While the intractability of consistency checking for ConsCheck: 2-Coloring might
already be viewed as surprising, let us now consider the related problem of partitioning
the vertex set into one independent set and one clique – i.e., the Split Graph problem.
As a graph search problem, Split Graph is well-known to be polynomially tractable [11].
Following the same line of reasoning as for 2-Coloring, we formalize the corresponding
search problem below. Let a pair of vertex subsets (X ⊆ V, Y ⊆ V) be a split in a graph
G = (V, E) if (X, Y) is a bipartition of V such that X is a clique and Y is an independent
set.

ConsCheck: Split Graph
Input: I = {V, (Ei, λi)i∈[t]} where for each i ∈ [t], Gi = (V, Ei) is a graph and λi ∈ {0, 1}.
Output: A set X ⊆ V such that for each i ∈ [t], (X, V \ X) is a split in Gi

if and only if λi = 1.

Unlike ConsCheck: 2-Coloring, ConsCheck: Split Graph turns out to be tractable.

▶ Theorem 14 (⋆). ConsCheck: Split Graph can be solved in time O(|I|3).

Naturally, one can formalize the learning problem for ConsCheck: Split Graph in
an analogous way as was done for 2-Coloring Learning. Since the hypothesis bound of
Theorem 11 holds here as well, Theorem 14 implies:

▶ Corollary 15. Split Graph Learning is efficiently PAC-learnable.

Let us now conclude the section by revisiting the polynomial-time intractability of
ConsCheck: 2-Coloring through the lens of parameterized complexity theory. Naturally,
there are many parameterizations one may consider in the setting – as an exercise that
follows the same exhaustive-branching ideas as those used for Vertex Cover [6, Lemma
6.1], one could for instance attempt to parameterize by the size of the smaller color class
in the sought-after coloring, whereas a fixed-parameter algorithm in this setting (based on
exhaustive branching) would yield a FPT-PACtime algorithm for 2-Coloring Learning in
the corresponding parameterization of the concept. In this article, we instead showcase a less
straightforward fixed-parameter algorithm for the problem when parameterized by the number
of negative samples on the input (which in turn corresponds to a parameterization of the
distribution in the learning setting [6]). It will later turn out that the same parameterization
can be used to achieve fixed-parameter tractability for several other consistency checking
problems as well, albeit the individual techniques used vary from problem to problem.

Let t− = |{(Ei, λi)i∈[t] | λi = 0}| be the number of negative samples in an input instance I.

▶ Theorem 16 (⋆). ConsCheck: 2-Coloring is fixed-parameter tractable when paramet-
erized by the number t− of negative samples.

4 Consistency Checking for Selected Edge Search Problems

In this section, we perform a parameterized analysis of consistency checking for three natural
and extensively studied edge search problems on graphs: Matching, (k-)Path and Edge
Clique Cover. We formalize the parameterized consistency checking formulations of these
three problems below; recall that a set F = {F1, . . . , Fℓ} is an edge clique cover if each Fi,
i ∈ [ℓ] is the edge set of a clique in the graph and each edge in the graph is contained in at
least one Fi, i ∈ [ℓ] [7, Subsection 2.2.3].

R. Ganian, L. Khazaliya, and K. Simonov 18:13

ConsCheck: Matching
Input: I = {V, (Ei, λi)i∈[t]} where for each i ∈ [t], Gi = (V, Ei) is a graph and λi ∈ {0, 1},
and an integer k.
Parameter: k.
Output: A set F ⊆

(
V
2

)
of size k such that for each i ∈ [t], F forms

a matching in Gi if and only if λi = 1.

ConsCheck: (k-)Path
Input: I = {V, (Ei, λi)i∈[t]} where for each i ∈ [t], Gi = (V, Ei) is a graph and λi ∈ {0, 1},
and an integer k.
Parameter: k.
Output: A set F ⊆

(
V
2

)
of size k such that for each i ∈ [t], F forms

a path in Gi if and only if λi = 1.

ConsCheck: Edge Clique Cover
Input: I = {V, (Ei, λi)i∈[t]} where for each i ∈ [t], Gi = (V, Ei) is a graph and λi ∈ {0, 1},
and an integer k.
Parameter: k.
Output: A set F ⊆ 2(V

2) of size k such that for each i ∈ [t], F forms
an edge clique cover in Gi if and only if λi = 1.

An observant reader may notice that in the first of the three problems above, we consider
solution size as a parameter even though the corresponding search problem of finding a
maximum matching in a graph is polynomial-time tractable. This is due to the fact that, as
it turns out, Matching in the consistency checking regime is not polynomial-time tractable
unless P = NP. In fact, we show an even stronger (and more surprising) result:

▶ Theorem 17. ConsCheck: Matching does not admit a fixed-parameter algorithm unless
FPT = W[2].

Proof. We present a reduction that given an instance (U , F , k′) of the classical Set Cover
problem [7], constructs an instance I of ConsCheck: Matching which admits a solution
if and only if (U , F , k′) is a yes-instance. An instance (U , F , k′) of Set Cover is a family
F = {F1, . . . , Fm} of m subsets over the n-element universe U = {u1, . . . , un}, and we are
asked whether there exists a k′-element subset of F whose union contains all of U .

Construction. We construct the instance I = {V, (Ei, λi)i∈[t]} of ConsCheck: Matching
as follows, with the parameter set to k = k′. Let the unique positive sample in I be the edge
set E1 such that the graph (V, E1) is a set of k disjoint stars, whereas for each i ∈ [k] the
graph (V, E1) contains a center si adjacent to pendants pi

1, . . . , pi
m. Next, for each element

uj ∈ U , j ∈ [n], we add a negative sample (V, Ej+1) into I which only contains non-edges
between the centers of stars and the leaves (of the same star) corresponding to the sets
containing that element; formally, Ej+1 =

(
V
2
)

\ {sipi
ℓ | i ∈ [k], uj ∈ Fℓ}. This completes the

construction of I (see also Figure 3).

Correctness. If I admits a solution Q, then Q must be a matching in (V, E1) of
size k and hence can only contain a single edge from each of the k stars. Hence,
Q = {s1pα(1), s2pα(2), . . . , skpα(k)} for some mapping α. Moreover, since Q is not a matching
in (V, Ej+1) for any j ∈ [n], the set {Fα(1), . . . , Fα(k)} is a set cover for (U , F , k). At the
same time, given a set cover {Fβ(1), . . . , Fβ(k)} (for some mapping β), we can construct a

IPEC 2023

18:14 Consistency Checking Problems: A Gateway to Parameterized Sample Complexity

si

pi
1 pi

2 pi
3 pi

m

si

pi
1 pi

2 pi
3 pi

m

Figure 3 Reducing from Set Cover, the ConsCheck: Matching instance has a positive sample
with k (i ∈ [k]) stars as shown on the left; for each uj ∈ U , the correspondent No-instance is a
complete graph but excluding {sipi

ℓ | i ∈ [k], uj ∈ Fℓ}. So, as an example, if m = 4 and uj ∈ Fℓ for
any ℓ ∈ {1, 3, m}, then for all i ∈ [k], the dotted edges are out of the construction.

solution for I by taking {s1pβ(1), . . . , skpβ(k)}. This yields a reduction from Set Cover
to the problem of deciding the existence of a solution for ConsCheck: Matching; in
particular, this means that a fixed-parameter algorithm for ConsCheck: Matching would
imply FPT=W[2]. ◀

A similar reduction also allows us to establish the intractability of consistency checking
for Path.

▶ Theorem 18 (⋆). ConsCheck: (k-)Path does not admit a fixed-parameter algorithm
unless FPT = W[2].

However, we show that the third problem under consideration – Edge Clique Cover –
does not become more difficult in the consistency checking regime.

▶ Theorem 19 (⋆). ConsCheck: Edge Clique Cover admits a fixed-parameter algorithm
which runs in time O(22k · |I|).

Given the fixed-parameter intractability of ConsCheck: Matching and ConsCheck:
(k-)Path w.r.t. the solution size alone, it is natural to ask whether one could solve these
problems at least when the number of negative samples is small, similarly as was done
in Theorem 16 for 2-Coloring. We conclude this section by answering this question
positively, albeit the algorithmic techniques used here are different from Theorem 16. In fact,
it turns out that an adaptation of the classical color-coding technique suffices in this case [7,
Subsections 5.2 and 5.6]. For both problems, the task essentially boils down to intersecting
all positive samples into one, and then looking for a solution where the set of k edges is not
contained in any negative sample. After assuming that all vertices of the solution receive
distinct colors, we can perform dynamic programming to find a colorful solution, and while
doing so we also store information about which negative samples are already “dealt with”,
i.e., which negative samples do not contain the edges in the partial solution.

The proof of Theorem 20 builds on the color-coding algorithm for k-Path, but otherwise
the arguments are fairly similar for both following theorems.

▶ Theorem 20 (⋆). ConsCheck: Matching admits an algorithm which runs in time
2O(k+t−) · |I|O(1); in particular, the problem is fixed-parameter tractable when parameterized
by k + t−.

▶ Theorem 21 (⋆). ConsCheck: (k-)Path admits an algorithm which runs in time
2O(k+t−) · |I|O(1); in particular, the problem is fixed-parameter tractable when parameterized
by k + t−.

R. Ganian, L. Khazaliya, and K. Simonov 18:15

{1, 2}

{1, 2, 3}

{1, 3}

{2, 3}

{1, 2}

{2, 3}

Figure 4 ConsCheck: Independent Set[degree] instance with G1, G2 and G3; and G for the
reformulation of ConsCheck: Independent Set[degree].

5 Consistency Checking for Selected Vertex Search Problems

In the final technical section of this article, we focus our attention on consistency checking
for two prominent vertex search problems in parameterized algorithmics: Independent Set
and Dominating Set. As mentioned in the introduction, both problems are believed to be
fixed-parameter intractable (the former is W[1]-hard while the latter is W[2]-hard), and so
for the purposes of this article we restrict our attention to bounded-degree input graphs – or,
more precisely, we consider the maximum degree as an additional parameter6. We formalize
the consistency checking problems below.

ConsCheck: Independent Set[degree]
Input: Integers k, d, and I = {V, (Ei, λi)i∈[t]} where for each i ∈ [t], Gi = (V, Ei) is a graph
of degree at most d and λi ∈ {0, 1}.
Parameter: k + d.
Output: A set X ⊆ V of size k such that for each i ∈ [t], X forms
an independent set in Gi if and only if λi = 1.

ConsCheck: Dominating Set[degree]
Input: Integers k, d, and I = {V, (Ei, λi)i∈[t]} where for each i ∈ [t], Gi = (V, Ei) is a graph
of degree at most d and λi ∈ {0, 1}.
Parameter: k + d.
Output: A set X ⊆ V of size k such that for each i ∈ [t], X forms
a dominating set in Gi if and only if λi = 1.

Once again, the complexity-theoretic properties of these problems turn out to be very
different from those of their simpler graph search analogues. In particular, consistency
checking for Independent Set is fundamentally harder than for the other two problems.

▶ Theorem 22 (⋆). There is no fixed-parameter algorithm for ConsCheck: Independent
Set[degree] unless FPT = W[2].

▶ Theorem 23 (⋆). ConsCheck: Dominating Set[degree] can be solved by a fixed-
parameter algorithm running in time O(2kd) · |I|.

Similarly to Theorems 16, 20 and 20, we turn our attention to whether the lower bound
for ConsCheck: Independent Set[degree] can be overcome if the number of negative
samples is bounded by the parameter. While the W[2]-hardness reduction of Theorem 22

6 We remark that all of the obtained results and proofs carry over also to the case where the maximum
degree is considered to be an arbitrary fixed constant

IPEC 2023

18:16 Consistency Checking Problems: A Gateway to Parameterized Sample Complexity

does not hold if we are given a bound on the number of samples, it turns out that – unlike
for 2-Coloring, Matching and (k-)Path – consistency checking for Independent Set
remains fixed-parameter intractable even under this additional restriction.

▶ Theorem 24 (⋆). There is no fixed-parameter algorithm for ConsCheck: Independent
Set[degree] even when the number t− of negative saimples is assumed to be an additional
parameter, unless FPT = W[1].

While restricting the number of negative samples alone is insufficient to achieve tractability,
we conclude by showing that restricting the total number of samples allows for a fixed-
parameter algorithm that solves the problem via a combination of multi-step exhaustive
branching and color coding.

▶ Theorem 25 (⋆). ConsCheck: Independent Set[degree] admits an algorithm which
runs in time (kdt)O(k2) ·nO(1); in particular, it is fixed-parameter tractable when parameterized
by k + d + t.

6 Concluding Remarks

This article can be seen as a “brief expedition into the forgotten island of consistency checking”
– a place where Split Graph and Edge Clique Cover are tractable but 2-Coloring and
Matching are not, and where on bounded-degree graphs Independent Set is W[2]-hard
while Dominating Set admits a fixed-parameter algorithm.

To conclude on a more serious note, we remark that our understanding of parameterized
consistency checking – and, more broadly, of sample complexity – is still in its infancy.
Even in the setting of PAC learning considered here, we so far know very little about which
learning problems belong to the classes FPT-PAC and XP-PAC. Still, we hope that the results
and techniques presented in this article can contribute to bridging the gap between the
parameterized (time) complexity and the sample complexity research fields. A natural target
for future work in this direction would be to further deepen our understanding of problems
such as learning CNF and DNF formulas [17, 2, 6] or juntas [15].

References
1 Sushant Agarwal, Nivasini Ananthakrishnan, Shai Ben-David, Tosca Lechner, and Ruth Urner.

Open problem: Are all VC-classes CPAC learnable? In Mikhail Belkin and Samory Kpotufe,
editors, Conference on Learning Theory, COLT 2021, 15-19 August 2021, Boulder, Colorado,
USA, volume 134 of Proceedings of Machine Learning Research, pages 4636–4641. PMLR, 2021.
URL: http://proceedings.mlr.press/v134/open-problem-agarwal21b.html.

2 Michael Alekhnovich, Mark Braverman, Vitaly Feldman, Adam R. Klivans, and Toniann
Pitassi. The complexity of properly learning simple concept classes. J. Comput. Syst. Sci.,
74(1):16–34, 2008. doi:10.1016/j.jcss.2007.04.011.

3 Vikraman Arvind, Johannes Köbler, and Wolfgang Lindner. Parameterized learnability of
juntas. Theor. Comput. Sci., 410(47-49):4928–4936, 2009. doi:10.1016/j.tcs.2009.07.003.

4 Anselm Blumer, Andrzej Ehrenfeucht, David Haussler, and Manfred K. Warmuth. Learnability
and the Vapnik-Chervonenkis dimension. J. ACM, 36(4):929–965, 1989. doi:10.1145/76359.
76371.

5 Olivier Bousquet, Steve Hanneke, Shay Moran, and Nikita Zhivotovskiy. Proper learning, helly
number, and an optimal SVM bound. In Jacob D. Abernethy and Shivani Agarwal, editors,
Conference on Learning Theory, COLT 2020, 9-12 July 2020, Virtual Event [Graz, Austria],
volume 125 of Proceedings of Machine Learning Research, pages 582–609. PMLR, 2020. URL:
http://proceedings.mlr.press/v125/bousquet20a.html.

http://proceedings.mlr.press/v134/open-problem-agarwal21b.html
https://doi.org/10.1016/j.jcss.2007.04.011
https://doi.org/10.1016/j.tcs.2009.07.003
https://doi.org/10.1145/76359.76371
https://doi.org/10.1145/76359.76371
http://proceedings.mlr.press/v125/bousquet20a.html

R. Ganian, L. Khazaliya, and K. Simonov 18:17

6 Cornelius Brand, Robert Ganian, and Kirill Simonov. A parameterized theory of PAC learning.
In Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI 2023. AAAI Press, 2023.
to appear. URL: https://arxiv.org/abs/2304.14058.

7 M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk,
and S. Saurabh. Parameterized Algorithms. Springer, 2015.

8 Peter Damaschke and Azam Sheikh Muhammad. Competitive group testing and learning
hidden vertex covers with minimum adaptivity. Discret. Math. Algorithms Appl., 2(3):291–312,
2010. doi:10.1142/S179383091000067X.

9 Reinhard Diestel. Graph Theory. Graduate Texts in Mathematics. Springer, Berlin, Heidelberg,
5th edition, 2017. doi:10.1007/978-3-662-53622-3.

10 Eduard Eiben, Sebastian Ordyniak, Giacomo Paesani, and Stefan Szeider. Learning small
decision trees with large domain. In The 32nd International Joint Conference on Artificial
Intelligence (IJCAI-23), August 19–25, 2023, Macao, S.A.R. International Joint Conferences
on Artificial Intelligence Organization, 2023. to appear.

11 Peter L. Hammer and Bruno Simeone. The splittance of a graph. Comb., 1(3):275–284, 1981.
doi:10.1007/BF02579333.

12 Steve Hanneke. The optimal sample complexity of PAC learning. J. Mach. Learn. Res.,
17:38:1–38:15, 2016. URL: http://jmlr.org/papers/v17/15-389.html.

13 M. Kearns and U. Vazirani. An Introduction to Computational Learning Theory. MIT Press,
1994.

14 Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of Machine
Learning. Adaptive computation and machine learning. MIT Press, 2012. URL: http:
//mitpress.mit.edu/books/foundations-machine-learning-0.

15 Elchanan Mossel, Ryan O’Donnell, and Rocco A. Servedio. Learning juntas. In Lawrence L.
Larmore and Michel X. Goemans, editors, Proceedings of the 35th Annual ACM Symposium
on Theory of Computing, June 9-11, 2003, San Diego, CA, USA, pages 206–212. ACM, 2003.
doi:10.1145/780542.780574.

16 Sebastian Ordyniak and Stefan Szeider. Parameterized complexity of small decision tree
learning. In Proceeding of AAAI-21, the Thirty-Fifth AAAI Conference on Artificial Intelli-
gence, pages 6454–6462. AAAI Press, 2021. URL: https://ojs.aaai.org/index.php/AAAI/
article/view/16800.

17 Leonard Pitt and Leslie G. Valiant. Computational limitations on learning from examples. J.
ACM, 35(4):965–984, 1988. doi:10.1145/48014.63140.

18 Oleg Sheyner and Jeannette M. Wing. Tools for generating and analyzing attack graphs. In
FMCO, volume 3188 of Lecture Notes in Computer Science, pages 344–372. Springer, 2003.
URL: https://www.cs.cmu.edu/~scenariograph/sheynerwing04.pdf.

19 L. G. Valiant. A theory of the learnable. Commun. ACM, 27(11):1134–1142, 1984. doi:
10.1145/1968.1972.

20 Steffen van Bergerem, Martin Grohe, and Martin Ritzert. On the parameterized complexity
of learning first-order logic. In Proceedings of the 41st ACM SIGMOD-SIGACT-SIGAI
Symposium on Principles of Database Systems, PODS ’22, pages 337–346, New York, NY,
USA, 2022. Association for Computing Machinery. doi:10.1145/3517804.3524151.

21 Jeannette M. Wing. Attack graph generation and analysis. In Proceedings of the 2006 ACM
Symposium on Information, Computer and Communications Security, New York, NY, USA,
2006. Association for Computing Machinery. doi:10.1145/1128817.1128822.

IPEC 2023

https://arxiv.org/abs/2304.14058
https://doi.org/10.1142/S179383091000067X
https://doi.org/10.1007/978-3-662-53622-3
https://doi.org/10.1007/BF02579333
http://jmlr.org/papers/v17/15-389.html
http://mitpress.mit.edu/books/foundations-machine-learning-0
http://mitpress.mit.edu/books/foundations-machine-learning-0
https://doi.org/10.1145/780542.780574
https://ojs.aaai.org/index.php/AAAI/article/view/16800
https://ojs.aaai.org/index.php/AAAI/article/view/16800
https://doi.org/10.1145/48014.63140
https://www.cs.cmu.edu/~scenariograph/sheynerwing04.pdf
https://doi.org/10.1145/1968.1972
https://doi.org/10.1145/1968.1972
https://doi.org/10.1145/3517804.3524151
https://doi.org/10.1145/1128817.1128822

Finding Degree-Constrained Acyclic Orientations
Jaroslav Garvardt #

Philipps-Universität Marburg, Germany
Friedrich-Schiller-Universität Jena, Germany

Malte Renken #

Technische Universität Berlin, Germany

Jannik Schestag #

Philipps-Universität Marburg, Germany
Technische Universiteit Delft, The Netherlands
Friedrich-Schiller-Universität Jena, Germany

Mathias Weller #

Technische Universität Berlin, Germany

Abstract
We consider the problem of orienting a given, undirected graph into a (directed) acyclic graph
such that the in-degree of each vertex v is in a prescribed list λ(v). Variants of this problem have
been studied for a long time and with various applications, but mostly without the requirement
for acyclicity. Without this requirement, the problem is closely related to the classical General
Factor problem, which is known to be NP-hard in general, but polynomial-time solvable if no
list λ(v) contains large “gaps” [Cornuéjols, J. Comb. Theory B, 1988]. In contrast, we show that
deciding if an acyclic orientation exists is NP-hard even in the absence of such “gaps”.

On the positive side, we design parameterized algorithms for various, natural parameterizations
of the acyclic orientation problem. A special case of the orientation problem with degree constraints
recently came up in the context of reconstructing evolutionary histories (that is, phylogenetic
networks). This phylogenetic setting imposes additional structure onto the problem that can be
exploited algorithmically, allowing us to show fixed-parameter tractability when parameterized by
either the treewidth of G (a smaller parameter than the frequently employed “level”), by the number
of vertices v for which |λ(v)| ≥ 2, by the number of vertices v for which the highest value in λ(v) is at
least 2. While the latter result can be extended to the general degree-constraint acyclic orientation
problem, we show that the former cannot unless FPT=W[1].

2012 ACM Subject Classification Theory of computation → Parameterized complexity and exact
algorithms

Keywords and phrases Graph Orientation, Phylogenetic Networks, General Factor, NP-hardness,
Parameterized Algorithms, Treewidth

Digital Object Identifier 10.4230/LIPIcs.IPEC.2023.19

Funding Jaroslav Garvardt: Partially supported by the Carl Zeiss Foundation within the project
“Interactive Inference”.
Jannik Schestag: Supported by the German Academic Exchange Service (DAAD), project 57556279.

Acknowledgements This work was initiated on the research retreat of the Algorithmics and Compu-
tational Complexity group of TU Berlin, held in Darlingerode in September 2022. We thank André
Nichterlein and Till Fluschnik for helpful discussions and ideas and our anonymous reviewers for
pointing out many small errors in previous versions of the paper.

© Jaroslav Garvardt, Malte Renken, Jannik Schestag, and Mathias Weller;
licensed under Creative Commons License CC-BY 4.0

18th International Symposium on Parameterized and Exact Computation (IPEC 2023).
Editors: Neeldhara Misra and Magnus Wahlström; Article No. 19; pp. 19:1–19:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jaroslav.garvardt@uni-jena.de
https://orcid.org/0000-0002-8762-8567
mailto:m.renken@tu-berlin.de
https://orcid.org/0000-0002-1450-1901
mailto:j.t.schestag@uni-jena.de
https://orcid.org/0000-0001-7767-2970
mailto:mathias.weller@tu-berlin.de
https://orcid.org/0000-0002-9653-3690
https://doi.org/10.4230/LIPIcs.IPEC.2023.19
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

19:2 Finding Degree-Constrained Acyclic Orientations

1 Introduction

The de-facto standard approach to reconstructing phylogenetic trees from genomic data
employs heuristic local-search in the space of all rooted evolutionary trees [5]. The success of
this method is highly impacted by the choice of neighborhood (as one would expect from a
local-search approach), and existing research in this direction is vast [10, 17, 18, 2]. Recently,
efforts have been made to use this technique to reconstruct phylogenetic networks, thereby
supporting reticulate/hybridizing evolution. As a possible neighborhood of a rooted network
N , Molloy et al. [15] proposed to consider all reorientations of (subnetworks of) N . The
question whether a given undirected graph has a valid orientation into a phylogenetic network
and the enumeration of such networks are fundamental computational problems in this
context. We model these problems as the search for acyclic orientations of a given undirected
graph, such that the in-degree of each vertex v is in a prescribed list λ(v).

The problem of orienting a given undirected graph G, subject to certain degree-related
constraints, has been long studied with various applications [8, 6, 7], but mostly without
the requirement for acyclicity. Without this requirement, the problem is closely related to
the classical General Factor problem, introduced by Lovász [12, 13], which asks for an
(undirected) subgraph of G satisfying the given degree constraints. Cornuéjols [4] showed that
General Factor is polynomial-time solvable if the maximum gap size1 is at most one, and
NP-hard otherwise, even if the maximum degree in the input graph is three. Both of these
results can be easily transferred to the problem of finding (possibly cyclic) degree-constrained
orientations (to reduce General Factors to the orientation problem, subdivide each edge
of the input graph G with a vertex v with λ(v) = {0, 2}; in the other direction, subdivide
each edge with a vertex v with λ(v) = {1}, see Theorem 5). Deciding whether there is an
acyclic orientation constraint by specific lower bounds f(v) for the in-degree of each vertex v

(that is, λ(v) = {f(v), f(v) + 1, . . .}) has been shown to be NP-hard, even if f(v) ∈ {0, 1} for
all but one vertex [11]. A generalization of the problem with weighted edges and allowing
edge and vertex deletions to satisfy prescribed weight-constraints has been considered by
Mathieson and Szeider [14], showing parameterized results with respect to the number of
deleted elements and the maximum integer in any of the given lists.

The phylogenetic setting, which is the main motivation for our work, imposes structure on
the allowed in-degree lists. Indeed, phylogenetic networks (which, for the purpose of this work,
are rooted directed acyclic graphs) are made up of four types of vertices: (1) the (unique) root,
with in-degree zero, (2) leaves with out-degree zero and in-degree one, (3) tree-nodes with in-
degree one, and (4) reticulations with out-degree one. Thus, if the input network is orientable
into a phylogenetic network, all vertices v but one must satisfy λ(v) ⊆ {1, deg(v) − 1}. Most
commonly, phylogenetic networks are “binary”, that is, all nodes of type (3) and (4) have
degree (that is, in-degree plus out-degree) three, in which case λ(v) ⊆ {1, 2} and no vertex
can be of type (3) and (4) at the same time. While these lists do not have gaps, we cannot use
General Factor to solve this case, since phylogenetic networks must be acyclic. Bulteau
et al. [3] showed a polynomial-time algorithm that computes an orientation of a given
undirected graph of maximum degree 3 into a (binary) network and proved NP-hardness if
the input graph has degree ≥ 5, leaving open the degree-4 case. If the in-degree of every
vertex v is fixed, that is, |λ(v)| = 1 for all vertices v, an algorithm of Huber et al. [9] can
produce an orientation in linear time. The authors also considered the problem of orienting a

1 The gap size is the maximum size of any “gap” appearing in λ(v) for any vertex v, that is, maxv,i{λv
i+1 −

λv
i − 1} when taking λ(v) = {λv

1 < λv
2 < . . . }.

J. Garvardt, M. Renken, J. Schestag, and M. Weller 19:3

given undirected graph in such a way, that the resulting network falls in one of various classes
of binary phylogenetic networks. They showed fixed-parameter tractability with respect to
the “level”2 of the input graph.

Our contributions

We analyze the parameterized complexity of the aforementioned degree-constraint orientation
problems. When cyclic orientations are permitted, the polynomial-time algorithm for
General Factor [4] can be applied; this approach can be extended to show fixed-parameter
tractability for the parameter “combined number of gaps of size ≥ 2 in all degree lists”.
Interestingly, such a result is unlikely for the case of acyclic orientations. While this follows
already from the known NP-hardness proof for acyclic orientations [11], we strengthen the
result to maintain NP-hardness for gapless inputs even for the phylogenetic version on input
graphs of maximum degree three.

Since phylogenetic networks can be expected to be tree-like, algorithms for graphs of
low treewidth are attractive for this application. We show that the phylogenetic version
of the orientation problem can be solved in O(8tw · tw! · tw2 ·n) time on n-vertex graphs
of treewidth tw. For the cyclic and acyclic orientation problems with unrestricted λ, this
approach yields running times of O(q2 tw · tw2 ·n) and O(q2 tw · tw! · tw2 ·n) time, where q is
the maximum allowed in-degree. We justify adding the second parameter q by proving that
the problems with unrestricted λ are W[1]-hard with respect to the treewidth alone.

A general observation for phylogenetic networks is that the number of reticulation events
is small compared to the overall size of the phylogeny. This means that we expect to see
only few vertices v whose list λ(v) contains numbers greater than one. We call these vertices
“potential reticulations” and show that a corresponding acyclic orientation of an n-vertex
graph with r potential reticulations can be computed in O(2r · r · n2 + n2 · q) time.

Motivated by the observation that the acyclic orientation problem is linear-time solvable
if every degree list λ(v) contains just a single entry [9], we say that a vertex v is hazy if
|λ(v)| > 1 and develop an algorithm computing a corresponding acyclic orientation of a
graph with m edges and h hazy vertices in O(2h · h · m) time.

2 Preliminaries

We use the notations [a, b] := {a, a + 1, . . . , b}, [n] := [1, n], and [n]0 := [0, n]. By default,
graphs are assumed to be simple and undirected. For a vertex or edge x of a graph
G = (V (G), E(G)), G − x denotes the graph obtained from G by deleting said vertex or
edge. The induced subgraph G[V ′] is obtained from G by deleting all vertices in V (G) \ V ′.
An orientation of G is a directed graph G→ with the same vertex set V (G→) = V (G), such
that its arc set A(G→) includes for every edge {v, w} ∈ E(G) exactly one of the arcs (v, w),
(w, v). A directed graph G→ is acyclic if it contains no directed cycle. A total order σ of
the vertices of G→ is a topological order if (v, w) ∈ A(G→) implies v <σ w for all vertices
v, w; in this case we write σ ∈ Top(G→). Every total order σ of V (G) induces an acyclic
orientation of G for which σ is a topological order. The notation A <σ B means that a <σ b

for all a ∈ A, b ∈ B.

2 The level of an undirected graph is the maximum over all biconnected components of the size of a
smallest feedback edge set in that biconnected component.

IPEC 2023

19:4 Finding Degree-Constrained Acyclic Orientations

{1, 2}

{2}

{1} {2}

{1}

(a)

{1, 2}

{2}

{1} {2}

{1}

(b)

{1, 2}

{2}

{1} {2}

{1}

(c)

Figure 1 (a) shows the “copy gadget” used in the proof of Lemma 3. The vertices are annotated
with their degree lists λ. (b) and (c) show the only two acyclic λ-abiding orientations of (a).

We denote the set of neighbors of v in an (undirected) graph G by NG(v), the degree
by degG(v) := |NG(v)|, the in-degree in G→ by deg−

G→(v) and the out-degree by deg+
G→(v).

A vertex v is a source in a directed graph G→ if deg−
G→(v) = 0. If clear from context, the

subscripts may be omitted. The Degree-Constrained Orientation problem is defined
as follows.

Degree-Constrained Orientation (DCO)
Input: A graph G = (V, E), and a function λ : V → 2N.
Question: Is there an orientation of G such that deg−(v) ∈ λ(v) for each v ∈ V ?

A feasible solution of an instance of DCO is called λ-abiding orientation. The variant of DCO
where only acyclic orientations are allowed is denoted Degree-Constrained Acyclic
Orientation (DCAO). When writing each set λ(v) as λ(v) =: {λv

1 < λv
2 < . . . }, we say that

λ(v) has a k-gap at position i if λv
i+1 −λv

i > k for k ≥ 1. Finally, we consider a special case of
the DCAO problem that arises in phylogenetics: In Phylogenetic Degree-Constrained
Orientation (PDCO), we have

a unique root vertex r with λ(r) = {0},
a non-empty λ(v) ⊆ {1, degG(v) − 1} for each vertex v ̸= r with degG(v) > 1, and
λ(v) = {1} for each vertex v ̸= r with degG(v) = 1 (called leaves).

If the input graph is disconnected, we can solve the problem on each connected component
individually. Feasible λ-abiding solutions of the connected components can easily be combined
to a solution for the entire graph. Therefore, throughout the paper we assume that the input
graph G is connected.

3 NP-Hardness of PDCO

Recall that we can decide in polynomial time whether a graph of maximum degree three
can be oriented into a phylogenetic network [3]. Essentially, this requires that all vertices v

(except the root and the leaves) have λ(v) = {1, deg(v) − 1}. We show that, if λ(v) is only
required to be a subset of {1, deg(v) − 1}, the problem becomes NP-hard. In particular, we
reduce the NP-hard [16] Monotone Exact 1 in 3 SAT (MX3SAT) to PDCO. In this
problem, the input is a CNF-formula Φ without negations where each clause contains at
most three literals and the question is whether there is an assignment of the variables such
that in each clause exactly one variable is assigned true.

Our reduction makes use of a “copy gadget” allowing us to multiply the information
whether a variable is set to true or false. Each such gadget consists of five degree-3 vertices
as shown in Figure 1(a). We refer to the three edges leaving any such gadget as its top
edge and its two bottom edges, where the top edge is the one attached to the vertex v with
λ(v) = {1, 2}. It is not difficult to verify that the only two possible acyclic orientations
of the copy gadget are the ones shown in Figure 1(b) and (c). This implies the following
observation.

J. Garvardt, M. Renken, J. Schestag, and M. Weller 19:5

▶ Observation 1. Let (G, λ) be an input for the DCO problem such that G contains a copy
of the gadget as an induced subgraph. Let G→ be a λ-abiding acyclic orientation of G. Then,
all bottom edges are oriented towards the gadget in G→ if and only if the top edge is oriented
away from the gadget in G→.

▶ Construction 2. Let Φ be an instance of Monotone Exact 1 in 3 SAT with n

variables x1, x2, . . . , xn and m clauses C1, C2, . . . , Cm. For each variable xi, let ri ∈ [m] be
the number of occurrences of xi in Φ, let ρi : [ri] → [m] be an arbitrary total order of the
indices of clauses that contain xi and let Xi := {Cρi(1), . . . , Cρi(ri)} be the set of clauses that
contain xi.

We construct from Φ an instance (G, λ) of PDCO as follows. For each variable xi, we add
a vertex vi with λ(vi) = {1, 2} and, for each clause Cj , we add a vertex wj with λ(wj) = {1}.
For each variable xi we add ri − 1 many copy gadgets to G in the following way: The first
copy gadget of xi connects with its top edge to the vertex vi. The top edge of any subsequent
copy gadget of xi is identified with the right bottom edge of the previous copy gadget. The left
bottom edge of the j-th copy gadget of xi attaches to the clause vertex wρi(j) belonging to the
j-th clause Cρi(j) in Xi. In this way, we create a chain of ri − 1 many copy gadgets, where
the last one connects with its two bottom edges to the clause vertices wρi(ri−1) and wρi(ri) of
the last two clauses in Xi. In the corner case that ri = 1, we attach vi directly to wρi(1).

To ensure that there is a unique root, we add a vertex u0 with λ(u0) = {0} and vertices ui

with λ(ui) = {1} for all i ∈ [n] and we add the edges {ui, ui+1} for all 0 ≤ i ≤ n − 1, as
well as {ui, vi} for all i ∈ [n]. Finally, for each degree-2 vertex z in the construction, add a
private neighbor ℓz with λ(ℓz) = {1}.

Note that the definition of λ for the variable vertices simulates the two possible states of
the variable and, for the clause vertices, it forces exactly one variable in the clause to be
true. Further, note that the vertex u0 and all ℓz have degree one and all variable vertices vi,
all vertices ui and all vertices of a copy gadget have degree three. Note also that each
clause Cj in Φ contains exactly three variables and, thus, the corresponding clause vertex wj

is connected to exactly three copy gadgets. Hence, every vertex in G has degree at most
three. Finally, note that λ has no gaps of any size.

▶ Lemma 3. Let Φ be an instance of MX3SAT and let (G, λ) be the instance of PDCO
constructed by Construction 2 for Φ. Then, Φ is satisfiable if and only if G has a λ-abiding
acyclic orientation.

Proof. “⇒”: Suppose that Φ has a satisfying assignment β : {x1, x2, . . . , xn} → {true, false}.
We can construct a λ-abiding acyclic orientation G→

β for (G, λ) as follows:
The edge {u0, u1} is oriented towards u1.
For each i ∈ [n], the edge {z, ℓz} for each ℓz is oriented towards ℓz and the edges {ui, vi}
and {ui, ui+1} are directed away from ui.
For each variable xi with β(xi) = false, the edge between vi and the first copy gadget of xi

is oriented towards vi. Further, each copy gadget of xi is oriented as shown in Figure 1(c),
implying that the edge between any such copy gadgets and any clause vertex wj of a
clause Cj containing xi is oriented away from wj .
Analogously, for each variable xi with β(xi) = true, the edge between vi and the first
copy gadget of xi is oriented away from vi. Further, each copy gadget of xi is oriented as
shown in Figure 1(b), implying that the edge between any such copy gadgets and any
clause vertex wj of a clause Cj containing xi is oriented towards wj .

IPEC 2023

19:6 Finding Degree-Constrained Acyclic Orientations

Since each clause Cj contains exactly one variable that is assigned true by β, exactly one
of the edges incident to wj is oriented towards wj in G→

β , fulfilling the given in-degree list
of wj . One can verify that G→

β satisfies all in-degree lists of all vertices in copy-gadgets
(see Figure 1) as well as the in-degree lists of all ui, vi, and all ℓz. Moreover, G→

β is acyclic
since (a) each copy gadget is oriented in an acyclic way, (b) no directed cycle can contain
both bottom arcs of any copy gadget, and (c) no directed cycle can contain any vi due to
the orientation of the edges {ui, vi} for all i ∈ [n]. Therefore, G→

β is a λ-abiding acyclic
orientation and (G, λ) is a yes-instance.

“⇐”: Suppose that G has a λ-abiding acyclic orientation G→. We define a truth
assignment β : {x1, x2, . . . , xn} → {true, false} as follows for each variable xi:

β(xi) :=
{

false if vi has an arc incoming from the first copy gadget of xi in G→

true otherwise.

By construction of G, for each variable xi, all edges between copy gadgets of xi and clause
vertices are oriented the same way as the edge between vi and the first copy gadget of xi

in G→ (the edge incident with vi is oriented away from vi if and only if the edges between
the copy gadgets of xi and the clause vertices are oriented away from their copy gadget).
Thus, for each variable xi, we have β(xi) = true if and only if, for each clause Cj ∈ Xi, the
edge between wj and the corresponding copy gadget of xi is oriented towards wj . Since G→

is a solution, each clause vertex wj has exactly one incoming arc in G→, with the other
edges oriented away from wj . Thus, the assignment β satisfies every clause of Φ exactly once,
implying that Φ is a yes-instance. ◀

Since PDCO is a special case of DCAO, the previous reduction implies the following.

▶ Corollary 4. PDCO and DCAO are NP-hard, even if the maximum degree is 3 and the
instance contains no gaps.

4 Parameterized Algorithms

4.1 Number of gaps
▶ Theorem 5. DCO can be solved in polynomial time, when the instance does not contain
2-gaps.

Proof. Let G be any graph and λ : V (G) → 2N. We obtain G′ from G by subdividing every
edge e once with a new vertex γe of degree 2. Extend λ to V (G′) by assigning λ(γe) = 1 for
every vertex γe ∈ V (G′) \ V (G). By a result of Cornuéjols [4], we can in polynomial time
find a subgraph G′′ of G′ with degG′′(v) ∈ λ(v) for each v ∈ V (G′).

Note that, for any e = {v, w} ∈ E(G), the subgraph G′′ contains exactly one of the
edges {v, γe}, {w, γe}. We use this to define an orientation of G, by directing e = {v, w}
towards w if and only if {w, γe} ∈ E(G′′). It is easy to verify that this orientation satisfies
deg−(v) = degG′′(v) for every vertex v ∈ V (G) and is thus a solution for an instance of
DCO. ◀

A simple branching algorithm gives us the following result in regards to the total number
of 2-gaps appearing in all λ(v) combined, which we denote by gaps2.

▶ Theorem 6. DCO can be solved in 2gaps2 · nO(1) time on n-vertex graphs.

J. Garvardt, M. Renken, J. Schestag, and M. Weller 19:7

Proof. Let (G, λ) be any given instance. For any vertex v let k be the number of 2-gaps
in λ(v). Note that λ(v) can be partitioned into k + 1 subsets, none of which has any 2-gaps.
By restricting λ(v) to one of these subsets for every vertex v, we obtain a polynomial-time
solvable subproblem according to Theorem 5. As there are at most 2gaps2 such subproblems,
the claimed time bound follows. ◀

4.2 Treewidth
▶ Theorem 7. Let an n-vertex graph G be given together with a tree decomposition of
width tw. Let further maxλ = maxv∈V (G) max λ(v) be the maximum admitted in-degree.
Then the instance (G, λ) of

DCO can be solved in O
(
(maxλ)2 tw · tw2 ·n

)
time.

DCAO can be solved in O
(
(maxλ)2 tw · tw! · tw2 ·n

)
time;

PDCO can be solved in O
(
8tw · tw! · tw2 ·n

)
time;

Theorem 7 follows directly from the following lemma, which we prove by a dynamic program-
ming approach. This proof is deferred to a long version of this paper.

▶ Lemma 8. Let an n-vertex graph G be given together with a tree decomposition of width tw.
Let d1, d2 ∈ N with λ(v) ⊆ [d1]0 ∪ [deg(v) − d2, deg(v)] for each vertex v. Then the instance
(G, λ) of

DCO can be solved in O
(
(d1 + d2 + 2)2tw · tw2 · n

)
time;

DCAO can be solved in O
(
(d1 + d2 + 2)2tw · tw! · tw2 · n

)
time.

4.3 Number of hazy vertices
We say a vertex v is settled if |λ(v)| = 1 and hazy otherwise. We denote by h the number of
hazy vertices. If every vertex is settled, DCAO (not necessarily connected) can be solved
in O(m) time by repeatedly picking a vertex v with λ(v) = {0}, deleting it from the graph
and subtracting 1 from each of its neighbors’ desired in-degrees until we reach a trivial
instance with a) λ(v) ̸= {0} for each vertex v or b) G only contains a single vertex v with
λ(v) = {0}. Consequently, PDCO can be solved in O(2h · m) time since every hazy vertex
admits only two possible in-degrees.

In the following, we want to show that DCAO too is fixed-parameter tractable with
respect to h. To this end, let (G, λ) be an instance of DCAO and let H and S be the set of
hazy and settled vertices, respectively. For s ∈ S, we will not distinguish between λ(s) and
its only element for the sake of brevity.

We define the closure A(X) of a set X ⊆ H as the smallest superset of X that contains
every vertex v ∈ S with |NG(v)∩A(X)| ≥ λ(v). Observe that the closure can be computed in
O(n+m) time: As long as there remains a vertex v ∈ X ∪{s ∈ S | λ(s) = 0}, add v to A(X),
decrement λ(w) for all w ∈ NG(v) ∩ S, and delete v. Note that this also implies that A(X)
is uniquely defined.

▶ Observation 9. Let X ⊆ H. The closure A(X) can be computed in O(n + m) time.

A subset X of H is called feasible if there exists an order σ of the vertices such that
A(X) <σ V (G) \ A(X) and the orientation G→ induced by σ satisfies deg−

G→(v) ∈ λ(v) for
all v ∈ A(X). The order σ is then called a feasible order of X. If we know which subsets
of H are feasible, then we can solve DCAO as shown by the following lemma.

▶ Lemma 10. (G, λ) is a yes-instance of DCAO if and only if H is a feasible subset of the
hazy vertices H and A(H) = V (G).

IPEC 2023

19:8 Finding Degree-Constrained Acyclic Orientations

p u z w

X
A(X)

Z

Figure 2 Illustration of the proof of Lemma 11. Vertices are ordered left to right according to σ.

Proof. Let G→ be a λ-abiding acyclic orientation of G. Suppose for contradiction that
Q := V (G) \ A(H) ̸= ∅. By definition of the closure, every vertex of Q must have at least
one incoming edge from another vertex in Q. Thus, the induced subgraph G→[Q] does not
contain a source, and hence must contain a cycle. This proves A(H) = V (G) and thus also
that H is a feasible subset. The reverse implication is immediate. ◀

We compute the feasible subsets by dynamic programming, based on the following lemma.

▶ Lemma 11. Let X ∪ {p} be a feasible subset of hazy vertices H and σ a feasible order of
X∪{p} with induced orientation G→. If X <σ {p}, then X has a feasible order σ′ ∈ Top(G→)
with A(X) <σ′ {p} <σ′ V (G) \ (A(X) ∪ {p}).

Proof. Figure 2 illustrates this proof.
Let G→ be the orientation induced by σ. Let z ∈ A(X) be chosen σ-minimal with p <σ z.

If no such z exists, then we are done since σ is a feasible order of X, then. Since X <σ {p},
we cannot have z ∈ X. Therefore z ∈ S = V (G) \ H and |NG(z) ∩ A(X)| ≥ λ(z) holds. Since
V<p := {v ∈ V | v <σ p} ⊆ A(X ∪ {p}), any vertex v ∈ V<p must have deg−

G→(v) ∈ λ(v).
This implies V<p ⊆ A(X).

Now let Z be the connected component of G[A(X) \ V<p] containing z. We claim
that G→ directs no edge from V \ A(X) to Z. Hence we may modify σ by moving Z in front
of p without affecting the induced orientation G→.

To prove the claim, assume for contradiction that G→ contains an arc (u, w) with
p ≤σ u <σ z and w ∈ Z. Then define A′ := A(X) \ Z≥w where Z≥w = {v ∈ Z | v ≥σ

w}. Observe that no vertex v in A′ has an incoming edge from Z≥w ⊆ V \ A′. Hence,
|NG(v) ∩ A′| = |NG(v) ∩ V<p| < deg−

G→(v) = λ(v). This means that A′ contradicts the
minimality of A(X).

Therefore, Z can be moved in front of p in the topological order. If this is followed by
repeating the above steps as long as some valid choice of z exists, we eventually obtain σ′ as
claimed. ◀

▶ Theorem 12. DCAO can be solved in O(2h · h · m) time on an m-edge graph with h hazy
vertices.

Proof. Let (G, λ) be a given DCAO-instance and let H be the set of hazy vertices. Using the
Iverson bracket notation3, we define a dynamic programming table T [X] := [X is feasible].
By Lemma 10 and Observation 9, the answer to the input instance can be computed in
linear time from T [H]. Because A(∅) contains no hazy vertices, we can check in linear time
whether there is a λ-abiding orientation of G[A(∅)] as outlined in the beginning of this
section. This yields T [∅].

It remains to compute T [X] recursively for any nonempty X ⊆ H . To this end, we iterate
over all p ∈ X. Define X ′ := X \ {p} and µ := |NG(p) ∩ A(X ′)|. If T [X ′] ̸= 1 or µ /∈ λ(p)
then continue with the next choice of p. Otherwise we temporarily replace λ(p) by µ and

3 For a proposition P , [P] is defined to be 1 if P holds and 0 otherwise.

J. Garvardt, M. Renken, J. Schestag, and M. Weller 19:9

orient all edges between A(X ′) and V (G) \ A(X ′) away from A(X ′). We then check in linear
time whether this orientation can be extended to a λ-abiding orientation of G[A(X) \ A(X ′)].
If this is the case, we set T [X] = 1. Otherwise, after trying all choices of p, we set T [X] = 0.

To see that this algorithm computes T [X] correctly, suppose first that we end up
with T [X] = 1. Since T [X ′] = 1, by induction there is a feasible order σ′ of X ′. Take also
a topological order σ′′ of the constructed orientation of G[A(X) \ A(X ′)]. Produce a new
order σ of V (G) by first taking A(X ′) in the order given by σ′, followed by A(X) \ A(X ′)
in the order given by σ′′, and finally all remaining vertices in an arbitrary order. It is not
difficult to check that σ is a feasible order of X.

Now suppose conversely that X has a feasible order σ with induced orientation G→ of G.
By Lemma 11, there is some choice of p for which X ′ has a feasible order σ′ ∈ Top(G→)
which puts p immediately after A(X ′). In particular, deg−

G→(p) = |NG(p) ∩ A(X ′)| and
T [X ′] = 1 by induction. Hence, the iteration which considers p will produce T [X] = 1.

With regards to the running time, there are clearly 2h entries to compute. For each choice
of p we only need O(m) time. This gives O(2h · h · m) time overall. ◀

4.4 Potential Reticulations
Throughout this section, let (G, λ) be an instance of DCAO and let R be the set of potential
reticulations of G, that is, R := {v ∈ V | max λ(v) ≥ 2}. Consequently, λ(w) ⊆ {0, 1} for
each w ∈ V (G) \ R. This lets us assume that G − R is acyclic as, otherwise, no λ-abiding
orientation can by acyclic. Thus, we call every connected component T in G − R a tree. For
any v ∈ R, let T (v) denote the set of trees containing neighbors of v in G and, for any tree
T , let T −1(T) denote the set of vertices v ∈ R with T ∈ T (v). Further, let T0(v) denote the
set of trees in T (v) that contain vertices v with 0 ∈ λ(v).

While parameterizing with the number of potential reticulations is particularly motivated
for the phylogenetic version of the orientation problem, the algorithm from Section 4.3 can
be used to solve PDCO if |R| is small since, in the phylogenetic setting, all hazy vertices are
potential reticulations. Therefore, we will focus on the DCAO problem here. Our algorithm
for solving DCAO first applies a series of reduction rules to simplify the instance and allow
us to draw important observations. We then proceed with a dynamic programming over
subsets of the set R, running in O∗(2|R|) time.

▶ Lemma 13. Let T be a tree in G. Let G→ be an acyclic orientation of G with deg−
G→(v) ∈

λ(v) for each v ∈ V (T). Let σ ∈ Top(G→) and let rT be the minimum of V (T) with respect
to σ. In G→,

(i) either rT is a source or rT has a unique parent v ∈ R,
(ii) each vertex v ∈ V (T) with v ̸= rT has a unique parent u and u ∈ V (T),
(iii) for each vertex v ∈ V (T), there is a directed rT -v-path, and
(iv) if any vertex v ∈ V (T) has an incoming arc (u, v) with u ∈ R, then v = rT and

u <σ V (T), and
(v) for each u, v ∈ T −1(T) with u <σ v, all edges between T and v are oriented towards v.

Proof. (i): Suppose rT is not a source in G→. Since rT is minimum with respect to σ, it
has a parent in R. Moreover, rT cannot have two parents in G→ since λ(rT) ⊆ {0, 1} and
deg−

G→(rT) ∈ λ(rT).
(ii): Assume towards a contradiction that T contains a vertex v ̸= rT with no parent

in V (T). Since T is a tree, it contains |V (T)| − 1 edges and, thus, the sum of in-degrees
in G→[V (T)] is |V (T)| − 1. Since rT and v both have in-degree 0 in G→[V (T)], the
pidgeonhole principle implies that there is a vertex w with in-degree at least two in G→[V (T)],
contradicting deg−

G→(w) ∈ λ(w).

IPEC 2023

19:10 Finding Degree-Constrained Acyclic Orientations

(iii): This follows immediately from (ii) and the fact that T is acyclic even in G.
(iv): v = rT follows from (i) and (ii) and u <σ V (T) then follows from (iii).
(v): Assume towards a contradiction that there is an arc (v, w) in G→ with w ∈ V (T).

By (iv), w is the root of T , so u <σ v <σ w ≤σ V (T). However, since u ∈ T −1(T), there is
also an arc (u, w′) in G→ with w′ ∈ V (T), contradicting (iv). ◀

In the following, we call the vertex rT described in Lemma 13 the root of T in G→.

▶ Reduction Rule 14. If G contains some v with λ(v) = ∅, then return “no”.

▶ Reduction Rule 15. Let u ∈ V be a vertex with λ(u) = {0}. For each neighbor v of u,
decrement all numbers in λ(v) and delete u.

Note that all trees T that do not contain a vertex v with 0 ∈ λ(v) have to receive an
incoming arc from a vertex in R. If this vertex is unique for some T , then we can already
orient this edge.

▶ Reduction Rule 16. Let T be a tree in G such that 0 /∈ λ(v) for all v ∈ V (T). If
T −1(T) = ∅, then return “no”. If there is some u with T −1(T) = {u} and |NG(u)∩V (T)| = 1,
then remove T from G.

▶ Reduction Rule 17. Let T be a tree in G and let u ∈ R. Let XT (u) denote the set of edges
between u and T and let ℓ := |XT (u)| ≥ 2. Then remove all edges in XT (u) and decrease all
numbers in λ(u) by ℓ.

Correctness of Reduction Rule 17. We show that, in any λ-abiding orientation G→ of G,
all edges of XT (u) are directed towards u. Towards a contradiction, assume that some G→

contains the arc (u, v) for some v ∈ V (T). By Lemma 13(iv), v is the root of T in G→ and
v ≤σ T for all topological orders σ of G→. But then, all edges in XT (u) are oriented away
from u in G→, contradicting Lemma 13(iv). ◀

In the following, we assume that G is reduced with respect to the reduction rules presented
so far. In particular, for each v ∈ R and each T ∈ T (v), there is a single edge between v and
T in G and each tree T either contains a vertex u with 0 ∈ λ(u) or has at least two vertices
in T −1(T).

Dynamic programming on the subsets of R. Next, we describe a dynamic program
that can decide whether an acyclic λ-abiding orientation exists for G. As usual, it can be
augmented to actually construct such an orientation. Our dynamic programming table DP
stores DP[Q] = 1 for Q ⊆ R if and only if there is an acyclic orientation G→ of G such that
(a) deg−

G→(v) ∈ λ(v) for all v ∈ V \ (R \ Q) and (b) the vertices of Q preceed the vertices
of R \Q in some topological order of G→. Let us remark that ∅ fulfills the conditions (a) and
(b), so DP[∅] = 1. Further, if DP[R] = 1, then G admits an acyclic λ-abiding orientation.

In the following, let Q ⊆ R and suppose that G admits an acyclic λ-abiding orientation
G→ with a topological order σ satisfying Q <σ R \ Q, that is, all vertices of Q preceed all
other vertices of R in σ. Let v be the maximum of Q with respect to σ, let T ∈ T (v) and let
e be the edge in G between v and T . If T ∈ T (u) for some u <σ v then, by Lemma 13(v), e

must be directed towards v in G→. Otherwise e may or may not be directed towards v in
G→. Any vertex v whose list λ(v) does not contradict this will be considered as a possible
choice for a “last vertex of Q” in the dynamic program.

J. Garvardt, M. Renken, J. Schestag, and M. Weller 19:11

▶ Definition 18. Let Q ⊆ R and let v ∈ Q. Let αQ(v) := {T ∈ T (v) | T −1(T) ∩ Q ̸= {v}}
be the set of trees that have an edge to v but also to another vertex in Q, and let NQ(v) :=
N(v) ∩ Q. If λ(v) contains a number z with |αQ(v)| ≤ z − |NQ(v)| ≤ |T (v)|, we call v

eligible with respect to Q.

The computation of DP[Q] is then given by the following recursion:

DP[Q] :=

1 if Q = ∅
1 if Q contains some v that is eligible wrt. Q and DP[Q \ {v}] = 1
0 otherwise.

▶ Lemma 19. Let Q ⊆ R. The definition of DP[Q] matches its semantics, that is, DP[Q] = 1
if and only if there is an acyclic orientation G→ of G such that
(a) deg−

G→(v) ∈ λ(v) for all v ∈ V \ (R \ Q) and
(b) the vertices of Q preceed the vertices of R \ Q in some topological order of G→.

Proof. First, note that the lemma holds for Q = ∅. Thus, by induction, suppose that the
lemma holds for all Q′ with |Q′| = |Q| − 1.

“⇒”: Let DP[Q] = 1, that is, Q contains some v that is eligible with respect to Q and
DP[Q′] = 1 where Q′ := Q \ {v}. By induction hypothesis, there is some orientation G→′

of G such that deg−
G→′(u) ∈ λ(u) for all u ∈ V \ (R \ Q′) and the vertices of Q′ precede the

vertices of R \ Q′ in some topological order σ of G→′. Further, since v is eligible with respect
to Q, there is some t ∈ N with |αQ(v)| ≤ t ≤ |T (v)| and |NQ(v)| + t ∈ λ(v). Hence, there is
a size-t set X with αQ(v) ⊆ X ⊆ T (v).

Now, we modify G→′ into a new orientation G→ as follows: First, for each T ∈ X \ αQ(v),
pick any vertex w ∈ V (T) with 0 ∈ λ(w) and orient all edges incident with a vertex in T

away from w. Note that w exists since G is reduced with respect to Reduction Rule 16 and
due to condition (b). The orientation is well-defined since T is a tree. Also note that the
in-degrees of vertices in Q′ remain unchanged since no vertex of Q′ is adjacent to any vertex
in such a T (since T /∈ αQ(v)). Second, orient all edges between v and vertices w ∈ R \ Q

away from v.
Since no vertex in Q′ has become a descendant of v and no vertex in R \ Q has become an

ancestor of v, we conclude that there is a topological order π of G→ with Q′ <π v <π R \ Q.
This implies condition (b). Further, as all vertices in Q′ preceed v in π and v has exactly
one arc incoming from each T ∈ X , we conclude that deg−

G→(v) = |NQ′(v)| + t ∈ λ(v). This
implies condition (a).

“⇐”: Let G→ be an acyclic orientation of G with topological order σ such that conditions
(a) and (b) are satisfied. Let v be the maximum with respect to σ of Q and let P denote the
set of parents of v in G→. Clearly, we have P ∩ Q = NQ(v). Further, by Lemma 13(iv), all
edges between v and trees in αQ(v) are oriented towards v in G→. Thus, |NQ(v)|+ |αQ(v)| ≤
deg−

G→(v) ≤ |NQ(v)| + |T (v)|. By condition (a), we have deg−
G→(v) ∈ λ(v), implying that

v is eligible with respect to Q. Further, since condition (a) holds for Q, it also holds
for Q′ := Q \ {v} and, since v has been chosen as the maximum of Q with respect to σ,
condition (b) also holds for Q′. By induction hypothesis, DP[Q′] = 1, implying DP[Q] = 1
by definition of DP[Q]. ◀

IPEC 2023

19:12 Finding Degree-Constrained Acyclic Orientations

Running Time. For the running time, first note that the reduction rules can be exhaustively
applied in O((n + m) · maxλ) time. Second, for any set Q ⊆ R and vertex v ∈ Q, eligibility
of v with respect to Q can be checked in O(degG(v) · |Q|) with a linear-time preprocessing
to determine |T (v)| for each v and T −1(T) for each T . Thus, in total, the table can be
computed in O(2|R| · |R| · m + (n + m) · maxλ) time.

▶ Theorem 20. DCAO can be solved in O(2|R| · |R| · m + (n + m) · maxλ) time.

5 Hardness with respect to treewidth

By Theorem 7, DCAO and DCO are XP with respect to treewidth. In this section, we
prove also a corresponding negative result. Both, DCO and DCAO, are W[1]-hard with
respect to treewidth.

▶ Theorem 21. DCO is W[1]-hard with respect to treewidth.

Proof. We reduce from Matching with Lower and Upper Quotas (MLQ) which
is known to be W[1]-hard with respect to treewidth [1, Thm. 6]. An instance of MLQ
consists of a bipartite graph G = (A ·∪ B, E), an integer k ∈ N, and lower and upper
quotas ℓ, u : B → N. A solution to this MLQ instance is any subgraph F of G with
|E(F)| ≥ k such that every vertex in V (F) ∩ A has degree 1 and every vertex v ∈ V (F) ∩ B

has degree degF (v) ∈ [ℓ(v), u(v)].
We construct a graph D = (V (G) ·∪ {⋆}, E′) from G by connecting vertex ⋆ to every

vertex in A. Define λ : V (D) → 2N by

λ(⋆) := {0, . . . , |A| − k},

λ(a) := {degD(a) − 1} ∀a ∈ A,

λ(b) := {0} ∪ [ℓ(b), u(b)] ∀b ∈ B.

Note that tw(D) ≤ tw(G) + 1 since D − {⋆} = G. We claim that (D, λ) is a yes-instance
of DCO if and only if (G, k, ℓ, u) is a yes-instance of MLQ.

“⇒”: Let α be an orientation of G such that every vertex v ∈ V (D) has deg−(v) ∈ λ(v).
Then we define F to be the subgraph of G induced by those edges that are directed from A

towards B. Clearly, this subgraph satisfies degF (b) ∈ [ℓ(b), u(b)] for each b ∈ B and
degF (a) = 1 for each a ∈ A. Also, since every a ∈ A has a single outwards-directed edge,
and at most |A| − k of these must be directed towards ⋆, there are at least k edges in F .

“⇐”: Let F be a solution to MLQ. Then we construct an orientation of D by orienting
each edge in A × B towards B if and only if that edge is contained in F . Furthermore, we
orient each edge {⋆, a} with a ∈ A towards a if and only if a ∈ V (F). Clearly, our assumption
on F then gives deg−(b) ∈ λ(b) for every b ∈ B. Each vertex a ∈ A has deg+(a) = 1, either
because of an edge to B (if a ∈ V (F)), or because of an edge towards ⋆ (if a /∈ V (F)); thus
deg−(a) ∈ λ(a). Finally, deg−(⋆) = |A \ V (F)| ≤ |A| − k. This concludes the proof. ◀

▶ Theorem 22. DCAO is W[1]-hard with respect to treewidth.

Proof. We reduce from an DCO instance (G, λ). To this end, subdivide each edge of G

twice, and set λ′(v) = {0, 2} for the newly created degree-2 vertices. Let G′ be the resulting
graph and λ′(v) = λ(v) for all v ∈ V (G). It is easy to see that there is a natural bijection
between the λ-abiding orientations of G and the λ′-abiding orientations of G′. Since any
λ′-abiding orientation of G′ must be acyclic and tw(G′) = tw(G), this proves the claim. ◀

J. Garvardt, M. Renken, J. Schestag, and M. Weller 19:13

6 Conclusion

We analyzed three variants of graph orientation within the framework of parameterized
complexity. With PDCO and DCAO, two of these variants require that a solution is acyclic.
The requirement of acyclicity is hardly considered in literature but arises naturally when
building up of phylogenetic networks.

We showed that PDCO and DCAO are NP-hard even if the maximum degree of the
input graph is three and the potential in-degrees are consecutive. On the positive side, we
established FPT-algorithms for DCAO and PDCO with respect to the number of vertices
which have more than one option as in-degree, and with respect to the number of vertices
having potentially two incoming edges.

Even though DCO and DCAO are W[1]-hard when parameterized by the treewidth, all
three problems are solvable in polynomial time if the input graph has constant treewidth.
Therefore it is natural to ask whether DCO, DCAO or PDCO can be solved in polynomial
time on graph classes more general than graphs with constant treewidth, such as planar
graphs. To strengthen the result that DCO is FPT when parameterized by the total number
of 2-gaps, it would be good to investigate whether DCO is FPT with respect to the number
of vertices having a 2-gap, or a new parameter h-gap-index where the h-gap-index, similar
to the h-vertex-index, is the smallest number h such that at least h vertices have at least h

2-gaps.

References

1 Ashwin Arulselvan, Ágnes Cseh, Martin Groß, David F. Manlove, and Jannik Matuschke.
Matchings with lower Quotas: Algorithms and Complexity. Algorithmica, 80(1):185–208, 2018.
doi:10.1007/s00453-016-0252-6.

2 Laurent Bulteau and Mathias Weller. Parameterized Algorithms in Bioinformatics: An
Overview. Algorithms, 12(12):256, 2019. doi:10.3390/A12120256.

3 Laurent Bulteau, Mathias Weller, and Louxin Zhang. On turning a Graph into a Phylogenetic
Network. working paper or preprint, 2019. URL: https://hal.science/hal-04085424.

4 Gérard Cornuéjols. General Factors of Graphs. Journal of Combinatorial Theory Series B,
45(2):185–198, 1988. doi:10.1016/0095-8956(88)90068-8.

5 Joseph Felsenstein. Inferring Phylogenies. Sinauer Associates, 2 edition, 2003.
6 András Frank. On the Orientation of Graphs. Journal of Combinatorial Theory Series B,

28(3):251–261, 1980. doi:10.1016/0095-8956(80)90071-4.
7 Harold N. Gabow. Upper degree-constrained partial Orientations. In Proceedings of the 17th

Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 554–563, 2006. URL:
https://dl.acm.org/doi/10.5555/1109557.1109618.

8 András Gyárfás and András Frank. How to orient the edges of a graph. In Proceedings of the
Fifth Hungarian Combinatorial Colloquium, Keszthely, pages 353–362, 1976. URL: https://
users.renyi.hu/~gyarfas/Cikkek/09_FrankGyarfas_HowToOrientTheEdgesOfAGraph.pdf.

9 Katharina T. Huber, Leo van Iersel, Remie Janssen, Mark Jones, Vincent Moulton, Yukihiro
Murakami, and Charles Semple. Orienting undirected Phylogenetic Networks, 2019. arXiv:
1906.07430.

10 Daniel H. Huson, Regula Rupp, and Céline Scornavacca. Phylogenetic Networks - Concepts,
Algorithms and Applications. Cambridge University Press, 2010.

11 Zoltán Király and Dömötör Pálvölgyi. Acyclic orientations with degree constraints, 2018.
arXiv:1806.03426.

12 László Lovász. The Factorization of Graphs. In Proceedings of the Calgary International
Conference on Combinatorial Structures and their Applications, 1970.

IPEC 2023

https://doi.org/10.1007/s00453-016-0252-6
https://doi.org/10.3390/A12120256
https://hal.science/hal-04085424
https://doi.org/10.1016/0095-8956(88)90068-8
https://doi.org/10.1016/0095-8956(80)90071-4
https://dl.acm.org/doi/10.5555/1109557.1109618
https://users.renyi.hu/~gyarfas/Cikkek/09_FrankGyarfas_HowToOrientTheEdgesOfAGraph.pdf
https://users.renyi.hu/~gyarfas/Cikkek/09_FrankGyarfas_HowToOrientTheEdgesOfAGraph.pdf
https://arxiv.org/abs/1906.07430
https://arxiv.org/abs/1906.07430
https://arxiv.org/abs/1806.03426

19:14 Finding Degree-Constrained Acyclic Orientations

13 László Lovász. The Factorization of Graphs. II. Acta Mathematica Academiae Scientiarum
Hungarica, 23:223–246, 1972. doi:10.1007/BF01889919.

14 Luke Mathieson and Stefan Szeider. Editing Graphs to satisfy degree constraints: A
parameterized approach. Journal of Computer and System Sciences, 78(1):179–191, 2012.
doi:10.1016/j.jcss.2011.02.001.

15 Erin K Molloy, Arun Durvasula, and Sriram Sankararaman. Advancing admixture Graph
estimation via maximum likelihood Network Orientation. Bioinformatics, 37(Supplement
1):i142–i150, July 2021. doi:10.1093/bioinformatics/btab267.

16 Thomas J. Schaefer. The Complexity of Satisfiability Problems. In Proceedings of the
10th Annual ACM symposium on Theory of computing (STOC), pages 216–226, 1978. doi:
10.1145/800133.804350.

17 Feng Shi, Qilong Feng, Jianer Chen, Lusheng Wang, and Jianxin Wang. Distances between
Phylogenetic Trees: A survey. Tsinghua Science and Technology, 18(5):490–499, 2013. doi:
10.1109/TST.2013.6616522.

18 Katherine St. John. Review Paper: The shape of Phylogenetic Treespace. Systematic Biology,
66(1):e83–e94, June 2016. doi:10.1093/sysbio/syw025.

https://doi.org/10.1007/BF01889919
https://doi.org/10.1016/j.jcss.2011.02.001
https://doi.org/10.1093/bioinformatics/btab267
https://doi.org/10.1145/800133.804350
https://doi.org/10.1145/800133.804350
https://doi.org/10.1109/TST.2013.6616522
https://doi.org/10.1109/TST.2013.6616522
https://doi.org/10.1093/sysbio/syw025

Graph Clustering Problems Under the Lens of
Parameterized Local Search
Jaroslav Garvardt #

Institute of Computer Science, Friedrich Schiller University Jena, Germany

Nils Morawietz #

Institute of Computer Science, Friedrich Schiller University Jena, Germany

André Nichterlein #

Technische Universität Berlin, Germany

Mathias Weller #

Technische Universität Berlin, Germany

Abstract
Cluster Editing is the problem of finding the minimum number of edge-modifications that
transform a given graph G into a cluster graph G′, that is, each connected component of G′ is a
clique. Similarly, in the Cluster Deletion problem, we further restrict the sought cluster graph G′

to contain only edges that are also present in G. In this work, we consider the parameterized
complexity of a local search variant for both problems: LS Cluster Deletion and LS Cluster
Editing. Herein, the input also comprises an integer k and a partition C of the vertex set of G that
describes an initial cluster graph G∗, and we are to decide whether the “k-move-neighborhood” of G∗

contains a cluster graph G′ that is “better” (uses less modifications) than G∗. Roughly speaking,
two cluster graphs G1 and G2 are k-move-neighbors if G1 can be obtained from G2 by moving at
most k vertices to different connected components.

We consider parameterizations by k + ℓ for some natural parameters ℓ, such as the number of
clusters in C, the size of a largest cluster in C, or the cluster-vertex-deletion number (cvd) of G.
Our main lower-bound results are that LS Cluster Editing is W[1]-hard when parameterized
by k even if C has size two and that both LS Cluster Deletion and LS Cluster Editing are
W[1]-hard when parameterized by k + ℓ, where ℓ is the size of the largest cluster of C. On the
positive side, we show that both problems admit an algorithm that runs in kO(k) · cvd3k ·nO(1) time
and either finds a better cluster graph or correctly outputs that there is no better cluster graph in
the k-move-neighborhood of the initial cluster graph.

As an intermediate result, we also obtain an algorithm that solves Cluster Deletion in
cvdcvd ·nO(1) time.

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis; Theory of
computation → Parameterized complexity and exact algorithms

Keywords and phrases parameterized local search, permissive local search, FPT, W[1]-hardness

Digital Object Identifier 10.4230/LIPIcs.IPEC.2023.20

Funding Jaroslav Garvardt: Partially supported by the Carl Zeiss Foundation within the project
“Interactive Inference”.
Nils Morawietz : Partially supported by the DFG, project OPERAH, KO 3669/5-1.

1 Introduction

Graph-based data clustering is a fundamental task with numerous applications [40]. Within
this broad setting, we focus on the approach of modfying an input graph into a cluster graph
(that is, a disjoint union of cliques) with as few edge modifications as possible. Herein, edges
may be deleted or inserted, leading to the well-known Cluster Editing or Correlation

© Jaroslav Garvardt, Nils Morawietz, André Nichterlein, and Mathias Weller;
licensed under Creative Commons License CC-BY 4.0

18th International Symposium on Parameterized and Exact Computation (IPEC 2023).
Editors: Neeldhara Misra and Magnus Wahlström; Article No. 20; pp. 20:1–20:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jaroslav.garvardt@uni-jena.de
https://orcid.org/0000-0002-8762-8567
mailto:nils.morawietz@uni-jena.de
https://orcid.org/0000-0002-7283-4982
mailto:andre.nichterlein@tu-berlin.de
https://orcid.org/0000-0001-7451-9401
mailto:mathias.weller@tu-berlin.de
https://orcid.org/0000-0002-9653-3690
https://doi.org/10.4230/LIPIcs.IPEC.2023.20
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

20:2 Graph Clustering Problems Under the Lens of Parameterized Local Search

Clustering [2, 4, 41] problem. If only edge deletions are allowed, then the problem is called
Cluster Deletion [41]. One important advantage of the graph-modification approach is
that the number of clusters is not part of the input but is determined implicitly.

Cluster Deletion and, in particular, Cluster Editing are highly relevant in practice,
with application areas ranging from bioinformatics [4] to data mining [2] and psychology [46].
Unfortunately, it is NP-hard to decide whether a given graph is at most a given number
of modifications away from being a cluster graph [41]. Therefore, efforts have been made
to circumvent this hardness. One particularly successful approach are parameterized algo-
rithms [8, 13, 18, 23, 26, 37]. Given the amount of research and the practical relevance, it is
no surprise that Cluster Editing was selected as the problem for the sixth installment
of the parameterized implementation challenge PACE 2021 [32]. The results revealed the
strength of local search for Cluster Editing: The top ten submissions in the heuristic
track all involve local search. Moreover, the top three submissions always returned a solution
less than 1.001 times larger than the best known solution, that is, the relative error is
below 10−3. This is in stark contrast to the best known polynomial-time approximation
having an approximation factor of 2.06 [12], thus having a relative error that is three orders
of magnitude larger!

In this work we complement the results of the PACE 2021 heuristic track with a theoretical
study of the local search problems associated with Cluster Editing and Cluster Dele-
tion. More precisely, we study the following question: Can we improve a given clustering1

of the input graph G by “moving” at most k vertices to different clusters? Many local search
algorithms submitted to PACE 2021 try to move vertices between clusters to improve their
solution [3, 7, 22, 32, 42]. For Cluster Editing we are free to move any vertex in any
cluster (inserting missing edges within a cluster and deleting edges between clusters) while,
for Cluster Deletion, we have to ensure that there are no missing edges within any cluster
we create. The respective local search versions of the problems are called LS-Cluster
Editing and LS-Cluster Deletion (see Section 2 for precise problem definitions).

Related Work. In the more general setting, our work fits into the theme of parameterized
local search. Unfortunately, most parameterized local search problems turn out to be W[1]-
hard with respect to their local search radius k [9, 15, 17, 21, 27, 28, 33, 39, 43]. Consequently,
one often tries to combine k with some structural parameter ℓ in the hope of obtaining an
FPT algorithm. Experimental evaluation showed that such algorithms often achieve very
good solutions quickly [19, 20, 25, 29, 31].

Dörnfelder et al. [15] already proved the W[1]-hardness of a local search version of
Cluster Editing with a different local neighborhood: they search for a better solution
by modifying at most k edges in the given solution. Recently, Luo et al. [38] considered the
closely related Dynamic Cluster Editing problem, in which a given clustering C for a
graph G has to be adapted while the graph G changes dynamically, keeping the modification
distance between them low. In this setting, the main question is whether minor changes
to C are sufficient to produce a good clustering for the (slightly) changed new graph. Since,
in this setting, the old graph G is actually irrelevant for the computational problem, there
are only minor technical differences to LS-Cluster Editing. Luo et al. [38] measure the
distance to C by the number of vertices moving to a different cluster (they call this “matching
distance”) – the same measure we use. They analyzed the parameterized complexity of

1 A clustering can be viewed as an equivalence relation (“which vertices will end up in the same cluster?”)
or, equivalently, a partition of the vertex set of G.

J. Garvardt, N. Morawietz, A. Nichterlein, and M. Weller 20:3

Dynamic Cluster Editing with respect to the solution size ℓ (number of edges to modify
in G) and the number k of changes allowed to be done to the given solution. They obtained
W[1]-hardness for each of the parameters k and ℓ individually and fixed-parameter tractability
with respect to the combined parameter k + ℓ.

Besides the work on Dynamic Cluster Editing, there are numerous works on Cluster
Editing, including search-tree based algorithms [8, 23], kernelizations [10, 13, 18, 26], and
above lower-bound parameterizations [6, 37]. For Cluster Deletion, there are search-tree
based algorithms [30, 45] and problem kernels [10, 11].

Our Results. We consider the number k of vertices allowed to be moved to different clusters,
since this number can be expected to be small (mostly one-digit values in PACE 2021 local
search submissions). We show that LS-Cluster Deletion and LS-Cluster Editing are
– like many other local search problems – W[1]-hard with respect to the local search radius k,
so we try to combine k with different structural parameters. If a parameter combination k + ℓ

allows for fixed-parameter tractability, then we aim for running times of the form ℓO(k) · nO(1)

as advocated by Komusiewicz and Morawietz [34]. The motivation is that k is expected to
be much smaller than even ℓ which, in turn, is hopefully considerably smaller than n. Thus,
the resulting algorithms are expected to be very efficient in practice, which is particularly
important since local search subroutines are called excessively in the solvers (see for example
the PACE 2021 solvers [32]).

We combine k with the maximum degree ∆, the maximum size of any clique in the
given solution, or the cluster vertex deletion number cvd, that is, the number of vertices to
remove to obtain a cluster graph. In Section 3, we present algorithms with running times of
the form (ℓ · k)O(k)nO(1) for ℓ = ∆ (see Theorem 3.3) and ℓ = cvd (see Corollary 3.8 and
Theorem 3.9). As an intermediate result, we obtain an algorithm solving Cluster Deletion
in cvdcvd ·nO(1) time (see Theorem 3.6). We complement the algorithms for LS-Cluster
Deletion and LS-Cluster Editing with lower bounds in Section 4. In particular, we show
that LS-Cluster Editing is W[1]-hard with respect to the sum of k, the maximum cluster
size, and the degeneracy of the input graph G (see Theorem 4.2) and that LS-Cluster
Editing is W[1]-hard with respect to k in the restricted case that the given clustering
consists of only two clusters (see Theorem 4.5). LS-Cluster Deletion is also W[1]-hard
with respect to the sum of k and the maximum cluster size (see Theorem 4.6). Moreover,
the employed reductions also show that neither LS-Cluster Editing nor LS-Cluster
Deletion can be solved in f(k) · no(k) time unless the ETH fails. This shows that in the
above mentioned algorithms the O(k) in the exponent cannot be replaced by o(k).

Due to space restriction, proofs of statements marked with (⋆) are deferred to a full
version.

2 Preliminaries

For details about relevant definitions of parameterized complexity such as fixed-parameter
tractability, W[1]-hardness, parameterized reductions, kernelization, and ETH, we refer to
the standard monographs [14, 16].

Let X and Y be sets. We denote by A ⊕ B := (A \ B) ∪ (B \ A) the symmetric difference
between A and B. A partition P of X is a collection of non-empty and pairwise disjoint
subsets of X such that ∪P ∈PP = X. Moreover, for an integer k, we denote by

(
X
k

)
the

collection of all size-k subsets of X. Let G = (V, E) be a graph. For a vertex set S ⊆ V , we
denote by EG(S) :=

(
S
2
)

∩ E the edges of G between the vertices of S. If G is clear from the

IPEC 2023

20:4 Graph Clustering Problems Under the Lens of Parameterized Local Search

context, we may omit the subscript. A partition C of V is called a clustering of G. Each
vertex set C of C is called a cluster. For a clustering C, we denote by E(C) :=

⋃
C∈C

(
C
2
)

the
edges inside the clusters of C.

We call a function χ : V → N a coloring of V . We say that color i ∈ N is used by χ if there
is at least one vertex v ∈ V with χ(v) = i. For a coloring χ, let Cχ denote the clustering of G

where for each color i used by χ, χ−1(i) = {v′ ∈ V | χ(v′) = i} is a cluster of Cχ. We call χ

a cluster-coloring of Cχ and we call Cχ the clustering of χ. Note that each clustering has
infinitely many cluster-colorings and that all these cluster-colorings are identical with respect
to isomorphism. Here, two colorings χ and χ′ are isomorphic if there is a bijection f : N → N
such that χ = f ◦ χ′.

Let χ and χ′ be colorings of V . We denote by Move(χ, χ′) := {v ∈ V | χ(v) ̸= χ′(v)}
the vertices that receive different colors under χ and χ′. Moreover, we set move(χ, χ′) :=
|Move(χ, χ′)|. Two colorings χ and χ′ are k-move-neighbors if move(χ, χ′) ≤ k. Analogously,
two clusterings C and C′ are k-move-neighbors if there is a cluster-coloring χ of C and a cluster-
coloring χ′ of C′ such that χ and χ′ are k-move-neighbors. We also denote by move(C, C′)
the smallest integer k such that C and C′ are k-move-neighbors. Note that move(C, C′) can
be computed in polynomial time [38]. For a clustering C we define cost(C) := |E(C) ⊕ E|. A
clustering C′ is improving over a clustering C, if cost(C′) < cost(C).

For a function f : A → B and C ⊆ A we denote by f |C the function f restricted to C.

▶ Observation 2.1. Let G be a graph and let C and C′ be clusterings of G with move(C, C′) ≤ k.
Then, |C ∩ C′| ≥ |C| − 2k.

In this work, we consider the parameterized complexity of the following problems.

LS-Cluster Deletion
Input: An undirected graph G = (V, E), an integer k and a clustering C of G

with E(C) ⊆ E.
Question: Is there an improving k-move-neighbor C′ of C for G with E(C′) ⊆ E?

LS-Cluster Editing
Input: An undirected graph G = (V, E), an integer k and a clustering C of G.
Question: Is there an improving k-move-neighbor C′ of C for G?

Further, we also analyze the permissive version of both problems, that is, the problem,
where we want to find any better solution or correctly output that the given solution has no
improving k-move-neighbor. Thus, the permissive problem variants allow to return better
clusterings even if these are not k-move-neighbors of C.

3 Algorithms for Permissive Problem variants

In this section, we present our algorithmic results. We start with the parameterization
maximum degree ∆ and k. A first observation allows us to assume that any given clustering
in our instance of LS-Cluster Editing consists exclusively of clusters that have diameter
at most two in the input graph. Note that for LS-Cluster Deletion, the input clusters in
the given clustering must all have diameter one, that is, they are cliques in the input graph.

▶ Observation 3.1. Let G be a graph and let C be a clustering of G. If there is a cluster C ∈ C
that has diameter at least three in G, then there is an improving 1-move-neighbor C′ of C.

J. Garvardt, N. Morawietz, A. Nichterlein, and M. Weller 20:5

Proof. Let u, v ∈ C be two vertices of distance at least three in G. Thus, we have N(u) ∩
N(v) = ∅. Assume without loss of generality that |N(v) ∩ C| ≤ |N(u) ∩ C|.

We show that C′ := (C \ {C}) ∪ {C \ {v}, {v}} is an improving 1-move-neighbor of C.
Clearly, C′ is a 1-move-neighbor of C as only v moves to a previously empty cluster. Moreover,
this move costs |N(v) ∩ C| edge deletions but saves at least |N(u) ∩ C| + 1 many edge
insertions. Since |N(v) ∩ C| ≤ |N(u) ∩ C|, it follows that C′ is improving over C. ◀

With the knowledge that the given clusters are connected, it is not too hard to see that
we can restrict ourselves to looking for solutions where the vertices that change clusters are
not too far apart from each other; otherwise we can simply ignore parts of the changes and
obtain a better clustering by moving even fewer vertices. The formal statement is as follows:

▶ Lemma 3.2 (⋆). Let G be a graph and C a clustering and C′ an improving clustering
for C. Let C1, . . . , Cq be the clusters in C that change in C′ (that is, {C1, . . . , Cq} :=
C \ C′). If G[C1 ∪ . . . ∪ Cq] is not connected, then there is an improving clustering C∗ of C
with move(C, C∗) < move(C, C′). Moreover, if E(C′) ⊆ E, then E(C∗) ⊆ E.

With Observation 3.1 and Lemma 3.2 we can show that checking for solutions for LS-
Cluster Editing and LS-Cluster Deletion boils down to finding subgraphs of bounded
size in graphs of bounded degrees for which we can apply an algorithm of Komusiewicz and
Sommer [35]. Overall this results in the following statement.

▶ Theorem 3.3 (⋆). LS-Cluster Editing and LS-Cluster Deletion can be solved in
∆8k(6ek)2k+1nO(1) time.

We remark that an algorithm solving LS-Cluster Editing or LS-Cluster Deletion
in f(∆) ·nO(1) time is unlikely: Setting k := n and applying this algorithm repeatedly until no
improvement is found would solve Cluster Editing or Cluster Deletion in f(∆) · nO(1)

time; this is unlikely as both problems are NP-hard for constant maximum degree [36].

Parameterization by cluster vertex deletion number and k. In the remainder of the
section we provide two algorithms exploiting small modulators to cluster graphs – one for
LS-Cluster Deletion in Section 3.1 and one for LS-Cluster Editing in Section 3.2.
For both of our algorithms, we use the following notation. We say that a vertex set M ⊆ V is
a (cluster) modulator of G if G[V \M] is a cluster graph. Let B be the connected components
of G[V \ M]. We call each clique B ∈ B a bag. We denote by cvd(G) the cluster vertex
deletion number, that is, the size of a smallest cluster modulator of G. If the graph G is
clear from the context, we may simply write cvd.

3.1 An Algorithm for LS-Cluster Deletion
Let G = (V, E) be a graph and let C be a clustering of G. Moreover, let S ⊆ V and let CS

be a clustering of G[S]. We say that C extends CS if for each cluster C ∈ CS there is a
cluster C ′ ∈ C with C ′ ∩ S = C.

▶ Lemma 3.4. Let G = (V, E) be a graph and let M be a cluster modulator of G. Moreover,
let CM be a given clustering of G[M] with E(CM) ⊆ E. In 3|CM | · nO(1) time, one can find a
best clustering C of G among all clusterings C′ of G with E(C′) ⊆ E that extend CM .

IPEC 2023

20:6 Graph Clustering Problems Under the Lens of Parameterized Local Search

Proof. Note that for each clustering C of G that extends CM , the edges between vertices
of M in both E(C) and E(CM) are equal. Consequently, the task can also be reformulated
as follows: find a clustering C∗ of G that maximizes the number of edges having at least
one endpoint in V \ M among all clusterings C of G with E(C) ⊆ E that extend CM . In the
following, we describe a dynamic program solving this reformulated task.

Fix an arbitrary ordering of the bags and let Bi denote the ith bag of B according to
this ordering. The dynamic programming table T has entries of type T [X, i] with X ⊆ CM

and i ∈ [0, |B|]. For X ⊆ CM and i ∈ [0, |B|], let VX denote the union of all clusters of X and
let V i

X denote the union of VX and the first i bags. The entry T [X, i] stores the maximal
number of edges having at least one endpoint in V i

X \ M of any clustering Ci
X of G[V i

X]
with E(C) ⊆ E that extends X. Intuitively, this entry stores the best way to distribute the
vertices of the first i bags among the clusters of X.

To compute an entry T [X, i], we iterate over all subsets X ′ of X and check for the best
way to distribute the vertices of the first i − 1 bags among the clusters of X ′ and the best
way to distribute the vertices of the ith bag among the clusters of X \ X ′.

Formally, for each X ⊆ CM , we set T [X, 0] := 0 and for each i ∈ [1, |B|], we set

T [X, i] := max
X′⊆X

T [X ′, i − 1] + gainX\X′

i .

Here, gainX\X′

i is the number of edges having at least one endpoint in bag Bi of the best
way to distribute the vertices of Bi among the clusters of X \ X ′. This recurrence is correct
because no cluster C in a clustering C of G can contain vertices of two distinct bags without
violating E(C) ⊆ E.

In the following, we describe how to compute gainY
i for each i ∈ [1, |B|] and each Y ⊆ CM .

▷ Claim 3.5. In 3|CM | · nO(1) time, the values gainY
i can be computed for all i ∈ [1, |B|] and

all Y ⊆ CM .

Proof. The computation of this value relies on the following observation: Let C be a best
clustering of G[VY ∪ Bi] with E(C) ⊆ E that extends Y . Moreover, let C be a largest cluster
of C. Then C contains all vertices of Bi that are adjacent to all vertices of C ∩ M . This is
true, since if there would be a cluster C ′ in C containing a vertex v of {v ∈ Bi | C ⊆ N(v)},
then C′ := (C \ {C, C ′}) ∪ {C ∪ {v}, C ′ \ {v}} is a clustering with E(C′) ⊆ E that improves
over C. The properties of C′ hold since C is a largest cluster of C and Bi is a clique in G.

Hence, to solve this intermediate task, we can branch which cluster C of Y ∪ {∅} will
be extended to be the largest cluster in C, add all vertices of Bi to C that may fit into this
cluster and solve the task recursively.

This can also be done by a dynamic program. We introduce the dynamic programming
table Di with entries of type Di[Y, Z] with Y ⊆ CM and Z ⊆ Y .

For each set Z ⊆ Y , we let RemainZ
Y := Bi \

(⋃
C∈Y \Z{v ∈ Bi | C ⊆ N(v)}

)
denote the

set of vertices of Bi that do not fit in any cluster of Y \ Z. The entry Di[Y, Z] stores the
maximal number of edges having at least one endpoint in RemainZ

Y of any clustering Ci
Z

of G[RemainZ
Y ∪

⋃
C∈Y C] with E(C) ⊆ E that extend Z.

For each Y ⊆ CM , we set Di[Y, ∅] :=
(|Remain∅

Y |
2

)
and for each non-empty Z ⊆ Y , we set

Di[Y, Z] := max
((

|RemainZ
Y |

2

)
, max

C∈Z

(
|FitC |

2

)
+ |FitC | · |C| + Di[Y, Z \ {C}]

)
,

where FitC := {v ∈ RemainZ
Y | C ⊆ N(v)} denotes the set of vertices of RemainZ

Y that fit
into the cluster C.

J. Garvardt, N. Morawietz, A. Nichterlein, and M. Weller 20:7

This recurrence is correct by the above observation: in each optimal clustering Ci
Z

of G[RemainZ
Y ∪

⋃
C∈Y C] with E(C) ⊆ E that extend Z, there is a largest cluster C ′ ∈ Ci

Z

that contains all vertices of FitC′∩M .
Finally, for each Y ⊆ CM , we set gainY

i := Di[Y, Y]. Since for each i ∈ [1, |B|], the
table Di contains 3|CM | entries and each such entry can be computed in nO(1) time, the
values gainY

i can be computed for all i ∈ [1, |B|] and all Y ⊆ CM in the stated running time.
Moreover, note that a corresponding clustering can be computed via traceback. ◁

Let C∗ be any best clustering of G among all clusterings C of G with E(C) ⊆ E that
extend CM . Then, the number of edges of E(C∗) having at least one endpoint in any bag is
stored in T [CM , |B|]. Moreover, a corresponding clustering can be found via traceback.

Since for each i ∈ [0, |B|] and each X ⊆ CM , the table entry T [X, i] can be computed in
2|X| · nO(1) time and there are 2|CM | choices for X, each table entry of T can be computed in
time

∑|CM |
i=1

(|CM |
i

)
· 2i · nO(1) ⊆ 3|CM | · nO(1). ◀

Note that this implies the following FPT-algorithm for Cluster Deletion when
parameterized by cvd: First, compute a minimum cluster modulator M of G in 1.811cvd ·
nO(1) time [44]. Second, iterate over all possible clusterings of G[M] and apply the algorithm
behind Lemma 3.4. This implies a running time of 1.811cvd · Bcvd · nO(1), where Bcvd is
the cvd-th Bell number which denotes the number of partitions of a set of size cvd. Since for
each n ∈ N, Bn < (n

ln(n+1))n [5], this implies the following.

▶ Theorem 3.6. Cluster Deletion can be solved in cvdcvd ·nO(1) time.

Next, we show how we can use Lemma 3.4 to obtain a permissive algorithm for LS-
Cluster Deletion when parameterized by cvd and k.

▶ Theorem 3.7. Let G be a graph and let M be a given cluster modulator of G. Moreover,
let C be a clustering of G with E(C) ⊆ E and let k ∈ N. In |M |2k ·

(|M |
k

)
· kk · 34k · nO(1) time,

one can find a clustering C′ of G with E(C′) ⊆ E that is at least as good as a best clustering C∗

of G with E(C∗) ⊆ E and move(C, C∗) ≤ k.

Proof. Let C∗ be a clustering of G that maximizes |E(C∗)| among all clusterings C′′ of G

with E(C′′) ⊆ E and move(C, C′′) ≤ k. Moreover, let M := {C ∈ C | C ∩ M ≠ ∅} and
M∗ := {C ∈ C∗ | C ∩ M ̸= ∅} denote the sets of clusters intersecting M , of C and C∗,
respectively.

Let CM := {C ∩ M | C ∈ M} denote the clusters of M restricted to the vertices of M .
Similarly, let C∗

M := {C ∩M | C ∈ M∗}. Note that move(C, C∗) ≤ k implies move(CM , C∗
M) ≤

k. Hence, to find a clustering C′ of G that is at least as good as C∗, it suffices to enumerate
all clusterings C′

M of G[M] with move(CM , C′
M) ≤ k (which includes C∗

M) and to compute, for
each such clustering C′

M , any best clustering for G that extends C′
M . As the latter task can

be done in 3|C′
M | · nO(1) time by Lemma 3.4, it remains to describe how one can enumerate

all such clusterings C′
M of G[M].

This can be done in
(|M |

k

)
·(|M|+k)k ·nO(1) time by iterating over all possible subsets M ′ ⊆

M of size k and iterating over all possible ways to move these k vertices into any of the
clusters of M (including the clusters where these vertices came from) or opening a new
cluster.

Hence, this algorithm runs in
(|M |

k

)
· (|M| + k)k · 3|M|+k · nO(1) time. Note that this is not

the desired running time since |M| occurs in the exponent of the running time and might be
much larger than k.

IPEC 2023

20:8 Graph Clustering Problems Under the Lens of Parameterized Local Search

To still obtain the desired running time, we perform some initial branching if |M| > 2k.
The idea behind this initial branching relies on Observation 2.1. Since at most k vertices
were moved to obtain M∗ from M, Observation 2.1 implies |M ∩ M∗| ≥ |M| − 2k. In other
words, there is a subset M′ ⊆ M of size at most 2k such that M \ M′ ⊆ M ∩ M∗. This
implies that all edge modifications having at least one endpoint in any cluster of M \ M′

are identical in both E(C) and E(C∗). Hence, by applying for each subset M′ ⊆ M of size
at most 2k the above described algorithm on the graph G[V \

(
∪C∈M\M′C

)
], we find a

clustering C′ with E(C′) ⊆ E which is at least as good as C∗. This initial branching can be
done in |M|2k · nO(1) ⊆ |M |2k · nO(1) time.

Since for each such branching-instance, there are at most 2k clusters containing vertices
of M , the whole running time evaluates to |M |2k ·

(|M |
k

)
· (3k)k · 33k · nO(1) = |M |2k ·

(|M |
k

)
·

kk · 34k · nO(1) time. ◀

Since a cluster modulator can be 2-approximated in polynomial time [1], Theorem 3.7
implies the following:

▶ Corollary 3.8. The permissive version of LS-Cluster Deletion can be solved in (kk +
2O(k) · cvd3k) · nO(1) time.

Proof. Let I := (G = (V, E), k, C) be an instance of LS-Cluster Deletion. First, check in
1.811k ·nO(1) time, whether G has a cluster modulator of size at most k [44]. If this is the case,
one can find an optimal clustering C′ for G with E(C′) ⊆ E in time cvdcvd ·nO(1) ⊆ kk · nO(1)

due to Theorem 3.6. Otherwise, k < cvd. In this case, one can 2-approximate a cluster
modulator M in polynomial time [1] and find a clustering C′ of G with E(C′) ⊆ E that
is at least as good as a best clustering C∗ of G with E(C∗) ⊆ E and move(C, C∗) ≤ k

in time |M |2k ·
(|M |

k

)
· kk · 34k · nO(1) due to Theorem 3.7. Since k < cvd ≤ |M |, we get

that
(|M |

k

)
· kk ≤ |M |k · kk

k! ≤ |M |k · 2O(k). Hence, the running time of the case k < cvd
evaluates to 2O(k) · |M |3k · nO(1) ⊆ 2O(k) · (2 · cvd)3k · nO(1) = 2O(k) · cvd3k ·nO(1) time. In
both cases, the running time is upper-bounded by (kk + 2O(k) · cvd3k) · nO(1) time. ◀

3.2 An Algorithm for LS-Cluster Editing
In this subsection, we present a permissive algorithm for LS-Cluster Editing with a
running time similar to the one for LS-Cluster Deletion.

▶ Theorem 3.9. Let G = (V, E) be a graph, let C be a clustering of G, and let k ∈ N. In
2O(k) · kk · cvd3k ·nO(1) time, one can find a clustering that improves over C or correctly
output that there is no clustering C′ of G with move(C, C′) ≤ k that improves over C.

To give a better intuition for the following algorithm, we switch to the interpretation
of LS-Cluster Editing where the initial solution is a cluster coloring χC of C. That
is, if the given coloring χC can be improved within the k-move-neighborhood, then we
need to find any coloring χ∗ improving over χC . This coloring χ∗ is not required to be in
the k-move-neighborhood of χC .

Let I := (G = (V, E), k, χC) be an instance of LS-Cluster Editing, let M be a cluster
modulator of G. Let α ∈ N be a color used by χC . We say that α is a modulator color
if χ−1

C (α) ∩ M ̸= ∅. Otherwise, we say that α is a bag color. In the remainder of this
section, we denote by colMod and colBag the set of modulator colors and bag colors of χC ,
respectively. Note that these sets of colors are defined with respect to the initial coloring χC
of the LS-Cluster Editing-instance I. Recall that each bag B ∈ B is a clique in G and a
connected component of G[V \ M]. Fix an arbitrary ordering of the bags and let Bi denote
the ith bag of B according to this ordering.

J. Garvardt, N. Morawietz, A. Nichterlein, and M. Weller 20:9

We first show that we can improve the initial coloring in polynomial time unless it has
some properties that we will exploit in the following.

▶ Observation 3.10. If there is a bag color α such that vertices of two distinct bags receive
color α under χC, then one can find a coloring χ′ of V in polynomial time that improves
over χC.

▶ Observation 3.11. If there is a bag B ∈ B such that two vertices of B receive distinct
bag colors under χC, then one can find a coloring χ′ of V in polynomial time that improves
over χC.

Hence, we assume in the following, that for each bag color α ∈ colBag, χ−1
C (α) contains

only vertices of a single bag and that for each bag Bi ∈ B, there is at most one bag
color αi ∈ colBag with χ−1

C (αi) ⊆ Bi.
Moreover, we assume in the following that colMod has size O(k). In the final algorithm

we use an initial branching – similar to the one used in the algorithm behind Theorem 3.7 –
to ensure that this assumption is fulfilled.

Let χ′ be a coloring of V and let χint be the coloring that agrees with χC on all vertices
of V \ M and that agrees with χ′ on all vertices of M . We call χint the intermediate coloring
for χ′. The idea behind this definition is the following.

▶ Observation 3.12. Let χ′ be a coloring of V . Moreover, let χint be the intermediate
coloring for χ′. It holds that move(χC , χint) + move(χint, χ′) = move(χC , χ′).

Suppose that there is an improving k-move-neighbor χ′ of χC . Then, to find a coloring of V

that improves over χC , it is sufficient to iterate over all colorings χint with move(χC , χint) ≤ k

that agree with χC on all vertices of V \ M , and to check whether there is a coloring χ′

that improves over χC with move(χint, χ′) ≤ k such that χint and χ′ agree on all vertices
of M , that is, where χint is the intermediate coloring for χ′. Unfortunately, such an approach
exceeds the desired running time for our algorithm since there are nO(k) possibilities for the
colorings χint due to the fact that there may be up to Θ(n) many bag colors and each vertex
of M may receive any color. To obtain the desired running time, we instead only iterate over
“template colorings”. Here, a coloring χtemp of V is a template coloring if

move(χC , χtemp) ≤ k,
χtemp agrees with χC on all vertices of V \ M , and
no vertex of M receives a color of colBag under χtemp.

For a template coloring χtemp, let colMove denote the colors of N \ (colMod ∪ colBag) that are
used by χtemp. We call the colors of colMove the moving colors of χtemp. Note that only
vertices of M may receive a moving color under χtemp and that there are at most k moving
colors.

Figure 1 gives an overview over the considered types of colorings and they way we use
them to find a coloring that improves over χC .

The idea behind template colorings is that a template coloring χtemp may represent
intermediate colorings for many colorings χ′ in the following way: For a coloring χ′ of V ,
we say that a template coloring χtemp is quasi-intermediate for χ′ if there is a “template
recolor-function” f : N → N such that f ◦ χtemp is the intermediate coloring for χ′. Herein,
a function f : N → N is a template recolor-function if f preserves identity on all colors
of N \ colMove and where f |colMove

maps each color of colMove to some color of N \ colMod
injectively. Essentially, this means that each of the moving colors of χtemp may be identified
with any bag color. Informally, this is due to the fact that each vertex that receives a moving

IPEC 2023

20:10 Graph Clustering Problems Under the Lens of Parameterized Local Search

χC χtemp χint χ′
vertices of M move template recolor-function vertices of V \ M move

brute-force by Lemma 3.13 dynamic programm behind Lemma 3.14

Figure 1 An overview over the four different kinds of considered colorings. For the initial
coloring χC and an improving coloring χ′ with move(χC , χ′) ≤ k, there is a template coloring χtemp

and an intermediate coloring χint such that there is a template recolor-function between χtemp

and χint. To find a coloring at least as good as χ′, we first brute-force all possible choices of
the template coloring χtemp and afterwards search for the best coloring for which χtemp is quasi-
intermediate. This is done by a dynamic program that simultaneously finds the best template
recolor-function and the best way to distribute the bag vertices by using at most k moves.

color under χtemp already changed its color and we may move all vertices of that moving
color together to any bag color while preserving the move-distance to χC . Note that, for
each coloring χ′ of V with move(χC , χ′) ≤ k, there is a template coloring χtemp which is
quasi-intermediate for χ′. In contrast to intermediate colorings, we can show that we can
enumerate a maximal set X of pairwise non-isomorphic template colorings in the desired
running time.

▶ Lemma 3.13. One can compute a maximal set X of pairwise non-isomorphic template
colorings in time (|colMod| + k)k · |M |k · nO(1).

Proof. Recall that for each template coloring χtemp, move(χC , χtemp) ≤ k. Moreover, by the
definition of a template coloring, Move(χC , χtemp) ⊆ M . Hence, to obtain a maximal set X
of pairwise non-isomorphic template colorings, consider all possible subsets of M of size at
most k and consider all possible ways of assigning colors of colMod ∪ X to these at most k

vertices, where X is an arbitrary set of k colors from N \ (colMod ∪ colBag). Note that this
can be done in the stated running time. ◀

Lemma 3.13 implies that, in order to find a coloring χ∗ of V that improves over χC
(provided that there is such a coloring in the k-move-neighborhood of χC), it suffices to do
the following: For each template coloring χtemp in a maximal set of pairwise non-isomorphic
template colorings, find the best coloring χ′ in the k-move-neighborhood of χC such that χtemp
is quasi-intermediate for χ′.

The latter task can be solved in 2O(|colMod|+k) · nO(1) time.

▶ Lemma 3.14 (⋆). Let χtemp be a template coloring. In 2O(|colMod|+k) · nO(1) time, one can
find a coloring of V that improves over χC or correctly output that the k-move-neighborhood
of χC does not contain a coloring χ′ such that χ′ improves over χC and where χtemp is
quasi-intermediate for χ′.

We now conclude our permissive algorithm for LS-Cluster Editing. As we can switch
between clusterings and cluster colorings in polynomial time, this also proves Theorem 3.9.

▶ Theorem 3.15. Let G = (V, E) be a graph, let χC be a coloring of V , and let k ∈ N. In
2O(k) · kk · cvd3k ·nO(1) time, one can find a coloring χ∗ that improves over χ or correctly
output that there is no coloring in the k-move-neighborhood of χC that improves over χC.

J. Garvardt, N. Morawietz, A. Nichterlein, and M. Weller 20:11

Proof. First, we 2-approximate a cluster modulator M for G in polynomial time [1]. Let B
be the bags of G[V \ M], let colMod and colBag be the modulator colors and bag colors of χC ,
respectively. If the condition of Observation 3.10 or Observation 3.11 applies, then we find a
coloring χ∗ of V that improves over χ in polynomial time. Hence, assume in the following
that this is not the case.

As mentioned at the beginning of this subsection, we perform an initial branching step to
ensure that the coloring χC uses at most 2k modulator colors. Let χ′ be the best coloring in
the k-move-neighborhood of χC . Assume that χ′ improves over χC . Since move(χC , χ′) ≤ k,
Observation 2.1 implies that there is a subset S ⊆ colMod of size at least |colMod|−2k such that
for each modulator color α ∈ S, χ−1

C (α) = χ′−1(α). Hence, to find a coloring that improves
over χC it is sufficient to branch into all subsets S ⊆ colMod of size at least |colMod| − 2k and
ask for a coloring χ̂′ of V̂ := V \ (∪α∈Sχ−1

C (α)) that improves over χ̂ := χC |
V̂

with respect
to the subgraph G[V̂]. Note that this branching takes |colMod|2k · nO(1) ≤ |M |2k · nO(1) time.

Hence, in the following, we assume that colMod has size at most 2k. Next, we iterate over
a maximal set X of pairwise non-isomorphic template colorings and compute for each such
template coloring χtemp a coloring χ∗ which is at least as good as a best coloring χ′′ in the k-
move-neighborhood of χC where χtemp is quasi-intermediate for χ′′. The latter task can be
done in 2O(|colMod|+k) · nO(1) time due to Lemma 3.14 for each template coloring χtemp ∈ X .
Due to Lemma 3.13, X can be computed in (|colMod| + k)k · |M |k · nO(1) time and has
size (|colMod| + k)k · |M |k · nO(1).

This algorithm is correct, since there is a template coloring χ′
temp such that χ′

temp is
quasi-intermediate for χ′. Thus, in this way, we will find a coloring at least as good as χ′.

The whole algorithm runs in |M |2k · (|colMod| + k)k · |M |k · 2O(|colMod|+k) · nO(1) time.
Since we ensured with the initial branching, that colMod has size at most 2k, this results
in a running time of 2O(k) · kk · |M |3k · nO(1) time. Finally, since M is a 2-approximated
cluster modulator, |M | ≤ 2 · cvd(G). Hence, we obtain the stated running time of 2O(k) · kk ·
cvd(G)3k · nO(1) time. ◀

4 Lower Bounds

In this section we present several hardness results for LS-Cluster Deletion and LS-
Cluster Editing. We obtain our hardness results for LS-Cluster Editing by reductions
from restricted instances of Densest-k-Subgraph, which is defined as follows

Densest-k-Subgraph
Input: A graph G = (V, E), integers k and d.
Question: Is there a subset S ⊆ V of size exactly k such that |E(S)| ≥

(
k
2
)

− d?

Hence, we first show that Densest-k-Subgraph provides these hardness results on the
desired restricted instances.

▶ Theorem 4.1 (⋆). Even if d = k−1
2 , Densest-k-Subgraph is W[1]-hard when parame-

terized by both k and the degeneracy of G and cannot be solved in f(k) · no(k) time for any
computable function f , unless the ETH fails. This holds even on instances where |E(S)| <(

k−1
2
)

− k−1
4 for each vertex set S of size k − 1.

Based on these hardness results for Densest-k-Subgraph, we are now able to analyze
the parameterized complexity of LS-Cluster Editing for the parameter combination of k

plus the size of the largest cluster of the initial clustering C.

IPEC 2023

20:12 Graph Clustering Problems Under the Lens of Parameterized Local Search

▶ Theorem 4.2. LS-Cluster Editing is W[1]-hard when parameterized by k + ℓ + degen,
where ℓ := maxC∈C |C| and degen denotes the degeneracy of G. Moreover, unless the ETH
fails, there is no computable function f such that LS-Cluster Editing can be solved
in f(k + ℓ) · no(k+ℓ) time.

Proof. We present a parameterized reduction from Densest-k-Subgraph with the re-
strictions listed in Theorem 4.1. Let I = (G = (V, E), k, d) be an instance of Densest-
k-Subgraph with d = k−1

2 such that |E(S)| <
(

k−1
2
)

− k−1
4 for each vertex set S of

size k − 1. We define an instance I ′ := (G′ := (V ′, E′), k, C) of LS-Cluster Editing
with maxC∈C |C| ∈ O(k) as follows: We initialize G′ as G and add for each vertex v ∈ V a
set Kv of 7k + k−3

2 vertices to G′ such that {v} ∪ Kv is a clique in G′. Additionally, we add
a clique K∗ of size 7k to G′ and add edges to G′, such that each vertex of V is adjacent to
each vertex of K∗. Finally, we set C := {K∗} ∪ {{v} ∪ Kv | v ∈ V }. Note that by definition
of C, each cluster C ∈ C is a clique in G′. The correctness proof is based on the following
claim.

▷ Claim 4.3. Let C′ := {K∗ ∪ S} ∪ {{Kv} | v ∈ S} ∪ {{v} ∪ Kv | v ∈ V \ S} be a clustering
of G′ for some vertex set S ⊆ V . The improvement of C′ over C is 2 · |EG(S)|−

(|S|
2
)

−|S| · k−3
2 .

Proof. We only have to consider the edges incident with at least one vertex of S in E(C)
and E(C′). Let F := E(C) and let F ′ := E(C′). Note that the symmetric difference
between F and F ′ are the edges of F ⊕ F ′ = {{v, x} | v ∈ S, x ∈ Kv ∪ K∗} ∪

(
S
2
)
. More

precisely, F \ F ′ = {{v, x} | v ∈ S, x ∈ Kv} and F ′ \ F = {{v, x} | v ∈ S, x ∈ K∗} ∪
(

S
2
)
. By

construction, all edges of F ⊕F ′ exist in G′, except for the edges of
(

S
2
)
\EG′(S) =

(
S
2
)
\EG(S).

Hence, the improvement of C′ over C is∑
v∈S

(|K∗| − |Kv|) + |EG′ (S)| −
((

|S|
2

)
− |EG′ (S)|

)
= 2 · |EG(S)| −

(
|S|
2

)
− |S| · k − 3

2 . ◁

Next, we show that I is a yes-instance of Densest-k-Subgraph if and only if I ′ is a
yes-instance of LS-Cluster Editing.

(⇒) Let S be a set of size k in G such that |EG(S)| ≥
(

k
2
)

− d. We set C′ := {K∗ ∪ S} ∪
{{Kv} | v ∈ S} ∪ {{v} ∪ Kv | v ∈ V \ S}. Note that move(C, C′) = k. We show that C′

is improving over C. Due to Claim 4.3 and since |EG(S)| ≥
(

k
2
)

− d and d = k−1
2 , the

improvement of C′ over C is at least(
k

2

)
− 2d − k · k − 3

2 =
(

k

2

)
− k + 1 − k · k − 3

2 =
(

k

2

)
− k · k − 1

2 + 1 = 1.

Hence, I ′ is a yes-instance of LS-Cluster Editing.
(⇐) Suppose that I ′ is a yes-instance of LS-Cluster Editing. Let C′ be the best

clustering for G′ with move(C, C′) ≤ k. Since I ′ is a yes-instance of LS-Cluster Editing,
C′ ̸= C. We make some observations about the potential moves between C and C′. The goal
is to show that there is a set S ⊆ V of size at most k such that C′ = {K∗ ∪ S} ∪ {Kv | v ∈
S} ∪ {{v} ∪ Kv | v ∈ V \ S}. To this end, we show some intermediate results.

First, we show that for each vertex v ∈ V there is a cluster C ∈ C′ with Kv ⊆ C. Suppose
that this is not the case. Hence, there is a vertex v ∈ V and at least two clusters C1 and C2
in C′ containing vertices of Kv. Since Kv has size more than k, at least one vertex of Kv

is not moved. Assume without loss of generality that C1 contains this vertex. Hence, each
vertex of C2 ∩ Kv moved to C2. Thus, C2 ∩ Kv contains at most k vertices. Let x be an
arbitrary vertex of C2 ∩ Kv. Since Kv has size more than 4k, C1 contains at least 3k vertices
of Kv and at most k vertices of V ′ \ Kv. By definition of Kv, the closed neighborhood of x is

J. Garvardt, N. Morawietz, A. Nichterlein, and M. Weller 20:13

exactly Kv ∪ {v}. Hence, x has at most k neighbors in C2, at least 3k neighbors in C1 and
at most k non-neighbors in C1. Consequently, not moving x to C2 yields a better clustering.
Since C′ is the best clustering with move(C, C′) ≤ k, this is not possible.

Next, we show that there is a cluster C in C′ with K∗ ⊆ C. Suppose that this is not
the case. Hence, there are at least two clusters C1 and C2 in C′ containing vertices of K∗.
Since K∗ has size more than k, at least one vertex of K∗ is not moved. Assume without loss
of generality that C1 contains this vertex. Hence, each vertex of C2 ∩ K∗ moved to C2. Thus,
C2 ∩ K∗ contains at most k vertices. Let x be an arbitrary vertex of C2 ∩ K∗. Since K∗ has
size more than 4k, C1 contains at least 3k vertices of K∗ and at most k vertices of V ′ \ K∗.
By definition of K∗, the closed neighborhood of x is exactly K∗ ∪ V . Hence, since each
cluster in C contains at most one vertex of V , x has at most k + 1 neighbors in C2, at least 3k

neighbors in C1 and at most k non-neighbors in C1. Consequently, not moving x to C2 yields
a better clustering. Since C′ is the best clustering with move(C, C′) ≤ k, this is not possible.

The above implies that only vertices of V moved to obtain C′ from C.
Next, we show that for each vertex v ∈ V , the cluster C of C′ that contains v either

contains all vertices of K∗ or all vertices of Kv. Suppose that this is not the case and
let v be a vertex of V such that the cluster C ∈ C′ with v ∈ C is not a superset of K∗

and not a superset of Kv. Since v is only adjacent to at most one vertex in each cluster
of C \ {K∗, Kv ∪ {v}}, v has at most k neighbors in C. Let K ′

v be the cluster of C′ containing
all vertices of Kv. Since Kv has size more than 3k, K ′

v contains at most k non-neighbors of v

and at least 3k neighbors of v. Hence, not moving v from K ′
v to C yields a better clustering.

Since C′ is the best clustering with move(C, C′) ≤ k, this is not possible.
Concluding, there is a nonempty vertex set S of size at most k such that C′ = {K∗ ∪

S} ∪ {Kv | v ∈ S} ∪ {{v} ∪ Kv | v ∈ V \ S}. More precisely, the vertices of S are exactly the
vertices that are moved to obtain C′ from C.

It remains to show that S has size k and that EG(S) = EG′(S) contains at least
(

k
2
)

− d

edges. Due to Claim 4.3 and since C′ is improving over C, 2 · |EG(S)| −
(|S|

2
)

− |S| · k−3
2 ≥ 1.

▷ Claim 4.4. S has size k.

Proof. If |S| < k − 1, then 2|EG(S)| ≤ 2 ·
(|S|

2
)

< |S| · k−3
2 +

(|S|
2
)

+ 1. Since 2|EG(S)| ≥
|S| · k−3

2 +
(|S|

2
)

+ 1, we conclude |S| ≥ k − 1.
Assume towards a contradiction that S has size exactly k − 1. By assumption, |EG(S)| <(

k−1
2
)

− k−1
4 = (k − 1) · (k−2

2 − 1
4) = (k − 1) · 2k−5

4 . Hence, (k − 1) · 2k−5
2 > 2 · |ES(G)| ≥

|S| · k−3
2 +

(|S|
2
)

+ 1 = (k − 1) · k−3
2 +

((k−1)
2
)

+ 1 = (k − 1) · 2k−5
2 + 1, a contradiction.

Consequently, S contains exactly k vertices since to obtain C′ from C, each vertex of S

moved and move(C, C′) ≤ k. ◁

It remains to show that |EG(S)| ≥
(

k
2
)
−d. By Claim 4.3, 2|EG(S)| ≥ |S|· k−3

2 +
(|S|

2
)
+1 =

2k2−4k
2 +1 = k2−k−(k−1). Thus |EG(S)| ≥ k2−k

2 − k−1
2 =

(
k
2
)
−d. Hence, I is a yes-instance

of Densest-k-Subgraph.

Parameter bounds. Recall that the size ℓ := maxC∈C |C| of the largest cluster in C is O(k).
Due to Theorem 4.1, Densest-k-Subgraph cannot be solved in f(k) · no(k) time for any

computable function f , unless the ETH fails. This implies that LS-Cluster Deletion
cannot be solved in f(k + ℓ) · |V ′|o(k+ℓ) time for any computable function f , unless the ETH
fails, since |V ′| ∈ nO(1).

Next, we analyze the degeneracy degen′ of G′. Let degen denote the degeneracy of G.
Since each vertex of Kv for some vertex v ∈ V has only neighbors in Kv ∪{v}, each such vertex

IPEC 2023

20:14 Graph Clustering Problems Under the Lens of Parameterized Local Search

has degree O(k) in G′. Furthermore, each vertex of V has only |Kv|+ |K∗| ∈ O(k) additional
neighbors in G′. Hence, the degeneracy of G′ is O(k + degen). Consequently, LS-Cluster
Editing is W[1]-hard when parameterized by k + ℓ + degen′, since due to Theorem 4.1,
Densest-k-Subgraph is W[1]-hard when parameterized by k + degen. ◀

Next, we show that even when the initial clustering consists only of two clusters, LS-
Cluster Editing remains W[1]-hard when parameterized by k.

▶ Theorem 4.5 (⋆). Even when the initial clustering consists of only two clusters, LS-
Cluster Editing is W[1]-hard when parameterized by k and cannot be solved in f(k) ·
no(k) time for any computable function f , unless the ETH fails.

Hence, LS-Cluster Editing is W[1]-hard when parameterized by the arguably most
natural parameter combinations k + maxC∈C |C| and k + |C|.

Finally, we present our hardness results for LS-Cluster Deletion. As we show, these
hardness results also hold for the permissive version of LS-Cluster Deletion.

▶ Theorem 4.6. LS-Cluster Deletion
is W[1]-hard when parameterized by k + ℓ, where ℓ := maxC∈C |C| denotes the size of the
largest cluster in C,
cannot be solved in f(k + ℓ) · no(k+ℓ) time for any computable function f , unless the ETH
fails, and
does not admit a polynomial kernel when parameterized by k+vc, unless NP ⊆ coNP/poly,
where vc denotes the vertex cover number of G.

All of this holds even if there is an optimal clustering C∗ with E(C∗) ⊆ E in the k-move-
neighborhood of C.

Proof. We present a polynomial time reduction from Multicolored Clique, which is W[1]-
hard when parameterized by the size of the sought clique [14].

Multicolored Clique
Input: A graph G = (V, E) and an integer k such that G is k-partite.
Question: Is there a clique of size k in G?

Let I := (G = (V, E), k) be an instance of Multicolored Clique and let Vk be
the largest part of the k-partition (V1, . . . , Vk) of G. We define an instance I ′ := (G′ :=
(V ′, E′), k′, C) of LS-Cluster Deletion as follows: Initialize G′ as a copy of G. Then for
each i ∈ [1, k − 1], do the following:

add a vertex xi to G′ and
for each vertex v ∈ Vi, add a vertex set Kv of size z := 2k to G′ and turn Kv ∪ {v}
and Kv ∪ {xi} into cliques in G′.

Let X := {xi | 1 ≤ i ≤ k − 1}. Finally, we add two additional adjacent vertices a and b to G′

and make X ∪ {a} a clique in G′. This completes the construction of G′. We complete the
construction of I ′ by setting k′ := 2k − 1 and

C := {X ∪ {a}, {b}} ∪
⋃

v∈V \Vk

{Kv ∪ {v}} ∪
⋃

v∈Vk

{{v}}.

Note that by construction E(C) ⊆ E′ and |E(C)| = |V \ Vk| ·
(

z+1
2
)

+
(

k
2
)
.

Next, we show that there is a clique of size k in G if and only if there is a clustering C′

for G′ that improves over C. We further show that each clustering C′ for G′ that improves
over C is a k′-move-neighbor of C.

J. Garvardt, N. Morawietz, A. Nichterlein, and M. Weller 20:15

(⇒) Let S be a clique of size k in G. Since (V1, . . . , Vk) is a k-partition of G, for
each i ∈ [1, k], S contains exactly one vertex of Vi. For each i ∈ [1, k], let vi be that unique
vertex of Vi ∩ S. We set

C′ := {S, {a, b}} ∪
⋃

i∈[1,k−1]

{Kvi
∪ {xi}} ∪

⋃
v∈V \(Vk∪S)

{Kv ∪ {v}} ∪
⋃

v∈Vk\{vk}

{{v}}.

Note that by construction, E(C′) ⊆ E′ and by definition of C′, |E(C′)| =
(

k
2
)

+ |X| ·
(

z+1
2
)

+
|V \ (Vk ∪ S)| ·

(
z+1

2
)

+ 1 = |V \ Vk| ·
(

z+1
2
)

+
(

k
2
)

+ 1 = |E(C)| + 1. Hence, C′ is improving
over C. Moreover, by construction of C′, C′ and C are k′-move-neighbors.

(⇐) Let C′ be a best clustering for G′ with E(C′) ⊆ E′ and suppose that C′ improves
over C. Before we show that there is a clique of size k in G, we prove some properties of the
clustering C′.

First, we show that for each vertex v ∈ V \ Vk, there is a cluster C ′
v in C′ with Kv ⊆ C ′

v.
Suppose that there are at least two clusters C ′

v and C ′′
v in C′ with Kv ∩C ′

v ̸= ∅ and Kv ∩C ′′
v ̸= ∅

and suppose that |C ′
v| ≥ |C ′′

v | . Let v′ be an arbitrary vertex of C ′′
v ∩ Kv. Recall that

by construction of G′, v′ has the same closed neighborhood as any other vertex of Kv.
Since E(C′) ⊆ E′, each vertex of C ′

v is part of the closed neighborhood of v′. Hence, the
clustering C′′ := (C \ {C ′

v, C ′′
v }) ∪ {C ′

v ∪ {v′}, C ′′
v \ {v′}} fulfills E(C′′) ⊆ E′ and improves

over C′. Since C′ is a best clustering for G′ with E(C′) ⊆ E′, no such two clusters exist and
thus for each vertex v ∈ V \ Vk, there is a cluster C ′

v in C′ with Kv ⊆ C ′
v.

Next, we show that for each i ∈ [1, k − 1] and each vertex v ∈ Vi, the cluster C ′
v is

either Kv ∪ {v} or Kv ∪ {xi}. Suppose that this is not the case and let i ∈ [1, k − 1] and let v

be a vertex of Vi such that C ′
v /∈ {Kv ∪ {v}, Kv ∪ {xi}}. Note that this implies that C ′

v = Kv.
Furthermore, let C ′′ be the cluster of C′ that contains v. Since E(C′) ⊆ E′ and v has only
neighbors in V ∪Kv, the cluster C ′′ is a clique in G. Moreover, since G is k-partite, this implies
that C ′′ has size at most k. Hence, the clustering C′′ := (C \ {C ′

v, C ′′}) ∪ {Kv ∪ {v}, C ′′ \ {v}}
fulfills E(C′′) ⊆ E′ and improves over C′. Since C′ is a best clustering for G′ with E(C′) ⊆ E′,
this implies that for each i ∈ [1, k−1] and each vertex v ∈ Vi, the cluster C ′

v is either Kv ∪{v}
or Kv ∪ {xi}.

Note that this implies that for each i ∈ [1, k − 1], there is at most one vertex vi ∈ Vi for
which C ′

vi
̸= Kv ∪ {vi}. Intuitively, if such a vertex vi moves out of its cluster from C, then

the vertex xi has to move into the original cluster of vi.
Let S′ ⊆ V ′ be a minimal set of vertices that have to move to obtain C′ from C. Moreover,

let S := S′ ∩ (V \ Vk). By the above, for each i ∈ [1, k − 1], S contains at most one vertex
of Vi. Recall that each vertex of Vk has neighbors only in V \ Vk and can thus only be in a
cluster of C′ with a (potentially empty) subset of vertices of S. Hence, S′ contains no vertex
of Vk. In the following, we show that there is a vertex vk ∈ Vk such that S ∪ {vk} is a clique
of size k in G.

To this end, we analyze the number of edges in the clusters CS ⊆ C′ that contain vertices
of S ∪ Vk and have size at least two and the number of edges in the clusters CX ⊆ C′ that
have size at least two and contain only vertices of X ∪ {a, b}. By the above, each cluster C

of CS contains only vertices of S ∪ Vk and C contains at most one vertex of Vk, since Vk is
an independent set in G′. Note that this implies that each cluster of CS contains at least
one vertex of S. Furthermore, note that E(C′) =

⋃
v∈V \Vk

(
C′

v
2
)

∪ E(CS) ∪ E(CX). Since for
each vertex v ∈ V \ Vk, C ′

v has size z + 1, |E(C′)| = |V \ Vk| ·
(

z+1
2
)

+ |E(CS)| + |E(CX)|.
Moreover, since C′ is improving over C, |E(C′)| − |E(C)| = |E(CS)| + |E(CX)| −

(
k
2
)

≥ 1. In
the following, we show that |E(CS)| + |E(CX)| ≤

(
k
2
)

+ 1 and that |E(CS)| + |E(CX)| ≤
(

k
2
)

if there is no vertex vk ∈ Vk such that S ∪ {vk} is a clique of size k in G. To this end, we

IPEC 2023

20:16 Graph Clustering Problems Under the Lens of Parameterized Local Search

analyze the size of E(CS) and the size of E(CX) separately.
First, we show that if CS has size at least two, then |E(CS)| <

(|S|+1
2
)
. This follows

inductively by the fact that each cluster of CS has size at least two and contains at most one
vertex of Vk, and for each i ≥ 2 and each j ≥ 2,

(
i
2
)

+
(

j
2
)

<
(

i+j−1
2
)
. Hence, E(CS) has size

at least
(|S|+1

2
)

if and only if there is a vertex vk ∈ Vk such that CS = {S ∪ {vk}}. Moreover,
this implies that |E(CS)| ≤

(|S|+1
2
)
.

Second, we analyze the size of E(CX). Since for each i ∈ [1, k − 1], if there is a
vertex vi ∈ Vi ∩ S, then the vertex xi moves to the cluster containing all vertices of Kvi , that
is, xi is not contained in any cluster of CX . Hence, at most k−1−|S| vertices of X are contained
in clusters of CX . Since b is adjacent only to a, this implies that |E(CX)| ≤

(
k−|S|

2
)

+ 1.
Finally, we show that for some vertex vk ∈ Vk, S ∪ {vk} is a clique of size k in G. Assume

that |S| < k − 1. Hence, by the above |E(CS)| + |E(CX)| ≤
(|S|+1

2
)

+
(

k−|S|
2
)

+ 1 <
(

k
2
)

+ 1
and thus |E(CS)| + |E(CX)| ≤

(
k
2
)
. Since |E(C′)| > |E(C)|, this is not possible.

Consequently, |S| = k−1. Hence, by the above |E(CS)|+|E(CX)| ≤
(|S|+1

2
)
+
(

k−|S|
2
)
+1 =(

k
2
)

+ 1. Hence, |E(C′)| ≤ |E(C)| + 1. Since C′ improves over C, |E(CS)| + |E(CX)| =
(

k
2
)

+ 1.
As shown before, |E(CS)|+ |E(CX)| =

(
k
2
)

+1 only holds if CS consists of a single cluster C ′ :=
S ∪{vk} for some vertex vk ∈ Vk. Hence, there is a clique of size k in G and I is a yes-instance
of Multicolored Clique.

Moreover, note that this implies that C′ is a k′-move-neighbor of C, since only the k − 1
vertices of S, the k − 1 vertices of X, and either a or b changed their cluster.

Parameter bounds. Let ℓ := maxC∈C |C|. Recall that since z = 2k, ℓ = 2k + 1. Since Mul-
ticolored Clique is W[1]-hard when parameterized by k and cannot be solved in
f(k) · no(k) time for any computable function f , unless the ETH fails [14], this implies
that LS-Cluster Deletion is W[1]-hard when parameterized by k′ +ℓ and cannot be solved
in f(k′ + ℓ) · |V ′|o(k′+ℓ) time for any computable function f , unless the ETH fails, since |V ′| ∈
nO(k). Moreover, note that V ′ \ Vk is a vertex cover of G′ of size |V \ Vk| · (2k + 1) + k + 1.
Since Multicolored Clique does not admit a polynomial kernel when parameterized
by k + |V \ Vk|, unless NP ⊆ coNP/poly [24], this implies that LS-Cluster Deletion does
not admit a polynomial kernel when parameterized by k′+vc(G′) unless NP ⊆ coNP/poly. ◀

Note that due to the last restriction, the permissive version of LS-Cluster Deletion
shares the same W[1]-hardness and the same ETH-based lower bound, meaning that also for
permissive LS-Cluster Deletion, the algorithms in Section 3 are essentially optimal.

5 Conclusion

We analyzed the parameterized complexity for LS-Cluster Editing and LS-Cluster
Deletion, leaving some open questions for future work: First, what is the complexity of
LS-Cluster Deletion with respect to the combined parameter number |C| of clusters
and k? Second, can we show lower bounds for the permissive variant of LS-Cluster
Editing? Finally, can some of the algorithmic ideas of our work be used to improve the
local-search based heuristics for Cluster Deletion or Cluster Editing?

References
1 Manuel Aprile, Matthew Drescher, Samuel Fiorini, and Tony Huynh. A tight approximation

algorithm for the cluster vertex deletion problem. Math. Program., 197(2):1069–1091, 2023.
doi:10.1007/s10107-021-01744-w.

https://doi.org/10.1007/s10107-021-01744-w

J. Garvardt, N. Morawietz, A. Nichterlein, and M. Weller 20:17

2 Nikhil Bansal, Avrim Blum, and Shuchi Chawla. Correlation clustering. Machine Learning,
56:89–113, 2004. doi:10.1023/B:MACH.0000033116.57574.95.

3 Valentin Bartier, Gabriel Bathie, Nicolas Bousquet, Marc Heinrich, Théo Pierron, and Ulysse
Prieto. PACE solver description: µsolver - heuristic track. In Proceedings of the 16th
International Symposium on Parameterized and Exact Computation (IPEC 2021), volume
214 of LIPIcs, pages 33:1–33:3. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.
doi:10.4230/LIPIcs.IPEC.2021.33.

4 Amir Ben-Dor, Ron Shamir, and Zohar Yakhini. Clustering gene expression patterns. Journal
of Computational Biology, 6(3-4):281–297, 1999. doi:10.1089/106652799318274.

5 Daniel Berend and Tamir Tassa. Improved bounds on bell numbers and on moments of sums
of random variables. Probability and Mathematical Statistics, 30(2):185–205, 2010.

6 René van Bevern, Vincent Froese, and Christian Komusiewicz. Parameterizing edge modi-
fication problems above lower bounds. Theory of Computing Systems, 62(3):739–770, 2018.
doi:10.1007/s00224-016-9746-5.

7 Thomas Bläsius, Philipp Fischbeck, Lars Gottesbüren, Michael Hamann, Tobias Heuer, Jonas
Spinner, Christopher Weyand, and Marcus Wilhelm. PACE solver description: Kapoce: A
heuristic cluster editing algorithm. In Proceedings of the 16th International Symposium on
Parameterized and Exact Computation (IPEC 2021), volume 214 of LIPIcs, pages 31:1–31:4.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.IPEC.2021.31.

8 Sebastian Böcker. A golden ratio parameterized algorithm for cluster editing. Journal of
Discrete Algorithms, 16:79–89, 2012. doi:10.1016/j.jda.2012.04.005.

9 Édouard Bonnet, Yoichi Iwata, Bart M. P. Jansen, and Lukasz Kowalik. Fine-grained
complexity of k-OPT in bounded-degree graphs for solving TSP. In Proceedings of the 27th
Annual European Symposium on Algorithms (ESA ’19), volume 144 of LIPIcs, pages 23:1–23:14.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019.

10 Yixin Cao and Jianer Chen. Cluster Editing: Kernelization based on edge cuts. Algorithmica,
64(1):152–169, 2012.

11 Yixin Cao and Yuping Ke. Improved Kernels for Edge Modification Problems. In Proceedings
of the 16th International Symposium on Parameterized and Exact Computation (IPEC 2021),
volume 214 of Leibniz International Proceedings in Informatics (LIPIcs), pages 13:1–13:14,
Dagstuhl, Germany, 2021. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/
LIPIcs.IPEC.2021.13.

12 Shuchi Chawla, Konstantin Makarychev, Tselil Schramm, and Grigory Yaroslavtsev. Near opti-
mal LP rounding algorithm for correlation clustering on complete and complete k-partite graphs.
In Proceedings of the 47th Annual ACM Symposium on Theory of Computing (STOC ’15),
pages 219–228. ACM, 2015. doi:10.1145/2746539.2746604.

13 Jianer Chen and Jie Meng. A 2k kernel for the cluster editing problem. Journal of Computer
and System Sciences, 78(1):211–220, 2012.

14 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

15 Martin Dörnfelder, Jiong Guo, Christian Komusiewicz, and Mathias Weller. On the parame-
terized complexity of consensus clustering. Theoretical Computer Science, 542:71–82, 2014.
doi:10.1016/j.tcs.2014.05.002.

16 Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity.
Texts in Computer Science. Springer, 2013.

17 Michael R. Fellows, Fedor V. Fomin, Daniel Lokshtanov, Frances A. Rosamond, Saket Saurabh,
and Yngve Villanger. Local search: Is brute-force avoidable? Journal of Computer and System
Sciences, 78(3):707–719, 2012.

18 Michael R. Fellows, Michael A. Langston, Frances A. Rosamond, and Peter Shaw. Efficient
parameterized preprocessing for Cluster Editing. In Proceedings of the 16th International

IPEC 2023

https://doi.org/10.1023/B:MACH.0000033116.57574.95
https://doi.org/10.4230/LIPIcs.IPEC.2021.33
https://doi.org/10.1089/106652799318274
https://doi.org/10.1007/s00224-016-9746-5
https://doi.org/10.4230/LIPIcs.IPEC.2021.31
https://doi.org/10.1016/j.jda.2012.04.005
https://doi.org/10.4230/LIPIcs.IPEC.2021.13
https://doi.org/10.4230/LIPIcs.IPEC.2021.13
https://doi.org/10.1145/2746539.2746604
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1016/j.tcs.2014.05.002

20:18 Graph Clustering Problems Under the Lens of Parameterized Local Search

Symposium on Fundamentals of Computation Theory (FCT ’07), volume 4639 of LNCS, pages
312–321. Springer, 2007. doi:10.1007/978-3-540-74240-1_27.

19 Jaroslav Garvardt, Niels Grüttemeier, Christian Komusiewicz, and Nils Morawietz. Parame-
terized local search for max c-cut. In Proceedings of the Thirty-Second International Joint
Conference on Artificial Intelligence, IJCAI 2023, 19th-25th August 2023, Macao, SAR, China,
pages 5586–5594. ijcai.org, 2023. doi:10.24963/ijcai.2023/620.

20 Serge Gaspers, Joachim Gudmundsson, Mitchell Jones, Julián Mestre, and Stefan Rüm-
mele. Turbocharging treewidth heuristics. Algorithmica, 81(2):439–475, 2019. doi:
10.1007/s00453-018-0499-1.

21 Serge Gaspers, Eun Jung Kim, Sebastian Ordyniak, Saket Saurabh, and Stefan Szeider. Don’t
be strict in local search! In Proceedings of the Twenty-Sixth AAAI Conference on Artificial
Intelligence (AAAI ’12). AAAI Press, 2012.

22 Martin Josef Geiger. PACE solver description: A simplified threshold accepting approach
for the cluster editing problem. In Proceedings of the 16th International Symposium on
Parameterized and Exact Computation (IPEC 2021), volume 214 of LIPIcs, pages 34:1–34:2.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.IPEC.2021.34.

23 Jens Gramm, Jiong Guo, Falk Hüffner, and Rolf Niedermeier. Graph-modeled data clustering:
Exact algorithms for clique generation. Theory of Computing Systems, 38(4):373–392, 2005.

24 Niels Grüttemeier and Christian Komusiewicz. On the relation of strong triadic closure and
cluster deletion. Algorithmica, 82(4):853–880, 2020. doi:10.1007/s00453-019-00617-1.

25 Niels Grüttemeier, Christian Komusiewicz, and Nils Morawietz. Efficient Bayesian network
structure learning via parameterized local search on topological orderings. In Proceedings of
the Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI ’21), pages 12328–12335.
AAAI Press, 2021. Full version available at https://doi.org/10.48550/arXiv.2204.02902. URL:
https://ojs.aaai.org/index.php/AAAI/article/view/17463.

26 Jiong Guo. A more effective linear kernelization for cluster editing. Theoretical Computer
Science, 410(8-10):718–726, 2009. doi:10.1016/j.tcs.2008.10.021.

27 Jiong Guo, Sepp Hartung, Rolf Niedermeier, and Ondrej Suchý. The parameterized complexity
of local search for TSP, more refined. Algorithmica, 67(1):89–110, 2013.

28 Jiong Guo, Danny Hermelin, and Christian Komusiewicz. Local search for string problems:
Brute-force is essentially optimal. Theoretical Computer Science, 525:30–41, 2014.

29 Sepp Hartung and Rolf Niedermeier. Incremental list coloring of graphs, parameterized by
conservation. Theoretical Computer Science, 494:86–98, 2013.

30 Giuseppe F. Italiano, Athanasios L. Konstantinidis, and Charis Papadopoulos. Structural
parameterization of cluster deletion. In Chun-Cheng Lin, Bertrand M. T. Lin, and Giuseppe
Liotta, editors, Proceedings of the 17th International Conference and Workshops on Algorithms
and Computation (WALCOM 2023), volume 13973 of Lecture Notes in Computer Science,
pages 371–383. Springer, 2023. doi:10.1007/978-3-031-27051-2_31.

31 Maximilian Katzmann and Christian Komusiewicz. Systematic exploration of larger local
search neighborhoods for the minimum vertex cover problem. In Proceedings of the Thirty-First
AAAI Conference on Artificial Intelligence (AAAI ’17), pages 846–852. AAAI Press, 2017.

32 Leon Kellerhals, Tomohiro Koana, André Nichterlein, and Philipp Zschoche. The PACE
2021 parameterized algorithms and computational experiments challenge: Cluster editing. In
Proceedings of the 16th International Symposium on Parameterized and Exact Computation
(IPEC 2021), volume 214 of LIPIcs, pages 26:1–26:18. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2021. doi:10.4230/LIPIcs.IPEC.2021.26.

33 Christian Komusiewicz, Simone Linz, Nils Morawietz, and Jannik Schestag. On the complexity
of parameterized local search for the maximum parsimony problem. In Proceedings of the
34th Annual Symposium on Combinatorial Pattern Matching (CPM 2023), volume 259 of
LIPIcs, pages 18:1–18:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023. doi:
10.4230/LIPIcs.CPM.2023.18.

https://doi.org/10.1007/978-3-540-74240-1_27
https://doi.org/10.24963/ijcai.2023/620
https://doi.org/10.1007/s00453-018-0499-1
https://doi.org/10.1007/s00453-018-0499-1
https://doi.org/10.4230/LIPIcs.IPEC.2021.34
https://doi.org/10.1007/s00453-019-00617-1
https://ojs.aaai.org/index.php/AAAI/article/view/17463
https://doi.org/10.1016/j.tcs.2008.10.021
https://doi.org/10.1007/978-3-031-27051-2_31
https://doi.org/10.4230/LIPIcs.IPEC.2021.26
https://doi.org/10.4230/LIPIcs.CPM.2023.18
https://doi.org/10.4230/LIPIcs.CPM.2023.18

J. Garvardt, N. Morawietz, A. Nichterlein, and M. Weller 20:19

34 Christian Komusiewicz and Nils Morawietz. Parameterized local search for vertex cover: When
only the search radius is crucial. In Proceedings of the 17th International Symposium on
Parameterized and Exact Computation (IPEC 2022), volume 249 of LIPIcs, pages 20:1–20:18.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.IPEC.2022.20.

35 Christian Komusiewicz and Frank Sommer. Enumerating connected induced subgraphs:
Improved delay and experimental comparison. Discrete Applied Mathematics, 303:262–282,
2021.

36 Christian Komusiewicz and Johannes Uhlmann. Cluster editing with locally bounded modifi-
cations. Discrete Applied Mathematics, 160(15):2259–2270, 2012. doi:10.1016/j.dam.2012.
05.019.

37 Shaohua Li, Marcin Pilipczuk, and Manuel Sorge. Cluster editing parameterized above
modification-disjoint P3-packings. In Proceedings of the 38th International Symposium on
Theoretical Aspects of Computer Science (STACS ’21), volume 187 of LIPIcs, pages 49:1–49:16.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.STACS.2021.
49.

38 Junjie Luo, Hendrik Molter, André Nichterlein, and Rolf Niedermeier. Parameterized dynamic
cluster editing. Algorithmica, 83(1):1–44, 2021. doi:10.1007/s00453-020-00746-y.

39 Dániel Marx. Searching the k-change neighborhood for TSP is W[1]-hard. Operations Research
Letters, 36(1):31–36, 2008.

40 Satu Elisa Schaeffer. Graph clustering. Computer Science Review, 1(1):27–64, 2007. doi:
10.1016/j.cosrev.2007.05.001.

41 Ron Shamir, Roded Sharan, and Dekel Tsur. Cluster graph modification problems. Discrete
Applied Mathematics, 144(1-2):173–182, 2004. doi:10.1007/3-540-36379-3_33.

42 Sylwester Swat. PACE solver description: Clues - a heuristic solver for the cluster editing
problem. In Proceedings of the 16th International Symposium on Parameterized and Exact
Computation (IPEC 2021), volume 214 of LIPIcs, pages 32:1–32:3. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.IPEC.2021.32.

43 Stefan Szeider. The parameterized complexity of k-flip local search for SAT and MAX SAT.
Discrete Optimization, 8(1):139–145, 2011.

44 Dekel Tsur. Faster parameterized algorithm for cluster vertex deletion. Theory Comput. Syst.,
65(2):323–343, 2021. doi:10.1007/s00224-020-10005-w.

45 Dekel Tsur. Cluster deletion revisited. Information Processing Letters, 173:106171, 2022.
doi:10.1016/j.ipl.2021.106171.

46 Esther Ulitzsch, Qiwei He, Vincent Ulitzsch, Hendrik Molter, André Nichterlein, Rolf Nie-
dermeier, and Steffi Pohl. Combining clickstream analyses and graph-modeled data clus-
tering for identifying common response processes. Psychometrika, 86(1):190–214, 2021.
doi:10.1007/s11336-020-09743-0.

IPEC 2023

https://doi.org/10.4230/LIPIcs.IPEC.2022.20
https://doi.org/10.1016/j.dam.2012.05.019
https://doi.org/10.1016/j.dam.2012.05.019
https://doi.org/10.4230/LIPIcs.STACS.2021.49
https://doi.org/10.4230/LIPIcs.STACS.2021.49
https://doi.org/10.1007/s00453-020-00746-y
https://doi.org/10.1016/j.cosrev.2007.05.001
https://doi.org/10.1016/j.cosrev.2007.05.001
https://doi.org/10.1007/3-540-36379-3_33
https://doi.org/10.4230/LIPIcs.IPEC.2021.32
https://doi.org/10.1007/s00224-020-10005-w
https://doi.org/10.1016/j.ipl.2021.106171
https://doi.org/10.1007/s11336-020-09743-0

Bandwidth Parameterized by Cluster Vertex
Deletion Number
Tatsuya Gima #

JSPS Research Fellow, Nagoya University, Japan

Eun Jung Kim #

Université Paris-Dauphine, PSL University, CNRS UMR7243, LAMSADE, Paris, France

Noleen Köhler #

Université Paris-Dauphine, PSL University, CNRS UMR7243, LAMSADE, Paris, France

Nikolaos Melissinos #

Department of Theoretical Computer Science, Faculty of Information Technology, Czech Technical
University in Prague, Czech Republic

Manolis Vasilakis #

Université Paris-Dauphine, PSL University, CNRS UMR7243, LAMSADE, Paris, France

Abstract
Given a graph G and an integer b, Bandwidth asks whether there exists a bijection π from V (G) to
{1, . . . , |V (G)|} such that max{u,v}∈E(G) |π(u) − π(v)| ≤ b. This is a classical NP-complete problem,
known to remain NP-complete even on very restricted classes of graphs, such as trees of maximum
degree 3 and caterpillars of hair length 3. In the realm of parameterized complexity, these results
imply that the problem remains NP-hard on graphs of bounded pathwidth, while it is additionally
known to be W[1]-hard when parameterized by the treedepth of the input graph. In contrast, the
problem does become FPT when parameterized by the vertex cover number of the input graph. In
this paper, we make progress towards the parameterized (in)tractability of Bandwidth. We first
show that it is FPT when parameterized by the cluster vertex deletion number cvd plus the clique
number ω of the input graph, thus generalizing the previously mentioned result for vertex cover.
On the other hand, we show that Bandwidth is W[1]-hard when parameterized only by cvd. Our
results generalize some of the previous results and narrow some of the complexity gaps.

2012 ACM Subject Classification Theory of computation → Parameterized complexity and exact
algorithms

Keywords and phrases Bandwidth, Clique number, Cluster vertex deletion number, Parameterized
complexity

Digital Object Identifier 10.4230/LIPIcs.IPEC.2023.21

Related Version Full Version: https://arxiv.org/abs/2309.17204

Funding Our research visit to Nagoya University, Japan was funded by PRC CNRS JSPS project
PARAGA (Parameterized Approximation Graph Algorithms).
Tatsuya Gima: Partially supported by JSPS KAKENHI Grant Number JP23KJ1066.
Eun Jung Kim: Supported by ANR project ANR-18-CE40-0025-01 (ASSK).
Noleen Köhler : Supported by ANR project ANR-18-CE40-0025-01 (ASSK).
Nikolaos Melissinos: Supported by the CTU Global postdoc fellowship program.
Manolis Vasilakis: Partially supported by ANR project ANR-21-CE48-0022 (S-EX-AP-PE-AL).

Acknowledgements We would like to thank Virginia Ardévol Martínez and Yota Otachi for interesting
discussions at the preliminary stages of this work.

© Tatsuya Gima, Eun Jung Kim, Noleen Köhler, Nikolaos Melissinos, and Manolis Vasilakis;
licensed under Creative Commons License CC-BY 4.0

18th International Symposium on Parameterized and Exact Computation (IPEC 2023).
Editors: Neeldhara Misra and Magnus Wahlström; Article No. 21; pp. 21:1–21:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:gima@nagoya-u.jp
https://orcid.org/0000-0003-2815-5699
mailto:eun-jung.kim@dauphine.fr
https://orcid.org/0000-0002-6824-0516
mailto:noleen.kohler@dauphine.psl.eu
https://orcid.org/0000-0002-1023-6530
mailto:nikolaos.melissinos@fit.cvut.cz
https://orcid.org/0000-0002-0864-9803
mailto:emmanouil.vasilakis@dauphine.eu
https://orcid.org/0000-0001-6505-2977
https://doi.org/10.4230/LIPIcs.IPEC.2023.21
https://arxiv.org/abs/2309.17204
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

21:2 Bandwidth Parameterized by Cluster Vertex Deletion Number

1 Introduction

Given an undirected graph G and an integer b, Bandwidth asks whether there exists a
bijection π : V (G) → {1, . . . , |V (G)|} of the vertices of G (called an ordering) such that
max{u,v}∈E(G)|π(u) − π(v)| ≤ b. The main motivation behind its study dates back to over
half a century: a closely related problem in the field of matrix theory was first studied in
the 1950’s, while in the 1960’s it was formulated as a graph problem, finding applications
in minimizing (average) absolute error in codes, and has been extensively studied ever
since [6, 11, 12, 13, 22, 30].

Bandwidth is long known to be NP-complete [6, 43]; as a matter of fact, it remains
NP-complete even on very restricted classes of graphs, such as trees of maximum degree 3 [27],
caterpillars of hair length 3 [40] and cyclic caterpillars of hair length 1 [41]. Considering
these NP-hardness results, in this paper we focus on the parameterized complexity of
Bandwidth. When parameterized by the natural parameter b, Bandwidth is known to
be in XP [29, 44], whilst it is W[t]-hard for all positive integers t, even when the input
graph is a tree [3, 4]. In fact, Bandwidth cannot be solved in time f(b)no(b) even on trees
of pathwidth at most two, unless the Exponential Time Hypothesis fails [17]. Regarding
structural parameterizations, the previously mentioned results imply that Bandwidth is
para-NP-complete when parameterized by the pathwidth or the treewidth plus the maximum
degree of the input graph; the latter implies NP-completeness also on graphs of constant
tree-cut width [26]. Moreover, it is known to be W[1]-hard parameterized by the treedepth
of the input graph [28]. In contrast, the problem does become fixed-parameter tractable
(FPT) when parameterized by the vertex cover number [20], the neighborhood diversity [1],
or the max leaf number [19] of the input graph.

In the last few years, a plethora of structural parameters have been introduced, in
an attempt to precisely determine the limits of tractability of algorithmic problems that
are FPT by vertex cover, yet become W[1]-hard when parameterized by more general
parameters, such as treewidth or clique-width. Some of the most well-studied such parameters
are treedepth [42], twin cover number [24], cluster vertex deletion number [16], vertex
integrity [28], shrub-depth [25], neighborhood diversity [35], and modular-width [23]. The
tractability of Bandwidth with respect to those parameters has remained largely unexplored,
with the exception of treedepth [28] and neighborhood diversity [1].

Cluster vertex deletion number lies between clique-width and vertex cover number (more
precisely twin cover number), and is defined as the minimum size of a set of vertices whose
removal induces a cluster graph, i.e. all of its components are cliques. It was first considered
as a structural parameter in [16], and has been used to show parameterized (in)tractability
results in multiple occasions ever since [2, 5, 7, 8, 33, 34, 38]. Notice that Bandwidth is
trivial on cluster graphs; it suffices to check that the clique number is at most b + 1, as any
optimal ordering places the vertices of every clique consecutively, for some ordering of the
cliques. Therefore, its tractability when parameterized by the cluster vertex deletion number
of the input graph poses a very natural question.

Our contribution. In the current work, we present both tractability and intractability
results for Bandwidth when cluster vertex deletion number is a parameter of the problem
(see Figure 1 for an overview of our results and the relationships between the structural
parameters mentioned). We first prove that Bandwidth is FPT when parameterized by
cvd + ω, where cvd and ω denote the cluster vertex deletion number and clique number of
the input graph respectively. This generalizes the tractability result for vertex cover number

T. Gima, E. J. Kim, N. Köhler, N. Melissinos, and M. Vasilakis 21:3

vertex cover number [20]

clique-width

twin cover number + ω

twin cover number cluster vertex
deletion number + ω

[Theorem 2]

vertex integrity

treedepth [28]

bandwidth [4]

max leaf number [19]

pathwidth [40]

treewidth

treewidth + ∆ [27]

tree-cut width

cluster vertex
deletion number

[Theorem 13]

shrub-depth

neighborhood
diversity [1]

modular width

Figure 1 Our results and hierarchy of some related structural graph parameters, where ω and ∆
denote the clique number and the maximum degree of the input graph, respectively. Arrows between
parameters indicate generalization relations, that is, for any graph, if the parameter at the tail of an
arrow is a constant then the parameter at the head of the arrow is also a constant. The reverse
does not hold in this figure. The framed green, frameless orange, and double framed red rectangles
indicate fixed-parameter tractable, W[∗]-hard, and NP-complete cases, respectively.

of [20], and follows the same idea of encoding the problem as an integer linear program (ILP)
of a small number of variables. Solving said ILP, one can verify whether there exists any
ordering π of the vertices of G such that a) |π(v) − π(u)| ≤ b for all {u, v} ∈ E(G), and b)
π is “nice”, where an ordering is nice if it has some specific properties. Proving that there
exists a nice ordering π that minimizes max{u,v}∈E(G) |π(v) − π(u)| then yields the stated
result.

A natural question that arises from the previous result is whether it is necessary for both
cvd and ω to be parameters of the problem in order to assure fixed-parameter tractability.
Notice that Bandwidth is NP-complete even when ω ≤ 2, since that is the case for trees.
Therefore, we proceed by studying the problem’s tractability when parameterized only by
cvd. In this setting, we show that Bandwidth is W[1]-hard via a reduction from Unary
Bin Packing, thus positively answering the previous question. Note that the W[1]-hardness
of Bandwidth when parameterized by treedepth is also shown via a reduction from Unary
Bin Packing [28].

Related work. Bandwidth is one of the so-called graph layout problems (see the survey
of [14]). As far as the structural parameterized complexity of such problems is concerned,
Fellows, Lokshtanov, Misra, Rosamond, and Saurabh [20] were the first to prove FPT results
for a multitude of them when parameterized by the vertex cover number of the input graph,
making use of ILP formulations. Since then, not much progress has been made on that front,
with a notable exception being Imbalance, which was shown to be FPT when parameterized
by twin cover number plus ω [39], vertex integrity [28], or tree-cut width [26], while it belongs
to XP when parameterized by twin cover [39]. Minimum Linear Arrangement is known
to be FPT parameterized by max leaf number, or edge clique number of the input graph [18],

IPEC 2023

21:4 Bandwidth Parameterized by Cluster Vertex Deletion Number

as well as by the vertex cover number [37]. Lastly, as far as Cutwidth is concerned, a
2O(vc)nO(1) time algorithm was presented in [10], improving over the ILP formulation of [20],
where vc denotes the vertex cover number of the input graph.

Organization. In Section 2 we discuss the general preliminaries, followed by the FPT
algorithm in Section 3 and the hardness result in Section 4. Lastly, in Section 5 we present
the conclusion as well as some directions for future research. Proofs marked with (⋆) are in
the full version of the paper.

2 Preliminaries

Throughout the paper we use standard graph notation [15], and we assume familiarity
with the basic notions of parameterized complexity [9]. We assume that N is the set of
all non-negative integers. All graphs considered are undirected without loops. The clique
number of a graph G, denoted by ω(G), is the size of its largest induced clique. For
x, y ∈ Z, let [x, y] = {z ∈ Z : x ≤ z ≤ y}, while [x] = [1, x]. For Ii = [ai, bi], we say that
intervals I1, . . . , Ik partition interval I = [a, b] if I =

⋃
i∈[k] Ii and Ii ∩ Ij = ∅, for any

1 ≤ i < j ≤ k. Additionally, let Ii < Ij if bi < aj . For a function f : A → B and A′ ⊆ A,
let f(A′) = {f(a) ∈ B : a ∈ A′}. Moreover, let max(f(A′)) = max{f(a) : a ∈ A′} and
min(f(A′)) defined analogously.

Let G be a graph and π : V (G) → [n] an ordering of its vertices. We define the stretch of an
edge e = {u, v} ∈ E(G) with regard to π as stretchπ(e) = |π(u)−π(v)|. We define the stretch
of π to be the maximum stretch of the edges of G, i.e. stretch(π) = maxe∈E(G) stretchπ(e).
The bandwidth of G, denoted bw(G), is the minimum stretch of any vertex ordering π :
V (G) → [n].

▶ Remark 1. Note that the stretch of a vertex ordering is invariant under isomorphism, which
means in particular that stretch(π) = stretch(π ◦ f) for any vertex ordering π : V (G) → [n]
and any automorphism f : V (G) → V (G) of G.

A cluster deletion set of a graph G is a set S ⊆ V (G) such that every component of
G − S is a clique. If S is a cluster deletion set, we call the components of G − S clusters. The
cluster vertex deletion number of a graph G, denoted by cvd(G), is the size of its minimum
cluster deletion set.

In the Unary Bin Packing problem, we are given a set of integers A = {aj : j ∈ [n]}
in unary, as well as k ∈ N, and are asked to determine whether there exists a partition
(S1, . . . , Sk) of A such that

∑
aj∈Si

aj =
∑

j∈[n] aj/k for every i ∈ [k]. Unary Bin Packing
can be solved in time nO(k) by employing dynamic programming, while it is known to be
W[1]-hard parameterized by k [31].

The feasibility variant of integer linear programming (ILP) is to decide, given a set
X of variables and a set C of linear constraints (i.e. inequalities) over the variables in
X with integer coefficients, whether there is an assignment α : X → Z of the variables
satisfying all constraints in C. It is known that the feasibility of an instance of (ILP) can
be tested in O(p2.5p+o(p) · L) time, where p is the number of variables and L is the size of
the input [21, 32, 36]. In other words, computing the feasibility of an ILP formula is FPT
parameterized by the number of variables. Moreover, a solution can be computed in the
same time if it exists.

T. Gima, E. J. Kim, N. Köhler, N. Melissinos, and M. Vasilakis 21:5

3 An FPT-algorithm parameterized by cluster vertex deletion number
plus clique number

In this section, we prove that Bandwidth is FPT when parameterized by the cluster vertex
deletion number plus the clique number of the input graph.

▶ Theorem 2. Bandwidth is fixed parameter tractable when parameterized by cvd + ω,
where cvd, ω denote the cluster vertex deletion number and clique number of the input graph
respectively.

Our proof is a generalization of the FPT result for vertex cover number from [20]. The
general idea for obtaining an ILP encoding of Bandwidth given a vertex cover S is to
augment S by a small number (dependent only on the vertex cover number) of representative
vertices of every neighborhood-type. It can be easily seen that we can modify any ordering
π in such a way that the leftmost and rightmost neighbor of any vertex in S is contained
in this augmented set S′ without increasing the stretch. For any ordering σ of S′ we can
decide whether we can extend σ to an ordering of V (G) of stretch at most b by encoding
how vertices of certain neighborhood-types are distributed into the gaps between the vertices
of S′ into an ILP. By ensuring that we distribute the vertices in such a way that the leftmost
and rightmost neighbor of any vertex in S is contained in S′ we can bound the stretch of
every edge by using one linear constraint for every edge in G[S′].

In our setting we can use the vertex cover approach to bound the stretch of all edges
incident to the deletion set. To gain control over the stretch of edges within clusters, we
show that we can convert any ordering into a nice ordering without increasing the stretch.
Here niceness intuitively means, that we can order the vertices in between any two vertices
of S′ in such a way that vertices of the same type appear consecutively, where the type now
depends on the isomorphism-type of the cluster union the deletion set. This will allow us to
bound the stretch of such edges by a linear constraint as well.

3.1 Types and buckets
Let G be a graph and S a cluster deletion set of G of size k. For any vertex v ∈ V (G − S),
let NS(v) = N(v) ∩ S be its S-neighborhood. Let K ⊆ N2k be the set of non-negative
integer vectors κ with 2k entries for which ∥κ∥1 ≤ ω(G). Here ∥·∥1 denotes the 1-norm,
i.e. the sum of the absolute value of the entries. We assume that the entries of the vectors
in K are indexed by the subsets of S. We say that a cluster C has cluster-type κ ∈ K if
|{v ∈ V (C) : NS(v) = N}| = (κ)N for every N ⊆ S where (κ)N denotes the entry of κ

corresponding to N . We further let #κ denote the number of clusters of cluster-type κ in G.
We say that a set C of clusters is representative if it consists of min{2|S|, #κ} distinct clusters
of type κ for every cluster-type κ. We further say that a set S′ is an extended deletion set if
S′ = S ∪

⋃
C∈C V (C) for a representative set C of clusters.

▶ Lemma 3 (⋆). For every extended deletion set S′ there is an ordering π : V (G) → [n] such
that stretch(π) = bw(G) and for every s ∈ S, the set S′ contains vertices vs

min and vs
max,

where π(vs
min) = min(π(N(s))) and π(vs

max) = max(π(N(s))), i.e. S′ contains the leftmost
and rightmost neighbor of s.

We say that an ordering π : V (G) → [n] is S′-extremal if the second property in Lemma 3
is satisfied for π.

▶ Observation 4. The size of any extended deletion set S′ is at most |S|+2|S|ω(G)·22|S|·ω(G).

IPEC 2023

21:6 Bandwidth Parameterized by Cluster Vertex Deletion Number

Let C be a representative set of clusters, S′ = S ∪
⋃

C∈C V (C) the extended deletion set
containing vertices from C and S and set k′ = |S′|. A bucket distribution of S′ is a partition
B = (B0, . . . , Bk′) of the vertices of G − S′. Fix a bucket distribution B = (B0, . . . , Bk′) of
S′. We call the subsets Bi buckets of B.

Let T ⊆ N2k×(k′+1) be the set of matrices τ with ∥τ∥1 ≤ ω(G). We assume that the rows
of matrices are indexed with subsets of S and the columns with [0, k′]. We say that a cluster
C /∈ C has distribution-type τ ∈ T in B if |{v ∈ V (C) ∩ Bi : NS(v) = N}| = (τ)N,i for every
N ⊆ S and every i ∈ [0, k′]. For every κ ∈ K, let Tκ ⊆ T denote the set of distribution-types
τ such that

∑
i∈[0,k′](τ)N,i = (κ)N for every N ⊆ S, i.e., the set of τ ∈ T such that any

cluster of distribution-type τ has cluster-type κ.

▶ Observation 5. The number of distribution-types is at most ω(G)2|S|·(|S′|+1) for any
extended deletion set S′.

Let σ : S′ → [k′] be an ordering of the vertices of S′. We say that a vertex ordering
π : V (G) → [n] is compatible with σ if for any s1, s2 ∈ S′ it holds that π(s1) < π(s2) if and
only if σ(s1) < σ(s2). We say that a vertex ordering π : V (G) → [n] is compatible with σ and
B if π is compatible with σ and B0 = {v ∈ V (G) : π(v) < π(σ−1(1))}, Bk′ = {v ∈ V (G) :
π(v) > π(σ−1(k′))} and Bi = {v ∈ V (G) : π(σ−1(i)) < π(v) < π(σ−1(i + 1))} for i ∈ [k′ − 1].

3.2 Nice orderings
Let G be a graph and S a cluster deletion set of G. Furthermore, let C be a representative
set of clusters, S′ = S ∪

⋃
C∈C V (C) the extended deletion set containing vertices from C and

S and k′ = |S′|. Additionally, we fix a bucket distribution B = (B0, . . . , Bk′) of S′ and an
ordering σ : S′ → [k′].

To obtain our nice ordering we use a series of exchange arguments that will not increase
the stretch. We call an ordering nice if it has properties (Π1), (Π2) and (Π3). We will first
give some intuition regarding the properties, before defining them formally.

Assume π : V (G) → [n] is an optimal ordering minimizing the number of edges of
maximum stretch. Furthermore, let v ∈ V (C) be a vertex which is contained in an edge of
maximum stretch with regards to π and the cluster C containing v is distributed over more
than one bucket. In this case, v must be either the leftmost or the rightmost vertex of C.
Assuming v is the leftmost vertex of C (the other case is analogous), we can observe that
every vertex v′ ∈ Bi appearing further to the right than v must have a neighbor contained
in a bucket to the right of Bi and no neighbor to the left of v. Otherwise, we can reduce the
stretch of the edge containing v without increasing the stretch of any edge incident to v′ (and
hence reducing the number of edges of maximum stretch without increasing the maximum
stretch) by exchanging v and v′. Using this observation, we can assume that each bucket is
partitioned into a left, a middle and a right part and every vertex with only neighbors to
the left of Bi appears in the left part and every vertex having only neighbors to the right of
Bi appears in the right part. Additionally, the above observation allows us to assume that
within each bucket the vertices of one cluster appear consecutively (property (Π1)).

Now assume that {v, w} is an edge of maximum stretch as before (v appears left of w

in π) and {v′, w′} is another edge such that v′ appears in the same bucket as v and w′ in
the same bucket as w. If v′ appears before v then w′ has to appear before w as {v, w} is
of maximum stretch. On the other hand, if v′ appears after v then w′ must appear after w

as otherwise exchanging w and w′ either reduces the number of edges of maximum stretch
or reduces the maximum stretch itself. Hence, we can assume that the relative order of the
leftmost vertices of a set of clusters is the same as the relative order of the rightmost vertices
of the same clusters (property (Π2)).

T. Gima, E. J. Kim, N. Köhler, N. Melissinos, and M. Vasilakis 21:7

Lastly, assume that C and C ′ are clusters of type τ ∈ T which are not contained in
just one bucket and appear next to each other (in their leftmost bucket). Assume Bℓ is
the bucket containing the leftmost vertex of C and C ′ and Br the bucket containing the
rightmost vertex of C and C ′. We can essentially exchange V (C) ∩ Bℓ with V (C ′) ∩ Bℓ and
at the same time V (C) ∩ Br with V (C ′) ∩ Br if certain properties about the size of these
sets hold. This allows us to order the buckets in such a way, that clusters whose intersection
with the leftmost (rightmost, respectively) bucket they intersect is of the same size, appear
consecutively (property (Π3)).

To state the three properties formally we use the following notation. For a distribution-
type τ ∈ T and i ∈ [0, k′], we write τi to denote the column of τ which is indexed by i. We
define LB(τ) to be the largest index i ∈ [0, k′] such that ∥τj∥1 = 0 for any j ∈ [0, i − 1],
i.e. Bi is the leftmost bucket containing vertices from clusters of type τ . We define RB(τ)
analogously to be the minimum index i ∈ [0, k′] such that ∥τj∥1 = 0 for any j ∈ [i + 1, k′].
Additionally, we let #L(τ) be ∥τLB(τ)∥1 and #R(τ) be ∥τRB(τ)∥1. For every ℓ ≤ r ∈ [0, k′]
and every nL, nR ∈ [0, ω(G)], we define

T (ℓ,r,nL,nR) = {τ ∈ T : LB(τ) = ℓ, RB(τ) = r, #L(τ) = nL, #R(τ) = nR}.

▶ Definition 6 (Property (Π1)). We say that an S′-extremal ordering π : V (G) → [n] which
is compatible with σ and B has property (Π1) if for every i ∈ [0, k′]
1. the vertices of V (C) ∩ Bi appear consecutively in π for every cluster C /∈ C,
2. we can partition the interval π(Bi) into three (possibly empty) intervals Ii

R < Ii
M < Ii

L

such that for every τ ∈ T and every cluster C of distribution-type τ

π(V (C) ∩ Bi) ⊆ Ii
R if LB(τ) ̸= i and RB(τ) = i,

π(V (C) ∩ Bi) ⊆ Ii
L if LB(τ) = i and RB(τ) ̸= i,

π(V (C) ∩ Bi) ⊆ Ii
M if either LB(τ) ̸= i and RB(τ) ̸= i or LB(τ) = RB(τ) = i.

Notice that while Ii
R contains the leftmost ordered vertices of Bi, we use the index R since

those vertices are the rightmost vertices of their corresponding cliques. Analogously, we use
Ii

L for the rightmost ordered vertices of Bi.

▶ Definition 7 (Property (Π2)). We say that an S′-extremal ordering π : V (G) → [n] which
is compatible with σ and B has property (Π2) if for any two distribution-types τ, τ ′ ∈ T and
any two clusters C and C ′ of distribution-type τ and τ ′ respectively, the following holds.

If either LB(τ) = LB(τ ′) or RB(τ) = RB(τ ′), then for any v ∈ V (C) ∩ BLB(τ), v′ ∈
V (C ′) ∩ BLB(τ ′), w ∈ V (C) ∩ BRB(τ), w′ ∈ V (C ′) ∩ BRB(τ ′) we have that π(v) < π(v′) if
and only if π(w) < π(w′).

Lastly, we want the buckets to be ordered by distribution-types which will enable us
to express the stretch within clusters by linear constraints. To achieve this, we define two
orderings of distribution-types, dictating in which order (in a nice, optimal vertex ordering)
cliques of a certain type will appear within a bucket. First, let T i

R =
⋃

ℓ∈[0,i−1],
nL,nR∈[ω(G)]

T (ℓ,i,nL,nR)

and define the ordering ρi : T i
R → [|T i

R|] in the following way. For any τ ∈ T (ℓ,i,nL,nR),
τ ′ ∈ T (ℓ′,i,n′

L,n′
R), we have that ρi(τ) < ρi(τ ′) if either

ℓ < ℓ′ or
ℓ = ℓ′, nL ≥ nR and n′

L < n′
R or

ℓ = ℓ′, nL ≥ nR, n′
L ≥ n′

R and nR < n′
R or

ℓ = ℓ′, nL < nR, n′
L < n′

R and nL > n′
L or

ℓ = ℓ′, nL ≥ nR, n′
L ≥ n′

R, nR = n′
R and τ ≤lex τ ′ or

ℓ = ℓ′, nL < nR, n′
L < n′

R, nL = n′
L and τ ≤lex τ ′.

IPEC 2023

21:8 Bandwidth Parameterized by Cluster Vertex Deletion Number

Here ≤lex refers to the lexicographic order on matrices in T where we read the entries by
lines top to bottom. However, we can replace this by any total ordering (≤lex is an arbitrary
choice).

Moreover, let T i
L =

⋃
r∈[i+1,k′],

nL,nR∈[ω(G)]
T (i,r,nL,nR) and define the ordering λi : T i

L → [|T i
L|] by

letting λi(τ) < λi(τ ′) for any τ ∈ T (i,r,nL,nR), τ ′ ∈ T (i,r′,n′
L,n′

R) if either
r < r′ or
r = r′ and ρi(τ) < ρi(τ ′).

▶ Remark 8. Note that we can compute all ρi and λi in time quadratic in the size of T .

▶ Definition 9 (Property (Π3)). We say that an S′-extremal ordering π : V (G) → [n] which
is compatible with σ and B has property (Π3) if for every i ∈ [0, k′] we can partition the
interval π(Bi) into (possibly empty) intervals

J
(i,1)
R < · · · < J

(i,|T i
R|)

R < J i
M < J

(i,1)
L < · · · < J

(i,|T i
L|)

L

such that for every distribution-type τ ∈ T and every cluster C of type τ and every j ∈ [|T i
R|],

j′ ∈ [|T i
L|],

π(V (C) ∩ Bi) ⊆ J
(i,j)
R if ρi(τ) = j and

π(V (C) ∩ Bi) ⊆ J
(i,j′)
L if λi(τ) = j′.

▶ Lemma 10 (⋆). Given an S′-extremal ordering π : V (G) → [n] which is compatible with
σ and B, there exists an S′-extremal ordering π′ : V (G) → [n] of stretch(π′) ≤ stretch(π)
which is compatible with σ and B and has properties (Π1), (Π2) and (Π3).

3.3 ILP formulation
Let G be a graph and S a cluster deletion set of G. Furthermore, let C be a representative
set of clusters, S′ = S ∪

⋃
C∈C V (C) the extended deletion set containing vertices from C and

S and k′ = |S′|.
For every ordering σ : S′ → k′, we will use an ILP to determine whether there is an

S′-extremal ordering π : V (G) → [n] of stretch at most b which is compatible with σ. The
ILP has two variables xτ , yτ for every distribution-type τ ∈ T . The variable xτ expresses
how many clusters of G − S′ have distribution-type τ in an optimal S′-extremal ordering
compatible with σ. The variable yτ is an indicator variable which is 1 if and only if xτ > 0
and 0 otherwise. We further use zi for i ∈ [0, k′] in our ILP formulation as a placeholder for
the expression

∑
τ∈T (xτ · ∥τi∥1) which expresses the number of vertices in bucket i. For an

assignment α : {xτ , yτ : τ ∈ T } → N of the variables of our ILP, we write α(zi) to stand for
the expression

∑
τ∈T (α(xτ) · ∥τi∥1).

We further need the leftmost and rightmost neighbor of any vertex of S in S′, thus define
vs

min,σ, vs
max,σ ∈ S′ such that σ(vs

min,σ) = min(σ(N(s))) and σ(vs
max,σ) = max(σ(N(s))), for

every ordering σ : S′ → k′ and s ∈ S. Note that by choosing S to be minimum, we can
assume that S contains no vertex with no neighbors in G − S and hence vs

min,σ and vs
max,σ

are well defined.
For a fixed ordering σ : S′ → [k′], we can now formulate our set of linear constraints.

The first three constraints ensure that we choose the number of clusters that have a certain
distribution-type in a feasible way. That is, (T1) ensures that the quantities of distribution-
types corresponding to an assignment of the variables xτ corresponds to a valid choice of
allocating each available cluster in the input graph G a distribution-type. As for (T2), it
ensures that vs

min,σ is indeed the leftmost neighbor of s while vs
max,σ is the rightmost neighbor

T. Gima, E. J. Kim, N. Köhler, N. Melissinos, and M. Vasilakis 21:9

of s for every s ∈ S by ensuring that any distribution-type placing a neighbor of s in a bucket
left of vs

min,σ or right of vs
max,σ does not occur. Finally, (T3) guarantees that yτ indeed

indicates whether or not distribution-type τ is used in the solution.
(T1) For every κ ∈ K,

#κ = min{#κ, 2k} +
∑

τ∈Tκ

xτ .

(T2) For every s ∈ S and every τ ∈ T for which τN,i > 0 for some N ∋ s and i ∈
[0, σ(vs

min,σ) − 1] ∪ [σ(vs
max,σ), k′],

xτ = 0.

(T3) xτ · (1 − yτ) = 0 and (1 − xτ) · yτ ≤ 0 for every τ ∈ T .

The purpose of all remaining constraints is to ensure that for the assignment of variables,
which essentially corresponds to choosing a bucket distribution B, there is an S′-extremal
ordering π : V (G) → [n] which is compatible with σ and B for which stretch(π) ≤ b. (DS)
expresses that the stretch of edges in G[S′] is bounded by b.
(DS) For every s, s′ ∈ S′ with {s, s′} ∈ E(G), σ(s) < σ(s′),

b ≥ σ(s′) − σ(s) +
∑

i∈[σ(s),σ(s′)−1]

zi.

The last three constraints deal with bounding the stretch of edges within clusters. For this
we assume that the S′-extremal ordering which is consistent with σ and B is nice, i.e. has
properties (Π1), (Π2) and (Π3). The first constraint (C1) is necessary to bound the stretch of
clusters that are fully contained in one bucket. To bound the stretch of clusters contained in
multiple buckets, we have one constraint for every distribution-type τ ∈ T (ℓ,r,nL,nR) for any
ℓ < r ∈ [0, k′], nL, nR ∈ [ω(G)]. By property (Π3) we know that there are intervals J

(ℓ,λℓ(τ))
L

containing all vertices from Bℓ ∩ V (C) and J
(r,ρr(τ))
R containing all vertices Br ∩ V (C) for

every cluster C of distribution-type τ . The trick now is to observe that if nL ≥ nR then the
first cluster appearing in J

(ℓ,λℓ(τ))
L observes the maximum stretch while if nL < nR it is the

last clique. Using this we can express with constraints (C2) and (C3) that the stretch of
every cluster of distribution-type τ is bounded by b.
(C1) (b ≥ ω(G) − 1.
(C2) For every ℓ < r ∈ [0, k′], nL ≥ nR ∈ [ω(G)] and τ ∈ T (ℓ,r,nL,nR),

b ≥ yτ ·
(∑

τ ′∈λ−1
ℓ

(
[λℓ(τ),|T ℓ

L
|]
) #L(τ ′) · xτ ′ +

∑
ℓ<i<r

zi + (r − ℓ)

+
∑

τ ′∈ρ−1
r

(
[1,ρr(τ)−1]

) #R(τ ′) · xτ ′ + nR − 1
)

.

(C3) For every ℓ < r ∈ [0, k′], nL < nR ∈ [ω(G)] and τ ∈ T (ℓ,r,nL,nR),

b ≥ yτ ·
(

nL +
∑

τ ′∈λ−1
ℓ

(
[λℓ(τ)+1,|T ℓ

L
|]
) #L(τ ′) · xτ ′ +

∑
ℓ<i<r

zi + (r − ℓ)

+
∑

τ ′∈ρ−1
r

(
[1,ρr(τ)]

) #R(τ ′) · xτ ′ − 1
)

.

IPEC 2023

21:10 Bandwidth Parameterized by Cluster Vertex Deletion Number

▶ Lemma 11 (⋆). For any ordering σ : S′ → [k′], there is an S′-extremal ordering π :
V (G) → [n] of stretch at most b which is compatible with σ if and only if the system of linear
equation (T1, T2, T3, DS, C1, C2, C3) for σ admits a solution.

Using Lemma 11 we obtain an FPT-algorithm, which computes S, #κ for every cluster-
type κ and arbitrary picks an extended deletion set S′. The algorithm then for every
ordering σ : S′ → [k′] verifies whether the ILP admits a solution in which case the input is a
YES-instance of Bandwidth. Details are given in the full version of the paper.
▶ Remark 12. Using a minimization ILP, we can in fact construct an ordering of minimum
stretch (and not just argue about the existence of an ordering of stretch at most b), since all
the exchange arguments of Section 3.2 are constructive.

4 W[1]-hardness parameterized by cluster vertex deletion number

In this section, we prove that Bandwidth is W[1]-hard when parameterized by the cluster
vertex deletion number of the input graph. In order to do so, we reduce from an instance of
Unary Bin Packing. Before we present the details of the construction, we first give some
high-level intuition.

For an instance (A, k) of Unary Bin Packing we want to construct an equivalent
instance (G, b) of Bandwidth, such that cvd(G) = f(k) for some function f . Roughly, the
graph G consists of cliques representing the items of the Unary Bin Packing instance and
cliques that act as delimiters separating the items contained in some bucket from the items
contained in the next bucket. However, in order to guarantee that the entirety of every item
clique is placed in between two consecutive delimiter cliques and that the values of the items
in between two delimiter cliques add up to B (the capacity of the bins in the Unary Bin
Packing instance (A, k)), some extra structure is needed. First we introduce two cliques of
size b + 1 that will be used as boundaries. By making each item clique and each delimiter
clique of the graph adjacent to some vertex in both of the boundary cliques, it follows that
in any ordering of stretch at most b, all item cliques and all delimiter cliques of the graph
will be positioned in between the two boundary cliques.

As the size of the deletion set cannot depend on the number or values of the items, item
cliques cannot be incident to individual deletion set vertices. This makes it tricky to enforce
that every vertex of an item clique is contained in between the same two delimiter cliques
as a majority of the item cliques would not be incident to any edge of maximum stretch
and therefore allow them a lot of freedom of movement. In order to cope with this issue,
we introduce a perfect copy of the delimiter and item cliques, as well as edges between the
original cliques and their copies resulting in them becoming twice as big consisting of a left
part, the original vertices, and a right part, the copy vertices. The left part of all cliques will
be connected to the left boundary clique and will therefore appear to the left of the right
parts. The right part will be connected to the right hand boundary cliques. The item cliques
will now be kept in place by having maximum stretch between the vertices of the left part
and the vertices of the right part.

▶ Theorem 13. Bandwidth is W[1]-hard when parameterized by the cluster deletion number
of the input graph.

Construction. Let (A, k) be an instance of Unary Bin Packing, where A = {a1, . . . , an}.
Moreover, let B =

∑
j∈[n] aj/k be the capacity of every bin, where B ∈ N, since otherwise

this would have been a trivial instance. Set b = 2kB + B − 1. We will construct an equivalent
instance (G, b) of Bandwidth as follows.

T. Gima, E. J. Kim, N. Köhler, N. Melissinos, and M. Vasilakis 21:11

...

Xk

2B − 1

...

...

X2

2B

...

X1

2B

...

X0

B + 1

...
B

L1

...
B

Lk

Y k+1

...

Y k

2B

...

...

Y 2

2B

...

Y 1

3B − 1

...
B

R1

...

...
B

Rk

Figure 2 Part of G, showing only the boundary and the delimiter cliques. Rectangles denote
cliques, brackets denote number of vertices and black vertices compose a cluster deletion set.

Boundary cliques. First, we create two cliques X and Y , referred to as boundary cliques,
where V (X) = {x1, . . . , x2kB+B} and V (Y) = {y1, . . . , y2kB+B}. We consider the following
partition of the vertices of X: let X0 = {x1, . . . , xB+1} and for every i ∈ [k − 1] we denote
the set {x2iB−B+2, . . . , x2iB+B+1} by Xi, while Xk = {x2kB−B+2, . . . , x2kB+B}. Note that
|X0| = B + 1, |Xk| = 2B − 1 and |Xi| = 2B, for all i ∈ [k − 1]. Moreover, we partition the
vertices of Y in a similar but slightly asymmetric way: let Y 1 = {y1, . . . , y3B−1} and for
every i ∈ [2, k] we denote the set {y2iB−B , . . . , y2iB+B−1} by Y i, while Y k+1 = {y2kB+B}.
Note that |Y 1| = 3B − 1, |Y k+1| = 1 and |Y i| = 2B, for all i ∈ [2, k].

Delimiter cliques. For every i ∈ [k] we create a clique on vertex set {ℓi
1, . . . , ℓi

B , ri
1, . . . , ri

B}
of size 2B. We denote the set {ℓi

1, . . . , ℓi
B} by Li and the set {ri

1, . . . , ri
B} by Ri. Moreover,

let L =
⋃k

i=1 Li and R =
⋃k

i=1 Ri. We add the following edges:
For every i ∈ [k], x ∈

⋃k
j=i Xj , we add the edge {ℓi

1, x}.
For every i ∈ [k − 1], ℓ ∈ Li, we add the edge {x2iB+B+1, ℓ}. Moreover, we add an edge
between x2kB+B and every vertex of Lk.
For every i ∈ [k], y ∈

⋃i
j=1 Y j , we add the edge {ri

B , y}.
For every i ∈ [2, k], r ∈ Ri, we add the edge {y2iB−B , r}. Moreover, we add an edge
between y1 and every vertex of R1.

For an illustration of the boundary and delimiter cliques, see Figure 2.

Item cliques. For element ai ∈ A, we construct a clique Ai on vertex set {ai,L
j , ai,R

j : j ∈ [ai]}
of size 2ai. We denote the set of vertices {ai,L

j : j ∈ [ai]} by Ai,L and the set of vertices
{ai,R

j : j ∈ [ai]} by Ai,R. We add edges {x2kB+B , a} for every a ∈
⋃

i∈[k] Ai,L and edges
{y1, a} for every a ∈

⋃
i∈[k] Ai,R. For an illustration, see Figure 3.

IPEC 2023

21:12 Bandwidth Parameterized by Cluster Vertex Deletion Number

x2kB+B y1

... an

An,L

...an

An,R

...

... a1

A1,L

...a1

A1,R

Figure 3 Rectangles denote cliques. Black vertices compose a cluster deletion set.

This concludes the construction of G. Figure 4 illustrates an example of an ordering of
stretch b obtained by a YES-instance of Unary Bin Packing. In the following, we prove
the equivalence of (G, b) to the initial instance of Unary Bin Packing.

X A1,LA3,L L1 A2,L L2 A1,RA3,R R1 A2,R R2 Y

Figure 4 For the instance ({a1, a2, a3}, 2) of Unary Bin Packing with a1 = 1, a2 = 2 and
a3 = 1 the figure shows the graph G from the corresponding instance (G, 9) of Bandwidth. Here
the ordering of the vertices of G with stretch 9 corresponds to the solution of ({a1, a2, a3}, 2) in
which a1, a3 are placed in the first bin and a2 in the second.

▶ Lemma 14 (⋆). If (A, k) is a YES-instance of Unary Bin Packing, then (G, b) is a
YES-instance of Bandwidth.

▶ Lemma 15 (⋆). If (G, b) is a YES-instance of Bandwidth, then (A, k) is a YES-instance
of Unary Bin Packing.

▶ Lemma 16 (⋆). It holds that cvd(G) = O(k).

5 Conclusion

In the current work, we extend our understanding of Bandwidth in the setting of parameter-
ized complexity. In particular, we have shown that the problem is FPT when parameterized
by the cluster vertex deletion number cvd plus the clique number ω of the input graph,
although it becomes W[1]-hard when parameterized only by cvd.

The most natural research direction would be to explore the tractability of the problem
when parameterized by twin cover, modular-width or vertex integrity, given the lack of any
relevant FPT/XP algorithms or hardness results. As a matter of fact, it is not even known
whether the problem is in XP when parameterized by cvd or treedepth.

Finally, most tractability results for the various structural parameters rely on some ILP
formulation. This raises the question of whether any other kind of approach is applicable, as
is the case for Cutwidth [10].

T. Gima, E. J. Kim, N. Köhler, N. Melissinos, and M. Vasilakis 21:13

References
1 Olav Røthe Bakken. Arrangement problems parameterized by neighbourhood diversity.

Master’s thesis, University of Bergen, 2018.
2 Aritra Banik, Prahlad Narasimhan Kasthurirangan, and Venkatesh Raman. Dominator

coloring and CD coloring in almost cluster graphs. In Algorithms and Data Structures - 18th
International Symposium, WADS 2023, volume 14079 of Lecture Notes in Computer Science,
pages 106–119. Springer, 2023. doi:10.1007/978-3-031-38906-1_8.

3 Hans L. Bodlaender. Parameterized complexity of bandwidth of caterpillars and weighted path
emulation. In Graph-Theoretic Concepts in Computer Science - 47th International Workshop,
WG 2021, volume 12911 of Lecture Notes in Computer Science, pages 15–27. Springer, 2021.
doi:10.1007/978-3-030-86838-3_2.

4 Hans L. Bodlaender, Michael R. Fellows, and Michael T. Hallett. Beyond np-completeness
for problems of bounded width: hardness for the W hierarchy. In Proceedings of the Twenty-
Sixth Annual ACM Symposium on Theory of Computing, 23-25 May 1994, Montréal, Québec,
Canada, pages 449–458. ACM, 1994. doi:10.1145/195058.195229.

5 Henning Bruhn, Morgan Chopin, Felix Joos, and Oliver Schaudt. Structural parameterizations
for boxicity. Algorithmica, 74(4):1453–1472, 2016. doi:10.1007/s00453-015-0011-0.

6 Phyllis Z. Chinn, J. Chvatalova, A. K. Dewdney, and Norman E. Gibbs. The bandwidth
problem for graphs and matrices - a survey. J. Graph Theory, 6(3):223–254, 1982. doi:
10.1002/jgt.3190060302.

7 Janka Chlebíková and Morgan Chopin. The firefighter problem: A structural analysis. In
Parameterized and Exact Computation - 9th International Symposium, IPEC 2014, volume
8894 of Lecture Notes in Computer Science, pages 172–183. Springer, 2014. doi:10.1007/
978-3-319-13524-3_15.

8 Morgan Chopin, André Nichterlein, Rolf Niedermeier, and Mathias Weller. Constant thresholds
can make target set selection tractable. Theory Comput. Syst., 55(1):61–83, 2014. doi:
10.1007/s00224-013-9499-3.

9 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

10 Marek Cygan, Daniel Lokshtanov, Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh.
On cutwidth parameterized by vertex cover. Algorithmica, 68(4):940–953, 2014. doi:10.1007/
s00453-012-9707-6.

11 Marek Cygan and Marcin Pilipczuk. Exact and approximate bandwidth. Theor. Comput. Sci.,
411(40–42):3701–3713, 2010. doi:10.1016/j.tcs.2010.06.018.

12 Marek Cygan and Marcin Pilipczuk. Bandwidth and distortion revisited. Discret. Appl. Math.,
160(4-5):494–504, 2012. doi:10.1016/j.dam.2011.10.032.

13 Marek Cygan and Marcin Pilipczuk. Even faster exact bandwidth. ACM Trans. Algorithms,
8(1):8:1–8:14, 2012. doi:10.1145/2071379.2071387.

14 Josep Díaz, Jordi Petit, and Maria J. Serna. A survey of graph layout problems. ACM Comput.
Surv., 34(3):313–356, 2002. doi:10.1145/568522.568523.

15 Reinhard Diestel. Graph Theory, volume 173 of Graduate texts in mathematics. Springer,
2017. doi:10.1007/978-3-662-53622-3.

16 Martin Doucha and Jan Kratochvíl. Cluster vertex deletion: A parameterization between
vertex cover and clique-width. In Mathematical Foundations of Computer Science 2012 - 37th
International Symposium, MFCS 2012, volume 7464 of Lecture Notes in Computer Science,
pages 348–359. Springer, 2012. doi:10.1007/978-3-642-32589-2_32.

17 Markus Sortland Dregi and Daniel Lokshtanov. Parameterized complexity of bandwidth on
trees. In Automata, Languages, and Programming - 41st International Colloquium, ICALP
2014, volume 8572 of Lecture Notes in Computer Science, pages 405–416. Springer, 2014.
doi:10.1007/978-3-662-43948-7_34.

IPEC 2023

https://doi.org/10.1007/978-3-031-38906-1_8
https://doi.org/10.1007/978-3-030-86838-3_2
https://doi.org/10.1145/195058.195229
https://doi.org/10.1007/s00453-015-0011-0
https://doi.org/10.1002/jgt.3190060302
https://doi.org/10.1002/jgt.3190060302
https://doi.org/10.1007/978-3-319-13524-3_15
https://doi.org/10.1007/978-3-319-13524-3_15
https://doi.org/10.1007/s00224-013-9499-3
https://doi.org/10.1007/s00224-013-9499-3
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/s00453-012-9707-6
https://doi.org/10.1007/s00453-012-9707-6
https://doi.org/10.1016/j.tcs.2010.06.018
https://doi.org/10.1016/j.dam.2011.10.032
https://doi.org/10.1145/2071379.2071387
https://doi.org/10.1145/568522.568523
https://doi.org/10.1007/978-3-662-53622-3
https://doi.org/10.1007/978-3-642-32589-2_32
https://doi.org/10.1007/978-3-662-43948-7_34

21:14 Bandwidth Parameterized by Cluster Vertex Deletion Number

18 Michael R. Fellows, Danny Hermelin, Frances A. Rosamond, and Hadas Shachnai. Tractable
parameterizations for the minimum linear arrangement problem. ACM Trans. Comput. Theory,
8(2):6:1–6:12, 2016. doi:10.1145/2898352.

19 Michael R. Fellows, Daniel Lokshtanov, Neeldhara Misra, Matthias Mnich, Frances A.
Rosamond, and Saket Saurabh. The complexity ecology of parameters: An illustra-
tion using bounded max leaf number. Theory Comput. Syst., 45(4):822–848, 2009. doi:
10.1007/s00224-009-9167-9.

20 Michael R. Fellows, Daniel Lokshtanov, Neeldhara Misra, Frances A. Rosamond, and Saket
Saurabh. Graph layout problems parameterized by vertex cover. In Algorithms and Computa-
tion, 19th International Symposium, ISAAC 2008, volume 5369 of Lecture Notes in Computer
Science, pages 294–305. Springer, 2008. doi:10.1007/978-3-540-92182-0_28.

21 András Frank and Éva Tardos. An application of simultaneous diophantine approximation in
combinatorial optimization. Combinatorica, 7:49–65, 1987. doi:10.1007/BF02579200.

22 Martin Fürer, Serge Gaspers, and Shiva Prasad Kasiviswanathan. An exponential time
2-approximation algorithm for bandwidth. Theor. Comput. Sci., 511:23–31, 2013. doi:
10.1016/j.tcs.2013.03.024.

23 Jakub Gajarský, Michael Lampis, and Sebastian Ordyniak. Parameterized algorithms for
modular-width. In Parameterized and Exact Computation - 8th International Symposium,
IPEC 2013, volume 8246 of Lecture Notes in Computer Science, pages 163–176. Springer, 2013.
doi:10.1007/978-3-319-03898-8_15.

24 Robert Ganian. Twin-cover: Beyond vertex cover in parameterized algorithmics. In
Parameterized and Exact Computation - 6th International Symposium, IPEC 2011, vol-
ume 7112 of Lecture Notes in Computer Science, pages 259–271. Springer, 2011. doi:
10.1007/978-3-642-28050-4_21.

25 Robert Ganian, Petr Hlinený, Jaroslav Nesetril, Jan Obdrzálek, Patrice Ossona de Mendez,
and Reshma Ramadurai. When trees grow low: Shrubs and fast MSO1. In Mathematical
Foundations of Computer Science 2012 - 37th International Symposium, MFCS 2012, volume
7464 of Lecture Notes in Computer Science, pages 419–430. Springer, 2012. doi:10.1007/
978-3-642-32589-2_38.

26 Robert Ganian, Eun Jung Kim, and Stefan Szeider. Algorithmic applications of tree-cut width.
SIAM J. Discret. Math., 36(4):2635–2666, 2022. doi:10.1137/20m137478x.

27 M. R. Garey, R. L. Graham, D. S. Johnson, and D. E. Knuth. Complexity results for
bandwidth minimization. SIAM Journal on Applied Mathematics, 34(3):477–495, 1978. doi:
10.1137/0134037.

28 Tatsuya Gima, Tesshu Hanaka, Masashi Kiyomi, Yasuaki Kobayashi, and Yota Otachi. Ex-
ploring the gap between treedepth and vertex cover through vertex integrity. Theor. Comput.
Sci., 918:60–76, 2022. doi:10.1016/j.tcs.2022.03.021.

29 Eitan M. Gurari and Ivan Hal Sudborough. Improved dynamic programming algorithms
for bandwidth minimization and the mincut linear arrangement problem. J. Algorithms,
5(4):531–546, 1984. doi:10.1016/0196-6774(84)90006-3.

30 L. H. Harper. Optimal assignments of numbers to vertices. Journal of the Society for Industrial
and Applied Mathematics, 12(1):131–135, 1964. doi:10.1137/0112012.

31 Klaus Jansen, Stefan Kratsch, Dániel Marx, and Ildikó Schlotter. Bin packing with fixed number
of bins revisited. J. Comput. Syst. Sci., 79(1):39–49, 2013. doi:10.1016/j.jcss.2012.04.004.

32 Ravi Kannan. Minkowski’s convex body theorem and integer programming. Math. Oper. Res.,
12:415–440, 1987. doi:10.1287/moor.12.3.415.

33 Anjeneya Swami Kare and I. Vinod Reddy. Parameterized algorithms for graph burning
problem. In Combinatorial Algorithms - 30th International Workshop, IWOCA 2019, volume
11638 of Lecture Notes in Computer Science, pages 304–314. Springer, 2019. doi:10.1007/
978-3-030-25005-8_25.

34 Martin Kucera and Ondrej Suchý. Minimum eccentricity shortest path problem with respect to
structural parameters. Algorithmica, 85(3):762–782, 2023. doi:10.1007/s00453-022-01006-x.

https://doi.org/10.1145/2898352
https://doi.org/10.1007/s00224-009-9167-9
https://doi.org/10.1007/s00224-009-9167-9
https://doi.org/10.1007/978-3-540-92182-0_28
https://doi.org/10.1007/BF02579200
https://doi.org/10.1016/j.tcs.2013.03.024
https://doi.org/10.1016/j.tcs.2013.03.024
https://doi.org/10.1007/978-3-319-03898-8_15
https://doi.org/10.1007/978-3-642-28050-4_21
https://doi.org/10.1007/978-3-642-28050-4_21
https://doi.org/10.1007/978-3-642-32589-2_38
https://doi.org/10.1007/978-3-642-32589-2_38
https://doi.org/10.1137/20m137478x
https://doi.org/10.1137/0134037
https://doi.org/10.1137/0134037
https://doi.org/10.1016/j.tcs.2022.03.021
https://doi.org/10.1016/0196-6774(84)90006-3
https://doi.org/10.1137/0112012
https://doi.org/10.1016/j.jcss.2012.04.004
https://doi.org/10.1287/moor.12.3.415
https://doi.org/10.1007/978-3-030-25005-8_25
https://doi.org/10.1007/978-3-030-25005-8_25
https://doi.org/10.1007/s00453-022-01006-x

T. Gima, E. J. Kim, N. Köhler, N. Melissinos, and M. Vasilakis 21:15

35 Michael Lampis. Algorithmic meta-theorems for restrictions of treewidth. In Algorithms -
ESA 2010, 18th Annual European Symposium, volume 6346 of Lecture Notes in Computer
Science, pages 549–560. Springer, 2010. doi:10.1007/978-3-642-15775-2_47.

36 Hendrik W. Lenstra Jr. Integer programming with a fixed number of variables. Math. Oper.
Res., 8(4):538–548, 1983. doi:10.1287/moor.8.4.538.

37 Daniel Lokshtanov. Parameterized integer quadratic programming: Variables and coefficients.
CoRR, abs/1511.00310, 2015. arXiv:1511.00310.

38 Diptapriyo Majumdar and Venkatesh Raman. FPT algorithms for FVS parameterized by
split and cluster vertex deletion sets and other parameters. In Frontiers in Algorithmics -
11th International Workshop, FAW 2017, volume 10336 of Lecture Notes in Computer Science,
pages 209–220. Springer, 2017. doi:10.1007/978-3-319-59605-1_19.

39 Neeldhara Misra and Harshil Mittal. Imbalance parameterized by twin cover revisited. Theor.
Comput. Sci., 895:1–15, 2021. doi:10.1016/j.tcs.2021.09.017.

40 Burkhard Monien. The bandwidth minimization problem for caterpillars with hair length
3 is np-complete. SIAM Journal on Algebraic Discrete Methods, 7(4):505–512, 1986. doi:
10.1137/0607057.

41 David Muradian. The bandwidth minimization problem for cyclic caterpillars with hair length
1 is np-complete. Theor. Comput. Sci., 307(3):567–572, 2003. doi:10.1016/S0304-3975(03)
00238-X.

42 Jaroslav Nesetril and Patrice Ossona de Mendez. Tree-depth, subgraph coloring and homo-
morphism bounds. Eur. J. Comb., 27(6):1022–1041, 2006. doi:10.1016/j.ejc.2005.01.010.

43 Christos H. Papadimitriou. The np-completeness of the bandwidth minimization problem.
Computing, 16(3):263–270, 1976. doi:10.1007/BF02280884.

44 James B. Saxe. Dynamic-programming algorithms for recognizing small-bandwidth graphs
in polynomial time. SIAM J. Algebraic Discret. Methods, 1(4):363–369, 1980. doi:10.1137/
0601042.

IPEC 2023

https://doi.org/10.1007/978-3-642-15775-2_47
https://doi.org/10.1287/moor.8.4.538
https://arxiv.org/abs/1511.00310
https://doi.org/10.1007/978-3-319-59605-1_19
https://doi.org/10.1016/j.tcs.2021.09.017
https://doi.org/10.1137/0607057
https://doi.org/10.1137/0607057
https://doi.org/10.1016/S0304-3975(03)00238-X
https://doi.org/10.1016/S0304-3975(03)00238-X
https://doi.org/10.1016/j.ejc.2005.01.010
https://doi.org/10.1007/BF02280884
https://doi.org/10.1137/0601042
https://doi.org/10.1137/0601042

Collective Graph Exploration Parameterized by
Vertex Cover
Siddharth Gupta #

BITS Pilani, Goa Campus, India

Guy Sa’ar #

Ben Gurion University of the Negev, Beersheba, Israel

Meirav Zehavi #

Ben Gurion University of the Negev, Beersheba, Israel

Abstract
We initiate the study of the parameterized complexity of the Collective Graph Exploration
(CGE) problem. In CGE, the input consists of an undirected connected graph G and a collection of
k robots, initially placed at the same vertex r of G, and each one of them has an energy budget of B.
The objective is to decide whether G can be explored by the k robots in B time steps, i.e., there exist
k closed walks in G, one corresponding to each robot, such that every edge is covered by at least one
walk, every walk starts and ends at the vertex r, and the maximum length of any walk is at most B.
Unfortunately, this problem is NP-hard even on trees [Fraigniaud et al., 2006]. Further, we prove
that the problem remains W[1]-hard parameterized by k even for trees of treedepth 3. Due to the
para-NP-hardness of the problem parameterized by treedepth, and motivated by real-world scenarios,
we study the parameterized complexity of the problem parameterized by the vertex cover number
(vc) of the graph, and prove that the problem is fixed-parameter tractable (FPT) parameterized by
vc. Additionally, we study the optimization version of CGE, where we want to optimize B, and
design an approximation algorithm with an additive approximation factor of O(vc).

2012 ACM Subject Classification Theory of computation → Fixed parameter tractability; Theory
of computation → Approximation algorithms analysis

Keywords and phrases Collective Graph Exploration, Parameterized Complexity, Approximation
Algorithm, Vertex Cover, Treedepth

Digital Object Identifier 10.4230/LIPIcs.IPEC.2023.22

Related Version Full Version: https://arxiv.org/abs/2310.05480 [13]

Funding Siddharth Gupta: Supported by Engineering and Physical Sciences Research Council
(EPSRC) grant EP/V007793/1.
Guy Sa’ar : Supported in part by the Israeli Smart Transportation Research Center and by the
Lynne and William Frankel Center for Computing Science at Ben-Gurion University.
Meirav Zehavi: Supported by the European Research Council (ERC) grant titled PARAPATH.

1 Introduction

Collective Graph Exploration (CGE) is a well-studied problem in computer science
and robotics, with various real-world applications such as network management and fault
reporting, pickup and delivery services, searching a network, and so on. The problem is
formulated as follows: given a set of robots (or agents) that are initially located at a vertex of
an undirected graph, the objective is to explore the graph as quickly as possible and return to
the initial vertex. A graph is explored if each of its edges is visited by at least one robot. In
each time step, every robot may move along an edge that is incident to the vertex it is placed

© Siddharth Gupta, Guy Sa’ar, and Meirav Zehavi;
licensed under Creative Commons License CC-BY 4.0

18th International Symposium on Parameterized and Exact Computation (IPEC 2023).
Editors: Neeldhara Misra and Magnus Wahlström; Article No. 22; pp. 22:1–22:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:siddharthg@goa.bits-pilani.ac.in
https://orcid.org/0000-0003-4671-9822
mailto:saag@post.bgu.ac.il
mailto:meiravze@bgu.ac.il
https://orcid.org/0000-0002-3636-5322
https://doi.org/10.4230/LIPIcs.IPEC.2023.22
https://arxiv.org/abs/2310.05480
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

22:2 Collective Graph Exploration Parameterized by Vertex Cover

at. The total time taken by a robot is the number of edges it traverses. The exploration
time is the maximum time taken by any robot. In many real-world scenarios, the robots
have limited energy resources, which motivates the minimization of the exploration time [6].

The CGE problem can be studied in two settings: offline and online. In the offline
setting, the graph is known to the robots beforehand, while in the online setting, the
graph is unknown and revealed incrementally as the robots explore it. While CGE has
received considerable attention in the online setting, much less is known in the offline setting
(Section 1.1). Furthermore, most of the existing results in the offline setting are restricted to
trees. Therefore, in this paper, we investigate the CGE problem in the offline setting for
general graphs, and present some approximation and parameterized algorithms with respect
to the vertex cover number of the graph.

1.1 Related Works

As previously mentioned, the CGE problem is extensively studied in the online setting, where
the input graph is unknown. As we study the problem in the offline setting in this paper, we
only give a brief overview of the results in the online setting, followed by the results in the
offline setting.

Recall that, in the online setting, the graph is unknown to the robots and the edges
are revealed to a robot once the robot reaches a vertex incident to the edge. The usual
approach to analyze any online algorithm is to compute its competitive ratio, which is the
worst-case ratio between the cost of the online and the optimal offline algorithm. Therefore,
the first algorithms for CGE focused on the competitive ratios of the algorithms. In [11],
an algorithm for CGE for trees with competitive ratio O(k

log k) was given. Later in [14], it
was shown that this competitive ratio is tight. Another line of work studied the competitive
ratio as a function of the vertices and the depth of the input tree [4, 7, 8, 10, 14, 19]. We refer
the interested readers to a recent paper by Cosson et al. [5] and the references within for an
in-depth discussion about the results in the online setting.

We now discuss the results in the offline setting. In [1], it was shown that the CGE
problem for edge-weighted trees is NP-hard even for two robots. In [2,18], an (2 − 2/(k + 1))-
approximation was given for the optimization version of CGE for edge-weighted trees where
we want to optimize B. In [11], the NP-hardness was shown for CGE for unweighted trees as
well. In [9], a 2-approximation was given for the optimization version of CGE for unweighted
trees where we want to optimize B. In the same paper, it was shown that the optimization
version of the problem for unweighted trees is XP parameterized by the number of robots.

1.2 Our Contribution and Methods

In this paper, we initiate the study of the CGE problem for general unweighted graphs in
the offline setting and obtain the following three results. We first prove that CGE is FPT
parameterized by vc, where vc is the vertex cover number of the input graph. Specifically,
we prove the following theorem.

▶ Theorem 1.1. CGE is in FPT parameterized by vc(G), where G is the input graph.

We then study the optimization version of CGE where we want to optimize B and design
an approximation algorithm with an additive approximation factor of O(vc). Specifically, we
prove the following theorem.

S. Gupta, G. Sa’ar, and M. Zehavi 22:3

▶ Theorem 1.2. There exists an approximation algorithm for CGE that runs in time
O((|V (G)| + |E(G)|) · k), and returns a solution with an additive approximation of 8 · vc(G),
where G is the input graph and k is the number of robots.

Finally, we show a border of (in-)tractability by proving that CGE is W[1]-hard paramet-
rized by k, even for trees of treedepth 3. Specifically, we prove the following theorem.

▶ Theorem 1.3. CGE is W[1]-hard with respect to k even on trees whose treedepth is bounded
by 3.

We first give an equivalent formulation of CGE based on Eulerian cycles (see Lemma 3.4).
We obtain the FPT result by using Integer Linear Programming (ILP). By exploiting the
properties of vertex cover and the conditions given by our formulation, we show that a
potential solution can be encoded by a set of variables whose size is bounded by a function
of vertex cover.

To design the approximation algorithm, we give a greedy algorithm that satisfies the
conditions given by our formulation. Again, by exploiting the properties of vertex cover, we
show that we can satisfy the conditions of our formulation by making optimal decisions at
the independent set vertices and using approximation only at the vertex cover vertices.

To prove the W-hardness, we give a reduction from a variant of Bin Packing, called
Exact Bin Packing (defined in Section 2). We first prove that Exact Bin Packing is
W[1]-hard even when the input is given in unary. We then give a reduction from this problem
to CGE to obtain our result. Due to lack of space, several concepts and proofs are deferred
to the full version of this paper [13].

1.3 Choice of Parameter
As mentioned in the previous section, we proved that CGE is W[1]-hard parameterized
by k even on trees of treedepth 3. This implies that we cannot get an FPT algorithm
parameterized by treedepth and k even on trees, unless FPT = W[1]. Thus, we study the
problem parameterized by the vertex cover number of the input graph, a slightly weaker
parameter than the treedepth.

Our choice of parameter is also inspired by several practical applications. For instance,
consider a delivery network of a large company. The company has a few major distributors
that receive the products from the company and can exchange them among themselves.
There are also many minor distributors that obtain the products only from the major ones,
as this is more cost-effective. The company employs k delivery persons who are responsible
for delivering the products to all the distributors. The delivery persons have to start and end
their routes at the company location. Since each delivery person has a maximum working
time limit, the company wants to minimize the maximum delivery time among them. This
problem can be modeled as an instance of CGE by constructing a graph G that has a vertex
for the company and for each distributor and has an edge between every pair of vertices that
correspond to locations that can be reached by a delivery person. The k robots represent
the k delivery persons and are placed at the vertex corresponding to the company. Clearly,
G has a small vertex cover, as the number of major distributors is much smaller than the
total number of distributors.

For another real-world example where the vertex cover is small, suppose we want to cover
all the streets of the city as fast as possible using k agents that start and end at a specific
street. The city has a few long streets and many short streets that connect to them. This
situation is common in many urban areas. We can represent this problem as an instance

IPEC 2023

22:4 Collective Graph Exploration Parameterized by Vertex Cover

of CGE by creating a graph G that has a vertex for each street and an edge between two
vertices if the corresponding streets are adjacent. The k robots correspond to the k agents.
Clearly, G has a small vertex cover, as the number of long streets is much smaller than the
total number of streets.

2 Preliminaries

For k ∈ N, let [k] denote the set {1, 2, . . . , k}. For a multigraph G, we denote the set of
vertices of G and the multiset of edges of G by V (G) and E(G), respectively. For u ∈ V (G),
the set of neighbors of u in G is NG(u) = {v ∈ V | {u, v} ∈ E(G)}. When G is clear from
the context, we refer to NG(u) as N(u). The multiset of neighbors of u in G is the multiset
N̂G(u) = {v ∈ V | {u, v} ∈ E(G)} (with repetition). When G is clear from the context,
we refer to N̂G(u) as N̂(u). The degree of u in G is |N̂G(u)| (including repetitions). Let
Ê be a multiset with elements from E(G). Let Graph(Ê) denote the multigraph (V ′, Ê),
where V ′ = {u | {u, v} ∈ Ê}. A multigraph H is a submultigraph of a multigraph G if
V (H) ⊆ V (G) and E(H) ⊆ E(G). Let V ′ ⊆ V (G). We denote the submultigraph induced
by V ′ by G[V ′], that is, V (G[V ′]) = V ′ and E(G[V ′]) = {{u, v} ∈ E(G) | u, v ∈ V ′}. Let
U ⊆ V (G). Let G \ U denote the subgraph G[V (G) \ U] of G.

An Eulerian cycle in a multigraph Ĝ is a cycle that visits every edge in E(Ĝ) exactly once.
A vertex cover of G is V ′ ⊆ V (G) such that for every {u, v} ∈ E(G), at least one among u

and v is in V ′. The vertex cover number of G is vc(G) = min{|V ′| | V ′ is a vertex cover of
G}. When G is clear from context, we refer to vc(G) as vc. A path P in G is (v0, . . . , vℓ),
where (i) for every 0 ≤ i ≤ ℓ, vi ∈ V (G), and (ii) for every 0 ≤ i ≤ ℓ − 1, {vi, vi+1} ∈ E(G)
(we allow repeating vertices). The length of a path P = (v0, . . . , vℓ), denoted by |P |, is
the number of edges in P (including repetitions), that is, ℓ. The set of vertices of P is
V (P) = {v0, . . . , vℓ−1}. The multiset of edges of P is E(P) = {{vi, vi+1} | 0 ≤ i ≤ ℓ − 1}
(including repetitions). A cycle C in G is a path (v0, . . . , vℓ) such that v0 = vℓ. A simple cycle
is a cycle C = (v0, . . . , vℓ) such that for every 0 ≤ i < j ≤ ℓ − 1, vi ̸= vj . An isomorphism
of a multigraph G into a multigraph G′ is a bijection α : V (G) → V (G′), such that {u, v}
appears in E(G) ℓ times if and only if {α(u), α(v)} appears in E(G′) ℓ times, for an ℓ ∈ N.
For a multiset A, we denote by 2A the power set of A, that is, 2A = {B | B ⊆ A}. Let A

and B be two multisets. Let A \ B be the multiset D ⊆ A such that every d ∈ A appears
exactly max{0, dA − dB} times in D, where dA and dB are the numbers of times d appears
in A and B, respectively. A permutation of a multiset A is a bijection PermutA : A → [|A|].

▶ Definition 2.1 (vinit-Robot Cycle). Let G be a graph, let vinit ∈ V (G). A vinit-robot cycle
is a cycle RC = (v0 = vinit, v1, v2, . . . , vℓ = vinit) in G for some ℓ.

When vinit is clear from the context, we refer to a vinit-robot cycle as a robot cycle.

▶ Definition 2.2 (Solution). Let G be a graph, vinit ∈ V (G) and k ∈ N. A solution for
(G, vinit, k) is a set of k vinit-robot cycles {RC1, . . . , RCk} with E(G) ⊆ E(RC1) ∪ E(RC2) ∪
· · · ∪ E(RCk). Its value is val({RC1, . . . , RCk}) = max{|E(RC1)|, |E(RC2)|, . . . , |E(RCk)|}
(see Figure 1a for an illustration).

▶ Definition 2.3 (Collective Graph Exploration with k Agents). The Collective Graph
Exploration (CGE) problem with k agents is: given a connected graph G, vinit ∈ V (G)
and k ∈ N, find the minimum B such that there exists a solution {RC1, . . . , RCk} where
val({RC1, . . . , RCk}) = B.

S. Gupta, G. Sa’ar, and M. Zehavi 22:5

1

2

3

45

6
7

8

9

10

1

2

3

4

5

6 7

8
9

10

11

12

13

vinit

(a)

vinit

(b)

Figure 1 (a) An illustration of a graph G (drawn in black) and a solution for (G, vinit, k = 2).
The 2 robot cycles are shown by red and blue edges where the edge labels show the order in which
the edges were covered by the respective robots. (b) The Robot Cycle-Graph for the robot cycle
drawn in blue.

▶ Definition 2.4 (Collective Graph Exploration with k Agents and Budget B). The
Collective Graph Exploration (CGE) problem with k agents and budget B is: given
a connected graph G, vinit ∈ V (G) and k, B ∈ N, find a solution {RC1, . . . , RCk} where
val({RC1, . . . , RCk}) ≤ B, if such a solution exists; otherwise, return “no-instance”.

▶ Definition 2.5 (Bin Packing). The Bin Packing problem is: given a finite set I of items,
a size s(i) ∈ N for each i ∈ I, a positive integer B called bin capacity and a positive integer
k, decide whether there is a partition of I into disjoint sets I1, . . . , Ik such that for every
1 ≤ j ≤ k,

∑
i∈Ij

s(i) ≤ B.

▶ Definition 2.6 (Exact Bin Packing). The Exact Bin Packing problem is: given a finite
set I of items, a size s(i) ∈ N for each i ∈ I, a positive integer B called bin capacity and a
positive integer k such that

∑
i∈I s(i) = B · k, decide whether there is a partition of I into

disjoint sets I1, . . . , Ik such that for every 1 ≤ j ≤ k,
∑

i∈Ij
s(i) = B.

▶ Definition 2.7 (Integer Linear Programming). In the Integer Linear Programming
Feasibility (ILP) problem, the input consists of t variables x1, x2, . . . , xt and a set of m

inequalities of the following form:

a1,1x1 + a1,2x1 +· · ·+ a1,pxt ≤ b1
a2,1x1 + a2,2x2 +· · ·+ a2,pxt ≤ b2

...
...

...
...

am,1x1+am,2x2+· · ·+am,pxt≤bm

where all coefficients ai,j and bi are required to integers. The task is to check whether there
exist integer values for every variable xi so that all inequalities are satisfiable.

▶ Theorem 2.8 ([12, 16, 17]). An ILP instance of size m with t variables can be solved in
time tO(t) · mO(1).

IPEC 2023

22:6 Collective Graph Exploration Parameterized by Vertex Cover

3 Reinterpretation Based on Eulerian Cycles

Our approach to CGE with k agents is as follows. Let G be a connected graph, let
vinit ∈ V (G) and let k ∈ N. Let {RC1, . . . , RCk} be a solution, let 1 ≤ i ≤ k and denote
RCi = (v0 = vinit, v1, v2, . . . , vℓ = vinit) for some ℓ ∈ N. If we define a multiset ÊRCi =
{{vj , vj+1} | 0 ≤ j ≤ ℓ − 1}, then, clearly, RCi = (v0 = vinit, v1, v2, . . . , vℓ = vinit) is an
Eulerian cycle in Graph(ÊRCi). We call this graph the RCi-graph (see Figure 1b):

▶ Definition 3.1 (Robot Cycle-Graph). Let G be a graph, let vinit ∈ V (G) and let RC =
(v0 = vinit, v1, v2, . . . , vℓ = vinit) be a robot cycle. The RC-graph, denoted by Graph(RC), is the
multigraph Graph(ÊRC), where ÊRC = {{vi, vi+1} | 0 ≤ i ≤ ℓ − 1} is a multiset.

▶ Observation 3.2. Let G be a graph, let vinit ∈ V (G) and let RC = (v0 = vinit, v1, v2, . . . , vℓ =
vinit) be a robot cycle. Then RC is an Eulerian cycle in Graph(RC).

On the opposite direction, let Ê be a multiset with elements from E(G), and assume that
vinit ∈ V (Graph(Ê)). Let RC = (v0, v1, v2, . . . , vℓ = v0) be an Eulerian cycle in Graph(Ê) and
assume, without loss of generality, that v0 = vℓ = vinit. It is easy to see that RC is a robot
cycle in G:

▶ Observation 3.3. Let G be a graph, let vinit ∈ V (G), let Ê be a multiset with elements
from E(G) and assume that vinit ∈ V (Graph(Ê)). Let RC = (v0 = vinit, v1, v2, . . . , vℓ = vinit)
be an Eulerian cycle in Graph(Ê). Then, RC is a robot cycle in G.

From Observations 3.2 and 3.3, we get that finding a solution is equal to find k multisets
Ê1, . . . , Êk such that: (i) for every 1 ≤ i ≤ k, vinit ∈ V (Graph(Êi)) (ii) for every 1 ≤ i ≤ k,
there exists an Eulerian cycle in Graph(Êi) and (iii) E(G) ⊆ Ê1 ∪ . . . ∪ Êk, that is, each
e ∈ E appears at least once in at least one of Ê1, . . . , Êk.

Recall that, in a multigraph Ĝ, there exists an Eulerian cycle if and only if Ĝ is connected
and each v ∈ V (Ĝ) has even degree in Ĝ [3]. Thus, we have the following lemma:

▶ Lemma 3.4. Let G be a connected graph, let vinit ∈ V (G) and let k, B ∈ N. Then,
(G, vinit, k, B) is a yes-instance of CGE if and only if there exist k multisets Ê1, . . . , Êk with
elements from E(G), such that the following conditions hold:
1. For every 1 ≤ i ≤ k, vinit ∈ V (Graph(Êi)).
2. For every 1 ≤ i ≤ k, Graph(Êi) is connected, and every vertex in Graph(Êi) has even

degree.
3. E(G) ⊆ Ê1 ∪ . . . ∪ Êk.
4. max{|Ê1|, . . . , |Êk|} ≤ B.

4 High-Level Overview

4.1 FPT Algorithm with Respect to Vertex Cover
Our algorithm is based on a reduction to the ILP problem. We aim to construct linear
equations that verify the conditions in Lemma 3.4.

4.1.1 Encoding Êi by a Valid Pair
First, we aim to satisfy the “local” conditions of Lemma 3.4 for each robot, that is, Conditions 1
and 2. Let us focus on the “harder” condition of the two, that is, Condition 2. We aim to
encode any potential Êi by smaller subsets whose union is Êi. In addition, we would like the

S. Gupta, G. Sa’ar, and M. Zehavi 22:7

1 2 543

r1 r30 y1 y250 g1 g175 b1 b40

(a) G.

1 2 543

r∗ y∗ g∗ b∗

(b) G∗.

1 2 543

r∗
1

r∗
30

y∗
1

y∗
41

g∗
1

g∗
33 b∗

1
b∗

29

(c) G.

Figure 2 An illustration of a graph G (in (a)), and its corresponding graphs G∗ (in (b)) and G

(in (c)). The vertex cover vertices and their edges are shown in orange. The 4 equivalence classes
and their vertices are shown by red, yellow, green, and blue.

“reverse” direction as well: every collection of subsets that we will be able to unite must create
some valid Êi. Note that we have two goals to achieve when uniting the subsets together:
(i) derive a connected graph, where (ii) each vertex has even degree. In the light of this,
the most natural encoding for the subsets are cycles, being the simplest graphs satisfying
both aforementioned goals. Indeed, every cycle is connected, and a graph composed only of
cycles is a graph where every vertex has even degree. Here, the difficulty is to maintain the
connectivity of the composed graph. On the positive side, observe that every cycle in the
input graph G has a non-empty intersection with any vertex cover VC of G. So, we deal with
the connectivity requirement as follows. We seek for a graph G that is essentially (but not
precisely) a subgraph of G that is (i) “small” enough, and (ii) for every valid Êi, there exists
CC ⊆ E(G) such that Graph(CC) is a “submultigraph” of Graph(Êi), Graph(CC) is connected,
and V (Graph(CC)) ∩ VC = V (Graph(Êi)) ∩ VC.

Equivalence Graph G∗. A first attempt to find such a graph is as follows. We define an
equivalence relation on V (G) \ VC based on the sets of neighbors of the vertices in V (G) \ VC
(see the 4 equivalence classes of the graph G in Figure 2a). We denote the set of equivalence
classes induced by this equivalence relation by EQ. Then G∗ is the graph defined as follows.

▶ Definition 4.1 (Equivalence Graph G∗). Let G∗ be the graph that: (i) contains VC, and
the edges having both endpoints in VC, and (ii) where every equivalence class u∗ ∈ EQ is
represented by a single vertex adjacent to the neighbors of some u ∈ u∗ in G (which belong to
VC). See Figure 2b.

Unfortunately, this attempt fails, as we might need to use more than one vertex from the
same u∗ ∈ EQ in order to maintain the connectivity. E.g., see Figure 3b. If we delete r2 and
y5, which are in the same equivalence class (in G) as r1 and y6, respectively, then the graph
is no longer connected.

The Multigraph G. So, consider the following second attempt. We use the aforementioned
graph G∗, but instead of one vertex representing each u∗ ∈ EQ, we have min{|u∗|, 2|NG∗ (u∗)|}
vertices. Observe that given a connected subgraph G′ of G, and two vertices u, u′ ∈ u∗ such
that NG′(u) = NG′(u′), it holds that G \ {u′} remains connected (e.g., see Figure 3a and
3b. The connectivity is still maintained even after deleting all but one vertex in the same
equivalence class (in G) having same neighbourhood). Therefore, we have enough vertices
for each u∗ ∈ EQ in the graph, and its size is a function of |VC|; so, we obtained the sought
graph G. Now, we would like to have an additional property for CC, which is that every
vertex in Graph(CC) has even degree in it. To this end, we add to G more vertices for each

IPEC 2023

22:8 Collective Graph Exploration Parameterized by Vertex Cover

1 2 5(vinit)43

20 10 200 100 100 50

(a) Graph(Ê).

r1 r2 y5 y6 g11 g12

1 2 5(vinit)43

(b) H.

r1 r2 y5 y6 g11 g12 g13 y7

1 2 5(vinit)43

(c) Graph(CC).

1 2 5(vinit)43

r∗
1

r∗
2

y∗
1

y∗
2

g∗
1

g∗
2

g∗
3

y∗
3

(d) Graph(CC′).

Figure 3 The graphs shown here are with respect to the graph G shown in Figure 2a. An
illustration of (a) a graph Graph(Ê), (b) the graph H obtained by deleting all but one vertex
from the same equivalence class in G and have the same neighbours in Graph(Ê), (c) the graph
Graph(CC) where CC is a skeleton of Ê obtained from the graph in (b) by adding four more edges
from Graph(Ê) \ H, and (d) the graph Graph(CC′) where CC′ is the skeleton in G that is derived
from the skeleton CC.

u∗ ∈ EQ. See Figure 3c. The vertex g13 having the same neighbours as g11 in H and being
in the same equivalence class (in G) as g11 is added to make the degrees of 1 and 2 even. We
have the following definition for G.

▶ Definition 4.2 (The Multigraph G). Let G be the graph that: (i) contains VC, and the
edges having both endpoints in VC, (ii) for every equivalence class u∗ ∈ EQ, there are exactly
min{|u∗|, 2|NG∗ (u∗)| + |VC|2} vertices, adjacent to the neighbors of some u ∈ u∗ in G (which
belong to VC), (iii) each edge in G appears exactly twice in E(G) (for technical reasons). See
Figure 2c.

A Skeleton of Êi. We think of Graph(CC) as a “skeleton” of a potential Êi. By adding
cycles with a vertex from V (Graph(CC)) ∩ VC, we maintain the connectivity, and since every
vertex in Graph(CC) has even degree, then by adding a cycle, this property is preserved as
well. We have the following definition for a skeleton.

▶ Definition 4.3 (A Skeleton CC). A skeleton of Êi is CC ⊆ Êi such that: (i) Graph(CC)
is a “submultigraph” of G, (ii) Graph(CC) is connected, vinit ∈ V (Graph(CC)) and every
vertex in Graph(CC) has even degree, and (iii) V (Graph(CC)) ∩ VC = V (Graph(Êi)) ∩ VC
(See Figure 3d).

An Êi-Valid Pair. We prove that we might assume that the Êi’s are nice multisets, that is,
a multiset where every element appears at most twice. We prove that every Êi (assuming
Êi is nice) can be encoded by a skeleton CC (See Figure 3c.) and a multiset C of cycles (of
length bounded by 2|VC|). We say that (CC, C) is an Ê-valid pair.

▶ Definition 4.4 (A Valid Pair). A pair (CC, C), where CC is a skeleton of Êi and C is a
multiset of cycles in Graph(Êi), is an Êi-valid pair skeleton CC if:
1. The length of each cycle in C is bounded by 2|VC|.
2. At most 2|VC|2 cycles in C have length other than 4.
3. CC ∪

⋃
C∈C E(C) = Êi (being two multisets).

S. Gupta, G. Sa’ar, and M. Zehavi 22:9

4.1.2 Robot and Cycle Types
Now, obviously, the number of different cycles in G (of length bounded by 2|VC|) is potentially
huge. Fortunately, it is suffices to look at cycles in G∗ in order to preserve Condition 2 of
Lemma 3.4: assume that we have a connected Graph(CC) such that every vertex in Graph(CC)
has even degree in it, and a multiset of cycles with a vertex from V (Graph(CC)) ∩ VC in G∗.
By replacing each vertex that represents u∗ ∈ EQ by any u ∈ u∗, the connectivity preserved,
and the degree of each vertex is even.

Thus, each robot is associated with a robot type RobTyp, which includes a skeleton CC of
the multiset Êi associated with the robot (along other information discussed later). In order
to preserve Condition 1 of Lemma 3.4, we also demand that vinit ∈ V (Graph(CC)). Generally,
for each type we define, we will have a variable that stands for the number of elements of
that type. We are now ready to present our first equation of the ILP reduction:

Equation 1: Robot Type for Each Robot. In this equation, we ensure that the total sum
of robots of the different robot types is exactly k, that is, there is exactly one robot type for
each robot:
1.

∑
RobTyp∈RobTypS

xRobTyp = k.

In addition, the other “pieces” of the “puzzle”, that is, the cycles, are also represented by
types: Each cycle C of length at most 2|VC| in G∗ is represented by a cycle type, of the form
CycTyp = (C, RobTyp) (along other information discussed later), where RobTyp is a robot
type that is “able to connect to C”, that is, V (Graph(CC))∩VC∩V (C) ̸= ∅ for RobTyp = CC.
Similarly, we will have equations for our other types.

Satisfying the Budget Restriction. Now, we aim to satisfy the budget condition (Condition 2
of Lemma 3.4), that is, for every i ∈ [k], |Êi| ≤ B. Let i ∈ [k] and let (CC, C) be an Ê-valid
pair. So, Êi = CC ∪ (

⋃
C∈C E(C)) (being a union of two multisets). Now, we prove that

“most” of the cycles in C are of length 4, that is, for every 2 ≤ j ≤ 2|VC|, j ̸= 4, the number
of cycles of length j in C is bounded by 2|VC|2. Therefore, we add to the definition of a
robot type also the number of cycles of length exactly j, encoded by a vector NumOfCyc =
(N2, N3, N5, N6, . . . , N2|VC|). So, for now, a robot type is RobTyp = (CC, NumOfCyc). Thus,
in order to satisfy the budget condition, we verify that the budget used by all the robots of
a robot type RobTyp = (CC, NumOfCyc), is as expected together. First, we ensure that the
number of cycles of each length 2 ≤ j ≤ 2|VC|, j ≠ 4, is exactly as the robot type demands,
times the number of robots associated with this type, that is, Nj · xRobTyp. So, we have the
following equation:

Equation 5: Assigning the Exact Number of Cycles of Length Other Than 4 to Each
Robot Type. We have the following notation: CycTypS(RobTyp, j) is the set of cycle types
for cycles of length j assigned to a robot of robot type RobTyp.
5. For every robot type RobTyp = (CC, NumOfCyc) and for every 2 ≤ j ≤ 2|VC|, j ̸=

4,
∑

CycTyp∈CycTypS(RobTyp,j)

xCycTyp = Nj · xRobTyp, where NumOfCyc = (N2, N3, N5, N6, . . . ,

N2|VC|).

Observe that once this equation is satisfied, we are able to arbitrary allocate Nj cycles of
length j to each robot of type RobTyp. So, in order to verify the budget limitation, we only
need to deal with the cycles of length 4. Now, notice that the budget left for a robot of type

IPEC 2023

22:10 Collective Graph Exploration Parameterized by Vertex Cover

RobTyp = (CC, NumOfCyc) for the cycles of length 4 is B − (|CC| +
∑

2≤j≤2|VC|,j ̸=4 Nj · j),
where NumOfCyc = (N2, N3, N5, N6, . . . , N2|VC|). Now, the maximum number of cycles we
can add to a single robot of type RobTyp is the largest number which is a multiple of 4, that
is less or equal to B − Bud(RobTyp). So, for every robot type RobTyp let CycBud(RobTyp) =
⌊(B − (|CC| +

∑
2≤j≤2|VC|,j ̸=4 Nj · j)) · 1

4 ⌋ · 4. Notice that CycBud(RobTyp) is the budget left
for the cycles of length 4. Thus, we have the following equation:

Equation 6: Verifying the Budget Limitation. This equation is defined as follows.
6. For every RobTyp ∈ RobTypS,∑

CycTyp∈CycTypS(RobTyp,4)

4 · xCycTyp ≤ xRobTyp · CycBud(RobTyp).

By now, we have that there exist Ê1, . . . , Êk that satisfy Conditions 1, 2 and 4 of
Lemma 3.4 if and only if Equations 1, 5 and 6 can be satisfied.

Covering Edges with Both Endpoints in VC. Now, we aim to satisfy Condition 3 of
Lemma 3.4, that is, we need to verify that every edge is covered by at least one robot. First,
we deal with edges with both endpoints in VC. Here, for every {u, v} such that u, v ∈ VC,
we just need to verify that at least one cycle or one of the CC’s contains {u, v}. This we can
easily solve by the following equation:

Equation 4: Covering Each Edge With Both Endpoints in VC. We have the following
notations: For every {u, v} ∈ E such that u, v ∈ VC, (i) let CycTypS({u, v}) be the set of
cycle types CycTyp = (C, RobTyp) where C covers {u, v}, and (ii) let RobTypS({u, v}) be the
set of robot types RobTyp = (CC, NumOfCyc) where CC covers {u, v}. In this equation, we
ensure that each {u, v} ∈ E(G) with both endpoints in VC is covered at least once:
4. For every {u, v} ∈ E such that u, v ∈ VC,∑

CycTyp∈CycTypS({u,v})

xCycTyp +
∑

RobTyp∈RobTypS({u,v})

xRobTyp ≥ 1.

Let RobTypS be the set of the robot types, and let CycTypS be the set of cycle types.

Covering Edges with an Endpoint in V (G) \ VC. Now, we aim to cover the edges from
E(G) with (exactly) one endpoint in V (G) \ VC. Here, we need to work harder. Let xz, for
every z ∈ RobTypS ∪ CycTypS, be values that satisfy Equations 1 and 4–6. As for now, we
will arbitrary allocate cycles to robots according to their types. Then, we will replace every
u∗ ∈ V (Graph(CCi)) and u∗ ∈ V (C), for every cycle C allocated to the i-th robot, by an
arbitrary u ∈ u∗. Then, we will define Êi as the union of edge set of the cycles and CCi we
obtained. We saw that due to Equations 1, 5 and 6, Conditions 1, 2 and 4 of Lemma 3.4
are satisfied. In addition, due to Equations 4, we ensure that each {u, v} ∈ E(G) with both
endpoints in VC is covered. The change we need to do in order to cover edges with an
endpoint in V (G) \ VC is to make a smarter choices for the replacements of u∗ vertices.

4.1.3 Vertex Type
Allocation of Multisets with Elements from NG∗(u∗). Observe that each u∗

j ∈
V (Graph(CCi)) that is replaced by some u ∈ u∗, covers the multiset of edges {{u, v} | v ∈
N̂Graph(CCi)(u∗

j)}. In addition, every u∗ ∈ V (C) that is replaced by u ∈ u∗, covers the multiset
of edges {{u, v}, {u, v′}}, where v and v′ are the vertices right before and right after u in

S. Gupta, G. Sa’ar, and M. Zehavi 22:11

v

1 2 3

4

5
67

8

C′
r

Cr

Cr

Cg

Cg

C′
r

Figure 4 An illustration of the parts of a solution around an independent set vertex v. The three
colors represent the parts of the multisets corresponding to three robots. The solid edges belong to
the skeleton of the specific robot. The dashed edges belong to a cycle, labelled in the figure, of the
multiset of the cycles corresponding to the specific robot. The vertex type of v derived from the
solution shown in the figure is (v∗, {{1, 6, 8, 8}, {3, 4}, {7, 8}, {2, 2, 5, 6}}), where v ∈ v∗ ∈ EQ.

C, respectively. Now, in order to cover every edge with an endpoint in V (G) \ VC, we need
to cover the set {{u, v} | v ∈ NG∗(u∗)} for every u ∈ u∗ ∈ EQ. Therefore, we would like to
ensure that the union of multisets of neighbors “allocated” for each u, when we replace some
u∗ by u, contains {{u, v} | v ∈ NG∗(u∗)}.

The Set NeiSubsets of Multisets Needed to Allocate to a Vertex. Now, the reverse
direction holds as well: let Ê1, . . . , Êk be multisets satisfying the conditions of Lemma 3.4, for
every i ∈ [k], let (CCi, Ci) be an Êi-valid pair, and let u ∈ u∗ ∈ EQ. Consider the following
multisets (*): (i) for every i ∈ [k] such that u ∈ V (Graph(CCi)), the multiset N̂Graph(CCi)(u);
(ii) for every i ∈ [k] and C ∈ Ci and every appearance of u in C, the multiset {v, v′}, where v

and v′ are the vertices in C right before and right after the appearance of u. By Condition 3
of Lemma 3.4, every edge appears in at least one among Ê1, . . . , Êk. So, as for every i ∈ [k],
Êi = CCi

⋃
C∈Ci

E(C), the union of the multisets in (*) obviously contains NG∗(u∗), e.g. see
Figure 4. We would like to store the information of these potential multisets that ensures we
covered NG∗(u∗). The issue is that there might be a lot of multisets, as u might appear in
many Êi’s. Clearly, it is sufficient to store one copy of each such multiset, as we only care that
the union of the multisets contains NG∗(u∗). Now, as we assume that Ê1, . . . , Êk are nice
multisets, each element in every multiset we derived appears at most twice in that multiset.
In addition, since every edge in E(G) appears at most twice, for each skeleton CC ⊆ E(G),
each edge appears at most twice in E(Graph(CC)). So, for each u∗

j ∈ V (Graph(CC)) we
replace by some u ∈ u∗, in the multiset of neighbors that are covered, every element appears
at most twice. Moreover, since the degree is even, we have that the number of element in
each multiset is even.

For a set A we define the multiset A × 2 = {a, a | a ∈ A}. That is, each element in A

appears exactly twice in A × 2. Thus, we have the following definition for a vertex type.

▶ Definition 4.5 (Vertex Type). Let G be a connected graph and let VC be a vertex cover
of G. Let u∗ ∈ EQ and let NeiSubsets ⊆ 2NG∗ (u∗)×2. Then, VerTyp = (u∗, NeiSubsets) is a
vertex type if for every NeiSub ∈ NeiSubsets, |NeiSub| is even, and NG∗(u∗) ⊆

⋃
NeiSubsets.

Now, given Ê1, . . . , Êk satisfying the conditions of Lemma 3.4, for every i ∈ [k], an
Êi-valid pair (CCi, Ci), and u ∈ u∗ ∈ EQ, we derive the vertex type of u as follows. We take
the set NeiSubsets of multisets as described in (*). Clearly, (u∗, NeiSubsets) is a vertex type.

IPEC 2023

22:12 Collective Graph Exploration Parameterized by Vertex Cover

For the reverse direction, we will use vertex type in order to cover the edges incident
to each u ∈ u∗ ∈ EQ. Let VerTypS be the set of vertex types. We have a variable xz

for every z ∈ VerTypS. First, each u ∈ u∗ ∈ EQ is associated with exactly one vertex
type VerTyp = (u∗, NeiSubsets), for some NeiSubsets. To achieve this, we first ensure
that for every u∗ ∈ EQ, the total sum of xz for z ∈ VerTypSu∗ , is exactly |u∗|, where
VerTypSu∗ = {(u∗, NeiSubsets) ∈ VerTypS}.

Equation 2: Vertex Type for Each Vertex. This equation is defined as follows.

2. For every u∗ ∈ EQ,
∑

VerTyp∈VerTypSu∗

xVerTyp = |u∗|

Given values for the variables that satisfy the equation, we arbitrary determine a vertex
type (u∗, NeiSubsets) for each u ∈ u∗, such that there are exactly xVerTyp vertices of type
VerTyp.

Allocation Functions of Multisets to Vertex Types. Now, let u ∈ u∗ ∈ EQ of a vertex type
(u∗, NeiSubsets). We aim that when we do the replacements of u∗’s by vertices from u∗, each
u gets an allocation of at least one of any of the multisets in NeiSubsets. This ensures that
we covered all of the edges adjacent to u. Instead of doing this for each u ∈ u∗ ∈ EQ, we will
ensure that each NeiSub ∈ NeiSubsets is allocated for vertices of type (u∗, NeiSubsets) at least
xVerTyp times. To this end, we add more information for the robot types. For a robot type
with a skeleton CC, recall that we replace each u∗

j ∈ V (Graph(CC)) by some u ∈ u∗. The
robot type also determines what is the vertex type of u that replaces u∗

j . In particular, we
add to the robot type an allocation for each of {(u∗

j , N̂Graph(CC)(u∗
j)) | u∗

j ∈ V (Graph(CC))},
that is, a function AllocGraph(CC) from this set into VerTypS (e.g., a robot of a robot type
associated with the skeleton illustrated by Figure 3d, needs to allocate the pair (r∗

1 , {1, 1}),
along with the other pairs shown in the figure). Observe that u∗

j is the vertex being replaced,
and N̂Graph(CC)(u∗

j) is the multiset of neighbors that are covered. So, we demand that
each (u∗

j , N̂Graph(CC)(u∗
j)) is allocated to a vertex type (u∗, NeiSubsets) that “wants” to get

N̂Graph(CC)(u∗
j), that is, N̂Graph(CC)(u∗

j) ∈ NeiSubsets (e.g, a robot of a robot type associated
with the skeleton illustrated by Figure 3d, might allocate (r∗

1 , {1, 1}) to a vertex type
(r∗, {{1, 1}, {3, 4}})). Now, we are ready to define a robot type as follows.

▶ Definition 4.6 (Robot Type). A robot type is RobTyp = (CC, AllocGraph(CC), NumOfCyc)
such that:
1. CC ⊆ E(G).
2. Graph(CC) is connected, every vertex in Graph(CC) has even degree and

vinit ∈ V (Graph(CC)).
3. AllocGraph(CC) is an allocation of {(u∗

j , N̂Graph(CC)(u∗
j)) | u∗

j ∈ V (Graph(CC))} to vertex
types.

4. NumOfCyc = (N2, N3, N5, N6, . . . , N2|VC|), where 0 ≤ Ni ≤ 2|VC|2 for every 2 ≤ i ≤
2|VC|, i ̸= 4.

Similarly, we add to a cycle type with a cycle C in G∗ an allocation of the multiset
{{v, v′} | u∗ ∈ V (C), v and v′ are the vertices appears right before and right after u∗} to
vertex types (given by a function PaAllocC). Now, we are ready to define a cycle type as
follows.

S. Gupta, G. Sa’ar, and M. Zehavi 22:13

▶ Definition 4.7 (Cycle Type). Let C ∈ CycG∗ , let PaAllocC be an allocation of
{{v, v′} | u∗ ∈ V (C), v and v′ are the vertices appears right before and right after u∗}
to vertex types, and let RobTyp = (CC, AllocGraph(CC), NumOfCyc) be a robot type. Then,
CycTyp = (C, PaAllocC , RobTyp) is a cycle type if V (Graph(CC)) ∩ V (C) ∩ VC ̸= ∅.

We have the following notations.
For every VerTyp = (u∗, NeiSubsets) ∈ VerTypS, every NeiSub = {v, v′} ∈ NeiSubsets and

1 ≤ j ≤ 2|VC|, CycTypS(VerTyp, NeiSub, j) is the set of cycle types that assign NeiSub to
VerTyp exactly j times. For every VerTyp = (u∗, NeiSubsets) ∈ VerTypS, every NeiSub ∈
NeiSubsets and 1 ≤ j ≤ 2|VC| + |VC|2, RobTypS(VerTyp, NeiSub, j) is the set of robot types
that assign NeiSub to VerTyp exactly j times. Finally, we have the following equation:

Equation 3: Assigning Enough Subsets for Each Vertex Type. The equation is defined as
follows.
3. For every VerTyp = (u∗, NeiSubsets) ∈ VerTypS, and every NeiSub ∈ NeiSubsets,

2|VC|∑
j=1

∑
CycTyp∈CycTypS(VerTyp,NeiSub,j)

j · xCycTyp+

2|VC|+|VC|2∑
j=1

∑
RobTyp∈RobTypS(VerTyp,NeiSub,j)

j · xRobTyp ≥ xVerTyp.

4.1.4 The Correctness of The Reduction
We denote the ILP instance associated with Equations 1–6 by Reduction(G, vinit, k, B). Now,
we give a proof sketch for the correctness of the reduction:

▶ Lemma 4.8. Let G be a connected graph, let vinit ∈ V (G) and let k, B ∈ N. Then,
(G, vinit, k, B) is a yes-instance of CGE, if and only if Reduction(G, vinit, k, B) is a yes-
instance of the Integer Linear Programming.

Proof. Let xz, for every z ∈ VerTypS ∪RobTypS ∪CycTypS, be values satisfying Equations 1–
6. For every vertex type VerTyp = (u∗, NeiSubsets) and each NeiSub ∈ NeiSubsets, let
Alloc(VerTyp, NeiSub) be the set of every allocation of NeiSub to VerTyp by cycles or robots.
We arbitrary allocate each element in Alloc(VerTyp, NeiSub) to a vertex in u∗, such that every
vertex u ∈ u∗ of type VerTyp gets at least one allocation. Due to Equation 3, we ensure we
can do that. Then, we replace every u∗ ∈ V (Graph(CCi)) and every u∗ ∈ V (C) (for every
C ∈ Ci) by the u ∈ u∗ derived by the allocation. This ensures we covered every edge adjacent
to a vertex in V (G) \ VC. As seen in this overview, the other conditions of Lemma 3.4 hold.

For the reverse direction, let Ê1, . . . , Êk be multisets satisfying the conditions of Lemma 3.4.
For every 1 ≤ i ≤ k let (CCi, Ci) be an Êi-valid pair. Then, we first derive the vertex
type of each u ∈ V (G) \ VC, according to its equivalence class in EQ, and the set of
multisets derived from ((CCi, Ci))1≤i≤k (e.g. see Figure 4). Then, we derive the robot type
RobTyp = (CC, AllocGraph(CC), NumOfCyc) for each i ∈ [k]: (i) the skeleton CC is determined
by CCi (e.g., see Figure 3d)), (ii) NumOfCyc is determined by the number of cycle of each
length in Ci and (iii) the allocation of the multisets of Graph(CCi) is determined by the
vertex types of u ∈ V (Graph(CCi)) ∩ (V (G) \ VC) we have already computed. Then, for
every i ∈ [k] and every C ′ ∈ Ci, we determine the cycle type CycTyp = (C, PaAllocC , RobTyp)
of C ′: (i) C is determined by C ′ (we replace each u ∈ u∗ ∈ EQ in C ′ by u∗), (ii) RobTyp
is the robot type of i we have already computed, and (iii) PaAllocC is determined by the

IPEC 2023

22:14 Collective Graph Exploration Parameterized by Vertex Cover

vertex types of u ∈ V (C ′) ∩ (V (G) \ VC) we have already computed. Then, for every
z ∈ VerTypS ∪ RobTypS ∪ CycTypS, we define xz to be the number of elements of type z. As
seen in this overview, the values of the variables satisfy Equations 1–6. ◀

Observe that the number of variables is bounded by a function of |VC|, so we will get an
FPT runtime with respect to vc. Thus, we conclude the correction of Theorem 1.1.

4.2 Approximation Algorithm with Additive Error of O(vc)
Our algorithm is based on a greedy approach. Recall that, our new goal (from Lemma 3.4) is
to find k multisets Ê1, . . . , Êk such that for every 1 ≤ i ≤ k, vinit ∈ V (Graph(Êi)), Graph(Êi)
is connected and each u ∈ V (Graph(Êi)) has even degree in Graph(Êi). Now, assume that we
have a vertex cover VC of G such that G[VC] is connected and vinit ∈ VC, and let I = V \ VC.
We first make the degree of every vertex in I even in G, by duplicating an arbitrary edge for
vertices having odd degree. Observe that, after these operations, G may be a multigraph.

We initialize Ê1, . . . , Êk with k empty sets. We partition the set of edges of G with one
endpoint in I in the following manner. We choose the next multiset from Ê1, . . . , Êk in a
round-robin fashion and put a pair of edges, not considered so far, incident to some vertex
v ∈ I, in the multiset. This ensures that the degree of every vertex in I is even in each
multiset. Let Ê′

1, . . . , Ê′
k be multisets satisfying the conditions of Lemma 3.4. Then, due to

Condition 2 of Lemma 3.4, the degree of every vertex is even in every multiset Ê′
i. Thus,

the total number of edges (with repetition) incident to any vertex in Graph(Ê′
1 ∪ . . . ∪ Ê′

k)
is even. Therefore, there must be at least one additional repetition for at least one edge
of every vertex with odd degree in G. So, adding an additional edge to each vertex with
odd degree is “must” and it does not “exceed” the optimal budget. Then, we partition the
edges with both endpoints in VC, in a balanced fashion, as follows. We choose an edge, not
considered so far, and add it to a multiset with minimum size.

Observe that, after this step, we have that: i) every edge of the input graph belongs to
at least one of the multisets Êi, ii) the degree of each vertex of I in each multiset is even,
and iii) we have not exceeded the optimal budget. We still need to ensure that i) Graph(Êi)
is connected, for every i ∈ [k], ii) the degree of each vertex of VC in each multiset is even,
and iii) vinit ∈ V (Graph(Êi)) for every i ∈ [k]. Next, we add a spanning tree of G[VC] to each
of the Êi, in order to make Graph(Êi) connected and to ensure that vinit ∈ V (Graph(Êi)).
Lastly, we add at most |VC| edges, with both endpoints in VC, to every Êi in order to make
the degree of each u ∈ VC even in each of the multiset. Observe that the multisets Ê1, . . . , Êk

satisfy the conditions of Lemma 3.4. Moreover, we added at most O(|VC|) additional edges
to each Êi, comparing to an optimal solution.

References
1 Igor Averbakh and Oded Berman. A heuristic with worst-case analysis for minimax routing of

two travelling salesmen on a tree. Discret. Appl. Math., 68(1-2):17–32, 1996. doi:10.1016/
0166-218X(95)00054-U.

2 Igor Averbakh and Oded Berman. (p - 1)/(p + 1)-approximate algorithms for p-traveling
salesmen problems on a tree with minmax objective. Discret. Appl. Math., 75(3):201–216,
1997. doi:10.1016/S0166-218X(97)89161-5.

3 Béla Bollobás. Modern graph theory, volume 184. Springer Science & Business Media, 1998.
4 Peter Brass, Flavio Cabrera-Mora, Andrea Gasparri, and Jizhong Xiao. Multirobot tree

and graph exploration. IEEE Trans. Robotics, 27(4):707–717, 2011. doi:10.1109/TRO.2011.
2121170.

https://doi.org/10.1016/0166-218X(95)00054-U
https://doi.org/10.1016/0166-218X(95)00054-U
https://doi.org/10.1016/S0166-218X(97)89161-5
https://doi.org/10.1109/TRO.2011.2121170
https://doi.org/10.1109/TRO.2011.2121170

S. Gupta, G. Sa’ar, and M. Zehavi 22:15

5 Romain Cosson, Laurent Massoulié, and Laurent Viennot. Breadth-first depth-next: Optimal
collaborative exploration of trees with low diameter. CoRR, abs/2301.13307, 2023. doi:
10.48550/arXiv.2301.13307.

6 Shantanu Das, Dariusz Dereniowski, and Christina Karousatou. Collaborative exploration
of trees by energy-constrained mobile robots. Theory Comput. Syst., 62(5):1223–1240, 2018.
doi:10.1007/s00224-017-9816-3.

7 Dariusz Dereniowski, Yann Disser, Adrian Kosowski, Dominik Pajak, and Przemyslaw Uznanski.
Fast collaborative graph exploration. Inf. Comput., 243:37–49, 2015. doi:10.1016/j.ic.2014.
12.005.

8 Yann Disser, Frank Mousset, Andreas Noever, Nemanja Skoric, and Angelika Steger. A
general lower bound for collaborative tree exploration. Theor. Comput. Sci., 811:70–78, 2020.
doi:10.1016/j.tcs.2018.03.006.

9 Miroslaw Dynia, Miroslaw Korzeniowski, and Christian Schindelhauer. Power-aware collective
tree exploration. In Werner Grass, Bernhard Sick, and Klaus Waldschmidt, editors, Architecture
of Computing Systems - ARCS 2006, 19th International Conference, Frankfurt/Main, Germany,
March 13-16, 2006, Proceedings, volume 3894 of Lecture Notes in Computer Science, pages
341–351. Springer, 2006. doi:10.1007/11682127_24.

10 Miroslaw Dynia, Jaroslaw Kutylowski, Friedhelm Meyer auf der Heide, and Christian Schindel-
hauer. Smart robot teams exploring sparse trees. In Rastislav Kralovic and Pawel Urzyczyn,
editors, Mathematical Foundations of Computer Science 2006, 31st International Symposium,
MFCS 2006, Stará Lesná, Slovakia, August 28-September 1, 2006, Proceedings, volume 4162 of
Lecture Notes in Computer Science, pages 327–338. Springer, 2006. doi:10.1007/11821069_29.

11 Pierre Fraigniaud, Leszek Gasieniec, Dariusz R. Kowalski, and Andrzej Pelc. Collective tree
exploration. Networks, 48(3):166–177, 2006. doi:10.1002/net.20127.

12 András Frank and Éva Tardos. An application of simultaneous diophantine approximation in
combinatorial optimization. Combinatorica, 7(1):49–65, 1987. doi:10.1007/BF02579200.

13 Siddharth Gupta, Guy Sa’ar, and Meirav Zehavi. Collective graph exploration parameterized
by vertex cover, 2023. arXiv:2310.05480.

14 Yuya Higashikawa, Naoki Katoh, Stefan Langerman, and Shin-ichi Tanigawa. Online graph
exploration algorithms for cycles and trees by multiple searchers. J. Comb. Optim., 28(2):480–
495, 2014. doi:10.1007/s10878-012-9571-y.

15 Klaus Jansen, Stefan Kratsch, Dániel Marx, and Ildikó Schlotter. Bin packing with fixed number
of bins revisited. J. Comput. Syst. Sci., 79(1):39–49, 2013. doi:10.1016/j.jcss.2012.04.004.

16 Hendrik W. Lenstra Jr. Integer programming with a fixed number of variables. Math. Oper.
Res., 8(4):538–548, 1983. doi:10.1287/moor.8.4.538.

17 Ravi Kannan. Minkowski’s convex body theorem and integer programming. Math. Oper. Res.,
12(3):415–440, 1987. doi:10.1287/moor.12.3.415.

18 Hiroshi Nagamochi and Kohei Okada. A faster 2-approximation algorithm for the minmax
p-traveling salesmen problem on a tree. Discret. Appl. Math., 140(1-3):103–114, 2004. doi:
10.1016/j.dam.2003.06.001.

19 Christian Ortolf and Christian Schindelhauer. A recursive approach to multi-robot exploration
of trees. In Magnús M. Halldórsson, editor, Structural Information and Communication
Complexity - 21st International Colloquium, SIROCCO 2014, Takayama, Japan, July 23-25,
2014. Proceedings, volume 8576 of Lecture Notes in Computer Science, pages 343–354. Springer,
2014. doi:10.1007/978-3-319-09620-9_26.

A W[1]-Hardness for CGE

In this section, we aim to prove the following theorem:

▶ Theorem 1.3. CGE is W[1]-hard with respect to k even on trees whose treedepth is bounded
by 3.

IPEC 2023

https://doi.org/10.48550/arXiv.2301.13307
https://doi.org/10.48550/arXiv.2301.13307
https://doi.org/10.1007/s00224-017-9816-3
https://doi.org/10.1016/j.ic.2014.12.005
https://doi.org/10.1016/j.ic.2014.12.005
https://doi.org/10.1016/j.tcs.2018.03.006
https://doi.org/10.1007/11682127_24
https://doi.org/10.1007/11821069_29
https://doi.org/10.1002/net.20127
https://doi.org/10.1007/BF02579200
https://arxiv.org/abs/2310.05480
https://doi.org/10.1007/s10878-012-9571-y
https://doi.org/10.1016/j.jcss.2012.04.004
https://doi.org/10.1287/moor.8.4.538
https://doi.org/10.1287/moor.12.3.415
https://doi.org/10.1016/j.dam.2003.06.001
https://doi.org/10.1016/j.dam.2003.06.001
https://doi.org/10.1007/978-3-319-09620-9_26

22:16 Collective Graph Exploration Parameterized by Vertex Cover

We prove Theorem 1.3 by showing a reduction from Exact Bin Packing (see Defini-
tion 2.6).

First, we show that unary Exact Bin Packing is W[1]-hard with respect to k. It is
known that unary Bin Packing is W[1]-hard with respect to k [15]. So, we give a reduction
from Bin Packing to Exact Bin Packing in order to prove the following lemma:

▶ Lemma A.1. Unary Exact Bin Packing is W[1]-hard with respect to k.

Proof. Let (I, s, B, k) be an instance of Bin Packing problem. Let t = B ·k −
∑

i∈I s(i) and
let s′ : I ∪ {i1, . . . , it} → N be a function defined as follows. For every i ∈ I, s′(i) = s(i), and
for every iℓ ∈ {i1, . . . , it}, s′(iℓ) = 1. Observe that (I ∪ {i1, . . . , it}, s′, B, k) is an instance of
Exact Bin Packing. We show that (I, s, B, k) is a yes-instance of Bin Packing if and
only if (I ∪ {i1, . . . , it}, s′, B, k) is a yes-instance of Exact Bin Packing.

Assume that (I, s, B, k) is a yes-instance of Bin Packing. Let I1, . . . , Ik be a partition
of I into disjoint sets such that for every 1 ≤ j ≤ k,

∑
i∈Ij

s(i) ≤ B. For every 1 ≤ j ≤ k, let
tj = B −

∑
i∈Ij

s(i). Let I ′
1, . . . , I ′

k be a partition of {i1, . . . , it} into k disjoint sets such that
for every 1 ≤ j ≤ k, |I ′

j | = tj . Observe that there exists such a partition since
∑

1≤j≤k tj = t.
Clearly, I1 ∪ I ′

1, . . . , Ik ∪ I ′
k is a partition of I ∪ {i1, . . . , it} into disjoint sets such that for

every 1 ≤ j ≤ k,
∑

i∈Ij∪I′
j

s(i) = B. Therefore, (I ∪ {i1, . . . , it}, s′, B, k) is a yes-instance of
Exact Bin Packing.

Now, assume that (I ∪ {i1, . . . , it}, s′, B, k) is a yes-instance of Exact Bin Packing. Let
I1, . . . , Ik be a partition of I ∪ {i1, . . . , it} into disjoint sets such that for every 1 ≤ j ≤ k,∑

i∈Ij
s(i) = B. Observe that I1 \ {i1, . . . , it}, . . . , Ik \ {i1, . . . , it} is a partition of I into

disjoint sets such that for every 1 ≤ j ≤ k,
∑

i∈Ij
s(i) ≤ B. Therefore, (I, s, B, k) is a

yes-instance of Bin Packing.
Clearly, the reduction works in polynomial time when the input is in unary. Thus, since

unary Bin Packing is W[1]-hard with respect to k [15], unary Exact Bin Packing is
W[1]-hard with respect to k. ◀

A.1 Reduction From Exact Bin Packing to CGE
Given an instance (I, s, B, k) of Exact Bin Packing problem, denote by BinToRob(I, s, B, k)
the instance of CGE defined as follows. First, we construct the graph T as follows. For
each i ∈ I we create a star with s(i) − 1 leaves. We connect each such star with an edge
to a vertex r. Formally, V (T) = {vi, vi

1 . . . , vi
s(i)−1 | i ∈ I} ∪ {r} and E(T) = {{vi, vi

j} | i ∈
I, 1 ≤ j ≤ s(i) − 1} ∪ {{r, vi} | i ∈ I}. Now, we define BinToRob(I, s, B, k) = (T, r, k, 2B).
See Figure 5 for an example. Next, we prove the correctness of the reduction:

▶ Lemma A.2. Let (I, s, B, k) be an instance of Exact Bin Packing. Then, (I, s, B, k) is
a yes-instance if and only if BinToRob(I, s, B, k) is a yes-instance of CGE.

Proof. First, assume that (I, s, B, k) is a yes-instance. Let I1, . . . , Ik be a partition of
I into disjoint sets such that for every 1 ≤ j ≤ k,

∑
i∈Ij

s(i) = B. We prove that
BinToRob(I, s, B, k) = (T, r, k, 2B) is a yes-instance of CGE, by showing that there ex-
ist k multisets Ê1, . . . , Êk such that the conditions of Lemma 3.4 are satisfied. For every
1 ≤ j ≤ k, let Êj = {{vi, vi

t}, {vi, vi
t} | i ∈ Ij , 1 ≤ t ≤ s(i) − 1} ∪ {{vi, r}, {vi, r}}. Clearly,

r ∈ V (Graph(Êj)), Graph(Êj) is connected, and every vertex in Graph(Êj) has even de-
gree. Therefore, Conditions 1 and 2 are satisfied. In addition, since I = I1 ∪ . . . ∪ Ik,
we have that E ⊆ Ê1 ∪ . . . ∪ Êk, so Condition 3 is satisfied. Now, for every 1 ≤ j ≤ k,

S. Gupta, G. Sa’ar, and M. Zehavi 22:17

1 2 3 1 3 5

2 3 4

4 555

3 44

(a)

r

v1

v2

v3

v21

v32

v31

v42

v41

v4

v5

v51 v52 v53

v6

v7

v8

v61
v62

v63

v71

v72

v73

v74

v81v82
v83

v84

(b)

Figure 5 An illustration of a Exact Bin Packing instance, a solution (in sub-figure (a)) and
the equivalent instance of CGE constructed by the BinToRob function (in sub-figure (b)).

|Êj | = |{{vi, vi
t}, {vi, vi

t} | i ∈ Ij , 1 ≤ t ≤ s(i) − 1} ∪ {{vi, r}, {vi, r}}| =
∑

i∈Ij
2(s(i) − 1) +∑

i∈Ik
2 = 2

∑
i∈Ik

s(i) = 2B. Thus, Condition 4 is satisfied. Therefore, all the conditions of
Lemma 3.4 are satisfied, so BinToRob(I, s, B, k) is a yes-instance of CGE.

Now, we prove the reverse direction. Assume that BinToRob(I, s, B, k) = (T, r, k, 2B) is
a yes-instance of CGE. From Lemma 3.4, there exist k multisets Ê1, . . . , Êk such that the
conditions of Lemma 3.4 hold. Let 1 ≤ j ≤ k. We first show that every {u, v} ∈ Êj appears
at least twice in Êj . Let {u, v} ∈ Êj . We the following two cases:

Case 1: {u, v} = {vi, vi
t} for some i ∈ I and 1 ≤ t ≤ s(i) − 1. From Condition 2 of

Lemma 3.4, vi
t has even degree in Graph(Êj). Since {vi, vi

t} is the only edge having vi
t as an

endpoint in T , {vi, vi
t} appears an even number of times in Êj , and so it appears at least

twice in Êj .

Case 2: {u, v} = {vi, r} for some i ∈ I. From Condition 2 of Lemma 3.4, vi has even
degree in Graph(Êj). From Case 1, each {vi, vi

t} ∈ Êj appears an even number of times in
Êj . Therefore, since r is the only neighbor of vi other than vi

t, 1 ≤ t ≤ s(i) − 1, {vi, r}
appears an even number of times, which is greater or equal to 2, in Êj .

Now, observe that |E(T)| =
∑

i∈I s(i) = B · k, and from Condition 4 of Lemma 3.4,∑
1≤j≤k |Êj | ≤ 2B ·k. In addition, from Condition 3 of Lemma 3.4, (1): E(T) ⊆ Ê1 ∪ . . .∪Êk.

So, since we have already proved that for every 1 ≤ j ≤ k, each {u, v} ∈ Êj appears at least
twice in Êj , we get that for every 1 ≤ j < j′ ≤ k, Êj ∩ Êj′ = ∅, and

∑
1≤ℓ≤k |Êℓ| = 2B · k;

in turn, for every 1 ≤ j ≤ k, |Êj | = 2B, and each {u, v} ∈ Êj appears exactly twice in Êj .
Moreover, from Conditions 1 and 2 of Lemma 3.4, for every 1 ≤ j ≤ k, r ∈ V (Graph(Êj))
and Graph(Êj) is connected. Therefore, for every 1 ≤ j ≤ k and i ∈ I, if vi ∈ V (Graph(Êj))
then {{vi, vi

t} | 1 ≤ t ≤ s(i) − 1} ∪ {r, vi} ⊆ Êj . Thus, for every 1 ≤ j < j′ ≤ k, (2):
V (Graph(Êj)) ∩ V (Graph(Êj′)) = {r}.

IPEC 2023

22:18 Collective Graph Exploration Parameterized by Vertex Cover

Now, for every 1 ≤ j ≤ k, let Ij = {i ∈ I | vi ∈ V (Graph(Êj))}. By (1) and (2), I1, . . . , Ik

is a partition of I into disjoint sets. We show, that for every 1 ≤ j ≤ k,
∑

i∈Ij
s(i) = B.

Let 1 ≤ j ≤ k. Then,
∑

i∈Ij
s(i) =

∑
i∈Ij

|{{vi, vit
} | 1 ≤ t ≤ s(i) − 1} ∪ {r, vi}| = 1

2 |Ê′
j′ | =

1
2 · 2 · B = B. Therefore I1, . . . , Ik is a solution for (I, s, B, k), so (I, s, B, k) is a yes-instance
of Exact Bin Packing problem. This ends the proof. ◀

Clearly, the reduction works in polynomial time when the input is in unary. In addition,
observe that the treedepth of the tree, obtained by the reduction, is bounded by 3. Now,
recall that, by Lemma A.1, unary Exact Bin Packing is W[1]-hard with respect to k.
Thus, we conclude from Lemma A.2 the correctness of Theorem 1.3.

Drawn Tree Decomposition: New Approach for
Graph Drawing Problems
Siddharth Gupta #

BITS Pilani, Goa Campus, India

Guy Sa’ar #

Ben Gurion University of the Negev, Beersheba, Israel

Meirav Zehavi #

Ben Gurion University of the Negev, Beersheba, Israel

Abstract
Over the past decade, we witness an increasing amount of interest in the design of exact exponential-
time and parameterized algorithms for problems in Graph Drawing. Unfortunately, we still lack
knowledge of general methods to develop such algorithms. An even more serious issue is that, here,
“standard” parameters very often yield intractability. In particular, for the most common structural
parameter, namely, treewidth, we frequently observe NP-hardness already when the input graphs
are restricted to have constant (often, being just 1 or 2) treewidth.

Our work deals with both drawbacks simultaneously. We introduce a novel form of tree
decomposition that, roughly speaking, does not decompose (only) a graph, but an entire drawing.
As such, its bags and separators are of geometric (rather than only combinatorial) nature. While the
corresponding parameter – like treewidth – can be arbitrarily smaller than the height (and width) of
the drawing, we show that – unlike treewidth – it gives rise to efficient algorithms. Specifically, we get
slice-wise polynomial (XP) time algorithms parameterized by our parameter. We present a general
scheme for the design of such algorithms, and apply it to several central problems in Graph Drawing,
including the recognition of grid graphs, minimization of crossings and bends, and compaction.
Other than for the class of problems we discussed in the paper, we believe that our decomposition
and scheme are of independent interest and can be further extended or generalized to suit even a
wider class of problems. Additionally, we discuss classes of drawings where our parameter is bounded
by O(

√
n) (where n is the number of vertices of the graph), yielding subexponential-time algorithms.

Lastly, we prove which relations exist between drawn treewidth and other width measures, including
treewidth, pathwidth, (dual) carving-width and embedded-width.

2012 ACM Subject Classification Theory of computation → Fixed parameter tractability; Human-
centered computing → Graph drawings; Theory of computation → Computational geometry

Keywords and phrases Graph Drawing, Parameterized Complexity, Tree decomposition

Digital Object Identifier 10.4230/LIPIcs.IPEC.2023.23

Related Version Full Version: https://arxiv.org/abs/2310.05471 [33]

Funding Siddharth Gupta: Supported by Engineering and Physical Sciences Research Council
(EPSRC) grant EP/V007793/1.
Guy Sa’ar : Supported in part by the Israeli Smart Transportation Research Center and by the
Lynne and William Frankel Center for Computing Science at Ben-Gurion University.
Meirav Zehavi: Supported by the European Research Council (ERC) grant titled PARAPATH.

© Siddharth Gupta, Guy Sa’ar, and Meirav Zehavi;
licensed under Creative Commons License CC-BY 4.0

18th International Symposium on Parameterized and Exact Computation (IPEC 2023).
Editors: Neeldhara Misra and Magnus Wahlström; Article No. 23; pp. 23:1–23:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:siddharthg@goa.bits-pilani.ac.in
https://orcid.org/0000-0003-4671-9822
mailto:saag@post.bgu.ac.il
mailto:meiravze@bgu.ac.il
https://orcid.org/0000-0002-3636-5322
https://doi.org/10.4230/LIPIcs.IPEC.2023.23
https://arxiv.org/abs/2310.05471
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2 Drawn Tree Decomposition: New Approach for Graph Drawing Problems

1 Introduction

Over the past decade, we witness an increasing amount of interest in the design of exact
exponential-time and parameterized algorithms for problems in Graph Drawing. For a few
illustrative examples, let us mention that this includes studies of crossing minimization [32,
37, 38], recognition of planar graph families such as upward planarity testing [16, 35] and
grid graph recognition [34], as well as recognition of beyond planar graph families [4], turn-
minimization [27], linear layouts such as books embeddings [5, 8], clustered planarity and
hybrid planarity [19, 40, 20], and bend minimization [24, 22]. For more information on
recent progress on these and other topics, we refer to the report [28] and surveys such as [48].
Unfortunately, still, we have very limited knowledge of general methods to develop exact
exponential-time and parameterized algorithms for problems in Graph Drawing.

An even more serious issue is that, for Graph Drawing problems, “standard” parameters
very often yield intractability. In particular, for the most common structural parameter,
namely, treewidth,1 we frequently observe NP-hardness already when the input graphs are
restricted to have constant (often, being just 1 or 2) treewidth. The same result holds even
for the larger parameter pathwidth. For example, Grid Recognition is NP-hard on graphs
of treewidth 1 (being trees) [7] or pathwidth 2 [34], Orthogonal Compaction is NP-hard
even on cycles [26] and hence on graphs of pathwidth (and treewidth) 2, Min-Area Planar
Straight-line Drawing is NP-complete on outerplanar graphs and hence on graphs of
treewidth 2 [9, 39], and Grid Upward Drawing is NP-complete on graphs of treewidth
1 (being trees) [1, 10]. In light of this, we must seek parameterizations that are larger (or
incomparable) to treewidth. Due to the nature of the problems at hand, it is natural to
seek parameters of geometric flavors. Here, perhaps, the first choice that comes to mind is
the height (or, rather, the minimum among the height and width) of the sought (or given)
drawing. In particular, we can easily observe that this parameter for planar orthogonal grid
drawings is bounded by Ω(tw), where tw is the treewidth of the drawn graph, and that it
gives rise to the use of dynamic programming. However, denoting the number of vertices by
n, we can also easily observe that this parameter can be as large as Ω(n) for ridiculously
simple planar orthogonal grid drawings (and graphs)! For example, consider the path drawn
in Figure 1a – here, already, both height and width are equal to (roughly) n/2.

Our work deals with both drawbacks mentioned above simultaneously. We introduce a
novel form of tree decomposition that, roughly speaking, does not decompose (only) a graph,
but an entire drawing. As such, its bags and separators are of geometric (rather than only
combinatorial) nature. We further discuss this concept (still informally but in more detail) in
Section 1.1 ahead. While the corresponding parameter – like treewidth – can be arbitrarily
smaller than the height (and width) of the drawing (e.g., for the aforementioned example
in Figure 1a, our parameter is a fixed constant), we show that – unlike treewidth – it gives
rise to efficient (that is, XP) algorithms. Specifically, we present a general scheme for the
design of such algorithms (described in Section 1.3), and apply it to several central problems
in Graph Drawing, including the recognition of grid graphs, minimization of crossings and
bends, and compaction (see Section 1.4). We believe that our new concept of geometric tree
decomposition is interesting on its own, and exploring the connections between it and notions
concerning (classical) tree decompositions is a promising research direction. Furthermore,
we believe that this concept and our scheme can be further extended or generalized to be
applicable to problems other than those discussed in this paper. Due to lack of space, several
concepts and proofs are deferred to the full version of this paper [33].

1 Definitions of standard terms and notations used in the Introduction can be found in Section A.

S. Gupta, G. Sa’ar, and M. Zehavi 23:3

(a) (b)

Figure 1 (a) A drawing of a path on n vertices with height and width (n − 1)/2. However, the
drawn treewidth is 16. (b) An illustration of a frame shown in orange with width 16.

1.1 The Concept of Drawn Tree Decomposition

Here, we discuss (informally) our main conceptual contribution: the introduction and study
of the concepts of drawn tree decomposition and drawn treewidth, which we believe to be
of independent interest. Then, in Section 1.2, we compare our parameter with several
seemingly related graph parameters. Later, in Sections 1.3 and 1.4, we discuss our main
technical contribution (which has been our initial motivation for these concepts): our general
algorithmic scheme and its applications to problems in Graph Drawing. Our focus is on a
class of rather general drawings of graphs on the Euclidean plane (allowing drawings of edges
to have both crossings and bends, as well as to consist of segments that are not necessarily
parallel to the axes), called polyline grid drawings. Roughly speaking, a polyline grid drawing
d of a graph G is a mapping of the vertices of G to distinct grid points (being points of the
form (i, j) where i, j ∈ Z) and edges to straight-line paths between their endpoints. That is,
the drawing of an edge is a simple curve that is the concatenation of straight-line segments
(e.g, see Figure 11e in Section A.2). Towards the (informal) definition of a drawn tree
decomposition ahead, we first introduce three critical terms: frame, cutter, and rectangular.

Frame. A frame is, simply, a straight-line cycle (defined analogously to a straight-line path
above) whose segments are axis-parallel (see the orange polygon in Figure 2). In other words,
it is a simple rectilinear polygon whose vertices lie on grid points.

For the definition of the width of our decomposition (presented later), we define the
width of a frame. Roughly speaking, the width of a frame f , denoted by width(f), is the
sum of measures of the complexities of (i) the frame itself, and (ii) the “way” in which the
drawing “traverses” the frame. For (i), we simply count the number of vertices of the frame
(ignoring “superfluous” vertices, being those where the angle between incident edges is of
180 degrees). For (ii), we regard the drawings of vertices and edges separately (and sum up
the two corresponding numbers). Specifically, for vertices, we simple count the number of
vertices drawn on the frame. However, for edges, the measure is somewhat more complex,
based on the notion of turning points (defined immediately); for each edge, we count the
number of its turning points on the frame, and, then, the measure is the sum (over all edges)
of these counters. We remark that some points on the plane might be counted multiple times
– at the extreme case, the same point might be (a) a vertex of the frame, (b) a point on which
a vertex of the graph is drawn, and (c) a turning point for one (or more) edges. We find this
multi-count to be justified: the more complicated the frame and the drawing are at a certain
point, the more that point “contributes” to the complexity of the measure.

IPEC 2023

23:4 Drawn Tree Decomposition: New Approach for Graph Drawing Problems

u1

u2

u3

u4

p1
p2

p3

p4
p5

p6

p7

Figure 2 The turning points of the black edge e = {u1, u2} in the orange frame f are
(p1, e), (p3, e), (p4, e), (p6, e) and (p7, e). Note that, (p2, e) and (p5, e) are not turning points in
f . Similarly, the turning points of the blue edge e′ = {u3, u4} in the frame f are (d(u3), e′), (p5, e′)
and (p6, e′). Note that (p5, e′) is a turning point in f , but (p5, e) is not a turning point in f .

Now, let us define the notion of a turning point. For this purpose, consider some edge
e = {u, v} of the graph and some point p on the frame. Then, roughly speaking, we refer to
(p, e) as a turning point if, when we traverse the drawing of e from u to v or from v to u,
we encounter p, and “immediately” before this encounter, we were in the strict interior or
exterior of the frame. Additionally, we refer to (p, e) as a turning point if u or v themselves
are drawn on p. An illustrative example is given in Figure 2.

For an example of the definition of the width of a frame, we refer to Figure 1b. Here,
the frame itself (being a rectangle) consists of exactly 4 vertices. Second, the path contains
exactly 4 vertices that are drawn on the frame. Third, every point on which one of these
vertices, say, v, is drawn is a turning point of 2 edges, being the two edges incident to v. So,
the width of the frame is 4 + 4 + 4 · 2 = 16.

Cutter. A cutter of a frame is, simply, a straight-line path whose segments are axis-parallel
and which intersects the frame in exactly two points, which are the endpoints of the cutter.
Later, we discuss the “futility” of two simpler definitions for a cutter. The utility of a cutter
of a frame f is, as its name suggests, in “cutting” f into (exactly) two frames f1 and f2.
Roughly speaking, we obtain one of f1 and f2 by the concatenation of the cutter with one
path among the two subpaths of f between the endpoints of the cutter, and we obtain the
other of f1 and f2 by the concatenation of the cutter with the other path among the two
subpaths of f between the endpoints of the cutter. For more intuition, we refer the reader to
Figure 3.

Rectangular. For the sake of intuition, the construction of a drawn tree decomposition may
be thought of as a recursive process where, for a given frame, we compute a cutter that cuts
it into two, and then proceed (recursively) with each of these two resulting frames. Then,
two questions arise: What is the initial frame, and when does this process terminate? For
the first question, the answer is simply the rectangular of the drawing (defined immediately).
For the second question, the answer is even simpler – we stop when the current frame does
not contain any grid point in its strict interior. Roughly speaking, the rectangular of a
drawing is the (unique) frame whose interior is minimized among all frames whose “shape”
is a rectangle and which contain the given drawing in their strict interior (see Figure 4).

S. Gupta, G. Sa’ar, and M. Zehavi 23:5

f1(c) f2(c)

c

f

Figure 3 An illustration for a cutter c, shown in blue, of a frame f , shown in orange, and its
associated frames f1(c) and f2(c).

Figure 4 The frame shown in purple is Rd where d is the drawing inside the frame.

Drawn Tree Decomposition. At the heart of the concept of a drawn tree decomposition,
lies our definition of a frame-tree (abbreviation for tree of frames). Informally, for a graph
G and a polyline grid drawing d of G, a frame-tree is a pair (T , α) where T is a binary
rooted tree and α maps each vertex of T to a frame, such that: (i) the root is mapped to
the rectangular of d; (ii) for every internal vertex v of T , there exists a (unique) cutter cv of
α(v) so that the frames mapped to the children of v are those obtained by cutting α(v) by
cv; (iii) the leaves of T (and none of the internal vertices of T) are mapped to frames whose
strict interior does not contain any grid point. For an illustrative example, see Figure 5.

Now, for the definition of a drawn tree decomposition, we consider a frame-tree (T , α).
Then, we “enrich” the frame-tree by the introduction of an additional mapping, β, from
the vertex set of T to subsets of vertices of G. In particular, we define β so that we can:
(P1) prove that (T , β) is a tree decomposition (this proof is slightly technical, based on case
analysis); (P2) prove that, for every vertex v of T , |β(v)| is at most twice the sum of the
widths of the frames of v and its two children (if they exist). For the definition of β, we
(next) define the set of vertices associated with a frame, and the set of vertices associated
with a cutter of a frame. Then, for a vertex v of T , β(v) is simply the union of the set of
vertices associated with α(v), and the set of vertices associated with the cutter cv of α(v).
Correspondingly, the triple (T , α, β) is a drawn tree decomposition.

So, consider a graph G, a polyline grid drawing d of G, a frame f and a cutter c of f .
Then, the set of vertices associated with f is the union of the set of vertices of G that d

draws on f and the set of endpoints of edges of G whose drawing (by d) is separated by f –
that is, edges having one endpoint in the strict interior of f and the other endpoint in the
strict exterior of f (see Figure 6a). Similarly, the set of vertices associated with c is the union
of the set of vertices of G that d draws on c and the set of endpoints of edges of G whose
drawing (by d) is separated by c – that is, edges having one endpoint in the strict interior of
one of the frames obtained by cutting f by c, and the other endpoint in the strict interior of
the other frame obtained by cutting f by c (see Figure 6b).

IPEC 2023

23:6 Drawn Tree Decomposition: New Approach for Graph Drawing Problems

r

a1 a2

v′b

v

a

(a) A frame-tree T .

fa

ca

fa
1 (ca) fa

2 (ca)

(b) The frame fa, the cutter ca

and the sub-frames fa
1 (ca) and

fa
2 (ca) associated with the ver-

tex a of T .

fa

ca

ca2

ca1

(c) The cutters ca1 and ca2 asso-
ciated with the children a1 and
a2 of a in T , respectively.

fa

ca

cb
ca2

ca1

(d) The cutter cb associated
with the child b of a1 in T .

fa

ca

cb
ca2

ca1

fv fv′

(e) The frames fv (bound-
ing the brown region) and
fv′

(bounding the pink region)
associated with the vertices v
and v′ of T , respectively.

fa

ca

cv
cv′

fv fv′

(f) The cutters cv and cv′ asso-
ciated with the vertices v and v′

in T , respectively.

Figure 5 Example of frames and cutters of a frame-tree. For clarity, the polyline grid drawing is
not shown.

Drawn Treewidth. The width of a drawn tree decomposition (T = (VT , ET), α, β) is
the maximum width of its frames, that is, maxv∈VT

width(α(v)). Accordingly, the drawn
treewidth of a polyline grid drawing d of a graph G is the minimum width of a drawn tree
decomposition of d. Notably, due to (P1) and (P2) mentioned above, we can easily conclude
that the treewidth of G is at most 6 times its drawn treewidth.

We remark that the usage of frames bears similarity to that of cycle separators of planar
graphs (being a central player in proofs of the planar separator theorem; see, e.g., [3, 42]).
However, the corresponding widths (drawn treewidth versus treewidth) can be critically
different: While treewidth is bounded from above by the order of drawn treewidth, we have
already pointed out that for various problems where treewidth yields intractability, drawn
treewidth does not – this, of course, implies that treewidth can, often, be arbitrarily smaller
than drawn treewidth; for a concrete example, see Figure 7. Further, treewidth depends
only on the graph, while drawn treewidth depends (as desired) on the drawing; for example,
notice that Figures 1a and 7a depict the same graph, but the corresponding drawings have
radically different drawn treewidths.

Besides its above-mentioned relation to treewidth, drawn treewidth for planar orthogonal
grid drawings can also be related to height (and width). On the one hand, we prove the
desirable property that – like treewidth – drawn treewidth is bounded from above by the order

S. Gupta, G. Sa’ar, and M. Zehavi 23:7

u3

u4

u5 u6

u1

u2

u7

u8

(a)

u1 u2

u3

u4

u5

u6

u7 u8

u9
u10

(b)

Figure 6 Example of vertices associated with a frame and a cutter. (a) The edge {u5, u6} is the
only edge separated by the orange frame. The vertices associated with the orange frame are u3, u5

and u6. (b) The vertices associated with the blue cutter of the orange frame are u1, u2 and u9.

(a) (b)

Figure 7 (a) A path P on n vertices and a frame f shown in orange. (b) A grid graph G on the
same set of vertices and the frame f shown in orange. Consider a frame, say f , in P with width w.
Observe that f is also a frame in G. Moreover, the width of f in G is at most 3w as every vertex
has exactly 2 more edges in G compared to P so the vertex may be counted 2 more times in the
width of f in G as the turning points of those 2 extra edges. As treewidth is a lower bound for
drawn treewidth and the treewidth of a grid graph is

√
n, the drawn treewidth of P is Ω(

√
n) (while

its treewidth is 1).

of the minimum among the height and width of the drawing. Notably, various central graph
width measures do not have this property. For example, one of the most commonly used
relaxations of pathwidth is treedepth (see, e.g., [18] for information on treedepth); however,
the treedepth of an n-vertex path is ⌈log2(n + 1)⌉, while it can be easily drawn so that the
height (or, symmetrically, width) of the drawing is 1. On the other hand, we have already
observed that the drawn treewidth can be arbitrarily smaller than the minimum among the
height and width of a drawing (see Figure 1a).

Bounds for Specific Types of Drawings. For some classes of drawings (being subclasses of
polyline grid drawings), we are able to prove that drawn treewidth is bounded by a sublinear
function of n (the number of vertices of the graph). For example, for grid drawings – which
are mappings of vertices to distinct grid points and of edges to unit-length straight lines
between their endpoints (see Figure 11b in Section A.2) – we prove that the drawn treewidth
(and even the straight-line drawn treewidth, defined ahead) is bounded by O(

√
n). More

generally, we prove that given a graph G and an orthogonal grid drawing d of G, drawn
treewidth of d is O(∆ ·

√
∆ · ℓ · n · maxInt), where (i) ∆ is the maximum degree in G, (ii) ℓ is

the average length of the edges of G in d, and (iii) maxInt is the maximum number of edges
and vertices intersected in a grid point in d.

IPEC 2023

23:8 Drawn Tree Decomposition: New Approach for Graph Drawing Problems

t

t

t

t

Figure 8 Example of a rectilinear drawing of a graph on n vertices with t = Ω(n). The
horizontal/vertical drawn treewidth of this drawing is Ω(n).

At this point, a short discussion is in order. One of the most well-known results in graph
theory about planar graphs is that every n-vertex planar graph has pathwidth (and hence
treewidth) bounded by O(

√
n) [13]. In particular, this result and generalizations thereof

have found impactful applications in algorithm design, particularly of parameterized and
approximation algorithms. In fact, (almost) all subexponential-time algorithms for problems
on planar graphs rely on it. Here, a central component in several proofs is the planar
separator theorem [3, 41, 42] (briefly mentioned earlier), which states that every n-vertex
planar graph contains an O(

√
n)-sized subset of vertices (called separator) whose removal

from the graph yields connected components that are each of size at most 2n/3. Thus,
due to the above-mentioned sub-quadratic bound on drawn treewidth for grid drawings,
the following conjecture seems tempting: the drawn treewidth of any planar polyline grid
drawing is O(

√
n). However, we observe that the statement analogous to the planar separator

theorem does not hold in our case, where our notion of a separator is that of a cutter and
their sizes is, in particular, bounded from below by the size of the set of vertices associated
with the cutter.

Drawbacks of Simpler Definitions for a Cutter. Lastly, we present and discuss two
alternative restricted forms of cutters: horizontal (or vertical) cutters and straight-line
cutters. A horizontal cutter (resp., vertical cutter) of a frame is a cutter of that frame
where all vertices have the same y-coordinate (resp., x-coordinate). Then, a straight-
line cutter is a cutter that is either horizontal or vertical. The replacement of cutters
by horizontal/vertical cutters or straight-line cutters yields corresponding definitions of
horizontal/vertical drawn tree decompositions and straight-line drawn tree decompositions,
and, accordingly, of horizontal/vertical drawn treewidth and straight-line drawn treewidth.
In particular, when we use these restricted forms of cutters, every frame has the shape of a
rectangle. In turn, this significantly simplifies the visualization (and, possibly, also the use)
of these concepts.

Unfortunately, horizontal/vertical drawn treewidth and even straight-line drawn treewidth
can be arbitrarily larger than drawn treewidth. To see this, let us first consider horizontal
cutters (or, symmetrically, vertical cutters), and the graph depicted in Figure 8. Notably,
this graph, in fact, admits exactly one grid drawing (up to isomorphism) – the one depicted
in the figure. Now, notice that the horizontal drawn treewidth of this drawing is Ω(n). To see

S. Gupta, G. Sa’ar, and M. Zehavi 23:9

t t

t

t

(a)

t t

t

t

(b)

Figure 9 (a) Example of a rectilinear drawing of a graph on n vertices with t = Ω(n). The
straight-line drawn treewidth of this drawing is Ω(n). (b) Example of a cutter used in the drawn
tree decomposition of width O(1).

this, notice that, for any horizontal tree decomposition and for each of the three horizontal
straight lines in the “middle” of the drawing, the rooted tree will have to contain a vertex
whose associate cutter “coincides” with that line. However, the drawn treewidth of this
drawing is only O(1), and, more generally, recall that we prove that for any grid drawing,
the straight-line drawn treewidth (and hence also the drawn treewidth) is O(

√
n). So, for

example, by using only horizontal (or vertical) cutters, we will not be able to attain the
subexponential-time algorithm for Grid Recognition mentioned in Section 1.3.

Nevertheless, the straight-line treewidth of the drawing in Figure 8 can be seen to
be bounded by O(1) as well. However, regarding straight-line cutters, we consider the
graph depicted in Figure 9a. Notably, every rectilinear grid drawing of this graph (being a
generalization of a grid drawing, where edges are straight-lines of arbitrary lengths) can be
obtained from the one depicted in the figure by “stretching” the drawings of some of its edges
(and up to isomorphism). Now, notice that the straight-line drawn treewidth of this drawing
is Ω(n). To see this, notice that every axis-parallel straight-line that intersects this graph,
intersects the drawings of at least Ω(n) distinct vertices and edges of this graph. However,
the drawn treewidth of this drawing is only O(1). To see this, consider the usage of cutters
as the one depicted in Figure 9b.

1.2 Comparison with Other Graph Width Parameters
Recall that, drawn tree decomposition is based on decomposing a given polyline grid drawing
of a graph. Therefore, the drawn treewidth is dependent on the polyline grid drawing of
the graph. For e.g., Figures 1a and 7a depicts two different drawings of the same path
which have different drawn treewidth. As path has a unique embedding, this also shows
that different drawings of the same embedded graph may have different drawn
treewidth. To the best of our knowledge, our parameter is the only one that
depends on the drawing (rather than the embedding or just the graph). Thus,
we compare and discuss the differences between the drawn treewidth of a given polyline
drawing of the graph and some seemingly related graph width parameters, namely: treewidth,
pathwidth, carving-width, dual carving-width and embedded-width. Note that, the dual
carving-width and the embedded-width is only defined when the given graph is a plane graph.
Specifically, we prove the following theorem.

IPEC 2023

23:10 Drawn Tree Decomposition: New Approach for Graph Drawing Problems

▶ Theorem 1.1. Given a graph G and a polyline drawing d of G, we have the following.
(a) The treewidth of G is at most 6 times the drawn treewidth of d. Moreover, the drawn

treewidth of d might be arbitrary larger than the treewidth of G.
(b) The pathwidth of G and the drawn treewidth of d are incomparable.
(c) The drawn treewidth of d might be arbitrary larger than the carving-width of G.
(d) If G is a plane graph, the dual carving-width and the embedded-width of G might be

arbitrary larger than the drawn treewidth of d.

We now give the proof of the above theorem. Let ∆, tw, pw, and cw be the maximum
degree, treewidth, pathwidth and the carving-width of G, respectively. Further, if G is a
plane graph, let ℓ, dcw and emw be the maximum face size, the dual carving-width (the
carving width of the dual graph), and the embedded-width of G, respectively.

Comparison with Treewidth. As mentioned earlier in Section 1.1, we prove that given a
graph and a polyline drawing of it, tw is at most 6 times the drawn treewidth. Moreover,
we also show that given a graph and a polyline drawing of it, the drawn treewidth of the
drawing might be arbitrary larger than the treewidth of the graph (see Figure 7).

Comparison with Pathwidth. In Figure 10, we have a rectilinear grid drawing of a binary
tree. By using cutters as illustrated in the figure (in orange), we can get a drawn tree
decomposition of constant width. In particular, one can see that each cutter intersects a
constant number of edges and vertices. Since we use only straight cutters, and the maximum
degree of the graph is 3, we conclude that the width of each frame in such a drawn tree frame
is bounded by a constant. Therefore, we get that the drawn treewidth of the drawing is
bounded by a constant. Observe that this example can be expanded to a binary tree of any
size. Furthermore, the pathwidth of a binary tree with n vertices is Ω(log2(n)). So, given a
graph and a polyline drawing of it, the pathwidth of the graph might be arbitrary larger
than the drawn treewidth of the drawing.

On the other hand, Grid Recognition is NP-hard on graphs of pathwidth 2, and we
show in this paper that the problem is XP with respect to drawn treewidth. So, given a graph
and a polyline drawing of it, the drawn treewidth of the drawing might be arbitrary larger
than the pathwidth of the graph. Thus, we conclude that the two parameters, pathwidth
and drawn treewidth, are incomparable.

Comparison with Carving-width, Dual Carving-width and Embedded-width. It is known
that cw ≤ ∆(tw + 1) [11]. As the Grid Recognition problem is NP-hard even for binary
trees, we get that it is NP-hard even for graphs of carving-width at most 6. In this paper,
we show that the problem is XP with respect to drawn treewidth. So, given a graph and a
polyline drawing of it, the drawn treewidth of the drawing might be arbitrary larger than
the carving-width of the graph.

If the given graph is plane, it is known that ℓ ≤ dcw and ℓ ≤ emw [20]. Therefore, we get
that both the dual carving-width and the embedded-width of a path are at least the size of
its vertex set. In this paper, we show that there exists a drawing of any path with drawn
treewidth at most 16 (see Figure 1b). So, given a plane graph and a polyline drawing of it,
the dual carving-width and the embedded-width of the graph might be arbitrary larger than
the drawn treewidth of the drawing. Thus, we conclude that drawn treewidth differs from
carving-width, dual carving-width and embedded-width.

S. Gupta, G. Sa’ar, and M. Zehavi 23:11

(a) (b)

(c) (d)

Figure 10 Example of a rectilinear drawing (in black) of a binary tree on n vertices. The
rectangular is shown in orange. Examples of cutters are shown in blue, green, pink, yellow, grey and
brown. Each one of them intersects O(1) vertices and edges. Overall, the pathwidth of the tree is
Ω(log n), while the drawn treewidth of this drawing is O(1).

1.3 Our Scheme

Here, we present (informally) our general scheme for the design of algorithms for problems in
Graph Drawing parameterized by the drawn treewidth of the sought drawing (that should be,
in particular, a polyline grid drawing), based on dynamic programming. For the clarity of the
discussion, we first introduce the four main definitions required for the scheme and its proof
of correctness. Then, we discuss the usage of our scheme – specifically, which two procedures
the user should design in order to apply the scheme as a black box. Afterwards, we specify
the properties that a problem should satisfy so that our scheme will solve it correctly, and
the running time that will be attained. Lastly, we present some technical details concerning
the scheme itself, that is, how it is executed.

IPEC 2023

23:12 Drawn Tree Decomposition: New Approach for Graph Drawing Problems

Key Players: Info-Frames, Info-Cutters, Splitting and Glueing.
Info-Frames. The most basic definition required for our scheme is that of an info-frame.
Briefly, an info-frame encodes information about the “behaviour” of the restriction of some
drawing d to the interior of some particular frame f . For that purpose, the info-frame consists
of five components, where the first one is, simply, the frame f . The second component is
a drawing df that specifies the drawings of the vertices and edges (by d) of the graph on
f itself. More precisely, df specifies which vertices of the graph are drawn on f and where
are they drawn on f . Additionally, for every edge e of the graph, it specifies which are the
turning points of e on f and where are these turning points drawn on f . Moreover, for the
aforementioned turning points, it specifies the order in which they are encountered (when we
“walk” along the drawing of e from one end to the other), and for each maximal subcurve of
the drawing of e that does not contain a turning point internally, it specifies whether this
subcurve is drawn on f (i.e., being a subcurve of f as well), and if yes, then it specifies the
drawing of this subcurve (for which, knowing the drawings of its endpoints, we have only
two options).

The third and fourth components, denoted by Uf and Ef , concern the strict interior of
f . Specifically, Uf specifies which vertices of the graph are drawn strictly inside f . As for
Ef , for every edge e of the graph and for each maximal subcurve of the drawing of e that
does not contain a turning point internally, it specifies whether this subcurve is drawn in
the strict interior of f (except for, possibly, the endpoints of the curve). We remark that
the number of “sensible” choices for Uf and Ef is much smaller than it might appear to
be at first glance, supposing that the graph at hand is connected. The fifth component,
roughly speaking, describes the “angles” in which drawings of edges cross f using straight
line segments attached to turning points. Such information is necessary, for example, to
ensure that some subcurves corresponding to the drawings of the same edge lie in a single
straight line, so that no bend – if forbidden by the problem at hand – occurs.

Importantly, the definition of an info-frame is independent of a specific drawing, being an
“abstract” tuple of five components. Every drawing that can be described by the tuple (as
discussed above) is said to be a drawing of the info-frame. So, one info-frame may describe
multiple drawings, or none at all. We note that for an “abstract” five-component tuple
to be an info-frame, it should satisfy various (considerably technical) properties, which, in
particular, any info-frame that does describe at least one drawing must satisfy. On the one
hand, these properties bound the number of possible info-frames, and, on the other hand,
they are also used in the proof of correctness of our scheme.

Lastly, observe that the restriction of some drawing d to the interior of some particular
frame f is not a drawing of a graph. Indeed, some edges are drawn (by d) partially in the
interior of f and partially in the strict exterior of f . However, if we “enrich” the graph by
placing “virtual” vertices on turning points, then the restriction of d to the interior of f will
be a drawing of a graph (being a subgraph of the enriched graph). So, for technical reasons,
this is exactly what we do. For this purpose, we define and work with so-called G⋆-drawings;
however, to keep the overview short and simple, we will not discuss G⋆-drawings and related
technical terms in this overview.

Info-Cutters. Just as we use an info-frame to encode information about the “behaviour”
of a drawing d with respect to a frame f , we use an info-cutter of an info-frame to encode
information about the “behaviour” of d with respect to a cutter c of f . Rather than directly
describing how d is drawn on c and how d is “split” by c inside f , we find it easier to indirectly
describe this information by defining an info-cutter based on two info-frames corresponding to
the frames obtained by cutting f with c (later, for the dynamic programming implementation,

S. Gupta, G. Sa’ar, and M. Zehavi 23:13

we can thus immediately know to which already computed entries to refer). Observe that, in
particular, the two frames being part of these two info-frames contain c, and, thus, these two
info-frames capture the aforementioned information.

To be more precise, an info-cutter C of an info-frame F , where the first component of
F is some frame f , is a triple (c, F1, F2), where, in particular, c is a cutter of f , and F1
and F2 are info-frames for the two frames obtained by cutting f with c. Additionally, for
such a triple to be an info-cutter, it should satisfy (considerably technical) properties, which,
in particular, any info-cutter that does describe at least one drawing must satisfy. Very
briefly, these properties validate consistency between the information described by F , F1 and
F2. This is more complicated than it might appear to be at first glance, since, even on the
cutter c, F1 and F2 might describe the existence of different virtual vertices (having different
turning points). For the sake of simplicity, we do not discuss these details in the overview.

Splitting and Glueing. First, let us consider the splitter function, which, for our scheme,
is used only for the proof of correctness (where its input is assumed to contain a subdrawing
of a hypothetical solution drawing). Given an info-frame F whose first component (being a
frame) is f , a drawing d restricted to the interior of f that is compatible with the description
encoded by F , and a cutter c of f , the splitter function returns an info-cutter C = (c, F1, F2)
and two drawings, d1 and d2. Let f1 (f2) be the first component of F1 (F2). Briefly, we define
the output such that d1 and d2 would be the subdrawings of d restricted to the interiors of
f1 and f2, respectively, and F1 and F2 would be the info-frames that describe d1 and d2,
respectively.

The glue function is, intuitively, the “inverse” of the split function, and it is used
algorithmically in our scheme. Its input consists of an info-frame F , an info-cutter C =
(c, F1, F2) of F , a drawing d1 of F1 and a drawing d2 of F2. Roughly speaking, this function
aims to “glue” d1 and d2 into a single drawing d that is restricted to the interior of f , being
the first component of F , and that should be compatible with the description encoded by F ;
of course, this operation might be impossible, and then the function simply announces that.
Among other proofs concerning these functions, we show, in particular, that the specific way
in which we define the splitter and glue functions (not described in the overview) ensures
that, if we apply the glue function on an output of the splitter function, we are able to
reconstruct the drawing given as input to the splitter function.

The User’s Point of View. For the execution of the scheme, we expect the user to provide
four components: some universe denoted by INF, and three algorithmic procedures (that will
be defined immediately). All of these components are problem-dependent.

The first procedure, termed classifier and denoted by Classifer, is given an info-frame
F and a corresponding drawing d, and it returns an element from INF. Intuitively, this
element describes the equivalence class of d. So, we say that two drawings corresponding
to the same info-frame are equivalent if the classifier associates them with the same
element.
The second procedure, termed classifier algorithm, is given an info-frame F , an info-cutter
C = (c, F1, F2) of F and I1, I2 ∈ INF, and it returns I ′ ∈ INF such that: For any two
drawings d1 and d2 corresponding to F1 and F2, respectively, such that Classifier(F1, d1) =
I1 and Classifier(F2, d2) = I2, we have Classifier(F, d) = I ′ where d = Glue(F, C, d1, d2).
In particular, notice that any two drawings of the same two equivalence classes always
yield (when being glued) a drawing of the same equivalence class – this justifies our usage
of the term equivalence in this context.

IPEC 2023

23:14 Drawn Tree Decomposition: New Approach for Graph Drawing Problems

The third procedure, termed leaf solver, is given an info-frame F whose frame does not
contain any grid point in its strict interior, and for every I ′ ∈ INF, it returns “yes” if
and only if there exists a drawing d corresponding to F such that Classifier(F, d) = I ′.
Practically, we require this procedure to solve the basis of our dynamic programming
computation, corresponding to info-frames whose frames do not contain any grid point in
their strict interiors.

The scheme, once given these components, can be executed in a black box fashion. For
the sake of simplicity of the overview, we do not discuss the technical details of the execution
itself (as a white box) here.

To Which Type of Problems Does Our Scheme Apply? Roughly speaking, we prove that
our scheme can be applied to any graph drawing problem Π such that:
1. Every instance of Π contains, in particular, a connected graph G, dimensions h and w for

the sought drawing (which are, usually, bounded from above by the number of vertices n

of G), and the parameter k (being any non-negative integer).
2. The objective is to determine whether G admits a polyline grid drawing bounded by

rectangle of dimensions h × w, whose drawn treewidth is at most k, and that satisfies
various problem-specific properties (for some examples, see Section 1.4).

3. The user can design the three algorithmic procedures discussed above.

For any such problem Π, we prove that the runtime of the scheme is bounded by

O(k · h · w · n)O(k) · |INF|O(1) ·
(

2O(∆·k) · T2 + T3
)

,

where T2 and T3 bound the runtimes of the second and third procedures provided by the
user, and ∆ is the maximum degree of G. In particular, if h, w, |INF|, T2 and T3 can be
bounded by nO(1) (which is the case for many applications, such as grid recognition and
orthogonal compaction), then the runtime above simplifies to nO(k), that is, we obtain an
XP-algorithm.

1.4 Applications of Our Scheme to Problems in Graph Drawing
For most of the problems considered in this paper, the time complexity of our scheme can be
bounded by nO(k), where k is the input parameter that upper bounds the drawn treewidth
of the output drawing. We remark that the formal definitions of these problems are relegated
to Section A.3.

Grid Recognition. We first consider the relatively simple Grid Recognition problem in
order to demonstrate the application of our scheme. Here, given a (connected) graph G, the
objective is to determine whether G is a grid graph, that is, whether it admits a grid drawing.
The Grid Recognition problem was first proved to be NP-hard in 1987, on ternary trees
of pathwidth 3 [7]. Two years later in 1989, the problem was proved to be NP-hard even on
binary trees [31]. Recently in 2021, the problem was proved to be NP-hard even on trees of
pathwidth 2 [34]. In the same paper, it was also proved that the problem is polynomial time
solvable on graphs of pathwidth 1. A year later in 2022, it was proved that even if we require
all the internal faces of the drawing to be rectangles, the problem is still NP-hard even for
biconnected graphs [2]. In the same paper, it was also proved that if we require all the faces
of the drawing to be rectangles (including outer face), the problem is cubic time solvable.

S. Gupta, G. Sa’ar, and M. Zehavi 23:15

As we deal with the parameterized version of this problem where the parameter is the
drawn treewidth of the sought drawing (or, more precisely, an upper bound on it), we are
also given k as input. We prove the following result.

▶ Theorem 1.2. There exists an algorithm that solves the Grid Recognition problem in
time nO(k).

Since for grid drawings, we also prove that k ≤ O(
√

n), we get the following corollary.

▶ Corollary 1.3. There exists an algorithm that solves the Grid Recognition problem in
time nO(

√
n).

Thus, we obtain a subexponential-time algorithm for Grid Recognition, matching the
running time of the current best known algorithm for this problem [21].

Crossing and Bend Minimization. For our second application, we study a variant of the
Crossing Minimization problem. The Crossing Minimization problem is one of the
most fundamental graph layout problems. It was shown to be NP-complete by Garey and
Johnson in 1983 [29]. Later, it was proved to be NP-complete even on graph of maximum
degree 3 [36] and also on almost planar graphs which are graphs that can be made planar by
removing a single edge [15]. It was also shown that the problem remains NP-hard even if the
cyclic order of the neighbours around each vertex is fixed and to be respected by the resulting
drawing [44]. On the positive side, it is known the problem is FPT with respect to the
number of crossings [32, 38] and also with respect to the vertex cover [37]. There are many
other variants of this problem which are studied in the literature. One of them concerns
with minimizing the number of pairwise crossing edges in any straight-line drawing of the
graph. This problem is known to be NP-hard [12] (and even ∃R-complete [46]). For more
information about the crossing minimization and its variants, we refer to the survey [48].

A related problem is the Bend Minimization problem. Given a graph G, the Bend
Minimization problem asks for an orthogonal grid drawing of G with minimum number
of total bends. The problem was proved to be NP-complete in 2001, even when there are
no bends [30]. On the positive side, if the input graph is plane, the problem can be solved
in polynomial time [47]. When the input graph is not planar, there are polynomial time
algorithms for subclasses of planar graphs, namely planar graphs with maximum degree
3 [17, 6, 25, 45] and series-parallel graphs [49].

We study the Straight-line Grid Crossing Minimization problem where the sought
drawing should be a straight-line grid drawing. Here, given a (connected) graph G and
h, w ∈ N, the objective is to determine a straight-line grid drawing of G bounded by a
rectangle of dimension h × w with minimum number of crossings, if one exists. Similar to
the previous example, as we study the parameterized version of this problem, we are also
given k as input. We prove the following result.

▶ Theorem 1.4. There exists an algorithm that solves Straight-line Grid Crossing
Minimization problem in time O((k · h · w · n)O(k) · 2O(∆·k)), where ∆ is the maximum degree
of the input graph.

More generally, our scheme can be applied to a very wide class of problems of such flavor;
in particular, every problem where:

The input consists of (some or all of) the following: a graph G; cross : E(G) → N0 ∪ ∞;
bend : E(G) → N0 ∪ ∞, and C, B, k ∈ N0 ∪ {∞}. Here, E(G) is the edge set of G, and
N0 = N ∪ {0}.

IPEC 2023

23:16 Drawn Tree Decomposition: New Approach for Graph Drawing Problems

The objective is to determine whether G admits a drawing that is (i) a grid drawing, or
(ii) a rectilinear drawing, or (iii) an orthogonal grid drawing, or (iv) a straight-line grid
drawing, or (v) a polyline grid drawing, such that:

For every edge e ∈ E(G), the drawing of e has at most cross(e) crossings and at most
bend(e) bends.
In total, we have at most C crossings and at most B bends.

Further, the scheme can be applied to various variants of the above generic problem that
were studied in the literature. For example, we can specify, for every edge, whether it should
be crossed an even or odd number of times. Similarly, we can also consider the weighted
crossing number.

Orthogonal Compaction. Lastly, we note that our scheme can also be applied to problems
of flavors quite different than the above. As an example, we consider the Orthogonal
Compaction problem. Here, given a planar orthogonal representation H of a connected
planar graph G, the objective is to compute a minimum-area drawing of H . The Orthogonal
Compaction problem was first proved to be NP-hard on general graphs in 2001 [43]. Later,
it was shown that the problem is NP-hard even on cycles [26], ruling out an FPT algorithm
with respect to treewidth, unless P=NP. On the positive side, it was proved that the problem
is linear time solvable for a restricted class of planar orthogonal representation [14]. Recently,
it was also shown that the problem is FPT with respect to number of “kitty corner vertices”,
a parameter central to the problem [23].

Similar to the previous examples, as we study the parameterized version of this problem,
we are also given k as input. We prove the following result.

▶ Theorem 1.5. There exists an algorithm that solves the Orthogonal Compaction
problem in time nO(k).

References
1 Hugo A. Akitaya, Maarten Löffler, and Irene Parada. How to fit a tree in a box. Graphs

Comb., 38(5):155, 2022. doi:10.1007/s00373-022-02558-z.
2 Carlos Alegría, Giordano Da Lozzo, Giuseppe Di Battista, Fabrizio Frati, Fabrizio Grosso,

and Maurizio Patrignani. Unit-length rectangular drawings of graphs. In Patrizio Angelini
and Reinhard von Hanxleden, editors, Graph Drawing and Network Visualization - 30th
International Symposium, GD 2022, Tokyo, Japan, September 13-16, 2022, Revised Selected
Papers, volume 13764 of Lecture Notes in Computer Science, pages 127–143. Springer, 2022.
doi:10.1007/978-3-031-22203-0_10.

3 Noga Alon, Paul D. Seymour, and Robin Thomas. Planar separators. SIAM J. Discret. Math.,
7(2):184–193, 1994. doi:10.1137/S0895480191198768.

4 Michael J. Bannister, Sergio Cabello, and David Eppstein. Parameterized complexity of
1-planarity. Journal of Graph Algorithms and Applications, 22(1):23–49, 2018.

5 Michael J. Bannister and David Eppstein. Crossing minimization for 1-page and 2-page
drawings of graphs with bounded treewidth. Journal of Graph Algorithms and Applications,
22(4):577–606, 2018.

6 Giuseppe Di Battista, Giuseppe Liotta, and Francesco Vargiu. Spirality and optimal orthogonal
drawings. SIAM J. Comput., 27(6):1764–1811, 1998. doi:10.1137/S0097539794262847.

7 Sandeep N. Bhatt and Stavros S. Cosmadakis. The complexity of minimizing wire lengths in
VLSI layouts. Inf. Process. Lett., 25(4):263–267, 1987. doi:10.1016/0020-0190(87)90173-6.

8 Sujoy Bhore, Robert Ganian, Fabrizio Montecchiani, and Martin Nöllenburg. Parameterized
algorithms for book embedding problems. Journal of Graph Algorithms and Applications,
24(4):603–620, 2020.

https://doi.org/10.1007/s00373-022-02558-z
https://doi.org/10.1007/978-3-031-22203-0_10
https://doi.org/10.1137/S0895480191198768
https://doi.org/10.1137/S0097539794262847
https://doi.org/10.1016/0020-0190(87)90173-6

S. Gupta, G. Sa’ar, and M. Zehavi 23:17

9 Therese Biedl. On area-optimal planar graph drawings. In Javier Esparza, Pierre Fraigniaud,
Thore Husfeldt, and Elias Koutsoupias, editors, Automata, Languages, and Programming - 41st
International Colloquium, ICALP 2014, Copenhagen, Denmark, July 8-11, 2014, Proceedings,
Part I, volume 8572 of Lecture Notes in Computer Science, pages 198–210. Springer, 2014.
doi:10.1007/978-3-662-43948-7_17.

10 Therese Biedl and Debajyoti Mondal. On upward drawings of trees on a given grid. In Fabrizio
Frati and Kwan-Liu Ma, editors, Proc. 25th International Symposium on Graph Drawing
and Network Visualization (GD), volume 10692 of LNCS, pages 318–325. Springer, 2017.
doi:10.1007/978-3-319-73915-1_25.

11 Therese Biedl and Martin Vatshelle. The point-set embeddability problem for plane graphs.
Int. J. Comput. Geom. Appl., 23(4-5):357–396, 2013. doi:10.1142/S0218195913600091.

12 Daniel Bienstock. Some provably hard crossing number problems. Discrete & Computational
Geometry, 6(3):443–459, 1991.

13 Hans L. Bodlaender. A partial k-arboretum of graphs with bounded treewidth. Theor. Comput.
Sci., 209(1-2):1–45, 1998. doi:10.1016/S0304-3975(97)00228-4.

14 Stina S Bridgeman, Giuseppe Di Battista, Walter Didimo, Giuseppe Liotta, Roberto Tamassia,
and Luca Vismara. Turn-regularity and optimal area drawings of orthogonal representations.
Computational Geometry, 16(1):53–93, 2000.

15 Sergio Cabello and Bojan Mohar. Adding one edge to planar graphs makes crossing number
and 1-planarity hard. SIAM Journal on Computing, 42(5):1803–1829, 2013.

16 Hubert Chan. A parameterized algorithm for upward planarity testing. In European Symposium
on Algorithms, ESA, pages 157–168. Springer, 2004.

17 Yi-Jun Chang and Hsu-Chun Yen. On bend-minimized orthogonal drawings of planar 3-
graphs. In Boris Aronov and Matthew J. Katz, editors, 33rd International Symposium on
Computational Geometry, SoCG 2017, July 4-7, 2017, Brisbane, Australia, volume 77 of
LIPIcs, pages 29:1–29:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017. doi:
10.4230/LIPIcs.SoCG.2017.29.

18 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.

19 Giordano Da Lozzo, David Eppstein, Michael T. Goodrich, and Siddharth Gupta.
Subexponential-time and FPT algorithms for embedded flat clustered planarity. In
Graph-Theoretic Concepts in Computer Science - 44th International Workshop, WG 2018,
Cottbus, Germany, June 27-29, 2018, Proceedings, pages 111–124, 2018. doi:10.1007/
978-3-030-00256-5_10.

20 Giordano Da Lozzo, David Eppstein, Michael T. Goodrich, and Siddharth Gupta. C-
planarity testing of embedded clustered graphs with bounded dual carving-width. Algorithmica,
83(8):2471–2502, 2021. doi:10.1007/s00453-021-00839-2.

21 Peter Damaschke. Enumerating grid layouts of graphs. J. Graph Algorithms Appl., 24(3):433–
460, 2020.

22 Emilio Di Giacomo, Giuseppe Liotta, and Fabrizio Montecchiani. Orthogonal planarity testing
of bounded treewidth graphs. Journal of Computer and System Sciences, 125:129–148, 2022.
doi:10.1016/j.jcss.2021.11.004.

23 Walter Didimo, Siddharth Gupta, Philipp Kindermann, Giuseppe Liotta, Alexander Wolff,
and Meirav Zehavi. Parameterized approaches to orthogonal compaction. In Leszek Gasi-
eniec, editor, SOFSEM 2023: Theory and Practice of Computer Science - 48th International
Conference on Current Trends in Theory and Practice of Computer Science, SOFSEM 2023,
Nový Smokovec, Slovakia, January 15-18, 2023, Proceedings, volume 13878 of Lecture Notes
in Computer Science, pages 111–125. Springer, 2023. doi:10.1007/978-3-031-23101-8_8.

24 Walter Didimo and Giuseppe Liotta. Computing orthogonal drawings in a variable embedding
setting. In Proceedings of the 9th International Symposium on Algorithms and Computation,
ISAAC, pages 80–89. Springer, 1998.

IPEC 2023

https://doi.org/10.1007/978-3-662-43948-7_17
https://doi.org/10.1007/978-3-319-73915-1_25
https://doi.org/10.1142/S0218195913600091
https://doi.org/10.1016/S0304-3975(97)00228-4
https://doi.org/10.4230/LIPIcs.SoCG.2017.29
https://doi.org/10.4230/LIPIcs.SoCG.2017.29
https://doi.org/10.1007/978-3-030-00256-5_10
https://doi.org/10.1007/978-3-030-00256-5_10
https://doi.org/10.1007/s00453-021-00839-2
https://doi.org/10.1016/j.jcss.2021.11.004
https://doi.org/10.1007/978-3-031-23101-8_8

23:18 Drawn Tree Decomposition: New Approach for Graph Drawing Problems

25 Walter Didimo, Giuseppe Liotta, and Maurizio Patrignani. Bend-minimum orthogonal drawings
in quadratic time. In Therese Biedl and Andreas Kerren, editors, Graph Drawing and Network
Visualization - 26th International Symposium, GD 2018, Barcelona, Spain, September 26-
28, 2018, Proceedings, volume 11282 of Lecture Notes in Computer Science, pages 481–494.
Springer, 2018. doi:10.1007/978-3-030-04414-5_34.

26 William S. Evans, Krzysztof Fleszar, Philipp Kindermann, Noushin Saeedi, Chan-Su Shin, and
Alexander Wolff. Minimum rectilinear polygons for given angle sequences. Comput. Geom.,
100:101820, 2022. doi:10.1016/j.comgeo.2021.101820.

27 Mike Fellows, Panos Giannopoulos, Christian Knauer, Christophe Paul, Frances A. Rosamond,
Sue Whitesides, and Nathan Yu. Milling a graph with turn costs: A parameterized complexity
perspective. In Proceedings of the 36th International Workshop on Graph Theoretic Concepts
in Computer Science, WG, pages 123–134, 2010.

28 Robert Ganian, Fabrizio Montecchiani, Martin Nöllenburg, and Meirav Zehavi. Parameterized
complexity in graph drawing (dagstuhl seminar 21293). Dagstuhl Reports, 11(6):82–123, 2021.

29 Michael R Garey and David S Johnson. Crossing number is np-complete. SIAM Journal on
Algebraic Discrete Methods, 4(3):312–316, 1983.

30 Ashim Garg and Roberto Tamassia. On the computational complexity of upward and rectilinear
planarity testing. SIAM J. Comput., 31(2):601–625, 2001. doi:10.1137/S0097539794277123.

31 Angelo Gregori. Unit-length embedding of binary trees on a square grid. Information Processing
Letters, 31(4):167–173, 1989.

32 Martin Grohe. Computing crossing numbers in quadratic time. Journal of Computer and
System Sciences, 68(2):285–302, 2004.

33 Siddharth Gupta, Guy Sa’ar, and Meirav Zehavi. Drawn tree decomposition: New approach
for graph drawing problems, 2023. arXiv:2310.05471.

34 Siddharth Gupta, Guy Sa’ar, and Meirav Zehavi. Grid recognition: Classical and parameterized
computational perspectives. Journal of Computer and System Sciences, 136:17–62, 2023.
doi:10.1016/j.jcss.2023.02.008.

35 Patrick Healy and Karol Lynch. Two fixed-parameter tractable algorithms for testing upward
planarity. International Journal of Foundations of Computer Science, 17(05):1095–1114, 2006.

36 Petr Hliněný. Crossing number is hard for cubic graphs. Journal of Combinatorial Theory,
Series B, 96(4):455–471, 2006.

37 Petr Hliněný and Abhisekh Sankaran. Exact crossing number parameterized by vertex cover. In
Proceedings of the 27th International Symposium on Graph Drawing and Network Visualization,
GD, pages 307–319, 2019.

38 Ken-ichi Kawarabayashi and Buce Reed. Computing crossing number in linear time. In
Proceedings of the 39th Annual ACM Symposium on Theory of Computing, STOC, pages
382–390, 2007.

39 Marcus Krug and Dorothea Wagner. Minimizing the area for planar straight-line grid drawings.
In Seok-Hee Hong, Takao Nishizeki, and Wu Quan, editors, Graph Drawing, 15th International
Symposium, GD 2007, Sydney, Australia, September 24-26, 2007. Revised Papers, volume
4875 of Lecture Notes in Computer Science, pages 207–212. Springer, 2007. doi:10.1007/
978-3-540-77537-9_21.

40 Giuseppe Liotta, Ignaz Rutter, and Alessandra Tappini. Parameterized complexity of graph
planarity with restricted cyclic orders. J. Comput. Syst. Sci., 135:125–144, 2023. doi:
10.1016/j.jcss.2023.02.007.

41 Richard J Lipton and Robert Endre Tarjan. A separator theorem for planar graphs. SIAM
Journal on Applied Mathematics, 36(2):177–189, 1979.

42 Gary L. Miller. Finding small simple cycle separators for 2-connected planar graphs. J.
Comput. Syst. Sci., 32(3):265–279, 1986. doi:10.1016/0022-0000(86)90030-9.

43 Maurizio Patrignani. On the complexity of orthogonal compaction. Computational Geometry,
19(1):47–67, 2001.

https://doi.org/10.1007/978-3-030-04414-5_34
https://doi.org/10.1016/j.comgeo.2021.101820
https://doi.org/10.1137/S0097539794277123
https://arxiv.org/abs/2310.05471
https://doi.org/10.1016/j.jcss.2023.02.008
https://doi.org/10.1007/978-3-540-77537-9_21
https://doi.org/10.1007/978-3-540-77537-9_21
https://doi.org/10.1016/j.jcss.2023.02.007
https://doi.org/10.1016/j.jcss.2023.02.007
https://doi.org/10.1016/0022-0000(86)90030-9

S. Gupta, G. Sa’ar, and M. Zehavi 23:19

44 Michael J. Pelsmajer, Marcus Schaefer, and Daniel Stefankovic. Crossing numbers of graphs
with rotation systems. Algorithmica, 60(3):679–702, 2011.

45 Md. Saidur Rahman, Noritsugu Egi, and Takao Nishizeki. No-bend orthogonal drawings
of subdivisions of planar triconnected cubic graphs. IEICE Trans. Inf. Syst., 88-D(1):23–
30, 2005. URL: http://search.ieice.org/bin/summary.php?id=e88-d_1_23&category=D&
year=2005&lang=E&abst=.

46 Marcus Schaefer. Complexity of some geometric and topological problems. In Proceedings of
the 18th International Symposium on Graph Drawing and Network Visualization, GD, pages
334–344. Springer, 2009.

47 Roberto Tamassia. On embedding a graph in the grid with the minimum number of bends.
SIAM J. Comput., 16(3):421–444, 1987. doi:10.1137/0216030.

48 Meirav Zehavi. Parameterized analysis and crossing minimization problems. Computer Science
Review, 45:100490, 2022. doi:10.1016/j.cosrev.2022.100490.

49 Xiao Zhou and Takao Nishizeki. Orthogonal drawings of series-parallel graphs with minimum
bends. SIAM J. Discret. Math., 22(4):1570–1604, 2008. doi:10.1137/060667621.

A Preliminaries

In this paper, we only consider finite simple undirected graphs, unless stated otherwise.
Moreover, we refer to straight line segments as line segments, unless stated otherwise. Let
N0 = N ∪ {0}. For k, i, j ∈ N, we denote [k] = {1, 2, . . . k} and [i, j] = {i, i + 1, . . . , j}.

A.1 Graph Notation and Decompositions

For a graph G = (V, E) and a subset of vertices U ⊆ V , we denote by G[U] the subgraph of
G induced by U . For a given subset V ′ ⊆ V of vertices, we define the boundary of V ′ as the
set of vertices in V ′ that are adjacent to a vertex in V \ V ′:

▶ Definition A.1 (Boundary). Let G = (V, E) be a graph. Let V ′ ⊆ V . Then the boundary
of V ′ in G, denoted by BG(V ′), is the set of vertices of V ′ that have a neighbor in V \ V ′,
i.e., BG(V ′) = {v′ ∈ V ′ | there exists v ∈ V \ V ′ such that {v, v′} ∈ E}.

When the graph G is clear from the context, we drop it from the subscript. Given a path
P , we represent P as a sequence of vertices v1, v2, . . . , vk, such that {vi, vi+1} is an edge in P

for every 1 ≤ i ≤ k − 1. Similarly, given a cycle C, we represent C as a sequence of vertices
v1, v2, . . . , vk, such that v1 = vk and {vi, vi+1} is an edge in C for every 1 ≤ i ≤ k − 1. Note
that we use the terms path and cycle to refer to simple path and cycles. We now define the
concepts of a tree decomposition and a path decomposition.

▶ Definition A.2 (Tree Decomposition). A tree decomposition of a graph G = (V, E) is a
pair (T = (VT , ET), β : VT → 2V) where T is a tree such that:
1. For every v ∈ V , the subgraph of T induced by {x ∈ VT | v ∈ β(x)} is non-empty and

connected.
2. For every {u, v} ∈ E, there exists x ∈ VT such that {u, v} ⊆ β(x).

The width of (T , β) is defined to be maxx∈VT
|β(x)| − 1. For every x ∈ VT , β(x) is called a

bag. The treewidth of a graph G is the minimum width of any tree decomposition of G.

IPEC 2023

http://search.ieice.org/bin/summary.php?id=e88-d_1_23&category=D&year=2005&lang=E&abst=
http://search.ieice.org/bin/summary.php?id=e88-d_1_23&category=D&year=2005&lang=E&abst=
https://doi.org/10.1137/0216030
https://doi.org/10.1016/j.cosrev.2022.100490
https://doi.org/10.1137/060667621

23:20 Drawn Tree Decomposition: New Approach for Graph Drawing Problems

▶ Definition A.3 (Path Decomposition). A path decomposition of a graph G = (V, E) is a
pair (P = (VP , EP), β : VP → 2V) where P is a path such that:
1. For every v ∈ V , the subgraph of P induced by {x ∈ VP | v ∈ β(x)} is non-empty and

connected.
2. For every {u, v} ∈ E, there exists x ∈ VP such that {u, v} ⊆ β(x).

The width of (P, β) is defined to be maxx∈VP
|β(x)| − 1. For every x ∈ VP , β(x) is called a

bag. The pathwidth of a graph G is the minimum width of any path decomposition of G.

A.2 Graph Drawing
For a given graph G, a drawing of G on the plane is a mapping of the vertices to distinct
points of R2 and of the edges to simple curves in R2, connecting the images of their endpoints.
A drawing of a graph is planar if no pair of edges, or an edge and a vertex, cross except at a
common endpoint. Two planar drawings of the same graph are equivalent if they determine
the same rotation at each vertex, that is, the same circular ordering for the edges around
each vertex. An embedding is an equivalence class of planar drawings.

Given a drawing d of G, we represent d as a pair of functions (dV , dE) as follows. The
function dV : V → R × R is an injection, which maps each vertex v of G to a point
(i, j) in the plane; then, i and j are also denoted as dx(v) and dy(v), respectively, that is,
dV (v) = (dx(v), dy(v)). The function dE : E → C, where C is the set of all simple curves in
the plane, maps each edge {u, v} ∈ E to a simple curve c ∈ C between dV (u) and dV (v).
For simplicity, we refer to (dV , dE) as one function, d : V ∪ E → {R × R} ∪ C, such that
d(v) = dV (v) for every v ∈ V , and d({u, v}) = dE({u, v}) for every {u, v} ∈ E. We call V

and E the vertex set and the edge set associated with d, respectively. Let d be a drawing of a
graph G, and let p ∈ R2 be a point. We say that p is on d if p is on the image of an edge of
G in d or p is the image of a vertex of G in d. We denote by PlanePoints(d) the set of points
on d.

For two points p1 = (x1, y1) and p2 = (x2, y2) in the plane, we denote the line segment
joining the points by ℓ(p1, p2). For four points, pi = (xi, yi) ∈ R2 for every 1 ≤ i ≤ 4, we
say that ℓ(p1, p2) crosses ℓ(p3, p4) if the line segments ℓ(p1, p2) and ℓ(p3, p4) cross except
at pi = (xi, yi) for every 1 ≤ i ≤ 4. Let a and b be two points in R2 and let ϵ > 0. We
denote ℓ(a, aϵ) by lineϵ(a, b), where aϵ is the point on the line ℓ(a, b) at distance ϵ from a if it
exists. For a pair of points (p1, p2), and a point p′, where p1, p2, p′ ∈ R2, we say that ℓ(p1, p2)
intersects p′ if p′ is on the line ℓ(p1, p2), including its endpoints. We use the term grid points
to refer to the infinite set of points (x, y) ∈ R2 where x, y ∈ N0. Given two distinct grid
points p1 = (x1, y1) and p2 = (x2, y2), we say that p1 < p2 if x1 < x2 or x1 = x2 and y1 < y2.

A drawn graph is a graph with a prescribed drawing. A plane graph is a drawn graph
whose prescribed drawing is planar. A drawing of a graph is called a straight-line drawing if
the edges are mapped to line segments, connecting the images of their endpoints. We define
a straight-line path (cycle) as a plane path (cycle), where the vertices are mapped to grid
points and edges are mapped to line segments connecting the images of their endpoints. We
denote by P ⊂ C the (infinite) set of straight-line paths in R2. Moreover, we alternatively
denote any path P = (v1, . . . , vk) ∈ P by the sequence (p1, . . . , pk), where pi ∈ R2 is the
image of the vertex vi in P , for every 1 ≤ i ≤ k. We define an axis-parallel path (cycle) as a
straight-line path (cycle), where every edge of the path is parallel to the X- or Y - axis. For
an axis-parallel path P = (p1, . . . , pk), we denote by |P | the (Euclidean) length of P , that is,
|P | = |p2 − p1| + |p3 − p2| + . . . + |pk − pk−1|. Next, we define a grid drawing of a graph G

as a straight-line drawing of G where the vertices are mapped to grid points and the edges
are mapped to (axis-parallel) unit length line segments (e.g., see Figure 11b):

S. Gupta, G. Sa’ar, and M. Zehavi 23:21

▶ Definition A.4 (Straight-Line Grid Drawing). Let G be a graph. A straight-line grid
drawing d of G is a straight-line drawing d of G such that (i) for every u ∈ V , d(u) is a grid
point (ii) For every {u, v}, {u′, v′} ∈ E, d({u, v}) and d({u′, v′}) are intersected in at most
one point.

▶ Definition A.5 (Grid Drawing). Let G = (V, E) be a graph. A grid drawing d of G is a
drawing d : V ∪E → N0×N0∪P such that if {u, v} ∈ E then |dx(u)−dx(v)|+|dy(u)−dy(v)| = 1.

We now extend the concept of a grid drawing to a rectilinear grid drawing, where the
edges are mapped to variable length line segments parallel to the axes (e.g., see Figure 11c):

▶ Definition A.6 (Rectilinear Grid Drawing). Let G = (V, E) be a graph. A rectilinear
grid drawing d of G is a drawing d : V ∪ E → N0 × N0 ∪ P of G, such that for every edge
{u, v} ∈ E, d({u, v}) is a line segment between d(u) and d(v) such that dx(u) = dx(v) or
dy(u) = dy(v).

Further, we extend the concept of a rectilinear grid drawing to an orthogonal grid drawing,
where the edges are mapped to straight-line paths, such that the edges of these paths are
mapped to line segments parallel to the axes (e.g., see Figure 11d):

▶ Definition A.7 (Orthogonal Grid Drawing). Let G = (V, E) be a graph. An orthogonal
grid drawing d of G is a drawing d : V ∪ E → N0 × N0 ∪ P of G, such that for every edge
{u, v} ∈ E, d({u, v}) is an axis-parallel path between d(u) and d(v).

Finally, we extend the concept of an orthogonal grid drawing to a polyline grid drawing,
where the edges are mapped to straight-line paths instead of axis-parallel paths (e.g., see
Figure 11e).

▶ Definition A.8 (Polyline Grid Drawing). Let G = (V, E) be a graph. A polyline grid
drawing d of G is a drawing d : V ∪ E → N0 × N0 ∪ P of G.

A.3 Problem Definitions
In this subsection, we give the definitions for the problems we will solve using our new
concept.

▶ Definition A.9 (Grid Recognition Problem). The Grid Recognition problem is, given
a graph G, to determine whether G has a grid drawing.

▶ Definition A.10 (Crossing Minimization Problem on Straight-Line Grid Drawings). The
Straight-line Grid Crossing Minimization problem is, given a graph G and h, w ∈ N,
to construct a straight-line grid drawing d of G (if one exists) such that: (i) d is strictly
bounded by Rh,w,(ii) d has minimum number of crossings out of all the straight-line grid
drawings of G which are strictly bounded by Rh,w. If such a drawing does not exists, return
“no-instance”.

In the Orthogonal Compaction problem we get a connected graph G. We assume to
have an order on the vertices, that is, for every u, v ∈ V such that u ̸= v, either u > v or
v < u. In addition to G, we have, for every {u, v} ∈ E where u > v, the relative position of
v compered to u, that is, the direction of the {u, v} from u to v. We denote these directions
by U, D, L and R; this stands for “up”, “down”, “left” and “right”, respectively. We assume
that there exists a planar rectilinear grid drawing of G such that for every {u, v} ∈ E, the
relative position of v compered to u is as given as input. Our goal is to find such a drawing
of minimum area. We start by defining the problem formally. For this purpose, we first have
the following definition:

IPEC 2023

23:22 Drawn Tree Decomposition: New Approach for Graph Drawing Problems

v1

v2

v3

v4

v5
v6

v7

(a)

v1

v2 v3

v4 v5

v6 v7

(b)

v1

v2 v3

v4 v5

v6v7

(c)

v1

v2 v3

v4

v6

v7

v5

(d)

v1

v2

v3

v4

v5

v6

v7

(e)

Figure 11 Different drawings (defined in Definitions A.5-A.8) of the graph G shown in (a). A
grid, a rectilinear grid, an orthogonal grid and a polyline grid drawings of G are shown in (b), (c),
(d) and (e), respectively.

▶ Definition A.11 (Drawing Respects an Edge Direction). Let G be a connected graph, let
{u, v} ∈ E such that u > v, and let dir{u,v} ∈ {U, D, L, R}. Let d be a rectilinear grid drawing
of G. We say that d respects dir{u,v} if the following conditions are satisfied
1. If dir{u,v} = U, then dx(v) = dx(u) and dy(v) > dy(u).
2. If dir{u,v} = D, then dx(v) = dx(u) and dy(v) < dy(u).
3. If dir{u,v} = L, then dy(v) = dy(u) and dx(v) < dx(u).
4. If dir{u,v} = R, then dy(v) = dy(u) and dx(v) > dx(u).

Now, we define the problem Orthogonal Compaction as follows:

▶ Definition A.12 (Orthogonal Compaction Problem). Let G be a connected graph. For
every {u, v} ∈ E let dir{u,v} ∈ {U, D, L, R}. The Orthogonal Compaction problem is to
find a planar rectilinear grid drawing d of G such that (i) for every {u, v} ∈ E, d respects
dir{u,v}, and (ii) d is strictly bounded by Rh,w such that (h − 1) · (w − 1) is minimum.

Single Machine Scheduling with Few Deadlines
Klaus Heeger #

Department of Industrial Engineering and Management, Ben-Gurion University of the Negev,
Beer-Sheva, Israel

Danny Hermelin #

Department of Industrial Engineering and Management, Ben-Gurion University of the Negev,
Beer-Sheva, Israel

Dvir Shabtay #

Department of Industrial Engineering and Management, Ben-Gurion University of the Negev,
Beer-Sheva, Israel

Abstract
We study single-machine scheduling problems with few deadlines. We focus on two classical
objectives, namely minimizing the weighted number of tardy jobs and the total weighted completion
time. For both problems, we give a pseudopolynomial-time algorithm for a constant number of
different deadlines. This algorithm is complemented with an ETH-based, almost tight lower bound.
Furthermore, we study the case where the number of jobs with a nontrivial deadline is taken as
parameter. For this case, the complexity of our two problems differ: Minimizing the total number of
tardy jobs becomes fixed-parameter tractable, while minimizing the total weighted completion time
is W[1]-hard.

2012 ACM Subject Classification Mathematics of computing → Discrete mathematics; Theory
of computation → W hierarchy; Theory of computation → Dynamic programming; Theory of
computation → Scheduling algorithms

Keywords and phrases Single-machine scheduling, weighted completion time, tardy jobs, pseudo-
polynomial algorithms, parameterized complexity

Digital Object Identifier 10.4230/LIPIcs.IPEC.2023.24

Funding Supported by the ISF, grant No. 1070/20.

1 Introduction

Already since the 1950s, scheduling has been an important area of combinatorial optimiza-
tion, with various applications coming from a broad range of areas such as manufacturing,
management, and healthcare [2, 19]. This lead to a wide variety of different scheduling
problems, depending on the targeted applications. What almost all scheduling problems have
in common is that there is a set of jobs {1, . . . , n} with different characteristics that need to
be processed on one or several machines, subject to some feasibility constraints, and with
the objective of optimizing a predefined objective function. Usually, the objective function is
based on the completion times of the jobs in the proposed solution schedule.

One very basic scheduling setting is the following: We are given a set of n jobs, all
available to be non-preemptively processed on a single machine at time zero. Each job j

has a processing time pj , a weight wj (corresponding to its importance), and a due date dj .
The jobs must be processed one after another on a single machine. In this setting, the
completion time Cj of a job j is simply the sum of processing times of all jobs scheduled
before j (including j itself). A job is tardy if its completion time is larger than its due date.
The tardiness of a job can also be expressed using the unit-penalty function Uj which is one
if job j is tardy and zero otherwise.

© Klaus Heeger, Danny Hermelin, and Dvir Shabtay;
licensed under Creative Commons License CC-BY 4.0

18th International Symposium on Parameterized and Exact Computation (IPEC 2023).
Editors: Neeldhara Misra and Magnus Wahlström; Article No. 24; pp. 24:1–24:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:heeger@post.bgu.ac.il
https://orcid.org/0000-0001-8779-0890
mailto:hermelin@bgu.ac.il
https://orcid.org/0000-0002-6379-0383
mailto:dvirs@bgu.ac.il
https://orcid.org/0000-0002-2709-599X
https://doi.org/10.4230/LIPIcs.IPEC.2023.24
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

24:2 Single Machine Scheduling with Few Deadlines

Two of the most-common objective functions in single-machine scheduling are the total
weighted completion time

∑
wjCj , and the total weighted number of tardy jobs

∑
wjUj . In

the classic 3-field notation by Graham et al. [8], these two problems are denoted by 1||
∑

wjCj

and 1||
∑

wjUj .
A less well-studied generalization of these two problems is when the jobs also have dead-

lines d1, . . . , dn. Deadlines differ from due dates in that they must be met, and so scheduling
problems with deadlines require solution schedules to have all jobs complete before their dead-
line. Adding job deadlines to 1||

∑
wjCj and 1||

∑
wjUj results in problems 1|dj |

∑
wjCj and

1|dj |
∑

wjUj . Both these problems have natural applications in practice: In the 1|dj |
∑

wjCj

problem we wish to minimize the total completion time (or equivalently average completion
time) under the additional deadline constraints, while in 1|dj |

∑
wjUj we can interpret the

weight of a job as a premium for early completion of the job (before its due date instead of
before its deadline) [9].

Note that the two problems above have quite efficient solutions when the jobs have no
deadlines. The 1||

∑
wjCj problem can be solved in O(n log n) time [22] by scheduling all jobs

according to the weighted shortest processing time (WSPT) order. The 1||
∑

wjUj problem
is weakly NP-hard [14], but it admits an O(Pn) pseudo-polynomial time algorithm [16],
where P =

∑
pj is the total sum of processing times of all input jobs, and an O(n log n)

time algorithm [18] when all jobs have unit weight (i.e. wj = 1 for any job j). Thus, it is
natural to ask whether these results can be generalized to the case where there are only a
few different deadlines among all n jobs, or when only a few jobs have nontrivial deadlines
(i.e., jobs j with deadline dj < P). This question is the starting point of this paper.

Our Contribution. We investigate the parameterized complexity of 1|dj |
∑

wjUj and
1|dj |

∑
wjCj with respect to two different parameters: The first is the number of dif-

ferent deadlines among all n jobs, and the second is the number of jobs with a nontrivial
deadline, i.e. the number of jobs j with dj < P . Note that the latter parameter upper
bounds the former. For the number of different deadlines parameter, both problems behave
similarly: They are weakly NP-hard already for two different deadlines (one of which is a
“trivial” deadline equaling the total processing time). When considering the case where all
numbers (processing times and weights) are encoded in unary, both problems are W[1]-hard
but admit XP-time algorithms.

For the number of jobs with nontrivial deadline parameter, the complexity of both
problems diverge: For 1|dj |

∑
wjCj , the hardness results for the number of different deadlines

carry over. For 1|dj |
∑

wjUj , however, there is an O(2k · P · n)-time algorithm. For the
special case of unit weights (i.e. wj = 1 for all j), this algorithm can be improved to an
O(2k · n log n)-time algorithm. We refer to Table 1 for an overview of our results.

Table 1 Overview of our results. We use n to denote the number of jobs, and P to denote the
total processing time of all jobs.

k =# different deadlines k =# jobs with deadline

1|dj |
∑

wjUj

weakly NP-hard even if k = 2 and wj = 1 (3.1) weakly NP-hard if k = 0 [14]
W[1]-hard with unary input even if wj = 1 (3.1) O(2kn log n) if wj = 1 (3.6)

P O(k)-time algorithm (3.4) O(2kP n) (3.5)

1|dj |
∑

wjCj

weakly NP-hard even if k = 2 [17]
W[1]-hard even with unary input (4.2)

P O(k)-time algorithm (4.4)

K. Heeger, D. Hermelin, and D. Shabtay 24:3

Related Work. While there are numerous papers on single-machine scheduling, rather few
consider deadlines. Regarding the first problem we study, 1|dj |

∑
wjUj , Lawler [15] showed

that 1|dj |
∑

Uj (the unit weight special case of 1|dj |
∑

wjUj) is weakly NP-hard. This result
was strengthened by Yuan [24] who showed that 1|dj |

∑
Uj is strongly NP-hard. Huo et

al. [12] showed that 1|dj |
∑

Uj can be solved in polynomial time if either di ≤ dj implies
di ≤ dj and pi ≤ pj , or if pi ≤ pj implies di − pi ≥ dj − pj . The running times of some
of these algorithms were improved later [11]. The problem 1|dj |

∑
wjUj was also studied

from a practical point of view: Hariri and Potts [9] designed a branch-and-bound based
algorithm for it, while Baptiste et al. [1] designed an ILP-formulation with n variables and
2n constraints for the problem.

Concerning the second problem we study, 1|dj |
∑

wjCj , Lenstra et al. [17] proved that the
problem is weakly NP-hard even if only one job has a nontrivial deadline. A related problem
is 1|rj , dj , pmtn|

∑
Cj . Here, the jobs additionally have release dates (that is, a job cannot be

scheduled before its release date) and preemption is allowed (that is, it is possibly to process
a job j partially, then schedule other jobs, and later continue processing job j). Further,
all jobs have weight 1. Wan et al. [23] showed weak NP-hardness of 1|rj , dj , pmtn|

∑
Cj .

Recently, strong NP-hardness was shown [4]. In case of “agreeable” processing times and
deadlines (that is, whenever the deadline of job j is larger than the one of job j′, then also
the processing time of j is larger than the processing time of j′), the problem is solvable in
polynomial time [10].

Chen and Yuan [3] studied the problem of minimizing the total tardiness
∑

Tj on a
single machine with deadlines (the tardiness of a job j is Tj = max{0, Cj − dj}). Chen
and Yuan [3] showed that this problem (denoted 1|dj |

∑
Tj) is strongly NP-hard. A similar

problem is that of minimizing the total late work
∑

Yj of all jobs, where the late work of a
job j is Yj = min{pj , Tj}. Chen et al. [5] showed 1|dj |

∑
Yj is strongly NP-hard. However,

if all jobs share a common due date, then the problem is weakly NP-hard and admits a
pseudopolynomial-time algorithm. Chen et al. also showed that a few special cases of the
problem become polynomial-time solvable.

2 Preliminaries

We consider non-preemptive scheduling problems on a single machine. Here, the input
consists of n jobs {1, . . . , n} which are all available to be processed at time zero. We
denote by [n] := {1, 2, . . . , n}. Each job j is characterized by its processing time pj ∈ N, its
weight wj ∈ N, and its deadline dj ∈ N. In one of the problems we consider below, each job j

will also have a due date dj ∈ N. We assume without loss of generality that dj ≤ dj holds
for every job j ∈ [n]. We denote the total processing time of all jobs by P =

∑
j∈[n] pj , and

their total weight by W =
∑

j∈[n] wj .
A schedule is a permutation σ : [n] → [n] of the jobs. Given a schedule σ, the completion

time Cj(σ) of job j is Cj(σ) :=
∑

i∈[n]:σ(i)≤σ(j) pi; that is, it is the total processing times of
all jobs preceding j in the schedule (including j itself). A schedule σ is feasible if Cj(σ) ≤ dj

for all j ∈ [n]. A job j is early in σ if Cj(σ) ≤ dj , and otherwise it is tardy in σ. We use U(σ)
to denote the set of all jobs that are tardy in σ. We call a deadline dj trivial if dj ≥ P (that
is, any schedule fulfills this deadline). We assume without loss of generality that dj = P is
the only occurring trivial deadline.

IPEC 2023

24:4 Single Machine Scheduling with Few Deadlines

We focus on instances with few different deadlines. Thus, we set d
(1) to be the smallest

appearing deadline, d
(2) to be the second-smallest appearing deadline (different from d

(1)),
and so on. Note that the largest deadline d

(k) will always be P . For each i ∈ [k], we denote
by J (i) the set of jobs with deadline d

(i), and by P (i) the total processing time of all jobs
in J (i).

We study two problems in this paper that differ according to the objective function used
to evaluate feasible schedules:

1|dj |
∑

wjUj

Input: A set of n jobs with due dates, a number b.
Question: Is there a feasible schedule σ such that

∑
j∈U(σ) wj ≤ b?

1|dj |
∑

wjCj

Input: A set of n jobs, a number b.
Question: Is there a feasible schedule σ such that

∑
j∈[n] wjCj(σ) ≤ b?

The problem names are derived from the classical 3-field notation by Graham et al. [8],
where the first field encodes the machine setting (in our case, “1” represents a single machine),
the second field contains constraints (in our setting, dj indicates the existence of deadlines),
and the third field containing the objective function (in our case either the weighted completion
time

∑
wjCj or the weighted number of late jobs

∑
wjUj).

3 The 1|dj| ∑
wjUj problem

In this section, we study the problem of minimizing the weighted number of tardy jobs.
We start by showing some hardness results for 1|dj |

∑
wjUj in Section 3.1. Afterwards,

we give a pseudopolynomial-time algorithm for constant number of different deadlines in
Section 3.2. Finally, in Section 3.3, we design efficient algorithms for the case of few jobs
having a nontrivial deadline.

3.1 Hardness results
Recently, Yuan [24] showed that 1|dj |

∑
Uj is strongly NP-hard via a reduction from 3-

Partition. This NP-hard problem is a special case of the following Multiway Number
Partitioning partition problem:

Multiway Number Partitioning
Input: Integers m and k, and t := m · k numbers a1, . . . , at.
Question: Is there a partition (A1, . . . , Ak) of {a1, . . . , at} such that |Ai| = m for each

i ∈ [k] and
∑

a∈Ai
a =

∑
a∈Aj

a for all i, j ∈ [k]?

Observe that Multiway Number Partitioning with k = 2 is known as the weakly NP-hard
Equal Cardinality Partition problem [7]. Furthermore, the classical Bin Packing
problem naturally reduces to Multiway Number Partitioning by adding items of zero
size in order to obtain an instance with t = m · k numbers.

Yuan [24] presented a reduction from Multiway Number Partitioning with m = 3
to 1|dj |

∑
Uj . His reduction uses in its construction the sum of all input numbers B :=∑t

ℓ=1 aℓ and a sufficiently large number M = 3
2 t(t + 1)B + 1. It creates a job (i, j) for

each i ∈ [k] and j ∈ [t] with processing time pi,j = M2 + i · (M + aj). For each i ∈ [k],
the jobs (i, j) share the same deadline di,j = d

(i) =
∑i−1

ℓ=1 P (ℓ) + t ·
∑m

ℓ=1 P (ℓ), where

K. Heeger, D. Hermelin, and D. Shabtay 24:5

P (ℓ) = 3M2 + 3ℓM + 3ℓB. Furthermore, for each j ∈ [t], the jobs (i, j) share the same due
date di,j = d(j) = j · M2 + 3

2 Mt(t + 1)B. Yuan [24] proved that if the input Multiway
Number Partitioning instance (3, k, a1, . . . , at) is a yes-instance then the constructed job
set has a feasible schedule with at most b = 3t2 − t tardy jobs.

Note that the reduction from Multiway Number Partitioning of Yuan [24] described
above works for any value of m ≥ 3 and k ≥ 2. Setting m = t/2 and k = 2 results in a
reduction from Equal Cardinality Partition to 1|dj |

∑
Uj with two different deadlines.

Using arbitrary m and k results in a reduction from Bin Packing with k bins to 1|dj |
∑

Uj

with k different deadlines. It is known that Bin Packing with unary encoded numbers is
W[1]-hard parameterized by the number k of bins, and assuming ETH it cannot be solved in
f(k) · no(k/ log k) time [13]. Thus, we directly get the following hardness result for 1|dj |

∑
Uj :

▶ Theorem 3.1. Let k denote the number of different deadlines in a 1|dj |
∑

Uj instance.
Then the 1|dj |

∑
Uj problem is

weakly NP-hard even when k = 2,
W[1]-hard with respect to k even when all numbers are encoded in unary, and
admits no f(k) · P o(k/ log k)-time algorithm assuming ETH.

3.2 Constant number of deadlines
Let k = |{dj : 1 ≤ j ≤ n}| denote the number of different deadlines in the job instance.
By Theorem 3.1, we know that 1|dj |

∑
wjUj is W[1]-hard with respect to k even if wj = 1

for each job j, and all processing times are encoded in unary. Complementing this result,
we will show that if k = O(1), then we can solve 1|dj |

∑
wjUj in pseudo-polynomial time.

Throughout the subsection we will assume that the input jobs are ordered by ascending due
dates, i.e. d1 ≤ · · · ≤ dn. Furthermore, we denote by J (i) the set of jobs with deadline d

(i)

and by P (i) the total processing time of all jobs from J (i).
Our algorithm for 1|dj |

∑
wjUj is based on dynamic programming. Our algorithm

processes the jobs from job 1 to n (i.e. according to increasing due date), and creates a table
τj for each j ∈ [n]. The table τj is associated with the job set {1, . . . , j}, and it contains
an entry τj [x1, . . . , xk] for each (x1, . . . , xk) ∈ {0, . . . , P (1)} × · · · × {0, . . . , P (k)}. The entry
τj [x1, . . . , xk] shall equal υj [x1, . . . , xk], where we define υj [x1, . . . , xk] to be the maximum
number w∗ such that there is a feasible schedule of all n jobs fulfilling that
1. the set S of early jobs from {1, . . . , j} has weight w∗, and
2. for each i ∈ [k], the total processing time of early jobs from S ∩ J (i) equals xi.
We stress that all considered schedules schedule all n jobs, even if they correspond to
some entry τj [x1, . . . , xk] with j < n. The minimum value W − υn[x1, . . . , xk] over all
(x1, . . . , xk) ∈ {0, . . . , P (1)} × · · · × {0, . . . , P (k)} is the minimum weighted number of tardy
jobs of any feasible schedule for our instance. We call a feasible schedule fulfilling the second
condition above a (j; x1, . . . , xk)-compatible schedule.

Our dynamic program needs to be able to compute υj [x1, . . . , xk], given υj−1[y1, . . . , yk]
for all y1, . . . , yk. There are two cases: First, job j is late in a schedule witnessing the
value of υj [x1, . . . , xk]. In this case, we have υj [x1, . . . , xk] = υj−1[x1, . . . , xk]. Second,
job j is early in a schedule witnessing the value of υj [x1, . . . , xk]. In this case, we have
υj [x1, . . . , xk] = wj + υj−1[x1, . . . , xi−1, xi − pj , xi+1, . . . , xk] where i ∈ [k] such that the
deadline of j is d

(i). However, we do not have υj [x1, . . . , xk] = max{υj−1[x1, . . . , xk], wj +
υj−1[x1, . . . , xi−1, xi −pj , xi+1, . . . , xk]} because it is not always possible to modify a schedule
corresponding to υj−1[x1, . . . , xi−1, xi −pj , xi+1, . . . , xk] in such a way that also job j is early.

IPEC 2023

24:6 Single Machine Scheduling with Few Deadlines

This is the major difficulty in the design of the dynamic program: Finding a criterion where
we can modify the schedule corresponding to τj−1[x1, . . . , xi−1, xi − pj , xi+1, . . . , xk] so we
can additionally schedule job j early.

To derive such a criterion, we first observe that if we knew the set of early jobs (from [n],
not only from [j]), then we can easily compute an optimal schedule: As we have a strict
upper bound for the completion time of each job (either its due date if the job is early, or
its deadline if the job is late), it is optimal to schedule the jobs ordered by this strict upper
bound.

▶ Observation 3.2. For a given subset S ⊆ {1, . . . , n} of jobs, there is a feasible schedule
in which each job from S is early if and only if ordering the jobs according to increasing
modified due dates

d∗
j =

{
dj if j ∈ S

dj if j /∈ S

results in a schedule where all jobs are early.

Using Observation 3.2, we now basically know how scheduling job j as well as a given
set S ⊆ [j − 1] of jobs early looks like: Before j, the early jobs from [j − 1] and all jobs whose
deadline is smaller than dj are scheduled. After j, all jobs with deadline larger than dj (and
which are not contained in S) are scheduled, according to increasing deadline. This implies
the following criterion on when a schedule witnessing the value of υj [x1, . . . , xk] can also
additionally schedule j early.

▶ Lemma 3.3. Let j ∈ [n] be a job with deadline d
(i1) and x1, . . . , xk ∈ {0, 1, . . . , P }. Let

i0 ∈ [k] be minimum such that dj ≤ d
(i0). Let σj−1 be a (j − 1; x1, . . . , xk)-compatible

schedule where S ⊆ [j − 1] is the set of early jobs from [j − 1]. Then there exists a
(j; x1, . . . , xi1−1, xi1 + pj , xi1+1, . . . , xk)-compatible schedule σj where S ∪ {j} is early if and
only if
1.

∑i0−1
ℓ=1 P (ℓ) +

∑k
ℓ=i0

xℓ + pj ≤ dj, and
2. for each i ≥ i0, we have

∑i
ℓ=1 P (ℓ) +

∑k
ℓ=i+1 xℓ ≤ d

(i).

Proof. (⇐=:) We begin with the reverse direction. Assume that there is a
(j; x1, . . . , xi1−1, xi1 + pj , xi1+1, . . . , xk)-compatible schedule σj where S ∪ {j} is early. By
Observation 3.2, we may assume that σ schedules the jobs in non-decreasing order of modified
due dates d∗

j (which are set according to the early set of jobs S ∪ {j}).
We first show Item 1. Before job j, all jobs with deadline smaller than dj and all early

jobs with due date smaller than dj are scheduled. The processing time of jobs with deadline
smaller than dj is precisely

∑i0−1
ℓ=1 P (ℓ). All jobs from S have due date at most dj (as we

ordered the jobs according to increasing due date). Thus, the total processing time of all
early jobs with due date at most dj but deadline at least dj equals pj +

∑k
ℓ=i0

xℓ. As j is
early, we have

∑i0−1
ℓ=1 P (ℓ) + pj +

∑k
ℓ=i0

xℓ ≤ dj , i.e. Item 1 holds.
We continue by showing Item 2, so fix i ≥ i0. The last job with deadline d

(i) is processed
after all jobs with deadline at most d

(i), as well as all early jobs with due date at most d
(i).

The processing time of jobs with deadline at most d
(i) is

∑i
ℓ=1 P (ℓ). Each job j′ ∈ S ∪ {j}

satisfies dj′ ≤ dj ≤ d
(i0) ≤ d

(i). Thus, it follows that the processing time of the early jobs
with due date at most d

(i) and deadline larger than d
(i) equals

∑k
ℓ=i+1 xℓ. Because σ is

feasible, it follows that
∑i

ℓ=1 P (ℓ) +
∑k

ℓ=i+1 xℓ ≤ d
(i), i.e. Item 2 holds.

K. Heeger, D. Hermelin, and D. Shabtay 24:7

(=⇒:) It remains to show the forward direction. We construct a schedule σj with the
jobs from S as well as j being early as follows: We start with jobs from S and the jobs
with deadline at most d

(i0−1) (in the same relative order as they are in σ). Afterwards, we
schedule job j, followed by the remaining jobs sorted according to increasing deadline.

First, we show that σj is a feasible schedule. Note that for each job from S as well as the
jobs with deadline at most d

(i0−1), their completion time can only decrease. Consequently,
the feasibility of σ implies that these jobs are completed before their deadline. Next, consider
a job j′ with deadline d

(i) for some i ≥ i0. Before j′, all jobs with deadline d
(ℓ) with ℓ < i,

potentially other jobs with deadline d
(i), and all early jobs from 1, . . . , j are scheduled. Thus,

job j′ is completed at time
∑i

ℓ=1 P (i) +
∑k

ℓ=i+1 xℓ ≤ d
(i) where the inequality holds by

Item 2. This implies that σj is a feasible schedule.
Next, we show that S ∪ {j} are early. All jobs from S are early as their completion time

can only decrease. Job j is completed at time
∑i0−1

ℓ=1 P (ℓ) +
∑k

ℓ=i0
xℓ + pj ≤ dj by Item 1.

Therefore, job j is early. ◀

Note that the criterion from Lemma 3.3 is independent from the set of early jobs S,
so indeed the dynamic program does not need to store the early jobs. We finally give the
dynamic program and show its correctness in the theorem below.

▶ Theorem 3.4. 1|dj |
∑

wjUj can be solved in O(P k · k · n) time, where k is the number of
different deadlines.

Proof. We give the following dynamic program computing a solution. First, we order
the jobs according to ascending due date (we assume that d1 ≤ d2 ≤ . . . ≤ dn). For
each j ∈ [n], the dynamic programming table τj contains an entry τj [x1, . . . , xk] for each
(x1, . . . , xk) ∈ {0, . . . , P (1)}×· · ·×{0, . . . , P (k)}. This entry shall equal υj [x1, . . . , xk]; that is,
the maximum number w such that there exists a (j; x1, . . . , xk)-compatible schedule σ which
schedules a subset S ⊆ [j] of total weight w early; if no (j; x1, . . . , xk)-compatible schedule
exists, then τj [x1, . . . , xk] = −∞. The maximum of τn[x1, . . . , xk] over all (x1, . . . , xk) ∈
{0, . . . , P (1)} × · · · × {0, . . . , P (k)} will then yield the value of an optimal schedule.

Initialization. We check whether there is a feasible schedule (this can be done e.g. using
Observation 3.2). If so, then we set τ0[0, . . . , 0] := 0 while otherwise we set τ0[0, . . . , 0] := −∞.
For all (x1, . . . , xk) ̸= (0, . . . , 0), we set τ0[x1, . . . , xk] := −∞.

Update. Let j ∈ [n] and assume that job j has deadline d
(i). Fix (x1, . . . , xk) ∈

{0, . . . , P (1)} × · · · × {0, . . . , P (k)}. First, we check whether Items 1 and 2 of Lemma 3.3 are
satisfied. If yes, then we set

τj [x1, . . . , xk] := max
{

τj−1[x1, . . . , xk], wj + τj−1[x1, . . . , xi−1, xi − pj , xi+1, . . . , xk]
}

.

Otherwise, we set τj [x1, . . . , xk] := τj−1[x1, . . . , xk].

Optimal Solution. The minimum weighted number of tardy jobs in an optimal schedule is
given by taking the minimum of W − τn[x1, . . . , xk] over all (x1, . . . , xk) ∈ {0, . . . , P (1)} ×
· · · × {0, . . . , P (k)}. An optimal schedule can be found by using backtracking to compute the
set of early jobs and then applying Observation 3.2.

IPEC 2023

24:8 Single Machine Scheduling with Few Deadlines

Correctness. Clearly, τ0[x1, . . . , xk] = υ0[x1, . . . , xk] for every (x1, . . . , xk) ∈ {0, . . . , P (1)}×
· · · × {0, . . . , P (k)}. Consider τj [x1, . . . , xk], where job j has deadline d

(i). First, we show
τj [x1, . . . , xk] ≥ υj [x1, . . . , xk]. Let σ be a schedule witnessing the value of τj [x1, . . . , xk]
and S the corresponding set of early jobs from [j]. If j /∈ S, then we have υj [x1, . . . , xk] =
υj−1[x1, . . . , xk] = τj−1[x1, . . . , xk] ≤ τj [x1, . . . , xk]. Otherwise, we have υj [x1, . . . , xk] =
wj + υj−1[x1, . . . , xi−1, xi − pj , xi+1, . . . , xk] = wj + τj−1[x1, . . . , xi−1, xi − pj , xi+1, . . . , xk]
and Lemma 3.3 implies that Items 1 and 2 of Lemma 3.3 are satisfied. Thus, τj [x1, . . . , xk] ≥
wj + τj−1[x1, . . . , xk] = υj [x1, . . . , xk].

We finish the proof of correctness by showing that τj [x1, . . . , xk] ≤ υj [x1, . . . , xk].
If τj [x1, . . . , xk] = −∞, then there is nothing to show, so assume τj [x1, . . . , xk] >

−∞. If we have τj [x1, . . . , xk] = τj−1[x1, . . . , xk], then we have τj [x1, . . . , xk] =
τj−1[x1, . . . , xk] = υj−1[x1, . . . , xk] ≤ υj [x1, . . . , xk]. So assume that we set τj [x1, . . . , xk] =
wj +τj−1[x1, . . . , xi−1, xi −pj , xi+1, . . . , xk]. This implies that Items 1 and 2 from Lemma 3.3
are satisfied. Because τj−1[x1, . . . , xi−1, xi − pj , xi+1, . . . , xk] = υj−1[x1, . . . , xi−1, xi −
pj , xi+1, . . . , xk] ̸= −∞, Lemma 3.3 implies that we can take the schedule correspond-
ing to υj−1[x1, . . . , xi−1, xi − pj , xi+1, . . . , xk] and additionally schedule job j early. Thus,
we have υj [x1, . . . , xk] ≥ wj + υj−1[x1, . . . , xi−1, xi − pj , xi+1, . . . , xk] = τj [x1, . . . , xk].

Running Time. The dynamic programming table contains P k · n entries, each of which can
be computed in O(k) time. The claimed running time follows. ◀

We remark that the ETH-based lower bound from Theorem 3.1 implies that the exponent
is optimal up to a factor of O(log k).

3.3 Few jobs with nontrivial deadlines
Having the intractability results from Theorem 3.1 in mind, we now consider a larger
parameter, namely the number of jobs with a nontrivial deadline. Throughout this section,
we denote the set of jobs having a nontrivial deadline by J , and we set k = |J |. We show
that 1|dj |

∑
wjUj can be solved in O(2k · P · n) time.

The basic idea is that for each job with a deadline, we can guess whether the job is early
or tardy. Then, we adapt the due dates of these jobs according to Observation 3.2, resulting
in modified due dates d∗

j . Finally, we significantly increase the weight of each job in J and
then call a known algorithm for 1||

∑
wjUj with respect to the modified due dates d∗

j and
weights w∗

j .

▶ Theorem 3.5. 1|dj |
∑

wjUj can be solved in O(2k · P · n) time, where k is the number of
jobs with nontrivial deadline.

Proof. Let J be the set of jobs with a nontrivial deadline. First, we guess the subset of
tardy jobs U ⊆ J with nontrivial deadlines. We then set modified deadlines for all jobs
according to Observation 3.2 and using the set S = J \ U as the set of early jobs. Thus, we
have d∗

j = dj if j ∈ S, and d∗
j = dj if j ∈ U . Moreover, we set w∗

j = W + 1 for all jobs j ∈ J ,
and w∗

j = wj for all other jobs j ∈ {1, . . . , n} \ J .
For these modified due dates d∗

j and weights w∗
j , we run the O(Pn)-time algorithm for

1||
∑

wjUj [16]. If the algorithm returns a schedule σ where the total weight of tardy jobs is
at most W , then we store this schedule as a potential solution for the unmodified instance.
Otherwise, we conclude that there is no feasible schedule with respect to our guess of the
tardy jobs U ⊆ J . Our algorithm finally outputs the potential solution with the minimum
weight of tardy jobs.

K. Heeger, D. Hermelin, and D. Shabtay 24:9

By Observation 3.2, the set of feasible schedules where each job from J \ U is early is the
set of schedules where each job from J is early with respect to the modified due dates. This
corresponds to schedules where the total weight of tardy jobs with respect to the modified
weights is at most W . Thus, the potential solution corresponding to the current guess U ⊆ J

is a schedule minimizing the total weighted number of tardy jobs under the additional
constraint that precisely the U jobs of J are tardy. It follows that for the guess U = U(σ∗)
for some optimal schedule σ∗, the algorithm returns an optimal schedule. ◀

For the unweighted case (i.e., wj = 1 for each j ∈ J), we can get an FPT-algorithm (even
for binary encoded numbers) by following the same approach of guessing which of the jobs
with nontrivial deadlines are tardy.

▶ Theorem 3.6. 1|dj |
∑

Uj can be solved in O(2k · n log n) time where k is the number of
jobs with a nontrivial deadline.

Proof. Let J be the set of jobs with a nontrivial deadline. First, we guess the subset S ⊆ J

of early jobs with nontrivial deadlines. Observation 3.2 now reduces 1|dj |
∑

Uj together with
the guess S to a variation of 1||

∑
Uj where we are additionally given a set J of jobs which

have to be early. This problem is known to be solvable in O(n log n) time [21]. As there
are 2k possible guesses for S, the running time follows. ◀

4 The 1|dj| ∑
wjCj problem

We next examine the objective of minimizing the total weighted completion time. We remark
that the unweighted variant of 1|dj |

∑
wjCj , the 1|dj |

∑
Cj problem, is solvable in O(n log n)

time [22]. Weak NP-hardness of 1|dj |
∑

wjCj was shown by Lenstra et al. [17], using only
a single job with a nontrivial deadline. Therefore, unless P=NP, there is no XP-algorithm
for 1|dj |

∑
wjCj with binary encoding parameterized by the number of jobs with nontrivial

deadlines.
Below we strengthen Lenstra’s reduction, and show that 1|dj |

∑
wjCj is W[1]-hard when

parameterized by the number of jobs with nontrivial deadlines even if all numbers are encoded
in unary. Note that this implies also W[1]-hardness for the problem when the number of
different deadlines is taken as a parameter. To compliment our hardness result, we present
algorithm running in O(k · n · P 2k−2) time, where k is the number of different deadlines.

4.1 Hardness
We adapt the reduction from Lenstra et al. [17] to show strong NP-hardness and W[1]-
hardness parameterized by the number of jobs with nontrivial deadline (also for unary
encoding). We will reduce from Bin Packing restricted to instances where each bin must
be filled exactly.

Exact Bin Packing
Input: t items with sizes a1, . . . , at, a bin size B, and the number K of bins.
Question: Is there an assignment of the items to the bins such that each bin contains

items of total size exactly B?

Exact Bin Packing is strongly NP-hard [6] and W[1]-hard parameterized by the number
of bins, even if all numbers are encoded in unary [13]. Let (a1, . . . , at; B; K) be an instance
of Exact Bin Packing. We create an instance of 1|dj |

∑
wjCj with t + K − 1 jobs as

follows:

IPEC 2023

24:10 Single Machine Scheduling with Few Deadlines

For j ∈ [t], job j has processing time and weight pj = aj = wj and trivial deadline
dj = K · B + K − 1.
For ℓ ∈ [K − 1], job t + ℓ has processing time pt+ℓ = 1, weight wt+ℓ = 0, and deadline
dt+ℓ = ℓ · (B + 1).
We set the bound on the total weighted completion time to

b :=
∑

i1,i2∈[t]

ai1ai2 +
K−1∑
ℓ=1

(K − ℓ) · B.

Note that the total processing time of all jobs is K · B + K − 1 = dj for all j ∈ [t], so
only jobs t + 1, . . . , t + K − 1 have a nontrivial deadline. The idea behind the reduction
is as follows: Because wj = pj for all j ∈ [t], the relative order of jobs j1 and j2 does not
matter: if j1 is before j2, then this contributes wj2 · pj1 = aj1 · aj2 to the total completion
time (as this increases the completion time of j2 by pj1), while otherwise this contributes
wj1 · pj2 = aj1 · aj2 to the total processing time. Consequently, the total completion time
of a schedule only depends on the completion times of the jobs t + ℓ for ℓ ∈ [K − 1]. As
their weight is 0 but they have nonzero processing time, they should be scheduled as late as
possible (since they only increase the processing times of other jobs), i.e., directly before their
deadline. In any such schedule, the processing time of the jobs between t + ℓ and t + ℓ + 1
equals dt+ℓ+1 − dt+ℓ − pt+ℓ+1 = B, implying a solution to the Exact Bin Packing instance.

▶ Lemma 4.1. The t items can be packed into K bins iff the t + K + 1 jobs constructed have
a feasible schedule with at most b total weighted completion time.

Proof. (=⇒): Assume that there is a solution to the Exact Bin Packing instance and
that the set of items contained in ℓ-th bin is Aℓ. We denote the set of jobs corresponding to
the items from Aℓ by Jℓ, i.e. Jℓ := {j : aj ∈ Aℓ}. We construct a schedule σ as follows: We
start with the jobs from J1 in arbitrary order, followed by job t + 1. Afterwards, we schedule
the jobs from J2 followed by t + 2. We continue scheduling Jℓ followed by job t + ℓ until
we schedule job t + K − 1. Finally, we schedule all jobs from JK in arbitrary order. This
finishes the construction of σ. It remains to show that σ is feasible and has total weighted
completion time at most b.

We start with the feasibility of σ. The only jobs with nontrivial deadline are t + ℓ for
ℓ ∈ [K −1]. Job t+ℓ is completed after the jobs from A1 ∪A2 ∪ . . .∪Aℓ and jobs t+1, . . . , t+ℓ.
The processing time of jobs t + 1, . . . , t + ℓ is ℓ. Since

∑
a∈Ai

a = B, the processing time of
jobs from A1 ∪ . . . Aℓ is ℓ · B. Thus, t + ℓ is completed at time ℓ + ℓ · B = dt+ℓ. Consequently,
σ is feasible.

We continue by showing that the weighted completion time of σ is at most b. In order to
analyze the total completion time, we split it into three parts: First, jobs t1, . . . , t + K − 1
have weight 0 and thus their weighted completion time is 0. Second, we consider the weighted
completion time caused by some job j being scheduled after some job t + ℓ for j ∈ [t]
and ℓ ∈ [K − 1]. The jobs scheduled after t + ℓ are Jℓ+1 ∪ Jℓ+2 ∪ . . . ∪ JK as well as
t + ℓ + 1, . . . , t + K − 1. Thus, the weight of all jobs scheduled after t + ℓ is

K∑
i=ℓ+1

∑
j∈Ji

wj =
K∑

i=ℓ+1

∑
a∈Ai

a =
K∑

i=ℓ+1
B = (K − ℓ) · B.

Finally, we consider the weighted completion time caused by some job j1 being scheduled
before some job j2 for j1, j2 ∈ [t]. For each j1, j2 ∈ [t], job j1 is either scheduled before j2,

K. Heeger, D. Hermelin, and D. Shabtay 24:11

job j2 is scheduled before j1, or j1 = j2. In all cases, this contributes aj1 · aj2 = wj1 · pj2 =
wj2 · pj1 to the total weighted completion time. Summing all three parts together, the total
weighted completion time is

K−1∑
ℓ=1

(K − ℓ) · B +
∑

j1,j2∈[t]

aj1aj2 = b.

(⇐=): In the converse direction, assume that there is a feasible schedule σ with total
weighted completion time at most b. As argued in the forward direction, for each j1, j2 ∈ [t]
there is a contribution of aj1 · aj2 to the total weighted completion time. We may assume
without loss of generality that σ schedules job t + ℓ before job t + ℓ′ for all ℓ < ℓ′ as jobs
t + ℓ and t + ℓ′ have the same weight and processing time, but dt+ℓ < dt+ℓ′ .

Job t + ℓ contributes 1 to the completion time of all jobs scheduled after t + ℓ. Let J>t+ℓ

be the set of jobs from [t] which are scheduled after t + ℓ, and let J t+ℓ be the jobs from [t]
which are scheduled before t + ℓ. The total processing time of J t+ℓ cannot exceed ℓ · B as
dt+ℓ = ℓ · (B + 1), and jobs t + 1, . . . , t + ℓ − 1 are scheduled before t + ℓ. Consequently, we
have ∑

j∈J>t+ℓ

wj =
∑

j∈J>t+ℓ

aj =
∑
j∈[t]

aj −
∑

j∈[t]\J>t+ℓ

aj = K · B −
∑

j∈J<t+ℓ

pj ≥ K · B − ℓ · B

where equality holds if and only if job t + ℓ is completed precisely at time dt+ℓ. Because
b =

∑
i1,i2∈[t] ai1ai2 +

∑K−1
i=ℓ (K − ℓ) · B, this implies that each job t + ℓ is completed precisely

at time dt+ℓ. Thus, between jobs t + ℓ and t + ℓ + 1, jobs of processing time exactly B are
scheduled.

Consequently, we construct a solution to the Bin Packing instance as follows: If job j is
scheduled after t + ℓ − 1 but before t + ℓ for some ℓ ∈ {2, 3, . . . , K − 1}, then we assign aj to
the ℓ-th bin. If j is scheduled before t + 1, then we assign aj to the first bin. If j is scheduled
after t + K − 1, then we assign aj to the K-th bin. Thus, the t items can all be packed into
K bins of size B each. ◀

Recall that Exact Bin Packing is strongly NP-hard, W[1]-hard when parameterized
by K, and does not admit an f(K) · no(K/ log K)-time algorithm assuming ETH even if all
numbers are encoded in unary [13]. Thus, as the construction above constructs K − 1 jobs
with nontrivial deadlines, we get the following Theorem directly from Lemma 4.1:

▶ Theorem 4.2. Let k denote the number of jobs with nontrivial deadline in a 1|dj |
∑

wjCj

instance. Then the 1|dj |
∑

wjCj problem
1. is strongly NP-hard,
2. is W[1]-hard parameterized by k even when all numbers are encoded in unary, and
3. admits no f(k) · P o(k/ log k)-time algorithm assuming ETH.

4.2 Constant number of deadlines
We complement the W[1]-hardness in case of unary encoding shown in the previous subsection
by presenting a pseudo-polynomial time algorithm for a constant number of different deadlines.
Similar to Section 3.2, the first step of the dynamic program consists of sorting the jobs in a
favorable manner. Further, the dynamic program contains a table τj for each j ∈ [n], and
these tables contain entries τj [x1, . . . , xk] where xi encodes the total processing time of the
jobs scheduled between di−1 and di (where d0 := 0). However, in contrast to Section 3.2,

IPEC 2023

24:12 Single Machine Scheduling with Few Deadlines

a schedule corresponding to τj [x1, . . . , xk] now only schedules jobs 1, . . . , j instead of all
jobs, and it may be that the schedule cannot be extended to a feasible schedule for all jobs.
Furthermore, the xi now measure the processing times of jobs scheduled between the (i−1)th
and ith deadline. Another difference is that we “guess” certain characteristics of an optimal
schedule and adapt the instance to these characteristics before starting the dynamic program.

Our dynamic programming processes the jobs from 1, . . . , n, and computes a table τj

for each j ∈ [n]. This table has an entry τj [x1, . . . , xk] which stores the minimum weighted
completion time of a schedule of jobs {1, . . . , j} such that
1. the schedule is feasible for 1, . . . , j, i.e. each job from 1, . . . , j is completed not after its

deadline, and
2. the total processing time of jobs being completed between d

(i−1) and d
(i) equals xi, for

every i ∈ [k] (where we set d
(0) := 0).

We call a schedule fulfilling these two conditions (j; x1, . . . , xk)-obeying ((j; x1, . . . , xk)-
obeying is the counterpart to (j; x1, . . . , xk)-compatible from Section 3.2 in the sense that it
determines whether a schedule fulfills the conditions for τj [x1, . . . , xk]).

To compute the above dynamic program, we need to be able to, given an oracle which
tells us the set Si of jobs being completed between d

(i−1) and d
(i) for each i ∈ [k], find

an optimal schedule. This can be done easily: As the relative order of the jobs from Si

does not influence the completion times of jobs from Sℓ for i ≠ ℓ, we can schedule the jobs
from Si independently from the rest. In this subinstance consisting of the jobs from Si,
the deadlines of jobs from Si are trivial, and so we can use the structure of an optimal
schedule for 1||

∑
wjCj : An optimal schedule for 1||

∑
wjCj schedules the jobs according

to WSPT [22], that is, according to non-decreasing ratio pj/wj . Thus, we want to schedule
each set Si according to WSPT. We formalize this argument in the following lemma:

▶ Lemma 4.3. Let σ be an optimal schedule for a 1|dj |
∑

wjCj instance. For i ∈ [k], let Si

be the set of jobs which are completed after d
(i−1) but not later than d

(i) (using d
(0) := 0).

Then the jobs from Si are ordered according to WSPT in σ.

Proof. Assume towards a contradiction that they are not ordered according to WSPT. Then
there is a job j1 ∈ Si directly followed (in σ) by a job j2 ∈ Si with pj1/wj1 > pj2/wj2 . We
claim that the schedule σ2,1 arising from σ by exchanging jobs j1 and j2 is a feasible schedule
with smaller total weighted completion time, contradicting the optimality of σ. First, we
show the feasibility of σ2,1. All jobs but j1 and j2 are completed at the same time and
thus are completed by their deadline by the feasibility of σ. For jobs j1 and j2, we have
min{dj1 , dj2} ≥ d

(i) as σ was a feasible schedule. Further, as j1 and j2 are contained in Si,
both jobs are completed not later than d

(i) in both σ and σ2,1. Thus, σ2,1 is feasible. It
remains to consider the total weighted completion time of σ2,1. All jobs except for j1 and j2
are completed at the same time and therefore have the same contribution to the weighted
completion time. Let t be the starting time of job j1 in σ. The weighted completion time
of j1 and j2 in σ is C := wj1 · (t + pj1) + wj2(t + pj1 + pj2), while the weighted completion
time of j1 and j2 in σ2,1 is C2,1 := wj2 · (t + pj2) + wj1(t + pj2 + pj1). Thus, we have
C − C2,1 = wj2pj1 − wj1pj2 > 0 using wj1/pj1 < wj2/pj2 for the inequality. Therefore, σ2,1
has a smaller total weighted completion time than σ, contradicting the optimality of σ. ◀

Using Lemma 4.3, the basic idea of the dynamic program is the following: We order
the jobs according to WSPT, i.e. pj/wj ≤ pj+1/wj+1 for all j ∈ {1, . . . , n − 1}. For
each i ∈ [k −1], we guess when the first job which is completed after d

(i) starts (there are only
P k−1 possible guesses). For the sake of simplicity, assume that for each i ∈ [k − 1] the guess

K. Heeger, D. Hermelin, and D. Shabtay 24:13

is d
(i), i.e. for each i ∈ [k − 1] there is one job starting at time d

(i). Recall that the dynamic
program τj−1[x1, . . . , xk] contains a (j − 1; x1, . . . , xk)-obeying schedule of 1, . . . , j − 1 of
minimum weighted processing time. There are now up to k possibilities how j is scheduled,
namely between d

(i−1) and d
(i) for every i ∈ [k] such that dj ≤ d

(i). Assuming that j is
completed between d

(i−1) and d
(i), we know how job j is scheduled: As we ordered the jobs

according to WSPT, Lemma 4.3 implies that j will be the last job from 1, . . . , j which is
completed d

(i−1) and d
(i). Thus, it is completed at time d

(i−1) + xi + pj . Consequently, this
results in a (j; x1, . . . , xi−1, xi + pj , xi+1, . . . , xk)-obeying schedule with weighted completion
time τj−1[x1, . . . , xk] + wj · (d(i−1) + xi + wj) if xi + pj ≤ d

(i) − d
(i−1). Therefore, we set

τj [x1, . . . , xk] := min
i∈[k]:dj≤d

(i) τj−1[x1, . . . , xi−1, xi − pj , xi+1, . . . , xk] + wj · (d(i−1) + xi).

▶ Theorem 4.4. 1|dj |
∑

wjCj can be solved in O(P 2k−2 · k · n) time, where k is the number
of different deadlines.

Proof. First, we guess for each i ∈ [k − 1] the time ti when the first job which is completed
after d

(i) starts. Afterwards, we reduce the deadline d
(i) to ti. This ensures that there will

be no job starting before d
(i) and being completed after d

(i).
We order the jobs according to WSPT. The dynamic program contains a table τj for

each j ∈ {0, . . . , n}. Each such table contains an entry τj [x1, . . . , xn] for xi ∈ {0, 1, . . . , d
(i) −

d
(i−1)} (where d

(0) := 0). This entry contains the minimum weighted completion time
of a (j; x1, . . . , xk)-obeying schedule. We now formally describe how these values can be
computed.

Initialization. We set τ0[0, . . . , 0] := 0 and τ0[x1, . . . , xk] := ∞ otherwise.

Update. Let j ∈ [n] and assume that job j has deadline d
(i). Then

τj [x1, . . . , xk] := min
ℓ∈[i]

{
τj−1[x1, . . . , xℓ−1, xℓ − pj , xℓ+1, . . . , xk] + wj · (d(ℓ−1) + xℓ)

}

Optimal Solution. The optimal solution value is τn[d(1)
, d

(2) − d
(1)

, d
(3) − d

(2)
, d

(4) −
d

(3)
, . . . , d

(k) − d
(k−1)]. An optimal schedule can be found using backtracking.

Correctness. Clearly, τ0[x1, . . . , xk] equals the minimum weighted processing time of a
(0; x1, . . . , xk)-feasible schedule. Recall that we assume d

(k) = P , so we have
∑k

i=1(d(i) −
d

(i−1)) = P . Because an optimal schedule has no idle time, the total processing time of jobs
between d

(ℓ−1) and d
(ℓ) is precisely d

(ℓ) − d
(ℓ−1). Thus, τn[d(1)

, d
(2) − d

(1)
, d

(3) − d
(2)

, d
(4) −

d
(3)

, . . . , d
(k) − d

(k−1)] contains the value of an optimal solution (assuming correctness of the
update step).

It remains to show that the update step is correct. Let σ be a (j; x1, . . . , xk)-obeying
schedule of minimum weighted processing time. Because no job starts before d

(i) and is
completed after d

(i) as we adapted the deadlines to our initial guess, each job which is
completed between d

(ℓ−1) and d
(ℓ) also starts between d

(ℓ−1) and d
(ℓ). Fix ℓ ∈ [k] such

that job j is completed in σ between d
(ℓ−1) and d

(ℓ). Note that ℓ ≤ i as σ is feasible. As
we process the jobs in WSPT order, we may assume by Lemma 4.3 that j is the last job
from [j] which starts between d

(ℓ−1) and d
(ℓ). Then removing job j results in a schedule

IPEC 2023

24:14 Single Machine Scheduling with Few Deadlines

of jobs 1, . . . , j − 1 where the processing time of jobs starting between d
(ℓ′−1) and d

(ℓ′) is
exactly xℓ′ for ℓ′ ̸= ℓ and xℓ − pj for ℓ′ = ℓ. Scheduling j after all other jobs starting
between d

(ℓ−1) and d
(ℓ) then results in a completion time of d

(ℓ) + xℓ for job j. The total
weighted completion time of jobs 1, . . . , j−1 is at least τj−1[x1, . . . , xℓ−1, xℓ−pj , xℓ+1, . . . , xk].
Consequently, a (j; x1, . . . , xk)-obeying schedule has weighted completion time at least
wj(d(ℓ) + xℓ) + τj−1[x1, . . . , xℓ−1, xℓ − pj , xℓ+1, . . . , xk] ≥ τj [x1, . . . , xk].

It remains to show that an (j; x1, . . . , xk)-obeying schedule has weighted completion time
at most τj [x1, . . . , xk]. For each ℓ ≤ i, combining the schedule from τj [x1, . . . , xℓ−1, xℓ −
pj , xℓ+1, xk] with job j scheduled at time d

(ℓ−1) + xℓ results in a schedule σℓ with total
weighted completion time τj [x1, . . . , xℓ−1, xℓ − pj , xℓ+1, xk] + wj · (d(ℓ−1) + xℓ). Schedule σℓ

completes j before its deadline as ℓ ≤ i and xℓ ≤ d
(ℓ) − d

(ℓ−1). Thus, σℓ is (j; x1, . . . , xk)-
obeying. Therefore, there is a (j; x1, . . . , xk)-obeying schedule with weighted completion
time at most τj [x1, . . . , xk].

Running Time. There are O(P k−1) many different guesses (for each i ∈ [k − 1], we guess
one time ti). For each guess, the dynamic programming table as described above contains
O(n · P k) many entries, each of which can be computed in O(k) time. However, note that
we only need to consider entries τj [x1, . . . , xk] with

∑k
ℓ=1 xℓ =

∑j
j′=1 pj′ . Thus, for each

combination of j and x1, . . . , xk−1, there is only one value of xk which we need to consider.
This implies that it suffices to compute O(n ·P k−1) many entries of the dynamic programming
table. Thus, the total running time is O(k · n · P 2k−2). ◀

We remark that the ETH-based lower bound from Theorem 4.2 implies that the exponent
is optimal up to a factor of O(log k).

5 Conclusion

We initiated the study of the parameterized complexity of scheduling problems with deadlines.
While we arrived at a complete FPT-vs.-W[1]-hardness-vs.-XP-classification of 1|dj |

∑
wjUj

and 1|dj |
∑

wjCj with respect to the number of different deadlines and the number of jobs
with nontrivial deadline, there is still ample room for future work: For example, one might
study other parameterizations not focusing on the deadlines such as the number of different
processing times. Another direction would be to extend our study to further problems such
as 1|dj |

∑
Tj . For this problem, one likely gets similar in Theorem 3.1 by modifying the

reduction from [3] similar to Theorem 3.1, but it is unclear on whether a pseudopolynomial-
time algorithm for a constant number of different deadlines exists. Lastly, we left open
the approximability of both 1|dj |

∑
wjCj and 1|dj |

∑
wjUj (note that 1||

∑
wjUj admits

an FPTAS [20]). Due to the strong NP-hardness of 1|dj |
∑

wjCj and 1|dj |
∑

wjUj , both
problems do not admit an FPTAS unless P=NP. However, the existence of a PTAS or a
constant-factor approximation algorithm is open.

References
1 Philippe Baptiste, Federico Della Croce, Andrea Grosso, and Vincent T’kindt. Sequencing

a single machine with due dates and deadlines: an ILP-based approach to solve very large
instances. Journal of Scheduling, 13(1):39–47, 2010.

2 Peter Brucker. Scheduling algorithms (4. ed.). Springer, 2004.
3 Rubing Chen and Jinjiang Yuan. Unary NP-hardness of single-machine scheduling to minimize

the total tardiness with deadlines. Journal of Scheduling, 22(5):595–601, 2019.

K. Heeger, D. Hermelin, and D. Shabtay 24:15

4 Rubing Chen and Jinjiang Yuan. Unary NP-hardness of preemptive scheduling to minimize
total completion time with release times and deadlines. Discrete Applied Mathematics, 304:45–
54, 2021.

5 Rubing Chen, Jinjiang Yuan, C.T. Ng, and T.C.E. Cheng. Single-machine scheduling with
deadlines to minimize the total weighted late work. Naval Research Logistics, 66(7):582–595,
2019.

6 Michael R. Garey and David S. Johnson. Complexity results for multiprocessor scheduling
under resource constraints. SIAM J. Comput., 4(4):397–411, 1975.

7 Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman, 1979.

8 Ronald L. Graham, Eugene L. Lawler, Jan K. Lenstra, and Alexander H. G. Rinnooy Kan.
Optimization and approximation in deterministic sequencing and scheduling: a survey. In
Discrete Optimization II, volume 5 of Annals of Discrete Mathematics, pages 287–326. Elsevier,
1979.

9 A. M. A. Hariri and Chris N. Potts. Single machine scheduling with deadlines to minimize the
weighted number of tardy jobs. Management Science, 40(12):1712–1719, 1994.

10 Cheng He, Hao Lin, Yixun Lin, and Junmei Dou. Minimizing total completion time for
preemptive scheduling with release dates and deadline constraints. Foundations of Computing
and Decision Sciences, 39(1):17–26, 2014.

11 Cheng He, Yixun Lin, and Jinjiang Yuan. A note on the single machine scheduling to
minimize the number of tardy jobs with deadlines. European Journal of Operational Research,
201(3):966–970, 2010.

12 Yumei Huo, Joseph Y.-T. Leung, and Hairong Zhao. Bi-criteria scheduling problems: Number
of tardy jobs and maximum weighted tardiness. European Journal of Operational Research,
177(1):116–134, 2007.

13 Klaus Jansen, Stefan Kratsch, Dániel Marx, and Ildikó Schlotter. Bin packing with fixed
number of bins revisited. Journal of Computer and System Sciences, 79(1):39–49, 2013.

14 Richard M. Karp. Reducibility among combinatorial problems. In Proceedings of a symposium
on the Complexity of Computer Computations, held March 20-22, 1972, at the IBM Thomas
J. Watson Research Center, The IBM Research Symposia Series, pages 85–103. Plenum Press,
1972.

15 Eugene L. Lawler. Scheduling a single machine to minimize the number of late jobs. Technical
Report UCB/CSD-83-139, EECS Department, University of California, Berkeley, 1983.

16 Eugene L. Lawler and J. Michael Moore. A functional equation and its application to resource
allocation and sequencing problems. Management Science, 16(1):77–84, 1969.

17 Jan K. Lenstra, Alexander H.G. Rinnooy Kan, and Peter Brucker. Complexity of machine
scheduling problems. In Studies in Integer Programming, volume 1 of Annals of Discrete
Mathematics, pages 343–362. Elsevier, 1977.

18 J. Michael Moore. An n job, one machine sequencing algorithm for minimizing the number of
late jobs. Management Science, 15(1):102–109, 1968.

19 Michael Pinedo. Scheduling: Theory, Algorithms, and Systems (5. ed.). Springer, 2016.
20 Sartaj Sahni. Algorithms for scheduling independent tasks. Journal of the ACM, 23(1):116–127,

1976.
21 Jeffrey B. Sidney. An extension of Moore’s due date algotithm. In Symposium on the Theory

of Scheduling and Its Applications, pages 393–398. Springer Berlin Heidelberg, 1973.
22 Wayne E. Smith. Various optimizers for single-stage production. Naval Research Logistics

Quarterly, 3:59–66, 1956.
23 Long Wan, Jinjiang Yuan, and Zhichao Geng. A note on the preemptive scheduling to

minimize total completion time with release time and deadline constraints. Journal of
Scheduling, 18(3):315–323, 2015.

24 Jinjiang Yuan. Unary NP-hardness of minimizing the number of tardy jobs with deadlines.
Journal of Scheduling, 20(2):211–218, 2017.

IPEC 2023

Twin-Width of Graphs with Tree-Structured
Decompositions
Irene Heinrich #

Technische Universität Darmstadt, Germany

Simon Raßmann #

Technische Universität Darmstadt, Germany

Abstract
The twin-width of a graph measures its distance to co-graphs and generalizes classical width concepts
such as tree-width or rank-width. Since its introduction in 2020 [13, 12], a mass of new results
has appeared relating twin width to group theory, model theory, combinatorial optimization, and
structural graph theory.

We take a detailed look at the interplay between the twin-width of a graph and the twin-width
of its components under tree-structured decompositions: We prove that the twin-width of a graph is
at most twice its strong tree-width, contrasting nicely with the result of [7, 6], which states that
twin-width can be exponential in tree-width. Further, we employ the fundamental concept from
structural graph theory of decomposing a graph into highly connected components, in order to
obtain optimal linear bounds on the twin-width of a graph given the widths of its biconnected
components. For triconnected components we obtain a linear upper bound if we add red edges to
the components indicating the splits which led to the components. Extending this approach to
quasi-4-connectivity, we obtain a quadratic upper bound. Finally, we investigate how the adhesion
of a tree decomposition influences the twin-width of the decomposed graph.

2012 ACM Subject Classification Theory of computation → Fixed parameter tractability; Mathe-
matics of computing → Graph algorithms; Mathematics of computing → Paths and connectivity
problems

Keywords and phrases twin-width, quasi-4 connected components, strong tree-width

Digital Object Identifier 10.4230/LIPIcs.IPEC.2023.25

Related Version Full Version: https://arxiv.org/abs/2308.14677

Funding Irene Heinrich: The research leading to these results has received funding from the
European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation
programme (EngageS: grant agreement No. 820148).

1 Introduction

Twin-width is a new graph parameter introduced in [13, 12]. Since its introduction it has
gained considerable attention. The twin-width1 of a graph G, denoted by tww(G), is the
minimum width over all contraction sequences of G and a contraction sequence of G is
roughly defined as follows: we start with a discrete partition of the vertex set of G into n

singletons where n is the order of G. Now we perform a sequence of n − 1 merges, where in
each step of the sequence precisely two parts are merged causing the partition to become
coarser, until eventually, we end up with just one part – the vertex set of G. Two parts of
a partition of V (G) are homogeneously connected if either all or none of the possible cross

1 We refer to the preliminaries of this paper (subsections graphs and trigraphs as well as twin-width) for
an equivalent definition of twin-width which is based on merging vertices instead of vertex subsets.

© Irene Heinrich and Simon Raßmann;
licensed under Creative Commons License CC-BY 4.0

18th International Symposium on Parameterized and Exact Computation (IPEC 2023).
Editors: Neeldhara Misra and Magnus Wahlström; Article No. 25; pp. 25:1–25:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:heinrich@mathematik.tu-darmstadt.de
https://orcid.org/0000-0001-9191-1712
mailto:rassmann@mathematik.tu-darmstadt.de
https://orcid.org/0000-0003-1685-410X
https://doi.org/10.4230/LIPIcs.IPEC.2023.25
https://arxiv.org/abs/2308.14677
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

25:2 Twin-Width of Graphs with Tree-Structured Decompositions

edges between the two parts are present in G. The red degree of a part is the number of
other parts to which it is not homogeneously connected. Finally, the width of a contraction
sequence is the maximum red degree amongst all parts of partitions arising when performing
the sequence.

In [13, 12] the authors show that twin-width generalizes other width parameters such as
rank-width, and, hence also clique-width and tree-width. Furthermore, given a graph H , the
class of H-minor free graphs has bounded twin-width and FO-model checking is FPT on
classes of bounded twin-width, see [13, 12]. Many combinatorial problems which are NP-hard
in general allow for improved algorithms if the twin-width of the input graph is bounded
from above and the graph is given together with a width-minimal contraction sequence [9, 8].

Motivation. To decompose a graph into smaller components and estimate a certain parame-
ter of the original graph from the parameters of its components is an indispensable approach
of structural graph theory, which serves in taming branch-and-bound trees as well as for
theoretical considerations because it allows for stronger assumptions (i.e., high connectivity)
on the considered graphs. There are various ways to decompose a graph, e.g., bi-, tri-,
or quasi-4-connected components, tree decompositions of small adhesion (the maximum
cardinality of the intersection of to adjacent bags), modular decomposition, or decomposition
into the factors of a graph product.

So far there is no detailed analysis of the relation between the twin-width of a graph
and the twin-width of its biconnected, triconnected, or quasi-4-connected components. The
only result towards (k-)connected components is the basic observation that the twin-width
of a graph is obviously the maximum over the twin-width over its (1-connected) components.
While there already exists a strong analysis of the interplay of tree-width and twin-width
(cf. [19, 20]), it is still open how twin-width behaves with respect to the adhesion of a given
tree decomposition, which can be significantly smaller than the tree-width of a graph (as an
example, consider a graph whose biconnected components are large cliques – the adhesion
is 1 whereas the tree-width is the maximum clique size). Further, there exist many variants
of tree-width, for example, strong tree-width [23, 16] for which the interplay with twin-width
has not yet been discussed in the literature.

Our results. We prove the following bound on the twin-width of a graph:

▶ Theorem 1. If G is a graph of strong tree-width k, then

tww(G) ≤ 3
2k + 1 + 1

2(
√

k + ln k +
√

k + 2 ln k).

This is a strong contrast to the result of [7, 6] that twin-width can be exponential in
tree-width. We further provide a class of graphs which asymptotically satisfies that the
twin-width equals the strong tree-width. Further, we investigate how to bound the twin-width
of a graph in terms of the twin-width of its highly connected components starting with
biconnected components.

▶ Theorem 2. If G is a graph with biconnected components C1, C2 . . . , Cℓ, then

max
i∈[ℓ]

tww(Ci) ≤ tww(G) ≤ max
i∈[ℓ]

tww(Ci) + 2.

Next, we consider decompositions into triconnected components:

I. Heinrich and S. Raßmann 25:3

▶ Theorem 3. Let C1, C2, . . . , Cℓ be the triconnected components of a biconnected graph G.
For i ∈ [ℓ] we construct a trigraph Ci from Ci as follows: all virtual edges2 of Ci are colored
red and all other edges remain black. If Ci contains parallel edges, then we remove all but
one of the parallel edges such that the remaining edge is red whenever one of the parallel
edges was red. Then

tww(G) ≤ max
(

8 max
i∈[ℓ]

tww(Ci) + 6, 18
)

.

Similarly clean decompositions into k-connected graphs with k > 3 cannot exist [14, 15];
but we move on one more step and consider the twin-width of a graph with respect to its
quasi-4 connected components, introduced by [14, 15].

▶ Theorem 4. Let G be a triconnected graph with quasi-4-connected components
C1, C2, . . . , Cℓ.
1. For i ∈ [ℓ] we construct a trigraph Ĉi by adding for every 3-separator S in Ci along

which G was split a vertex vS which we connect via red edges to all vertices in S. Then

tww(G) ≤ max
(

8 max
i∈[ℓ]

tww(Ĉi) + 14, 70
)

.

2. For i ∈ [ℓ], we construct a trigraph Ci by coloring all edges in 3-separators in Ci along
which G was split red. Then

tww(G) ≤ max
(

4 max
i∈[ℓ]

(
tww(Ci)2 + tww(Ci)

)
+ 14, 70

)
.

For the general case of tree decompositions of bounded adhesion, we get the following:

▶ Theorem 5. For every k ∈ N there exist explicit constants Dk and D′
k such that for

every graph G with a tree decomposition of adhesion k and parts P1, P2, . . . , Pℓ, the following
statements are satisfied:
1. For each Pi, we construct a trigraph P̂i by adding for each adhesion set S in Pi a new

vertex vS which we connect via red edges to all vertices in S. Then

tww(G) ≤ 2k max
i∈[ℓ]

tww(P̂i) + Dk.

2. Assume k ≥ 3. For each Pi, we construct the torso P i by completing every adhesion set
in Pi to a red clique. Then

tww(G) ≤ 2k

(k − 1)! max
i∈[ℓ]

tww(P i)k−1 + D′
k.

Finally, we refine the result of [19, 20], where the authors bound the twin-width of a
graph given its tree-width.

▶ Theorem 6. Let G be a graph with a tree decomposition of width w and adhesion k. Then

tww(G) ≤ 3 · 2k−1 + max(w − k − 2, 0).

2 That is, the pairs of vertices along which G was split to obtain the triconnected components.

IPEC 2023

25:4 Twin-Width of Graphs with Tree-Structured Decompositions

Bounding the red degree of decomposition trees. The underlying structure of all the
decompositions that we consider in this paper is a tree. We generalize the optimal contraction
sequence (cf. [3, 2]) for trees which works as follows: choose a root for the tree. If possible,
choose two sibling leaves and contract them (which implies a red edge from the new vertex
to its parent). Whenever a parent is joined to two of its leaf-children via red edges, these
two children are merged. This ensures that the red degree of any parent throughout the
whole sequence never exceeds 2. If there are no sibling leaves, then choose a leaf of highest
distance to the root and contract it with its parent. This yields a red edge between the new
merged vertex and the former grandparent. Repeat this until we end up with a singleton. We
preserve this idea in our proofs to ensure that at no point in time three distinct bag-siblings
contribute to the red degree of the vertices in their parent bag.

Further related work. A standard reference on tree-width is [5]. For the basics on graph
connectivity and decomposition we refer text books on graph theory such as [24]. The
twin-width of a graph given the twin-width of its modular decomposition factors (and in
particular, also the twin-width given the width of the factors of a lexicographical product)
already has been investigated in [11, 10]. In contrast to the linear-time solvable tree-width
decision problem [4] (for a fixed k: is the tree-width of the input graph at most k?), deciding
whether the twin-width of a graph is at most 4 is already NP-complete [3, 2]. The twin-width
of a graph in terms of its biconnected components has already been considered in [21], where
the author obtains a slightly weaker upper bound than Theorem 2.

Organization of the paper. We provide the preliminaries in Section 2. Our results on
strong tree-width can be found in Section 3. In Section 4 we prove new bounds on the
twin-width of a graph given the twin-widths of its highly connected components, and, we
generalize our approach to graphs which allow for a tree-decomposition of small adhesion.
Due to space limitations, some of the proofs are omitted. We refer to [17] for the full version
of this paper.

2 Preliminaries

For a natural number n, we denote by [n] the n-element set {1, . . . , n}. For a set A, we
write P(A) for the power set of A. For a natural number k ≤ |A|, we write

(
A
k

)
for the set of

k-element subsets of A.

Graphs and trigraphs. All graphs in this paper are finite, undirected and contain no loops.
For a graph G, we denote its vertex set by V (G) and its edge set by E(G). We write
|G| := |V (G)| for the order of G.

A trigraph is an undirected, edge-colored graph G with disjoint sets E(G) of black edges
and R(G) of red edges. We can interpret every graph as a trigraph by setting R(G) = ∅.
For a vertex subset A of a trigraph G, we denote by G[A] the subgraph induced on A and
by G − A the subgraph induced on V (G) \ A. For a vertex v ∈ V (G), we also write G − v

instead of G − {v}. If G is a graph, then the degree of a vertex v ∈ V (G) is denoted by dG(v)
(or d(v) if G is clear from context). For trigraphs, we write red-degG(v) for the red degree
of v, i.e., the degree of v in the graph (V (G), R(G)). We write ∆(G) or ∆red(G) for the
maximum (red) degree of a (tri-)graph G.

A multigraph is a graph where we allow multiple edges between each pair of vertices.

I. Heinrich and S. Raßmann 25:5

Twin-width. Let G be a trigraph and x, y ∈ V (G) two distinct, not necessarily adjacent
vertices of G. We contract x and y by merging the two vertices to a common vertex z, leaving
all edges not incident to x or y unchanged, connecting z via a black edge to all common black
neighbors of x and y, and via a red edge to all red neighbors of x or y and to all vertices which
are connected to precisely one of x and y. We denote the resulting trigraph by G/xy. A
partial contraction sequence of G is a sequence of trigraphs (Gi)i∈[k] where G1 = G and Gi+1
can be obtained from Gi by contracting two distinct vertices xi, yi ∈ V (Gi). By abuse of
notation, we also call the sequence (xiyi)i<|G| of contraction pairs a partial contraction
sequence. The width of a partial contraction sequence is the maximal red degree of all
graphs G1, . . . , Gk. If the width of a sequence is at most d, we call it a d-contraction sequence.
A (complete) contraction sequence is a partial contraction sequence whose final trigraph
is the singleton graph on one vertex. The minimum width over all complete contraction
sequences of G is called the twin-width of G and is denoted by tww(G). We often identify
a vertex v ∈ V (G) with the vertices in the graphs Gi that v gets contracted to and sets of
vertices with the sets of vertices they get contracted to.

Twin-width has many nice structural properties. For example, it is monotone with respect
to induced subgraphs: for every induced subgraph H ⊆ G it holds that tww(H) ≤ tww(G).
Moreover, the twin-width of a disconnected graph is just the maximum twin-width of its
connected components.

Tree decompositions and tree-width. Let G be a graph. A tree decomposition of G is a
pair T = (T, {Bi : i ∈ V (T)}) consisting of a tree T and a family (Bi)i∈V (T) of subsets of
V (G), called bags satisfying the following conditions
1. every vertex of G is contained in some bag,
2. for every vertex v ∈ V (G), the set of tree vertices i ∈ V (T) such that v ∈ Bi forms a

subtree of T ,
3. for every edge e ∈ E(G), there exists some bag which contains both endpoints of e.
The subgraphs G[Bi] are called the parts of the tree decomposition. The width of a tree-
decomposition is maxi∈V (T) |Bi| − 1 and the minimum width over all tree decompositions
of G is the tree-width of G and is denoted by tw(G).

For an edge ij ∈ E(T), the sets Bi ∩ Bj are the adhesion sets or separators of T and the
maximal size of an adhesion set is the adhesion of T . The graphs obtained from a part G[Bi]
by completing all adhesion sets Bi ∩ Bj to cliques is called the torso of G[Bi].

Strong tree-width. Strong tree-width, which is also called tree-partition width, is a graph
parameter independently introduced by [23] and [16]. A strong tree decomposition of a graph
G is a tuple (T, {Bi : i ∈ V (T)}) where T is a tree and {Bi : i ∈ V (T)} is a set of pairwise
disjoint subsets of V (G), one for each node of T such that
1. V (G) =

⋃
i∈V (T) Bi and

2. for every edge uv of G there either exists a node i ∈ V (T) such that {u, v} ⊆ Bi or there
exist two adjacent nodes i and j in T with u ∈ Bi and v ∈ Bj .

The sets Bi are called bags and maxi∈V (T) |Bi| is the width of the decomposition. The
minimum width over all strong tree decompositions of G is the strong tree-width stw(G) of G.

The strong tree-width of a graph is bounded in its tree-width via tw(G) ≤ 2 stw(G) − 1,
see [25]. In the other direction, there is no bound: the strong-tree width of a graph is
unbounded in its tree-width [25]. However, it holds that stw(G) ∈ O(∆(G) · tw(G)), see [25].
Thus, for graphs of bounded degree, the two width notions are linearly equivalent.

IPEC 2023

25:6 Twin-Width of Graphs with Tree-Structured Decompositions

▶ Remark 7. In general, the strong tree-width is unbounded in the twin-width of a graph.
For example, consider a complete graph on 2n vertices. A width-minimal strong tree
decomposition of this graph has two bags, each containing n vertices. However the twin-
width of a complete graph is 0.

Highly connected components. A cut vertex of a graph G is a vertex v ∈ V (G) such
that G − v contains more connected components that G. A maximal connected subgraph
of G that has no cut vertex is a biconnected components of G. The block-cut-tree of G is
a bipartite graph where one part is the set of biconnected components of G and the other
part is the set of cut vertices of G and a biconnected component is joined to a cut vertex
precisely if the vertex is contained in the¨ component. This graph is a forest, and even a tree
if G is connected [24]. If we choose a biconnected component as a root of this tree, we can
restrict this tree structure to a tree structure on the biconnected components of G. Thus,
the decomposition of a graph into biconnected components can also be phrased as follows:

▶ Theorem 8 (see [24]). For every connected graph G, there exists a tree decomposition T of
G such that T has adhesion at most 1, and every part is either 2-connected or a complete graph
of order 2. Moreover, the set of bags of this tree decomposition is isomorphism-invariant.

Similarly, by splitting a graph at certain separators of size at most 2, we obtain the
following:

▶ Theorem 9 ([18]). For every 2-connected graph, there exists a tree decomposition T of G

such that T has adhesion at most 2, and the torso of every bag is either 3-connected, a
cycle, or a complete graph of order 2. Moreover, the set of bags of this tree decomposition is
isomorphism-invariant.

The triconnected components of G are multigraphs constructed from the torsos of this tree
decomposition. In this work, these multigraphs are not important and we also call the torsos
themselves triconnected components.

A similarly clean decomposition into 4-connected components arranged in a tree-like
fashion does not exist [14, 15]. This motivated Grohe to introduce the notion of quasi-
4-connectivity [14, 15]: A graph G is called quasi-4-connected if it is 3-connected and all
3-separators split off at most a single vertex. That is, for every separator S of size 3, the
graph G − S splits into exactly two connected components, at least one of which consists of
a single vertex. The prime example of quasi-4-connected graphs which are not 4-connected
are hexagonal grids. For quasi-4-connectivity, we once again get a tree-like decomposition
into components:

▶ Theorem 10 ([14, 15]). For every 3-connected graph G, there exists a tree decomposition T
of G such that T has adhesion at most 3, and the torso of every bag is either quasi-4-connected
or of size at most 4.

The torsos of this tree decomposition are called quasi-4-connected components of G.

3 Twin-width of graphs of bounded strong tree-width

▶ Theorem 1. If G is a graph of strong tree-width k, then

tww(G) ≤ 3
2k + 1 + 1

2(
√

k + ln k +
√

k + 2 ln k).

I. Heinrich and S. Raßmann 25:7

Proof. For a graph H and a vertex subset U ⊆ V (H) a partial contraction sequence s of H

is a U -contraction sequence if only vertices of U are involved in the contractions in s and s is
of length |U |, that is, performing all contractions of s yields a partition of V (H) where U

forms one part and the rest of the parts are singletons. We denote the minimum width over
all U -contraction sequences of H by twwU (H).

Let T = (T, {Bi : i ∈ V (T)}) be a strong tree decomposition of G of width k. Fix r ∈ V (T)
and consider T to be a rooted tree with root r from now on. If a bag Bi contains only
one vertex v, then we set vi := v. We label all nodes i of T with |Bi| = 1 as merged.
All other nodes of T are labeled as unmerged. A node p of T is a leaf-parent if all of its
children are leaves. If Bi is a bag of T , then contracting Bi means to apply a width-minimal
Bi-contraction sequence and then relabel i as merged. After a contraction of two vertices u

and v to a new vertex x we update the strong tree decomposition T , that is, if u and v were
contained in the same bag, then we simply replace u and v by x. If, otherwise, u and v are

Algorithm 1 Contract(G, T = (T, {Bi, i ∈ V (T)})).

1 while |V (T)| ≥ 2 do
2 Choose a leaf ℓ which maximizes the distance to r

3 if the parent p of ℓ has two merged children ℓ1, ℓ2, then
4 contract vℓ1 with vℓ2 ,
5 update T
6 if ℓ is the only child of its parent p and ℓ is merged, then
7 contract Bp and denote the resulting vertex bp,
8 contract bp with vℓ,
9 update T

10 if amongst ℓ and its siblings there is an unmerged leaf ℓ′ and at most one merged
leaf, then

11 contract Bℓ′ ,
12 update T

13 Apply a width-minimal contraction sequence to the remaining graph.

contained in adjacent bags, then we remove u and v from its bags and insert x to the bag
which is closer to the root. If this causes an empty bag, we remove the bag as well as the
corresponding tree-vertex. Observe that updating preserves the strong tree-width. We claim
that the algorithm Contract merges G into a single vertex via a contraction sequence of
the required width.

First, we check that that the algorithm terminates. Observe that the root r is not part of
any of the contractions in the while-loop. In particular, as long as the loop is executed, there
exists at least one leaf-parent. In every iteration of the loop at least one of the if-conditions
is satisfied and hence, |V (G)| shrinks with every iteration, which proves that the algorithm
terminates with a singleton graph, that is, it provides a contraction sequence.

It remains to bound the width of the sequence. For a ∈ N we set f(a) := (a +
√

a + ln a +√
a + 2 ln a)/2. We will exploit the result of [19, 20] that an a-vertex graph has twin-width

at most f(a).
Let (Gi)i≤|G| be the contraction obtained by the algorithm. Fix i ∈ [|G|] and v ∈ Gi

and let Ti = (Ti, Bi) be the strong tree decomposition corresponding to Gi and Bj the bag
containing v in T .

IPEC 2023

25:8 Twin-Width of Graphs with Tree-Structured Decompositions

If j is neither a leaf, nor in a leaf-parent, nor the parent of a leaf-parent in Ti, then
red-deg(v) = 0.

Assume that j is a leaf of Ti, then all red edges incident to v are either internal edges
of Bj or joining v with a vertex of Bp where p is the parent of j in Ti. Since stw(G) ≤ k

there are at most k red edges of the latter form. Internal red edges of a bag may only
arise during a the contraction of this leaf-bag in Line 10. Since the corresponding partial
contraction sequence is chosen to be width-minimal and by the bound of [19, 20] we obtain
that red-degGi

(v) ≤ k + f(k).
Now assume that j is a leaf-parent in Ti. If the bag Bj of Ti was already contained in T ,

then there are no internal red edges in Bj and the only red edges incident to v are incident
to the vertices of precisely one leaf-bag, or, to the vertices of precisely two leaf-bags one of
which is merged. In each of the two cases, the red degree of v in Gi is bounded by k + 1.
Otherwise Bj is obtained during the contraction in Line 6. In this case, j has precisely one
child ℓ in Ti and ℓ is merged. Hence, j has at most k + f(k) + 1 red neighbors.

Finally, assume that j is neither a leaf nor a leaf-parent but parent of a leaf-parent in Ti.
Let j1, . . . , jh be the children of j in Ti. Observe that there are at most two children of j,
say, j1 and j2 such that v is joined to vertices of the corresponding bags and there are no
internal red edges in Bj . The only red edges incident to v are arsing during the contraction
of Bj1 or Bj2 in Line 6. Since first, one of the two children is contracted to one vertex before
any contraction in the other bag happens, the red degree of v is bounded by k + 1. ◀

▶ Lemma 11. There exists a family of graphs (Hn)n∈N such that limn→∞
tww(Hn)
stw(Hn) ≥ 1.

Proof. For each n ∈ N let Hn be the n-th Paley graph. Fix n ∈ N. It is known that
tww(Hn) = |V (Hn)|−1

2 , see [19, 20]. By distributing the vertices of Hn to two bags, one
of cardinality |V (Hn)|+1

2 , the other one of cardinality |V (Hn)|−1
2 , we obtain a strong tree

decomposition of Hn of width |V (Hn)|+1
2 . ◀

4 Twin-width of graphs with small separators

4.1 Biconnected components
We start our investigation of graphs of small adhesion by proving a bound on the twin-width
of graphs in terms of the twin-width of their biconnected components. This proof contains
many of the ideas we will generalize later to deal with tri- and quasi-4-connected components
as well as general graphs with a tree decomposition of bounded adhesion.

The main obstacle to constructing contraction sequences of a graph from contraction
sequences of its biconnected components is that naively contracting one component might
increase the red degree of the incident cut vertices in the neighboring components arbitrarily.
Thus, we need to find contraction sequences of the biconnected components not involving
the incident cut vertices.

Let G be a trigraph and P be a partition of G. Denote by G/P the trigraph obtained
from G by contracting each part of P into a single vertex. For a vertex v ∈ V (G) we denote
by P(v) the part of P that contains v. If P(v) ̸= {v}, then we obtain a refined partition Pv

by replacing P(v) in P by the two parts P(v) and {v}. Otherwise, we set Pv = P . Since G/P
can be obtained from G/Pv by at most one contraction, and one contraction of a trigraph
reduces the maximum red degree by at most 1 we have

∆red(G/Pv) ≤ ∆red(G/P) + 1. (1)

I. Heinrich and S. Raßmann 25:9

▶ Lemma 12. For every trigraph G and every vertex v ∈ V (G),

twwV (G−v)(G) ≤ tww(G) + 1.

Proof. Let (P(i))i∈[|G|] be a sequence of partitions corresponding to a width-minimal con-
traction sequence of G. Further, let j be the maximal index with {v} ∈ P(j). Then (P(i))i∈[j]
is a partial tww(G)-contraction sequence which does not involve v, and by (1) the se-
quence (P(i)

v)i∈[|G|]\[j+1] is a partial (tww(G) + 1)-contraction sequence which contracts the
resulting trigraph until v and one further vertex remain. Combining these two sequences
yields the claim. ◀

▶ Theorem 2. If G is a graph with biconnected components C1, C2 . . . , Cℓ, then

max
i∈[ℓ]

tww(Ci) ≤ tww(G) ≤ max
i∈[ℓ]

tww(Ci) + 2.

Proof. The lower bound follows from the fact that all biconnected components are induced
subgraphs of G together with the monotonicity of twin-width.

For the upper bound we may assume that G is connected since the twin-width of
a disconnected graph is the maximum twin-width of its connected components [13, 12].
Consider the block-cut-tree of G, i.e., the tree T whose vertex set is the union of the
biconnected components of G and the cut vertices of G, where every cut vertex joined
to precisely those biconnected components containing it. In particular, the biconnected
components and the cut vertices form a bipartition of T .

We choose a cut vertex r as a root of T . For every biconnected components C ∈ V (T),
we let vC be the parent of C in T .

To make our argument simpler, let Ĝ be the graph obtained from G by joining a new
vertex rv to every vertex v ∈ V (G) via a red edge. Similarly, for a biconnected component C,
we let Ĉ be the graph obtained from C by attaching a new vertex rv to every vertex v of C.
For each cut vertex c, we let Ĝc be the graph induced by Ĝ on the union of all blocks in the
subtree Tc of T rooted at c together with all vertices rv adjacent to these blocks.

We show that tww(Ĝ) ≤ maxi∈[ℓ] tww(Ci) + 2. The claim then follows since G is an
induced subgraph of Ĝ.

▷ Claim 13. For every biconnected component C of G,

tww
V (Ĉ−vC)(Ĉ) ≤ tww(C) + 2.

Proof of the Claim. By applying Lemma 12 to C and vC , we find a V (C − vC)-contraction
sequence S of C of width at most tww(C) + 1. We show how this contraction sequence
can be adapted to also contract the vertices rv for all cut vertices v incident to C. Indeed,
before every contraction vw of S, we insert the contraction of rv and rw. This keeps the
invariant that we never contract a vertex from C with a vertex rv, and further, every vertex
of C is incident to at most one vertex rv (or a contraction of those vertices). Moreover, the
red degree among the vertices rv also stays bounded by 2. The entire partial contraction
sequence constructed so far thus has width at most tww(C) + 2.

After applying this sequence, we end up with at most four vertices: vC , rvC
, the contraction

of C − vC and the contraction of all vertices rv for vertices v ̸= vC . As rvC
is only connected

to vC and the contraction of all other vertices rv is not connected to vC , these four vertices
form a path of length four. Thus, the contraction sequence can be completed with trigraphs
of width at most 2.‘ ◁

IPEC 2023

25:10 Twin-Width of Graphs with Tree-Structured Decompositions

Now, consider again the whole graph Ĝ and choose a leaf block C of T . We can apply
the partial contraction sequence given by the previous claim to Ĉ in Ĝ. Because we never
contract vC with any other vertex, this does not create red edges anywhere besides inside Ĉ.
Thus, it is still a partial (tww(C) + 2)-contraction sequence of Ĝ. Moreover, the resulting
trigraph is isomorphic to Ĝ−V (Ĉ −vC), i.e., the graph obtained from Ĝ by just removing the
biconnected component C (but leaving the cut vertex vC). By iterating this, we can remove
all biconnected components one after the other using width at most maxi∈[ℓ] tww(Ci) + 2.
Finally, we end up with just two vertices: The root cut vertex r, together with its red
neighbor rr, which we can simply contract. ◀

Note that the bounds in Theorem 2 are sharp even on the class of trees: the biconnected
components of a tree are just its edges which have twin-width 0. As there are trees both of
twin-width 0 and of twin-width 2, both the upper and the lower bound can be obtained.

▶ Corollary 14. Let C be a graph class closed under taking biconnected components. Then C
has bounded twin-width if and only if the subclass of 2-connected graphs in C has.

Moreover, Theorem 2 also reduces the algorithmic problem of computing or approximating
the twin-width of a graph to within some factor to the corresponding problem on biconnected
graphs.

4.2 Apices and contractions respecting subsets
To deal with adhesion sets of size at least 2, it no longer suffices to find contraction sequences
of the parts that just don’t contract vertices in the adhesion sets. Indeed, as those vertices can
appear parts corresponding to a subtree of unbounded depth, this could create an unbounded
number of red edges incident to vertices in adhesion sets. Instead, we want contraction
sequences that create no red edges incident to any vertices of adhesion sets.

For a trigraph G and a set of vertices A ⊆ V (G) of red degree 0, we say that a
partial sequence of d-contractions G = G0, G1, . . . , Gℓ respects A if Gi[A] = G[A] and
red-degGi

(a) = 0 for all i ≤ ℓ and a ∈ A. Thus, for every contraction xy in the sequence,
we have x, y /∈ A and N(x) ∩ A = N(y) ∩ A, which implies that the vertices in A are not
incident to any red edges all along the sequence.

A complete d-contraction sequence respecting A is a sequence of d-contractions that
respects A of maximal length, i.e., one whose resulting trigraph Gℓ does not allow a further
contraction respecting A. This is equivalent to no two vertices in V (Gℓ) \ A having the same
neighborhood in A. In particular, a complete contraction sequence respecting A leaves at
most 2|A| vertices besides A.

We write tww(G, A) for the minimal d such that there exists a complete d-contraction
sequence respecting A. For a single vertex v ∈ V (G), we also write tww(G, v) for tww(G, {v}).
Note that tww(G) = tww(G, ∅).

It was proven in [13, 12, Theorem 2] that adding a single apex to a graph of twin-width d

raises the twin-width to at most 2d + 2. The proof given there readily works in our setting
without any modifications.

▶ Theorem 15. Let G be a trigraph, v ∈ V (G) a vertex not incident to any red edges and
A ⊆ V (G) \ {v} a set of vertices. Then

tww(G, A ∪ {v}) ≤ 2 tww(G − v, A) + 2.

I. Heinrich and S. Raßmann 25:11

▶ Corollary 16. Let G be a trigraph and A ⊆ V (G) a subset of vertices with red-deg(a) = 0
for all vertices a ∈ A. Then

tww(G, A) ≤ 2|A| tww(G) + 2|A|+1 − 2.

4.3 Tree decompositions of small adhesion
We are now ready to generalize the linear bound on the twin-width of a graph in terms of its
biconnected components to allow for larger separators of bounded size. This is most easily
expressed in terms of tree decompositions of bounded adhesion.

In all of the following two sections, let G be a graph, T = ((T, r), {Bt : t ∈ V (T)}) a
rooted tree decomposition with adhesion k ≥ 1.

For a vertex t ∈ V (T), we write Pt := G[Bt] for the part associated to t. For a
vertex t ∈ V (T) with parent s ∈ V (T) we write St := Bt ∩Bs and call St the parent separator
of Pt or a child separator of Ps. Moreover, we set Sr := ∅ to be the root separator. For a tree
vertex t ∈ V (T), we write Tt for the subtree of T with root t, Gt := G[

⋃
s∈V (Tt) Bs] for the

corresponding subgraph and Tt for the corresponding tree decomposition of Gt.
We can assume w.l.o.g. that every two vertices s, t ∈ V (T) with Ss = St are siblings.

Indeed, if they are not, let s′ be a highest vertex in the tree with parent separator Ss and
construct another tree decomposition by attaching all vertices t with St = Ss directly to the
parent of s′ instead of their old parent. By repeating this procedure if necessary, we obtain
the required property.

For a vertex t ∈ T with children c1, . . . , cℓ, we set Nci
:= {N(v) ∩ Sci : v ∈ V (Gci) \ Sci}

to be the set of (possibly empty) neighborhoods that vertices in Gci
− Sci

have in the
separator Sci (and thus in Pt). We now define a trigraph P̃t with vertex set

V (P̃t) := V (Pt) ∪̇ {sci

M : i ∈ [ℓ], M ∈ Nci
}.

We will often abuse notation and also denote the set {sci

M : M ∈ Nci
} by Nci

.
We define the edge set of P̃t such that

1. P̃t[V (Pt)] = Pt,
2. P̃t[Nci

] is a red clique for every i,
3. sci

M is connected via black edges to all vertices in M ,
and there are no further red or black edges. Note that in P̃t, there are no red edges incident
to any vertices in Pt and thus in particular not to any vertices in St. A drawing of the gadget
attached to Sci

in P̃t in comparison with the simpler gadgets we will reduce to later can be
seen in Figure 1.

▶ Lemma 17. Let G and T be as above. For every t ∈ V (T), it holds that

tww(Gt, St) ≤ max
s∈V (Tt)

tww(P̃s, Ss).

In particular, tww(G) ≤ max
s∈V (T)

tww(P̃s, Ss) ≤ 2k max
s∈V (T)

tww(P̃s) + 2k+1 − 2.

Proof sketch. We proceed inductively, starting by contracting the leaf bags and then moving
up the tree. The graphs P̃t are defined precisely so that contracting all child bags of some
bag yields P̃t. ◀

If T has bounded width, we can proceed as in [19, 20, Lemma 3.1] to bound the twin-width
of the graphs P̃t and thus the twin-width of G:

IPEC 2023

25:12 Twin-Width of Graphs with Tree-Structured Decompositions

Pt P̃t P̂t P t

Figure 1 A separator St′ on three (square) vertices together with the three versions of gadgets we
attach to it. Dashed edges represent either edges or non-edges. In P̃t, we add a red clique consisting
of one vertex for every neighborhood of vertices in Gt′ − St′ in St′ . In P̂t, we only add a single
vertex with red edges to all vertices in St′ . In P t, we add no new vertices but complete all child
separators to red cliques.

▶ Lemma 18. Let G and T be as above and additionally assume that T has width at most w.
For every t ∈ V (T), it holds that

tww(P̃t, St) ≤ 3 · 2k−1 + max(w − k − 2, 0).

Proof. We first note that the red degree of P̃ itself is bounded by 2k − 1.
Now, let c1, . . . , cℓ be the (possibly empty) list of children of t in T . We first find a

contraction sequence of
⋃ℓ

i=1 Nci
respecting St. For this, we argue by induction that

⋃j−1
i=1 Nci

can be contracted while preserving the required width. This claim is trivial for j = 1. Hence
assume we have already contracted

⋃j−1
i=1 Nci

to a set Bj−1 of size at most 2|SP |. The vertices
of Bj−1 may be connected via red edges to vertices in Bj−1 itself and in Pt \ St. Thus, the
red degree of vertices in Bj−1 is bounded by

|Bj−1| − 1 + |Pt| − |St| ≤ 2|St| + |Pt| − |St| − 1 ≤ 2k + w − k − 1,

while the red degree of vertices in Pt \ St is bounded by |Bj | ≤ 2|St| ≤ 2k.
Now, we first apply a maximal contraction sequence of Ncj respecting St resulting in

a quotient N̄cj
. Because of our assumption on the tree decomposition T , we know that

St ≠ Scj for all j ∈ [ℓ]. In particular, this implies that |Scj ∩ St| < k. and thus |N̄cj | ≤ 2k−1.
During this contraction sequence, there can appear red edges between the contracted vertices
of Ncj

and vertices in Pt \ St. The vertices of Ncj
thus have red degree bounded by

|Ncj
| − 1 + |Pt| − |St| ≤ 2k + w − k − 1. Every red neighbor of vertices in Pt \ St in a quotient

of Ncj
must be the contraction of at least two vertices of Ncj

. Thus, the red degree of these
vertices is bounded by

|Bj−1| + |Ncj
|/2 ≤ 2k + 2k−1 = 3 · 2k−1.

Next, we contract vertices from Bj−1 and N̄cj
which have equal neighborhoods in St.

As our bounds already allow every vertex in Pt \ St to be connected via red edges to all
of Bj−1 ∪ N̄cj

, it suffices to argue that this keeps the red degree of vertices in Bj−1 ∪ N̄cj

within our bounds. But this set has size at most 3 · 2k−1. Hence, after one contraction, the
red degree is bounded by

|Bj−1| + |N̄cj
| − 2 + |Pt| − |St| ≤ 3 · 2k−1 + w − k − 2.

We have now successfully contracted Ncj
into Bj−1 while keeping the red degree bounded by

max(2k + w − k − 1, 2k, 3 · 2k−1, 3 · 2k−1 + w − k − 2) = 3 · 2k−1 + max(w − k − 2, 0).

I. Heinrich and S. Raßmann 25:13

By repeating this procedure for all j ∈ [ℓ], we find a contraction sequence of
⋃ℓ

i=1 Nci

respecting St within this width. The resulting graph thus consists of St, the vertices of Pt \St

and the vertices from Bℓ. In total, these are at most 2|St| + |Pt| − |St| ≤ 2k + w − k vertices
besides those in St. These can further be contracted while keeping the red degree bounded
by

2k + w − k − 1 ≤ 3 · 2k−1 + w − k − 2.

In total, our contraction sequence thus has width at most 3 ·2k−1 +max(w −k −2, 0), proving
the claim. ◀

By combining Lemma 18 with Lemma 17, we obtain a general bound on the twin-width
of graphs admitting a tree decomposition of bounded width and adhesion:

▶ Theorem 6. Let G be a graph with a tree decomposition of width w and adhesion k. Then

tww(G) ≤ 3 · 2k−1 + max(w − k − 2, 0).

This upper bounds sharpens the bound given in [19, 20] by making explicit the dependence
on the adhesion of the tree decomposition. Our bound shows that, while the twin-width in
general can be exponential in the tree-width [7, 6], the exponential dependence comes from
the adhesion of the tree decomposition and not from the width itself.

Moreover, our bound is asymptotically sharp. As already mentioned, it is known that there
are graphs whose twin-width is exponential in the adhesion of some tree decomposition [7, 6].
By adding into some bag a Paley graph whose twin-width is linear in its size [1], we also
achieve asymptotic sharpness in the linear width term.

4.4 Simplifying the parts
Before we apply this general lemma to the special case of the tree of bi-, tri- or quasi-4-
connected components, we show that we can simplify the gadgets attached in the graphs P̃

to all separators while raising the twin-width by at most a constant factor.
In a first step, we replace the sets Nci from the definition of the parts P̃t by a single

common red neighbor for every separator. For every vertex t ∈ V (T) with children c1, . . . , cℓ,
we define the trigraph P̂t as follows: we set S(t) := {Sci

: i ∈ [ℓ], Sci
̸⊊ Scj

for all j ∈ [ℓ]}
to be the set of subset-maximal child separators of Pt. Now, we take a collection of fresh
vertices VS := {vS : S ∈ S(t)} and set

V (P̂t) := V (Pt) ∪̇ VS .

The subgraph induced by P̂t on V (Pt) is just Pt itself. The vertex vS is connected via red
edges to all vertices in S and has no further neighbors. A drawing of the gadget attached to
Sci

in P̂t can be found in Figure 1.

▶ Lemma 19. Let G and T be as before. Then for every t ∈ V (T), it holds that

tww(P̃t, St) ≤ max(2k tww(P̂t) + 2k+1 − 2, 4k + 2k − 2).

In particular, tww(G) ≤ max(2k maxt∈V (T) tww(P̂t) + 2k+1 − 2, 4k + 2k − 2).

Proof sketch. If no two child separators of Pt are contained in each other, the claim can be
proven by first applying Corollary 16 and then carefully contracting P̃t to P̂t. The general
case can be reduced to this special case. ◀

IPEC 2023

25:14 Twin-Width of Graphs with Tree-Structured Decompositions

Next, we want to define a version P t of the parts which does not need extra vertices in Pt

but instead marks the separators via red cliques. Indeed, let P t be the trigraph obtained
from Pt by completing each of the sets S ∈ St to a red clique. Thus, the underlying graphs
of the trigraphs P t are just the torsos of the tree decomposition. We thus call the graphs P t

the red torsos of the tree decomposition T .

▶ Lemma 20. For every t ∈ V (T), it holds that

tww(P̂t) ≤ max
(

k + 1, tww(P t) +
(

tww(P t)
k − 1

)
, tww(P t) +

(
2k − 3
k − 1

))
.

In particular,

tww(G) ≤ max

 2k maxt∈V (T)

(
tww(P t) +

(tww(P t)
k−1

))
+ 2k+1 − 2,

2k maxt∈V (T) tww(P t) + 2k
(2k−3

k−1
)

+ 2k+1 − 2,

4k + 2k − 2

Proof sketch. We extend a contraction sequence of P t to a contraction sequence of P̂t while
ensuring that the neighborhoods of vertices vS are not contained in each other. Then, the
bound on the red degree of vertices can be proven via a variant of Sperner’s theorem [22]. ◀

Combining Lemma 19 and Lemma 20, we get the following two asymptotic bounds on
the twin-width of a graph admitting a tree decomposition of small adhesion.

▶ Theorem 5. For every k ∈ N there exist explicit constants Dk and D′
k such that for

every graph G with a tree decomposition of adhesion k and parts P1, P2, . . . , Pℓ, the following
statements are satisfied:
1. tww(G) ≤ 2k max

i∈[ℓ]
tww(P̂i) + Dk,

2. if k ≥ 3, then tww(G) ≤ 2k

(k − 1)! max
i∈[ℓ]

tww(P i)k−1 + D′
k.

4.5 Tri- and quasi-4-connected components
We now want to apply these general results on the interplay between twin-width and tree
decompositions of small adhesion to obtain bounds on the twin-width of graphs in terms of
the twin-width of their tri- and quasi-4-connected components.

▶ Theorem 3. Let C1, C2, . . . , Cℓ be the triconnected components of a biconnected graph G.
If we write Ci for the red torsos of the triconnected components Ci, then

tww(G) ≤ max
(

8 max
i∈[ℓ]

tww(Ci) + 6, 18
)

.

Proof. This follows from Lemma 20 applied to the tree of triconnected components of G

together with the observation that for k = 2, the second term in the maximum in Lemma 20
is always bounded by the maximum of the first and third term. ◀

Note that in Theorem 3 we cannot hope for a lower bound similar to the lower bound
in Theorem 2 without dropping the virtual edges. Indeed, consider a 3-connected graph
G of large twin-width (e.g. Paley graphs or Rook’s graphs). By [3, 2], a (2⌈log(|G|)⌉ − 1)-
subdivision H of G has twin-width at most 4, but its triconnected components are G and
multiple long cycles. Thus, there exist graphs of twin-width at most 4 with triconnected
components of arbitrarily large twin-width.

Moreover, the red virtual edges in each separator can also not be replaced by black edges.

I. Heinrich and S. Raßmann 25:15

▶ Lemma 21. There exists a family of graphs (Gn)n∈N with unbounded twin-width such
that the twin-width of the class of triconnected components of Gn with black virtual edges is
bounded.

Proof. Let Gn be the graph obtained from a clique Kn by subdividing every edge once. The
triconnected components of this graph are the Kn and a K3 for every edge of the Kn, which
all have twin-width 0.

In order to show that the twin-width of the family (Gn)n∈N is unbounded, we show that
for every d ≥ 2 and n ≥ nd := (d + 1)

(
d
2
)

+ 1, we have tww(Gn) > d. For this, consider
any d-contraction sequence of Gn for n ≥ nd and let P be the partition of V (Gn) right
before the first contraction in the sequence that does not contract two subdivision vertices.
We show that every partition class P ∈ P has size at most

(
d
2
)
. As no subdivision vertices

were contracted so far, we only need to consider classes of subdivision vertices. Thus, let
P = {ve1 , . . . , veℓ

} be such a class, where e1, . . . , eℓ ∈
(

V (Kn)
2

)
are edges of the original Kn.

If the edges ei all have a common endpoint, then P has red edges to all ℓ other endpoints of
these edges, meaning that ℓ ≤ d ≤

(
d
2
)
. Otherwise, P has red edges to all endpoints of all ei.

If ℓ >
(

d
2
)
, these have to be more that d, which is a contraction. Thus, |P | = ℓ ≤

(
d
2
)
.

Now, let xy be the next contraction in the sequence. If neither x nor y is a subdivision
vertex, then Gn contains precisely 2(n − 2)-many vertices which are connected to either x

or y but not both. In the contracted graph, the contraction would thus create at least
2(n−2)

(d
2)

≥ 2d + 2 red edges incident to the contracted vertex. If, on the other hand, either x or
y is a subdivision vertex but the other is not, then x and y have no common neighbors. But
as non-subdivision vertices have degree n − 1 in Gn, contracting these two would create at
least n−1

(d
2)

≥ d + 1 red edges incident to the contracted vertex. Thus, no further contraction
keeps the red degree of the sequence bounded by d, which implies tww(Gn) > d. ◀

In the case of separators of size 3, we get two bounds on the twin-width of a graph in
terms of its quasi-4-connected components: one linear bound in terms of the subgraphs
induced on the quasi-4-connected components together with a common red neighbor for
every 3-separator along which the graph was split, and one quadratic bound in terms of the
(red) torsos of the quasi-4-connected components.

▶ Theorem 4. Let G be a triconnected graph with quasi-4-connected components
C1, C2, . . . , Cℓ.
1. For i ∈ [ℓ] we construct a trigraph Ĉi by adding for every 3-separator S in Ci along

which G was split a vertex vS which we connect via red edges to all vertices in S. Then

tww(G) ≤ max
(

8 max
i∈[ℓ]

tww(Ĉi) + 14, 70
)

.

2. For i ∈ [ℓ], denote by Ci the red torso of the quasi-4-connected component Ci. Then

tww(G) ≤ max
(

4 max
i∈[ℓ]

(
tww(Ci)2 + tww(Ci)

)
+ 14, 70

)
.

Proof. The two claims follow from Lemma 19 and Lemma 20 applied to the tree of quasi-4-
connected components of G [14, 15] together with the observation that also for k = 3, the
second term in the maximum in Lemma 20 is always bounded by the maximum of the first
and third term. ◀

IPEC 2023

25:16 Twin-Width of Graphs with Tree-Structured Decompositions

5 Conclusion and further research

We proved that tww(G) ≤ 3
2 k + 1 + 1

2 (
√

k + ln k +
√

k + 2 ln k) if G is a graph of strong
tree-width at most k (Theorem 1). Moreover, we demonstrated that asymptotically the
twin-width of a Paley graph agrees with its strong tree-width (Lemma 11).

We provided a detailed analysis of the relation between the twin-width of a graph and
the twin-width of its highly connected components. Concerning 2-connected graphs, the
twin-width of a graph is linear in the twin-width of its biconnected components (Theorem 2).
There is a linear upper bound for a slightly modified version of triconnected components
(Theorem 3). By further providing a quadratic upper bound on the twin-width of graph
given the twin-widths of its modified quasi-4-connected components (Theorem 4) we took
one important step further to complete the picture of the interplay of the twin-width of a
graph with the twin-width of its highly connected components. As a natural generalization
of the above decompositions we considered graphs allowing for a tree decomposition of small
adhesion (Theorem 5 and Theorem 6).

It seems worthwhile to integrate our new bounds for practical twin-width computations,
for example, with a branch-and-bound approach.

References
1 Jungho Ahn, Kevin Hendrey, Donggyu Kim, and Sang-il Oum. Bounds for the Twin-Width

of Graphs. SIAM Journal on Discrete Mathematics, 36(3):2352–2366, 2022. doi:10.1137/
21M1452834.

2 Pierre Bergé, Édouard Bonnet, and Hugues Déprés. Deciding twin-width at most 4 is np-
complete. CoRR, abs/2112.08953, 2021. arXiv:2112.08953.

3 Pierre Bergé, Édouard Bonnet, and Hugues Déprés. Deciding Twin-Width at Most 4 Is
NP-Complete. In Mikołaj Bojańczyk, Emanuela Merelli, and David P. Woodruff, editors, 49th
International Colloquium on Automata, Languages, and Programming (ICALP 2022), volume
229 of Leibniz International Proceedings in Informatics (LIPIcs), pages 18:1–18:20, Dagstuhl,
Germany, 2022. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.
ICALP.2022.18.

4 Hans L. Bodlaender. A linear-time algorithm for finding tree-decompositions of small treewidth.
SIAM J. Comput., 25(6):1305–1317, 1996. doi:10.1137/S0097539793251219.

5 Hans L. Bodlaender. A partial k-arboretum of graphs with bounded treewidth. Theor. Comput.
Sci., 209(1-2):1–45, 1998. doi:10.1016/S0304-3975(97)00228-4.

6 Édouard Bonnet and Hugues Déprés. Twin-width can be exponential in treewidth. CoRR,
abs/2204.07670, 2022. doi:10.48550/arXiv.2204.07670.

7 Édouard Bonnet and Hugues Déprés. Twin-width can be exponential in treewidth. J. Comb.
Theory, Ser. B, 161:1–14, 2023. doi:10.1016/j.jctb.2023.01.003.

8 Édouard Bonnet, Colin Geniet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant. Twin-
width III: max independent set and coloring. CoRR, abs/2007.14161, 2020. arXiv:2007.14161.

9 Édouard Bonnet, Colin Geniet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant.
Twin-width III: max independent set, min dominating set, and coloring. In Nikhil Bansal,
Emanuela Merelli, and James Worrell, editors, 48th International Colloquium on Automata,
Languages, and Programming, ICALP 2021, July 12-16, 2021, Glasgow, Scotland (Virtual
Conference), volume 198 of LIPIcs, pages 35:1–35:20. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2021. doi:10.4230/LIPIcs.ICALP.2021.35.

10 Édouard Bonnet, Eun Jung Kim, Amadeus Reinald, and Stéphan Thomassé. Twin-width VI:
the lens of contraction sequences. CoRR, abs/2111.00282, 2021. arXiv:2111.00282.

https://doi.org/10.1137/21M1452834
https://doi.org/10.1137/21M1452834
https://arxiv.org/abs/2112.08953
https://doi.org/10.4230/LIPIcs.ICALP.2022.18
https://doi.org/10.4230/LIPIcs.ICALP.2022.18
https://doi.org/10.1137/S0097539793251219
https://doi.org/10.1016/S0304-3975(97)00228-4
https://doi.org/10.48550/arXiv.2204.07670
https://doi.org/10.1016/j.jctb.2023.01.003
https://arxiv.org/abs/2007.14161
https://doi.org/10.4230/LIPIcs.ICALP.2021.35
https://arxiv.org/abs/2111.00282

I. Heinrich and S. Raßmann 25:17

11 Édouard Bonnet, Eun Jung Kim, Amadeus Reinald, and Stéphan Thomassé. Twin-width
VI: the lens of contraction sequences. In Joseph (Seffi) Naor and Niv Buchbinder, editors,
Proceedings of the 2022 ACM-SIAM Symposium on Discrete Algorithms, SODA 2022, Virtual
Conference / Alexandria, VA, USA, January 9 - 12, 2022, pages 1036–1056. SIAM, 2022.
doi:10.1137/1.9781611977073.45.

12 Édouard Bonnet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant. Twin-width I:
tractable FO model checking. CoRR, abs/2004.14789, 2020. arXiv:2004.14789.

13 Édouard Bonnet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant. Twin-width I:
tractable FO model checking. J. ACM, 69(1):3:1–3:46, 2022. doi:10.1145/3486655.

14 Martin Grohe. Quasi-4-connected components. In Ioannis Chatzigiannakis, Michael Mitzen-
macher, Yuval Rabani, and Davide Sangiorgi, editors, 43rd International Colloquium on
Automata, Languages, and Programming, ICALP 2016, July 11-15, 2016, Rome, Italy, vol-
ume 55 of LIPIcs, pages 8:1–8:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016.
doi:10.4230/LIPIcs.ICALP.2016.8.

15 Martin Grohe. Quasi-4-connected components. CoRR, abs/1602.04505, 2016. arXiv:1602.
04505.

16 R. Halin. Tree-partitions of infinite graphs. Discrete Mathematics, 97(1):203–217, 1991.
doi:10.1016/0012-365X(91)90436-6.

17 Irene Heinrich and Simon Raßmann. Twin-width of graphs with tree-structured decompositions,
2023. arXiv:2308.14677.

18 John E. Hopcroft and Robert Endre Tarjan. Dividing a graph into triconnected components.
SIAM J. Comput., 2:135–158, 1973.

19 Hugo Jacob and Marcin Pilipczuk. Bounding twin-width for bounded-treewidth graphs,
planar graphs, and bipartite graphs. In Michael A. Bekos and Michael Kaufmann, editors,
Graph-Theoretic Concepts in Computer Science - 48th International Workshop, WG 2022,
Tübingen, Germany, June 22-24, 2022, Revised Selected Papers, volume 13453 of Lecture Notes
in Computer Science, pages 287–299. Springer, 2022. doi:10.1007/978-3-031-15914-5_21.

20 Hugo Jacob and Marcin Pilipczuk. Bounding twin-width for bounded-treewidth graphs, planar
graphs, and bipartite graphs. CoRR, abs/2201.09749, 2022. arXiv:2201.09749.

21 Gonne Kretschmer. Calculating twin-width of graphs. Bachelor’s thesis, Technische Universität
Darmstadt, 2023.

22 D. Lubell. A short proof of sperner’s lemma. Journal of Combinatorial Theory, 1(2):299, 1966.
doi:10.1016/S0021-9800(66)80035-2.

23 D. Seese. Tree-partite graphs and the complexity of algorithms. In Lothar Budach, editor,
Fundamentals of Computation Theory, Lecture Notes in Computer Science, pages 412–421.
Springer, 1985. doi:10.1007/BFb0028825.

24 Douglas Brent West et al. Introduction to graph theory, volume 2. Prentice hall Upper Saddle
River, 2001.

25 David R. Wood. On tree-partition-width. European Journal of Combinatorics, 30(5):1245–1253,
2009. doi:10.1016/j.ejc.2008.11.010.

IPEC 2023

https://doi.org/10.1137/1.9781611977073.45
https://arxiv.org/abs/2004.14789
https://doi.org/10.1145/3486655
https://doi.org/10.4230/LIPIcs.ICALP.2016.8
https://arxiv.org/abs/1602.04505
https://arxiv.org/abs/1602.04505
https://doi.org/10.1016/0012-365X(91)90436-6
https://arxiv.org/abs/2308.14677
https://doi.org/10.1007/978-3-031-15914-5_21
https://arxiv.org/abs/2201.09749
https://doi.org/10.1016/S0021-9800(66)80035-2
https://doi.org/10.1007/BFb0028825
https://doi.org/10.1016/j.ejc.2008.11.010

Dynamic Programming on Bipartite Tree
Decompositions
Lars Jaffke #

Department of Informatics, University of Bergen, Norway

Laure Morelle #

LIRMM, Université de Montpellier, CNRS, France

Ignasi Sau #

LIRMM, Université de Montpellier, CNRS, France

Dimitrios M. Thilikos #

LIRMM, Université de Montpellier, CNRS, France

Abstract
We revisit a graph width parameter that we dub bipartite treewidth, along with its associated
graph decomposition that we call bipartite tree decomposition. Bipartite treewidth can be seen
as a common generalization of treewidth and the odd cycle transversal number. Intuitively, a
bipartite tree decomposition is a tree decomposition whose bags induce almost bipartite graphs
and whose adhesions contain at most one vertex from the bipartite part of any other bag, while
the width of such decomposition measures how far the bags are from being bipartite. Adapted
from a tree decomposition originally defined by Demaine, Hajiaghayi, and Kawarabayashi [SODA
2010] and explicitly defined by Tazari [Theor. Comput. Sci. 2012], bipartite treewidth appears
to play a crucial role for solving problems related to odd-minors, which have recently attracted
considerable attention. As a first step toward a theory for solving these problems efficiently, the
main goal of this paper is to develop dynamic programming techniques to solve problems on graphs
of small bipartite treewidth. For such graphs, we provide a number of para-NP-completeness results,
FPT-algorithms, and XP-algorithms, as well as several open problems. In particular, we show that
Kt-Subgraph-Cover, Weighted Vertex Cover/Independent Set, Odd Cycle Transversal,
and Maximum Weighted Cut are FPT parameterized by bipartite treewidth. We also provide
the following complexity dichotomy when H is a 2-connected graph, for each of the H-Subgraph-
Packing, H-Induced-Packing, H-Scattered-Packing, and H-Odd-Minor-Packing problems:
if H is bipartite, then the problem is para-NP-complete parameterized by bipartite treewidth while,
if H is non-bipartite, then the problem is solvable in XP-time. Beyond bipartite treewidth, we define
1-H-treewidth by replacing the bipartite graph class by any graph class H. Most of the technology
developed here also works for this more general parameter.

2012 ACM Subject Classification Theory of computation → Parameterized complexity and exact
algorithms

Keywords and phrases tree decomposition, bipartite graphs, dynamic programming, odd-minors,
packing, maximum cut, vertex cover, independent set, odd cycle transversal

Digital Object Identifier 10.4230/LIPIcs.IPEC.2023.26

Related Version Full Version: https://doi.org/10.48550/arXiv.2309.07754

Funding The second and the third authors were supported by the ANR project ELIT (ANR-20-CE48-
0008-01), the three last authors were supported by the French-German Collaboration ANR/DFG
Project UTMA (ANR-20-CE92-0027), and the first author was supported by the Research Council
of Norway (No 274526).

Acknowledgements We thank Sebastian Wiederrecht and the reviewers for helpful remarks.

© Lars Jaffke, Laure Morelle, Ignasi Sau, and Dimitrios M. Thilikos;
licensed under Creative Commons License CC-BY 4.0

18th International Symposium on Parameterized and Exact Computation (IPEC 2023).
Editors: Neeldhara Misra and Magnus Wahlström; Article No. 26; pp. 26:1–26:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:lars.jaffke@uib.no
mailto:laure.morelle@lirmm.fr
mailto:ignasi.sau@lirmm.fr
mailto:sedthilk@thilikos.info
https://doi.org/10.4230/LIPIcs.IPEC.2023.26
https://doi.org/10.48550/arXiv.2309.07754
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

26:2 Dynamic Programming on Bipartite Tree Decompositions

1 Introduction

A graph H is said to be an odd-minor of a graph G if it can be obtained from G by iteratively
removing vertices, edges, and contracting edge cuts. Hadwiger’s conjecture [15], which is
open since 1943, states that if a graph excludes Kt as a minor, then its chromatic number is
at most t − 1. In 1993, Gerards and Seymour [19] generalized this conjecture to odd-minors,
hence drawing attention to odd-minors: the Odd Hadwiger’s conjecture states that if a graph
excludes Kt as an odd-minor, then its chromatic number is at most t−1. Since then, a number
of papers regarding odd-minors appeared. Most of them focused to the resolution of the
Odd Hadwiger’s conjecture (see for instance [11], and [30] for a nice overview of the results),
while some others aimed at extending the results of graph minor theory to odd-minors (see
for instance [6, 16,22]). In particular, Demaine, Hajiaghayi, and Kawarabayashi [6] provided
a structure theorem which essentially states that graphs excluding an odd-minor can be
obtained by clique-sums of almost-embeddable graphs and almost bipartite graphs. To prove
this, they implicitly proved the following, which is described more explicitly by Tazari [31].

▶ Proposition 1 ([31], adapted from [6]). Let H be a fixed graph and let G be a given
H-odd-minor-free graph. There exists a fixed graph H ′, κ, µ ∈ N depending only on H, and
an explicit uniform algorithm that computes a rooted tree decomposition of G such that:

the adhesion of two nodes has size at most κ, and
the torso of each bag B either consists of a bipartite graph WB together with µ additional
vertices (bags of Type 1) or is H ′-minor-free (bags of Type 2).

Furthermore, the following properties hold:
1. Bags of Type 2 appear only in the leaves of the tree decomposition,
2. if B2 is a bag that is a child of a bag B1 in the tree decomposition, then |B2 ∩V (WB1)| ≤ 1;

and if B2 is of Type 1, then |B1 ∩ V (WB2)| ≤ 1 as well,
3. the algorithm runs in time OH(|V (G)|4), and
4. the µ additional vertices of the bags of Type 1, called apex vertices, can be computed

within the same running time.

It is worth mentioning that Condition 2 of Proposition 1 is slightly stronger than what is
stated in [31], but it follows from the proof of [6, Theorem 4.1].

The tree decomposition described in Proposition 1 seems hence adapted to study problems
related to odd-minors. As a first step toward building a theory for solving such problems,
we study in this paper a new type of tree decomposition, which we call bipartite tree
decomposition, corresponding to the tree decompositions of Proposition 1, but where all bags
are only of Type 1. We also stress that this decomposition has also been implicitly used
in [21] and is also introduced, under the same name, in [4].

Bipartite treewidth. Let B denotes the class of bipartite graphs. A bipartite tree decom-
position of a graph G is a triple (T, α, β), where T is a tree and α, β : V (T) → 2V (G), such
that

(T, α ∪ β) is a tree decomposition of G,
for every t ∈ V (T), α(t) ∩ β(t) = ∅,
for every t ∈ V (T), G[β(t)] ∈ B, and
for every tt′ ∈ E(T), |(α ∪ β)(t′) ∩ β(t)| ≤ 1.

The width of (T, α, β) is equal to max
{

|α(t)|
∣∣ t ∈ V (T)

}
. The bipartite treewidth of G,

denoted by btw(G), is the minimum width over all bipartite tree decompositions of G.

L. Jaffke, L. Morelle, I. Sau, and D. M. Thilikos 26:3

It follows easily from the definition that btw(G) = 0 if and only if G is bipartite (indeed,
to prove the sufficiency, just take a single bag containing the whole bipartite graph, with no
apex vertices). More generally, for every graph G it holds that btw(G) ≤ oct(G), where oct
denotes the size of a minimum odd cycle transversal, that is, a vertex set intersecting every
odd cycle. On the other hand, since a bipartite tree decomposition is a tree decomposition
whose width is not larger than the maximum size of a bag (in each bag, just declare all
vertices as apices), for every graph G it holds that btw(G) ≤ tw(G) + 1, where tw denotes
treewidth. Thus, bipartite treewidth can be seen as a common generalization of treewidth
and the odd cycle transversal number. Hence, an FPT-algorithm parameterized by btw
should generalize both FPT-algorithms parameterized by tw and by oct. Since our goal
is to develop a theory for solving problems related to odd-minors, the first prerequisite is
that bipartite treewidth is closed under odd-minors. Fortunately, this is indeed the case
(cf. [17, Lemma 3.2]). Interestingly, this would not be true anymore if, in Condition 2 of
Proposition 1, the considered intersections were required to be upper-bounded by some
integer larger than one (cf. [17, Lemma 3.3]).

This type of tree decomposition has been already used implicitly by Kawarabayashi and
Reed [21] in order to solve Odd Cycle Transversal parameterized by the solution size.
Independently of our work, Campbell, Gollin, Hendrey, and Wiederrecht [4] are also currently
studying bipartite tree decompositions. In particular, they provide universal obstructions
characterizing bounded btw in the form of a “grid theorem” (actually the result of [4] apply
in the much more general setting of undirected group labeled graphs). They also designed
an FPT-approximation algorithm that can construct a bipartite tree decomposition in time
g(k) · n4 log n. This FPT-approximation is an important prerequisite for our algorithmic
results as it permits us to assume that, for the implementation of our algorithms, some
(approximate) bipartite tree decomposition is provided in advance.

Our aim is to provide a general framework for the design of dynamic programming
algorithms on bipartite tree decompositions and, more generally, on a broader type of
decompositions that we call 1-H-tree decompositions. These decompositions generalize
bipartite tree decompositions, in the sense that the role of bipartite graphs is replaced by a
general graph class H.

Our results. In this article we formally introduce bipartite treewidth and bipartite tree
decompositions (noticing that they were implicitly already used before, as discussed above).
We then focus on the complexity of various problems when the bipartite treewidth of the
input graph is taken as a parameter. In particular, we show the following (cf. Table 1):

While a graph with btw at most k is (k + 2)-colorable (cf. [17, Lemma 6.1]), 3-Coloring
is NP-complete even on graphs of oct of size three (cf. [17, Lemma 6.2]), and thus btw at
most three.
Kt-Subgraph-Cover, Weighted Vertex Cover/Independent Set, Odd Cycle
Transversal, and Maximum Weighted Cut are FPT parameterized by btw (cf. [17,
Corollaries 4.3, 4.5, 4.6, 4.7]). In particular, our FPT-algorithms extend the domain where
these well-studied problems can be solved in polynomial time to graphs that are “locally
close to being bipartite”. Furthermore, as btw(G) ≤ oct(G) for any graph G, we think
that the fact that Odd Cycle Transversal is FPT parameterized by btw is relevant
by itself, as it generalizes the well-known FPT-algorithms parameterized by the solution
size [25, 28]. We would like to mention that combining in a win-win manner our dynamic
programming algorithm with the FPT-approximation and the Grid Exclusion Theorem

IPEC 2023

26:4 Dynamic Programming on Bipartite Tree Decompositions

of [4] we may derive an FPT-algorithm for Odd Cycle Transversal parameterized by
the solution size, whose running time is considerably better than the one in [4], which
has been obtained independently by using the irrelevant vertex technique (see also [21]).
Let H be a 2-connected graph. We prove that H-Minor-Packing is para-NP-complete
parameterized by btw. For each of the H-Subgraph-Packing, H-Induced-Subgraph-
Packing, H-Scattered-Packing, and H-Odd-Minor-Packing problems (cf. Ap-
pendix B for the definitions), we obtain the following complexity dichotomy: if H is
bipartite, then the problem is para-NP-complete parameterized by btw (in fact, even
for btw = 0), and if H is non-bipartite, then the problem is solvable in XP-time. The
definition of the problems and the XP-algorithms are presented in [17, Section 5] and the
hardness results in [17, Lemma 6].
In view of the definition of bipartite tree decompositions, it seems natural to consider,
instead of bipartite graphs as the “free part” of the bags, any graph class H. This
leads to the more general definition of 1-H-tree decomposition and 1-H-treewidth (cf. [17,
Section 3]), with 1-{∅}-treewidth being equivalent to the usual treewidth and 1-B-treewidth
being the bipartite treewidth if B is the class of bipartite graphs. We introduce these
more general definitions because our dynamic programming technologies easily extend
to 1-H-treewidth. It also seems natural to consider, instead of allowing at most one
“bipartite vertex” in each adhesion, allowing any number q of them. For q = 0, this
corresponds to the H-treewidth defined in [8] (see also [1,18] on the study of H-treewidth
for several instantiations of H). However, as mentioned above, while 1-B-treewidth is
closed under odd-minors (cf. [17, Lemma 3.2]), this is not the case anymore for q ≥ 2
(cf. [17, Lemma 3.3]). For q ≥ 2, some problems remain intractable even when H is
not bipartite. As an illustration of this phenomenon, we prove that H-Scattered-
Packing (where there cannot be an edge in G among the copies of H to be packed) is
para-NP-complete parameterized by q-B-treewidth for q ≥ 2 even if H is not bipartite
(cf. [17, Lemma 6.7]).

In the statements of the running time of our algorithms, we always let n (resp. m) be
the number of vertices (resp. edges) of the input graph of the considered problem.

Table 1 Summary of the results obtained in this article.

Problem Complexity Constraints on H/Running time
H(-Induced)-Subgraph/Odd-Minor

para-NP-complete, k = 0

H bipartite containing P3 as a subgraph
-Cover [32]

H-Minor-Cover [32] H containing P3 as a subgraph
H(-Induced)-Subgraph-Packing H bipartite containing P3 as a subgraph

H-Minor-Packing H 2-connected with |V (H)| ≥ 3
H-Odd-Minor-Packing H 2-connected bipartite with |V (H)| ≥ 3
H-Scattered-Packing H 2-connected bipartite with |V (H)| ≥ 2

3-Coloring para-NP-complete, k = 3
Kt-Subgraph-Cover

FPT

O(2k · (kt · (n + m) + m
√

n))
Independent Set O(2k · (k · (k + n) + m

√
n))

Weighted Independent Set O(2k · (k · (k + n) + n · m))
Odd Cycle Transversal O(3k · k · n · (m + k2))
Maximum Weighted Cut O(2k · (k · (k + n) + nO(1)))

H-Subgraph-Packing

XP
H non-bipartite 2-connected

H-Induced-Subgraph-Packing
H-Scattered-Packing

nO(k)

H-Odd-Minor-Packing

L. Jaffke, L. Morelle, I. Sau, and D. M. Thilikos 26:5

Related results. Other types of tree decompositions integrating some “free bipartite parts”
have been defined recently. As we already mentioned, Eiben, Ganian, Hamm, and Kwon [8]
defined H-treewidth for a fixed graph class H. The H-treewidth of a graph G is essentially
the minimum treewidth of the graph induced by some set X ⊆ V (G) such that the connected
components of G\X belong to H, and is equal to 0-H-treewidth minus one (cf. [17, Section 3]).
In particular, when H is the class of bipartite graphs B, Jansen and de Kroon [18] provided
an FPT-algorithm to test whether the B-treewidth of a graph is at most k.

Recently, as a first step to provide a systematic theory for odd-minors, Gollin and
Wiederrecht [12] defined the H-blind-treewidth of a graph G, where H is a property of
annotated graphs. Then the H-blind-treewidth is the smallest k such that G has a tree
decomposition where every bag β(t) such that (G, β(t)) /∈ H has size at most k. For the
case where C consists of every (G, X) where every odd cycle in H as at most one vertex in
X, we obtain the C-blind-treewidth, for which [12] gives an analogue of the Grid Exclusion
Theorem [5, 29] under the odd-minor relation. Moreover, [12] provides an FPT-algorithm for
Independent Set parameterized by C-blind-treewidth. According to [12], the bipartite-blind
treewidth of a graph G is lower-bounded by a function of the maximum treewidth over
all non-bipartite blocks of G. This immediately implies that bipartite-blind treewidth is
lower-bounded by bipartite treewidth. Hence, our FPT-algorithm for Independent Set is
more general than the one of [12]. Independently of our work, [4] presents an FPT-algorithm
to solve Odd Cycle Transversal parameterized by btw in time f(btw) · n4 log n (in
fact, they solve a more general group labeled problem). Our algorithm for Odd Cycle
Transversal (cf. [17, Corollary 4.6]) is considerably faster.

Organization of the paper. Due to space restrictions, many definitions, results and proofs
cannot be provided here, but are available in the full version of the paper [17]. In Section 2 we
provide an overview of our techniques. In Section 3 we give a general dynamic programming
algorithm to obtain FPT-algorithms, and apply it to Maximum Weighted Cut. Finally, we
present several questions for further research in Section 4. Additional necessary definitions
are provided in Appendix A.

2 Overview of our techniques

In this section we present an overview of the techniques that we use to obtain our results.

2.1 Dynamic programming algorithms

Compared to dynamic programming on classical tree decompositions, there are two main
difficulties for doing dynamic programming on (rooted) bipartite tree decompositions. The
first one is that the bags in a bipartite tree decomposition may be arbitrarily large, which
prevents us from applying typical brute-force approaches to define table entries. The second
one, and apparently more important, is the lack of an upper bound on the number of children
of each node of the decomposition. Indeed, unfortunately, a notion of “nice bipartite tree
decomposition” preserving the width (even approximately) does not exist (cf. [17, Lemma 3.4]).
We discuss separately the main challenges involved in our FPT-algorithms and in our XP-
algorithms.

IPEC 2023

26:6 Dynamic Programming on Bipartite Tree Decompositions

2.1.1 FPT-algorithms
In fact, for most of the considered problems, in order to obtain FPT-algorithms parameterized
by btw, it would be enough to bound the number of children as a function of btw, but we were
not able to come up with a general technique that achieves this property (cf. [17, Lemma 3.4]).
For particular problems, however, we can devise ad-hoc solutions. Namely, for Kt-Subgraph-
Cover, Weighted Vertex Cover/Independent Set, Odd Cycle Transversal, and
Maximum Weighted Cut parameterized by btw, we overcome the above issue by managing
to replace the children by constant-sized bipartite gadgets. More specifically, we guess an
annotation of the “apex” vertices of each bag t, whose number is bounded by btw, that
essentially tells which of these vertices go to the solution or not (with some extra information
depending on each particular problem; for instance, for Odd Cycle Transversal, we
also guess the side of the bipartition of the non-solution vertices). Having this annotation,
each adhesion of the considered node t with a child contains, by the definition of bipartite
tree decompositions, at most one vertex v that is not annotated. At this point, we crucially
observe that, for the considered problems, we can make local computation for each child,
independent from the computations at other children, depending only on the values of the
optimum solutions at that child that are required to contain or to exclude v (note that we need
to be able to keep this extra information at the tables of the children). Using the information
given by these local computations, we can replace the children of t by constant-sized bipartite
gadgets (sometimes empty) so that the newly built graph, which we call a nice reduction, is
an equivalent instance modulo some constant. If a nice reduction can be efficiently computed
for a problem Π, then we say that Π is a nice problem (cf. Appendix A, and [17, Section 4]
for additional intuition). The newly modified bag has bounded oct, so we can then use an
FPT-algorithm parameterized by oct to find the optimal solution with respect to the guessed
annotation.

An illustrative example. Before entering into some more technical details and general
definitions, let us illustrate this idea with the Weighted Vertex Cover problem. We
want to compute the dynamic programming tables at a bag associated with a node t of the
rooted tree given by the bipartite tree decomposition. Remember that the vertices of the
bag at t are partitioned into two sets: β(t) induces a bipartite graph and its complement,
denoted by α(t), corresponds to the apex vertices, whose size is bounded by the parameter,
namely btw. The first step is to guess, in time at most 2btw, which vertices in α(t) belong to
the desired minimum vertex cover. After such a guess, all the vertices in α(t) can be removed
from the graph, by also removing the neighborhood of those that were not taken into the
solution. The definition of bipartite tree decomposition implies that, in each adhesion with
a child of the current bag, there is at most one “surviving” vertex. Let v be such a vertex
belonging to the adhesion with a child t′ of t. Suppose that, inductively, we have computed
in the tables for t′ the following two values, subject to the choice that we made for α(t):
the minimum weight wv of a vertex cover in the graph below t′ that contains v, and the
minimum weight wv̄ of a vertex cover in the graph below t′ that does not contain v. Then,
the trick is to observe that, having these two values at hand, we can totally forget the graph
below t′: it is enough to delete this whole graph, except for v, and attach a new pendant
edge vu, where u is a new vertex, such that v is given weight wv and u is given weight wv̄.
It is easy to verify that this gadget mimics, with respect to the current bag, the behavior
of including vertex v or not in the solution for the child t′. Adding this gadget for every
child results in a bipartite graph, where we can just solve Weighted Vertex Cover in

L. Jaffke, L. Morelle, I. Sau, and D. M. Thilikos 26:7

polynomial time using a classic algorithm [23,27], and add the returned weight to our tables.
The running time of this whole procedure, from the leaves to the root of the decomposition,
is clearly FPT parameterized by the bipartite treewidth of the input graph.

Extensions and limitations. Note that the algorithm sketched above for Weighted Vertex
Cover is problem-dependent, in particular the choice of the gadgets for the children, and
the fact of deleting the neighborhood of the vertices chosen in the solution. Which type
of replacements and reductions can be afforded in order to obtain an FPT-algorithm for
bipartite treewidth? For instance, concerning the gadgets for the children, as far as the
considered problem can be solved in polynomial time on bipartite graphs, we could attach to
the “surviving” vertices an arbitrary bipartite graph instead of just an edge. If we assume
that the considered problem is FPT parameterized by oct (which is a reasonable assumption,
as btw generalizes oct), then one could think that it may be sufficient to devise gadgets with
bounded oct. Unfortunately, this will not work in general: even if each of the gadgets has
bounded oct (take, for instance, a triangle), since we do not have any upper bound, in terms
of btw, on the number of children (hence, the number of different adhesions), the resulting
graph after the gadget replacement may have unbounded oct. In order to formalize the type
of replacements and reductions that can be allowed, we introduce in Appendix A the notions
of nice reduction and nice problem, along with an illustration (cf. Figure 1). Additional
insights into these definitions, which are quite lengthy, are provided in [17, Section 4.1].

Another sensitive issue is that of “guessing the vertices into the solution”. While this is
quite simple for Weighted Vertex Cover (either a vertex is in the solution, or it is not),
for some other problems we may have to guess a richer structure in order to have enough
information to combine the tables of the children into the tables of the current bag. This
is the reason for which, in the general dynamic programming scheme that we present in
Section 3, we deal with annotated problems, i.e., problems that receive as input, apart from a
graph, a collection of annotated sets in the form of a partition X of some X ⊆ V (G). For
instance, for Weighted Vertex Cover, we define its annotated extension, which we call
Annotated Weighted Vertex Cover, that takes as an input a graph G and two disjoint
sets R and S of vertices of G, and asks for a minimum vertex cover S⋆ such that S ⊆ S⋆

and S⋆ ∩ R = ∅.

General dynamic programming scheme. Our general scheme essentially says that if a
problem Π has an annotated extension Π′ that is

a nice problem and
solvable in FPT-time parameterized by oct,

then Π is solvable in FPT-time parameterized by btw. More specifically, it is enough to
prove that Π′ is solvable in time f(|X|) · nO(1) on an instance (G, X) such that G \ X is
bipartite, where X is a partition of X corresponding to the annotation. This general dynamic
programming algorithm works in a wider setting, namely for a general graph class H that
plays the role of bipartite graphs, as far as the annotated extension Π′ is what we call H-nice;
cf. Lemma 2 for the details.

Applications. We then apply this general framework to give FPT-algorithms for several
problems parameterized by bipartite treewidth. For each of Maximum Weighted Cut
(Subsection 3.4), Kt-Subgraph-Cover (cf. [17, Section 4.4.1]), Weighted Vertex Cov-
er/Independent Set (cf. [17, Section 4.4.2]), and Odd Cycle Transversal (cf. [17, Sec-
tion 4.4.3]), we prove that the problem has an annotated extension that is 1) nice and 2)
solvable in FPT-time parameterized by oct, as discussed above.

IPEC 2023

26:8 Dynamic Programming on Bipartite Tree Decompositions

To prove that an annotated problem has a nice reduction, we essentially use two ingredients.
Given two compatible boundaried graphs F and G with boundary X (a boundaried graph is
essentially a graph along with some labeled vertices that form a boundary, see the formal
definition in Appendix A), an annotated problem is usually nice if the following hold:

(Gluing property) Given that we have guessed the annotation X in the boundary X, a
solution compatible with the annotation is optimal in the graph F ⊕ G obtained by gluing
F and G if and only if it is optimal in each of the two glued graphs. In this case, it
means that the optimum on (F ⊕ G, X) is equal to the optimum on (F, X) modulo some
constant depending only on G and X .
(Gadgetization) Given that we have guessed the annotation in the boundary X \ {v}
for some vertex v in X, there is a small boundaried graph G′, that is bipartite (maybe
empty), such that the optimum on (F ⊕ G, X) is equal to the optimum on (F ⊕ G′, X)
modulo some constant depending only on G and X .

The gluing property seems critical to show that a problem is nice. This explains why
we solve H-Subgraph-Cover only when H is a clique. For any graph H, Annotated
H-Subgraph-Cover is defined similarly to Annotated Weighted Vertex Cover by
specifying vertices that must or must not be taken in the solution. If H is a clique, then we
crucially use the fact that H is a subgraph of F ⊕ G if and only if it is a subgraph of either
F or G to prove that Annotated H-Subgraph-Cover has the gluing property. However,
we observe that if H is not a clique, then Annotated H-Subgraph-Cover does not have
the gluing property (cf. [17, Lemma 4.3]). This is the main difficulty that we face to solve
H-Subgraph-Cover in the general case.

Note also that if we define the annotated extension of Odd Cycle Transversal in a
similar fashion (that is, a set S of vertices contained in the solution and a set R of vertices
that do not belong to the solution), then we can prove that this annotated extension does not
have the gluing property. However, if we define Annotated Odd Cycle Transversal as
the problem that takes as an input a graph G and three disjoint sets S, X1, X2 of vertices of
G and aims at finding an odd cycle transversal S⋆ of minimum size such that S ⊆ S⋆ and X1
and X2 are on different sides of the bipartition obtained after removing S⋆, then Annotated
Odd Cycle Transversal does have the gluing property (cf. [17, Lemma 4.9]).

For Maximum Weighted Cut, the annotation is pretty straightforward: we use two
annotation sets X1 and X2, corresponding to the vertices that will be on each side of the
cut. It is easy to see that this annotated extension has the gluing property (cf. Lemma 3).

Finding the right gadgets is the main difficulty to prove that a problem is nice. As
explained above, for Annotated Weighted Vertex Cover, we replace the boundaried
graph G by an edge that simulates the behavior of G with respect to v, which is the only
vertex that interest us (cf. [17, Lemma 4.7]). For Annotated Maximum Weighted Cut,
if X = (X1, X2), the behavior of G can be simulated by an edge between v and a vertex in X1
of weight equal to the optimum on (G, (X1, X2 ∪{v})) and an edge between v and a vertex in
X2 of weight equal to the optimum on (G, (X1 ∪ {v}, X2)) (see Lemma 4). For Annotated
Kt-Subgraph-Cover, if X = (R, S), depending on the optimum on (G, (R ∪ {v}, S)) and
the one on (G, (R, S ∪ {v})), we can show that the optimum on (F ⊕ G, X) is equal to
the optimum on (F, X) or (F \ {v}, X) modulo some constant (cf. [17, Lemma 4.4]). For
Annotated Odd Cycle Transversal, if X = (S, X1, X2), we can show that the optimum
on (F⊕G, X) is equal modulo some constant to the optimum on either (F, X), or (F \{v}, X),
or (F ′, X), where F ′ is obtained from F by adding an edge between v and either a vertex of
X1 or a vertex of X2 (cf. [17, Lemma 4.10]).

L. Jaffke, L. Morelle, I. Sau, and D. M. Thilikos 26:9

Finally, let us now mention some particular ingredients used to prove that the considered
annotated problems are solvable in time f(|X|) · nO(1) on an instance (G, X) such that G \ X

is bipartite, where X is a partition of a vertex set X corresponding to the annotation. For
Annotated Kt-Subgraph-Cover and Annotated Weighted Vertex Cover, this is
simply a reduction to (Weighted Vertex) Cover on bipartite graphs. For Odd Cycle
Transversal, we adapt the algorithm of Reed, Smith, and Vetta [28] that uses iterative
compression to solve Annotated Odd Cycle Transversal in FPT-time parameterized
by oct, so that it takes annotations into account (cf. [17, Lemma 4.12]). As for Maximum
Weighted Cut parameterized by oct, the most important trick is to reduce to a K5-
odd-minor-free graph, and then use known results of Grötschel and Pulleyblank [13] and
Guenin [14] to solve the problem in polynomial time (Proposition 6).

2.1.2 XP-algorithms

We now sketch some of the basic ingredients of the XP-algorithms that we present in [17,
Section 5] for H(-Induced)-Subgraph/Scattered/Odd-Minor-Packing. The main
observation is that, if H is 2-connected and non-bipartite, since the “non-apex” part of each
bag is bipartite and H is non-bipartite, in any H-subgraph/induced/scattered/odd-minor-
packing and every bag of the decomposition, there are at most btw occurrences of H that
intersect that bag. We thus guess these occurrences, and how they intersect the children, which
allow us to reduce the number of children by just deleting those not involved in the packing.
The guess of these occurrences is the dominant term in the running time of the resulting
XP-algorithm using this method. Note that for H(-Induced)-Subgraph/Scattered-
Packing, we can indeed easily guess those occurrences in XP-time parameterized by btw, as
the total size of the elements of the packing intersecting a given bag is bounded by a function
of btw and H. However, for H-Odd-Minor-Packing, this is not the case anymore, as an
element of the packing may contain an arbitrary number of vertices in the bipartite part of a
bag. We overcome this issue as follows. As stated in [17, Lemma 3.1], the existence of an
H-odd-minor is equivalent to the existence of a so-called odd H-expansion, which is essentially
a collection of trees connected by edges preserving the appropriate parities of the resulting
cycles. In an odd H-expansion, the branch vertices are those that have degree at least three,
or that are incident to edges among different trees. Note that, in an odd H-expansion, the
number of branch vertices depends only on H (cf. [17, Lemma 5.2]). Equipped with this
property, we first guess, at a given bag, the branch vertices of the packing that intersect that
bag. Note that this indeed yields an XP number of choices, as required. Finally, for each
such a choice, we use an FPT-algorithm of Kawarabayashi, Reed, and Wollan [22] solving
the Parity k-Disjoint Paths to check whether the guessed packing exists or not. This
approach is formalized in [17, Lemma 5.3].

It is worth mentioning that, as discussed in Section 4, we leave as an open problem the
existence of FPT-algorithms for the above packing problems parameterized by btw.

2.2 Hardness results

Finally, we discuss some of the tools that we use to obtain the para-NP-completeness results
summarized in Table 1, which can be found in [17, Section 6]. We present a number of
different reductions, some of them consisting of direct simple reductions, such as the one we
provide for 3-Coloring in [17, Lemma 6.2].

IPEC 2023

26:10 Dynamic Programming on Bipartite Tree Decompositions

Except for 3-Coloring, all the considered problems fall into two categories: covering
or packing problems. For the first family (cf. [17, Section 6.2]), the para-NP-completeness
is an immediate consequence of a result of Yannakakis [32] that characterizes hereditary
graph classes G for which Vertex Deletion to G on bipartite graphs is polynomial-time
solvable and those for which Vertex Deletion to G remains NP-complete.

For the packing problems (cf. [17, Section 6.2]), we do not have such a general result as for
the covering problems, and we provide several reductions for different problems. For instance,
we prove in [17, Lemma 6.3] that if H is a bipartite graph containing P3 as a subgraph, then
H-Subgraph-Packing and H-Induced-Subgraph-Packing are NP-complete on bipartite
graphs. The proof consists in a careful analysis and a slight modification of a reduction of
Kirkpatrick and Hell [24] for the problem of partitioning the vertex set of an input graph G

into subgraphs isomorphic to a fixed graph H. The hypothesis about containing P3 is easily
seen to be tight.

For the minor version, we prove in [17, Lemma 6.4] that if H is a 2-connected graph with
at least three vertices, then H-Minor-Packing is NP-complete on bipartite graphs. The
proof uses a reduction from P3-Subgraph-Packing on bipartite graphs, which was proved
to be NP-complete by Monnot and Toulouse [26]. The 2-connectivity of H is crucially used
in the proof. Given that odd-minors preserve cycle parity (cf. [17, Lemma 3.1]), when H

is bipartite, H-Odd-Minor-Packing and H-Minor-Packing are the same problem on
bipartite graphs. Hence, the same hardness result holds for H-Odd-Minor-Packing when
H is 2-connected and bipartite (cf. [17, Lemma 6.5]).

In [17, Lemma 6.6] we prove that, if H is a 2-connected bipartite graph with at least one
edge, then H-Scattered-Packing is NP-complete on bipartite graphs, by a simple reduction
from the Induced Matching on bipartite graphs, which is known to be NP-complete [3].

Finally, in [17, Lemma 6.7] we prove that if H is a (non-necessarily bipartite) 2-connected
graph containing an edge and q ∈ N≥2, then H-Scattered-Packing is para-NP-complete
parameterized by q-B-treewidth. In fact, this reduction is exactly the same as the one when
q = 1, with the extra observation that, if G′ is the graph constructed in the reduction, then
the “bipartite” treewidth of G′ is at most the one of H for q ≥ 2.

3 General dynamic programming to obtain FPT-algorithms

In this section, we give introduce a framework for giving FPT-algorithms for problems
parameterized by the width of a given bipartite tree decomposition of the input graph. In
Subsection 3.1 we provide some preliminary definitions and notations, especially concerning
annotated problems. Due to space constraints treewidth, boundaried graphs, and nice problems
are defined in Appendix A. In Subsection 3.2 we provide a dynamic programming scheme
for nice problems, along with some generalizations of this scheme in Subsection 3.3. Finally,
we give an application to Maximum Weighted Cut in Subsection 3.4. Applications to
Kt-Vertex Cover, Weighted Vertex Cover, and Odd Cycle Transversal are
additionally given in [17].

3.1 Preliminaries
Partitions. Given p ∈ N, a p-partition of a set X is a tuple (X1, . . . , Xp) of pairwise disjoint
subsets of X such that X =

⋃
i∈[p] Xi. We denote by Pp(X) the set of all p-partitions

of X. Given a partition X ∈ Pp(X), its domain X is also denoted as ∪X . A partition
is a p-partition for some p ∈ N. Note that this corresponds to the usual definition of
an ordered near-partition, since we allow empty sets in a p-partition and since the order

L. Jaffke, L. Morelle, I. Sau, and D. M. Thilikos 26:11

matters. Given Y ⊆ X, X = (X1, . . . , Xp) ∈ Pp(X), and Y = (Y1, . . . , Yp) ∈ Pp(Y), we
say that Y ⊆ X if Yi ⊆ Xi for each i ∈ [p]. Given a set U , two subsets X, A ⊆ U , and
X = (X1, . . . , Xp) ∈ Pp(X), X ∩ A denotes the partition (X1 ∩ A, . . . , Xp ∩ A) of X ∩ A.

Optimization problems. A p-partition-evaluation function on graphs is a function f that
receives as input a graph G along with a p-partition P of its vertices and outputs a non-
negative integer. Given such a function f and some choice opt ∈ {max, min} we define the
associated graph parameter pf,opt where, for every graph G,

pf,opt(G) = opt{f(G, P) | P is a p-partition of V (G)}.

An optimization problem is a problem that can be expressed as follows.

Input: A graph G.
Objective: Compute pf,opt(G).

The annotated extension of pf,opt is the parameter p̂f,opt such that

p̂f,opt(G, X) = opt{f(G, P) | P is a p-partition of V (G) with X ⊆ P}.

Observe that pf,opt(G) = p̂f,opt(G, ∅p), for every graph G. The problem Π′ is a p-annotated
extension of the optimization problem Π if Π can be expressed by some p-partition-evaluation
function f and some choice opt ∈ {max, min}, and that Π′ can be expressed as follows.

Input: A graph G and X ∈ Pp(X) for some X ⊆ V (G).
Objective: Compute p̂f,opt(G, X).

We also say that Π′ is a p-annotated problem.

While our goal in this article is to study bipartite treewidth, defined below, we define a
more general parameter, namely 1-H-treewidth, with the hope of it finding some application
in future work. We use the term 1-H-treewidth to signify that the “H-part” of each bag
intersects each neighboring bag in at most one vertex. This also has the benefit of avoiding
confusion with H-treewidth defined in [8], which would be another natural name for this
class of parameters.

1-H-tree decompositions. Let H be a graph class. A 1-H-tree decomposition is defined
exactly like a tree decomposition, but by replacing the class B of bipartite graphs by H.

3.2 General dynamic programming scheme
We now have all the ingredients for our general scheme dynamic programming algorithm on
bipartite tree decompositions. We essentially prove that if a problem Π has an annotated
extension that is B-nice and solvable in FPT-time parameterized by oct, then Π is solvable
in FPT-time parameterized by btw. This actually holds for more general H.

▶ Lemma 2. Let p ∈ N. Let H be a graph class. Let Π be an optimization problem. Let Π′

be a problem that is:
a p-annotated extension of Π corresponding to some choice of p-partition-evaluation
function g and some opt ∈ {max, min},
H-nice, and
solvable on instances (G, X) such that G \ ∪X ∈ H in time f(| ∪ X |) · nc · md, for some
c, d ∈ N.

IPEC 2023

26:12 Dynamic Programming on Bipartite Tree Decompositions

Then, there is an algorithm that, given a graph G and a 1-H-tree decomposition of G of width
k, computes pf,opt(G) in time O(pk ·f(k+O(1))·(k·n)c ·md) (or O(pk ·f(k+O(1))·(m+k2 ·n)d)
if c = 0).

Proof. Let Alg be the algorithm that solves instances (G, X) such that G \ ∪X ∈ H in time
f(| ∪ X |) · nc · md.

Let (T, α, β, r) be a rooted 1-H-tree decomposition of G of width at most k. Let
σ : V (G) → N be an injection. For t ∈ V (T), let Gt = (Gt, δt, σ|δt

), let Xt = α(t) ∪
δt ∪

⋃
t′∈chr(t) δt′ , let Xt = (G[Xt], Xt, σ|Xt

), let Ht = Xt ⊞ (⊞t′∈chr(t)Gt′), let Ft be such
that Gt = Ft ⊕ Ht. let At = α(t) ∪ δt, and let Bt = Xt \ At = Xt ∩ β(t) \ δt. Note that
|bd(Gt′) \ At| ≤ 1 for t′ ∈ chr(t).

We proceed in a bottom-up manner to compute sX
t := p̂g,opt(Gt, X), for each t ∈ V (T),

for each X ∈ Pp(δt). Hence, given that δr = ∅, s∅
r = pg,opt(G).

Let t ∈ V (T). By induction, for each t′ ∈ chr(t) and for each Xt′ ∈ Pp(δt′), we compute
the value s

Xt′
t′ . Let X ∈ Pp(δt). Let Q be the set of all A ∈ Pp(At) such that A∩ δt = X . Let

A ∈ Q. Since Π′ is H-nice, there is an H-nice reduction (HA, A′, sA) of (Ht, A) with respect
to Π′. Hence, p̂g,opt(Gt, A) = p̂g,opt(HA ▷ Ft, A′) + sA. Let us compute p̂g,opt(HA ▷ Ft, A′).

By definition of a H-reduction, (HA ▷Ft)\(∪A′) ∈ H. Hence, we can compute p̂g,opt(HA ▷

Ft, A′), and thus p̂g,opt(Gt, A), using Alg on the instance (HA ▷ Ft, A′). Finally, sX
t =

optA∈Qp̂g,opt(Gt, A).
It remains to calculate the complexity. Throughout, we make use of the fact that p is a

fixed constant. We can assume that T has at most n nodes: for any pair of nodes t, t′ with
(α∪β)(t) ⊆ (α∪β)(t′), we can contract the edge tt′ of T to a new vertex t′′ with α(t′′) = α(t′)
and β(t′′) = β(t′). This defines a valid 1-H-tree decomposition of same width. For any leaf t

of T , there is a vertex u ∈ V (G) that only belongs to the bag of t. From this observation,
we can inductively associate each node of T to a distinct vertex of G. So this H-tree
decomposition has at most n bags. Hence, if ct = |chr(t)|, then we have

∑
t∈V (T) ct ≤ n. Let

also nt = |(α∪β)(t)| and mt = |E(G[(α∪β)(t)])|. Note that |At| = |α(t)|+ |δt ∩β(t)| ≤ k +1
and that |Bt| = |

⋃
t′∈V (T) δt′ ∩ β(t)| ≤ ct, so |Xt| ≤ k + 1 + ct. Moreover, the properties of

the tree decompositions imply that the vertices in β(t) \ Xt are only present in node t. Then,∑
t∈V (T) nt =

∑
t∈V (T)(|Xt| + |β(t) \ Xt|) = O(k · n). Also, let m̄t be the number of edges

only present in the bag of node t. The edges that are present in several bags are those in the
adhesion of t and its neighbors. t is adjacent to its |ct| children and its parent, and an adhesion
has size at most k + 1. Thus,

∑
t∈V (T) mt ≤

∑
t∈V (T)(m̄t + k2(1 + ct)) = O(m + k2 · n).

There are p|At| ≤ pk+1 = O(pk) partitions of Pp(At). For each of them, we compute in
time O(k · ct) a H-nice reduction (HA, A′, sA) with |∪A′| = |At|+O(1) = k +O(1) and with
O(|Bt|) = O(ct) additional vertices and edges. We thus solve Π′ on (HA ▷ Ft, A′) in time
f(k+O(1))·O((nt+ct)c ·(mt+ct)d). Hence, the running time is O(pk ·f(k+O(1))·(k ·n)c ·md)
(or O(pk · f(k + O(1)) · (m + k2 · n)d) if c = 0). ◀

3.3 Generalizations

For the sake of simplicity, we assumed in Lemma 2 that the problem Π under consideration
takes as input just a graph. However, a similar statement still holds if we add labels/weights
on the vertices/edges of the input graph. This is in particular the case for Maximum
Weighted Cut (Subsection 3.4) and Weighted Independent Set where the vertices or
edges are weighted.

L. Jaffke, L. Morelle, I. Sau, and D. M. Thilikos 26:13

Moreover, again for the sake of simplicity, we assumed that Π′ is solvable in FPT-
time, while other complexities such as XP-time could be considered. Similarly, in the
definition of the nice reduction, the contraints |A′| = |A| + O(1), |V (G′)| ≤ |X| + O(|B|),
|E(G′)| ≤ |E(G[X])| + O(|B|) can be modified. In both cases, the dynamic programming
algorithm still holds, but the running time of Lemma 2 changes.

To give a precise running time for Maximum Weighted Cut (Subsection 3.4), Kt-
Subgraph-Cover, and Weighted Independent Set, let us observe that, if Π′ is solvable
in time f(| ∪ X |) · n′c · m′d, where G′ = G \ ∪X , n′ = |V (G′)|, and m′ = |E(G′)|, then the
running time of Lemma 2 is better. Indeed, in the proof of the complexity of Lemma 2, we
now solve Π′ on (HA ▷F, A′) in time f(k + O(1)) ·O((n′

t + ct)c · (m′
t + ct)d), where n′

t = |β(t)|
and m′

t = |E(G[β(t)])|. We have
∑

t∈V (T) n′
t =

∑
t∈V (T)(|B| + |β(t) ∩ δt| + |β(t) \X|) = O(n)

and
∑

t∈V (T) m′
t ≤ m. Hence, the total running time is O(pk · (k · n + f(k + O(1)) · nc · md)).

3.4 Application to Maximum Cut
We now apply the above framework to give an FPT-algorithm for Maximum Weighted
Cut parameterized by bipartite treewidth. Thanks to Lemma 2, this now reverts to showing
that the problem under consideration has an B-nice annotated extension that is solvable in
FPT time when parameterized by oct, where B is the class of bipartite graphs.

The Maximum Weighted Cut problem is defined as follows.

Maximum Weighted Cut
Input: A graph G and a weight function w : E(G) → N.
Objective: Find an edge cut of maximum weight.

Let H be a graph. We define fcut as the 2-partition-evaluation function where, for every
graph G with edge weight w and for every P = (X1, X2) ∈ P2(V (G)),

fcut(G, P) = w(P) = w(E(X1, X2)).

Hence, Maximum Weighted Cut is the problem of computing pfcut,max(G). We call its
annotated extension Annotated Maximum Weighted Cut. In other words, Annotated
Maximum Weighted Cut is defined as follows.

Annotated Maximum Weighted Cut
Input: A graph G, a weight function w : E(G) → N, and two disjoint sets X1, X2 ⊆
V (G).
Objective: Find an edge cut of maximum weight such that the vertices in X1 belongs
to one side of the cut, and the vertices in X2 belong to the other side.

The following property seems critical to show that a problem is H-nice.

Gluing property. Let Π be a p-annotated problem corresponding to some choice of p-
partition-evaluation function f and some opt ∈ {max, min}. We say that Π has the gluing
property if, given two compatible boundaried graphs F and G with boundary X, X ∈ Pp(X),
and P ∈ Pp(V (F ⊕ G)) such that X ⊆ P , then p̂f,opt(F ⊕ G, X) = f(F ⊕ G, P) if and only
if p̂f,opt(F, X) = f(F, P ∩ V (F)) and p̂f,opt(G, X) = f(G, P ∩ V (G)).

We first prove that Annotated Maximum Weighted Cut has the gluing property.

IPEC 2023

26:14 Dynamic Programming on Bipartite Tree Decompositions

▶ Lemma 3 (Gluing property). Annotated Maximum Weighted Cut has the gluing
property. More precisely, given two boundaried graphs F = (F, BF , ρF) and G = (G, BG, ρG),
a weight function w : E(F ⊕ G) → N, a set X ⊆ V (F ⊕ G) such that BF ∩ BG ⊆ X, and
X = (X1, X2) ∈ P2(X), if we set w̄ = w(X ∩ BF ∩ BG), then we have

p̂fcut,max(F ⊕ G, X , w) = p̂fcut,max(F, X ∩ V (F), w) + p̂fcut,max(G, X ∩ V (G), w) − w̄.

Proof. Let P ∈ P2(V (F ⊕ G)) be such that X ⊆ P and p̂fcut,max(F ⊕ G, X , w) = fcut(F ⊕
G, P, w). Then,

p̂fcut,max(F ⊕ G, X , w) = w(P)
= w(P ∩ V (F)) + w(P ∩ V (G)) − w̄

≤ p̂fcut,max(F, X ∩ V (F), w) + p̂fcut,max(G, X ∩ V (G), w) − w̄.

Reciprocally, for H ∈ {F, G}, let PH = (XH
1 , XH

2) ∈ P2(V (H)) be such that X ∩V (H) ⊆
PH and p̂fcut,max(H, X ∩V (H), w) = foct(H, PH , w). Then, since PH ∩BF ∩BG = X ∩BF ∩BG

for H ∈ {F, G}, we have

p̂fcut,max(F ⊕ G, X , w) ≥ w(E(XF
1 ∪ XG

1 , XF
2 ∪ XG

2))
= w(E(XF

1 , XF
2)) + w(E(XG

1 , XG
2)) − w̄

= p̂fcut,max(F, X ∩ V (F), w) + p̂fcut,max(G, X ∩ V (G), w) − w̄. ◀

We now show how to reduce a graph F ⊕ G to a graph F ′ when the boundary of F and
G has a single vertex v that is not annotated.

▶ Lemma 4 (Gadgetization). Let F = (F, BF , ρF) and G = (G, BG, ρG) be two boundaried
graphs, let w : E(F ⊕ G) → N be a weight function, let X ⊆ V (F ⊕ G) be such that
BF ∩ BG ⊆ X, let v ∈ BF ∩ BG, and let X = (X1, X2) ∈ P2(X \ {v}). Suppose that there
is v1 ∈ X1 and v2 ∈ X2 adjacent to v with w(vv1) = w(vv2) = 0. Let X 1 = (X1 ∪ {v}, X2)
and X 2 = (X1, X2 ∪ {v}). For a ∈ [2], let ga = p̂fcut,max(G, X a ∩ V (G), w). Let w̄ =
w(X ∩ BF ∩ BG). Let w′ : E(F) → N be such that w′(vv1) = g2 − w̄, w′(vv2) = g1 − w̄, and
w′(e) = w(e) otherwise. Then

p̂fcut,max(F ⊕ G, X , w) = p̂fcut,max(F, X , w′).

Proof. For a ∈ [2], let fa = p̂fcut,max(F, X a ∩ V (F), w). Note that in F with partition X , if
v is on the same side as X1, then we must count the weight of the edge vv2, but not the
weight of vv1, and vice versa when exchanging 1 and 2. Thus, using Lemma 3, we have

p̂fcut,max(F ⊕ G, X , w) = max{p̂fcut,max(F ⊕ G, X 1, w), p̂fcut,max(F ⊕ G, X 2, w)}
= max{f1 + g1 − w̄, f2 + g2 − w̄}
= max{f1 + w′(vv2), f2 + w′(vv1)}
= max{p̂fcut,max(F ′, X 1, w′), p̂fcut,max(F, X 2, w′)}
= p̂fcut,max(F, X , w′). ◀

Using Lemma 3 and Lemma 4, we can prove that Annotated Maximum Weighted
Cut is H-nice. Essentially, given an instance (G = X ⊞ (⊞i∈[d]Gi), (A, B), A, w), we reduce
G to X where we add two new vertices in A and add every edges between this new vertices
and the vertices in B. We then show that if the appropriate weight is given to each new
edge, then the resulting boundaried graph is equivalent to G modulo some constant s.

L. Jaffke, L. Morelle, I. Sau, and D. M. Thilikos 26:15

▶ Lemma 5 (Nice problem). Let H be a graph class. Annotated Maximum Weighted
Cut is H-nice.

Maximum Weighted Cut is a NP-hard problem [20]. However, there exists a polynomial-
time algorithm when restricted to some graph classes. In particular, Grötschel and Pulleyblank
[13] proved that Maximum Weighted Cut is solvable in polynomial-time on weakly bipartite
graphs, and Guenin [14] proved that weakly bipartite graphs are exactly K5-odd-minor-free
graphs, which gives the following result.

▶ Proposition 6 ([13,14]). There is a constant c ∈ N and an algorithm that solves Maximum
Weighted Cut on K5-odd-minor-free graphs in time O(nc).

Moreover, we observe the following.

▶ Lemma 7. A graph G such that oct(G) ≤ 2 does not contain K5 as an odd-minor.

Proof. Let u, v ∈ V (G) be such that G′ = G \ {u, v} is bipartite. G′ does not contain K3 as
an odd-minor, so G does not contain K5 as an odd-minor. ◀

Combining Proposition 6 and Lemma 7, we have that Annotated Maximum Weighted
Cut is FPT parameterized by oct.

▶ Lemma 8. There is an algorithm that, given a graph G, a weight function w : E(G) → N,
and two disjoint sets X1, X2 ⊆ V (G), such that G′ = G \ (X1 ∪ X2) is bipartite, solves
Annotated Maximum Weighted Cut on (G, X1, X2, w) in time O(k · n′ + n′c), where
k = |X1 ∪ X2| and n′ = |V (G′)|.

Proof. Let G′′ be the graph obtained from G by identifying all vertices in X1 (resp. X2) to
a new vertex x1 (resp. x2). Let w′ : V (G′′) → N be such that w′(x1x2) =

∑
e∈E(G) w(e) + 1,

w′(xiu) =
∑

x∈Xi
w(xu) for i ∈ [2] and u ∈ NG(Xi), and w′(e) = w(e) otherwise. Let

(X⋆
1 , X⋆

2) ∈ P2(V (G)) be such that (X1, X2) ⊆ (X⋆
1 , X⋆

2). For i ∈ [2], let X ′
i = X⋆

i \Xi. Then

w(X⋆
1 , X⋆

2) = w(X1, X2) + w(X ′
1, X ′

2) +
∑

xy∈E(X1,X′
2)

w(xy) +
∑

xy∈E(X′
1,X2)

w(xy)

= w(X1, X2) + w′(X ′
1, X ′

2) +
∑

u∈X2∩NG(X1)

w′(x1u) +
∑

u∈X1∩NG(X2)

w′(x2u)

= w′(X ′
1 ∪ {x1}, X ′

2 ∪ {x2}) + w(X1, X2) − w′(x1x2)

Let w̄ be the contant w(X1, X2) − w′(x1x2). Hence, fcut(G, (X⋆
1 , X⋆

2)) = fcut(G′′, (X ′
1 ∪

{x1}, X ′
2∪{x2}))+w̄, and so p̂fcut,max(G, (X1, X2)) = p̂fcut,max(G′′, ({x1}, {x2}))+w̄. Further-

more, given that the weight of the edge x1x2 is larger than the sum of all other weights, x1 and
x2 are never on the same side of a maximum cut in G′′. Hence, p̂fcut,max(G′′, ({x1}, {x2})) =
pfcut,max(G′′), and therefore, p̂fcut,max(G, (X1, X2)) = pfcut,max(G′′) + w̄.

Constructing G′′ takes time O(k·n) and computing w̄ takes time O(k2). Since oct(G′′) = 2,
according to Proposition 6 and Lemma 7, an optimal solution to Maximum Weighted Cut
on G′′ can be found in time O(n′c), and thus, an optimal solution to Annotated Maximum
Weighted Cut on (G, X1, X2) can be found in time O(k · (k + n′) + n′c). ◀

We apply Lemma 5 and Lemma 8 to the dynamic programming algorithm of Lemma 2 to
obtain the following result.

▶ Corollary 9. Given a graph G and a bipartite tree decomposition of G of width k, there is
an algorithm that solves Maximum Weighted Cut on G in time O(2k · (k · (k + n) + nc)).

IPEC 2023

26:16 Dynamic Programming on Bipartite Tree Decompositions

4 Further research

In this paper we study the complexity of several problems parameterized by bipartite
treewidth, denoted by btw. In particular, our results extend the graph classes for which
Vertex Cover/Independent Set, Maximum Weighted Cut, and Odd Cycle Trans-
versal are polynomial-time solvable. A number of interesting questions remain open.

Except for 3-Coloring, all the problems we consider are covering and packing problems.
We are still far from a full classification of the variants that are para-NP-complete, and those
that are not (FPT or XP). For instance, concerning H-Subgraph-Cover, we provided an
FPT-algorithms when H is a clique. This case is particularly well-behaved because we know
that in a tree decomposition every clique appears in some bag. On the other hand, as an
immediate consequence of the result of Yannakakis [32], we know that H-Subgraph-Cover
is para-NP-complete for every bipartite graph H containing P3. We do not know what
happens when H is not bipartite nor a clique. An apparently simple but challenging case is
C5-Subgraph-Cover. The main difficulty seems to be that C5-Subgraph-Cover does not
have the gluing property, which is the main ingredient in this paper to show that a problem
is nice, and therefore to obtain an FPT-algorithm. We do not exclude the possibility that
the problem is para-NP-complete, as we were not even able to obtain even an XP algorithm.

Concerning the packing problems, namely H-Subgraph/Induced/Scattered/Odd-
Minor-Packing, we provide XP-algorithms for them when H is non-bipartite. Unfortunately,
we do not know whether any of them admits an FPT-algorithm, although we suspect that
it is indeed the case. We would like to mention that it is possible to apply the framework
of equivalence relations and representatives (see for instance [2, 9, 10]) to obtain an FPT-
algorithm for Kt-Subgraph-Packing parameterized by btw. However, since a number of
definitions and technical details are required to present this algorithm, we decided not to
include it in this paper (which is already quite long). However, when H is not a clique, we
do not know whether H-Subgraph-Packing admits an FPT-algorithm. A concrete case
that we do not know how to solve is when H is the paw, i.e., the 4-vertex graph consisting of
one triangle and one pendent edge.

Beyond bipartite tree decompositions, we introduce a more general type of decompositions
that we call q(-torso)-H-tree decompositions. For B being the class of bipartite graphs, we
prove that for every q ≥ 2 and every 2-connected graph H with an edge, H-Scattered-
Packing is para-NP-complete parameterized by q(-torso)-B-treewidth. It should be possible
to prove similar results for other covering and packing problems considered in this article.

Most of our para-NP-completeness results consist just in proving NP-completeness on
bipartite graph. There are two exceptions. On the one hand, the NP-completeness of 3-
Coloring on graphs with odd cycle transversal at most three and H-Scattered-Packing
parameterized by q-B-treewidth for every integer q ≥ 2. Interestingly, none of our hardness
results really exploits the structure of bipartite tree decompositions (i.e., for q = 1), beyond
being bipartite or having bounded odd cycle transversal.

Finally, as mentioned in the introduction, the goal of this article is to make a first step
toward efficient algorithms to solve problems related to odd-minors. We already show in this
paper that bipartite treewidth can be useful in this direction, by providing an XP-algorithm
for H-Odd-Minor-Packing. Bipartite treewidth, or strongly related notions, also plays a
strong role in the recent series of papers about odd-minors by Campbell, Gollin, Hendrey,
and Wiederrecht [4, 12]. This looks like an emerging topic that is worth investigating.

L. Jaffke, L. Morelle, I. Sau, and D. M. Thilikos 26:17

References
1 Akanksha Agrawal, Lawqueen Kanesh, Daniel Lokshtanov, Fahad Panolan, M. S. Ramanujan,

Saket Saurabh, and Meirav Zehavi. Deleting, eliminating and decomposing to hereditary
classes are all fpt-equivalent. In Joseph (Seffi) Naor and Niv Buchbinder, editors, Proceedings
of the 2022 ACM-SIAM Symposium on Discrete Algorithms, SODA 2022, Virtual Conference
/ Alexandria, VA, USA, January 9 - 12, 2022, pages 1976–2004. SIAM, 2022. doi:10.1137/
1.9781611977073.79.

2 Julien Baste, Ignasi Sau, and Dimitrios M. Thilikos. A complexity dichotomy for hitting
connected minors on bounded treewidth graphs: the chair and the banner draw the boundary.
In Proc. of the 31st ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 951–970,
2020. doi:10.1137/1.9781611975994.57.

3 Kathie Cameron. Induced matchings. Discrete Applied Mathematics, 24(1-3):97–102, 1989.
doi:10.1016/0166-218X(92)90275-F.

4 Rutger Campbell, J. Pascal Gollin, Kevin Hendrey, and Sebastian Wiederrecht. Odd-Minors
II: Bipartite treewidth. Manuscript under preparation (private communication), 2023.

5 Julia Chuzhoy and Zihan Tan. Towards tight(er) bounds for the Excluded Grid Theorem.
Journal of Combinatorial Theory, Series B, 146:219–265, 2021. doi:10.1016/j.jctb.2020.
09.010.

6 Erik D. Demaine, MohammadTaghi Hajiaghayi, and Ken-ichi Kawarabayashi. Decomposition,
approximation, and coloring of odd-minor-free graphs. In Proc. of the 21st Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 329–344. SIAM, 2010. doi:10.1137/1.
9781611973075.28.

7 Reinhard Diestel. Graph Theory, volume 173. Springer-Verlag, 5th edition, 2017. doi:
10.1007/978-3-662-53622-3.

8 Eduard Eiben, Robert Ganian, Thekla Hamm, and O-joung Kwon. Measuring what matters:
A hybrid approach to dynamic programming with treewidth. Journal of Computer and System
Sciences, 121:57–75, 2021. doi:10.1016/j.jcss.2021.04.005.

9 Valentin Garnero, Christophe Paul, Ignasi Sau, and Dimitrios M. Thilikos. Explicit linear
kernels via dynamic programming. SIAM Journal on Discrete Mathematics, 29(4):1864–1894,
2015. doi:10.1137/140968975.

10 Valentin Garnero, Christophe Paul, Ignasi Sau, and Dimitrios M. Thilikos. Explicit lin-
ear kernels for packing problems. Algorithmica, 81(4):1615–1656, 2019. doi:10.1007/
s00453-018-0495-5.

11 Jim Geelen, Bert Gerards, Bruce A. Reed, Paul D. Seymour, and Adrian Vetta. On the
odd-minor variant of Hadwiger’s conjecture. Journal of Combinatorial Theory, Series B,
99(1):20–29, 2009. doi:10.1016/j.jctb.2008.03.006.

12 J. Pascal Gollin and Sebastian Wiederrecht. Odd-Minors I: Excluding small parity breaks.
CoRR, abs/2304.04504, 2023. arXiv:2304.04504.

13 Martin Grötschel and William R. Pulleyblank. Weakly bipartite graphs and the max-cut prob-
lem. Operations Research Letters, 1(1):23–27, 1981. doi:10.1016/0167-6377(81)90020-1.

14 Bertrand Guenin. A characterization of weakly bipartite graphs. Journal of Combinatorial
Theory, Series B, 83(1):112–168, 2001. doi:10.1006/jctb.2001.2051.

15 Hugo Hadwiger. Über eine klassifikation der streckenkomplexe. Vierteljschr. Naturforsch. Ges.
Zürich, 88(2):133–142, 1943. URL: https://www.ngzh.ch/archiv/1943_88/88_2/88_17.pdf.

16 Huynh, Tony. The Linkage Problem for Group-labelled Graphs. PhD thesis, University of
Waterloo, 2009. URL: http://hdl.handle.net/10012/4716.

17 Lars Jaffke, Laure Morelle, Ignasi Sau, and Dimitrios M. Thilikos. Dynamic programming
on bipartite tree decompositions. CoRR, abs/2309.07754, 2023. doi:10.48550/arXiv.2309.
07754.

18 Bart M. P. Jansen and Jari J. H. de Kroon. FPT algorithms to compute the elimination
distance to bipartite graphs and more. In Proc. of the 47th International Workshop on Graph-
Theoretic Concepts in Computer Science (WG), volume 12911 of LNCS, pages 80–93, 2021.
doi:10.1007/978-3-030-86838-3_6.

IPEC 2023

https://doi.org/10.1137/1.9781611977073.79
https://doi.org/10.1137/1.9781611977073.79
https://doi.org/10.1137/1.9781611975994.57
https://doi.org/10.1016/0166-218X(92)90275-F
https://doi.org/10.1016/j.jctb.2020.09.010
https://doi.org/10.1016/j.jctb.2020.09.010
https://doi.org/10.1137/1.9781611973075.28
https://doi.org/10.1137/1.9781611973075.28
https://doi.org/10.1007/978-3-662-53622-3
https://doi.org/10.1007/978-3-662-53622-3
https://doi.org/10.1016/j.jcss.2021.04.005
https://doi.org/10.1137/140968975
https://doi.org/10.1007/s00453-018-0495-5
https://doi.org/10.1007/s00453-018-0495-5
https://doi.org/10.1016/j.jctb.2008.03.006
https://arxiv.org/abs/2304.04504
https://doi.org/10.1016/0167-6377(81)90020-1
https://doi.org/10.1006/jctb.2001.2051
https://www.ngzh.ch/archiv/1943_88/88_2/88_17.pdf
http://hdl.handle.net/10012/4716
https://doi.org/10.48550/arXiv.2309.07754
https://doi.org/10.48550/arXiv.2309.07754
https://doi.org/10.1007/978-3-030-86838-3_6

26:18 Dynamic Programming on Bipartite Tree Decompositions

19 Tommy R Jensen and Bjarne Toft. Graph coloring problems. Wiley, 2011. doi:10.1002/
9781118032497.

20 Richard M. Karp. Reducibility among combinatorial problems. In 50 Years of Integer
Programming 1958-2008 - From the Early Years to the State-of-the-Art, pages 219–241. Springer,
2010. doi:10.1007/978-3-540-68279-0_8.

21 Ken-ichi Kawarabayashi and Bruce A. Reed. An (almost) linear time algorithm for odd
cyles transversal. In Proc. of the21st Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 365–378. SIAM, 2010. doi:10.1137/1.9781611973075.31.

22 Ken-ichi Kawarabayashi, Bruce A. Reed, and Paul Wollan. The graph minor algorithm with
parity conditions. In Proc. of the 52nd Annual IEEE Symposium on Foundations of Computer
Science (FOCS), pages 27–36. IEEE Computer Society, 2011. doi:10.1109/FOCS.2011.52.

23 Valerie King, S. Rao, and Robert Endre Tarjan. A faster deterministic maximum flow algorithm.
Journal of Algorithms, 17(3):447–474, 1994. doi:10.1006/jagm.1994.1044.

24 David G. Kirkpatrick and Pavol Hell. On the complexity of general graph factor problems.
SIAM Journal on Computing, 12(3):601–609, 1983. doi:10.1137/0212040.

25 Daniel Lokshtanov, N. S. Narayanaswamy, Venkatesh Raman, M. S. Ramanujan, and Saket
Saurabh. Faster parameterized algorithms using linear programming. ACM Transactions on
Algorithms, 11(2):15:1–15:31, 2014. doi:10.1145/2566616.

26 Jérôme Monnot and Sophie Toulouse. The path partition problem and related problems in
bipartite graphs. Operations Research Letter, 35(5):677–684, 2007. doi:10.1016/j.orl.2006.
12.004.

27 James B. Orlin. Max flows in O(nm) time, or better. In Proc. of the 45th annual ACM
Symposium on Theory of Computing Conference (STOC), pages 765–774. ACM, 2013. doi:
10.1145/2488608.2488705.

28 Bruce A. Reed, Kaleigh Smith, and Adrian Vetta. Finding odd cycle transversals. Operations
Research Letters, 32(4):299–301, 2004. doi:10.1016/j.orl.2003.10.009.

29 Neil Robertson, Paul D. Seymour, and Robin Thomas. Quickly excluding a planar graph.
Journal of Combinatorial Theory, Series B, 62(2):323–348, 1994. doi:10.1006/jctb.1994.
1073.

30 Raphael Steiner. Improved bound for improper colourings of graphs with no odd clique
minor. Combinatorics, Probability and Computing, 32(2):326–333, 2023. doi:10.1017/
S0963548322000268.

31 Siamak Tazari. Faster approximation schemes and parameterized algorithms on (odd-)h-minor-
free graphs. Theoretical Computer Science, 417:95–107, 2012. doi:10.1016/j.tcs.2011.09.
014.

32 Mihalis Yannakakis. Node-deletion problems on bipartite graphs. SIAM Journal on Computing,
10(2):310–327, 1981. doi:10.1137/0210022.

A Graphs, treewidth, boundaried graphs, and nice problems

Functions. Given two sets A and B, and two functions f, g : A → 2B , we denote by f ∪g the
function that maps x ∈ A to f(x) ∪ g(x) ∈ 2B . Let f : A → B be an injection. Let K ⊆ B

be the image of f . By convention, if f is referred to as a bijection, it means that we consider
that f maps A to K. Given a function w : A → N, and A′ ⊆ A, w(A′) =

∑
x∈A′ w(x).

Basic concepts on graphs. All graphs considered in this paper are undirected, finite, and
without loops or multiple edges. We use standard graph-theoretic notation and we refer the
reader to [7] for any undefined terminology. For convenience, we use uv instead of {u, v}
to denote an edge of a graph. Let G be a graph. In the rest of this paper we always use
n for the cardinality of V (G), and m for the cardinality of E(G), where G is the input

https://doi.org/10.1002/9781118032497
https://doi.org/10.1002/9781118032497
https://doi.org/10.1007/978-3-540-68279-0_8
https://doi.org/10.1137/1.9781611973075.31
https://doi.org/10.1109/FOCS.2011.52
https://doi.org/10.1006/jagm.1994.1044
https://doi.org/10.1137/0212040
https://doi.org/10.1145/2566616
https://doi.org/10.1016/j.orl.2006.12.004
https://doi.org/10.1016/j.orl.2006.12.004
https://doi.org/10.1145/2488608.2488705
https://doi.org/10.1145/2488608.2488705
https://doi.org/10.1016/j.orl.2003.10.009
https://doi.org/10.1006/jctb.1994.1073
https://doi.org/10.1006/jctb.1994.1073
https://doi.org/10.1017/S0963548322000268
https://doi.org/10.1017/S0963548322000268
https://doi.org/10.1016/j.tcs.2011.09.014
https://doi.org/10.1016/j.tcs.2011.09.014
https://doi.org/10.1137/0210022

L. Jaffke, L. Morelle, I. Sau, and D. M. Thilikos 26:19

graph of the problem under consideration. For S ⊆ V (G), we set G[S] = (S, E ∩
(

S
2
)
) and

use the shortcut G \ S to denote G[V (G) \ S]. Given a vertex v ∈ V (G), we denote by
NG(v) the set of vertices of G that are adjacent to v in G. Moreover, given a set A ⊆ V (G),
NG(A) =

⋃
v∈A NG(v) \ A. For k ∈ N, we denote by Pk the path with k vertices, and we say

that Pk has length k − 1 (i.e., the length of a path is its number of edges). We denote by
cc(G) the set of connected components of a graph G. For A, B ⊆ V (G), E(A, B) denotes
the set of edges of G with one endpoint in A and the other in B. We say that E′ ⊆ E(G) is
an edge cut of G if there is a partition (A, B) of V (G) such that E′ = E(A, B). We say that
a pair (L, R) ∈ 2V (G) × 2V (G) is a separation of G if L ∪ R = V (G) and E(L \ R, R \ L) = ∅.
The order of (L, R) is |L ∩ R|. L ∩ G is called a |L ∩ R|-separator of G. A graph G is
k-connected if, for any separation (L, R) of G of order at most k − 1, either L ⊆ R or R ⊆ L.
A graph class H is hereditary if for any G ∈ H and v ∈ V (G), G \ {v} ∈ H.

Treewidth. A tree decomposition of a graph G is a pair (T, χ) where T is a tree and
χ : V (T) → 2V (G) such that⋃

t∈V (T) χ(t) = V (G),
for every e ∈ E(G), there is a t ∈ V (T) such that χ(t) contains both endpoints of e, and
for every v ∈ V (G), the subgraph of T induced by {t ∈ V (T) | v ∈ χ(t)} is connected.

The width of (T, χ) is equal to max
{

|χ(t)| − 1
∣∣ t ∈ V (T)

}
and the treewidth of G, denoted

by tw(G), is the minimum width over all tree decompositions of G.
For every node t ∈ V (T), χ(t) is called bag of t. Given tt′ ∈ E(T), the adhesion of t and

t′, denoted by adh(t, t′), is the set χ(t) ∩ χ(t′).
A rooted tree decomposition is a triple (T, χ, r) where (T, χ) is a tree decomposition and

(T, r) is a rooted tree (i.e., T is a tree and r ∈ V (T)). Given t ∈ V (T), we denote by chr(t) the
set of children of t and by parr(t) the parent of t (if t ̸= r). We set δr

t = adh(t, parr(t)), with
the convention that δr

r = ∅. Moreover, we denote by Gr
t the graph induced by

⋃
t′∈V (Tt) χ(t′)

where (Tt, t) is the rooted subtree of (T, r). We may use δt and Gt instead of δr
t and Gr

t

when there is no risk of confusion.

Boundaried graphs. Let t ∈ N. A t-boundaried graph is a triple G = (G, B, ρ) where
G is a graph, B ⊆ V (G), |B| = t, and ρ : B → N is an injection. We say that B is the
boundary of G and we write B = bd(G). We call G trivial if all its vertices belong to the
boundary. We say that two t-boundaried graphs G1 = (G1, B1, ρ1) and G2 = (G2, B2, ρ2)
are isomorphic if ρ1(B1) = ρ2(B2) and there is an isomorphism from G1 to G2 that extends
the bijection ρ−1

2 ◦ ρ1. A triple (G, B, ρ) is a boundaried graph if it is a t-boundaried graph
for some t ∈ N. We denote by Bt the set of all (pairwise non-isomorphic) t-boundaried
graphs. A boundaried graph F is a boundaried induced subgraph (resp. boundaried subgraph)
of G if F can be obtained from G by removing vertices (resp. and edges). A boundaried
graph F is a boundaried odd-minor of G if F can be obtained from a bounderied subgraph
G′ of G by contracting an edge cut such that every vertex in bd(G′) is on the same side
of the cut. We say that two boundaried graphs G1 = (G1, B1, ρ1) and G2 = (G2, B2, ρ2)
are compatible if ρ1(B1) = ρ2(B2) and ρ−1

2 ◦ ρ1 is an isomorphism from G1[B1] to G2[B2].
Given two boundaried graphs G1 = (G1, B1, ρ1) and G2 = (G2, B2, ρ2), we define G1 ⊕ G2
as the unboundaried graph obtained if we take the disjoint union of G1 and G2 and, for
every i ∈ ρ1(B1) ∩ ρ2(B2), we identify vertices ρ−1

1 (i) and ρ−1
2 (i). If v is the result of the

identification of v1 := ρ−1
1 (i) and v2 := ρ−1

2 (i) then we say that v is the heir of vi from
Gi, i ∈ [2]. If v is either a vertex of G1 where ρ1(v) ̸∈ ρ1(B1) ∩ ρ2(B2) (if v ∈ B1) or a vertex
of G2 where ρ2(v) ̸∈ ρ1(B1) ∩ ρ2(B2) (if v ∈ B2), then v is also a (non-identified) vertex of

IPEC 2023

26:20 Dynamic Programming on Bipartite Tree Decompositions

G1 G2

X1 X2

X∗

A

A

AB

B

B

F

G′
1

G′
2

X ′
1 X ′

2

X∗′A′

A′
F

A′A′

X ′
1

X ′
2 A′

Figure 1 Illustration of the setting of the nice problem and reduction. The shaded area on the left
is G where X = X1 ∪ X2 ∪ X⋆, and the shaded area on the right is G′ where X ′ = X ′

1 ∪ X ′
2 ∪ X⋆′.

G1 ⊕ G2 and is a heir of itself (from G1 or G2 respectively). For i ∈ [2], and given an edge
vu in G1 ⊕ G2, we say that vu is the heir of an edge v′u′ from Gi if v′ (resp. u′) is the heir
of v (resp. u) from Gi and v′u′ is an edge of Gi. If x′ is an heir of x from G = (G, B, ρ) in
G′, then we write x = heirG,G′(x′). If B′ ⊆ B, then heirG,G′(B) =

⋃
v∈B′ heirG,G′(x′). We

also define G1 ⊞ G2 as the boundaried graph (G1 ⊕ G2, B, ρ), where B is the sets of all
heirs from G1 and G2 and ρ : B → N is the union of ρ1 and ρ2 after identification. Note
that in circumstances where ⊞ is repetitively applied, the heir relation is maintained due to
its transitivity. Moreover, we define G1 ▷ G2 as the unboundaried graph G obtained from
G1 ⊕ G2 by removing all heirs from G2 that are not heirs from G1 and all heirs of edges
from G2 that are not heirs of edges from G1. Note that ▷ is not commutative. For the sake
of simplicity, with a slight abuse of notation, we sometimes identify a vertex with its heir.

Nice problem and nice reduction. Let p ∈ N, let H be a graph class, and let Π be a
p-annotated problem corresponding to some choice of p-partition-evaluation function f and
some opt ∈ {max, min}. We say that Π is a H-nice problem if there exists an algorithm that
receives as input

a boundaried graph G = (G, X, ρ),
a trivial boundaried graph X = (G[X], X, ρX) and a collection {Gi = (Gi, Xi, ρi) | i ∈ [d]}
of boundaried graphs, such that d ∈ N and G = X ⊞ (⊞i∈[d]Gi),
a partition (A, B) of X such that for all i ∈ [d], |heirGi,G(Xi) \ A| ≤ 1,
some A ∈ Pp(A), and
for every i ∈ [d] and each Xi ∈ Pp(Xi), the value p̂f,opt(Gi, Xi),

and outputs, in time O(|A| · d), a tuple (G′ = (G′, X ′, ρ′), A′, s′), called H-nice reduction of
the pair (G, A) with respect to Π, such that the following hold.

There is a set A′ ⊆ V (G′) such that |A′| = |A| + O(1), and A′ ∈ Pp(A′).
There is a trivial boundaried graph X′ = (G[X ′], X ′, ρX′) and a collection {G′

i =
(G′

i, X ′
i, ρ′

i) | i ∈ [d′]}, where d′ ∈ N, of boundaried graphs such that G′ = X′⊞(⊞i∈[d′]G′
i)

and |V (G′)| ≤ |X| + O(|B|), |E(G′)| ≤ |E(G[X])| + O(|B|).
For any boundaried graph F compatible with G, it holds that

p̂f,opt(G ⊕ F, A) = p̂f,opt(G′ ▷ F, A′) + s′.

For any boundaried graph F = (F, XF , ρF) compatible with G, if F̄ \ AF ∈ H, where
F̄ = (F ⊕ G)[heirF,G⊕F(V (F))] and AF = heirG,G⊕F(A), then (G′ ▷ F) \ A′ ∈ H.

See Figure 1 for an illustration.

L. Jaffke, L. Morelle, I. Sau, and D. M. Thilikos 26:21

B Definition of the problems and their annotated extensions

Kt-Subgraph-Cover. Let G be a graph class. We define the problem Vertex Deletion
to G as follows.

(Weighted) Vertex Deletion to G
Input: A graph G (and a weight function w : V (G) → N).
Objective: Find the set S ⊆ V (G) of minimum size (resp. weight) such that G \ S ∈ G.

If G is the class of edgeless (resp. acyclic, planar, bipartite, (proper) interval, chordal)
graphs, then we obtain the Vertex Cover (resp. Feedback Vertex Set, Vertex
Planarization, Odd Cycle Transversal, (proper) Interval Vertex Deletion,
Chordal Vertex Deletion) problem. Also, given a graph H, if G is the class of graphs
that do not contain H as a subgraph (resp. a minor/odd-minor/induced subgraph), then the
corresponding problem is called H-Subgraph-Cover (resp. H-Minor-Cover/H-Odd-
Minor-Cover/H-Induced-Subgraph-Cover).

Let H be a graph and w : V (G) → N be a weight function (constant equal to one in the
unweighted case). We define fH as the 2-partition-evaluation function where, for every graph
G, for every (R, S) ∈ P2(V (G)),

fH(G, (R, S)) =
{

+∞ if H is a subgraph of G \ S,

w(S) otherwise.

Seen as an optimization problem, (Weighted) H-Subgraph-Cover is the problem
of computing pfH ,min(G). We call its annotated extension (Weighted) Annotated H-
Subgraph-Cover. In other words, (Weighted) Annotated H-Subgraph-Cover is
defined as follows.

(Weighted) Annotated H-Subgraph-Cover
Input: A graph G, two disjoint sets R, S ⊆ V (G) (and a weight function w : V (G) → N).
Objective: Find, if it exists, the minimum size (resp. weight) of a set S⋆ ⊆ V (G) such
that R ∩ S⋆ = ∅, S ⊆ S⋆, and G \ S⋆ does not contain H as a subgraph.

Odd Cycle Transversal. Let H be a graph. We define foct as the 3-partition-evaluation
function where, for every graph G and for every (S, X1, X2) ∈ P3(V (G)),

foct(G, (S, X1, X2)) =
{

|S| if G \ S ∈ B, witnessed by the bipartition (X1, X2),
+∞ otherwise.

Hence, seen as an optimization problem, Odd Cycle Transversal is the problem of
computing pfoct,min(G). We call its annotated extension Annotated Odd Cycle Trans-
versal. In other words, Annotated Odd Cycle Transversal is defined as follows.

(Weighted) Annotated Odd Cycle Transversal
Input: A graph G, three disjoint sets S, X1, X2 ⊆ V (G) (and a weight function
w : V (G) → N).
Objective: Find, if it exists, a set S⋆ of minimum size (resp. weight) such that S ⊆ S⋆,
(X1 ∪ X2) ∩ S⋆ = ∅, and G \ S⋆ is bipartite with X1 and X2 on different sides of the
bipartition.

IPEC 2023

26:22 Dynamic Programming on Bipartite Tree Decompositions

Packing. Let G be a graph class. We define the G-Packing problem as follows.

G-Packing
Input: A graph G.
Objective: Find the maximum number k of pairwise-disjoint subgraphs

H1, . . . , Hk such that, for each i ∈ [k], Hi ∈ G.

Let H be a graph. If G = {H} (resp. G is the class of all graphs containing H as
a minor/odd-minor/induced subgraph), then we refer to the corresponding problem as
H-Subgraph-Packing (resp. H-Minor-Packing/H-Odd-Minor-Packing/H-Induced-
Subgraph-Packing). Note, in particular, that K3-Odd-Minor-Packing is exactly Odd
Cycle Packing.

If in the definition of G-Packing we add the condition that there is no edge in the input
graph between vertices of different Hi’s, then we refer to the corresponding problem as
H-Scattered-Packing, where we implicitly assume that we refer to the subgraph relation,
and where we do not specify a degree of “scatteredness”, as it is usual in the literature
when dealing, for instance, with the scattered version of Independent Set. For instance,
K2-Scattered-Packing is exactly Induced Matching.

Kernelization for Counting Problems on Graphs:
Preserving the Number of Minimum Solutions
Bart M. P. Jansen #

Eindhoven University of Technology, The Netherlands

Bart van der Steenhoven #

Eindhoven University of Technology, The Netherlands

Abstract
A kernelization for a parameterized decision problem Q is a polynomial-time preprocessing algorithm
that reduces any parameterized instance (x, k) into an instance (x′, k′) whose size is bounded by a
function of k alone and which has the same yes/no answer for Q. Such preprocessing algorithms
cannot exist in the context of counting problems, when the answer to be preserved is the number
of solutions, since this number can be arbitrarily large compared to k. However, we show that for
counting minimum feedback vertex sets of size at most k, and for counting minimum dominating
sets of size at most k in a planar graph, there is a polynomial-time algorithm that either outputs the
answer or reduces to an instance (G′, k′) of size polynomial in k with the same number of minimum
solutions. This shows that a meaningful theory of kernelization for counting problems is possible
and opens the door for future developments. Our algorithms exploit that if the number of solutions
exceeds 2poly(k), the size of the input is exponential in terms of k so that the running time of a
parameterized counting algorithm can be bounded by poly(n). Otherwise, we can use gadgets that
slightly increase k to represent choices among 2O(k) options by only poly(k) vertices.

2012 ACM Subject Classification Theory of computation → Parameterized complexity and exact
algorithms; Theory of computation → Graph algorithms analysis; Mathematics of computing →
Graph algorithms

Keywords and phrases kernelization, counting problems, feedback vertex set, dominating set,
protrusion decomposition

Digital Object Identifier 10.4230/LIPIcs.IPEC.2023.27

Related Version Full Version: http://arxiv.org/abs/2310.04303 [16]

Funding Bart M. P. Jansen: Funded by the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programme (grant agreement No 803421, Reduce-
Search).
Bart van der Steenhoven: Supported by Project No. ICT22-029 of the Vienna Science Foundation
(WWTF).

1 Introduction

Background and motivation. Counting problems, whose answer is an integer giving the
number of objects of a certain kind rather than merely yes or no, have important applications
in fields of research such as artificial intelligence [24, 25], statistical physics [17, 20, 31]
and network science [22]. They have been studied extensively in classical complexity,
underpinning fundamental results such as Toda’s theorem [29] and the #P-completeness of
the permanent [30]. A substantial research effort has targeted the parameterized complexity of
counting problems, leading to parametric complexity-notions like #W[1]-hardness [7, 11, 21]
and FPT algorithms to solve several counting problems. For example, FPT algorithms were
developed to count the number of size-k vertex covers [10], or the number of occurrences of a
size-k pattern graph H in a host graph G [8].

© Bart M. P. Jansen and Bart van der Steenhoven;
licensed under Creative Commons License CC-BY 4.0

18th International Symposium on Parameterized and Exact Computation (IPEC 2023).
Editors: Neeldhara Misra and Magnus Wahlström; Article No. 27; pp. 27:1–27:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:b.m.p.jansen@tue.nl
https://orcid.org/0000-0001-8204-1268
mailto:b.j.v.d.steenhoven@student.tue.nl
https://orcid.org/0009-0006-8816-5687
https://doi.org/10.4230/LIPIcs.IPEC.2023.27
http://arxiv.org/abs/2310.04303
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

27:2 Kernelization for Counting Problems on Graphs

This paper is concerned with an aspect of parameterized algorithms which has been
largely neglected for counting problems: that of efficient preprocessing with performance
guarantees, i.e., kernelization. A kernelization for a parameterized decision problem Q is a
polynomial-time preprocessing algorithm that reduces any parameterized instance (x, k) into
an instance (x′, k′) whose size is bounded by a function of k alone and which has the same
yes/no answer for Q. Over the last decade, kernelization has developed into an important
subfield of parameterized algorithms, as documented in a textbook dedicated to the topic [12].
Given the success of kernelization for decision problems, one may wonder: can a theory of
provably-efficient preprocessing for counting problems be developed?

Consider a prototypical problem such as Feedback Vertex Set in undirected graphs,
in which the goal is to find a small vertex set whose removal breaks all cycles. What could be
an appropriate notion of counting kernelization for such a problem? The concept of efficient
preprocessing towards a provably small instance with the same answer could be instantiated
as follows: given a pair (G, k), the preprocessing algorithm should output a pair (G′, k′)
whose size is bounded by a function of k such that the number of size-k feedback vertex
sets in G is equal to the number of size-k′ feedback vertex sets in G′. However, this task is
clearly impossible. Given a graph consisting of a length-n cycle with parameter k = 1, the
number of solutions is n which can be arbitrarily large compared to k, while for any reduced
instance (G′, k′) of size bounded in k, the number of solutions can be at most 2|V (G′)| ≤ f(k).
Without allowing the size of the reduced instance to depend on n, it seems that preprocessing
while preserving the answer to the counting problem is impossible.

Over the years, there have been two approaches to deal with this obstacle1. Thurley [28],
inspired by concepts in earlier work [23], proposed a notion of counting kernelization which
effectively reduces a counting problem to an enumeration problem. He considered problems
such as Vertex Cover and d-Hitting Set. In his framework, the preprocessing algorithm
has to output an instance of size bounded by a function of k, in such a way that for any
solution to the reduced instance, we can efficiently determine to how many solutions of the
original instance it corresponds. Hence by enumerating all solutions on the reduced instance,
we can obtain the number of solutions to the original instance. A significant drawback of
this approach therefore lies in the fact that to solve the counting problem on the original
instance, we have to enumerate all solutions on the reduced instance. Since counting can
potentially be done much faster than enumeration, it is not clear that this preprocessing step
is always beneficial.

A second notion for counting kernelization was proposed by Kim, Selma, and Thilikos [18,
26]. Their framework (which also applies to Feedback Vertex Set) considers two types
of algorithms: a condenser that maps an input instance (G, k) to an instance (G′, k′) of
an auxiliary annotated problem involving weights on the vertices of G′, and an extractor
that recovers (typically not in polynomial time) the number of solutions to (G, k) from the
weighted instance (G′, k′). The number of vertices of G′ is required to be bounded in k,
but the weights are allowed to be arbitrarily large, thereby sidestepping the issue described
above. This means that in terms of the total encoding size, the weighted graph (G′, k′) is not
guaranteed to be smaller than (G, k) and in general the total number of bits needed to encode
the weighted graph cannot be bounded by a function of k alone. The condenser-extractor

1 A third [19] approach was announced shortly before this paper went to print; it allows a polynomial-time
lifting step to compute the number of solutions to the original instance from the number of solutions to
the reduced instance.

B. M. P. Jansen and B. van der Steenhoven 27:3

framework has the same drawback as the framework by Thurley: a standard counting problem
is reduced to a more complicated type of problem, in this case one involving weights and
annotations.

The goal of this paper is to show that there is an alternative way to overcome the obstacle
for counting kernelization, which leads to a notion of preprocessing in which the problem to
be solved on the reduced instance is of exactly the same nature as the original. Our solution
is inspired by the typical behavior of kernelization algorithms for decision problems: we
formalize the option of already finding the answer during the preprocessing phase. Note that
many algorithms, such as the famous Buss [5] kernelization for Vertex Cover, work by
applying reduction rules to arrive at the reduced instance, or discover the yes/no answer
to the decision problem during preprocessing. Our kernelization algorithms for counting
problems will have the same behavior: they will either reduce to a poly(k)-sized instance
of the same problem that has exactly the same answer to the counting problem, or they
outright answer the counting problem during their polynomial-time computation. To our
initial surprise, such preprocessing algorithms exist for several classic problems.

Our results. To begin the exploration of this new type of counting kernelization, we revisit
two prominent graph problems: Feedback Vertex Set in general undirected graphs and
Dominating Set in planar graphs. The decision versions of these problems (does graph G

have a solution of size at most k?) have kernels with O(k2) [15, 27] and O(k) vertices [1, 4, 14],
respectively. We consider the problem of counting the number of minimum-size solutions,
parameterized by the size k of a minimum solution. (We discuss counting inclusion-minimal
solutions in the conclusion.) For a graph G and integer k, we denote by #minFVS(G, k) the
number of minimum feedback vertex sets in G of size at most k in G. Hence #minFVS(G, k)
is equal to 0 if the feedback vertex number of G exceeds k, and otherwise is equal to the
number of minimum solutions. The analogous concept for minimum dominating sets is
denoted #minDS(G, k). Our result for Feedback Vertex Set reads as follows.

▶ Theorem 1.1. There is a polynomial-time algorithm that, given a graph G and integer k,
either

outputs #minFVS(G, k), or
outputs a graph G′ and integer k′ such that #minFVS(G, k) = #minFVS(G′, k′) and
|V (G′)| = O(k5) and k′ = O(k5).

For Dominating Set on planar graphs, we give an analogous algorithm that either
outputs #minDS(G, k) or reduces to a planar instance (G′, k′) with |V (G′)|, k′ = O(k3) such
that #minDS(G, k) = #minDS(G′, k′). Hence if the parameter is small, the task of counting
the number of minimum solutions can efficiently be reduced to the same counting task on a
provably small instance.

▶ Theorem 1.2 (⋆). There is a polynomial-time algorithm that, given a planar graph G

and integer k, either
outputs #minDS(G, k), or
outputs a planar graph G′ and integer k′ such that #minDS(G, k) = #minDS(G′, k′) and
|V (G′)| = O(k3) and k′ = O(k3).

The high-level approach is the same for both problems. We use insights from existing
kernels for the decision version of the problem to reduce an input instance (G, k) into
one (G′, k′) with the same number of minimum solutions, such that G′ can be decomposed
into a “small” core together with poly(k) “simply structured but potentially large” parts. For

IPEC 2023

27:4 Kernelization for Counting Problems on Graphs

Dominating Set, this takes the form of a protrusion decomposition; for Feedback Vertex
Set the decomposition is more elementary. Then we consider two cases. If |V (G)| > 2k, we
employ an FPT algorithm running in time 2O(k) · poly(n) to count the number of minimum
solutions and output it. Since n > 2k, this step runs in polynomial time. If |V (G)| ≤ 2k,
then we show that each of the poly(k) simply structured parts can be replaced with a
gadget of size poly(k) without affecting the number of minimum solutions. In this step, we
typically increase the size of minimum solutions slightly to allow a small vertex set to encode
exponentially many potential solutions. For example, an instance of Feedback Vertex
Set consisting of a cycle of length 210 (which has 210 different optimal solutions), can be
reduced to the graph consisting of 10 pairs (ai, bi), each pair connected by two parallel edges.
The latter graph also has 210 minimum solutions, each of size 10. To carry out this approach,
the most technical part is to show how to decompose the input instance into parts in which
it is easy to analyze how many different choices an optimal solution can make.

Organization. The remainder of the paper is structured as follows. After presenting
preliminaries in Section 2, we illustrate our approach for Feedback Vertex Set in
Section 3. The more technical application to Dominating Set on planar graphs is deferred
to the full version [16] due to space limitations. We conclude in Section 4 with a reflection
on the potential of this approach to counting kernelization.

2 Preliminaries

All graphs we consider are undirected; they may have parallel edges but no self-loops. A
graph G therefore consists of a set V (G) of vertices and a multiset E(G) of edges of the form
{u, v} for distinct u, v ∈ V (G). For a vertex v ∈ V (G), we refer to the open neighborhood
of v in G as NG(v) and to the closed neighborhood of v as NG[v]. For a set of vertices
X ⊆ V (G), the open and closed neighborhoods are defined as NG(X) = (

⋃
v∈X NG(v)) \ X

and NG[X] =
⋃

v∈X NG[v]. The degree of vertex v in graph G, denoted by degG(v), is equal
to the number of edges incident to v in G. We refer to the subgraph of G induced by a
vertex set X ⊆ V (G) as G[X]. We use G − X as a way to write G[V (G) \ X] and G − v as a
shorthand for G − {v}. A graph H is a minor of G if H can be formed by contracting edges
of a subgraph of G.

A feedback vertex set of a graph G is a set S ⊆ V (G) such that G − S is a forest, i.e.,
acyclic. The feedback vertex number of a graph is the size of a smallest feedback vertex set
of that graph. A dominating set of a graph G is a set D ⊆ V (G) such that NG[D] = V (G).
The domination number of a graph is the size of a smallest dominating set of that graph.
We say that a set X ⊆ V (G) dominates U ⊆ V (G) if U ⊆ NG[X].

We define V ̸=2(G) to be the set of vertices of graph G that do not have degree two. We
refer to a chain C of G as a connected component of G − V ̸=2(G). We say that a chain C is
a proper chain if NG(C) ̸= ∅ and we then refer to NG(C) as the endpoints of C.

3 Counting feedback vertex sets

In this section, we explain the technique that allows us to either count the number of
minimum feedback vertex sets of a graph G in polynomial time, or reduce G to a provably
small instance with the same number of minimum solutions. We start by showing that,
by using a few reduction rules, we can already reduce G to an equivalent instance with
a specific structure. This reduction is based on the O(k3)-vertex kernel for the decision

B. M. P. Jansen and B. van der Steenhoven 27:5

Feedback Vertex Set problem presented by Jansen [3]. We choose to use this kernel over
the better-known and smaller-size kernels by Thomassé [27] and Iwata [15] because those
rely on multiple reduction rules that are not safe for counting minimum solutions.

As is common for Feedback Vertex Set, we consider the graph we are working with
to be undirected and we allow parallel edges. In this section, we make use of two reduction
rules which are common for kernels of the decision variant of Feedback Vertex Set.
(R1) If there is an edge of multiplicity larger than two, reduce its multiplicity to two.
(R2) If there is a vertex v with degree at most one, remove v.

It can easily be verified that if an instance (G, k) is reduced to (G′, k′) by one of the
rules above, we have #minFVS(G, k) = #minFVS(G′, k′). Hence, these rules are safe in the
context of counting minimum feedback vertex sets. Observe that if (R2) has exhaustively
been applied on a graph G, then all vertices in V ̸=2(G) have degree at least three. For our
purposes, we will need one more method to reduce the graph. We first present a lemma that
motivates this third reduction rule.

▶ Lemma 3.1. Let X be a (not necessarily minimum) feedback vertex set of a graph G that
is reduced with respect to (R2) and let C be the set of connected components of G − V ̸=2(G).
Then:
(a) |V ̸=2(G)| ≤ |X| +

∑
v∈X degG(v), and

(b) |C| ≤ |X| + 2
∑

v∈X degG(v).

Proof. Consider the forest F := G−X. Partition the vertices of V ̸=2(G)∩V (F) = V ̸=2(G)\X

into sets V ′
≤1, V ′

2 and V ′
≥3 for vertices that have respectively degree at most one, degree two

or degree at least three in F . Furthermore, let Vℓ denote the leaf nodes of F that have degree
two in G. Since G has no vertices of degree at most one by (R2), the leaves of F are exactly
the vertices Vℓ ∪ V ′

≤1. In any tree, the number of vertices of degree at least three is less than
the number of leaves, thus |V ′

≥3| ≤ |V ′
≤1| + |Vℓ|. Each vertex in V ′

2 has at least one edge to
X since they have degree at least three in G and degree exactly two in F . For a similar
reason, each vertex in V ′

≤1 has at least two edges to X. Each vertex in Vℓ has one edge to X.
Putting this together gives the following inequality, from which (a) directly follows.∑

v∈X

degG(v) ≥ |V ′
2 | + 2|V ′

≤1| + |Vℓ| ≥ |V ′
2 | + |V ′

≤1| + |V ′
≥3| = |V ̸=2(G) \ X| (1)

To bound the size of the set C of connected components of G − V ̸=2(G), we instead
bound the size of the set C′ of connected components of G − V ̸=2(G) − X. Observe that
|C| ≤ |C′| + |X| since removing a vertex from a graph reduces the number of connected
components by at most one. (Such a removal can increase the number of components by an
arbitrary number, which is irrelevant for our argument.) Since X is an FVS, the connected
components in C′ can be seen as proper chains. Chains in C′ that have both endpoints in F

act as edges between those endpoints when it comes to the connectivity of F . This means
that, since F is a forest, there can be at most |V ̸=2(G) ∩ V (F)| ≤

∑
v∈X degG(v) of such

chains by Equation 1. All other chains will have at least one endpoint in X, which means
there can be at most

∑
v∈X degG(v) of them, implying (b). ◀

Based on Lemma 3.1, the goal of the third reduction rule is to decrease the degree of the
vertices of a feedback vertex set. This idea is captured in Lemma 3.2. After presenting this
lemma, we combine these results in Lemma 3.3 to create an algorithm to reduce a graph G to
an, in context of counting minimum feedback vertex sets, equivalent graph with a bounded
number of vertices of degree other than two and a bounded number of chains.

IPEC 2023

27:6 Kernelization for Counting Problems on Graphs

▶ Lemma 3.2. There exists a polynomial-time algorithm that, given a graph G reduced with
respect to (R1), an integer k, a vertex v ∈ V (G) and a feedback vertex set Yv ⊆ V (G) \ {v} of
G, outputs a graph G′ obtained by removing edges from G such that degG′(v) ≤ |Yv| · (k + 4)
and #minFVS(G, k) = #minFVS(G′, k).

Proof. Consider forest F := G − (Yv ∪ {v}). For each u ∈ Yv, mark trees of F that have an
edge to both v and u until either all such trees are marked or at least k + 2 of them are
marked. Then, we construct a graph G′ from G by removing all edges between v and trees
of F that were not marked.

We shall first prove the bound on the degree of v in G′. The vertex v can have edges to
vertices in Yv or in F . Since (R1) has been exhaustively applied, there can be at most 2|Yv|
edges between v and Yv. Each tree in F has at most one edge to v, since otherwise Yv would
not be an FVS of G. In G′, only trees that were marked still have an edge to v, and since
we mark at most k + 2 trees per vertex in Yv, we have at most |Yv| · (k + 2) of such trees.
Combining this gives degG′(v) ≤ |Yv| · (k + 4).

To show that #minFVS(G, k) = #minFVS(G′, k), we prove that a vertex set X ⊆ V (G)
with |X| ≤ k is an FVS of G if and only if it is an FVS of G′. Clearly any FVS of G is
an FVS of G′ since G′ is constructed from G by deleting edges. For the opposite direction,
assume that X is an FVS of G′ and assume for a contradiction that X is not an FVS of
G. Then G − X has a cycle W . This cycle must contain an edge {v, w} of E(G) \ E(G′)
since G′ − X is acyclic. By construction of G′, we know that w is a vertex that belongs to
an unmarked tree T . Since cycle W intersects T and since T is a connected component of
G − (Yv ∪ {v}), there must be a vertex u ∈ Yv that has an edge to T . Since the edge between
v and T is removed in G′, there exist k + 2 other trees that are marked and have an edge
to both v and u. Since |X| ≤ k, at least two of these trees are not hit by X. Furthermore,
since v and u are part of W , they are also not contained in X. Therefore, there is a cycle in
G′ − X through v, u and two of the aforementioned trees, contradicting that X is an FVS
of G′. ◀

▶ Lemma 3.3. There is a polynomial-time algorithm that, given a graph G and integer k,
outputs a graph G′ and integer k′ such that the following properties are satisfied.

#minFVS(G, k) = #minFVS(G′, k′).
k′ ≤ k.
|V ̸=2(G′)| = O(k3).
G′ − V ̸=2(G′) has O(k3) connected components.

Proof. In our approach, we make use of the linear-time 4-approximation algorithm by Bar-
Yehuda et al. [2] that can also approximate the more general problem of: for a given graph,
find the smallest FVS that does not contain a given vertex. Our first step is to exhaustively
apply (R1) on G and compute a 4-approximate FVS X of the graph. If |X| > 4k then
the feedback vertex number of G is larger than k, so we can return a trivial, constant size
instance G′ and k′ such that #minFVS(G′, k′) = 0. Otherwise, let G′ and k′ be a copy of G

and k. For each vertex v ∈ X, compute a 4-approximate FVS Yv of G′ that does not contain
v. If |Yv| > 4k, then there does not exist a solution of size at most k that does not contain v,
so remove v from G′ and reduce k′ by one. Otherwise, use Lemma 3.2 to reduce the degree
of v in G′. Finally, we exhaustively apply reduction rule (R2) on G′.

Computing the 4-approximations and applying the reduction rules can be done in
polynomial time. Each rule can only be applied a polynomial number of times, thus
the algorithm runs in polynomial time. The fact that #minFVS(G, k) = #minFVS(G′, k′)

B. M. P. Jansen and B. van der Steenhoven 27:7

follows from safety of the reduction rules used in the algorithm and k′ ≤ k follows from the
fact that k′ is never increased. We know that |V ̸=2(G′)| = O(k3) and that G′ − V ̸=2(G′) has
O(k3) connected components due to Lemma 3.1 and the following bound:∑

v∈X

degG′(v) ≤
∑
v∈X

|Yv| · (k + 4) ≤
∑
v∈X

4k · (k + 4) = |X| · 4k · (k + 4) = O(k3). ◀

The result of Lemma 3.3 is in and of itself not a proper kernel yet, since the chains of the
graph it produces can be of arbitrary length. Our strategy to address this is as follows. If
these chains are large in terms of k, then we can run an FPT algorithm in poly(n) time to
count the number of minimum solutions. Otherwise, the chains can be replaced by structures
of size poly(k) that do not change the number of minimum feedback vertex sets the instance
has. This approach is captured in the following two lemmas and combined in the proof of
Theorem 1.1.

▶ Lemma 3.4. There exists a polynomial-time algorithm that, given a graph G with a chain
C and an integer k, outputs a graph G′ obtained from G by replacing C with a vertex set C ′,
and an integer k′, such that:

#minFVS(G, k) = #minFVS(G′, k′),
G − C = G′ − C ′,
NG(C) = NG′(C ′),
|C ′| = O(log(|C|)2), and
k′ = k + O(log(|C|)2).

Proof. In case C is a proper chain, the endpoints are defined as NG(C). If C is not a proper
chain, which happens if C is a cycle in G, we choose an arbitrary vertex of C to act as its
endpoint. For simplicity, we consider C to have two endpoints, where in some cases these
two endpoints might be the same vertex.

First, we assume that the number of vertices of the chain, not including its endpoints,
is a power of two, i.e. |C| = 2p for some integer p. Let v, u ∈ V (G) be the endpoints of
C (possibly v = u) and let C = {c0, c1, · · · , c2p−1}. Then we construct our graph G′ by
replacing C by a gadget C ′, of which an example can be seen in Figure 1. It consists of the
following elements.

A vertex w with edges to both v and u.
Pairs of vertices ai, bi for 0 ≤ i < p such that there is an edge of multiplicity two between
w and ai and between ai and bi.

Additionally, we set k′ = k + p.
We shall now prove that #minFVS(G, k) = #minFVS(G′, k′). To this end, we define a

mapping f from the set of minimum feedback vertex sets of G to those of G′ and show that
this is a bijection, which immediately implies that the two sets have the same cardinality.
For a natural number m, define bin(m) to be the binary representation of m on p bits and
define bin(m)i to be the i’th least significant bit of bin(m).

f(X) =

X ∪ {ai | 0 ≤ i < p} if X ∩ C = ∅

(X \ C) ∪ {w} ∪ {ai | 0 ≤ i < p ∧ bin(m)i = 0}
∪{bi | 0 ≤ i < p ∧ bin(m)i = 1} if X ∩ C = {cm}

As a first observation, note that for any minimum feedback vertex set X of G, we have
|X ∩ C| ≤ 1 as picking any one vertex from C will already break all cycles that go through
the chain.

IPEC 2023

27:8 Kernelization for Counting Problems on Graphs

v c0 c1 c2 c3 c4 c5 c6 c7 u

(a)

v uw

a0 a1 a2

b0 b1 b2

(b)

Figure 1 (a) A chain structure of size eight with two endpoints. (b) The replacement of the
structure. An example of the mapping f is also illustrated through the vertices with a thicker border.

▷ Claim 3.5. If a set X is a minimum FVS of G, then f(X) is a minimum FVS of G′.

Proof. We prove this in two parts. First we prove that f(X) is an FVS of G′ and then we
prove that f(X) is indeed an FVS of G′ of minimum size.

To prove that f(X) is an FVS of G′, we use a proof by contradiction. Assume f(X) is
not an FVS of G′, in which case a (simple) cycle W exists in G′ − f(X). This cycle must
intersect C ′ as X \ C = f(X) \ C ′ and G − C = G′ − C ′ thus G − C − X = G′ − C ′ − f(X),
which means W would otherwise also exist in G − X, contradicting that X is an FVS of
G. The cycle W cannot contain a bj vertex since by definition of f , for 0 ≤ i < p, either ai

or bi is in f(X), which would either mean bj is isolated in G′ − f(X) or is removed. Also,
W can not contain any aj vertex as, by definition of f , if aj is not in f(X), then both its
neighbors w and bj are in f(X). This leaves only the option that W intersects C ′ through
only vertex w. This means that W − {w} contains a path from v to u in G′ − f(X) − {w}.
However, since as mentioned before G − C − X = G′ − C ′ − f(X), this same path also exists
in G − X. Furthermore, since w /∈ f(X), that must mean that X ∩ C = ∅ so (W \ {w}) ∪ C

would form a cycle in G − X contradicting that X is an FVS of G.
Next we prove that f(X) is a minimum FVS of G′. Assume for sake of a contradiction that

f(X) is not a minimum FVS of G′ due to the existence of a Y ⊆ V (G′) with |Y | < |f(X)|
such that Y is an FVS of G′. We first observe that any FVS of G′ contains at least p vertices
from C ′ since all p of the pairs (ai, bi) form vertex disjoint cycles. Similarly so, if an FVS of
G′ contains w, then it contains at least p + 1 vertices from C ′. We distinguish two cases.
Case w /∈ Y : Then Y \ C ′ is an FVS of G. If G − (Y \ C ′) would contain a cycle, then there

would also exist a cycle in G′ − Y since G − C = G′ − C ′ and both graphs G − (Y \ C ′)
and G′ − Y have a vu path, the former through C and the latter through w. Furthermore,
|Y \ C ′| ≤ |Y | − p < |f(X)| − p = |X| + p − p = |X|, contradicting that X is a minimum
FVS of G.

Case w ∈ Y : Then X ′ := (Y \C ′)∪{cj} is an FVS of G for any 0 ≤ j < 2p. If this were not
the case, then, since X ′ contains a chain vertex, a cycle would need to exist completely
in G − C − X ′ which is the same graph as G′ − C ′ − Y . This would contradict Y being
an FVS of G′. Furthermore, |X ′| ≤ |Y | − (p + 1) + 1 < |f(X)| − p = |X| + p − p = |X|,
contradicting that X is a minimum FVS of G.

As both cases lead to a contradiction, we conclude that f(X) is a minimum FVS of G′. ◁

B. M. P. Jansen and B. van der Steenhoven 27:9

▷ Claim 3.6. The function f is bijective.

Proof. We first argue that f is injective. Let X and X ′ be two minimum feedback vertex
sets of G such that X ̸= X ′. That means X \ C ̸= X ′ \ C or X ∩ C ≠ X ′ ∩ C. The
former immediately allows us to conclude that f(X) ̸= f(X ′) since X \ C = f(X) \ C ′ and
X ′ \ C = f(X ′) \ C ′. In the second case, we have two options. The first is that X ∩ C = {cj}
and X ′ ∩ C = {cm} for some j ̸= m, and since binary representations are unique, they lead
to different sets f(X) and f(X ′). The second option is that either X or X ′ contains no
vertex from C while the other one does. Then only one of f(X) or f(X ′) contains w and the
other one does not, so f(X) ̸= f(X ′).

It remains to show that f is surjective. To this end, we take an arbitrary minimum
FVS Y of G′ and show that there exists a minimum FVS X of G such that Y = f(X). We
distinguish two cases:
Case w /∈ Y : For this case, first observe that {ai | 0 ≤ i < p} ⊆ Y since otherwise w would

form a cycle with one of these ai vertices in G − Y . Furthermore, bi /∈ Y for 0 ≤ i < p

since Y already contains ai, leaving bi isolated in G − Y and thus a redundant choice for
a minimum FVS. From this we can conclude that Y ∩ C ′ = {ai | 0 ≤ i < p}. Therefore,
taking X := Y \ C ′ would give f(X) = Y . We have already argued in case w /∈ Y , that
Y \ C ′ is an FVS of G. To show that it is a minimum FVS of G, note that if there was
an X ′ ⊆ V (G), |X ′| < |X| such that X ′ is an FVS of G, then f(X ′) is an FVS of G′ and
|f(X ′)| = |X ′| + p < |X| + p = |Y \ C ′| + p = |Y | − p + p = |Y | which would contradict
Y being a minimum FVS of G′.

Case w ∈ Y : For this case, we instead observe that for each pair {ai, bi}, exactly one of
{ai, bi} is in Y , as otherwise Y would not be an FVS of minimum size. Since there are p

of such pairs, there is a unique value 0 ≤ j < 2p such that the binary representation of j

corresponds to the choice of a and b vertices in Y . We can then choose X := (Y \C ′)∪{cj}.
We clearly have that f(X) = Y . Also, we have already shown before that X is an FVS of
G and the argument that X is a minimum FVS of G is analogous to that in case w /∈ Y .

From this reasoning we can conclude that f is a bijective function from the set of minimum
feedback vertex sets of G to the set of minimum feedback vertex sets of G. ◁

In the argument above, we assumed that the length of the chain is a power of two. We
can address this by noting that any natural number can be written as a sum of unique powers
of two. Similarly, we can decompose the chain C into a number of subpaths each having
a number of vertices that is a unique power of two. We can then apply the replacement
described above on each subpath individually to get multiple replacement structures in a
chain between the endpoints of C. As seen before, the size of the replacement is linear in the
exponent of the length of the chain. In the worst case, when expressing |C| in binary as a
sum of distinct powers of two, the exponents of these powers sum up to O(log(|C|)2), which
is also the bound on the number of vertices used in our replacement and on the increase in
the parameter value. ◀

We remark for Lemma 3.4 that a similar chain replacement gadget without parallel edges
can be constructed, at the expense of a linear increase in the size of the gadget.

By adapting the iterative compression algorithm by Cao et al. [6] for the decision
Feedback Vertex Set problem, we can derive the following lemma. Its proof is given in
Appendix A.

▶ Lemma 3.7. There is an algorithm that, given a graph G and integer k, computes
#minFVS(G, k) in 2O(k) · poly(n) time.

IPEC 2023

27:10 Kernelization for Counting Problems on Graphs

▶ Theorem 1.1. There is a polynomial-time algorithm that, given a graph G and integer k,
either

outputs #minFVS(G, k), or
outputs a graph G′ and integer k′ such that #minFVS(G, k) = #minFVS(G′, k′) and
|V (G′)| = O(k5) and k′ = O(k5).

Proof. First we use the algorithm from Lemma 3.3 to find a graph G∗ and integer k∗ ≤ k

such that #minFVS(G, k) = #minFVS(G∗, k∗), |V ̸=2(G∗)| = O(k3) and G∗ − V ̸=2(G∗) has
O(k3) connected components (chains). Then, if there is a chain of size larger than 2k, we
can run the algorithm from Lemma 3.7 to compute #minFVS(G∗, k∗) in poly(n) time since
n > 2k. Otherwise, all chains of G∗ have size at most 2k and we can use Lemma 3.4 on G∗

to find a graph G′ and integer k′ such that:
#minFVS(G′, k′) = #minFVS(G∗, k∗) = #minFVS(G, k),
|V (G′)| = O(k3) + O(k3 · log(2k)2) = O(k5), and
k′ = O(k + k3 · log(2k)2) = O(k5). ◀

4 Conclusion

We introduced a new model of kernelization for counting problems: a polynomial-time
preprocessing algorithm that either outputs the desired count, or reduces to a provably
small instance with the same answer. We showed that for counting the number of minimum
solutions of size at most k, a reduction to a graph of size poly(k) exists for two classic
problems.

We believe that the new viewpoint on counting kernelization facilitates a general theory
that can be explored for many problems beyond the ones considered here. By following
the textbook proof [9, Lemma 2.2] that a decidable parameterized decision problem is
fixed-parameter tractable if and only if it admits a kernel (of potentially exponential size), it
is easy to show the following equivalence between fixed-parameter tractability of counting
problems and our notion of counting kernelization.

▶ Lemma 4.1. Let P : Σ∗ × N → N be a computable function for some finite alphabet Σ.
Then the following two statements are equivalent:
1. There is a computable function f : N → N and an algorithm that, given an input (x, k) ∈

Σ∗ × N, outputs P(x, k) in time f(k) · |x|O(1).
2. There is a computable function f : N → N and a polynomial-time algorithm that,

given (x, k) ∈ Σ∗ × N, either:
a. outputs P(x, k), or
b. outputs (x′, k′) ∈ Σ∗ × N satisfying |x′|, k′ ≤ f(k) and P(x, k) = P(x′, k′).

Hence our view of counting kernelization is generic enough to capture all fixed-parameter
tractable counting problems. Determining which counting problems have a polynomial-size
kernel remains an interesting challenge.

In this work, we focused on counting minimum-size solutions (of size at most k). Apart
from being of practical interest in several applications, this facilitates several steps in the
design and analysis of our preprocessing algorithms. At present, we do not know whether
the two considered problems have polynomial-size kernels when counting the number of
inclusion-minimal solutions of size exactly k, or the number of (not necessarily minimal or
minimum) solutions of size exactly k; we leave this investigation to future work. To see the
importance of the distinction, observe that the number of minimum vertex covers of size

B. M. P. Jansen and B. van der Steenhoven 27:11

at most k in a graph is bounded by 2k (since the standard 2-way branching discovers all of
them) and the Buss kernel preserves their count. But the total number of vertex covers of
size at most k cannot be bounded in terms of k in general.

For both problems we investigated, our preprocessing step effectively consists of reducing
to an equivalent instance composed of a small core along with poly(k) simply structured
parts, followed by replacing each such part by a small problem-specific gadget. In the
world of decision problems, the theory of protrusion replacement [4, 13] gives a generic way
of replacing such simply-structured parts by gadgets. Similarly, the condenser-extractor
framework [18, 26] can be applied to generic problems as long as they can be captured in
a certain type of logic. This leads to the question of whether, in our model of counting
kernelization, the design of the gadgets can be automated. Can a notion of meta-kernelization
be developed for counting problems?

References
1 Jochen Alber, Michael R. Fellows, and Rolf Niedermeier. Polynomial-time data reduction for

dominating set. J. ACM, 51(3):363–384, 2004. doi:10.1145/990308.990309.
2 Reuven Bar-Yehuda, Dan Geiger, Joseph Naor, and Ron M. Roth. Approximation algorithms

for the feedback vertex set problem with applications to constraint satisfaction and bayesian
inference. SIAM J. Comput., 27(4):942–959, 1998.

3 Bart M. P. Jansen. The power of preprocessing: Gems in kernelization. https://www.win.
tue.nl/~bjansen/talks/BonnGemsInKernelization.pptx, 2016.

4 Hans L. Bodlaender, Fedor V. Fomin, Daniel Lokshtanov, Eelko Penninkx, Saket Saurabh,
and Dimitrios M. Thilikos. (meta) kernelization. J. ACM, 63(5):44:1–44:69, 2016. doi:
10.1145/2973749.

5 Jonathan F. Buss and Judy Goldsmith. Nondeterminism within P. SIAM J. Comput.,
22(3):560–572, 1993. doi:10.1137/0222038.

6 Yixin Cao, Jianer Chen, and Yang Liu. On feedback vertex set: New measure and new
structures. Algorithmica, 73(1):63–86, 2015.

7 Radu Curticapean. The simple, little and slow things count: on parameterized counting
complexity. Bull. EATCS, 120, 2016. URL: http://eatcs.org/beatcs/index.php/beatcs/
article/view/445.

8 Radu Curticapean, Holger Dell, and Dániel Marx. Homomorphisms are a good basis for
counting small subgraphs. In Hamed Hatami, Pierre McKenzie, and Valerie King, editors,
Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC
2017, Montreal, QC, Canada, June 19-23, 2017, pages 210–223. ACM, 2017. doi:10.1145/
3055399.3055502.

9 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.

10 Henning Fernau. Parameterized algorithmics: A graph-theoretic approach. PhD thesis,
Habilitationsschrift, Universität Tübingen, Germany, 2005.

11 Jörg Flum and Martin Grohe. The parameterized complexity of counting problems. SIAM J.
Comput., 33(4):892–922, 2004. doi:10.1137/S0097539703427203.

12 Fedor Fomin, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi. Kernelization: theory of
parameterized preprocessing. Cambridge University Press, 2019. doi:10.1017/9781107415157.

13 Fedor V. Fomin. Protrusions in graphs and their applications. In Venkatesh Raman and
Saket Saurabh, editors, Parameterized and Exact Computation - 5th International Symposium,
IPEC 2010, Chennai, India, December 13-15, 2010. Proceedings, volume 6478 of Lecture Notes
in Computer Science, page 3. Springer, 2010. doi:10.1007/978-3-642-17493-3_2.

14 Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, and Dimitrios M. Thilikos. Bidimension-
ality and kernels. SIAM J. Comput., 49(6):1397–1422, 2020. doi:10.1137/16M1080264.

IPEC 2023

https://doi.org/10.1145/990308.990309
https://www.win.tue.nl/~bjansen/talks/BonnGemsInKernelization.pptx
https://www.win.tue.nl/~bjansen/talks/BonnGemsInKernelization.pptx
https://doi.org/10.1145/2973749
https://doi.org/10.1145/2973749
https://doi.org/10.1137/0222038
http://eatcs.org/beatcs/index.php/beatcs/article/view/445
http://eatcs.org/beatcs/index.php/beatcs/article/view/445
https://doi.org/10.1145/3055399.3055502
https://doi.org/10.1145/3055399.3055502
https://doi.org/10.1137/S0097539703427203
https://doi.org/10.1017/9781107415157
https://doi.org/10.1007/978-3-642-17493-3_2
https://doi.org/10.1137/16M1080264

27:12 Kernelization for Counting Problems on Graphs

15 Yoichi Iwata. Linear-time kernelization for feedback vertex set. In Ioannis Chatzigiannakis,
Piotr Indyk, Fabian Kuhn, and Anca Muscholl, editors, 44th International Colloquium on
Automata, Languages, and Programming, ICALP 2017, July 10-14, 2017, Warsaw, Poland,
volume 80 of LIPIcs, pages 68:1–68:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2017. doi:10.4230/LIPIcs.ICALP.2017.68.

16 Bart M. P. Jansen and Bart van der Steenhoven. Kernelization for counting problems
on graphs: Preserving the number of minimum solutions. CoRR, abs/2310.04303, 2023.
arXiv:2310.04303.

17 Mark Jerrum and Alistair Sinclair. Polynomial-time approximation algorithms for the Ising
model. SIAM J. Comput., 22(5):1087–1116, 1993.

18 Eun Jung Kim, Maria J. Serna, and Dimitrios M. Thilikos. Data-compression for parametrized
counting problems on sparse graphs. In Wen-Lian Hsu, Der-Tsai Lee, and Chung-Shou
Liao, editors, 29th International Symposium on Algorithms and Computation, ISAAC 2018,
December 16-19, 2018, Jiaoxi, Yilan, Taiwan, volume 123 of LIPIcs, pages 20:1–20:13. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2018. doi:10.4230/LIPIcs.ISAAC.2018.20.

19 Daniel Lokshtanov, Pranabendu Misra, Saket Saurabh, and Meirav Zehavi. Kernelization of
counting problems. CoRR, abs/2308.02188, 2023. doi:10.48550/arXiv.2308.02188.

20 Michael Luby and Eric Vigoda. Fast convergence of the Glauber dynamics for sampling
independent sets. Random Struct. Algorithms, 15(3-4):229–241, 1999.

21 Catherine McCartin. Parameterized counting problems. Annals of Pure and Applied Logic,
138(1):147–182, 2006. doi:10.1016/j.apal.2005.06.010.

22 Ron Milo, Shai Shen-Orr, Shalev Itzkovitz, Nadav Kashtan, Dmitri Chklovskii, and Uri Alon.
Network motifs: Simple building blocks of complex networks. Science (New York, N.Y.),
298:824–7, November 2002. doi:10.1126/science.298.5594.824.

23 Naomi Nishimura, Prabhakar Ragde, and Dimitrios M. Thilikos. Parameterized counting
algorithms for general graph covering problems. In Frank K. H. A. Dehne, Alejandro López-
Ortiz, and Jörg-Rüdiger Sack, editors, Algorithms and Data Structures, 9th International
Workshop, WADS 2005, Waterloo, Canada, August 15-17, 2005, Proceedings, volume 3608 of
Lecture Notes in Computer Science, pages 99–109. Springer, 2005. doi:10.1007/11534273_10.

24 Pekka Orponen. Dempster’s rule of combination is #p-complete. Artif. Intell., 44(1-2):245–253,
1990.

25 Dan Roth. On the hardness of approximate reasoning. Artif. Intell., 82(1-2):273–302, 1996.
26 Dimitrios M. Thilikos. Compactors for parameterized counting problems. Comput. Sci. Rev.,

39:100344, 2021. doi:10.1016/j.cosrev.2020.100344.
27 Stéphan Thomassé. A 4k2 kernel for feedback vertex set. ACM Trans. Algorithms, 6(2):32:1–

32:8, 2010. doi:10.1145/1721837.1721848.
28 Marc Thurley. Kernelizations for parameterized counting problems. In Jin-yi Cai, S. Barry

Cooper, and Hong Zhu, editors, Theory and Applications of Models of Computation, 4th
International Conference, TAMC 2007, Shanghai, China, May 22-25, 2007, Proceedings,
volume 4484 of Lecture Notes in Computer Science, pages 703–714. Springer, 2007. doi:
10.1007/978-3-540-72504-6_64.

29 Seinosuke Toda. PP is as hard as the polynomial-time hierarchy. SIAM J. Comput., 20(5):865–
877, 1991. doi:10.1137/0220053.

30 Leslie G. Valiant. The complexity of computing the permanent. Theor. Comput. Sci., 8:189–201,
1979. doi:10.1016/0304-3975(79)90044-6.

31 D. J. A. Welsh. Graph theory and theoretical physics. The Mathematical Gazette, 54(390):432–
433, 1970. doi:10.2307/3613919.

https://doi.org/10.4230/LIPIcs.ICALP.2017.68
https://arxiv.org/abs/2310.04303
https://doi.org/10.4230/LIPIcs.ISAAC.2018.20
https://doi.org/10.48550/arXiv.2308.02188
https://doi.org/10.1016/j.apal.2005.06.010
https://doi.org/10.1126/science.298.5594.824
https://doi.org/10.1007/11534273_10
https://doi.org/10.1016/j.cosrev.2020.100344
https://doi.org/10.1145/1721837.1721848
https://doi.org/10.1007/978-3-540-72504-6_64
https://doi.org/10.1007/978-3-540-72504-6_64
https://doi.org/10.1137/0220053
https://doi.org/10.1016/0304-3975(79)90044-6
https://doi.org/10.2307/3613919

B. M. P. Jansen and B. van der Steenhoven 27:13

A An FPT algorithm for #minFVS

▶ Lemma 3.7. There is an algorithm that, given a graph G and integer k, computes
#minFVS(G, k) in 2O(k) · poly(n) time.

Proof. The pseudocode of an algorithm to solve the disjoint minimum feedback vertex set
counting problem is given in Algorithm 2 and is based on the algorithm by Cao et al [6]. In
fact, our algorithm solves a slightly more general version of the problem, where the vertices
of the graph G are weighted by a function w : V (G) → N. In case G has no FVS of size at
most k that is disjoint from W , then #DJ-FVS(G, w, W , k) will output a pair (a, b) with
a = ∞ and b = 0. Otherwise, a will be the size of a minimum FVS disjoint of W and

b =
∑

|S|=a,
S∈FVS(G),

S∩W =∅

∏
v∈S

w(v).

We refer to this value as the weighted disjoint minimum FVS sum of G. The weight of a
vertex v essentially models the number of distinct alternatives there are for a vertex v that,
in the context of choosing them for a minimum FVS of G, achieve the same result. When we
assign a weight of one to each vertex of a graph G, then the weighted minimum FVS sum of
G is equal to the number of minimum feedback vertex sets of G.

In the pseudocode we make use of binary operator ⊕, which is defined to work on pairs
as follows:

(a1, b1) ⊕ (a2, b2) =

(a1, b1) if a1 < a2

(a2, b2) if a1 > a2

(a1, b1 + b2) if a1 = a2

For the operators + and · we assume element-wise functionality when applied to pairs,
i.e. (a1, b1) + (a2, b2) = (a1 + a2, b1 + b2). Furthermore, for a weight function w of G and
X ⊆ V (G), we use w|X to denote the restriction of w to X.

We shall now explain how the #DJ-FVS algorithm works by going over the pseudocode
in Algorithm 2. It makes use of a branching strategy with measure function ℓ + k, where ℓ is
the number of connected components of G[W].

Lines 1-3 are the base cases of the algorithm. In lines 4-5 we remove vertices of degree at
most one, which corresponds to (R2). In lines 6-7 we contract the chains of G existing in
G − W one edge at a time. Note for line 8 that H is a forest since W is an FVS of G. For
lines 9-10, if a vertex v would form a cycle with W it should be contained in all solutions so
we recurse on this choice. In lines 11-14, vertex v has at least two neighbors in W , but since
G[W ∪ {v}] does not form a cycle these neighbors must be in different connected components
of G[W]. Thus we branch on v not being in a solution, which corresponds with adding v

to W , and on v being in a solution by removing it from the graph. In the former branch ℓ

decreases, while in the latter k decreases.
In line 15, we choose a vertex v ∈ V (H) that is not a leaf of tree H such that at most

one of its neighbors in H is not a leaf of H. Note that such a vertex always exists for a tree
that does not consist of only leaves. Furthermore, at this point of the algorithm no tree of H

can consist of only leaves. If a tree of H consists of a single leaf, then either it has degree one
in G, but then lines 4-5 would have gotten rid of it, or it has degree at least two, in which
case the if condition on line 9 or the if condition on line 11 would have been satisfied. If a

IPEC 2023

27:14 Kernelization for Counting Problems on Graphs

tree of H consists of two leaves, then either both have degree two in which case the edge
between them would have been contracted by lines 6-7, or one of the if statements of line 9
or line 11 would have been applicable to one of the two leaves.

First consider the case where v has one neighbor in W (lines 16-22). In that case we pick
c in line 16 to be a child of v. For these two vertices, we branch over all possible combinations
of whether or not they should be in a solution, while realizing that a minimum FVS that
contains v can never contain c. Note that if G[W ∪ {v, c}] does not form a cycle, both v and
c must have a neighbor in a different connected component of W so the branch in line 19
decreases ℓ. The branches on line 20 and 21 decrease k while not increasing ℓ.

Finally, we have the case that v has no neighbors in W (lines 23-31). That must mean
that v has at least two children, which are all leaves by how we chose v. If v would have had
only one child, then the edge between v and the child would have been contracted in lines
6-7. Thus we let c1 and c2 be two distinct children of v. Again, we branch over all viable
combinations of how these three vertices can be part of solutions. The logic here is similar
to that of the previous case. Here as well, in all branches, the measure k + ℓ decreases.

Since the algorithm branches in at most five directions and the time per iteration is
polynomial in n, the runtime of the disjoint algorithm becomes 5k+ℓ · nO(1). We can use
Algorithm 2 to compute #minFVS(G, k) by taking an FVS Z of G and running the disjoint
algorithm for all subsets of Z, simulating the ways an FVS can intersects Z. The pseudocode
for this compression algorithm can be seen in Algorithm 1. To get an FVS of G of size at
most k, we can simply run one of the existing algorithms designed for this, for example the
one by Cao et al. [6] which runs in time O(3.83k) · poly(n). If this reports that no such FVS
exists, we output #minFVS(G, k) = 0. Otherwise, we use the found FVS for the compression
algorithm. Using the fact that the FVS used by the compression algorithm is of size at
most k, we can bound the runtime of the complete algorithm to compute #minFVS(G, k) at
26k · nO(1). ◀

Algorithm 1 #FVS-compression(G, k, Z).
Input: Graph G, integer k, FVS Z of G of size at most k

Output: A pair (a, b) with a being the feedback vertex number of G and
b = #minFVS(G, k)

1: s = (∞, 0)
2: for XZ ⊆ Z do
3: s′ = (|XZ |, 0)+#DJ-FVS(G − XZ , w, Z \ XZ , k − |XZ |) with ∀v ∈ V (G − XZ) :

w(v) = 1
4: s = s ⊕ s′

5: return s

B. M. P. Jansen and B. van der Steenhoven 27:15

Algorithm 2 #DJ-FVS(G, w, W , k).
Input: Graph G, weight function w : V (G) → N, FVS W of G, integer k

Parameter: k + ℓ, with ℓ = # components of G[W]
Output: A pair (a, b) where a is the size of a minimum FVS S of G such that
S ∩ W = ∅ and b is the weighted disjoint minimum FVS sum of G. If no such FVS
of size at most k exists, then (a, b) = (∞, 0).

1: if k < 0 then return (∞, 0)
2: if G[W] has a cycle then return (∞, 0)
3: if G − W is empty then return (0, 1)
4: if ∃v ∈ V (G − W): degG(v) ≤ 1 then
5: return #DJ-FVS(G − v, w|V (G)\{v} ,W ,k)
6: if ∃{v, u} ∈ E(G) : degG(v) = degG(u) = 2 and v, u /∈ W then
7: return #DJ-FVS(G′, w′ W , k), where G′ is G with edge {v, u} contracted to a

single vertex s and w′ is the weight function w|V (G′) with w′(s) = w(v) + w(u).
8: Let H be forest G − W .
9: if ∃v ∈ V (H): G[W ∪ {v}] has a cycle then

10: return (1, 0) + (1, w(v))· #DJ-FVS(G − v, w|V (G)\{v}, W , k − 1)
11: if ∃v ∈ V (H): |NG(v) ∩ W | ≥ 2 then
12: X0 =#DJ-FVS(G, w, W ∪ {v}, k)
13: X1 = (1, 0) + (1, w(v))· #DJ-FVS(G − v, w|V (G)\{v}, W , k − 1)
14: return X0 ⊕ X1
15: Let v ∈ V (H) be a vertex that is not a leaf of H such that at most one vertex in NH(v)

is not a leaf of H.
16: if |NG(v) ∩ W | = 1 then
17: Pick c ∈ V (H) such that NG(c) = {v, x} for some x ∈ W

18: if G[W ∪ {v, c}] forms a cycle then X00 = (∞, 0)
19: else X00 = #DJ-FVS(G, w, W ∪ {v, c}, k)
20: X10 = (1, 0) + (1, w(v))· #DJ-FVS(G − v, w|V (G)\{v}, W , k − 1)
21: X01 = (1, 0) + (1, w(c))· #DJ-FVS(G − c, w|V (G)\{c}, W ∪ {v}, k − 1)
22: return X00 ⊕ X10 ⊕ X01
23: if |NG(v) ∩ W | = 0 then
24: Pick c1, c2 ∈ V (H), c1 ̸= c2 such that NG(c1) = {v, x} and NG(c2) = {v, y} for some

x, y ∈ W

25: if G[W ∪ {v, c1, c2}] forms a cycle then X000 = (∞, 0)
26: else X000 = #DJ-FVS(G, w, W ∪ {v, c1, c2}, k)
27: X100 = (1, 0) + (1, w(v))· #DJ-FVS(G − v, w|V (G)\{v}, W , k − 1)
28: X010 = (1, 0) + (1, w(c1))· #DJ-FVS(G − c1, w|V (G)\{c1}, W ∪ {v, c2}, k − 1)
29: X001 = (1, 0) + (1, w(c2))· #DJ-FVS(G − c2, w|V (G)\{c2}, W ∪ {v, c1}, k − 1)
30: X011 = (2, 0) + (1, w(c1) · w(c2))· #DJ-FVS(G − {c1, c2}, w|V (G)\{c1,c2}, W ∪ {v},

k − 2)
31: return X000 ⊕ X100 ⊕ X010 ⊕ X001 ⊕ X011

IPEC 2023

On the Parameterized Complexity of Multiway
Near-Separator
Bart M. P. Jansen # Ñ

Eindhoven University of Technology, The Netherlands

Shivesh K. Roy # Ñ

Eindhoven University of Technology, The Netherlands

Abstract
We study a new graph separation problem called Multiway Near-Separator. Given an undirected
graph G, integer k, and terminal set T ⊆ V (G), it asks whether there is a vertex set S ⊆ V (G) \ T

of size at most k such that in graph G − S, no pair of distinct terminals can be connected by two
pairwise internally vertex-disjoint paths. Hence each terminal pair can be separated in G − S by
removing at most one vertex. The problem is therefore a generalization of (Node) Multiway
Cut, which asks for a vertex set for which each terminal is in a different component of G − S.
We develop a fixed-parameter tractable algorithm for Multiway Near-Separator running in
time 2O(k log k) · nO(1). Our algorithm is based on a new pushing lemma for solutions with respect to
important separators, along with two problem-specific ingredients. The first is a polynomial-time
subroutine to reduce the number of terminals in the instance to a polynomial in the solution size k

plus the size of a given suboptimal solution. The second is a polynomial-time algorithm that, given
a graph G and terminal set T ⊆ V (G) along with a single vertex x ∈ V (G) that forms a multiway
near-separator, computes a 14-approximation for the problem of finding a multiway near-separator
not containing x.

2012 ACM Subject Classification Mathematics of computing → Graph algorithms; Theory of compu-
tation → Parameterized complexity and exact algorithms; Theory of computation → Approximation
algorithms analysis

Keywords and phrases fixed-parameter tractability, multiway cut, near-separator

Digital Object Identifier 10.4230/LIPIcs.IPEC.2023.28

Related Version Full Version: https://arxiv.org/abs/2310.04332

Funding This project has received funding from the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation programme (grant agreement No 803421,
ReduceSearch).

1 Introduction

Graph separation problems play an important role in the study of graph algorithms. While
the problem of finding a minimum vertex set whose removal separates two terminals s and t

can be solved in polynomial-time via the Ford-Fulkerson algorithm [13], many variations of
the problem are NP-complete. They form a fruitful subject of investigation in the study
of parameterized algorithmics, where a typical goal is to develop an algorithm that finds
a suitable separator of size k in an n-vertex input graph in time f(k) · nO(1), or concludes
that no such solution exists. Landmark results in this area include the FPT algorithms for
Multiway Cut [5, 8, 15, 20, 27] (in which the goal is to find a vertex set which separates
any pair of terminals from a given set T) and Multicut [3, 22] (in which only a specified
subset of the terminal pairs must be separated) in undirected graphs.

© Bart M. P. Jansen and Shivesh K. Roy;
licensed under Creative Commons License CC-BY 4.0

18th International Symposium on Parameterized and Exact Computation (IPEC 2023).
Editors: Neeldhara Misra and Magnus Wahlström; Article No. 28; pp. 28:1–28:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:b.m.p.jansen@tue.nl
https://www.win.tue.nl/~bjansen/
https://orcid.org/0000-0001-8204-1268
mailto:s.k.roy@tue.nl
https://sites.google.com/view/shiveshroy
https://orcid.org/0000-0003-0896-3437
https://doi.org/10.4230/LIPIcs.IPEC.2023.28
https://arxiv.org/abs/2310.04332
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

28:2 On the Parameterized Complexity of Multiway Near-Separator

After the parameterized complexity of the most fundamental separation problems in this
area were settled, researchers started considering variations on the theme of graph separation,
including Steiner Multicut [4] (given a sequence of subsets of terminals T1, . . . , Tℓ, find
a vertex set separating at least one pair {ti ∈ Ti, tj ∈ Tj} for each i ̸= j), Multiway
Cut-Uncut [6, 19] (given an equivalence relation R on a set of terminal vertices, find a
vertex set whose removal leaves terminals ti, tj in the same connected component if and only
if ti ≡R tj), and Stable Multiway cut [21] (find a multiway cut that is independent).

In this paper we start to explore a new variation of the separation theme from the
parameterized perspective. Rather than asking for a vertex set which fully separates some
given terminal pairs, we are interested in nearly separating terminals: in the remaining graph,
there should not be two or more internally vertex-disjoint paths connecting a terminal pair.
We therefore study the following problem, which we believe is a natural extension in the
well-studied area of graph separation problems.

Multiway Near-Separator (mwns) Parameter: k

Input: An undirected graph G, terminal set T ⊆ V (G), and a positive integer k.
Question: Is there a set S ⊆ V (G) \ T with |S| ≤ k such that there does not exist a pair
of distinct terminals ti, tj ∈ T with two internally vertex-disjoint ti-tj paths in G − S?

Note that, by Menger’s theorem, the requirement on solutions S to mwns is equivalent
to the requirement that in the graph G − S, any terminal pair can be separated by removing
a non-terminal vertex. One could therefore imagine applications of this problem in the study
of disrupting communications between nodes in a network. While the standard Multiway
Cut problem captures the setting that all potential for communication between terminals
has to be broken, the size of a solution to the near-separation problem can be arbitrarily
much smaller while it still ensures the following property: the communication between each
terminal pair is either broken by the solution, or there is at least one non-terminal vertex
through which all communications of the pair must pass, so that it may be intercepted at
that point. A related problem of reducing connectivity between nodes by removing edges
or vertices was studied by Barman and Chawla [1], who presented various approximation
algorithms.

Using the (perhaps non-standard) view that a direct edge between two vertices ti, tj

means there are two internally vertex-disjoint paths between them (the intersection of the set
of interior vertices is empty), the requirement that in G − S there do not exist two internally
vertex-disjoint paths between any pair of distinct terminals, can alternatively be shown to be
equivalent to demanding that T is an independent set and there is no simple cycle containing
at least two vertices from T (see Proposition 2.7). Simple cycles containing two vertices
from T , henceforth called T -cycles, therefore play an important role in our arguments. Based
on this alternative characterization, the near-separator problem is related to the Subset
Feedback Vertex Set problem, which asks for a minimum vertex set intersecting all
cycles that contain at least one terminal [9], although there the solution is allowed to contain
terminal vertices.

A simple reduction (Lemma B.1) shows that Multiway Near-Separator is NP-
complete. It forms a generalization of the (Node) Multiway Cut problem with undeletable
terminals: an instance (G, T = {t1, . . . , tℓ}, k) of the latter problem can be reduced to an equiv-
alent instance (G′, T, k) of mwns by inserting |T |−1 new non-terminal vertices w1, . . . , w|T |−1
with N(wi) = {ti, ti+1}.

The Multiway Near-Separator problem can be shown to be non-uniformly fixed-
parameter tractable parameterized by k using the technique of recursive understanding [19], as
the problem can be formulated in Monadic Second-Order Logic and can be shown to become

B. M. P. Jansen and S. K. Roy 28:3

fixed-parameter tractable on (s(k), k + 1)-unbreakable graphs for some function s : N → N
by branching on small connected vertex sets with small neighborhoods. This only serves
as a complexity classification, however, as the resulting algorithms are non-uniform and
have a large (and unknown) parameter dependence f(k). In this paper, our goal is to
understand the structure of Multiway Near-Separator and develop an efficient (and
uniform) parameterized FPT algorithm for the problem.

Our results

The main result of our paper is the following theorem, showing that mwns has a uniform
FPT algorithm with parameter dependence 2O(k log k).

▶ Theorem 1.1 (⋆). Multiway Near-Separator can be solved in time 2O(k log k) · nO(1).

The starting point for the algorithm is the approach for solving Multiway Cut via
important separators. The pushing lemma due to Marx [20] [7, Lemma 8.53] states that
for any instance (G, T, k) of Multiway Cut and any choice of terminal t ∈ T , there is
an optimal solution which contains an important (t, T \ {t})-separator. As the number of
important separators of size at most k is bounded by 4k, we can construct a solution by
picking an arbitrary terminal which is not yet fully separated from the remaining terminals
and branching on all choices of including a (t, T \ {t})-separator in the solution.

Adapting this strategy directly for Multiway Near-Separator fails for several reasons.
Most importantly, since terminal pairs are allowed to remain in the same connected component,
it is possible that in an instance with a solution S of size k, there exists a terminal t ∈ T for
which there are no (t, T \ {t})-separators of size f(k) for any function f . This happens when
such a terminal t is located in a “central” block in the block-cut tree of G−S. However, there
always exists a terminal t′ ∈ T for which there does exist a (t′, T \ {t′})-separator of size at
most k + 1, and for which furthermore a variation of the pushing lemma can be proven: there
is an optimal solution which contains all-but-one vertex of an important (t′, T \{t′})-separator
of size at most k + 1. Intuitively, such a terminal t′ can be found in a leaf block of the
block-cut tree of G − S. Hence there exists a terminal for which branching on important
separators can make progress in identifying the solution, but not all terminals have this
property and a priori it is not clear which is the right one.

To resolve this issue, we will effectively have the algorithm try all choices for the terminal t

which is near-separated from all other terminals by an important separator. To ensure the
branching factor of the resulting algorithm is bounded in terms of the parameter k, while the
number of terminals T may initially be arbitrarily large compared to k, we therefore have to
reduce the number of terminals to kO(1) in a preprocessing phase.

For the standard Multiway Cut problem, a preprocessing step based on the linear-
programming relaxation of the problem can be used to reduce the number of terminals
to 2k [8] (cf. [23]). For the near-separation variant we consider, it seems unlikely that the
linear-programming relaxation has the same nice properties (such as half-integrality) as for
the original problem, let alone that the resulting fractional solutions are useful for a reduction
in the number of terminals. As one of our main technical ingredients, we therefore develop a
combinatorial preprocessing algorithm to reduce the number of terminals to a polynomial
in the solution size k plus the size of a given (suboptimal) near-separator S, which will be
available via the technique of iterative compression [24] [7, §4]. The preprocessing step is
based on concrete reduction rules operating in the graph.

IPEC 2023

28:4 On the Parameterized Complexity of Multiway Near-Separator

▶ Theorem 1.2 (⋆). There is a polynomial-time algorithm that, given an instance (G, T, k)
of mwns and a multiway near-separator Ŝ for terminal set T in G, outputs an equivalent
instance (G′, T ′, k′) such that:
1. G′ is an induced subgraph of G,
2. T ′ is a subset of T of size O(k5 · |Ŝ|4), and
3. k′ ≤ k.
Moreover, there is a polynomial-time algorithm that, given a solution S′ for (G′, T ′, k′),
outputs a solution S of (G, T, k).

Note that the algorithm even runs in polynomial-time, and may therefore be a useful
ingredient to build a polynomial kernelization for this problem or variations thereof. To
obtain this terminal-reduction algorithm, it turns out to be useful to know whether the
role of a vertex x in a suboptimal near-separator S can be taken over by O(k) alternative
vertices. If not, then this immediately leads to the conclusion that such a vertex x belongs to
any optimal solution to the problem. On the other hand, knowing a small vertex set Sx for
which (S \ {x}) ∪ Sx is also a near-separator reveals a lot of structure in the instance which
can be exploited by the reduction rule. This usage is similar as the use of the blocker [7,
§9.1.3] in Thomassé’s kernelization algorithm for Feedback Vertex Set [26].

Given a suboptimal near-separator S, we are therefore interested in determining, for a
given x ∈ S, whether it is possible to obtain a near-separator S′ by replacing x by a set
of O(k) vertices. This is equivalent to finding a near-separator of size O(k) which avoids
the use of vertex x in the graph G′ := G − (S \ {x}). Hence this task effectively reduces to
finding a solution not containing x in the graph G′ for which {x} forms a near-separator.
We give a polynomial-time 14-approximation for this problem.

▶ Theorem 1.3 (⋆). There is a polynomial-time algorithm that, given a graph G, terminal
set T ⊆ V (G), and a vertex x ∈ V (G) such that {x} is a multiway near-separator for
terminal set T in G, outputs a multiway near-separator Sx ⊆ V (G) \ {x} for T in G such
that |Sx| ≤ 14|S∗

x|, where S∗
x ̸∋ x is a smallest multiway near-separator for T in G that

avoids x.

Theorem 1.3 can be compared to a result for the Chordal Deletion problem, where
the goal is to delete a minimum number of vertices to break all induced cycles of length
at least four (holes). A key step in the polynomial kernelization algorithm for the problem
due to Jansen and Pilipczuk is a subroutine ([16, Lemma 1.3]) which, given a graph G and
vertex x for which G − {x} is chordal, outputs a set of some ℓ ≥ 0 holes pairwise intersecting
only in x, together with a vertex set S of size at most 12ℓ not containing x whose removal
makes G chordal. Hence S is a 12-approximation for the problem of finding a chordal deletion
set which avoids x.

Related work

Apart from the aforementioned work on graph separation problems, the work of Golovach
and Thilikos [14] is related to our setting. They consider the problem of removing at
most k edges from a graph to split it into exactly t connected components C1, . . . , Ct such
that Ci has edge-connectivity at least λi for a given sequence (λ1, . . . , λt). Besides recursive
understanding, which only leads to non-uniform FPT classifications, another generic tool
for deriving fixed-parameter tractability of separation problems is the treewidth reduction
technique by Marx and Razgon [22]. To be able to apply the technique, the number of
terminals must be bounded in terms of the parameter k, which is not the case in general.

B. M. P. Jansen and S. K. Roy 28:5

Even if one uses Theorem 1.2 to bound the number of terminals first, it is not clear if the
technique can be applied since the solutions to be preserved are not minimal separators in the
graph. Furthermore, successful application of the technique would give double-exponential
algorithms at best, due to having to perform dynamic programming on a tree decomposition
of width 2Ω(k).

The problem of computing a near-separator avoiding a vertex x is related to the problem
of computing an r-fault tolerant solution to a vertex deletion problem, which is a solution
from which any r vertices may be omitted without invalidating the solution. The computation
of r-fault tolerant solutions has been studied for the Feedback Vertex Set problem [2],
which has a polynomial-time O(r)-approximation.

The FPT algorithm for Subset Feedback Vertex Set in undirected graphs due to
Cygan et al. [9] bears some similarity to ours, in that it also uses reduction rules to bound
the number of terminals followed by an algorithm which is exponential in the solution size
and the number of terminals. However, Subset Feedback Vertex Set behaves differently
from the problem we consider, since in the latter the structures to be hit always involve pairs
of terminals to be near-separated. On the other hand, a solution to Subset Feedback
Vertex Set will reduce the connectivity in the graph to the extent that there will no longer
be two internally vertex-disjoint paths between any terminal pair, but also has to ensure
that there are no cycles through a single terminal. This leads to significant differences in the
approach.

Organization

We begin with short preliminaries with the crucial definitions. We prove our main Theorem 1.1
in Section 3 by assuming Theorem 1.2. Next, in Section 4, we prove Theorem 1.3 by giving a
polynomial-time construction of a near-separator avoiding a specific vertex. The proof of
Theorem 1.2 is given in Section 5. The proofs of statements marked with (⋆) are located in
the full version [17].

2 Preliminaries

Graphs. We use standard graph-theoretic notation, and we refer the reader to Diestel [11]
for any undefined terms. We consider simple unweighted undirected graphs. A graph G

has vertex set V (G) and edge set E(G). We use shorthand n = |V (G)| and m = |E(G)|.
The set {1, . . . , ℓ} is denoted by [ℓ]. The open neighborhood of v ∈ V (G) is NG(v) := {u |
{u, v} ∈ E(G)}, where we omit the subscript G if it is clear from context. For a vertex
set S ⊆ V (G) the open neighborhood of S, denoted NG(S), is defined as S :=

⋃
v∈S NG(v)\S.

For S ⊆ V (G), the graph induced by S is denoted by G[S]. For two vertices x, y in a graph G,
an x-y path is a sequence (x = v1, . . . , vk = y) of vertices such that {vi, vi+1} ∈ E(G) for
all i ∈ [k − 1]. Furthermore, the vertices v2. . . . , vk−1 are called the internal vertices of the
x-y path. Given a path P = (v1, . . . , vk) and indices i, j ∈ [k], with j ≥ i, we use P [vi, vj]
to denote the subpath of the path P which starts from vi and ends at vj . Moreover,
we use shorthand P (vi, vj] = P [vi, vj] − {vi}, P [vi, vj) = P [vi, vj] − {vj}, and P (vi, vj) =
P [vi, vj] − {vi, vj}. Given a p1-pk path P = (p1, . . . , pk) and a q1-qℓ path Q = (q1, . . . , qℓ)
with pk = q1 such that P and Q are internally vertex-disjoint, we use P · Q to denote the
p1-qℓ path (p1, . . . , pk, q2, . . . , qℓ) obtained by first traversing P and then Q. We say that a
path P in G intersects a vertex vi ∈ V (G) if vi ∈ V (P), similarly, for a set S ⊆ V (G), we say
that path P intersects S if V (P)∩S ≠ ∅. For S ⊆ V (G), an x-y path in G is called an S-path
if x, y ∈ S. For S ⊆ V (G), cycles C1, C2 in G are said to be S-disjoint if V (C1) ∩ V (C2) ⊆ S.

IPEC 2023

28:6 On the Parameterized Complexity of Multiway Near-Separator

We now define a few basic notations about block-cut graphs (for completeness we define
the notion of block-cut graph in Definition A.2) that we will use henceforth. Given a graph G

with connected components C1, . . . , Cm, a rooted block-cut forest F of G is a block-cut forest
containing block-cut trees T1, . . . , Tm such that for each i ∈ [m], the tree Ti is a block-cut tree
of Ci that is rooted at an arbitrary block of Ti. Given a rooted forest F and a vertex v ∈ V (F),
we use parentF (v) to denote the parent of v (if v is a root then parentF (v) = ∅) and childF (v)
to denote the set containing all children of v (if v is a leaf then childF (v) = ∅). Given a
rooted block-cut forest F of G, and a node d of F , we use VG(Fd) to denote the vertices
of G occurring in blocks of the subtree rooted at d. Furthermore, we use Gd to denote the
graph induced by the vertex set VG(Fd), i.e., Gd := G[VG(Fd)]. We also need the following
observations.

▶ Observation 2.1. Let G be a graph, and let B1, B2 be two distinct blocks of G such
that V (B1) ∩ V (B2) = {v}. In the block-cut graph G′ of G, it holds that the distance between
blocks B1 and B2 is two with v as an intermediate vertex.

▶ Observation 2.2. Consider a graph G, terminal set T ⊆ V (G), and a MWNS S ⊆ V (G)
of (G, T). Then each block B of G − S contains at most one terminal.

Two mwns instances (G, T, k) and (G′, T ′, k′) are said to be equivalent if it holds that (G, T, k)
is a YES-instance of mwns if and only if (G′, T ′, k′) is a YES-instance of mwns. An
instance (G, T, k) of mwns is said to be non-trivial if ∅ is not a solution of (G, T, k). A
terminal t ∈ T is said to be nearly-separated in G if there does not exist another terminal t′ ∈
T \ {t} such that there are 2 internally vertex-disjoint t-t′ paths in G.

Throughout this manuscript we use Multiway Near-Separator (mwns) to denote
the parameterized version of the multiway near-separator problem, whereas given a graph G

and terminal set T we use multiway near-separator (MWNS) to refer to the graph-theoretic
concept of nearly-separating a terminal set T in G. Formally, it is defined as follows.

▶ Definition 2.3 (Multiway near-separator (MWNS)). Given a graph G and terminal set T ⊆
V (G), a set S ⊆ V (G) is called a multiway near-separator (MWNS) of (G, T) if S ∩ T = ∅
and there does not exist a pair of distinct terminals ti, tj ∈ T such that G − S contains two
internally vertex-disjoint ti-tj paths.

▶ Definition 2.4 (r-redundant MWNS). Given a graph G and terminal set T ⊆ V (G), a
set S∗ ⊆ V (G) \ T is an r-redundant MWNS of (G, T) if for all R ⊆ S∗ with |R| ≤ r, the
set S∗ \ R is a MWNS of (G, T).

▶ Definition 2.5 (x-avoiding MWNS). Given a graph G, terminal set T ⊆ V (G), and a
vertex x ∈ V (G), a set Sx ⊆ V (G) \ T is called an x-avoiding MWNS of (G, T) if x /∈ Sx and
Sx is a MWNS of (G, T). Among all x-avoiding MWNS of (G, T), one with the minimum
cardinality is called a minimum x-avoiding MWNS of (G, T).

Next, we define T -cycle and give a characterization of MWNS in terms of hitting T -cycles.

▶ Definition 2.6 (T -cycle and T -cycle on x). Given a graph G and terminal set T ⊆ V (G),
a cycle C in G is called a T -cycle if |V (C) ∩ T | ≥ 2. Moreover, if C also contains a
vertex x ∈ V (G), then C is called a T -cycle on x.

We now show that several ways of looking at a near-separator are equivalent.

B. M. P. Jansen and S. K. Roy 28:7

▶ Proposition 2.7 (⋆). Given a graph G, terminal set T ⊆ V (G), and a non-empty
set S ⊆ V (G) \ T , the following conditions are equivalent:
1. For each pair of distinct terminals ti, tj ∈ T , the graph G − S does not contain ti-tj

paths P1, P2 which are pairwise internally vertex-disjoint. (Note that P1 may be identical
to P2 if there are no internal vertices.)

2. For each pair of distinct terminals ti, tj ∈ T , there is a vertex v ∈ V (G) \ T such that ti

and tj belong to different connected components of G − (S ∪ {v}).
3. The set T is an independent set and G − S does not contain a simple cycle C containing

at least two terminals (i.e., a T -cycle).

Due to space constraints we defer the remaining preliminaries about graphs (including
block-cut graphs and important separators) and parameterized algorithms to Appendix A.

3 FPT algorithm for Multiway Near-Separator

In this section we prove Theorem 1.1 assuming Theorem 1.2, which we prove later in Section 5.
We use the combination of bounded search trees and iterative compression [7, §3–4] to obtain
the FPT algorithm. Towards this, we first present the following structural lemma for a MWNS
S ⊆ V (G) of (G, T). It says that in G − S, there is a terminal that can simultaneously be
separated from all other terminals by the removal of a single non-terminal v.

▶ Lemma 3.1 (⋆). Let (G, T, k) be a non-trivial instance of mwns, and let S ⊆ V (G) \ T

be a solution. Then there exists a terminal t ∈ T and a non-terminal vertex v ∈ V (G) \ T

such that S ∪ {v} is a (t, T \ {t})-separator.

Marx [20] [7, Lemma 8.18] introduced a pushing lemma for Multiway Cut to prove that
Multiway Cut is FPT. In the following lemma, we present a pushing lemma for mwns.

▶ Lemma 3.2 (Pushing lemma for mwns (⋆)). Let (G, T, k) be a non-trivial instance of
mwns and let S ⊆ V (G) \ T be a solution. Then there exists a terminal t ∈ T and a
solution S∗ ⊆ V (G) \ T with |S∗| ≤ |S| for which one of the following holds:
1. there is an important (t, T \ {t})-separator S∗

t of size at most k such that S∗
t ⊆ S∗, or

2. there is an important (t, T \ {t})-separator St of size at most (k + 1), and there exists a
vertex v ∈ St such that (St \ {v}) ⊆ S∗.

The following lemma forms the heart of the FPT algorithm (Theorem 1.1). It says that
there exists an FPT algorithm that can compress a k + 1-sized MWNS of (G, T) to a k-sized
MWNS if (G, T, k) is a YES-instance of mwns. This is effectively the compression step of
the iterative compression technique.

▶ Lemma 3.3 (⋆). There is an algorithm that, given an instance (G, T, k) of mwns
and a set Sk+1 ⊆ V (G) \ T of size k + 1 such that Sk+1 is a MWNS of (G, T), runs in
time 2O(k log k) · nO(1) and outputs a solution of (G, T, k) (of size k) if it exists.

Given Lemma 3.3, the proof of Theorem 1.1 follows by applying the standard technique
of iterative compression. The formal proof can be found in the full version [17].

4 Constructing a near-separator avoiding a specified vertex

In this section we prove Theorem 1.3. Throughout the algorithm, we use the perspective
provided by Proposition 2.7 that a MWNS is a set intersecting all T -cycles. Note that
since {x} is a MWNS for (G, T), the set T must be an independent set. Before presenting
the algorithm, we define some notations which we will use during the algorithm.

IPEC 2023

28:8 On the Parameterized Complexity of Multiway Near-Separator

▶ Definition 4.1 (C(v) and C≥1(v)). Given a graph G, terminal set T ⊆ V (G), and a
MWNS {x} ⊆ V (G) of (G, T), let F be a rooted block-cut forest of G − {x}. Let v ∈ V (F)
be a cutvertex. Then we use C(v) to denote all the grandchildren (cutvertices) of v in the
subtree Fv, i.e., C(v) :=

⋃
y∈childF (v) childF (y). If v does not have a grandchild then C(v) := ∅.

We use C≥1(v) ⊆ C(v) to denote the cutvertices of C(v) such that for each vertex c ∈ C≥1(v),
the graph Gc = G[VG(Fc)] contains a vertex p ∈ NG(x) such that there is a c-p path P in Gc

which contains at least one terminal, i.e., |V (P) ∩ T | ≥ 1.

During the construction of an approximate x-avoiding MWNS, we will often make use
of Definition 4.1 to keep track of which cutvertices have a pending subgraph attached that
can reach a neighbor of x by a simple path containing a terminal. Such subpaths can be
combined to form T -cycles. We often use the fact that, in an undirected graph G, it is
possible to test in polynomial time whether there is a simple p-q path through a specified
vertex t; for example, by constructing a vertex-capacitated flow network in which t has a
capacity of 2 and all other vertices a capacity of 1, and testing for a flow from {p, q} to {t}.

Next, we prove some properties about the sets C(t) and C≥1(t) defined above. We need
these properties during the analysis phase (Section 4.2) of the blocker algorithm.

▶ Proposition 4.2. Given a graph G, terminal set T ⊆ V (G), and a MWNS {x} ⊆ V (G)
of (G, T), let F be a rooted block-cut forest of G − {x}. Let t ∈ T be a cutvertex of F and
let C(t) be the set of grandchildren of t in the subtree Ft as defined in Definition 4.1. Then
we have C(t) ∩ T = ∅.

Proof. Assume for a contradiction that there exists a vertex t′ ∈ C(t) ∩ T . First, note
that t′ ̸= t, as a cutvertex is present exactly once in a block-cut forest. Thus, we have t′ ∈
T \ {t}. Let B := parentF (t′). Since {t′, B} ∈ E(F), we have t′ ∈ V (B) by definition
of block-cut forest. Moreover, as B is the parent of t′ and t′ is a grandchild of t, we
have {t, B} ∈ E(F) and hence t ∈ V (B). Note that B is a block in G − {x} which contains
two distinct terminals t, t′, a contradiction to Observation 2.2. ◀

▶ Proposition 4.3. Given a graph G, terminal set T ⊆ V (G), and a MWNS {x} ⊆ V (G)
of (G, T), let F be a rooted block-cut forest of G − {x}. Let t ∈ T be a cutvertex of F and
let C≥1(t) be the subset of grandchildren of t in Ft defined in Definition 4.1. Let B be a node
of Ft such that the graph G[VG(FB) ∪ {x}] does not contain a T -cycle. Then the number
of cutvertices below B in FB which also belong to the set C≥1(t) is at most one, i.e., we
have |VG(FB) ∩ C≥1(t)| ≤ 1.

Proof. First of all, note that if B belongs to C(t) (see Definition 4.1 for the definition
of C(t)) or below in the subtree Ft then the claim trivially holds, because in that case we
have |VG(FB)∩C≥1(t)| ≤ 1. Hence consider the case when either B ∈ childF (t) or B = t, and
assume for a contradiction that |VG(FB) ∩ C≥1(t)| ≥ 2. Let c1, c2 be two distinct cutvertices
in VG(FB) ∩ C≥1(t). By definition of the set C≥1(t) and the fact that c1, c2 ∈ C≥1(t), we
know that for each i ∈ [2], the graph Gci contains a vertex pi ∈ NG(x) such that there is
a ci-pi path Pi in Gci

containing a terminal ti. Moreover, since c1 ̸= c2, the paths P1 and P2
are vertex disjoint. Next, we do a case distinction based on whether B ∈ childF (t) or B = t.

Case 1. When B ∈ childF (t). Since B ∈ childF (t) and by definition (of C≥1(t)) c1, c2
are grandchildren of t, we have c1, c2 ∈ childF (B). Hence, we have c1, c2 ∈ VG(B). Next,
we construct a cycle C in G[VG(FB) ∪ {x}] as follows. Let C := {x, p1} · P1[p1, c1] ·
R12[c1, c2] · P2[c2, p2] · {p2, x}, where R12 is a path between cutvertices c1, c2 ∈ VG(B) inside
the block B. Note that the cycle C in G[VG(FB) ∪ {x}] is simple and contains two distinct
terminals t1, t2 ∈ T , a contradiction to the fact that there is no T -cycle in G[VG(FB) ∪ {x}].

B. M. P. Jansen and S. K. Roy 28:9

Case 2. When B = t. For i ∈ [2], let Bi be the parent of ci. Note that if B1 = B2 then
similarly to Case 1, we can obtain a T -cycle in G[VG(FB1) ∪ {x}], which is also a T -cycle in
the supergraph G[VG(FB) ∪ {x}], again a contradiction to the fact that there is no T -cycle
in G[VG(FB) ∪ {x}]. Hence assume that B1 ̸= B2. Next, we show that even in this case
we can obtain a T -cycle C in G[VG(FB) ∪ {x}], yielding a contradiction. Indeed, we can
use C := {x, p1} · P1[p1, c1] · R1[c1, B] · R2[B, c2] · P2[c2, p2] · {p2, x}, where for i ∈ [2], the
path Ri is a path between vertices ci, B ∈ VG(Bi) inside the block Bi.

Since both the above cases lead to a contradiction, this concludes the proof of Proposi-
tion 4.3. ◀

4.1 Algorithm
In this section we present a recursive algorithm Blocker(G, T, x) to construct a set Sx ⊆ V (G)\
(T ∪ {x}) such that Sx is a mwns of (G, T) and |Sx| ≤ 14OPT x(G, T), where OPT x(G, T)
is the cardinality of a minimum x-avoiding mwns of (G, T). The algorithm effectively takes
a graph G, terminal set T , a vertex x ∈ V (G) \ T (such that {x} is a MWNS of (G, T)) as
input, and computes a vertex set Z ⊆ V (G) \ (T ∪ {x}) to hit certain types of T -cycles in G.
It combines Z with the result of recursively computing a solution for Blocker(G − Z, T, x).
For ease of understanding, we present the algorithm step by step with interleaved comments
in italic font, whenever required.

1. If the graph G does not contain a T -cycle on x then return Z = ∅.
2. Construct a rooted block-cut forest F of G − {x}.
3. Choose a deepest node d in the block cut forest F such that the graph G[VG(Fd) ∪ {x}]

contains a T -cycle.
Note that such a vertex d exists as there is a T -cycle on x in the graph G while a simple
cycle in G visits vertices from at most one tree T ∈ F .

4. Consider the following cases.
a. If d is a cutvertex and d /∈ T . Let Z := {d}. Then return (Z ∪Blocker(G−Z, T, x)).

In this case, it is easy to observe that the set Z = {d} is a MWNS of (G[VG(Fd)∪{x}], T)
because d is a deepest node satisfying the conditions of Step 3.

b. If d is a cutvertex and d ∈ T . Let C≥1(d) be the subset of grandchildren of d

defined using Definition 4.1. Let Z := C≥1(d) and return (Z ∪ Blocker(G − Z, T, x)).
The set Z is a MWNS of (G[VG(Fd) ∪ {x}], T) by our choice of d, definition of
the set C≥1(d), the fact that a T -cycle contains at least 2 terminals, and for each
block B ∈ childF (d) we have V (B) ∩ (T \ {d}) = ∅ due to Observation 2.2.

c. If d is a block.
Let DT := d − T , i.e., DT := G[V (d) \ T]. Note that the block d of G − {x} contains
at most 1 terminal due to Observation 2.2. In the case when V (d) ∩ T = ∅, we
have DT = d = G[V (d)]. Let Cd := childF (d) \ T and partition Cd as follows.

Let Cd
≥2 ⊆ Cd be the set such that for each (cut)vertex c ∈ Cd

≥2 the graph Gc :=
G[VG(Fc)] contains a vertex p ∈ NG(x) such that there is a c-p path P in Gc

which contains at least 2 terminals, i.e., |V (P) ∩ T | ≥ 2.
Let Cd

1 ⊆ Cd \ Cd
≥2 be the subset of remaining vertices of Cd such that for each

vertex c ∈ Cd
1 the graph Gc contains a vertex p ∈ NG(x) such that there is a c-p

path P in Gc which contains 1 terminal, i.e., |V (P) ∩ T | = 1.
Let Cd

0 ⊆ Cd \ (Cd
≥2 ∪ Cd

1) be the subset of remaining vertices of Cd such that for
each vertex c ∈ Cd

0 the graph Gc contains a vertex p ∈ NG(x) such that there is
a c-p path P in Gc.
Let Cd

∅ := Cd \ (Cd
≥2 ∪ Cd

1 ∪ Cd
0) be the remaining elements of Cd.

IPEC 2023

28:10 On the Parameterized Complexity of Multiway Near-Separator

Apply Gallai’s theorem ([7, Thm 9.2, Lemma 9.3], cf. [25, Thm 73.1]) on the
graph DT with Q = Cd

≥2 ∪ Cd
1 to obtain a maximum-cardinality family PQ of

pairwise vertex disjoint Q-paths in DT , along with a vertex set Z1 ⊆ V (DT) of size
at most 2|PQ| such that the graph DT − Z1 has no Q-path.
Let A := Cd

≥2 and B := Cd
0 ∪ (NG(x) ∩ V (d)). Next, compute a minimum (A, B)-

separator in the graph DT using Edmonds-Karp algorithm [12] which outputs a
vertex set Z2 ⊆ V (DT).

Next, we do a case distinction based on whether or not the block d contains a terminal.
Note that in the case when d does not contain a terminal then the set (Z1 ∪ Z2) hits
all T -cycles of G[VG(Fd) ∪ {x}]. On the other hand, when d contains a terminal there
could still be a T -cycle in the graph G[VG(Fd) ∪ {x}] − (Z1 ∪ Z2) (see the third figure
of Figure 1). So our next steps are aimed at hitting those T -cycles (if any) that are
not hit by the set (Z1 ∪ Z2).

If V (d) ∩ T = ∅, then let Z3, Z4 := ∅.
Otherwise, there is a unique terminal in block d ⊆ G − x since x is a MWNS
for (G, T). Let t be the terminal that belongs to the block d.

Let D be the set containing connected components of DT − (Z1 ∪ Z2) that
contain at least one neighbor of t, i.e., for each connected component D ∈ D, we
have V (D) ∩ N(t) ̸= ∅.
Let D∗ ⊆ D be the set such that for each D∗ ∈ D∗, the connected component D∗

contains a vertex from Q = (Cd
≥2 ∪ Cd

1). More precisely, we have |V (D∗) ∩ Q| = 1
for each D∗ as the set Z1 is hitting all Q-paths.
Let V (D∗) :=

⋃
D∗∈D∗ V (D∗) and define Z3 := (Cd

≥2 ∪ Cd
1) ∩ V (D∗).

Note that in the case when d contains a terminal t and t ∈ childF (d), the way
we have defined Cd, it does not contain t. Hence, when t ∈ childF (d) and the
graph Gt has a vertex p ∈ NG(x) such that there is a t-p path P in Gt that
contains at least one terminal other than t, i.e, |V (P) ∩ (T \ {t})| ≥ 1, there
could still be T -cycles in G[VG(Fd)] −

⋃3
i=1 Zi (see the last figure of Figure 1).

So our next step is to hit all T -cycles (if any) containing the t-p path P . Recall
C≥1(t) from Definition 4.1.
∗ If t ∈ childF (d) and the graph Gt has a vertex p ∈ NG(x) such that there is a

t-p path P in Gt with |V (P) ∩ T | ≥ 2, then let Z4 := C≥1(t).
∗ Otherwise, define Z4 := ∅.

Finally, we try to break any interaction between vertices of VG(Fd) and vertices
of VG(F) \ VG(Fd) by adding the parent of d into the hitting set. But note that in the
case when parentF (d) ∈ T , we can not add it to the hitting set Z ⊆ V (G) \ (T ∪ {x}).

If parentF (d) ∈ T , then let Z5 := ∅.
Otherwise, Z5 := parentF (d).

Let Z :=
⋃5

i=1 Zi and return(Z ∪ Blocker(G − Z, T, x)).

This concludes the description of the algorithm. Summarizing, its main structure is to
define a vertex set Z ⊆ V (G) \ (T ∪ {x}) to break T -cycles which are lowest in the block-cut
tree, include that set Z in the approximate solution, and complete the solution by recursively
solving the problem on G − Z.

4.2 Analysis
The following lemma forms the heart of Theorem 1.3. It says that if the above procedure
adds a set Z during the construction of the approximate solution Sx, then the optimum
value of the remaining instance decreases by at least |Z|

14 .

B. M. P. Jansen and S. K. Roy 28:11

Figure 1 Illustration of Step 4c. The leftmost figure shows the original graph G where terminals
are represented by red squares and the pink vertices of block d represent the vertices of Z1. The
second figure shows the construction of the set Z2 in the graph G − (Z1 ∪ {t}) where the green
vertex represents the vertex of Z2. It also shows a T -cycle represented by thick edges. The third
figure shows a T -cycle (represented by thick edges) which appears after putting the terminal t back
and the blue vertices represent the vertices of Z3. The last figure illustrates the construction of the
set Z4 and Z5 where the cyan vertex and olive vertex represent the vertex of Z4 and Z5, respectively.

▶ Lemma 4.4. If a single iteration of the algorithm on input (G, T, x) yields the set Z,
then OPTx(G − Z, T) ≤ OPTx(G, T) − |Z|

14 , where OPTx(G, T) and OPTx(G − Z, T) are
the cardinalities of a minimum x-avoiding MWNS of (G, T) and (G − Z, T), respectively.

Proof. Let S∗
x ⊆ V (G) be a minimum x-avoiding MWNS of (G, T). If the algorithm stops

before Step (3) then Z = ∅. Hence the inequality of the lemma trivially holds. Therefore
assume that the algorithm reaches Step 4. Let d be the deepest node selected by the algorithm
in Step (3) to compute Z. Let Ŝ := S∗

x \ VG(Fd). Note that Ŝ ∩ (T ∪ {x}) = ∅. Next, we
observe the following properties about the set Z computed in Step 4.

▷ Claim 4.5 (⋆). Suppose the algorithm reaches Step 4 and computes the set Z ⊆ VG(Fd)\T .
Then Z is a MWNS of (Gd + x, T), where Gd + x = G[VG(Fd) ∪ {x}].

Proof sketch. By choice of d, each T -cycle of Gd + x contains a vertex from block d, or
the cutvertex d itself. Since x is a MWNS for (G, T), each T -cycle also contains x. The
sets Z1, . . . , Z4 added to Z in the algorithm ensure different types of T -cycles of Gd + x are
broken: Z1 covers all T -cycles consisting of two paths between x and d, each containing at
least one terminal; Z2 covers T -cycles consisting of one path between x and d containing two
or more terminals, and another such path containing no terminals; the sets Z3 and Z4 cover
T -cycles that go through a terminal in d (if there is one), as explained in the algorithm. ◁

▷ Claim 4.6 (⋆). Suppose the algorithm reaches Step 4 and computes the set Z ⊆ VG(Fd)\T .
Then any T -cycle in G − (Z ∪ Ŝ) contains a vertex of VG(Fd) (i.e., a vertex from Gd) and a
vertex from VG(F) \ (VG(Fd)) (i.e., a vertex outside Gd + x).

Proof sketch. Since Ŝ contains all vertices of the solution S∗
x except those occurring in a

block of the subtree Fd of the block-cut tree, any T -cycle disjoint from S was intersected
by S∗

x in a vertex of VG(Fd) and therefore uses a vertex of the latter set. On the other hand,
since the previous claim shows that Z hits all the T -cycles which live in Gd + x, a T -cycle
disjoint from Z has to use a vertex outside VG(Fd). ◁

▷ Claim 4.7 (⋆). Suppose the algorithm reaches Step 4 and computes the set Z ⊆ VG(Fd)\T .
Then any minimum x-avoiding MWNS S∗

x of (G, T) satisfies |S∗
x ∩ VG(Fd)| ≥ max{1, |Z|−2

6 }.

IPEC 2023

28:12 On the Parameterized Complexity of Multiway Near-Separator

Proof sketch. Any x-avoiding MWNS S∗
x contains a vertex from VG(Fd) because there is

a T -cycle in Gd + x, by choice of d, which explains why the intersection is nonempty.
The fact that S∗

x contains at least |Z|−2
6 vertices from VG(Fd) can be seen as follows. We

have |Z4|, |Z5| ≤ 1 by definition, so the largest Zi of Z1, Z2, Z3 has at least |Z|−2
3 vertices.

Any solution contains at least |Zi|/2 vertices from VG(Fd) because the covering/packing
duality for the three types of separators used to define Z1, Z2, Z3 ensures, for each of these
sets, that to hit all the T -cycles of the corresponding form, at least |Zi|/2 vertices are
needed. For example, each Q-path P in the family PQ obtained during the construction
of Z1 yields a T -cycle when combined with paths from endpoints of P (which are cutvertices
in Q) to neighbors of x in two different subtrees of the block-cut forest F , showing that
S∗

x ∩ VG(Fd) ≥ |PQ| ≥ |Z1|/2. ◁

Next, we show that if a minimum x-avoiding MWNS S∗
x of (G, T) contains exactly 1

vertex from the subtree Fd then the set Ŝ := S∗
x \ VG(Fd) is a MWNS of (G − Z, T).

▷ Claim 4.8 (⋆). If |S∗
x ∩ VG(Fd)| = 1 then Ŝ = S∗

x \ VG(Fd) is a MWNS of (G − Z, T).

Proof sketch. If |S∗
x ∩ VG(Fd)| = 1, then from the T -cycle in Gd + x which we know to exist,

the set S∗
x contains at most one vertex. In the most crucial case that the d is a block whose

parent is a terminal, this means that S∗
x cannot break all paths from x through blocks in

the subtree Fd to the parent of d. The only types of connections that the set Z does not
break, and which can be part of T -cycles in G, can be shown to be precisely paths from a
neighbor of x to d in Gd that do not contain a terminal. But if |S∗

x ∩ VG(Fd)| = 1, then S∗
x

does not break all such paths either. By a rerouting argument, this allows us to show that
updating S∗ by replacing S∗

x ∩ VG(Fd) with Z gives a valid x-avoiding MWNS, which is
equivalent to saying that Ŝ is a MWNS of (G − Z, T). ◁

The following claim shows that if the set Ŝ is not a MWNS of (G−Z, T), then we can find
a vertex ĉ such that the set obtained after adding ĉ to the set Ŝ is a MWNS of (G − Z, T).

▷ Claim 4.9 (⋆). If Ŝ is not a MWNS of (G − Z, T) then there exists a vertex ĉ ∈
V (G) \ (T ∪ {x}) such that Ŝ ∪ {ĉ} is a MWNS of (G − Z, T).

Proof sketch. The proof consists of a delicate argument which essentially says that this
situation only happens when d is a block whose parent is a terminal, and there is a cutvertex ĉ

close to block d in the block-cut forest which combines with Z to break all paths in G − {x}
from NG(x) ∩ VG(Fd) to vertices of NG(x) \ VG(Fd), and therefore breaks all T -cycles
intersecting VG(Fd). ◁

The proof of Lemma 4.4 follows from the preceding statements by formula manipulation:
whenever the approximation algorithm chooses a set Z, an optimal solution chooses at
least |Z|/14 vertices from VG(Fd). The remainder of the proof is given in the full version [17].

◀

Using Lemma 4.4, an easy induction shows that the algorithm indeed computes a 14-
approximation. As each iteration can be implemented in polynomial time, this leads to a
proof of Theorem 1.3. The details are given in the full version [17].

B. M. P. Jansen and S. K. Roy 28:13

5 Bounding the number of terminals

Our main goal in this section is to prove Theorem 1.2. Intuitively, there are two distinct
ways in which a connected component admitting a small solution can contain a large number
of terminals: either there can be a star-like structure of blocks containing a terminal joined
at a single cutvertex, or there exists a long path in the block-cut tree containing many
blocks with a terminal. After applying reduction rules to attack both kinds of situations,
we give a final reduction rule to bound the number of relevant connected components that
contain a terminal, which will lead to the desired bound on the number of terminals. Due to
space constraints, the safeness of the reduction rules we present here is deferred to the full
version [17].

▶ Reduction Rule 1. Let (G, T, k) be an instance of mwns, and let t ∈ T be a terminal such
that for any other terminal t′ ∈ T \ {t}, there do not exist 2 internally vertex-disjoint t-t′

paths in G, i.e., the terminal t is nearly-separated. Then remove t from the set T . The new
instance is (G, T \ {t}, k).

Next, we have the following general reduction rule.

▶ Reduction Rule 2. Let (G, T, k) be an instance of mwns. Suppose there exist 2 non-
terminal vertices x, y ∈ V (G)\T such that G−{x, y} has a connected component D satisfying
the following conditions:
(a) |V (D) ∩ T | ≥ 3,
(b) the graph G[V (D) ∪ {x, y}] has no T -cycle, and
(c) there is an x-y path in G[V (D) ∪ {x, y}] containing distinct terminals t1, t2 ∈ T .
Then turn any terminal of D which is not t1, t2 into a non-terminal. Formally, let t ∈
V (D) ∩ (T \ {t1, t2}), then (G, T \ {t}, k) is a new instance of mwns.

Next, we show that given an instance (G, T, k) of mwns and a 1-redundant MWNS S∗ ⊆
V (G) \ T of (G, T), in polynomial-time we can obtain an equivalent instance (G, T ′, k) such
that the number of connected components of G − S∗ which contain at least one terminal
from T ′ is bounded by O(|S∗|2 · k). Towards this, we apply the following marking scheme
with respect to the set S∗ to mark O(|S∗|2 · k) connected components of G − S∗.

▶ Marking Scheme 1. Let (G, T, k) be an instance of mwns, and let S∗ ⊆ V (G) be a
1-redundant MWNS of (G, T). For each pair of distinct vertices x, y ∈ S∗, we greedily
mark (k + 2) connected components Cx,y

i1
, . . . , Cx,y

ik+2
of G − S∗ such that for each m ∈ [k + 2],

the connected component Cx,y
im

contains two vertices (not necessarily distinct) pm ∈ NG(x)
and qm ∈ NG(y) such that there is a pm-qm path Pm (possibly of length 0) inside the connected
component Cx,y

m which contains at least one terminal, i.e., we have |V (Pm) ∩ T | ≥ 1. If there
are fewer than k + 2 such components, we simply mark all of them.

We have the following reduction rule based on the above marking scheme. It requires
a 1-redundant MWNS to be known. In the context of Theorem 1.2, where we are given
a MWNS S of (G, T, k), we can exploit Theorem 1.3 to obtain a 1-redundant MWNS of
size O(|S| ·k) in polynomial time: for each x ∈ S, if an x-avoiding MWNS Sx in G− (S \{x})
has size more than 14k then all solutions of (G, T, k) contain x and we may safely remove x

and decrease k; otherwise, we can add Sx to S to ensure all T -cycles intersecting x are hit
twice, without blowing up the size of S too much. The details are given in the full version [17].

IPEC 2023

28:14 On the Parameterized Complexity of Multiway Near-Separator

▶ Reduction Rule 3. Let (G, T, k) be an instance of mwns, and let S∗ ⊆ V (G) \ T be a
1-redundant MWNS of (G, T). Let CM be the set of connected components of G − S∗ marked
by Marking Scheme 1 with respect to the set S∗. Let T ′ := T ∩ (

⋃
C∈CM

V (C)). If T \ T ′ ̸= ∅
then we convert the terminals of T \ T ′ to non-terminals. The new instance is (G, T ′, k).

A delicate analysis shows that applying these reduction rules indeed leads to an equivalent
instance with the desired bound on the number of terminals, which leads to a proof of
Theorem 1.2. The details are given in the full version [17].

6 Conclusions

In this paper we initiated the study of the Multiway Near-Separator problem, a
generalization of Multiway Cut focused on reducing the connectivity between each pair of
terminals. We developed reduction rules to reduce the number of terminals in an instance,
aided by a constant-factor approximation algorithm for the problem of finding a near-separator
avoiding a given vertex x in an instance for which {x} is a near-separator. Our work leads
to several follow-up questions. First of all, one could consider extending the notion of
near-separation to allow for larger (but bounded) connectivity between terminal pairs in the
resulting instance, for example by requiring that in the graph G − S, for each pair of distinct
terminals ti, tj there is a vertex set of size at most c whose removal separates ti and tj . The
setting we considered here is that of c = 1, which allows us to understand the structure of the
problem based on the block-cut forest of G−S. For c = 2 it may be feasible to do an analysis
based on the decomposition of G − S into triconnected components, but for larger values of c

the structure may become significantly more complicated. One could also consider a generic
setting (see [1]) where for each pair of terminals ti, tj , some threshold f(ti, tj) = f(tj , ti) is
specified such that in G − S there should be a set of at most f(ti, tj) nonterminals whose
removal separates ti from tj . Note that if the values of f are allowed to be arbitrarily large,
this generalizes Multicut. Is the resulting problem fixed-parameter tractable parameterized
by k?

Another direction for future work lies in the development of a polynomial kernel. For
the Multiway Cut problem with delectable terminals, as well as the setting with un-
deletable but constantly many terminals, a polynomial kernel is known based on matroid
techniques [18]. Does the variant of Multiway Near-Separator with deletable terminals
admit a polynomial kernel?

References
1 Siddharth Barman and Shuchi Chawla. Region growing for multi-route cuts. In Moses

Charikar, editor, Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2010, Austin, Texas, USA, January 17-19, 2010, pages 404–418. SIAM,
2010. doi:10.1137/1.9781611973075.34.

2 Václav Blazej, Pratibha Choudhary, Dusan Knop, Jan Matyás Kristan, Ondrej Suchý, and
Tomás Valla. Constant factor approximation for tracking paths and fault tolerant feedback
vertex set. In Jochen Könemann and Britta Peis, editors, Approximation and Online Algorithms
- 19th International Workshop, WAOA 2021, Lisbon, Portugal, September 6-10, 2021, Revised
Selected Papers, volume 12982 of Lecture Notes in Computer Science, pages 23–38. Springer,
2021. doi:10.1007/978-3-030-92702-8_2.

3 Nicolas Bousquet, Jean Daligault, and Stéphan Thomassé. Multicut is FPT. SIAM J. Comput.,
47(1):166–207, 2018. doi:10.1137/140961808.

https://doi.org/10.1137/1.9781611973075.34
https://doi.org/10.1007/978-3-030-92702-8_2
https://doi.org/10.1137/140961808

B. M. P. Jansen and S. K. Roy 28:15

4 Karl Bringmann, Danny Hermelin, Matthias Mnich, and Erik Jan van Leeuwen. Parameterized
complexity dichotomy for steiner multicut. J. Comput. Syst. Sci., 82(6):1020–1043, 2016.
doi:10.1016/j.jcss.2016.03.003.

5 Jianer Chen, Yang Liu, and Songjian Lu. An improved parameterized algorithm for the
minimum node multiway cut problem. Algorithmica, 55(1):1–13, 2009. doi:10.1007/
s00453-007-9130-6.

6 Rajesh Chitnis, Marek Cygan, MohammadTaghi Hajiaghayi, Marcin Pilipczuk, and Michal
Pilipczuk. Designing FPT algorithms for cut problems using randomized contractions. SIAM
J. Comput., 45(4):1171–1229, 2016. doi:10.1137/15M1032077.

7 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

8 Marek Cygan, Marcin Pilipczuk, Michal Pilipczuk, and Jakub Onufry Wojtaszczyk. On
multiway cut parameterized above lower bounds. ACM Trans. Comput. Theory, 5(1):3:1–3:11,
2013. doi:10.1145/2462896.2462899.

9 Marek Cygan, Marcin Pilipczuk, Michal Pilipczuk, and Jakub Onufry Wojtaszczyk. Subset
feedback vertex set is fixed-parameter tractable. SIAM J. Discret. Math., 27(1):290–309, 2013.
doi:10.1137/110843071.

10 E. Dahlhaus, D. S. Johnson, C. H. Papadimitriou, P. D. Seymour, and M. Yannakakis. The
complexity of multiway cuts (extended abstract). In Proceedings of the Twenty-Fourth Annual
ACM Symposium on Theory of Computing, STOC ’92, pages 241–251, New York, NY, USA,
1992. Association for Computing Machinery. doi:10.1145/129712.129736.

11 Reinhard Diestel. Graph Theory, 5th Edition, volume 173 of Graduate texts in mathematics.
Springer, 2017. doi:10.1007/978-3-662-53622-3.

12 Jack Edmonds and Richard M. Karp. Theoretical improvements in algorithmic efficiency for
network flow problems. J. ACM, 19(2):248–264, April 1972. doi:10.1145/321694.321699.

13 L. R. Ford and D. R. Fulkerson. Maximal flow through a network. Canadian Journal of
Mathematics, 8:399–404, 1956. doi:10.4153/CJM-1956-045-5.

14 Petr A. Golovach and Dimitrios M. Thilikos. Clustering to given connectivities. In Bart
M. P. Jansen and Jan Arne Telle, editors, 14th International Symposium on Parameterized
and Exact Computation, IPEC 2019, September 11-13, 2019, Munich, Germany, volume
148 of LIPIcs, pages 18:1–18:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019.
doi:10.4230/LIPIcs.IPEC.2019.18.

15 Sylvain Guillemot. FPT algorithms for path-transversal and cycle-transversal problems.
Discret. Optim., 8(1):61–71, 2011. doi:10.1016/j.disopt.2010.05.003.

16 Bart M. P. Jansen and Marcin Pilipczuk. Approximation and kernelization for chordal vertex
deletion. SIAM J. Discret. Math., 32(3):2258–2301, 2018. doi:10.1137/17M112035X.

17 Bart M. P. Jansen and Shivesh K. Roy. On the parameterized complexity of multiway
near-separator, 2023. arXiv:2310.04332.

18 Stefan Kratsch and Magnus Wahlström. Representative sets and irrelevant vertices: New tools
for kernelization. J. ACM, 67(3):16:1–16:50, 2020. doi:10.1145/3390887.

19 Daniel Lokshtanov, M. S. Ramanujan, Saket Saurabh, and Meirav Zehavi. Reducing CMSO
model checking to highly connected graphs. In Ioannis Chatzigiannakis, Christos Kaklamanis,
Dániel Marx, and Donald Sannella, editors, 45th International Colloquium on Automata,
Languages, and Programming, ICALP 2018, July 9-13, 2018, Prague, Czech Republic, volume
107 of LIPIcs, pages 135:1–135:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018.
doi:10.4230/LIPIcs.ICALP.2018.135.

20 Dániel Marx. Parameterized graph separation problems. Theor. Comput. Sci., 351(3):394–406,
2006. doi:10.1016/j.tcs.2005.10.007.

21 Dániel Marx, Barry O’Sullivan, and Igor Razgon. Finding small separators in linear time via
treewidth reduction. ACM Trans. Algorithms, 9(4):30:1–30:35, 2013. doi:10.1145/2500119.

IPEC 2023

https://doi.org/10.1016/j.jcss.2016.03.003
https://doi.org/10.1007/s00453-007-9130-6
https://doi.org/10.1007/s00453-007-9130-6
https://doi.org/10.1137/15M1032077
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1145/2462896.2462899
https://doi.org/10.1137/110843071
https://doi.org/10.1145/129712.129736
https://doi.org/10.1007/978-3-662-53622-3
https://doi.org/10.1145/321694.321699
https://doi.org/10.4153/CJM-1956-045-5
https://doi.org/10.4230/LIPIcs.IPEC.2019.18
https://doi.org/10.1016/j.disopt.2010.05.003
https://doi.org/10.1137/17M112035X
https://arxiv.org/abs/2310.04332
https://doi.org/10.1145/3390887
https://doi.org/10.4230/LIPIcs.ICALP.2018.135
https://doi.org/10.1016/j.tcs.2005.10.007
https://doi.org/10.1145/2500119

28:16 On the Parameterized Complexity of Multiway Near-Separator

22 Dániel Marx and Igor Razgon. Fixed-parameter tractability of multicut parameterized by the
size of the cutset. SIAM J. Comput., 43(2):355–388, 2014. doi:10.1137/110855247.

23 Igor Razgon. Large isolating cuts shrink the multiway cut. CoRR, abs/1104.5361, 2011.
arXiv:1104.5361.

24 Bruce A. Reed, Kaleigh Smith, and Adrian Vetta. Finding odd cycle transversals. Oper. Res.
Lett., 32(4):299–301, 2004. doi:10.1016/j.orl.2003.10.009.

25 A. Schrijver. Combinatorial Optimization - Polyhedra and Efficiency. Springer, 2003.
26 Stéphan Thomassé. A 4k2 kernel for feedback vertex set. ACM Trans. Algorithms, 6(2):32:1–

32:8, 2010. doi:10.1145/1721837.1721848.
27 Mingyu Xiao. Simple and improved parameterized algorithms for multiterminal cuts. Theory

Comput. Syst., 46(4):723–736, 2010. doi:10.1007/s00224-009-9215-5.

A Additional preliminaries

Graphs. An x-y path P and a q-r path Q are said to be internally vertex-disjoint if they
do not share a common internal-vertex, i.e., we have (V (P) \ {x, y}) ∩ (V (Q) \ {q, r}) = ∅.
Given X, Y ⊆ V (G), a path (v1, . . . , vk) in G is called an X − Y path if v1 ∈ X and vk ∈ Y .

▶ Theorem A.1 (Menger’s theorem, [11], Theorem 3.3.1). Let G be a graph and X, Y ⊆ V (G)
be subsets of vertices such that X ∩ Y = ∅ and there does not exist an edge {x, y} ∈ E(G)
for any x ∈ X and y ∈ Y . Then the minimum number of vertices separating X from Y is
equal to the maximum number of vertex-disjoint X − Y paths in G.

A cutvertex in a graph is a vertex v whose removal increases the number of connected
components. A graph is 2-connected if it has at least three vertices and does not contain any
cutvertex. A block of a graph G is a maximal connected subgraph B of G such that B does
not have a cutvertex. Each block of G is either a 2-connected subgraph of G, a single edge,
or an isolated vertex.

▶ Definition A.2 (Block-cut graph, [11], §3.1). Given a graph G, let A be the set of cutvertices
of G, and let B be the set of its blocks. The block-cut graph G′ of G is the bipartite graph
with partite sets A and B, and for each cut-vertex a ∈ A, for each block B ∈ B, there is an
edge {a, B} ∈ E(G′) if a ∈ V (B).

We also need the following simple but useful properties of block-cut graphs.

▶ Lemma A.3 ([11], Lemma 3.1.4). The block-cut graph of a connected graph is a tree.

▶ Observation A.4. Consider an edge e of the block-cut tree T of a connected graph G,
let v be the unique cutvertex incident on e, let T1, T2 be the two trees of T − {e}, and
let Yi := VG(Ti) be the vertices of G occurring in blocks of Ti, for i ∈ [2]. Then all paths from
a vertex of Y1 \ {v} to a vertex of Y2 \ {v} in G intersect v.

▶ Observation A.5. Let G be a graph and T ⊆ V (G) be a set of terminals such that V (G)\T ̸=
∅. If no block of G contains two or more terminals, then for each pair ti, tj ∈ T of distinct
terminals there exists a vertex v ∈ V (G) \ T such that vi and vj belong to different connected
components of G − {v}.

▶ Observation A.6. For any positive integer ℓ, if there are ℓ cycles on x which are (T ∪ {x})-
disjoint in graph G, then any x-avoiding MWNS of (G, T) contains at least ℓ vertices: at
least one distinct non-terminal from each cycle.

https://doi.org/10.1137/110855247
https://arxiv.org/abs/1104.5361
https://doi.org/10.1016/j.orl.2003.10.009
https://doi.org/10.1145/1721837.1721848
https://doi.org/10.1007/s00224-009-9215-5

B. M. P. Jansen and S. K. Roy 28:17

▶ Proposition A.7. Let G, be a graph, B a block in G, and consider three distinct ver-
tices p, q, t ∈ V (B). There is a p-t path P and q-t path Q inside block B such that V (P) ∩
V (Q) = {t}.

Proof. Since B is a block containing at least three vertices, it is a 2-connected graph. We
first add a new vertex vp,q and edges {vpq, p}, {vpq, q} to block B to obtain a new graph B′.
Observe that B′ is still a 2-connected graph, as the above modification can be seen as
adding a new B-path v, vpq, q to B and adding a B-path to a 2-connected graph results
in a 2-connected graph (see [11, Proposition 3.1.1]). Next, we apply Menger’s theorem
with X = {vpq} and Y = {t} in the (2-connected) graph B′, which ensures that there are 2
internally vertex-disjoint vpq-t paths P ′ and Q′ in B′. By construction of B′ and the fact
that P ′ and Q′ are internally vertex-disjoint vpq-t paths in B′, we know that one of the vpq-t
paths (assume w.l.o.g. P ′) contains vertex p of block B, whereas the other vpq-t path Q′

contains vertex q of block B. Hence the paths P = P ′[p, t] and Q = Q′[q, t] are the desired
paths with V (P) ∩ V (Q) = {t}. ◀

This following observation follows from Proposition A.7, as explained below.

▶ Observation A.8. Let F be the block-cut forest of a graph G. Suppose there is an x-y
path P in F between cutvertices x, y of F . Then for any distinct vertices v1, v2 ∈ V (G) from
2 distinct blocks on P, the graph G has an x-y path P12 through v1, v2, i.e., v1, v2 ∈ V (P12).

We can construct the desired path P12 by concatenating paths inside each block B on
the x-y path in F , where each path connects the cutvertex p connecting to the previous
block, with the cutvertex q connecting through the next block. If a forced vi is chosen from
block B, we can use Proposition A.7 to obtain a p-q path through t = vi.

Parameterized algorithms. A parameterized problem L is a subset of Σ∗ × N, where Σ is
a finite alphabet. A parameterized problem L ⊆ Σ∗ × N is called fixed parameter tractable
(FPT) if there exists an algorithm which for every input (x, k) ∈ Σ∗ × N correctly decides
whether (x, k) ∈ L in f(k) · |x|O(1) time, where f : N → N is a computable function. We refer
to [7] for more background on parameterized algorithms.

Given a graph G and X, Y ⊆ V (G), a set S ⊆ V (G) is called an (X, Y)-separator if there
is no x-y path in G − S for any x ∈ X \ S and y ∈ Y \ S. The notion of important separator
was defined by Marx [20] to obtain an FPT algorithm for Multiway Cut. He also derived
several useful properties.

▶ Definition A.9 (Important separator, [7], Definition 8.49). Let G be an undirected graph,
let X, Y ⊆ V (G) be two sets of vertices, and let V ∞ ⊆ V (G) be a set of undeletable vertices.
Let S ⊆ V (G) \ V ∞(G) be an (X, Y)-separator and let R be the set of vertices reachable
from X \ S in G − S. We say that S is an important (X, Y)-separator if it is inclusion-
wise minimal and there is no (X, Y)-separator S′ ⊆ V (G) \ V ∞(G) with |S′| ≤ |S| such
that R ⊂ R′, where R′ is the set of vertices reachable from X \ S′ in G − S′.

▶ Proposition A.10 ([7], Proposition 8.50). Let G be an undirected graph and X, Y ⊆ V (G) be
two sets of vertices, and let V ∞ ⊆ V (G) be a set of undeletable vertices. Let Ŝ ⊆ V (G)\V ∞(G)
be an (X, Y)-separator and let R̂ be the set of vertices reachable from X \ Ŝ in G − Ŝ. Then
there is an important (X, Y)-separator S′ = NG(R′) ⊆ V (G) \ V ∞(G) such that |S′| ≤ |Ŝ|
and R̂ ⊆ R′.

▶ Theorem A.11 ([7], Theorem 8.51). Let X, Y ⊆ V (G) be two sets of vertices in an undirected
graph G, let k ≥ 0 be an integer, and let Sk be the set of all (X, Y)-important separators of
size at most k. Then |Sk| ≤ 4k and Sk can be constructed in time O(|Sk| · k2 · (n + m)).

IPEC 2023

28:18 On the Parameterized Complexity of Multiway Near-Separator

B Hardness proof for Multiway Near-Separator

▶ Lemma B.1. Multiway Near-Separator is NP-hard.

Proof. We give a polynomial-time reduction from Multiway Separator to mwns.
The Multiway Separator problem is formally defined as follows.

Multiway Separator (mws) Parameter: k

Input: An undirected graph G, terminal set T ⊆ V (G), and a positive integer k.
Question: Is there a set S ⊆ V (G) \ T with |S| ≤ k such that there does not exist a
pair of distinct terminals ti, tj ∈ T for which there is a ti-tj path in G − S?

Multiway Separator is NP-hard [10]. Given an instance (G, T, k) of mws we describe
the construction of an instance (G′, T, k) of mwns; it will be easy to see that it can be carried
out in polynomial time. Consider an arbitrary ordering t1, t2, . . . , t|T | of the set T . We
construct the graph G′ such that (G′, T, k) is a YES-instance of mwns if and only if (G, T, k)
is a YES-instance of mws.

We begin with G′ := G. Then for each i ∈ [|T | − 1], we create a vertex wi in G′, and
insert edges {ti, wi} and {wi, ti+1} in G′. This completes the construction of G′.

Next, we prove that (G, T, k) is a YES-instance of mws if and only if (G′, T, k) is a
YES-instance of mwns. In the forward direction, assume that (G, T, k) is a YES-instance
of mws, and let S ⊆ V (G)\T be a mws of (G, T, k). Note that by definition of mws, for each
pair of distinct terminals ti, tj ∈ T , there is no ti-tj path in G − S. Since the transformation
into G′ consists of adding degree-2 vertices connecting consecutive terminals, any pair of
distinct terminals ti, tj ∈ T with i < j can be separated in G′ − S by removing the vertex wi.
Hence the same set S ⊆ V (G′) \ T is also a mwns of (G′, T, k).

In the reverse direction, assume that (G′, T, k) is a YES-instance of mwns and let S′ ⊆
V (G′) \ T be a solution. Let W :=

⋃
i∈[|T |−1]{wi} be the set of newly added vertices

in G′. In the case when S′ ∩ W = ∅, it is easy to see that the same set S′ is also a mws
of (G, T, k): because if S is not a mws of (G, T, k) then it implies that there is a pair of
distinct terminals ti, tj ∈ T connected by a ti-tj path say P in G − S. By construction
of G′, there is also a unique ti-tj path say P ′ in G′[W ∪ T]. Note that the paths P and P ′

are T -disjoint, and neither P nor P ′ intersects the set S′, a contradiction to the fact that S′

is a solution of (G′, T, k) since the paths witness that ti, tj cannot be separated by removing
a single non-terminal.

Hence we need to show how to prove the case when S′ ∩ W ̸= ∅. In this case, note that
due to Lemma 3.1, there is a terminal t ∈ T and a non-terminal x ∈ V (G′) \ T such that
the set S′ ∪ {x} is a (t, T \ {t})-separator. So by applying Lemma 3.1 at most |T | − 1 times
we obtain a set S∗ ⊆ V (G′) \ T such that the set S∗ is a mws of (G′, T). Moreover, note
that |S∗| ≤ |S′| + (|T | − 1) because in each step of Lemma 3.1 we add at most 1 additional
vertex to separate a terminal. Next, we obtain a new set Ŝ := S∗ \ W . Now, it is easy to
observe that the set Ŝ ⊆ V (G′) \ T is a solution of (G′, T, k) such that Ŝ ∩ W = ∅ thus (like
in the previous case) we have the property that the set Ŝ is also a mws of (G, T, k). Hence,
(G, T, k) is a YES-instance of mws. ◀

Sunflowers Meet Sparsity: A Linear-Vertex Kernel
for Weighted Clique-Packing on Sparse Graphs
Bart M. P. Jansen # Ñ

Eindhoven University of Technology, The Netherlands

Shivesh K. Roy # Ñ

Eindhoven University of Technology, The Netherlands

Abstract
We study the kernelization complexity of the Weighted H-Packing problem on sparse graphs.
For a fixed connected graph H, in the Weighted H-Packing problem the input is a graph G,
a vertex-weight function w : V (G) → N, and positive integers k, t. The question is whether there
exist k vertex-disjoint subgraphs H1, . . . , Hk of G such that Hi is isomorphic to H for each i ∈ [k]
and the total weight of these k · |V (H)| vertices is at least t. It is known that the (unweighted)
H-Packing problem admits a kernel with O(k|V (H)|−1) vertices on general graphs, and a linear
kernel on planar graphs and graphs of bounded genus. In this work, we focus on case that H is a
clique on h ≥ 3 vertices (which captures Triangle Packing) and present a linear-vertex kernel
for Weighted Kh-Packing on graphs of bounded expansion, along with a kernel with O(k1+ε)
vertices on nowhere-dense graphs for all ε > 0. To obtain these results, we combine two powerful
ingredients in a novel way: the Erdős-Rado Sunflower lemma and the theory of sparsity.

2012 ACM Subject Classification Mathematics of computing → Graph algorithms; Theory of
computation → Parameterized complexity and exact algorithms; Theory of computation → Packing
and covering problems

Keywords and phrases kernelization, weighted problems, graph packing, sunflower lemma, bounded
expansion, nowhere dense

Digital Object Identifier 10.4230/LIPIcs.IPEC.2023.29

Funding This project has received funding from the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation programme (grant agreement No 803421,
ReduceSearch).

1 Introduction

Packing and covering problems form an important area in the study of (algorithmic) graph
theory [12, 25, 32, 35, 39, 47, 48, 56]. These problems have also been actively studied from
the kernelization viewpoint [1, 3, 9, 16, 24, 43, 44, 52]. Roughly speaking, kernelization is a
formalization of polynomial-time preprocessing aimed at compressing the instance size in
terms of a complexity parameter (see Definition 4 for a formal definition). It is well-known
that a decidable parameterized problem has a kernelization algorithm if and only if it is
fixed-parameter tractable (FPT) [15]. Having an FPT algorithm for the problem implies that
there exists a kernel, but the size of the kernel can be exponential in the parameter. Hence,
finding a polynomial (or even linear) kernel is an active area of research in parameterized
complexity [1, 2, 5, 6, 10, 11, 13, 16, 26, 27, 37, 45, 46, 53, 55].

For a fixed graph H, the H-Packing problem asks, given a graph G and a positive
integer k, whether there are k vertex-disjoint subgraphs H1, . . . , Hk of G such that Hi is
isomorphic to H for each i ∈ [k]. It is known that H-Packing is NP-hard whenever H has
a connected component on at least three vertices [42]. For H = K3 the problem is equivalent
to the well-known Triangle Packing problem. An application of the sunflower lemma due

© Bart M. P. Jansen and Shivesh K. Roy;
licensed under Creative Commons License CC-BY 4.0

18th International Symposium on Parameterized and Exact Computation (IPEC 2023).
Editors: Neeldhara Misra and Magnus Wahlström; Article No. 29; pp. 29:1–29:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:b.m.p.jansen@tue.nl
https://www.win.tue.nl/~bjansen/
https://orcid.org/0000-0001-8204-1268
mailto:s.k.roy@tue.nl
https://sites.google.com/view/shiveshroy
https://orcid.org/0000-0003-0896-3437
https://doi.org/10.4230/LIPIcs.IPEC.2023.29
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

29:2 Sunflowers Meet Sparsity

to Erdős and Rado [22] gives a O(k|V (H)|) vertex-kernel for H-Packing. This bound was
improved to O(k|V (H)|−1) by Abu-Khzam [1]. For restricted graph classes, such as planar
graphs and graphs of bounded genus, H-Packing is known to admit a linear kernel [11,
§8.4]. Very recently, the problem was shown to have kernels with O(k1+ε) vertices and edges
(for every ε > 0) on every class of nowhere dense graphs [4, Theorem 4.1].

When taking d := |V (H)|, the H-Packing problem is a special case of d-Set Packing.
The latter problem asks, given a family of size-d subsets of a universe U and integer k,
whether the family contains k pairwise disjoint sets. Dell and Marx [16] showed that for
d ≥ 3, there does not exist a kernel for d-Set Packing with bit-size O(kd−ε) for any ε > 0,
under the assumption that NP ̸⊆ coNP/poly. It is a long-standing open problem whether
d-Set Packing (or the related d-Hitting Set) admits a kernel with O(k) universe elements.
Even for special cases such as Triangle Packing, no kernels with O(k) vertices are
known on general graphs despite intensive research into linear-vertex kernels for packing
problems [9, 24].

In this work, our focus is on the weighted variant of H-Packing, which is defined as
follows for a fixed graph H.

Weighted H-Packing Parameter: k

Input: An undirected graph G, a vertex-weight function w : V (G) → N, and positive
integers k, t.
Question: Do there exist k vertex-disjoint subgraphs H1, . . . , Hk of G such that Hi is
isomorphic to H for each i ∈ [k] and

∑
i∈[k]

∑
v∈V (Hi) w(v) ≥ t?

The use of weights in the problem definition allows the problem to model a larger set
of applications, since the weights can be used to capture different profits associated to a
solution. Extending tractability horizons to weighted versions of problems is a natural and
often challenging direction of research [14, 23, 36, 38, 40, 41].

It is not difficult to extend the sunflower-based kernel with O(k|V (H)|) vertices and edges
to work in the weighted setting as well. However, the techniques used in previous papers
to obtain (almost) linear kernels for sparse graph classes seem incompatible with the use
of weights. For example, the meta-kernelization framework [11] does not apply to weighted
problems since they do not have the finite integer index property.

Our results

In this work, we focus on the important special case that H is a clique on h ≥ 3 vertices, which
captures the Triangle Packing problem. We prove that Weighted Kh-Packing has a
linear-vertex kernel on graph classes of bounded expansion. Classes of bounded expansion
generalize planar graphs, bounded-degree graphs, and graphs excluding any fixed graph H as
a minor or topological minor. Roughly speaking, a graph class G has bounded expansion if
there exists a function f : N → N such that for each G ∈ G, the edge density of each graph G′

that can be obtained from a subgraph of G by contracting disjoint connected vertex sets
of diameter at most r, is bounded by f(r). See [51, §5.5] for formal definitions. Our main
result reads as follows.

▶ Theorem 1. For each graph class G of bounded expansion, for each integer h ≥ 3,
Weighted Kh-Packing admits a linear-vertex kernel on graphs from G.

Our approach extends to provide almost-linear kernels for every nowhere-dense graph
class.

B. M. P. Jansen and S. K. Roy 29:3

▶ Theorem 2. For each nowhere-dense graph class G, integer h ≥ 3, and ε > 0, Weighted
Kh-Packing admits a kernel with O(k1+ε) vertices on graphs from G.

The main idea behind our kernel for bounded-expansion graph classes is as follows. We
start with a greedy phase that repeatedly extracts a maximum-weight Kh-subgraph. After
having collected h · k such subgraphs, we show that if a solution exists, there is a solution
in which each copy of Kh intersects one of the greedily identified subgraphs. This yields
an O(k)-sized vertex set P0 for which we can assume any solution intersects P0. Then we
apply tools of sparsity to enrich P0 into a slightly larger vertex set P of size O(k), such that
the remaining vertices in G can be partitioned into O(k) equivalence classes in such a way
that all Kh-subgraphs intersecting a class interact with the same set of O(1) vertices in P .
Having this constant bound allows us to apply the sunflower lemma separately on each family
of Kh-subgraphs intersecting a given equivalence class, in such a way that having a sunflower
of constant size suffices to guarantee that one of the corresponding Kh-subgraphs can be
avoided when making a solution. In this way, we can shrink each of the O(k) equivalence
classes to O(1) vertices, giving a linear-vertex kernel. Hence our approach exploits the
structural properties of sparse graphs to allow more efficient usage of the sunflower lemma.
It easily generalizes to the setting of nowhere dense graph classes by utilizing a different
lemma to compute the enriched set P ⊇ P0, giving a bound of O(kε) rather than O(1) on
the number of vertices from P that can interact with the copies of Kh in a given equivalence
class.

We consider the conceptual simplicity of our kernelization algorithm an appealing feature.
Unlike the meta-kernelization framework [11], it does not rely on treewidth-based argumenta-
tion and the corresponding notion of protrusion replacement. (The latter yields proofs that a
kernelization algorithm exists, without explicitly showing what the algorithm is.) Compared
to previous (kernelization) results on sparse graphs [4, 18, 54] we only require a few tools
from the sparsity theory based on neighborhood complexity and the closure lemma, and
avoid the use of the technical notion of uniform quasi-wideness.

In our argumentation, we focus on reducing the number of vertices in the instance to O(k).
Strictly speaking this does not ensure the total encoding size becomes bounded in k, as
the weights can be arbitrarily large. However, once the number of vertices is small, the
weight-compression technique of Etscheid et al. [23] can be used to get to bound the maximum
weight.

Related work

The study of kernelization on restricted graph classes began with the seminal result of Alber
et al. [5], who proved that Dominating Set on planar graphs admits a linear kernel. It was
later extended to larger graph classes [7, 28, 29, 30, 34]. The tools from sparsity have been
extensively studied in the last decades. Dvorák, Král, and Thomas gave an FPT algorithm
for deciding first-order properties in classes of graphs with bounded expansion [19], which
was later extended to nowhere dense graph classes by Grohe, Kreutzer, and Siebertz [33]. It
was also shown in [19] that if a graph class G is not nowhere dense (is somewhere dense) and
is closed under taking subgraphs, then model checking First Order formulae on G is not FPT
parameterized by the length of the formula unless FPT= W [1].

In terms of kernelization, the first systematic study using the modern sparsity framework
was started by Drange et al. [18]. They showed that for every fixed positive integer r, the r-
Dominating Set problem admits a linear kernel on bounded expansion graphs. They also
gave an almost-linear kernel for the standard Dominating Set problem on nowhere dense

IPEC 2023

29:4 Sunflowers Meet Sparsity

graphs. Later, Eickmeyer et al. [20] showed that r-Dominating Set admits an almost-linear
kernel on nowhere dense graphs. Pilipczuk and Siebertz [54] proved that the r-Independent
Set problem admits an almost-linear kernel on every nowhere dense graph class. The above
kernelization results were recently unified by Einarson and Reidl [21] and Ahn et al. [4].
Apart from that, the tools from sparsity have also been used by Demaine et al. [17] in
real-world graphs.

2 Preliminaries

We use standard notation for graphs and parameterized algorithms. We refer the reader to a
textbook [15] for any undefined terms. For positive integers n we define [n] := {1, . . . , n}.
We consider simple undirected graphs. A graph G has vertex set V (G) and edge set E(G).
The open neighborhood of v ∈ V (G) is NG(v) := {u | {u, v} ∈ E(G)}, where we omit the
subscript G if it is clear from context. For a vertex set S ⊆ V (G) the open neighborhood
of S, denoted NG(S), is defined as S :=

⋃
v∈S NG(v) \ S. For S ⊆ V (G), the graph

induced by S is denoted by G[S]. For two vertices x, y in a graph G, an x − y path is a
sequence (x = v1, . . . , vk = y) of vertices such that {vi, vi+1} ∈ E(G) for all i ∈ [k − 1].
Furthermore, the vertices v2. . . . , vk−1 are called the internal vertices of the x − y path. We
say that a subgraph H of G intersects a vertex set S ⊆ V (G) if V (H) ∩ S ̸= ∅.

We next state the following lemma due to Erdős-Rado [22]. Before presenting the lemma
we define the terminology used in the lemma.

A sunflower S with k sets and core X is a collection of sets S1, . . . , Sk such that Si∩Sj = X

for all i ̸= j, and such that Si \ X ̸= ∅ for all i ∈ [k]. The sets Si \ X are petals of the
sunflower S.

▶ Theorem 3 (Sunflower lemma, [15, Theorem 2.25]). Let A be a family of sets (without
duplicates) over a universe U , such that each set in A has cardinality exactly d. If |A| >

d!(k − 1)d, then A contains a sunflower with k petals and such a sunflower can be computed
in time polynomial in |A|, |U |, and k.

For completeness, we now give the formal definition of a kernelization. A parameterized
problem Q is a subset of Σ∗ × N+, where Σ is a finite alphabet.

▶ Definition 4 (Kernel). Let Q, Q′ ⊆ Σ∗ ×N+ be parameterized problems and let h : N+ → N+
be a computable function. A generalized kernel for Q into Q′ of size h(k) is an algorithm
that, on input (x, k) ∈ Σ∗ × N+, takes time polynomial in |x| + k and outputs an instance
(x′, k′) such that:
1. |x′| and k′ are bounded by h(k), and
2. (x′, k′) ∈ Q′ if and only if (x, k) ∈ Q.

The algorithm is a kernel for Q if Q = Q′. It is a polynomial (generalized) kernel if h(k) is
a polynomial.

Sparsity. The theory of sparsity was introduced by Nesetril and Ossona de Mendez [49, 50]
using the notions of bounded expansion and nowhere denseness. Many important sparse
graphs, like classes of bounded treewidth, planar graphs, graphs with bounded genus, apex-
minor-free graphs, (topological)-minor free graphs, and graphs of bounded degree have
bounded expansion. We refer the reader to the book [51] for a detailed introduction to the
topic.

We will need some basic notation and tools for sparse graphs from earlier work [18, 20, 54]
to prove our results. Let G be a graph and X ⊆ V (G) be a subset of vertices. For a
vertex v ∈ V (G) \ X and a positive integer r, we define the r-projection of v onto X as

B. M. P. Jansen and S. K. Roy 29:5

the set of all the vertices w ∈ X, for which there is a v − w path in G of length at most r

whose internal vertices do not belong to X. The r-projection of v onto a set X is denoted
by Mr(v, X).

Now we are ready to state the lemmas. The following lemma says that any vertex
set X ⊆ V (G) of a bounded expansion graph G can be “closed” to a set X̂ whose size is
asymptotically the same as |X|, such that the r-projection of any vertex outside X̂ onto X̂

has constant size.

▶ Lemma 5 (Closure lemma, [18] Lemma 2.2). Let G be a class of bounded expansion. There
exists a polynomial-time algorithm that, given a graph G ∈ G, a non-negative integer r, and
a set X ⊆ V (G), computes a vertex-set X̂ with the following properties.
1. X ⊆ X̂ ⊆ V (G),
2. |X̂| = O(|X|), and
3. |Mr(v, X̂)| ≤ α ∈ O(1), for each v ∈ V (G) \ X̂.

We note that in the above, the O(·) notation also hides the factors depending on r and the
graph class G.

We also cite the corresponding closure lemma for nowhere dense graphs due to Eickmeyer
et al. [20].

▶ Lemma 6 (Closure lemma for nowhere dense graphs, [20, 54]). Let G be a nowhere dense
class of graphs. There are a function fcl : N × R → N and a polynomial-time algorithm that,
given a graph G ∈ G, a non-negative integer r, a set X ⊆ V (G), and ε > 0, computes a
vertex-set X̂ with the following properties.
1. X ⊆ X̂ ⊆ V (G),
2. |X̂| = fcl(r, ε) · |X|1+ε, and
3. |Mr(v, X̂)| ≤ fcl(r, ε) · |X|ε, for each v ∈ V (G) \ X̂.

In [18], Drange et al. proved that the number of distinct r-projections on a vertex
set X ⊆ V (G) of a bounded expansion graph G is linear in the cardinality of X.

▶ Lemma 7 ([18, Lemma 2.3]). Let G be a class of bounded expansion and let r be a
non-negative integer. Let G ∈ G be a graph and X ⊆ V (G). Then

|{Y : Y = Mr(v, X) for some v ∈ V (G) \ X}| ≤ c · |X|,

for some constant c depending only on r and the graph class G.

A similar bound exists for nowhere dense graphs.

▶ Lemma 8 ([20, Theorem 3]). Let G be a nowhere dense class of graphs. There is a
function fnbr : N×R → N such that for every non-negative integer r, real ε > 0, graph G ∈ G,
and vertex set X ⊆ V (G), we have

|{Y : Y = Mr(v, X) for some v ∈ V (G) \ X}| ≤ fnbr(r, ε) · |X|1+ε,

for some constant c depending only on r and the graph class G.

3 Kernelization for Weighted Kh-Packing on Sparse Graphs

In this section we present our kernels for Weighted Kh-Packing. We start by introducing
some problem-specific terminology that will be useful to streamline our arguments.

A solution to an instance (G, w, k, t) of Weighted Kh-Packing is a sequence of vertex-
disjoint subgraphs H1, . . . , Hk of G such that Hi is isomorphic to Kh for each i ∈ [k] and∑

i∈[k]
∑

v∈V (Hi) w(v) ≥ t.

IPEC 2023

29:6 Sunflowers Meet Sparsity

▶ Definition 9 (P -bound solution and solution confined to H). Let (G, w, k, t) be an instance
of Weighted Kh-Packing. For a vertex set P ⊆ V (G), a solution H1, . . . , Hk of (G, w, k, t)
is P -bound if V (Hi) ∩ P ̸= ∅ for all i ∈ [k].

For a collection H of subgraphs isomorphic to Kh in G, a solution H1, . . . , Hk of (G, w, k, t)
is said to be confined to H if Hi ∈ H for all i ∈ [k].

We now show how the sunflower lemma can be combined with the theory of sparsity to
get a linear-vertex kernel for Weighted Kh-Packing on bounded expansion graph classes.

▶ Theorem 1. For each graph class G of bounded expansion, for each integer h ≥ 3,
Weighted Kh-Packing admits a linear-vertex kernel on graphs from G.

Proof. Let (G, w, k, t) be an instance of Weighted Kh-Packing with G ∈ G. We refer to
a subgraph Hi of G isomorphic to Kh as a copy of Kh. In the following proof, we will treat
such Hi both as a subgraph of G and as a vertex subset of G, depending on which is more
convenient. Our kernelization algorithm performs the following steps.

Algorithm.
1. Compute a greedy packing P of up to hk vertex-disjoint copies H1, . . . , Hhk of Kh in G

such that H1 is a maximum-weighted copy of Kh in G, and for each i ∈ {2, . . . , hk}, the
copy Hi is a maximum-weighted copy of Kh in the graph G −

(⋃i−1
j=1 V (Hj)

)
. While

following the above greedy procedure, if it is not possible to pack hk disjoint copies of Kh

then we obtain a maximal packing.
2. Let P0 := V (P). Invoke the algorithm of Lemma 5 with G, r = 2, and P0 ⊆ V (G) to

obtain a vertex set P such that:
a. P0 ⊆ P ⊆ V (G),
b. |P | = O(|P0|) = O(k), and
c. |M2(v, P)| ≤ α ∈ O(1) for each v ∈ V (G) \ P ,
where α is a constant depending on r and the graph class G.

3. Partition the vertices of V (G) \ P into equivalence classes C1, . . . , Cm based on their
2-projection onto the set P , i.e., for every equivalence class Ci, and for every pair
of distinct vertices x, y ∈ Ci, we have M2(x, P) = M2(y, P). (Due to Lemma 7, we
have m = O(|P |) = O(k).)

4. Let H be the set family containing the (vertex sets of) all copies of Kh in G.
For each equivalence class Ci of Step 3, do the following.

Let Hi ⊆ H be the (vertex sets of) copies of Kh in G that contain a vertex of Ci.
while |Hi| > h!(hα + 1)h do

Apply Theorem 3 to obtain a sunflower S ⊆ Hi with hα + 2 copies of Kh.
Let Sr ∈ S be a copy of Kh with minimum weight. Remove Sr from H and Hi.

end while
5. Let H′ ⊆ H be the (reduced) set obtained after Step 4. Define G′ := G[V (H′)] and

output (G′, w, k, t) as the result of the kernelization.
(Note that in principle, the encoding size of the weight function can be unbounded in
terms of k, which can be resolved by a standard application of the weight reduction
technique by Frank and Tardos [31] as explained by Etscheid et al. [23].)

This concludes the description of the algorithm.

B. M. P. Jansen and S. K. Roy 29:7

Analysis. It is easy to observe that since we treat h as a constant, the above algorithm
takes polynomial time: each step of the algorithm takes polynomial time and each step
is applied a polynomial number of times. We now prove the correctness of the algorithm.
Towards this, we first prove the following claim which says that any solution of (G, w, k, t)
which is not already P -bound can be converted to a solution where the number of copies
of Kh intersecting with P is strictly larger.

▷ Claim 10. If H∗ is a solution of (G, w, k, t) and Sf ∈ H∗ such that V (Sf) ∩ P = ∅, then
there exists a set Sj ∈ P such that (H∗ \ {Sf }) ∪ {Sj} is a solution of (G, w, k, t).

Proof. First note that, by the construction of the packing P (in Step 1 of the algorithm),
if |P| < hk then the constructed set P is an inclusion-maximal packing, implying that all
copies of H in G intersect V (P) and therefore P . Under the stated assumptions, as Sf is a
copy of Kh which is completely contained in the graph G − P , we have |P| = hk. Moreover,
for every Sp ∈ P, it holds that w(Sp) ≥ w(Sf) since the copy Sf was available to choose in
the iteration when the algorithm selected Sf , while the algorithm selects a maximum-weight
copy at every step.

Since H∗ is a packing of k copies of Kh, Sf ∈ H∗, and V (Sf) ∩ P = ∅, at most h(k − 1)
vertices of H∗ can intersect with the hk copies of Kh from the packing P. Hence, there
is at least one copy of Kh say Sj ∈ P such that V (Sj) ∩ V (H∗) = ∅. Moreover, we
have w(Sj) ≥ w(Sf) as Sj ∈ P . Thus the set (H∗ \ {Sf }) ∪ {Sj} is a solution of (G, w, k, t).

◁

Next, using the above claim we prove that if there is a solution to (G, w, k, t) then there
is a P -bound solution.

▷ Claim 11. If (G, w, k, t) has a solution, then (G, w, k, t) has a P -bound solution.

Proof. Let H∗ be a solution of (G, w, k, t). If V (Sf) ∩ P ̸= ∅ for all Sf ∈ H∗ then by
Definition 9, the set H∗ is a P -bound solution. Otherwise, while there exists a set Sf ∈ H∗

such that V (Sf)∩P = ∅, we use Claim 10 to obtain a set Sj ∈ P such that (H∗ \{Sf })∪{Sj}
is a solution of (G, w, k, t) with strictly fewer copies of Kh (than in H∗) which are disjoint
from the set P . ◁

Finally, in the following claim we prove that if (G, w, k, t) has a P -bound solution (which
is guaranteed due to the above claim) then removal of the set Sr in Step 4 of the algorithm
is safe.

▷ Claim 12. Suppose Step 4 of the above algorithm removes the set Sr from H. If (G, w, k, t)
has a P -bound solution which is confined to H, then (G, w, k, t) has a P -bound solution
which is confined to H \ {Sr}.

Proof. Let H∗ ⊆ H be a P -bound solution of (G, w, k, t) which is confined to H. If Sr /∈ H∗,
then H∗ is also a P -bound solution which is confined to H \ {Sr}. Therefore assume
that Sr ∈ H∗. Let S := {S1, . . . , Shα+2} be the sunflower found in Step 4 of the above
algorithm when it removes Sr ∈ S from H, let X be its core, and let Ci be the equivalence
class it considered when it found the sunflower. We now show that there exists a “free”
set Sf ∈ S \ {Sr} such that the set (H∗ \ {Sr}) ∪ {Sf } is a solution of (G, w, k, t) which
is confined to H \ {Sr}. Towards this, we first derive the following: some set Sf of the
sunflower S \ {Sr} is disjoint from V (H∗ \ {Sr}).

∃Sf ∈ S \ {Sr} : V (Sf) ∩ V (H∗ \ {Sr}) = ∅. (1)

IPEC 2023

29:8 Sunflowers Meet Sparsity

Assume for a contradiction that there does not exist such a set Sf . First, note that
since Sr ∈ H∗, the core X of the sunflower S is contained in Sr, and H∗ is a collection of
vertex-disjoint copies of Kh, we have X ∩ V (H∗ \ {Sr}) = ∅. Hence the copies of Kh in the
set H∗ \ {Sr} only intersect with petals of the sunflower S \ {Sr}. Moreover, as the petals of
a sunflower are pairwise disjoint, each copy of Kh from the set H∗ \ {Sr} can intersect with
at most h petals of the sunflower S \ {Sr}.

Since all the hα + 1 petals of the sunflower S \ {Sr} intersect with the set V (H∗ \ {Sr})
and a single copy of Kh from the set H∗ \ {Sr} can hit at most h petals, the number of copies
of Kh from H∗ \ {Sr} intersecting with the petals of sunflower S \ {Sr} is at least α + 1.
Let H∗

S := {Hi1 , . . . , Hiℓ
} ⊆ H∗ be the set containing copies of Kh from the set H∗ \ {Sr}

which intersect with a petal of sunflower S \ {Sr}. We have ℓ ≥ α + 1.
We will prove that for each q ∈ [ℓ], there is a path Pq in G of length at most 2 that starts

in a vertex of equivalence class Ci, ends in a vertex of P ∩ V (Hiq), and does not intersect
any other vertex of P . Towards this end, let pq be an arbitrary vertex of V (Hiq

) ∩ P , which
exists since the solution H∗ is P -bound. By choice of H∗

S , the set V (Hiq) intersects some
petal Sz \ X for z ̸= r of the sunflower S \ {Sr}; let xq ∈ V (Hiq

) ∩ (Sz \ X) be a vertex
at which the sets intersect, and note that {xq, pq} ∈ E(G) since they are both contained
in the common clique Hiq

. Each set Sz contains a vertex from equivalence class Ci by the
specification of Step 4, so there is a vertex cz ∈ Sz ∩ Ci. We have {cz, xq} ∈ E(G) since these
vertices are contained in the common clique Sz. Observe that cz /∈ P since the equivalence
classes partition the vertex set V (G) \ P . Now, if xq /∈ P then the path (cz, xq, pz) is the
desired path Pq; if xq ∈ P then we take (cz, xq) as the path Pq. Note that in both cases, Pq

is indeed a path in G on at most 2 edges starting in Ci and ending in a vertex of P ∩ V (Hiq
).

Hence for each Hiq ∈ H∗
S , there exists a vertex in the equivalence class Ci that can reach

a vertex of P ∩ V (Hiq
) by a path of length at most 2 whose internal vertices do not belong

to P . By definition of the equivalence classes Ci, if one vertex in Ci has such a path to P ,
then all vertices of Ci have such a path. As ℓ ≥ α + 1 and the copies in H∗

S are disjoint, for
any v ∈ Ci we have |M2(v, P)| ≥ ℓ ≥ α + 1. This contradicts that |M2(v, P)| ≤ α which was
ensured by Step 2 of the above algorithm. Hence we establish (1).

Now we continue with the remaining proof of Claim 12. As there is a set Sf ∈ S \ {Sr} of
the sunflower S \{Sr} with V (Sf)∩V (H∗ \{Sr}) = ∅ and w(Sf) ≥ w(Sr) by our choice of Sr

in Step 4 of the above algorithm, the set H̃ := (H∗ \ {Sr}) ∪ {Sf } is a solution of (G, w, k, t).
Note that if V (Sf) ∩ P ̸= ∅ then the set H̃ is also a P -bound solution. Otherwise we invoke
Claim 10 (with the set H̃, and Sf ∈ H̃) to obtain a Kh-copy Sj ∈ P of the packing P such
that the set (H̃ \ {Sf }) ∪ {Sj} is a P -bound solution of (G, w, k, t). Note that the latter
solution is also confined to H \ {Sr}, since the copy Sj ∈ P was added to the set H at the
initialization and can never be removed: it does not occur in any Hi since its vertex set is
fully contained in P ; it does not intersect any equivalence class of V (G) \ P . This concludes
the proof of Claim 12. ◁

It follows from the preceding two claims that the output instance (G′, t, k, w) is equivalent
to the input (G, w, k, t). Since the output is an induced subgraph of the input, one direction
is trivial. For the other direction, if the input instance has a solution, it has a P -bound
solution by Claim 11. Then by Claim 12 and induction, there is a solution confined to H′,
the final state of the variable H. Since G′ contains all copies of Kh contained in H′, this
proves the output instance also has a solution.

We conclude the proof of Theorem 1 by giving a bound on the number vertices of the
reduced graph G′.

B. M. P. Jansen and S. K. Roy 29:9

▷ Claim 13. |V (G′)| = O(k).

Proof. Note that |P | = O(k) by Step 2. It follows that G′ contains at most O(k) vertices
which belong to P . To prove the claim, we show that the number of vertices of V (G′) \ P is
also bounded by O(k).

For each equivalence class Ci of V (G) \ P , let H′
i denote the contents of Hi upon

termination of the algorithm. The while-loop of Step 4 ensures that |H′
i| ≤ h!(hα + 1)h.

For each v ∈ V (G′) \ P , by definition of G′ = G[V (H′)] there exists an equivalence
class Ci of V (G)\P and a copy Hj ∈ H′

i, such that v ∈ V (Hj). Hence V (G′)\P is contained
in

⋃
i

⋃
Hj∈H′

i
V (Hj). Since there are O(k) choices for i by Lemma 7, while |H′

i| ≤ h!(hα +
1)h = O(1), while each copy Hj also consists of O(1) vertices, it follows that |V (G′) \ P | =
O(k). This concludes the proof. ◁

This concludes the proof of Theorem 1. ◀

The argument for nowhere-dense graphs is almost identical.

▶ Theorem 2. For each nowhere-dense graph class G, integer h ≥ 3, and ε > 0, Weighted
Kh-Packing admits a kernel with O(k1+ε) vertices on graphs from G.

Proof. For Weighted Kh-Packing on a nowhere dense graph class C, one can use the
same approach. Let ε′ := ε

h+1 . In the algorithm, we use Lemma 6 for value ε′ instead of
Lemma 5; this means that the closure set P has size O(k1+ε′) rather than O(k), and that the
bound α on |M2(v, P)| becomes O(kε′) rather than O(1). For the analysis, we use Lemma 8
for value ε′ instead of Lemma 7, which means the number of equivalence classes of V (G) \ P

becomes O(k1+ε′) rather than O(k). The rest of the algorithm and its correctness proof is
identical.

As in the proof of Claim 13, we can bound the number of vertices in the resulting graph G′

using the insight that every vertex of G′ is either contained in P , or belongs to some copy Hj

of Kh that remains in a set H′
i for some equivalence class Ci of V (G) \ P . The key insight is

again that |H′
i| ≤ h!(hα + 1)h due to the application of the Sunflower lemma.

Hence the number of vertices in the reduced instance G′ is bounded as follows:

|V (G′)| ≤|P | + |
⋃

i

⋃
Hj∈H′

i

V (Hj)|

≤O(k1+ε′
) + O(k1+ε′

· h!(hα + 1)h · h)

≤O(k1+ε′
) + O(k1+ε′

· h!2hhhkε′·h · h) since hα + 1 ≤ 2hα

≤O(k1+ε′+ε′·h) = O(k1+ε′(h+1)). since h ∈ O(1)

Since we chose ε′ = ε
h+1 , the number of vertices in the kernel is indeed bounded by O(k1+ε),

as required. ◀

4 Conclusions

We have shown that for a fixed complete graph Kh, the Weighted Kh-Packing problem
admits a linear-vertex kernel on bounded-expansion graphs and an almost-linear kernel on
nowhere-dense graphs. Whether there is a linear-vertex kernel for the associated Weighted
Kh-Hitting problem is an interesting problem for further study. In this problem, the
input consists of a graph G, weight function w : V (G) → N, and integers k, t; the question
is whether there is a vertex set of size at most k and weight at most t that intersects all

IPEC 2023

29:10 Sunflowers Meet Sparsity

Kh-subgraphs of G. In the unweighted setting, the kernelization complexity of packing
problems typically matches that of the related hitting problem [8, 24]. In the weighted
setting, the situation seems different and we do not know how to extend our techniques to
Weighted Kh-Hitting.

To illustrate the difficulty of hitting over packing in the presence of weights, observe the
following. If Ci ⊆ V (G) is a vertex subset such that all copies of Kh which intersect Ci also
intersect a vertex set Pi of size O(1), then it effectively means that any packing of disjoint
copies of Kh uses O(1) vertices of Ci, so that only a limited redundancy is needed in terms
of which vertices of Ci are preserved in the kernel. But note that in the same scenario, a
solution to Weighted Kh-Hitting can contain up to k vertices from Ci: even though the
Kh-subgraphs through Ci can be intersected by the vertex set Pi of size O(1), the weight of
these vertices may be much larger than the weight of k vertices from Ci hitting the same
subgraphs. Hence solutions to the hitting problem may select more than a constant number
of vertices from Ci, which leads to having to store more vertices in the kernel.

References
1 Faisal N. Abu-Khzam. An improved kernelization algorithm for r-set packing. Inf. Process.

Lett., 110(16):621–624, 2010. doi:10.1016/j.ipl.2010.04.020.
2 Faisal N. Abu-Khzam. A kernelization algorithm for d-hitting set. J. Comput. Syst. Sci.,

76(7):524–531, 2010. doi:10.1016/j.jcss.2009.09.002.
3 Akanksha Agrawal, Daniel Lokshtanov, Diptapriyo Majumdar, Amer E. Mouawad, and Saket

Saurabh. Kernelization of cycle packing with relaxed disjointness constraints. SIAM J. Discret.
Math., 32(3):1619–1643, 2018. doi:10.1137/17M1136614.

4 Jungho Ahn, Jinha Kim, and O-joung Kwon. Unified almost linear kernels for generalized
covering and packing problems on nowhere dense classes. CoRR, abs/2207.06660, 2022.
doi:10.48550/arXiv.2207.06660.

5 Jochen Alber, Michael R. Fellows, and Rolf Niedermeier. Polynomial-time data reduction for
dominating set. J. ACM, 51(3):363–384, 2004. doi:10.1145/990308.990309.

6 Noga Alon, Gregory Z. Gutin, Eun Jung Kim, Stefan Szeider, and Anders Yeo. Solving
max-r-sat above a tight lower bound. Algorithmica, 61(3):638–655, 2011. doi:10.1007/
s00453-010-9428-7.

7 Noga Alon and Shai Gutner. Kernels for the dominating set problem on graphs with an
excluded minor. Electron. Colloquium Comput. Complex., TR08-066, 2008. arXiv:TR08-066.

8 Stéphane Bessy, Marin Bougeret, Dimitrios M. Thilikos, and Sebastian Wiederrecht. Ker-
nelization for graph packing problems via rainbow matching. CoRR, abs/2207.06874, 2022.
doi:10.48550/arXiv.2207.06874.

9 Stéphane Bessy, Marin Bougeret, Dimitrios M. Thilikos, and Sebastian Wiederrecht. Kernel-
ization for graph packing problems via rainbow matching. In Nikhil Bansal and Viswanath
Nagarajan, editors, Proceedings of the 2023 ACM-SIAM Symposium on Discrete Algo-
rithms, SODA 2023, Florence, Italy, January 22-25, 2023, pages 3654–3663. SIAM, 2023.
doi:10.1137/1.9781611977554.ch139.

10 Daniel Binkele-Raible, Henning Fernau, Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh,
and Yngve Villanger. Kernel(s) for problems with no kernel: On out-trees with many leaves.
ACM Trans. Algorithms, 8(4):38:1–38:19, 2012. doi:10.1145/2344422.2344428.

11 Hans L. Bodlaender, Fedor V. Fomin, Daniel Lokshtanov, Eelko Penninkx, Saket Saurabh,
and Dimitrios M. Thilikos. (meta) kernelization. J. ACM, 63(5):44:1–44:69, 2016. doi:
10.1145/2973749.

12 Marthe Bonamy, Edouard Bonnet, Hugues Déprés, Louis Esperet, Colin Geniet, Claire Hilaire,
Stéphan Thomassé, and Alexandra Wesolek. Sparse graphs with bounded induced cycle packing
number have logarithmic treewidth. In Nikhil Bansal and Viswanath Nagarajan, editors,
Proceedings of the 2023 ACM-SIAM Symposium on Discrete Algorithms, SODA 2023, Florence,
Italy, January 22-25, 2023, pages 3006–3028. SIAM, 2023. doi:10.1137/1.9781611977554.
ch116.

https://doi.org/10.1016/j.ipl.2010.04.020
https://doi.org/10.1016/j.jcss.2009.09.002
https://doi.org/10.1137/17M1136614
https://doi.org/10.48550/arXiv.2207.06660
https://doi.org/10.1145/990308.990309
https://doi.org/10.1007/s00453-010-9428-7
https://doi.org/10.1007/s00453-010-9428-7
https://arxiv.org/abs/TR08-066
https://doi.org/10.48550/arXiv.2207.06874
https://doi.org/10.1137/1.9781611977554.ch139
https://doi.org/10.1145/2344422.2344428
https://doi.org/10.1145/2973749
https://doi.org/10.1145/2973749
https://doi.org/10.1137/1.9781611977554.ch116
https://doi.org/10.1137/1.9781611977554.ch116

B. M. P. Jansen and S. K. Roy 29:11

13 Jianer Chen, Iyad A. Kanj, and Weijia Jia. Vertex cover: Further observations and further
improvements. J. Algorithms, 41(2):280–301, 2001. doi:10.1006/jagm.2001.1186.

14 Miroslav Chlebík and Janka Chlebíková. Crown reductions for the minimum weighted vertex
cover problem. Discret. Appl. Math., 156(3):292–312, 2008. doi:10.1016/j.dam.2007.03.026.

15 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

16 Holger Dell and Dániel Marx. Kernelization of packing problems. In Yuval Rabani, editor,
Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2012, Kyoto, Japan, January 17-19, 2012, pages 68–81. SIAM, 2012. doi:10.1137/1.
9781611973099.6.

17 Erik D. Demaine, Felix Reidl, Peter Rossmanith, Fernando Sánchez Villaamil, Somnath
Sikdar, and Blair D. Sullivan. Structural sparsity of complex networks: Bounded expansion
in random models and real-world graphs. J. Comput. Syst. Sci., 105:199–241, 2019. doi:
10.1016/j.jcss.2019.05.004.

18 Pål Grønås Drange, Markus Sortland Dregi, Fedor V. Fomin, Stephan Kreutzer, Daniel
Lokshtanov, Marcin Pilipczuk, Michal Pilipczuk, Felix Reidl, Fernando Sánchez Villaamil,
Saket Saurabh, Sebastian Siebertz, and Somnath Sikdar. Kernelization and sparseness: the
case of dominating set. In Nicolas Ollinger and Heribert Vollmer, editors, 33rd Symposium on
Theoretical Aspects of Computer Science, STACS 2016, February 17-20, 2016, Orléans, France,
volume 47 of LIPIcs, pages 31:1–31:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2016. doi:10.4230/LIPIcs.STACS.2016.31.

19 Zdenek Dvorák, Daniel Král, and Robin Thomas. Testing first-order properties for subclasses
of sparse graphs. J. ACM, 60(5):36:1–36:24, 2013. doi:10.1145/2499483.

20 Kord Eickmeyer, Archontia C. Giannopoulou, Stephan Kreutzer, O-joung Kwon, Michal
Pilipczuk, Roman Rabinovich, and Sebastian Siebertz. Neighborhood complexity and ker-
nelization for nowhere dense classes of graphs. In Ioannis Chatzigiannakis, Piotr Indyk,
Fabian Kuhn, and Anca Muscholl, editors, 44th International Colloquium on Automata, Lan-
guages, and Programming, ICALP 2017, July 10-14, 2017, Warsaw, Poland, volume 80
of LIPIcs, pages 63:1–63:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017.
doi:10.4230/LIPIcs.ICALP.2017.63.

21 Carl Einarson and Felix Reidl. A general kernelization technique for domination and indepen-
dence problems in sparse classes. In Yixin Cao and Marcin Pilipczuk, editors, 15th International
Symposium on Parameterized and Exact Computation, IPEC 2020, December 14-18, 2020,
Hong Kong, China (Virtual Conference), volume 180 of LIPIcs, pages 11:1–11:15. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.IPEC.2020.11.

22 P. Erdös and R. Rado. Intersection theorems for systems of sets. Journal of the London
Mathematical Society, s1-35(1):85–90, 1960. doi:10.1112/jlms/s1-35.1.85.

23 Michael Etscheid, Stefan Kratsch, Matthias Mnich, and Heiko Röglin. Polynomial kernels for
weighted problems. J. Comput. Syst. Sci., 84:1–10, 2017. doi:10.1016/j.jcss.2016.06.004.

24 Fedor V. Fomin, Tien-Nam Le, Daniel Lokshtanov, Saket Saurabh, Stéphan Thomassé, and
Meirav Zehavi. Subquadratic kernels for implicit 3-hitting set and 3-set packing problems.
ACM Trans. Algorithms, 15(1):13:1–13:44, 2019. doi:10.1145/3293466.

25 Fedor V. Fomin, Daniel Lokshtanov, Neeldhara Misra, Geevarghese Philip, and Saket Saurabh.
Quadratic upper bounds on the erdős-pósa property for a generalization of packing and
covering cycles. J. Graph Theory, 74(4):417–424, 2013. doi:10.1002/jgt.21720.

26 Fedor V. Fomin, Daniel Lokshtanov, Neeldhara Misra, and Saket Saurabh. Planar f-deletion:
Approximation, kernelization and optimal FPT algorithms. In 53rd Annual IEEE Symposium
on Foundations of Computer Science, FOCS 2012, New Brunswick, NJ, USA, October 20-23,
2012, pages 470–479. IEEE Computer Society, 2012. doi:10.1109/FOCS.2012.62.

27 Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, and Dimitrios M. Thilikos. Bidimen-
sionality and kernels. In Moses Charikar, editor, Proceedings of the Twenty-First Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2010, Austin, Texas, USA, January
17-19, 2010, pages 503–510. SIAM, 2010. doi:10.1137/1.9781611973075.43.

IPEC 2023

https://doi.org/10.1006/jagm.2001.1186
https://doi.org/10.1016/j.dam.2007.03.026
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1137/1.9781611973099.6
https://doi.org/10.1137/1.9781611973099.6
https://doi.org/10.1016/j.jcss.2019.05.004
https://doi.org/10.1016/j.jcss.2019.05.004
https://doi.org/10.4230/LIPIcs.STACS.2016.31
https://doi.org/10.1145/2499483
https://doi.org/10.4230/LIPIcs.ICALP.2017.63
https://doi.org/10.4230/LIPIcs.IPEC.2020.11
https://doi.org/10.1112/jlms/s1-35.1.85
https://doi.org/10.1016/j.jcss.2016.06.004
https://doi.org/10.1145/3293466
https://doi.org/10.1002/jgt.21720
https://doi.org/10.1109/FOCS.2012.62
https://doi.org/10.1137/1.9781611973075.43

29:12 Sunflowers Meet Sparsity

28 Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, and Dimitrios M. Thilikos. Linear kernels
for (connected) dominating set on H -minor-free graphs. In Yuval Rabani, editor, Proceedings of
the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2012, Kyoto,
Japan, January 17-19, 2012, pages 82–93. SIAM, 2012. doi:10.1137/1.9781611973099.7.

29 Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, and Dimitrios M. Thilikos. Linear
kernels for (connected) dominating set on graphs with excluded topological subgraphs. In
Natacha Portier and Thomas Wilke, editors, 30th International Symposium on Theoretical
Aspects of Computer Science, STACS 2013, February 27 - March 2, 2013, Kiel, Germany,
volume 20 of LIPIcs, pages 92–103. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2013.
doi:10.4230/LIPIcs.STACS.2013.92.

30 Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, and Dimitrios M. Thilikos. Bidimension-
ality and kernels. SIAM J. Comput., 49(6):1397–1422, 2020. doi:10.1137/16M1080264.

31 András Frank and Éva Tardos. An application of simultaneous diophantine approximation in
combinatorial optimization. Comb., 7(1):49–65, 1987. doi:10.1007/BF02579200.

32 Prachi Goyal, Neeldhara Misra, Fahad Panolan, and Meirav Zehavi. Deterministic algorithms
for matching and packing problems based on representative sets. SIAM J. Discret. Math.,
29(4):1815–1836, 2015. doi:10.1137/140981290.

33 Martin Grohe, Stephan Kreutzer, and Sebastian Siebertz. Deciding first-order properties of
nowhere dense graphs. J. ACM, 64(3):17:1–17:32, 2017. doi:10.1145/3051095.

34 Shai Gutner. Polynomial kernels and faster algorithms for the dominating set problem on
graphs with an excluded minor. In Jianer Chen and Fedor V. Fomin, editors, Parameterized
and Exact Computation, 4th International Workshop, IWPEC 2009, Copenhagen, Denmark,
September 10-11, 2009, Revised Selected Papers, volume 5917 of Lecture Notes in Computer
Science, pages 246–257. Springer, 2009. doi:10.1007/978-3-642-11269-0_20.

35 Penny E. Haxell, Alexandr V. Kostochka, and Stéphan Thomassé. Packing and covering
triangles in K 4-free planar graphs. Graphs Comb., 28(5):653–662, 2012. doi:10.1007/
s00373-011-1071-9.

36 Bart M. P. Jansen. Kernelization for maximum leaf spanning tree with positive vertex weights.
J. Graph Algorithms Appl., 16(4):811–846, 2012. doi:10.7155/jgaa.00279.

37 Bart M. P. Jansen. Turing kernelization for finding long paths and cycles in restricted
graph classes. In Andreas S. Schulz and Dorothea Wagner, editors, Algorithms - ESA 2014
- 22th Annual European Symposium, Wroclaw, Poland, September 8-10, 2014. Proceedings,
volume 8737 of Lecture Notes in Computer Science, pages 579–591. Springer, 2014. doi:
10.1007/978-3-662-44777-2_48.

38 Bart M. P. Jansen, Shivesh Kumar Roy, and Michal Wlodarczyk. On the hardness of
compressing weights. In Filippo Bonchi and Simon J. Puglisi, editors, 46th International
Symposium on Mathematical Foundations of Computer Science, MFCS 2021, August 23-27,
2021, Tallinn, Estonia, volume 202 of LIPIcs, pages 64:1–64:21. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.MFCS.2021.64.

39 Naonori Kakimura, Ken-ichi Kawarabayashi, and Dániel Marx. Packing cycles through
prescribed vertices. J. Comb. Theory, Ser. B, 101(5):378–381, 2011. doi:10.1016/j.jctb.
2011.03.004.

40 Eun Jung Kim, Stefan Kratsch, Marcin Pilipczuk, and Magnus Wahlström. Flow-augmentation
III: complexity dichotomy for boolean csps parameterized by the number of unsatisfied
constraints. In Nikhil Bansal and Viswanath Nagarajan, editors, Proceedings of the 2023
ACM-SIAM Symposium on Discrete Algorithms, SODA 2023, Florence, Italy, January 22-25,
2023, pages 3218–3228. SIAM, 2023. doi:10.1137/1.9781611977554.ch122.

41 Eun Jung Kim, Marcin Pilipczuk, Roohani Sharma, and Magnus Wahlström. On weighted
graph separation problems and flow-augmentation. CoRR, abs/2208.14841, 2022. doi:
10.48550/arXiv.2208.14841.

42 David G. Kirkpatrick and Pavol Hell. On the complexity of general graph factor problems.
SIAM J. Comput., 12(3):601–609, 1983. doi:10.1137/0212040.

https://doi.org/10.1137/1.9781611973099.7
https://doi.org/10.4230/LIPIcs.STACS.2013.92
https://doi.org/10.1137/16M1080264
https://doi.org/10.1007/BF02579200
https://doi.org/10.1137/140981290
https://doi.org/10.1145/3051095
https://doi.org/10.1007/978-3-642-11269-0_20
https://doi.org/10.1007/s00373-011-1071-9
https://doi.org/10.1007/s00373-011-1071-9
https://doi.org/10.7155/jgaa.00279
https://doi.org/10.1007/978-3-662-44777-2_48
https://doi.org/10.1007/978-3-662-44777-2_48
https://doi.org/10.4230/LIPIcs.MFCS.2021.64
https://doi.org/10.1016/j.jctb.2011.03.004
https://doi.org/10.1016/j.jctb.2011.03.004
https://doi.org/10.1137/1.9781611977554.ch122
https://doi.org/10.48550/arXiv.2208.14841
https://doi.org/10.48550/arXiv.2208.14841
https://doi.org/10.1137/0212040

B. M. P. Jansen and S. K. Roy 29:13

43 Stefan Kratsch. On polynomial kernels for integer linear programs: Covering, packing and
feasibility. In Hans L. Bodlaender and Giuseppe F. Italiano, editors, Algorithms - ESA
2013 - 21st Annual European Symposium, Sophia Antipolis, France, September 2-4, 2013.
Proceedings, volume 8125 of Lecture Notes in Computer Science, pages 647–658. Springer,
2013. doi:10.1007/978-3-642-40450-4_55.

44 Stefan Kratsch and Vuong Anh Quyen. On kernels for covering and packing ilps with
small coefficients. In Marek Cygan and Pinar Heggernes, editors, Parameterized and Exact
Computation - 9th International Symposium, IPEC 2014, Wroclaw, Poland, September 10-12,
2014. Revised Selected Papers, volume 8894 of Lecture Notes in Computer Science, pages
307–318. Springer, 2014. doi:10.1007/978-3-319-13524-3_26.

45 Stefan Kratsch and Magnus Wahlström. Compression via matroids: A randomized polynomial
kernel for odd cycle transversal. ACM Trans. Algorithms, 10(4):20:1–20:15, 2014. doi:
10.1145/2635810.

46 Stefan Kratsch and Magnus Wahlström. Representative sets and irrelevant vertices: New tools
for kernelization. J. ACM, 67(3):16:1–16:50, 2020. doi:10.1145/3390887.

47 Daniel Lokshtanov, Amer E. Mouawad, Saket Saurabh, and Meirav Zehavi. Packing cycles faster
than erdos-posa. SIAM J. Discret. Math., 33(3):1194–1215, 2019. doi:10.1137/17M1150037.

48 Dániel Marx. Chordless cycle packing is fixed-parameter tractable. In Fabrizio Grandoni,
Grzegorz Herman, and Peter Sanders, editors, 28th Annual European Symposium on Algorithms,
ESA 2020, September 7-9, 2020, Pisa, Italy (Virtual Conference), volume 173 of LIPIcs, pages
71:1–71:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.
ESA.2020.71.

49 Jaroslav Nesetril and Patrice Ossona de Mendez. Grad and classes with bounded expansion i.
decompositions. Eur. J. Comb., 29(3):760–776, 2008. doi:10.1016/j.ejc.2006.07.013.

50 Jaroslav Nesetril and Patrice Ossona de Mendez. On nowhere dense graphs. Eur. J. Comb.,
32(4):600–617, 2011. doi:10.1016/j.ejc.2011.01.006.

51 Jaroslav Nesetril and Patrice Ossona de Mendez. Sparsity - Graphs, Structures, and Al-
gorithms, volume 28 of Algorithms and combinatorics. Springer, 2012. doi:10.1007/
978-3-642-27875-4.

52 Christophe Paul, Anthony Perez, and Stéphan Thomassé. Conflict packing yields linear vertex-
kernels for k -fast, k -dense RTI and a related problem. In Filip Murlak and Piotr Sankowski,
editors, Mathematical Foundations of Computer Science 2011 - 36th International Symposium,
MFCS 2011, Warsaw, Poland, August 22-26, 2011. Proceedings, volume 6907 of Lecture Notes
in Computer Science, pages 497–507. Springer, 2011. doi:10.1007/978-3-642-22993-0_45.

53 Marcin Pilipczuk, Michal Pilipczuk, Piotr Sankowski, and Erik Jan van Leeuwen. Network spar-
sification for steiner problems on planar and bounded-genus graphs. ACM Trans. Algorithms,
14(4):53:1–53:73, 2018. doi:10.1145/3239560.

54 Michal Pilipczuk and Sebastian Siebertz. Kernelization and approximation of distance-r
independent sets on nowhere dense graphs. Eur. J. Comb., 94:103309, 2021. doi:10.1016/j.
ejc.2021.103309.

55 Stéphan Thomassé. A 4k2 kernel for feedback vertex set. ACM Trans. Algorithms, 6(2):32:1–
32:8, 2010. doi:10.1145/1721837.1721848.

56 Meirav Zehavi. Parameterized approximation algorithms for packing problems. Theor. Comput.
Sci., 648:40–55, 2016. doi:10.1016/j.tcs.2016.08.004.

IPEC 2023

https://doi.org/10.1007/978-3-642-40450-4_55
https://doi.org/10.1007/978-3-319-13524-3_26
https://doi.org/10.1145/2635810
https://doi.org/10.1145/2635810
https://doi.org/10.1145/3390887
https://doi.org/10.1137/17M1150037
https://doi.org/10.4230/LIPIcs.ESA.2020.71
https://doi.org/10.4230/LIPIcs.ESA.2020.71
https://doi.org/10.1016/j.ejc.2006.07.013
https://doi.org/10.1016/j.ejc.2011.01.006
https://doi.org/10.1007/978-3-642-27875-4
https://doi.org/10.1007/978-3-642-27875-4
https://doi.org/10.1007/978-3-642-22993-0_45
https://doi.org/10.1145/3239560
https://doi.org/10.1016/j.ejc.2021.103309
https://doi.org/10.1016/j.ejc.2021.103309
https://doi.org/10.1145/1721837.1721848
https://doi.org/10.1016/j.tcs.2016.08.004

How Can We Maximize Phylogenetic Diversity?
Parameterized Approaches for Networks
Mark Jones #

TU Delft, The Netherlands

Jannik Schestag1 #

TU Delft, The Netherlands
Friedrich-Schiller-Universität Jena, Germany

Abstract
Phylogenetic Diversity (PD) is a measure of the overall biodiversity of a set of present-day
species (taxa) within a phylogenetic tree. We consider an extension of PD to phylogenetic networks.
Given a phylogenetic network with weighted edges and a subset S of leaves, the all-paths phylogenetic
diversity of S is the summed weight of all edges on a path from the root to some leaf in S. The
problem of finding a bounded-size set S that maximizes this measure is polynomial-time solvable on
trees, but NP-hard on networks. We study the latter from a parameterized perspective.

While this problem is W[2]-hard with respect to the size of S (and W[1]-hard with respect to
the size of the complement of S), we show that it is FPT with respect to several other parameters,
including the phylogenetic diversity of S, the acceptable loss of phylogenetic diversity, the number
of reticulations in the network, and the treewidth of the underlying graph.

2012 ACM Subject Classification Theory of computation → Fixed parameter tractability; Theory
of computation → W hierarchy; Applied computing → Bioinformatics

Keywords and phrases Phylogenetic Networks, Phylogenetic Diversity, Parameterized Complexity,
W-hierarchy, FPT algorithms

Digital Object Identifier 10.4230/LIPIcs.IPEC.2023.30

Funding Mark Jones: Partially supported by Netherlands Organisation for Scientific Research (NWO)
grant OCENW.KLEIN.125.
Jannik Schestag: Supported by the German Academic Exchange Service (DAAD), project 57556279.

1 Introduction

Phylogenetic diversity, first introduced in 1992 by Faith [8] is a measure of the amount of
biodiversity in a set of species. It formalizes the intuitive notion that a set of species is likely
to have a greater range of biological features when they are distantly related. Such a measure
is of crucial importance in the field of biological conservation, where there are often insufficient
resources available to save every threatened species, one must make hard decisions about
which species to prioritize. Phylogenetic diversity forms the basis of the Fair Proportion Index
and the Shapley Value [11, 12, 17], which are used to evaluate the individual contribution of
individual species to overall biodiversity. These measures are used by conservation initiatives
such as the IUCN’s Phylogenetic Diversity Task Force (https://www.pdtf.org/) and the
Zoological Society of London’s EDGE of Existence program [14].

Let T be a phylogenetic tree; that is, a rooted tree, with weights on the edges, and S a
subset of leaves of T (representing a subset of present-day species). Then the phylogenetic
diversity PDT (S), as defined by Faith, is the sum of all weights on a path from the root

1 The research was carried out during an extended research visit of Jannik Schestag at TU Delft.

© Mark Jones and Jannik Schestag;
licensed under Creative Commons License CC-BY 4.0

18th International Symposium on Parameterized and Exact Computation (IPEC 2023).
Editors: Neeldhara Misra and Magnus Wahlström; Article No. 30; pp. 30:1–30:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:m.e.l.jones@tudelft.nl
https://orcid.org/0000-0002-4091-7089
mailto:j.t.schestag@uni-jena.de
https://orcid.org/0000-0001-7767-2970
https://doi.org/10.4230/LIPIcs.IPEC.2023.30
https://www.pdtf .org/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

30:2 How Can We Maximize Phylogenetic Diversity in Networks?

to one of the leaves in S. Here the weight of an edge corresponds to phylogenetic distance,
which is taken to be proportional to the number of features of interest (e.g. biological
characteristics) that emerge along that edge.

Phylogenetic Diversity as originally proposed by Faith is defined for phylogenetic trees.
Consequently, it does not allow for models of evolutionary history with reticulation events
(where a species inherits genetic data from two or more species), such as hybridization or
lateral gene transfer. Such events are modeled in phylogenetic networks (directed acyclic
graphs with a single source), which extend the class of phylogenetic trees [13]. There are a
number of ways to extend phylogenetic diversity to phylogenetic networks. In this paper
we consider one of the simplest, all-paths phylogenetic diversity (first introduced under the
name “phylogenetic subnet diversity” in [21] and further studied in [2]). Under this measure,
given a rooted phylogenetic network N with edge weights and a subset of leaves S, the
phylogenetic diversity of S is again the total weight of all edges on a (directed) path from
the root to one of the leaves in S.

Assuming it is not possible to preserve all threatened species (e.g. due to limited resources),
we would like to find a subset of species that can be preserved, for which the overall diversity
is maximized. This gives rise to the maximum phylogenetic diversity problem: given a
network N and integer k, find a set of leaves S with |S| ≤ k such with maximum phylogenetic
diversity score. Fortunately in the case of trees, this turns out to be a tractable problem -
given as input a phylogenetic tree and number k, there is a polynomial-time greedy algorithm
that outputs the set of k species with maximum phylogenetic diversity [19, 16]. Unfortunately
this result does not extend to phylogenetic networks – the problem is NP-hard, and cannot
be approximated in polynomial time with approximation ratio better than 1 − 1

e unless
P = NP [2]. For this reason, we study the problem from the perspective of parameterized
complexity.

Related Work

All-paths phylogenetic diversity as a measure on networks was first introduced in [21]. The
computational complexity of MapPD was first studied in [2], where the authors showed that
the problem is NP-hard and cannot be approximated in polynomial time with approximation
ratio better than 1 − 1

e unless P = NP , but is polynomial-time solvable on the class of level-1
networks (in which the undirected cycles are pairwise vertex-disjoint).

Phylogenetic diversity forms the basis of the Shapley Value, a measure that describes how
much a single species contributes to overall biodiversity. The definition of the Shapley Value
involves the phylogenetic diversity of every possible subset of species, and so is difficult to
calculate directly. However it was shown in [9] that (on phylogenetic trees) the Shapley Value
is equivalent to the Fair Proportion Index [17], which can be calculated in polynomial time.
In the case of phylogenetic networks, it was shown that this result also extends to Shapley
Value based on all-paths phylogenetic diversity. This is in contrast to the NP-hardness
result of [2] – while it is easy to determine the individual species that contributes the most
phylogenetic diversity across all sets of species, it is hard to find a set of species for which
the phylogenetic diversity is maximal.

The phylogenetic networks considered in this paper are explicit networks, in which each
vertex represents a different species in evolutionary history and the edges represent the
transfer of genetic information from one species to another. Phylogenetic diversity has also
been studied on split networks. Such networks do not represent a single explicit evolutionary
history, but can represent structural information from several sources (e.g. conflicting
phylogenetic trees). See e.g. [3, 18].

M. Jones and J. Schestag 30:3

Our contribution

We study several parameterizations of the problem Max-All-Paths-PD (MapPD), in
which the task is to find a set of at most k leaves maximizing the all-paths phylogenetic
diversity in a network (see Section 2 for a formal definition). We first consider the problem
parameterized by k. We show in Section 3 that this problem is W[2]-hard by reduction
from Set Cover. Moreover, we establish an equivalence between this parameterization of
MapPD and a generalization of Set Cover called Item-Weighted Partial Set Cover.
We also show via a similar method that MapPD is W[1]-hard with respect to the “dual” of
k, namely k := |X| − k, where X is the set of all leaves in the network. On the positive side,
we show in Section 4.1 that MapPD is fixed-parameter tractable (FPT) with respect to D,
the total phylogenetic diversity of the desired solution, and also with respect to the “dual” D,
i.e. the acceptable loss in phylogenetic diversity. Finally we turn to structural parameters. In
Section 4.2 we give single-exponential fixed-parameter algorithms for MapPD with respect
to the number of reticulations in the network, and with respect to the treewidth of the
underlying graph of the network. In the case of reticulations, this algorithm is asymptotically
tight under the Strong Exponential Time Hypothesis.

2 Preliminaries

Mathematical Definitions

For an integer ℓ, by [ℓ] we denote the set {1, . . . , ℓ} and [ℓ]0 := {0} ∪ [ℓ].
A phylogenetic X-network N = (V, E, ω) is a directed acyclic graph with edge-weight

function ω : E → N>0 and a single vertex of indegree 0 (the root), in which the vertices of
outdegree 0 (the leaves) have in-degree 1 and are bijectively labeled with elements from a set
X, and such that all vertices either have indegree at most 1 or outdegree at most 1. The
vertices with indegree at least 2 and outdegree 1 are called reticulations; the other non-leaf
vertices are called tree vertices. In biological applications, the set X is a set of taxa, the
internal vertices of N correspond to biological ancestors of these taxa and ω(e) describes the
phylogenetic distance between the endpoints of e (as these endpoints correspond to distinct
species, we may assume this distance is greater than 0). For brevity, we will usually refer to
a phylogenetic X-network as an X-network, or more simply a network when the set X is not
relevant.

For a vertex v, the descendants desc(v) (ancestors anc(v)) of v is the set of vertices u for
which there is a path from v to u (from u to v). The offspring off(v) of v is the intersection of
desc(v) and X. Further for an edge e = (v, w) we define anc(e) = anc(v), desc(e) = desc(w)
and off(e) = off(w). For a set of taxa Y , an edge e is affected by Y if off(e) ∩ Y ̸= ∅ and
strictly affected by Y if off(e) ⊆ Y . The sets TY and EY are the strictly affected and affected
edges by Y , respectively. For a set of taxa Y , the all-paths phylogenetic diversity PDN (Y)
of Y is

PDN (Y) :=
∑

e∈EY

ω(e).

That is, PDN (Y) is the total weight of all edges (u, v) in N so that there is a path from
v to a vertex in Y . In what follows we refer to PDN (Y) simply as the phylogenetic diversity
of Y .

For a detailed introduction to parameterized complexity refer to the standard mono-
graphs [5, 7].

IPEC 2023

30:4 How Can We Maximize Phylogenetic Diversity in Networks?

Problem Definitions and Parameterizations

Our main object of study is the following problem, introduced in [2]:

Max-All-Paths-PD (MapPD)
Input: A phylogenetic X-network N and two integers k and D.
Question: Is there a subset Y ⊆ X of taxa with size at most k and phylogenetic

diversity at least D? That is |Y | ≤ k and PDN (Y) ≥ D.

In Section 3 we show that there is a strong connection between MapPD and the problem
Item-Weighted Partial Set Cover, which is defined as follows.

Item-Weighted Partial Set Cover (wpSC)
Input: A universe U , a family F of subsets over U , an integer weight ω(u) for

each item u ∈ U and two integers k and D.
Question: Are there sets F1, . . . , Fk ∈ F such that sum of the weights of the

elements in L :=
⋃k

i=1 Fi is at least D? That is
∑

u∈L ω(u) ≥ D.

Set Cover is the special case of wpSC with D = |U| and ω(u) = 1 for each u ∈ U .
We examine MapPD within the framework of parameterized complexity. In addition to

the parameters k and D which are the number of saved taxa and the preserved phylogenetic
diversity, we also study the dual parameters which are the minimum number of species that will
go extinct k := |X| − k and the acceptable loss of phylogenetic diversity D := PDN (X) − D.
By retN we denote the number of reticulations in N , and by twN we denote the treewidth of
the underlying undirected graph of N (see, e.g. [5, Chapter 7] for an overview of treewidth).
By maxω we denote the biggest weight of an edge.

Binary Networks

A phylogenetic X-network is called binary if each non-leaf, non-root vertex has degree 3,
and the root has degree 2. We note that in this paper (with the exception of Lemma 4.3
and Theorem 4.4) we do not assume networks are binary; in particular, we allow tree vertices
to have indegree and outdegree 1. Bordewich et al. [2], we have required that the given
network N is binary. In the following, we show that algorithmically, there is hardly any
difference.

The proofs of theorems and lemmas marked with (⋆) are deferred to a longer version of
this paper.

▶ Lemma 2.1 (⋆). For every instance (N , k, D) of MapPD an equivalent instance (N ′, k′, D′)
of MapPD with a binary network N ′, twN ′ = twN and |E′| ≤ 2|E| can be computed
in O(|E|) time.

3 Relationship to Item-Weighted Partial Set Cover

In this section, we demonstrate a relationship between MapPD and wpSC by presenting
reductions in both directions. Bordewich et al. already proved a similar reduction from Set
Cover to MapPD [2].

▶ Theorem 3.1. For every instance I = (U , F , ω, k, D) of wpSC,
1. an equivalent instance I ′ = (N , k′, D′) of MapPD with k′ = k and |X| = retN = |F|

can be computed in time polynomial in |U| + |F|;
2. an equivalent instance I ′

2 = (N = (V, E, ω′), k′, D′) of MapPD in which k′ = k and each
edge weights 1 can be computed in time polynomial in |U| + |F| + maxω.

M. Jones and J. Schestag 30:5

This theorem has several applications for the complexity of MapPD. Because Set Cover is
W[2]-hard with respect to the size of the solution k, MapPD is as well. This is in contrast
to the fact that MapPD can be solved in polynomial time when the network does not have
reticulations and therefore is a phylogenetic tree [19].

▶ Corollary 3.2. MapPD is W[2]-hard when parameterized with k, even if maxω = 1.

In Red-Blue Non-Blocker an undirected bipartite graph G with vertex bipartition
V = Vr ∪ Vb and an integer k are given. The question is whether there is a set S ⊆ Vr of
size at least k such that each vertex v of Vb has a neighbor in Vr \ S. There is a standard
reduction from Red-Blue Non-Blocker to Set Cover: Let Vb be the universe, for
each vertex v ∈ Vr add a set Fv := N(v) to F and finally set k′ := |Vr| − k. Red-Blue
Non-Blocker is W[1]-hard when parameterized by the size of the solution [6]. Hence, Set
Cover is W[1]-hard with respect to |F| − k and with Theorem 3.1 we conclude as follows.

▶ Theorem 3.3. MapPD is W[1]-hard when parameterized with k = |X| − k.

MapPD can be solved in O∗(2|X|) with a brute force algorithm that tries every possible
subset of species as a solution. In Theorem 4.5 we will prove that MapPD can be solved in
O∗(2retN) time. In order to prove that these algorithms can not be improved significantly,
we apply the well-established Strong Exponential Time Hypothesis (SETH).

Unless SETH fails, Set Cover can not be solved in O∗(2ϵ·|F |) time for any ϵ < 1 [4, 15].
Thus, Theorem 3.1 shows that under SETH, not a lot of hope remains to find faster algorithms
for MapPD than these two algorithms. Thus, these two algorithms, with respect to the
number of taxa |X| and reticulations retN , for MapPD are tight with the lower bounds.

▶ Corollary 3.4. MapPD can not be solved in O(2ϵ·|X|) · poly(|I|) time or in O(2ϵ·retN) ·
poly(|I|) time for any ϵ < 1, unless SETH fails.

So now, without further ado, we prove Theorem 3.1.

Proof of Theorem 3.1.

Reduction. Let I = (U , F , k, D) be an instance of wpSC. Let U consist of the items
u1, . . . , un and let F contain the sets F1, . . . , Fm. We may assume that for each ui there is a
set Fj which contains ui. We define an instance I ′ = (N , k, D′) of MapPD as follows. Let
k stay unchanged and define D′ := D · Q + 1 for Q := m(n + 1). We define a network N
with leaves x1, . . . , xm, and further vertices r, v1, . . . , vn, w1, . . . , wm.

Let the set of edges consist of the edges (r, vi) for i ∈ [n], (wj , xj) for j ∈ [m], and let
(vi, wj) be an edge if and only if ui ∈ Fj . We define the weight of (r, vi) to be ω(ui) · Q for
each i ∈ [n] and 1 for each other edge. Figure 1 depicts an example of this reduction.

This completes the construction of instance I ′ in case 2 of the theorem. We now describe
how to construct an instance I ′

2 from I ′ in which the maximum weight of an edge is 1,
completing the construction for case 1. For each edge e = (r, vi) with w(e) > 1, make ω(e)−1
subdivisions and attach a new leaf as the child of each subdividing vertex. We call these
newly-added leaves false leaves, and we call the other leaves of N true leaves.

Correctness. The proof of the correctness is deferred to a longer version of this paper. ◀

In the proof of Theorem 3.1, we can see that in the root r, we model an operation that
ensures that at least D of the children of r are selected and further, these tree vertices ensure
that at least one of the reticulations below them are selected. It might appear that by adding

IPEC 2023

30:6 How Can We Maximize Phylogenetic Diversity in Networks?

r

v1 v2 v3 v4 v5 v6

w1 w2 w3 w4 w5

x1 x2 x3 x4 x5

35
70 105 140 175

210

Figure 1 This figure depicts the network N that we reduce to from the instance
(U := {u1, . . . , u6}, F := {F1, . . . , F5}, ω, k, D) of wpSC with ω(ui) = i, F1 := {u2, u3, u4},
F2 := {u1, u6}, F3 := {u1, u3, u4}, F4 := {u2, u5, u6}, F5 := {u1, u3, u5}. Unlabeled edges have a
weight of 1. Here n = 6, m = 5 and Q = 35. The value of k′ would be k and D′ would be 35D + 1.

more layers of reticulations and tree vertices to the construction of N , one could reduce
from problems even more complex than wpSC, and thereby show that MapPD has an an
even higher position in the W-hierarchy. This however is unlikely, because of the reduction to
wpSC that we are about to show.

▶ Theorem 3.5. For every instance I = (N , k, D) of MapPD, we can compute an equivalent
instance (U , F , ω, k′, D′) of wpSC with k′ = k, D′ = D and maxω′ = maxω in time
polynomial in |I|.

Proof.
Reduction. Let I = (N , k, D) be an instance of MapPD. We define an instance I ′ =
(U , F , ω′, k, D) of wpSC as follows. Let k and D stay unchanged. For each edge e of N ,
define an item ue with weight ω′(ue) = ω(e) and let U be the set of these ue. For each taxon
x, define a set Fx which contains item ue if and only if e is affected by {x}. Let F be the
family of these Fx.

Correctness. Clearly, the reduction is computed in polynomial time. We show the equiva-
lence of the two instances.

Let Y be a solution for the instance I of MapPD. Without loss of generality, assume
Y = {x1, . . . , xℓ} with ℓ ≤ k. We show that F1, . . . , Fℓ is a solution for I ′ of wpSC. By
definition, ℓ ≤ k. Let EY be the edges affected by Y . Observe that e is in EY if and only
if ue is in F + :=

⋃ℓ
i=1 Fi. Then, D ≤ PDN (Y) =

∑
e∈EY

ω(e) =
∑

ue∈F + ω′(ue). Hence,
F1, . . . , Fℓ is a solution for I ′ of wpSC.

Now, without loss of generality, let F1, . . . , Fℓ be a solution for I ′ of wpSC. Let ue1 , . . . , uep

be the items in the union of F1, . . . , Fℓ. By the construction, the edges e1, . . . , ep are affected
by Y = {x1, . . . , xℓ}. Then, PDN (Y) ≥

∑p
i=1 ω(ei) =

∑p
i=1 ω′(uei) ≥ D. Because the size

of Y is at most k, Y is a solution for I of MapPD. ◀

To the best of our knowledge, it is unknown if wpSC is W[2]-complete, like Set Cover.
Nevertheless, we obtain the following connection between wpSC and MapPD.

▶ Corollary 3.6. MapPD is W[t]-complete with respect to k if and only if wpSC is W[t]-
complete with respect to k.

4 Fixed-Parameter Tractability Results

4.1 Preserved and lost Diversity
In this subsection, we show that MapPD is FPT with respect to the threshold of phylogenetic
diversity D and the acceptable loss of phylogenetic diversity D := PDN (X) − D.

M. Jones and J. Schestag 30:7

Let I be an instance of MapPD. If there is an edge e with ω(e) ≥ D and k ≥ 1, then
for each offspring x of e we have PDN ({x}) ≥ ω(e) ≥ D, and so {x} is a solution for I.
So, we may assume that maxω < D. Therefore, each edge e can be subdivided ω(e) − 1
times in O(D · m) time such that ω′(e) = 1 for each edge e of the new network N ′. Bläser
showed that wpSC can be solved in O∗(2O(D)) time when ω(u) = 1 for each item u ∈ U [1].
Subsequently, with Theorem 3.5 and the result from Bläser we conclude the following.

▶ Corollary 4.1. MapPD can be solved in O∗(2O(D)) time.

As Set Cover is a special case of wpSC with D =
∑

u∈U ω(u), wpSC is para-NP-hard with
respect to the dual

∑
u∈U ω(u) − D. By contrast, we show in the following that MapPD is

FPT with respect to D.
To this end, we use the technique of color coding. Recall that off(e) = off(w) for each

edge e = (v, w) and the strictly affected edges TY for a set of taxa Y ⊆ X is the set of edges
e with off(e) ⊆ Y . We define an auxiliary problem.

colored-Max-All-Paths-PD (colored-MapPD)
Input: A phylogenetic X-network N , an edge-coloring c : E → {red, green}

and integers k and D.
Question: Is there a subset Y ⊆ X of taxa such that |Y | ≤ k, PDN (Y) ≥ D

and each edge in TX\Y is colored red, while edges not in TX\Y but
adjacent to TX\Y are colored green?

In order to solve colored-MapPD we observe the following.

▶ Lemma 4.2 (⋆). TY1∪···∪Yℓ
= TY1 ∪· · ·∪TYℓ

for any Y1, . . . , Yℓ ⊆ X such that each vertex v

of N is incident with edges of at most one set of TY1 , . . . , TYℓ
.

▶ Lemma 4.3. colored-MapPD can be solved in O(D · m · log(k + maxω)) time on binary
networks.

Proof.
Algorithm. Let I := (N := (V, E, ω), c, k, D) be an instance of colored-MapPD. Com-
pute the graph G = (V, E′), where E′ is the subset of edges colored red.

For every weakly connected component C = (VC , EC) of G proceed as follows. Compute
the subset of leaves YC that are in VC , and from this compute TYC

, the set of strictly affected
edges in N for YC . If YC = ∅ or TYC

̸= EC then continue with the next connected component.
Otherwise, define an item IC with weight ω(TYC

) and value |YC |.
Let N be the set of these items. Now return yes if there is a subset of items in N whose

total weight is at most D and whose total value is at least k = |X| − k, and no otherwise.
Observe that this can be determined by solving an instance of Knapsack with set of items N ,
budget D, and target value k, which can be done in O(D · |N | · log(k)) = O(D · |X| · log(k))
time [20, 10]. (The log(k)-factor of the running time comes from adding log(k)-digit numbers
and is not mentioned in the original paper.)

Correctness. Assume that I is a yes-instance of colored-MapPD with solution S ⊆ X.
Each edge e that is not affected by S is strictly affected by X \ S. Because S is a solution
we conclude that the color of e is red and the connected component Ce of G that contains e

contains a set of leaves YC of which off(e) is a subset. Further, all edges of TYC
are colored

red and the adjacent edges are colored green. Thus, Ce fulfills the conditions to be in N for
each edge e that is not affected by S. Let C1, . . . , Ct be the unique connected components

IPEC 2023

30:8 How Can We Maximize Phylogenetic Diversity in Networks?

that contain the edges that is not affected by S. We conclude that ω(C1 ∪ · · · ∪ Ct) ≤ D and
C1 ∪ · · · ∪ Ct contain the leaves X \ S, which are at least k. Hence, IC1 , . . . , ICt

is a solution
for the Knapsack-instance and the algorithm returns yes.

Conversely, assume that the algorithm returns yes and let IC1 , . . . , ICt be a solution for
the Knapsack-instance. Let Yi be the set of taxa such that TYi

= E(Ci). We prove that
S := X \

⋃t
i=1 Yi is a solution for the instance I of colored-MapPD. As the edges of each

Yi are colored red and the adjacent edges are green, we have that the edges of Yi and Yj

are not adjacent for any i ̸= j. Then by Lemma 4.2, TX\S = TY1∪···∪Yt = TY1 ∪ · · · ∪ TYt .
We conclude that TX\S is colored red and adjacent edges are green. Further, because∑t

i=1 ω(TYi
) ≤ D the phylogenetic diversity of S is PDN (S) = PDN (X) − ω(TY1∪···∪Yt

) =
PDN (X) −

∑t
i=1 ω(TYi) ≥ PDN (X) − D = D. Likewise as

∑t
i=1 |Yi| ≥ k, we conclude

|S| = |X| −
∑t

i=1 |Yi| ≤ |X| − k = k.

Running Time. The graph G and weakly connected components of G can be computed in
O(m) time. For each component C = (VC , EC) with leaves YC , the set TY can be computed
in O(|TYC

|) time. It follows that we can determine whether EC = TC , and construct the set
of items N , including their weights and values, in O(m · log(maxω)) time. As the instance of
Knapsack can be solved in O(D · |X| · log(k)) time [10], we have an overall running time of
O(m · log(maxω) + D · |X| · log(k)) = O(D · m · log(k + maxω)). ◀

To show that MapPD is FPT with respect to D, we show that MapPD can be reduced to
colored-MapPD using standard color coding techniques.

▶ Theorem 4.4 (⋆). MapPD can be solved in O(23D+O(log2(D)) · m log m log(k + maxω))
time on binary networks.

4.2 Proximity to a tree
MapPD can be solved in polynomial time with Faith’s Greedy-Algorithm, if the given
network is a tree [19, 8]. Therefore, in this subsection, we examine MapPD with respect to
two parameters that classify the network’s proximity to a tree, the number of reticulations
retN and the smaller parameter treewidth twN .

▶ Theorem 4.5. MapPD can be solved in O(2retN · k · m · log(maxω)) time.

Observe that by Corollary 3.4, MapPD can not be solved in O∗(2ϵ·retN) time for any ϵ < 1,
unless SETH fails. Therefore, the running time of the previous proof is tight, to some extent.

Proof.
Algorithm. For a reticulation v in a network N with child u, let E(↑vu) be the set of edges
of N that are between two vertices of anc(v) ∪ {u}. Recall that off(e) ⊆ X is the set of
offspring of w for an edge e = (v, w) and the strictly affected edges TY for a set of taxa
Y ⊆ X is the set of edges e with off(e) ⊆ Y . Define two operations, called take and leave,
that for an instance I = (N , k, D) and a reticulation v of N return another instance of
MapPD. Every subset of taxa Y that does (does not, respectively) contain an offspring of v

should be a solution for I if and only if Y is a solution for take(I, v) (leave(I, v)).
We define leave(I, v) to be the instance I ′ = (N ′, k, D) of MapPD, in which k and D

are unchanged and N ′ is the network that results from deleting the edges Toff(v) and the
resulting isolated vertices from N . Recall that D =

∑
e∈E ω(e) − D. We define take(I, v)

to be the instance I ′ = (N ′, k, D′) of MapPD with D′ = D + D and k is unchanged. N ′ is
the network that results from N by deleting the edges E(↑vu), merging all the ancestors of v

M. Jones and J. Schestag 30:9

3
2

2 3 4 2

2

(1)

v

u

k = 3
D = 28 3

2
2 4 2

(2)k = 3
D = 28

42 4
12

2

(3)

w

k = 3
D = 31

Figure 2 In this figure, an example for the usage of leave and take is given. A hypothetical
instance I is given in (1). Here, the value of D is 3. In (2) the instance leave(I, v), and in (3) the
instance take(I, v) is depicted. Unlabeled edges have a weight of 1. Observe in (3), the weight of
the edge (r, w) is 4, as w has two edges from ancestors of v in I which have a weight of 2 each. The
weight of (r, u) is 12, as in I the edges of E(↑vu) have a combined weight of 9.

to a single vertex r, adding an edge (r, u), and setting the weight ω′((r, u)) to ω(E(↑vu)) + D.
For each vertex w ≠ u that has t ≥ 1 parents u1, . . . , ut, in anc(v), we add an edge (r, w)
that has weight

∑t
i=1 ω((ui, w)). Observe that PDN ′(X) = PDN (X) + D. Figure 2 depicts

an example of the operations take and leave.
Now, we are at the position to define the branching algorithm. Let I = (N , k, D) be

an instance of MapPD. If N is a phylogenetic tree, solve the instance I with Faith’s
Algorithm [19, 8]. Otherwise, let v be a reticulation of N . Then, return yes if take(I, v) or
leave(I, v) is a yes-instance of MapPD and no otherwise.

Correctness. The correctness of the base case is given by the correctness of Faith’s Algorithm.
We show that if N contains a reticulation v, then I is a yes-instance of MapPD if and only
if take(I, v) or leave(I, v) is a yes-instance of MapPD.

Consider any set of taxa Y ⊆ X. Firstly, we claim that if Y ∩off(e) = ∅, then PDN ′(Y) =
PDN (Y), where N ′ is the network in leave(I, v). Indeed, N ′ contains all the vertices and
edges of N that have an offspring outside of off(v). Therefore, PDN ′(Y) = PDN (Y).
Secondly, we claim that if Y ∩ off(v) ̸= ∅, PDN ′(Y) = PDN (Y) + D, where N ′ is the
network for take(I, v). Recall that each edge e = (u1, u2) with u1 ̸= r of E(N ′) is also
an edge of N and ω′(e) = ω(e). Further, for each edge e = (r, u2) with u2 ̸= u of E(N ′)
there are edges e1 = (ui1 , u2), . . . , et = (uit , u2) of E(N) with ω′(e) =

∑t
i=1 ω(ei). Now,

let Q = Q1 ∪ Q2 ∪ {(r, u)} be the edges of N ′ that have at least one offspring in Y , of
which edges in Q1 have both endpoints in V (N ′) \ {r}, and Q2 are outgoing edges of
r. Further, let P = P1 ∪ P2 ∪ E(↑vu) be the edges of N that have at least one offspring
in Y , of which edges in P1 have both endpoints in V (N ′), and P2 are edges with one
endpoint in anc(v) \ {v} and one endpoint in V (N ′) \ {r}. Observe that, since any vertex
in V (N ′) has the same offspring in N as in N ′, Q1 = P1 and ω′(Q1) = ω(P1). Further,
ω′(Q2) = ω(P2) as for each u2 ∈ V (N ′) \ {r}, the total weight of edges (u1, u2) with
u1 ∈ anc(v) \ {v} in N is equal to the weight of the edge (r, u2) in N ′. It follows that
PDN ′(Y) = ω′(Q1) + ω′(Q2) + ω′({r, u}) = ω(P1) + ω(P2) + ω(E(↑vu)) + D = PDN (Y) + D.

It follows from the above that if Y is a solution for I (that is, |Y | ≤ k and PDN (Y) ≥ D),
then either Y is a solution for leave(I, v) or Y is a solution for take(I, v). Conversely, if
Y is a solution for leave(I, v) then Y ∩ off(e) = ∅ and thus PDN (Y) = PDN ′(Y) ≥ D, so
Y is also a solution for I. Finally, if Y is a solution for take(I, v) then Y ∩ off(e) ̸= ∅, as
otherwise PDN ′(Y) ≤ PDN ′(X)−ω′({r, y}) = D +2D − (ω(E(↑vu))+D) ≤ D +D −1 < D′.
Then PDN ′(Y) = PDN (Y) + D, from which it follows that PDN (Y) ≥ D′ − D = D and Y

is also a solution for I.

IPEC 2023

30:10 How Can We Maximize Phylogenetic Diversity in Networks?

Running Time. Let I be an instance of MapPD that contains a reticulation v. The number
of reticulations in I is greater than the number of reticulations in take(I, v) and leave(I, v),
because at least the reticulation v is removed and no new reticulations are added. Therefore,
the search tree contains O(2retN) nodes. It can be checked in O(m) time, if N contains a
reticulation. Faith’s Algorithm takes O(k · m · log(maxω)) [19].

The sets off(v), anc(v) for a vertex v, and TY for a set Y can be computed in O(m) time.
Once anc(v) is computed, we can iterate over E to find the edges that are outgoing from
anc(v) and compute the value for an edge (r, w) in N ′ in O(m · log(maxω)) time, which is
also the time needed to compute ω((r, u)) which needs D and the weight of E(↑vu). Therefore,
the instances take(I, v) and leave(I, v) can be computed in O(m · log(maxω)) time.

Thus, a solution for MapPD can be computed in O(2retN · k · m · log(maxω)) time. ◀

Bordewich et al. showed that MapPD can be solved in polynomial time on level-1
networks [2]. We extend this result by showing that MapPD is fixed-parameter tractable
with respect to treewidth.

▶ Theorem 4.6 (⋆). MapPD can be solved in O(9twN · twN · k2 · m) time.

The detailed proof is deferred to a longer version of this paper; we give a sketch of the main
ideas here.

We aim to find a set of edges E′ that have an overall weight of at least D and that are
incident with at most k leaves. Further, for each edge e = (u, v) ∈ E′ we require that either
v ∈ X or there is an edge (v, w) ∈ E′. In the algorithm, which is a dynamic program over a
nice tree decomposition, we index feasible partial solutions by a 3-coloring of the vertices.
At a given node of the tree decomposition, a vertex v is colored:

red, if it is still mandatory that we select an outgoing edge of v (because we have selected
an incoming edge of v),
green, if we can select incoming edges of v and do not need to select an outgoing edge of
v (because v is a leaf or we have already selected an outgoing edge of v),
black, if we have to not yet selected an edge incident with v (such that only the selection
of an incoming edge of v makes the selection of an outgoing edge of v necessary).

We introduce each leaf as a green vertex and the other vertices as black vertices. In order to
consider only feasible solutions, a vertex must be green or black when it is forgotten. The
most important step of the algorithm is in the introduction of an edge, where colors may be
adjusted depending on whether or not the new edge is included in E′.

5 Discussion

While we were able to show that MapPD is W[2]-hard parameterized by k, it is unknown
whether it is W[2]-complete. We were however able to show an equivalence between MapPD
parameterized by k and Item-Weighted Partial Set Cover parameterized by the size
of the solution. Thus establishing the exact complexity class of Item-Weighted Partial
Set Cover, which seems to be of interest, would also establish the exact complexity class
of MapPD.

The all-paths phylogenetic diversity measure PDN considered in this paper is one of four
measures considered in [2], where it is called AllPaths-PD. The second measure, which they
call Network-PD, requires not only weights on each of the edges in the network, but also an
inheritance proportion p(e) on each edge e = (u, v) leading into a reticulation. This value
denotes the expected number of features that are expected to be passed from u to v. Network-
PD is a generalization of AllPaths-PD, as the measures are equivalent when all inheritance

M. Jones and J. Schestag 30:11

proportions are 1. The authors also consider two additional measures, MinWeightTree-PD
and MaxWeightTree-PD, that, under certain restrictions, act as lower and upper bounds
respectively on Network-PD.

It is natural to ask whether our parameterized complexity results for MapPD extend to
the corresponding maximization problems for Network-PD. We note that, since Network-PD
generalizes AllPaths-PD, our hardness results for k and k also carry across to Network-PD.
For the FPT results, the main challenge is that to compute Network-PD for a network N
and a subset of leave S, one must compute for each edge e an expected proportion γ(S, e)
of features arising in e that will be passed down to an offspring in S. γ(S, e) is computed
recursively; for an edge e = (u, v) the value of γ(S, e) is a non-linear function of the value
γ(S, e′) for all edges e′ leaving wv. Taking these values into account is likely to complicate
the FPT algorithms presented in this paper significantly.

References
1 Markus Bläser. Computing small Partial Coverings. Information Processing Letters, 85(6):327–

331, 2003.
2 Magnus Bordewich, Charles Semple, and Kristina Wicke. On the Complexity of optimising

variants of Phylogenetic Diversity on Phylogenetic Networks. Theoretical Computer Science,
917:66–80, 2022.

3 Olga Chernomor, Steffen Klaere, Arndt von Haeseler, and Bui Quang Minh. Split Diversity:
Measuring and Optimizing Biodiversity using Phylogenetic Split Networks, pages 173–195.
Springer International Publishing, 2016.

4 Marek Cygan, Holger Dell, Daniel Lokshtanov, Dániel Marx, Jesper Nederlof, Yoshio Okamoto,
and et al. On Problems as hard as CNF-SAT. ACM Transactions on Algorithms (TALG),
12(3):1–24, 2016.

5 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.

6 Rodney G. Downey and Michael R. Fellows. Fixed-Parameter tractability and completeness
II: On completeness for W[1]. Theoretical Computer Science, 141(1-2):109–131, 1995.

7 Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity.
Texts in Computer Science. Springer, 2013.

8 Daniel P. Faith. Conservation evaluation and Phylogenetic Diversity. Biological Conservation,
61(1):1–10, 1992.

9 Michael Fuchs and Emma Yu Jin. Equality of Shapley value and fair proportion index in
phylogenetic trees. Journal of mathematical biology, 71:1133–1147, 2015.

10 Frank Gurski, Carolin Rehs, and Jochen Rethmann. Knapsack Problems: A parameterized
point of view. Theoretical Computer Science, 775:93–108, 2019.

11 Claus-Jochen Haake, Akemi Kashiwada, and Francis Edward Su. The Shapley value of
Phylogenetic Trees. Journal of mathematical biology, 56(4):479–497, 2008.

12 Klaas Hartmann. The equivalence of two Phylogenetic Diodiversity measures: the Shapley
value and Fair Proportion index. Journal of Mathematical Biology, 67:1163–1170, 2013.

13 Daniel H. Huson, Regula Rupp, and Celine Scornavacca. Phylogenetic Networks: Concepts,
Algorithms and Applications. Cambridge University Press, 2010.

14 Nick J.B. Isaac, Samuel T. Turvey, Ben Collen, Carly Waterman, and Jonathan E.M. Baillie.
Mammals on the EDGE: Conservation Priorities Based on Threat and Phylogeny. PLOS
ONE, 2(3):1–7, 2007.

15 Bingkai Lin. A simple gap-producing Reduction for the parameterized Set Cover Problem.
arXiv preprint arXiv:1902.03702, 2019.

16 Fabio Pardi and Nick Goldman. Species Choice for Comparative Genomics: Being Greedy
Works. PLoS Genetics, 1, 2005.

IPEC 2023

30:12 How Can We Maximize Phylogenetic Diversity in Networks?

17 David W. Redding and Arne Ø. Mooers. Incorporating evolutionary measures into conservation
prioritization. Conservation Biology, 20(6):1670–1678, 2006.

18 Andreas Spillner, Binh T. Nguyen, and Vincent Moulton. Computing Phylogenetic Diversity
for Split Systems. IEEE/ACM Transactions on Computational Biology and Bioinformatics,
5(2):235–244, 2008.

19 Mike Steel. Phylogenetic Diversity and the greedy algorithm. Systematic Biology, 54(4):527–529,
2005.

20 H. Martin Weingartner. Capital budgeting of interrelated projects: survey and synthesis.
Management Science, 12(7):485–516, 1966.

21 Kristina Wicke and Mareike Fischer. Phylogenetic Diversity and biodiversity indices on
Phylogenetic Networks. Mathematical Biosciences, 298:80–90, 2018.

Sidestepping Barriers for Dominating Set in
Parameterized Complexity
Ioannis Koutis #

New Jersey Institute of Technology, NJ, USA

Michał Włodarczyk #

University of Warsaw, Poland

Meirav Zehavi #

Ben-Gurion University of the Negev, Beerhseba, Israel

Abstract
We study the classic Dominating Set problem with respect to several prominent parameters.
Specifically, we present algorithmic results that sidestep time complexity barriers by the incorporation
of either approximation or larger parameterization. Our results span several parameterization regimes,
including: (i,ii,iii) time/ratio-tradeoff for the parameters treewidth, vertex modulator to constant
treewidth and solution size; (iv,v) FPT-algorithms for the parameters vertex cover number and
feedback edge set number; and (vi) compression for the parameter feedback edge set number.

2012 ACM Subject Classification Theory of computation → Parameterized complexity and exact
algorithms

Keywords and phrases Dominating Set, Parameterized Complexity, Approximation Algorithms

Digital Object Identifier 10.4230/LIPIcs.IPEC.2023.31

Related Version Full Version: https://arxiv.org/abs/2309.15645

Funding Supported by BGU–NJIT Joint Seed Research Fund and ERC Starting Grant titled
PARAPATH.

1 Introduction

The Dominating Set problem is one of the most central problems in Parameterized
Complexity [8, 4]. The input to Dominating Set consists of an n-vertex graph G, and the
objective is to output a minimum-size subset U ⊆ V (G) that is a dominating set – that is,
the closed neighborhood of U in G equals V (G), or, in other words, every vertex in V (G) \ U

is adjacent in G to at least one vertex in U . When parameterized by the solution size and
stated as a decision problem, the input also consists of a non-negative integer k, and the
objective is to determine whether there exists a subset U ⊆ V (G) of size at most k that is a
dominating set.

From the perspective of Parameterized Complexity, Dominating Set parameterized by
the sought solution size k is very hard. First, Dominating Set is W[2]-complete [8] (and,
clearly, in XP).1 In fact, Dominating Set and Set Cover are the two most well-studied
W[2]-hard problems in Parameterized Complexity. Moreover, under the Strong Exponential
Time Hypothesis (SETH), Dominating Set cannot be solved in f(k) · nk−ϵ time [19]. Still,
for every integer k ≥ 7, Dominating Set is solvable in nk+o(1) time [9].

1 We refer to Section 2 for notations and concepts not defined in the introduction.

© Ioannis Koutis, Michał Włodarczyk, and Meirav Zehavi;
licensed under Creative Commons License CC-BY 4.0

18th International Symposium on Parameterized and Exact Computation (IPEC 2023).
Editors: Neeldhara Misra and Magnus Wahlström; Article No. 31; pp. 31:1–31:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ikoutis@njit.edu
https://orcid.org/0000-0003-1535-3397
mailto:m.wlodarczyk@mimuw.edu.pl
https://orcid.org/0000-0003-0968-8414
mailto:meiravze@bgu.ac.il
https://orcid.org/0000-0002-3636-5322
https://doi.org/10.4230/LIPIcs.IPEC.2023.31
https://arxiv.org/abs/2309.15645
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

31:2 Sidestepping Barriers for Dominating Set in Parameterized Complexity

From the perspective of approximation (and parameterized approximation), Dominating
Set is also very hard. Unless P=NP, Dominating Set does not admit a polynomial-time
(1 − ϵ) ln n-approximation algorithm for any fixed ϵ > 0 [7] (see also [10]). However, it admits
a polynomial-time (ln n − ln ln n + O(1))-approximation algorithm [23]. Moreover, under
the SETH, Dominating Set does not even admit a g(k)-approximation f(k) · nk−ϵ-time
algorithm for any computable functions g and f of k and fixed ϵ > 0 [20]. (Observe that
this statement generalizes the one above by [19].) Similar (but weaker) results of hardness of
approximation in the setting of Parameterized Complexity also exist under other assumptions,
including the ETH, W[1] ̸=FPT, and the k-SUM hypothesis [20].

Concerning structural parameters, the most well-studied parameters in Parameterized
Complexity are treewidth and vertex cover number [8, 4]. Regarding Dominating Set,
on the positive side, the problem is easily solvable in O(3tw · n) time [21]. Here, tw is the
treewidth of the input graph. However, under the SETH, Dominating Set cannot be solved
in (3 − ϵ)tw · nO(1) time for any fixed ϵ > 0 [16]. Similarly to the case of the parameter
solution size k, we again have (essentially) matching upper and lower bounds in terms of
time complexity. Moreover, it is not hard to see that, under the any of the SETH and the
Set Cover Conjecture, Dominating Set cannot be solved in (2 − ϵ)vc · nO(1) time for any
fixed ϵ > 0 (see Section 5). Here, vc is the vertex cover number of the input graph.

Lastly, we note that the weighted version of Dominating Set is, similarly, approximable
in polynomial time within factor O(log n), and solvable in O(3tw · n) time. Further, being
more general, all negative results carry to it as well.

1.1 Our Contribution
Our contribution is fivefold, concerning five different parameterizations.

I. Treewidth. First, in Section 3, we consider the treewidth tw of the given graph as
the parameter. We prove that Weighted Dominating Set admits a 2-approximation
O(

√
6tw ·twO(1) ·n)-time algorithm. Our proof is based on “decoupling” the task of domination

of the entire input graph G into two separate tasks: we compute a partition (V1, V2) of G

based on a proposition of [17], and then consider the domination of each Vi separately. We
remark that the way that we use the aforementioned proposition is very different than the
way it is originally used in [17]. Here, we remind that under the SETH, Dominating Set
cannot be solved in (3 − ϵ)tw · nO(1) time for any fixed ϵ > 0.

II. Modulator to Constant Treewidth. Second, in Section 4, we consider the parameter
twd, the minimum-size of a vertex modulator of the given graph to treewidth d, for any fixed
d ∈ N. We note that, for any graph G, tw ≤ twd +d. We prove that Weighted Dominating
Set admits a 2-approximation O(2twd · n)-time algorithm. As before, our proof is based on
“decoupling” the task of domination of the entire input graph G into two separate tasks: now,
these are the task of the domination of the modulator, and the task of the domination of
the rest of G. Unlike before, the resolution of these two tasks is different. Concerning the
tightness of our result, we refer the reader to Conjecture 30, where we conjecture that the
same time complexity cannot be attained by an exact algorithm.

III. Vertex Cover Number. Third, in Section 5, we consider the vertex cover number vc
of the given graph as the parameter. We prove that Weighted Dominating Set admits
an O(2vc · n)-time algorithm. Our proof is partially based on the idea of our algorithm for
the parameter twd, combined with the observation that some vertices in the independent

I. Koutis, M. Włodarczyk, and M. Zehavi 31:3

set (being the complement of the given vertex cover) are “forced” to be picked, after having
chosen which vertices to pick from the vertex cover. From the perspective of impossibility
results, we observe that under any of the SETH and the Set Cover Conjecture, Dominating
Set cannot be solved in (2 − ϵ)vc · nO(1) time for any fixed ϵ > 0, thus our time complexity
is tight.

IV. Feedback Edge Set Number. Fourth, in Section 6, we consider the parameter fes
(feedback edge set number), the minimum-size of a set of edges whose removal transforms
the input graph into a forest. Notice that this parameter is a relaxation of twd (for any
fixed d ∈ N), which, in turn, is a relaxation of tw. We present two theorems. The first
theorem is that Dominating Set admits an O(3 fes

2 · n)-time algorithm. To this end, we
prove the following combinatorial lemma, which is of independent interest: For any graph G,
tw2(G) ≤ fes(G)

2 . (Moreover, we prove that there exists an algorithm that, given a graph G,
outputs a subset M ⊆ V (G) such that |M | ≤ fes(G)

2 and tw(G − M) ≤ 2 in O(fes(G) + n)
time.) The second theorem is that an instance G of the Dominating Set problem with
fes(G) = k can be compressed in linear time into a “relaxed” instance of the problem on a
graph Ĝ with O(k) edges, requiring the minimum domination of a subset of the vertices in Ĝ.

V. Solution Size. Fifth, we consider the solution size k as the parameter. We prove that,
for any fixed 0 ≤ α < 1, Dominating Set admits a ((1 − α) ln n + O(1))-approximation
nαk+O(1)-time algorithm. The proof of this theorem is the simplest one in our article, based
on the combination of an exhaustive search (to uncover part of the solution) and a known
approximation algorithm. This approach somewhat resembles that of [5]. Here, we remind
that (under plausible complexity-theoretic assumptions) it is unlikely for an exact algorithm
to run in nαk+O(1) time, or for a polynomial-time algorithm to have approximation factor
((1 − α) ln n + O(1)).

Due to space constraints, the compression result in Contribution IV and Contribution V
are deferred to the full version of this paper.

1.2 Other Related Works

Here, we briefly survey a few works not already mentioned that are directly relevant or related
to ours. First, we note that Dominating Set can be solved in linear time on series-parallel
graphs [14]. In particular, the class of series-parallel graphs is a (strict) subclass of the class
of graphs of treewidth 2.

The restriction of Dominating Set to planar graphs is known to be both solvable in
2O(

√
k)n time (thus, it is in FPT) and admit an EPTAS [12]. Similar results exist also for more

general graph classes, such as H-minor free graphs [11] and graphs of bounded expansion [1].
Moreover, Dominating Set is also in FPT (specifically, it is solvable in 2O(k)nO(1) time, and
admits a polynomial kernel) on claw-free graphs, but it remains W[2]-complete on K1,t-free
graphs for any t ≥ 4 [6, 13]. Additionally, Dominating Set is W[1]-hard on unit disk
graphs [18].

With respect to exact exponential-time algorithms, the currently best known running
time upper bound is of O(1.4969n), based on the branch-and-reduce method [22].

IPEC 2023

31:4 Sidestepping Barriers for Dominating Set in Parameterized Complexity

2 Preliminaries

Given a function f : U → R and a subset U ′ ⊆ U , let f(U ′) =
∑

u∈U ′ f(u). When f is
interpreted as a weight function, we will refer to f(U ′) as the weight of U ′.

Standard Graph Notation. Throughout the article, we deal with simple, finite, undirected
graphs. Given a graph G, let V (G) and E(G) denote its vertex and edge sets, respectively.
When no confusion arises, we denote |V (G)| = n and |E(G)| = m. Given a vertex v ∈ V (G),
let NG(v) = {u ∈ V (G) : {u, v} ∈ E(G)} and NG[v] = NG(v) ∪ {v}. Given a subset
U ⊆ V (G), let NG(U) =

⋃
u∈U NG(u) \ U and NG[U] =

⋃
u∈U NG[u]. When G is clear from

context, we drop it from the subscripts. Given a subset U ⊆ V (G), let G[U] denote the
subgraph of G induced by U , and let G − U denote the graph G[V (G) \ U]. Given a subset
F ⊆ E(G), let G − F denote the graph on vertex set V (G) and edge set E(G) \ F . Given
subsets A, B ⊆ V (G), we say that A dominates B if for every b ∈ B, N [b] ∩ A ̸= ∅. A
dominating set of G is a subset U ⊆ V (G) that dominates V (G). A vertex cover of G is a
subset U ⊆ V (G) such that G − U is edgeless (i.e., E(G − U) = ∅). Let vc(G) denote the
minimum size of a vertex cover of G. A feedback edge set of G is a subset F ⊆ E(G) such
that G − F is a forest. Let fes(G) denote the minimum size of a feedback edge set of G. We
note that vc(G) and fes(G) are incomparable. When G is immaterial or clear from context,
we denote vc = vc(G) and fes = fes(G). A cactus is a connected graph in which any two
simple cycles have at most one vertex in common. We will slightly abuse this term: given
graph G such that each connected component of G is a cactus, we will call G a cactus as
well.

Problem Definitions. The Dominating Set problem is defined as follows: The input
consists of an n-vertex graph G, and the objective is to output a minimum-size dominating
set in G. The Weighted Dominating Set is defined similarly: Here, the input also
consists of a weight function w : V (G) → N, and the objective is to output a minimum-weight
dominating set in G. When parameterized by the solution size k, we consider the decision
version of Dominating Set, and suppose that the input also consists of a non-negative
integer k. Then, the objective is to determine whether G has a dominating set of size at most
k. Parameterization by the solution size k can also be defined for Weighted Dominating
Set. However, we find it to be somewhat less natural (particularly when considered from
the perspective of parameterized approximation), and therefore we do not consider it in
this paper. Still, we mention that, here, the objective would be to find a minimum-weight
dominating set in G among all those of size at most k, if one exists.

The Set Cover problem is defined as follows: The input consists of a universe U and a
family F ⊆ 2U of subsets of U , and the objective is to output a minimum-size subfamily
S ⊆ F such that U =

⋃
S. (Here, without loss of generality, we suppose that U =

⋃
F , so

there necessarily exist a solution.) The Weighted Set Cover problem is defined similarly:
Here, the input also consists of a weight function w : F → N, and the objective is to output
a minimum-weight subfamily S ⊆ F such that U =

⋃
S. We require a slight generalization

of this problem, called Generalized Weighted Set Cover, defined as follows: The
input (U, F , w) is the same, and the objective is to output, for every subset A ⊆ U , a
minimum-weight subfamily SA ⊆ F such that UA =

⋃
SA.

Width Measures. The treewidth of a graph is a standard measure of its “closeness” to a
tree, defined as follows.

I. Koutis, M. Włodarczyk, and M. Zehavi 31:5

▶ Definition 1. A tree decomposition of a graph G is a pair T = (T, β), where T is a rooted
tree and β is a function from V (T) to 2V (G), that satisfies the following conditions.

For every edge {u, v} ∈ E(G), there exists x ∈ V (T) such that {u, v} ⊆ β(x).
For every vertex v ∈ V (G), T [{x ∈ V (T) : v ∈ β(x)}] is a tree on at least one vertex.

The width of (T, β) is maxx∈V (T) |β(x)| − 1. The treewidth of G, denoted by tw(G), is the
minimum width over all tree decompositions of G. For every x ∈ V (T), β(x) is called a bag,
and γ(x) denotes the union of the bags of x and the descendants of x in T .

When G is immaterial or clear from context, we denote tw = tw(G). Following the
standard custom in parameterized algorithmics, when we consider a problem parameterized
by tw, we suppose that we are given a tree decomposition T of width tw. Also, following the
standard custom, we do not rely on a supposition that the width of T is tw in the sense that,
if the width of T is larger, then our algorithmic result holds where tw is replaced by this
width.

Given a graph G, a path decomposition of G is a tree decomposition (T, β) where T is a
path, and the pathwidth of G is the minimum width over all path decompositions of G.

For d ∈ N ∪ {0} and a graph G, let twd(G) denote the minimum size of a vertex set
whose deletion from G results in a graph of treewidth at most d. Observe that, for any graph
G, tw0(G) = vc(G). When G is immaterial or clear from context, we denote twd = twd(G).
Following the standard custom in parameterized algorithmics, when we consider a problem
parameterized by twd, we suppose that we are given a vertex set M of size twd whose deletion
from the input graph results in a graph of treewidth at most d. Also, following the standard
custom, we do not rely on a supposition that |M | = twd in the sense that, if |M | is larger,
then our algorithmic result holds where twd is replaced by |M |.

For the design of algorithms based dynamic programming, it is convenient to work with
nice tree decompositions, defined as follows.

▶ Definition 2. A tree decomposition (T, β) of a graph G is nice if for the root r = root(T)
of T , β(r) = ∅, and each node x ∈ V (T) is of one of the following types.

Leaf: x is a leaf in T and β(x) = ∅.
Forget: x has one child, y, and there is a vertex v ∈ β(u) such that β(x) = β(y) \ {v}.
Introduce: x has one child, y, and there is a vertex v ∈ β(x) such that β(x)\{v} = β(y).
Join: x has two children, y and z, and β(x) = β(y) = β(z).

▶ Proposition 3 ([2]). Given a tree decomposition (T, β) of a graph G, a nice tree decom-
position of G of the same width as (T, β) can be constructed in linear-time (specifically,
O(wO(1) · n) where w is the width of (T, β)).

Due to Proposition 3, when we deal with nice tree decompositions of width tw, we suppose
that |V (T)| ≤ O(twO(1) · n).

Parameterized Complexity. Let Π be an NP-hard problem. In the framework of Paramet-
erized Complexity, each instance of Π is associated with a parameter k. Here, the goal is
to confine the combinatorial explosion in the running time of an algorithm for Π to depend
only on k. Formally, we say that Π is fixed-parameter tractable (FPT) if any instance (I, k)
of Π is solvable in f(k) · |I|O(1) time, where f is an arbitrary function of k. A weaker request
is that for every fixed k, the problem Π would be solvable in polynomial time. Formally, we
say that Π is slice-wise polynomial (XP) if any instance (I, k) of Π is solvable in f(k) · |I|g(k)

time, where f and g are arbitrary functions of k. Parameterized Complexity also provides
methods to show that a problem is unlikely to be FPT. Here, the concept of W-hardness
replaces the one of NP-hardness. For more information, we refer the reader to the book [4].

IPEC 2023

31:6 Sidestepping Barriers for Dominating Set in Parameterized Complexity

Essentially tight conditional lower bounds for the running times of parameterized al-
gorithms often rely on the Exponential-Time Hypothesis (ETH), the Strong ETH (SETH)
and the Set Cover Conjecture. To formalize the statements of ETH and SETH, recall that
given a formula φ in conjuctive normal form (CNF) with n variables and m clauses, the task
of CNF-SAT is to decide whether there is a truth assignment to the variables that satisfies φ.
In the p-CNF-SAT problem, each clause is restricted to have at most p literals. First, ETH
asserts that 3-CNF-SAT cannot be solved in O(2o(n)) time. Second, SETH asserts that for
every fixed ϵ < 1, there exists a (large) integer p = p(ϵ) such that p-CNF-SAT cannot be
solved in O((2 − ϵ)n) time. Moreover, the Set Cover Conjecture states that for every fixed
ϵ < 1 Set Cover cannot be solved in O((2 − ϵ)n) time where n is the size of the universe.

Let P and Q be two parameterized problems. A compression (or compression algorithm
for P is a polynomial-time procedure that, given an instance (x, k) of P , outputs an equivalent
instance (x′, k′) of Q where |x′|, k′ ≤ f(k) for some computable function f . Then, we say
that P admits a compression of size f(k). When P = Q, compression is called kernelization.

When a problem is parameterized by the solution size k, the concept of parameterized
approximation must be clarified (given that we then deal with a decision problem). Here, the
objective becomes the following where the sought approximation ratio is some α: If there
exists a solution of size at most k, then we seek an α-approximate solution; else, we can
output any solution. Of course, we do not know (as part of the input) which case is true.

3 Parameter: Treewidth

We will use a translation of (Weighted) Dominating Set into two instances of an easier
problem, to attain a 2-approximation algorithm for (Weighted) Dominating Set.

▶ Theorem 4. The Weighted Dominating Set problem parameterized by tw admits a
2-approximation O(

√
6tw · twO(1) · n)-time algorithm.

Towards the proof of this theorem, we first define the easier problem that we aim to solve.

▶ Definition 5 (Half-Width Domination). In the Weighted Half-Width Domination
problem, the input consists of a graph G, a vertex-weight function w : V (G) → N, a nice
tree decomposition T = (T, β) of G of width tw, and a subset D ⊆ V (G) such that for every
x ∈ V (T), |β(x) ∩ D| ≤ tw

2 + O(1). The objective is to compute a subset S ⊆ V (G) of
minimum weight that dominates D.

We would have liked to call the algorithm in the following proposition in order to directly
solve the Weighted Half-Width Domination problem.

▶ Proposition 6 ([4]). The Weighted Dominating Set problem admits an O(3tw · n)-time
algorithm.

Unfortunately, we cannot use it in a black-box manner – we need to modify the dynamic
programming table used in the proof. Intuitively, we let vertices outside D correspond to two
states (chosen, not chosen) instead of three (chosen, not chosen and dominated, not chosen
and not dominated). This is done in the following lemma.

▶ Lemma 7. The Weighted Half-Width Domination problem admits an O(
√

6tw ·
twO(1) · n)-time algorithm.

I. Koutis, M. Włodarczyk, and M. Zehavi 31:7

Proof. We first describe the algorithm. Let (G, w, D, T = (T, β) be the give input. We
use dynamic programming, and start with the formal definition of the table, denoted by
M. For every x ∈ V (T), partition (X, Y) of β(x) \ D and partition (X̂, Ŷ1, Ŷ2) of β(x) ∩ D,
we have a table entry M[x, (X, Y), (X̂, Ŷ1, Ŷ2)]. The order of the computation is done by
postorder on T (where the order of computation of entries with the same first argument
is arbitrary). Then, the basis corresponds to the case where x is a leaf. In this case, we
initialize M[x, (∅, ∅), (∅, ∅, ∅)] = 0. Now, suppose that x is not a leaf. Then, we use the
following recursive formulas:
1. In case x is of type Forget, let y be its child and v ∈ β(y) \ β(x). Then, we compute

M[x, (X, Y), (X̂, Ŷ1, Ŷ2)]:
If v ∈ D, then we take min{M[y, (X, Y), (X̂ ∪ {v}, Ŷ1, Ŷ2)],M[y, (X, Y), (X̂, Ŷ1 ∪
{v}, Ŷ2)]}.
Else, we take min{M[y, (X ∪ {v}, Y), (X̂, Ŷ1, Ŷ2)],M[y, (X, Y ∪ {v}), (X̂, Ŷ1, Ŷ2)]}.

2. In case x is of type Introduce, let y be its child and v ∈ β(x) \ β(y). Then, we compute
M[x, (X, Y), (X̂, Ŷ1, Ŷ2)]:

If v ∈ X ∪X̂, then we take M[y, (X \{v}, Y), (X̂ \{v}, Ŷ1 \NG(v), Ŷ2 ∪(Ŷ1 ∩NG(v)))]+
w(v).
Else, if v ∈ Y ∪ Ŷ2, then we take M[y, (X, Y \ {v}), (X̂, Ŷ1, Ŷ2 \ {v})].
Else, if v ∈ NG(X ∪ X̂), then we take M[y, (X, Y), (X̂, Ŷ1 \ {v}, Ŷ2)].
Else, we take ∞.

3. In case x is of type Join, let y and z be its children. Then, M[x, (X, Y), (X̂, Ŷ1, Ŷ2)]
equals:

min
(Y

y
1 ,Y z

1) partition ofŶ1

{M[y, (X, Y), (X̂, Y y
1 , Ŷ2 ∪ (Ŷ1 \ Y y

1))] + M[z, (X, Y), (X̂, Y z
1 , Ŷ2 ∪ (Ŷ1 \ Y z

1))]}

−w(X ∪ X̂).

Eventually, the algorithm returns the weight stored in M [root(T), (∅, ∅), (∅, ∅, ∅)], where
the matching itself can be retrieved by backtracking its computation (specifically, collecting
the vertices inserted into X ∪ X̂).

Because for every x ∈ V (T), |β(x) ∩ D| ≤ tw
2 + O(1), and |V (T)| ≤ O(twO(1) · n), we

derive that the size of M is O(2 tw
2 · 3 tw

2 · twO(1) · n) = O(
√

6tw · twO(1) · n). So, clearly, the
computation of all entries corresponding to leaves, Forget nodes and Introduce nodes can be
done within this time bound. The computation of all Join nodes can also be done within
this time bound by the use of fast subset convolution in the exact same manner as it is done
for the known exact algorithm for Weighted Dominating Set parameterized by tw (see
Section 11.1 in [4]).

Correctness can be proved by straightforward induction on the order of the computation
(following the same lines as for the exact algorithm for Weighted Dominating Set
parameterized by tw).

▷ Claim 8. Every entry M[x, (X, Y), (X̂, Ŷ1, Ŷ2)] stores the minimum weight of a dominating
set S of G[γ(x)] that satisfies:

S ∩ β(x) = X ∪ X̂.
S dominated Ŷ1.

If such a matching does not exist, then the entry stores ∞.

This completes the proof. ◀

For the proof of Theorem 4, we also need the following result.

IPEC 2023

31:8 Sidestepping Barriers for Dominating Set in Parameterized Complexity

▶ Proposition 9 ([17], Corollary). There exists an O(n · tw)-time algorithm that, given a
graph G and a tree decomposition T = (T, β) of G of width tw, outputs a partition (V1, V2)
of V (G) such that for every i ∈ {1, 2} and x ∈ V (T), |β(x) ∩ Vi| ≤ tw

2 + O(1).

We proceed with the following immediate observation.

▶ Observation 10. Let (G, w) be an instance of Weighted Dominating Set, and let
D ⊆ V (G). Then,
1. Any dominating set S ⊆ V (G) of G dominates both D and V (G) \ D

2. Let S1 ⊆ V (G) dominate D, and S2 ⊆ V (G) dominate V (G) \ D. Then, S1 ∪ S2 is a
dominating set of G.

Now, we are ready to conclude the correctness of Theorem 4.

Proof of Theorem 4. We first describe the algorithm. Let (G, w, T) be an instance of
Weighted Dominating Set parameterized by tw. Due to Proposition 3, we can suppose
that T is nice. First, we call the algorithm of Proposition 9 with (G, w, T) as input, and
let (V1, V2) denote its outputs. Then, we call the algorithm of Lemma 7 twice, once with
(G, w, T , V1) as input and once with (G, w, T , V2) as input, and let S1 and S2 denote their
outputs. We return S = S1 ∪ S2.

Clearly, due to Proposition 9 and Lemma 7, the algorithm runs in O(
√

6tw · twO(1) · n)
time. For correctness, first note that due to the second item in Observation 10, the output set
S is a dominating set of G. Moreover, due to the first item in Observation 10, the optimums
of (G, w, T , V1) and (G, w, T , V1) as instances of Weighted Half-Width Domination
are both bounded from above by the optimum of (G, w, T) as an instance of Weighted
Dominating Set. Hence, both of w(S1), w(S2) are bounded from above by the optimum of
(G, w, T) as an instance of Weighted Dominating Set, which implies that w(S) is bounded
from above by twice the optimum of (G, w, T) as an instance of Weighted Dominating
Set. This completes the proof. ◀

4 Parameter: Size of Vertex Modulator to Constant Treewidth

Similarly to the proof in Section 3, will use a translation of an instance of (Weighted)
Dominating Set into two instances of two easier problems, to attain a 2-approximation
algorithm for (Weighted) Dominating Set. Here, however, the translation is somewhat
different.

▶ Theorem 11. For any fixed constant d ≥ 1, the Weighted Dominating Set problem
parameterized by twd admits a 2-approximation O(2twd · n)-time algorithm.

Towards the proof of this theorem, we first define the two easier problems that we will
aim to solve.

▶ Definition 12 (Modulator Domination). Let d ∈ N∪{0}. In the Weighted d-Modulator
Domination problem, the input consists of a graph G, a vertex-weight function w : V (G) →
N, and a subset M ⊆ V (G) such that the treewidth of G − M is at most d. The objective is
to compute a subset S ⊆ V (G) of minimum weight that dominates M .

▶ Definition 13 (Decomposition Domination). Let d ∈ N ∪ {0}. In the Weighted d-
Decomposition Domination problem, the input consists of a graph G, a vertex-weight
function w : V (G) → N, and a subset M ⊆ V (G) such that the treewidth of G − M is at
most d. The objective is to compute a subset S ⊆ V (G) of minimum weight that dominates
V (G) \ M .

I. Koutis, M. Włodarczyk, and M. Zehavi 31:9

To reuse the result for Modulator Domination in Section 5, we require a slight
generalization of the problem, defined as follows.

▶ Definition 14 (Generalized Modulator Domination). Let d ∈ N ∪ {0}. In the Generalized
Weighted d-Modulator Domination problem, the input consists of a graph G, a vertex-
weight function w : V (G) → N, and a subset M ⊆ V (G) such that the treewidth of G − M

is at most d. The objective is to compute, for every subset A ⊆ M , a subset SA ⊆ V (G) of
minimum weight that dominates A.

Next, we present our algorithms for Generalized Weighted d-Modulator Domina-
tion and Weighted d-Decomposition Domination. For the Generalized Weighted
d-Modulator Domination problem, we will use the following result.

▶ Proposition 15 ([4], Implicit). The Generalized Weighted Set Cover problem admits
an O(2n · m)-time algorithm, where n is the size of the universe and m is the size of the
set-family.

▶ Lemma 16. The Generalized Weighted d-Modulator Domination problem admits
an O(2|M | · n)-time algorithm.

Proof. We first describe the algorithm. Let (G, w, M) be an instance of the Generalized
Weighted d-Modulator Domination problem. Then, we construct an instance (U, F , w′)
of Generalized Weighted Set Cover as follows:

U = M .
F = {N [v] ∩ M : v ∈ V (G)}.
For every F ∈ F , let vF be a vertex of minimum weight among the vertices v ∈ V (G)
that satisfy F = N [v] ∩ M , and define w′(F) = w(vF).

We call the algorithm of Proposition 15 with (U, F , w′) as input, and, for every A ⊆ U , let
SA be its output. Then, for every A ⊆ M , we return SA = {vF : F ∈ SA}.

Clearly, due to Proposition 15, the algorithm runs in O(2|M | · n) time. For correctness,
consider some A ⊆ M . Observe that, on the one hand, if B ⊆ V (G) dominates A, then
B = {N [v] ∩ A : v ∈ B} ⊆ F covers A and w(B) ≥ w′(B). On the other hand, if B ⊆ F
covers A, then B = {vF : F ∈ A} ⊆ V (G) dominates A, and w′(B) = w(B). This completes
the proof. ◀

For the Weighted d-Decomposition Domination problem, we will use Proposition 6
and the following result.

▶ Proposition 17 ([2]). There exists an algorithm that, given a graph G, outputs a tree
decomposition of G of width t = tw(G) in tO(t3) · n time.

▶ Lemma 18. The Weighted d-Decomposition Domination problem admits an O(2|M | ·
n)-time algorithm.

Proof. We first describe the algorithm. Let (G, w, M) be an instance of the Weighted
d-Decomposition Domination problem. Then, for every subset L ⊆ M , we construct an
instance IL = (GL, wL, TL) of Weighted Dominating Set parameterized by tw as follows:

Let V (GL) = (V (G) \ M) ∪ {x} for x /∈ V (G), and E(GL) = E(G − M) ∪ {{x, v} : v ∈
NG(L) \ M}. That is, we construct GL from G by removing the vertices in M and the
edges incident to them, and adding a new vertex x adjacent to all of the vertices in
NG(L) \ M .
For every v ∈ V (GL), define wL(v) = w(v) if v ∈ V (G) \ M , and wL(v) = w(L) otherwise
(for v = x).
Use the algorithm of Proposition 17 with GL as input, and let TL be its output.

IPEC 2023

31:10 Sidestepping Barriers for Dominating Set in Parameterized Complexity

Let I = {IL : L ⊆ M}. For every IL ∈ I, we call the algorithm of Proposition 6 with IL

as input, let S′
L be its output, and define SL as S′

L if x /∈ S′
L and S′

L ∪ L otherwise. Let
S = {SL : L ⊆ M}. Then, we return the set S of minimum-weight with respect to w among
the sets in S.

For the time complexity analysis, observe that |I| = 2|M |. Moreover, observe that
for every L ⊆ M , tw(GL) ≤ tw(G − M) + 1 ≤ d + 1; hence, each call to the algorithm
of Proposition 17 runs in (d + 1)O((d+1)d+1) · |V (GL)| ≤ O(n) time, and each call to the
algorithm of Proposition 6 runs in O(3d+1 · |V (GL)|) ≤ O(n) time. Thus, the total running
time of our algorithm is O(2|M | · n).

Now, we turn to consider the correctness of the algorithm. To this end, consider some
subset L ⊆ M . On the one hand, consider some subset A ⊆ V (G) that satisfies A ∩ M = L

and A dominates V (G)\M . Let A′ = (A\M)∪{x}. Then, A\M dominates V (GL)\NG(L)
and x dominates NG(L), hence A′ dominates V (GL), and our definition of wL directly implies
that w(A) = wL(A′). On the other hand, consider some subset A′ ⊂ V (GL) that dominates
V (GL). Then, define A as A′ if x /∈ A′ and A′ ∪ L otherwise. So, it is easy to see that A

dominates V (G) \ M and wL(A′) = w(A).
We conclude that, on the one hand, if A ⊆ V (G) dominates M , then, for L = A ∩ M ,

a minimum-weight dominating set of GL with respect to wL is of weight w(A). So, the
output dominating set cannot have weight larger than w(A). On the other hand, for every
L ⊆ M , the minimum weight of a dominating set of GL with respect to wL is bounded from
below by the minimum weight of a dominating set of G with respect to w. So, obviously, the
output dominating set cannot have weight larger than the minimum one. This completes the
proof. ◀

Now, we are ready to conclude the correctness of Theorem 11.

Proof of Theorem 11. We first describe the algorithm. Let (G, w, M) be an instance of
Weighted Dominating Set parameterized by twd. Then, we call the algorithms of Lemmas
16 and 18 with (G, w, M) as input, and let S1 and S2 denote their outputs. We return
S = S1 ∪ S2.

Clearly, due to Lemmas 16 and 18, and since |M | = twd, the algorithm runs in O(2twd · n)
time. For correctness, first note that due to the second item in Observation 10, the output set
S is a dominating set of G. Moreover, due to the first item in Observation 10, the optimum
of (G, w, M) as an instance of Weighted d-Modulator Domination (or Weighted
d-Decomposition Domination) is bounded from above by the optimum of (G, w, M) as
an instance of Weighted Dominating Set. Hence, both of w(S1), w(S2) are bounded
from above by the optimum of (G, w, M) as an instance of Weighted Dominating Set,
which implies that w(S) is bounded from above by twice the optimum of (G, w, M) as an
instance of Weighted Dominating Set. This completes the proof. ◀

5 Parameter: Vertex Cover Number

In this section, we prove that in the case of vc = tw0, we can attain an exact algorithm with
the same running time as in Theorem 11.

▶ Theorem 19. The Weighted Dominating Set problem parameterized by vc admits a
O(2vc · n)-time algorithm.

Proof. We suppose that the input also consists of a subset M ⊆ V (G) that is a vertex cover
of G of size vc, since such a subset can be easily computed in O(2vc · n) time [8, 4]. Now,
we describe the algorithm. Let (G, w, M) be an instance of Weighted Dominating Set
parametrized by vc. We perform the following steps:

I. Koutis, M. Włodarczyk, and M. Zehavi 31:11

1. Call the algorithm of Lemma 16 with (G, w, M) as input of Weighted 0-Modulator
Domination. Let {S̃A : A ⊆ M} be its output.

2. For every A ⊆ M :
a. Let ŜA = A ∪ (V (G) \ (NG(A) ∪ M)). That is, ŜA is the union of A and the set of

vertices in the independent set V (G) \ M that are not dominated by the vertices in A.
b. Let SA = ŜA ∪ S̃

M\NG[ŜA]. Notice that M \ NG[ŜA] is the set of vertices in M that
are not dominated by the vertices in ŜA.

3. Return the set S of minimum weight among the sets in {SA : A ⊆ M}.

Clearly, due to Lemma 16, the algorithm runs in O(2vc · n) time. Moreover, it is clear
that the output set S is a dominating set of G. So, it remains to show that S is of
minimum weight among all dominating sets of G. To this end, let S⋆ be a dominating
set of G of minimum weight. Consider the iteration of the algorithm that corresponds to
A⋆ = S⋆ ∩ U . Notice that, since S⋆ dominates V (G) \ M which is an independent set, it
must hold that V (G) \ (NG(A⋆) ∪ M) ⊆ S⋆. So, ŜA⋆ ⊆ S⋆. Further, since S⋆ dominates
M \ NG[ŜA⋆], we have that S⋆ \ ŜA⋆ dominates M \ NG[ŜA⋆]. By the correctness of the
algorithm of Lemma 16, this implies that w(S̃

M\NG[ŜA⋆]) ≤ w(S⋆ \ ŜA⋆). Thus, we conclude
that w(S) ≤ w(SA⋆) ≤ w(S⋆). ◀

Additionally, we observe that the time complexity in Theorem 11 is tight. Due to lack of
space, the proof is deferred to the full version of this paper.

▶ Observation 20. Under any of the SETH and the Set Cover Conjecture, the Dominating
Set problem parameterized by vc cannot be solved in O((2 − ϵ)vc · n) time for any fixed ϵ > 0.

6 Parameter: Feedback Edge Set Number: FPT Algorithm

In this section, we first prove a combinatorial result (stated in Lemma 22). In particular,
this result implies a parameterized algorithm where the basis of the exponent is smaller than
3 (stated in Theorem 29). For our combinatorial result, we will use the following proposition.

▶ Proposition 21 ([3]). The treewidth of a cactus is at most 2.

▶ Lemma 22. For any graph G, tw2(G) ≤ fes(G)
2 . Moreover, there exists an algorithm that,

given a graph G, outputs a subset M ⊆ V (G) such that |M | ≤ fes(G)
2 and tw(G − M) ≤ 2 in

O(fes(G) + n) time.

The idea behind the algorithm presented in the proof is quite simple (though, perhaps, if
we did not demand it to run in O(fes(G) + n) time, it could have been further simplified).
Specifically, we scan a depth-first search (DFS) tree T of G from top to bottom. For each
vertex that we remove (and insert into M), we aim to argue that at least two edges in
F = E(G) \ E(T) have become “irrelevant” – that is, not part of any cycle. To identify
which vertices to remove, we maintain a variable e, which stores an edge from F whose “top”
is above (or equal to) and whose “bottom” is below (or equal to) the vertex currently under
consideration, and, most importantly, which is still “relevant”. When no such edge exists, it
stores nil. In particular, we notice two situations where we can (and it suffices) to remove
a vertex: first, when it is the top of two edges from F , and second, when it is the top of
an edge from F and e is some other edge from F . We now proceed to present the formal
description of the algorithm and its proof.

IPEC 2023

31:12 Sidestepping Barriers for Dominating Set in Parameterized Complexity

Proof of Lemma 22. To describe the algorithm, let G be a graph. Without loss of generality,
we suppose that G is connected, else we can consider each of its connected components
separately. We compute a DFS tree T of G. Let F = E(G)\E(T), and note that |F | = fes(G).
Given an edge e ∈ F , we refer to the top and bottom of e as the endpoint of e that is closer
to the root of T and the other endpoint of e, respectively. (Since T is a depth-first search
tree, the terms top and bottom are uniquely defined.)

Initialize M = ∅ and e = nil. For every v ∈ V (T) where T is traversed in preorder, we
perform the following computation:
1. If v is the bottom of e (in this case, e ̸= nil), update e = nil.
2. If v is not the top of any edge in F , we proceed to the next iteration.
3. If either v is the top of at least two edges in F or e ̸= nil, then:

a. Insert v into M .
b. Update e = nil.
c. Proceed to the next iteration.

4. Update e to be the edge in F whose top is v, and prioritize the preorder traversal to
first visit the vertices on the subpath of T from v to the bottom of e. (In case a previous
prioritization exists, override it.)

At the end, we return the set M .
Clearly, the algorithm runs in O(n + m) = O(fes(G) + n) time.
We now turn to consider the correctness of the algorithm. Towards that, we define the

following terminology. Given an edge e ∈ F , let the span of e be the subpath of T from the
top to bottom of e, and let the truncated span of e be the subpath that results from the
removal of the bottom of e from the span of e. We say that two distinct edges e, e′ ∈ F have
a conflict if the top of one of them belongs to truncated span of the other. Given an edge
e ∈ F and a subset M ⊆ V (G), we say that e is active in M if G − M contains a cycle that
traverses e. Observe that all of the edges in F are active in ∅.

Towards the proof of our main inductive claim, we present the following claim.

▷ Claim 23. Let C be a cycle in G, e ∈ E(C) ∩ F , and suppose that C is not the cycle
formed by e and its span. Then, C contains an edge e′ ∈ F \ {e} that has a conflict with e,
and whose top is either the top of e or an ancestor of it.

Proof. Let t and b be the top and bottom of e, respectively. Targeting a contradiction, we
assume that C does not contain an edge e′ ∈ F \ {e} that has a conflict with e, and whose
top is either t or an ancestor of t. Let P denote the subpath of C between t and b that does
not contain e. Due to our assumption, this path cannot contain an edge between t or an
ancestor of t and a descendant of t, with the exception of the edge between t and its children
in T , because such an edge must belong to F and have a conflict with e. Due to this, and
because T is a depth-first tree, P cannot contain an edge between a vertex that is not a
descendant of t and a descendant of t, with the exception of the edge between t and its child
that belongs to the span of e, which we denote by c. So far, we conclude that P does not
contain any ancestor of t and that it contains the edge {t, c}. However, again, because T is a
depth-first tree, P also cannot contain an edge between a vertex that is a descendant of a
vertex, say, x, that belongs to the span of e and a vertex that is neither x nor an ancestor
of x. In turn, this implies that P is equal to the span of e, which is a contradiction to the
supposition of the claim that C is not the cycle formed by e and its span. ◁

Now, we are ready to present our main inductive argument.

I. Koutis, M. Włodarczyk, and M. Zehavi 31:13

▷ Claim 24. Consider an iteration of the preorder traversal. Let M ′ be the set M at the
end of this iteration. Let e′ denote the value of e at the end of this iteration. Let v be the
vertex traversed in this iteration. Then:
1. The set M ′ does not contain any descendant of v.
2. There do not exist two edges in F that are active in M ′, have a conflict and the top of

each one of them is either v or an ancestor of v in T .
3. If e′ = nil, then there does not exist an edge in F that is active in M ′ and such that v

belongs to the truncated span of that edge.
4. If e′ ̸= nil, then: (i) v belongs to the truncated span of e′; (ii) there does not exist an edge

in F other than e′ that is active in M ′ and such that v belongs to the truncated span of
that edge; (iii) M ′ does not contain any vertex from the span of e′. (In particular due to
item 1 and (iii), e′ is active, and this is witnessed by the cycle formed by e′ and its span.)

Proof. We use induction on the preorder traversal. Consider the first iteration, where v is
the root of T and, hence, the only edges in F such that v belongs to their span are those that
have v as their top. Then, all of the items in the claim directly follow from the pseudocode.

Now, consider an iteration that is not the first, and suppose that the claim is correct up
to this iteration. By the inductive hypothesis (item 1) and the pseudocode, it should be
clear that item 1 of the claim holds. Let M ′′ and e′′ denote the values of M and e at the
beginning of the iteration. Let u be the parent of v in T . By the inductive hypothesis (item
2), there do not exist two edges in F that are active in M ′′, have a conflict and the top of
each one of them is an ancestor of u in T . Yet, to prove item 2 of the claim, we still need
to argue that there do not exist two edges in F that are active in M ′, have a conflict, the
top of one of them is v, and the top of the other is either v or an ancestor of v. Note that if
there exist two such edges, then v belongs to the truncated span of both of these edges. We
consider the two following cases.

First, suppose that e′′ = nil. Then, by the inductive hypothesis (item 3), there does
not exist an edge in F that is active in M ′′ and such that u belongs to the truncated
span of that edge. So, the only edges that are active in M ′′ and such that v belongs to
their span are those that have v as their top. If v is not the top of any edge in F , then
e′ = nil, M ′ = M ′′, and items 2 and 3 of the claim follow. If v is the top of at least two
edges in F , then e′ = nil, M ′ = M ′′ ∪ {v} (so, these edges are non-active in M ′), and
items 2 and 3 of the claim follow. If v is the top of exactly one edge in F , then this edge
is e′ (and M ′ = M ′′), and, hence, items 2 and 4 of the claim follow.
Second, suppose that e′′ ̸= nil. Then, by the inductive hypothesis (item 4), u belongs to
the truncated span of e′′, there does not exist an edge in F other than e′′ that is active in
M ′′ and such that u belongs to the truncated span of that edge, and M ′′ does not contain
any vertex from the span of e′′. We further consider the three following sub-cases:

1. First, suppose that v is the bottom of e′′. This implies that the only edges that are
active in M ′′ and such that v belongs to their span are those that have v as their top.
Then, e is updated to be nil in the first step of the iteration, and the proof proceeds as
in the first case.

2. Second, suppose that v is neither the bottom of e′′ nor the top of any edge in F . This
implies that v belongs to the truncated span of e′′, and that there does not exist an
edge in F other than e′′ that is active in M ′′ and such that v belongs to the span of
that edge. As e′ = e′′ and M ′ = M ′′, items 2 and 4 of the claim follow.

3. Third, suppose that v is not the bottom of e′′, and that v is the top of at least one
edge in F . Then, e′ = nil and M ′ = M ′′ ∪ {v}. Hence, there does not exist an edge in
F that is active in M ′ and has v as its top. Hence, item 2 of the claim follows, and
to complete the proof of item 4 of the claim, it suffices to show that e′′ is non-active
in M ′.

IPEC 2023

31:14 Sidestepping Barriers for Dominating Set in Parameterized Complexity

Targeting a contradiction, suppose that e′′ is active in M ′, and let t and b denote its
top and bottom, respectively. Then, there exists a cycle C in G − M ′ that contains e′′.
In particular, there exists a path P in G − M ′ between t and b that does not contain
e′′. Due to Claim 23, if P is not equal to the span of e′′, then C contains an edge
ê ∈ F \ {e′′} that has a conflict with e′′ and whose top is either t or an ancestor of t,
and because this edge belongs to C (which exists in G − M ′), it must be active in M ′;
however, this is a contradiction to item 2 of the claim. Thus, P is equal to the span of
e′′, which is a contradiction, since v belongs to this span as well as to M ′. So, e′′ is
non-active in M ′.

This completes the proof. ◁

We proceed to prove the following claim, which will imply the desired bound the size
of M .

▷ Claim 25. Consider an iteration of the preorder traversal. Let M ′ be the set M at the
end of this iteration. Suppose that in this iteration, the vertex v was inserted into M ′. Then,
there exist two distinct edges in F that are active in M ′ \ {v} but are non-active in M ′.

Proof. Let e′′ denote the value of e at the start of this iteration. Then, one of the two
following cases holds.

Case I. Suppose that v is the top of at least two edges in F , say, ev
1 and ev

2. Then, due to
item 1 of Claim 24, both of these edges are active in M ′ \ {v} (witnesses by the cycles formed
by these edges and their spans). However, both of these edges clearly become non-active in
M ′.

Case II. Suppose that e′′ ̸= nil and v is the top of exactly one edge in F , denoted by ev.
Note that e′′ ̸= ev, since the value of e is updated when its top is traversed (and v is only
being traversed in the current iteration, after e already holds e′′). As in Case I, ev is active in
M ′ \ {v} but becomes non-active in M ′. By item 4 of Claim 24 with respect to the previous
iteration, e′′ is active in M ′ \ {v}, and by the same item with respect to the current iteration,
e′′ is non-active in M ′.
In either case, we conclude that the claim holds. ◁

In particular, from Claim 25 we conclude that |M | ≤ |F |
2 = fes(G)

2 . (For every vertex
inserted into M , at least two edges in F that are active at that moment become non-active,
and they never become active again later).

In order to bound the treewidth of G − M , we turn to prove several additional claims.

▷ Claim 26. Let X ⊆ V (G). Then, {e ∈ F : e is active in X} is a feedback edge set of
G − X.

Proof. The claims directly follows from the definition of active edges, and because F is a
feedback edge set of G. ◁

▷ Claim 27. Let X ⊆ V (G). Let C, C ′ be two distinct cycles in G − X that have at least
two vertices in common. Then, there exist two distinct edges e, e′ ∈ F that are active in X

and have a conflict.

I. Koutis, M. Włodarczyk, and M. Zehavi 31:15

Proof. By Claim 23 and since C, C ′ belong to G − X, we can assume that C and C ′ are the
cycles that consist of some edges e, e′ ∈ F and their spans, respectively, else the proof is
complete. Since C and C ′ have at least two vertices in common, the intersection of the spans
of e and e′ must be of size at least 2. However, this implies that the top of one of them must
belong to the truncated span of the other, and hence they have a conflict. ◁

▷ Claim 28. There do not exist two distinct edges e, e′ ∈ F that are active in M and have a
conflict.

Proof. The claim directly follows from item 2 of Claim 24 by considering the iterations in
which the leaves of T were traversed. ◁

From Claims 27 and 28, we derive that G − M is a cactus graph. So, by Proposition 21,
we conclude that its treewidth is at most 2. This completes the proof. ◀

▶ Theorem 29. The Weighted Dominating Set problem parameterized by fes admits an
O(3 fes

2 · n)-time algorithm.

Proof. To describe the algorithm, let (G, w) be an instance of Weighted Dominating
Set. Then, we call the algorithm of Lemma 22, and let M be its output. So, |M | ≤ fes(G)

2
and tw(G − M) ≤ 2. Afterwards, we call the algorithm of Proposition 17 with G − M as
input, and let T ′ be its output. So, T ′ is a tree decomposition of width at most 2 of G − M .
We insert M into each of the bags of T ′ to attain a tree decomposition T of G of width at
most |M | + 2 ≤ fes(G)

2 + 2. Lastly, we call the algorithm of Proposition 6 with (G, w, T) as
input, and return its result.

Clearly, correctness is immediate. As for the time complexity, observe that the calls to the
algorithms of Lemma 22 and Propositions 17 and 6 run in O(fes(G) + n), 2O(23) · n = O(n)
and O(3

fes(G)
2 +2 · n) ≤ O(3

fes(G)
2 · n) times, respectively. Thus, the total running time of our

algorithm is O(3
fes(G)

2 · n). ◀

7 Conclusion and Future Directions

We presented algorithmic results that sidestep time complexity barriers for Dominating
Set. For this purpose, we incorporated approximation for the parameters solution size and
treewidth, larger parameterization for the parameters vertex cover and feedback edge set
compared to treewidth, or both for the parameter vertex modulator to constant treewidth
compared to treewidth.

Extension of Our Approaches. While we have focused on Dominating Set, we believe
that some of our approaches might be applicable to other problems as well. For example,
consider the Graph Coloring problem, where, given a graph G and an integer q ≥ 3, the
objective is to determine whether G admits a proper coloring in q colors. Under the SETH,
Graph Coloring cannot be solved in (q − ϵ)tw · nO(1) time for any fixed ϵ > 0 [16]. Then,
we follow a simplification of the approach we presented in Section 4. Briefly, the idea is to
consider two problems: one problem concerns the graph induced by the modulator, and the
other problem concerns the rest of the graph. So, suppose we are given a subset M ⊆ V (G)
such that the treewidth of G − M is at most d (where d is a fixed constant). On the one
hand, we solve Graph Coloring on G[M] in 2|M | · |M |O(1) time using the algorithm in
[15], and on the other hand, we solve Graph Coloring on G − M in nO(1) time based on
straightforward dynamic programming. We consider the color sets used by the two solutions

IPEC 2023

31:16 Sidestepping Barriers for Dominating Set in Parameterized Complexity

to be disjoint, thereby obtaining a 2-approximate solution in 2twd · nO(1) time. Essentially
the same approach works for Independent Set as well, where, given a graph G and a
non-negative integer k, the objective is to determine whether G admits an independent set
of size at least k. Under the SETH, Independent Set cannot be solved in (2 − ϵ)tw · nO(1)

time for any fixed ϵ > 0 [16]. On the one hand, we solve Independent Set on G[M]
in 1.19997|M | · |M |O(1) time using the algorithm in [24], and on the other hand, we solve
Independent Set on G − M in nO(1) time based on straightforward dynamic programming.
We output the largest among the two solutions, thereby obtaining a 2-approximate solution
in 1.19997twd · nO(1) time.

Directions for Future Research. Firstly, we find the questions of improvements of the per-
formance of our algorithms (in terms of running times and approximation ratios) interesting.
In particular, does Dominating Set admit a 2-approximation O(2tw · n)-time algorithm, or
a (1 + ϵ)-approximation O(2tw · n)-time algorithm for any fixed ϵ > 0? Additionally, we have
the following questions regarding Dominating Set:
1. Prove or refute the following conjecture:

▶ Conjecture 30. Under the SETH, there exists a fixed constant d ∈ N such that (Weighted)
Dominating Set cannot be solved in (3 − ϵ)twd · nf(d) time for any fixed constant ϵ > 0 and
function f of d, where twd is the minimum size of a vertex set whose deletion from G results
in a graph of treewidth at most d.

2. Study Dominating Set parameterized by the solution size plus the distance (e.g., number
of vertex or edge deletions or contractions) to graph classes where it belongs to FPT,
particularly planar graphs and claw-free graphs.

3. Conduct a similar study for problems beyond Dominating Set. Here, possibly and as
argued above, the ideas presented in this article can be re-used.

References
1 Saeed Akhoondian Amiri, Patrice Ossona de Mendez, Roman Rabinovich, and Sebastian

Siebertz. Distributed domination on graph classes of bounded expansion. In Proceedings of the
30th on Symposium on Parallelism in Algorithms and Architectures, SPAA ’18, pages 143–151,
New York, NY, USA, 2018. Association for Computing Machinery. doi:10.1145/3210377.
3210383.

2 Hans L. Bodlaender. A linear-time algorithm for finding tree-decompositions of small treewidth.
SIAM J. Comput., 25(6):1305–1317, 1996. doi:10.1137/S0097539793251219.

3 Hans L. Bodlaender. A partial k-arboretum of graphs with bounded treewidth. Theor. Comput.
Sci., 209(1-2):1–45, 1998.

4 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Daniel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer Publishing
Company, Incorporated, 1st edition, 2015.

5 Marek Cygan, Lukasz Kowalik, and Mateusz Wykurz. Exponential-time approximation of
weighted set cover. Inf. Process. Lett., 109(16):957–961, 2009.

6 Marek Cygan, Geevarghese Philip, Marcin Pilipczuk, Michał Pilipczuk, and Jakub Onufry
Wojtaszczyk. Dominating set is fixed parameter tractable in claw-free graphs. Theoretical
Computer Science, 412(50):6982–7000, November 2011. doi:10.1016/j.tcs.2011.09.010.

7 Irit Dinur and David Steurer. Analytical approach to parallel repetition. In Symposium on
Theory of Computing, STOC 2014, New York, NY, USA, May 31 - June 03, 2014, pages
624–633, 2014.

https://doi.org/10.1145/3210377.3210383
https://doi.org/10.1145/3210377.3210383
https://doi.org/10.1137/S0097539793251219
https://doi.org/10.1016/j.tcs.2011.09.010

I. Koutis, M. Włodarczyk, and M. Zehavi 31:17

8 Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity.
Springer Publishing Company, Incorporated, 2013.

9 Friedrich Eisenbrand and Fabrizio Grandoni. On the complexity of fixed parameter clique and
dominating set. Theoretical Computer Science, 326(1):57–67, 2004. doi:10.1016/j.tcs.2004.
05.009.

10 Uriel Feige. A threshold of ln n for approximating set cover. J. ACM, 45(4):634–652, July
1998. doi:10.1145/285055.285059.

11 Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, and Dimitrios M. Thilikos. Linear kernels
for (connected) dominating set on h-minor-free graphs. In Proceedings of the Twenty-Third
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’12, pages 82–93, USA, 2012.
Society for Industrial and Applied Mathematics.

12 Fedor V. Fomin and Dimitrios M. Thilikos. Dominating sets in planar graphs: Branch-
width and exponential speed-up. SIAM Journal on Computing, 36(2):281–309, 2006. doi:
10.1137/S0097539702419649.

13 Danny Hermelin, Matthias Mnich, Erik Jan van Leeuwen, and Gerhard J. Woeginger. Domin-
ation when the stars are out. In Automata, Languages and Programming - 38th International
Colloquium, ICALP 2011, Zurich, Switzerland, July 4-8, 2011, Proceedings, Part I, pages
462–473, 2011. doi:10.1007/978-3-642-22006-7_39.

14 Tohru Kikuno, Noriyoshi Yoshida, and Yoshiaki Kakuda. A linear algorithm for the domination
number of a series-parallel graph. Discret. Appl. Math., 5:299–311, 1983.

15 Mikko Koivisto. An o*(2ˆn) algorithm for graph coloring and other partitioning problems via
inclusion–exclusion. In 47th Annual IEEE Symposium on Foundations of Computer Science
(FOCS 2006), 21-24 October 2006, Berkeley, California, USA, Proceedings, pages 583–590,
2006.

16 Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. Known algorithms on graphs of
bounded treewidth are probably optimal. ACM Trans. Algorithms, 14(2), April 2018. doi:
10.1145/3170442.

17 Daniel Lokshtanov, Pranabendu Misra, M. S. Ramanujan, Saket Saurabh, and Meirav Zehavi.
Fpt-approximation for FPT problems. In Proceedings of the 2021 ACM-SIAM Symposium on
Discrete Algorithms, SODA 2021, Virtual Conference, January 10 - 13, 2021, pages 199–218,
2021. doi:10.1137/1.9781611976465.14.

18 Dániel Marx. Parameterized Complexity of Independence and Domination on Geometric
Graphs. In Hans L. Bodlaender and Michael A. Langston, editors, Parameterized and Exact
Computation, pages 154–165, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

19 Mihai Pătraşcu and Ryan Williams. On the possibility of faster sat algorithms. In Proceedings
of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’10, pages
1065–1075, USA, 2010. Society for Industrial and Applied Mathematics.

20 Karthik C. S., Bundit Laekhanukit, and Pasin Manurangsi. On the parameterized complexity
of approximating dominating set. J. ACM, 66(5), August 2019. doi:10.1145/3325116.

21 Johan M. M. van Rooij, Hans L. Bodlaender, and Peter Rossmanith. Dynamic Programming
on Tree Decompositions Using Generalised Fast Subset Convolution. In Amos Fiat and Peter
Sanders, editors, Algorithms - ESA 2009, pages 566–577, Berlin, Heidelberg, 2009. Springer
Berlin Heidelberg.

22 Johan M.M. van Rooij and Hans L. Bodlaender. Exact algorithms for dominating set. Discrete
Applied Mathematics, 159(17):2147–2164, 2011. doi:10.1016/j.dam.2011.07.001.

23 Vijay V. Vazirani. Approximation algorithms. Springer, 2001. URL: http://www.springer.
com/computer/theoretical+computer+science/book/978-3-540-65367-7.

24 Mingyu Xiao and Hiroshi Nagamochi. Exact algorithms for maximum independent set. Inf.
Comput., 255:126–146, 2017.

IPEC 2023

https://doi.org/10.1016/j.tcs.2004.05.009
https://doi.org/10.1016/j.tcs.2004.05.009
https://doi.org/10.1145/285055.285059
https://doi.org/10.1137/S0097539702419649
https://doi.org/10.1137/S0097539702419649
https://doi.org/10.1007/978-3-642-22006-7_39
https://doi.org/10.1145/3170442
https://doi.org/10.1145/3170442
https://doi.org/10.1137/1.9781611976465.14
https://doi.org/10.1145/3325116
https://doi.org/10.1016/j.dam.2011.07.001
http://www.springer.com/computer/theoretical+computer+science/book/978-3-540-65367-7
http://www.springer.com/computer/theoretical+computer+science/book/978-3-540-65367-7

Approximate Turing Kernelization and Lower
Bounds for Domination Problems
Stefan Kratsch #

Algorithm Engineering, Humboldt-Universität zu Berlin, Germany

Pascal Kunz #

Algorithm Engineering, Humboldt-Universität zu Berlin, Germany

Abstract
An α-approximate polynomial Turing kernelization is a polynomial-time algorithm that computes
an (αc)-approximate solution for a parameterized optimization problem when given access to an
oracle that can compute c-approximate solutions to instances with size bounded by a polynomial
in the parameter. Hols et al. [ESA 2020] showed that a wide array of graph problems admit a
(1 + ε)-approximate polynomial Turing kernelization when parameterized by the treewidth of the
graph and left open whether Dominating Set also admits such a kernelization.

We show that Dominating Set and several related problems parameterized by treewidth do not
admit constant-factor approximate polynomial Turing kernelizations, even with respect to the much
larger parameter vertex cover number, under certain reasonable complexity assumptions. On the
positive side, we show that all of them do have a (1+ε)-approximate polynomial Turing kernelization
for every ε > 0 for the joint parameterization by treewidth and maximum degree, a parameter which
generalizes cutwidth, for example.

2012 ACM Subject Classification Theory of computation → Parameterized complexity and exact
algorithms

Keywords and phrases Approximate Turing kernelization, approximation lower bounds, exponential-
time hypothesis, dominating set, capacitated dominating, connected dominating set, independent
dominating set, treewidth, vertex cover number

Digital Object Identifier 10.4230/LIPIcs.IPEC.2023.32

Funding Pascal Kunz : Supported by the DFG Research Training Group 2434 “Facets of Complexity”.

1 Introduction

The gold standard in kernelization is a polynomial (exact) kernelization, i.e. a compression
of input instances to a parameterized problem to a size that is polynomial in the parameter
such that an exact solution for the original instance can be recovered from the compressed
instance. Several weaker notions of kernelization have been developed for problems that
do not admit polynomial kernelizations. Turing kernelization [1, 11] does away with the
restriction that the solution must be recovered from a single compressed instance and instead
allow several small instances to be created and the solution to be extracted from solutions to
all of these instances. Lossy kernelizations [21], in turn, do away with the requirement that
the solution that can be recovered from the compressed instance be an optimum solution,
allowing the solution to the original instance to be worse than optimal by a constant factor.
Hols et al. [12] introduced lossy Turing kernelizations, which allow both multiple compressed
instances and approximate solutions, and showed that several graph problems parameterized
by treewidth admit (1 + ε)-approximate Turing kernelizations for every ε > 0. They left as
an open question whether or not the problem Dominating Set parameterized by treewidth
also admits a constant-factor approximate Turing kernelization.

© Stefan Kratsch and Pascal Kunz;
licensed under Creative Commons License CC-BY 4.0

18th International Symposium on Parameterized and Exact Computation (IPEC 2023).
Editors: Neeldhara Misra and Magnus Wahlström; Article No. 32; pp. 32:1–32:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:kratsch@informatik.hu-berlin.de
https://orcid.org/0000-0002-0193-7239
mailto:kunzpasc@informatik.hu-berlin.de
https://orcid.org/0000-0002-0787-8428
https://doi.org/10.4230/LIPIcs.IPEC.2023.32
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

32:2 Approximate Turing Kernelization and Lower Bounds for Domination Problems

Our contribution. We answer this question in the negative and show that a O(2logc vc)-
approximate polynomial Turing kernelization for Dominating Set[vc]1, where vc refers to
the vertex cover number, would contradict the Exponential Time Hypothesis. We prove
analogous lower bounds for Capacitated Dominating Set[vc], Connected Dominating
Set[vc] for Hitting Set[|U |], where U is the universe, and for Node Steiner Tree[|V \T |]
where V \ T is the set of non-terminal vertices. Of course, the lower bounds for the ver-
tex cover number also imply lower bounds for the smaller parameter treewidth. Using
a second approach for obtaining lower bounds for approximate Turing kernelizations, es-
sentially a gap-introducing polynomial parameter transformation (PPT), we show that
Independent Dominating Set[vc] does not have an α-approximate polynomial Turing
kernelization for any constant α, unless every problem in the complexity class MK[2] has a
polynomial (exact) Turing kernelization, which would contradict a conjecture by Hermelin et
al. [11]. We then show that for the joint parameterization by treewidth and the maximum
degree, each of the aforementioned domination problems does have a (1+ε)-approximate poly-
nomial Turing kernelization for every ε > 0. This generalizes, for instance, parameterization
for cutwidth or bandwidth.

Related work. For an introduction to kernelization, including brief overviews on lossy
and Turing kernelizations, we refer to the standard textbook [7]. Binkele-Raible et al. [1]
introduced the first Turing kernelization for a problem that does not admit a polynomial
kernelization. Since then numerous Turing kernelizations have been published for such
problems. Hermelin et al. [11] introduced a framework, which we will make use of in
Section 3.2, for ruling out (exact) polynomial Turing kernelizations. Fellows et al. [6] were the
first to combine the fields of kernelization and approximation. A later study by Lokshtanov
et al. [21] introduced the framework of lossy kernelization that has become more established.
Finally, Hols et al. [12] gave the first approximate Turing kernelizations.

Approximation algorithms and lower bounds for domination problems have received con-
siderable attention. They are closely related to the problems Hitting Set and Set Cover.
A classical result by Chvátal [3] implies a polynomial-time O(log n)-factor approximation for
Dominating Set. There are also O(log n)-factor approximations for Connected Domi-
nating Set [8] and Capacitated Dominating Set [23], but Independent Dominating
Set does not have a O(n1−ε)-approximation for any ε > 0, unless P = NP [9]. Chlebík
and Chlebíková [2] showed that Dominating Set, Connected Dominating Set, and
Capacitated Dominating Set do not have constant-factor approximations even on graphs
with maximum degree bounded by a constant ∆ and that Independent Dominating Set
does not have better than a ∆-factor approximation.

2 Preliminaries

Graphs. We use standard graph terminology and all graphs are undirected, simple, and finite.
For a graph G = (V, E) and X ⊆ V , we use N [X] := X ∪ {v ∈ V | ∃u ∈ X : {u, v} ∈ E} to
denote the closed neighborhood of X and, if v ∈ V , then we let N [v] := N [{v}]. We will use
∆ and vc to refer to the maximum degree and vertex cover number of a graph, respectively.

Let G = (V, E) be a graph X ⊆ V a vertex set. The set X ⊆ V is a dominating set if
N [X] = V . It is an independent set if there is no edge {u, v} ∈ E with u, v ∈ X. It is an
independent dominating set if it is both an independent and a dominating set. It is a connected

1 We use FOO[X] to refer to the problem FOO parameterized by X.

S. Kratsch and P. Kunz 32:3

dominating set if it is a dominating set and the graph G[X] is connected. A capacitated
graph G = (V, E, cap) consists of a graph (V, E) and a capacity function cap: V → N. A
capacitated dominating set in a capacitated graph G = (V, E, cap) is a pair (X, f) where
X ⊆ V and f : V \ X → X such that (i) v and f(v) are adjacent for all v ∈ V \ X and
(ii) |f−1(v)| ≤ cap(v) for all v ∈ X. The size of (X, f) is |X|.

Let G = (V, E) be a graph. A tree decomposition of G is a pair T = (T = (W, F), {Xt}t∈W)
where T is a tree, Xt ⊆ V for all t ∈ W ,

⋃
t∈W Xt = V , for each e ∈ E there is a t ∈ W

such that e ⊆ Xt, and for each v ∈ V the node set {t ∈ W | v ∈ Xt} induces a connected
subgraph of T . The width of T is maxt∈W |Xt| − 1. The treewidth tw(G) of G is the
minimum width of any tree decomposition of G. A rooted tree decomposition consists of a tree
decomposition T = (T = (W, F), {Xt}t∈W) along with a designated root r ∈W . Given this
rooted decomposition and a node t ∈W , we will use Vt ⊆ V to denote the set of vertices v

such that v ∈ Xt′ and t′ is a descendant (possibly t itself) of t in the rooted tree (T, r). The
rooted tree decomposition is nice if Xr = ∅ and Xt = ∅ for every leaf of T and every other
node t of T is of one of three types: (i) a forget node, in which case t has a single child t′

and there is a vertex v ∈ V such that Xt′ = Xt ∪ {v}, (ii) an introduce node, in which case
t has a single child t′ and there is a vertex v ∈ V such that Xt = Xt′ ∪ {v}, or (iii) a join
node, in which case t has exactly two children t1 and t2 and Xt = Xt1 = Xt2 .

Turing kernelization. A parameterized decision problem is a set L ⊆ Σ∗ × N. A Turing
kernelization of size f : N→ N for a parameterized decision problem L is a polynomial-time
algorithm that receives as input an instance (x, k) ∈ Σ∗ ×N and access to an oracle that, for
any instance (x′, k′) ∈ Σ∗ × N with |x′|+ k′ ≤ f(k), outputs whether (x′, k′) ∈ L in a single
step, and decides whether (x, k) ∈ L. It is a polynomial Turing kernel if f is polynomially
bounded.

A polynomial parameter transformation (PPT) from one parameterized decision problem L

to a second such problem L′ is a polynomial-time computable function f : Σ∗ × N→ Σ∗ × N
such that (x, k) ∈ L if and only (x′, k′) ∈ L′ and there is a polynomially bounded function p

such that k′ ≤ p(k) for all (x, k), (x′, k′) ∈ Σ∗ × N with f(x, k) = (x′, k′).
A parameterized minimization problem is defined by a computable function P : Σ∗ × N×

Σ∗ → R ∪ {∞,−∞}. The optimum value for an instance (I, k) ∈ Σ∗ × N is OPTP(I, k) :=
minx∈Σ∗ P(I, k, x). We will say that a solution x ∈ Σ∗ is α-approximate if P(I, k, x) ≤
α · OPTP(I, k). In order to simplify notation, we will allow ourselves to write P(I, x)
instead of P(I, k, x) and OPTP(I) instead of OPTP(I, k) if those values do not depend
on k. The problems (Capacitated/Connected/Independent) Dominating Set are
defined by P(G, X) := |X| if X is a (capacitated/connected/independent) dominating set
in X and P(G, X) := ∞, otherwise. The problem Node Steiner Tree is defined by
NST((G, T), X) := |X| if G[X ∪ T] is connected and NST((G, T), X) := ∞, otherwise.
Hitting Set is a problem whose input (U,S) consists of a set U and a family S ⊆ 2U of
nonempty sets, a solution X is a subset of U , and HS(X) := ∞ if there is an S ∈ S such
that X ∩ S = ∅ and HS(X) := |X|, otherwise.

Let α ∈ R with α ≥ 1 and let P be a parameterized minimization problem. An α-
approximate Turing kernelization of size f : N → N for P is a polynomial-time algorithm
that given an instance (I, k) computes a (cα)-approximate solution when given access
to an oracle for P which outputs a c-approximate solution to any instance (I ′, k′) with
|I ′|+ k′ ≤ f(k) in a single step. It is an α-approximate polynomial Turing kernelization if f

is polynomially bounded. Note that the algorithm is not given access to c, the approximation
factor of the oracle, and is not allowed to depend on c. In practice, it can also be helpful

IPEC 2023

32:4 Approximate Turing Kernelization and Lower Bounds for Domination Problems

for the approximate Turing kernelization algorithm to receive a witness for the parameter
value k as input. Similarly to Hols et al. [12], we will assume that our approximate Turing
kernelizations for the parameterization treewidth plus maximum degree are given as input a
graph G and a nice tree decomposition of width tw(G). Alternatively, one could also use
the polynomial-time algorithm due to Feige et al. [5] to compute a tree decomposition of
width O(

√
log tw(G) · tw(G)) and then use this tree decomposition. We will also assume

that the given tree decomposition is nice, which is not really a restriction, because there is a
polynomial-time algorithm that converts any tree decomposition into a nice tree decomposition
without changing the width [18].

3 Lower bounds

3.1 Exponential-time hypothesis
In the following, we will show that several problems do not have an approximate Turing
kernelization assuming the exponential-time hypothesis (ETH). The proof builds on a proof
due to Lokshtanov et al. [20, Theorem 12] showing that Hitting Set parameterized by the
size of the universe does not admit a lossy (Karp) kernelization unless the ETH fails.

Let 3-CNF-SAT denote the satisfiability problem for Boolean formulas in conjunctive
normal form with at most three literals in each clause. The exponential-time hypothesis
(ETH) [13] states that there is there is a fixed c > 0 such that 3-CNF-SAT is not solvable in
time 2cn · (n + m)O(1), where n and m are the numbers of variables and clauses, respectively.

Let P and P ′ be parameterized minimization problems and f : Σ∗×N→ R+ a real-valued
function that takes instances of P as input. An f-approximation-preserving polynomial
parameter transformation (f -APPT) from P to P ′ consists of two algorithms:

a polynomial-time algorithm A (the reduction algorithm) that receives as input an instance
(I, k) for P and outputs an instance (I ′, k′) for P ′ with k′ ≤ p(k) for some polynomially
bounded function p and
a polynomial-time algorithm B (the lifting algorithm) that receives as input the instances
(I, k), (I ′, k′), where the latter is the output of A when given the former, as well as a
solution x for (I ′, k′) and outputs a solution y for (I, k) with

P(I, k, y) ≤ f(I, k) ·OPTP(I, k) · P ′(I ′, k, x)
OPTP′(I ′, k) .

We will use the following lemma, which is a weaker version of a result by Nelson [22].

▶ Lemma 1 ([22]). If there are a constant c < 1 and a polynomial-time algorithm that
computes an O(2logc|U |)-factor approximation for Hitting Set, then the ETH fails.

▶ Lemma 2. Let P be a parameterized minimization problem that satisfies the following two
conditions:
(a) There is an f -APPT from Hitting Set[|U |] to P with f(U,S) ∈ O(2logc1 |U |) for some

constant c1 < 1.
(b) There is a constant c2 < 1 and a polynomial-time algorithm that computes a O(2logc2 |I|)-

factor approximation for P where I is an instance for P.
Then, there is no O(2logc3 k)-approximate polynomial Turing kernelization for P for any
c3 < 1, unless the ETH fails.

S. Kratsch and P. Kunz 32:5

Proof. Suppose that P satisfies conditions (a) and (b) and admits a O(2logc3 k)-approximate
polynomial Turing kernelization of size O(kd). Furthermore, assume that p(n) ≤ O(nd′)
where p is the polynomial parameter bound for the reduction algorithm of the f -APPT.
Choose any constant c with max{c1, c2, c3} < c < 1 and observe that for any constant α and
i ∈ {1, 2, 3} we have that 2α logci n ≤ O(2logc n). We will give a O(2logc|U |)-approximation
algorithm for Hitting Set. By Lemma 1, this proves the claim.

The algorithm proceeds as follows. Given an instance I = (U,S) of Hitting Set as
input, it first applies the reduction algorithm of the APPT to obtain an instance (I ′, k)
of P. Then, it runs the given approximate Turing kernelization on (I ′, k). Whenever this
Turing kernelization queries the oracle, this query is answered by running the approximation
algorithm given by condition (b). Once the Turing kernelization outputs a solution X, the
algorithm calls the lifting algorithm of the APPT on X, (I, |U |), and (I ′, k). The algorithm
outputs the solution Y given by the lifting algorithm.

It remains to show that |Y | ≤ O(2logc3 |U | ·OPTHS(I)). First, observe that the O(2logc2 |I|)-
factor approximation algorithm is only run on instances (J, ℓ) with |J | ≤ O(kd), so it always
outputs a solution Z with P(J, ℓ, Z) ≤ O(2logc2 kd · OPTP(J, ℓ)). Hence, in the algorithm
described above the Turing kernelization is given a O(2d logc2 k)-approximate oracle, so it
follows that P(I ′, k, X) ≤ O(2logc2 k · 2d logc3 k ·OPTP(I ′, k)). Since k ≤ O(|U |d′), it follows
that P(I ′, k, X) ≤ O(2logc3 |U |d′

· 2d logc2 |U |d′

·OPTP(I ′, k)). Therefore:

|Y | ≤ f(I, k) · OPTHS(I) · P(I ′, k, X)
OPTP(I ′, k) ≤ O

(
2logc3 |U|d′

· 2d logc2 |U|d′

· f(I, k) · OPTHS(I)
)

≤ O
(

2logc3 |U|d′

· 2d logc2 |U|d′

· f(I) · OPTHS(I)
)

≤ O
(

2logc3 |U|d′

· 2d logc2 |U|d′

· 2logc1 |U| · OPTHS(I)
)

≤ O(2logc|U| · OPTHS(I)). ◀

With Lemma 2, we can prove approximate Turing kernelization lower bounds for several
parameterized minimization problems.

▶ Theorem 3. Unless the ETH fails, there are no O(2logc k)-approximate polynomial Turing
kernels, for any c < 1 and where k denotes the respective parameter, for the following
parameterized minimization problems:

(i) Hitting Set[|U |],
(ii) Dominating Set[vc],
(iii) Capacitated Dominating Set[vc],
(iv) Connected Dominating Set[vc], and
(v) Node Steiner Tree[V \ T].

Proof. For each problem, we will prove conditions (a) and (b) from Lemma 2.
(i) (a) Immediate.

(b) Chvátal [3] gives a O(log|S|)-factor approximation algorithm.
(ii) (a) The following folklore reduction is a 1-APPT. Let (U,S) be an instance of hitting set.

The algorithm A creates a graph G as follows. For every x ∈ U and for every S ∈ S,
G contains vertices vx and wS , respectively, and G also contains an additional
vertex u. The vertices {vx | x ∈ U}∪{u} form a clique and there is an edge between
vx and wS if and only if x ∈ S. Observe that the vertices {vx | x ∈ U} form a
vertex cover in G, so clearly vc(G) ≤ |U |, and that OPTHS(U,S) = OPTDS(G).
Let X be a dominating set in G. Let X ′ be obtained from X by removing z

and replacing any wS by an arbitrary vx with x ∈ S (such an element u must

IPEC 2023

32:6 Approximate Turing Kernelization and Lower Bounds for Domination Problems

exist, as we assume that all S ∈ S are non-empty). The algorithm B outputs
Y := {x ∈ U | vx ∈ X ′}. This set is a hitting set, because for any S ∈ S one of the
following cases applies: (i) wS /∈ X, meaning that X contains a neighbor vx of wS .
Then, also x ∈ X ′ and, hence x ∈ Y and x ∈ S. (ii) wS ∈ X, meaning that wS

is replaced by vx with x ∈ S when creating X ′. Then x ∈ Y and x ∈ S. Finally,
|Y | = |X| = OPTHS(U,S)·|X|

OPTDS(G) , since OPTHS(U,S) = OPTDS(G).
(b) The O(log n)-factor approximation for Hitting Set [3] can also be used in a

straightforward manner to approximate Dominating Set.
(iii) (a) Any instance of Dominating Set can be transformed into an equivalent instance

of Capacitated Dominating Set by setting cap(v) := deg(v) for all vertices v.
The claim then follows by the same argument as for Dominating Set.

(b) Wolsey [23] gives a O(log|S|) factor approximation for Capacitated Hitting Set
which can be adapted to approximate Capacitated Dominating Set.

(iv) (a) The APPT given in (ii) for Dominating Set also works for Connected Domi-
nating Set, because, in the graphs produced by A, OPTCON(G) = OPTDS(G)
and the solution output by B is always a clique and, therefore, connected.

(b) Guha and Khuller [8] give a O(log ∆) ≤ O(log n)-factor approximation for Con-
nected Dominating Set.

(v) (a) The following reduction is essentially the same as the one given by Dom et al. [4]
Let (U,S) be an instance of Hitting Set. The algorithm A creates the graph G

as in the reduction for Dominating Set in (ii) and sets T := {ws | s ∈ S} ∪ {u}.
Clearly, |V \T | = |U | and it easy to show that OPTHS(U,S) = OPTNST(G, T). By
a similar argument as in (ii), the algorithm B can output {x ∈ U | vx ∈ X} where
X is a given solution for the Node Steiner Tree instance (G, T).

(b) Klein and Ravi [17] give a O(log n)-factor approximation for this problem. ◀

If C is a hereditary class of graphs, then we may define the Restricted C-Deletion
problem as follows: We are given a graph G = (V, E) and X ⊆ V such that G−X ∈ C and
are asked to find a minimum Y ⊆ X such that G−Y ∈ C. For Restricted Perfect Dele-
tion[|X|], Restricted Weakly Chordal Deletion[|X|], and Restricted Wheel-Free
Deletion[|X|], reductions given by Heggernes et al. [10] and Lokshtanov [19] can be shown
to be 1-APPTs. However, it is open whether they have a O(2logc|I|)-factor approximation
with c < 1, so we cannot rule out an approximate polynomial Turing kernelization. However,
we can observe that, under ETH, they cannot have both an approximation algorithm with
the aforementioned guarantee and an approximate polynomial Turing kernelization.

More generally, we can deduce from the proof of Lemma 2 the following about any
parameterized minimization problem P that only satisfies the first condition in Lemma 2:
If we define an approximate polynomial Turing compression of a problem P into a problem
P ′ to be essentially an approximate polynomial Turing kernelization for P, except that it
is given access to an approximate oracle for P ′ rather than P, then we can rule out (under
ETH) an approximate polynomial Turing compression of any problem P that satisfies the
first condition into any problem P ′ that satisfies the second condition in the same lemma.

3.2 MK[2]-hardness
The approach described in Section 3.1 is unlikely to work for the problem Independent
Dominating Set. That approach requires a O(2logc n)-factor approximation algorithm with
c < 1 to answer the queries of the Turing kernelization. However, there is no O(n1−ε)-factor
approximation for this problem for any ε > 0 unless P = NP [9].

S. Kratsch and P. Kunz 32:7

In the following, we will prove that there is no constant-factor approximate polynomial
Turing kernelization for Independent Dominating Set[vc], assuming a conjecture by
Hermelin et al. [11] stating that parameterized decision problems that are hard for the
complexity class MK[2] do not admit polynomial (exact) Turing kernelizations.

Let CNF-SAT denote the satisfiability problem for Boolean formulas in conjunctive
normal form. The class MK[2] may be defined as the set of all parameterized problems that
can be reduced with a PPT to CNF-SAT[n] where n denotes the number of variables.2

We will prove that an α-approximate polynomial Turing kernelization for Independent
Dominating Set[vc] implies the existence of a polynomial Turing kernelization for CNF-
SAT[n]. For this, we will need the following lemma allowing us to translate queries between
oracles for Independent Dominating Set and CNF-SAT using a standard self-reduction:

▶ Lemma 4. There is a polynomial-time algorithm that, given as input a graph G and access
to an oracle that decides in a single step instances of CNF-SAT whose size is polynomially
bounded in the size of G, outputs a minimum independent dominating set of G.

Proof. The decision version of Independent Dominating Set, in which one is given
a graph H and an integer k and is asked to decide whether H contains an independent
dominating set of size at most k, is in NP and CNF-SAT is NP-hard, so there is a polynomial-
time many-one reduction from Independent Dominating Set to CNF-SAT. For any
graph H and integer k let R(H, k) denote the instance of CNF-SAT obtained by applying
this reduction to (H, k).

Let n be the number of vertices in G. We first determine the size of a minimum
independent dominating set in G by querying the oracle for CNF-SAT on the instance
R(G, k) for each k ∈ [n]. Observe that the size of R(G, k) is polynomially bounded in the
size of G. Hence, we may input this instance to the oracle. Let k0 be the smallest value of k

for which this query returns yes.
We must then construct an independent dominating set of size k0 in G. We initially set

ℓ := k0, H := G, and S := ∅ and perform the following operation as long as ℓ > 0. For each
vertex u in H, we query the oracle on the instance R(H −N [u], ℓ− 1). If this query returns
yes, then we add u to S and set H := H −N [u] and ℓ := ℓ− 1. Once ℓ = 0, we output S.

We claim that this procedure returns an independent dominating set of size k0 if k0 is
the size of a minimum independent dominating set in G. Let X be a minimum independent
dominating set in G and u ∈ X. Then, X \ {u} is a minimum dominating set of size k0 − 1
in G−N [u] and the claim follows inductively. ◀

▶ Theorem 5. If, for any α ≥ 1, there is an α-approximate polynomial Turing kernelization
for Independent Dominating Set[vc], then there is a polynomial Turing kernelization for
CNF-SAT[n].

Proof. Assume that there is an α-approximate Turing kernelization for Independent
Dominating Set[vc] whose size is bounded by the polynomial p. We will give a polynomial
Turing kernelization for CNF-SAT[n].

Let the input be a formula F in conjunctive normal form over the variables x1, . . . , xn

consisting of the clauses C1, . . . , Cm. First, we compute a graph G on which we then run the
approximate Turing kernelization for Independent Dominating Set. The construction of
the graph G in the following is due to Irving [14].

2 This is not directly the definition given by Hermelin et al. [11], but an equivalent characterization.

IPEC 2023

32:8 Approximate Turing Kernelization and Lower Bounds for Domination Problems

Let s := ⌈α · n⌉ + 1. The graph G = (V, E) contains vertices v1, . . . , vn and v1, . . . , vn,
representing the literals that may occur in F . Additionally, for each j ∈ [m], there are s

vertices w1
j , . . . , ws

j representing the clause Cj . For each i ∈ [n], there is an edge between
vi and vi. There is also an edge between vi and wℓ

j for all ℓ ∈ [s] if xi ∈ Cj and an edge
between vi and wℓ

j for all ℓ ∈ [s] if ¬xi ∈ Cj . The intuition behind this construction is as
follows: In G any independent dominating set may contain at most one of vi and vi for each
i ∈ [n], so any such set represents a partial truth assignment of the variables x1, . . . , xn. If
F is satisfiable, then G contains an independent dominating set of size n. Conversely, if F

is not satisfiable, then any independent dominating set must contain w1
j , . . . , ws

j for some
j ∈ [m], so it must have size at least s > α · n, thus creating a gap of size greater than α

between yes and no instances. Moreover, {vi, vi | i ∈ [n]} is a vertex cover in G, so the vertex
cover number of G is polynomially bounded in n.

The Turing kernelization for CNF-SAT proceeds in the following manner. Given the
formula F , it first computes the graph G and runs the α-approximate Turing kernelization for
Independent Dominating Set on G. Whenever the α-approximate Turing kernelization
queries the oracle on an instance G′, this query is answered using the algorithm given by
Lemma 4. Observe that the size of G′ is polynomially bounded in the vertex cover number of
G, which in turn is polynomially bounded in n, so the oracle queries made by this algorithm
are possible. Let X be the independent dominating set for G output by the approximate
Turing kernelization. Since this Turing kernelization is given access to a 1-approximate oracle,
|X| ≤ α ·OPTIND(G). We claim that F is satisfiable if and only if |X| ≤ α · n. With this
claim, the Turing kernelization can return yes if and only if this condition is met.

If F is satisfiable and φ : {x1, . . . , xn} → {0, 1} is a satisfying truth assignment, then
Y := {vi | φ(xi) = 1} ∪ {vi | φ(xi) = 0} is an independent dominating set in G. Hence,
|X| ≤ α ·OPTIND(G) ≤ α · |Y | = α · n. Conversely, suppose that F is not satisfiable. For
each i ∈ [n], the set X may contain at most one of the vertices vi and vi. Consider the
partial truth assignment with φ(xi) := 1 if vi ∈ X and φ(xi) := 0 if vi ∈ X. Because F

is unsatisfiable there is a clause Cj that is not satisfied by φ. Hence, X must contain the
vertices w1

j , . . . , ws
j . Therefore, |X| ≥ s > α · n. ◀

4 Turing kernelizations for parameter tw + ∆

In this section, we will prove that the domination problems for which we proved lower bounds
when parameterized by the vertex cover number do have (1 + ε)-approximate polynomial
Turing kernels when parameterized by treewidth plus maximum degree. The following lemma
is a generalization of [12, Lemma 11] and can be proved in the same way.

▶ Lemma 6. Let G be a graph with n vertices, T be a nice tree decomposition of G, and
s ≤ n. Then, there is a node t of T such that s ≤ |Vt| ≤ 2s. Moreover, such a node t can be
found in polynomial time.

4.1 Dominating Set
We start with Dominating Set.

▶ Lemma 7. Let G = (V, E) be a graph.
(i) If ∆ is the maximum degree of G, then OPTDS(G) ≥ |V |

∆+1 .
(ii) If A, B, C ⊆ V with A∪C = V , A∩C = B, and there are no edges between A \B and

C \B, then OPTDS(G) ≥ OPTDS(G[A]) + OPTDS(G[C])− 2|B|.

S. Kratsch and P. Kunz 32:9

Algorithm 1 A (1 + ε)-approximate polynomial Turing kernelization for Dominating
Set parameterized by tw + ∆.

input : A graph G = (V, E), nice tree decomposition T of width tw, ε > 0
1 s← 2 · 1+ε

ε · (tw + 1) · (∆ + 1)
2 if |V | ≤ s then
3 Apply the c-approximate oracle to G and output the result.
4 else
5 Use Lemma 6 to find a node t in T such that s ≤ |Vt| ≤ 2s.
6 Apply the c-approximate oracle to G[Vt] and let St be the solution output by the

oracle.
7 Let T ′ be the tree obtained by deleting the subtree rooted at t except for the

node t from T .
8 Apply this algorithm to (G− (Vt \Xt), T ′, ε) and let S′ be the returned solution.
9 Return S′

t ∪ S′.
10 end

Proof.
(i) Every vertex can only dominate its at most ∆ neighbors and itself.
(ii) Let X be a dominating set in G of size OPTDS(G). Then Y := (X ∩ A) ∪ B and

Z := (X ∩ C) ∪B are dominating sets in G[A] and G[C], respectively. Hence,

OPTDS(G) = |X| = |X ∩A|+ |X ∩ C| − |X ∩B|
≥ |Y | − |B \X|+ |Z| − |B|
≥ OPTDS(G[A]) + OPTDS(G[C])− 2|B|. ◀

▶ Theorem 8. For every ε > 0, there is a (1 + ε)-approximate Turing kernelization for
Dominating Set with O(1+ε

ε · tw ·∆) vertices.

Proof. Consider Algorithm 1. This algorithm always returns a dominating set of G. If
the algorithm terminates in line 3, then this is true because the oracle always outputs a
dominating set. If it terminates in line 9, then let v ∈ V be an arbitrary vertex. If v ∈ Vt,
then v is dominated by a vertex in St, because St is a dominating set in G[Vt]. If v ∈ V \ Vt,
then v is dominated by a vertex in S′.

The algorithm runs in polynomial time.
Finally, we must show that the solution output by the algorithm contains at most

c · (1 + ε) ·OPTDS(G) vertices. We prove the claim by induction on the number of recursive
calls. If there is no recursive call, the algorithm terminates in line 3 and the solution contains
at most c ·OPTDS(G) vertices. Otherwise, by induction:

|S′
t ∪ S′| ≤ |S′

t|+ |S′| ≤ c ·OPTDS(G[Vt]) + |S′|
= c · (1 + ε) ·OPTDS(G[Vt])− c · ε ·OPTDS(G[Vt]) + |S′|
†
≤ c · (1 + ε) ·OPTDS(G[Vt])−

c · ε · |Vt|
∆ + 1 + |S′|

≤ c · (1 + ε) ·OPTDS(G[Vt])− 2 · c · (1 + ε) · (tw + 1) + |S′|
≤ c · (1 + ε) ·OPTDS(G[Vt])− 2 · c · (1 + ε) · |Xt|+ |S′|

IPEC 2023

32:10 Approximate Turing Kernelization and Lower Bounds for Domination Problems

≤ c · (1 + ε) ·OPTDS(G[Vt])− 2 · c · (1 + ε) · |Xt|+ c · (1 + ε) ·OPTDS(G− Vt)
= c · (1 + ε) · (OPTDS(G[Vt])− 2|Xt|+ OPTDS(G− Vt))
‡
≤ c · (1 + ε) ·OPTDS(G).

Here, the inequality marked † follows from Lemma 7(i) and the one marked ‡ follows from
Lemma 7(ii) with A = (V \ Vt) ∪Xt, B = Xt, and C = Vt \Xt. ◀

4.2 Capacitated Dominating Set

Next, we consider Capacitated Dominating Set.

▶ Lemma 9. Let G = (V, E, cap) be a capacitated graph with maximum degree ∆ and
A, B, C ⊆ V such that A ∪ C = V , A ∩ C = B, and there are no edges from A \B to C \B.

(i) OPTCAP(G) ≥ OPTCAP(G[A]) + OPTCAP(G[C])− 2|B|.
(ii) Given capacitated dominating sets (X, f) and (Y, g) in G[A] and G[C], respectively,

one can in construct in polynomial time a capacitated dominating set for G of size at
most |X|+ |Y |+ (∆ + 1) · |B|.

Proof.
(i) Let (X, f) with X ⊆ V and f : V \ X → X be a capacitated dominating set of size

OPTCAP(G). Then, (Y, g) with Y := (X ∩A)∪B and g(v) := f(v) for all v ∈ A\Y is a
capacitated dominating set in G[A] and (Z, h) with Z := (X ∩C) ∪B and h(v) := f(v)
for all v ∈ C \ Z is a capacitated dominating set in G[C]. Hence,

OPTCAP(G) = |X| = |X ∩A|+ |X ∩ C| − |X ∩B|
= |Y | − |B \X|+ |Z| − |B| − |X ∩B|
≥ |Y |+ |Z| − 2|B|
≥ OPTCAP(G[A]) + OPTCAP(G[C])− 2|B|.

(ii) We construct the capacitated dominating set (Z, h) for G as follows. Let Z := X ∪
Y ∪ N [B]. Observe that |N [B]| ≤ (∆ + 1)|B|. Define h by setting h(v) := f(v) for
all v ∈ A \ Z and h(v) := g(v) for all v ∈ C \ Z. One can easily verify that this is a
capacitated dominating set. ◀

▶ Theorem 10. For every ε > 0, there is a (1 + ε)-approximate Turing kernelization for
Capacitated Dominating Set with O(1+ε

ε · tw ·∆
2) vertices.

Proof. Consider Algorithm 2. This algorithm always returns a capacitated dominating set
of G. If the algorithm terminates in line 3, then this is true because the oracle always
outputs a capacitated dominating set. If it terminates in line 10, then (St, ft) and (S′, f ′)
are capacitated dominating sets for G[Vt] and G − (Vt \ Xt), respectively. It follows by
Lemma 9(ii), that (S, f) is a capacitated dominating set for G.

The algorithm runs in polynomial time.
Finally, we must show that the solution output by the algorithm contains at most

c · (1 + ε) ·OPTCAP(G) vertices. We prove the claim by induction on the number of recursive
calls. If there is no recursive call, the algorithm terminates in line 3 and the solution contains
at most c ·OPTCAP(G) vertices. Otherwise, by induction:

S. Kratsch and P. Kunz 32:11

Algorithm 2 A (1 + ε)-approximate polynomial Turing kernelization for Capacitated
Dominating Set parameterized by tw + ∆.

input : A graph G = (V, E), nice tree decomposition T of width tw, ε > 0
1 s← 3 · 1+ε

ε · (tw + 1) · (∆ + 1)2

2 if |V | ≤ s then
3 Apply the c-approximate oracle to G and output the result.
4 else
5 Use Lemma 6 to find a node t in T such that s ≤ |Vt| ≤ 2s.
6 Apply the c-approximate oracle to G[Vt] and let (St, ft) be the solution output by

the oracle.
7 Let T ′ be the tree obtained by deleting the subtree rooted at t except for the

node t from T .
8 Apply this algorithm to (G− (Vt \Xt), T ′, ε) and let (S′, f ′) be the returned

solution.
9 Apply Lemma 9(ii) with (X, f) = (S′, f ′), (Y, g) = (St, ft), A = (V \ Vt) ∪Xt,

B = Xt, and C = Vt. Let (S, f) be the resulting solution for G.
10 Return (S, f).
11 end

|S| ≤ |S′
t| + |S′| + (∆ + 1) · |Xt| ≤ c · OPTCAP(G[Vt]) + |S′| + (∆ + 1) · |Xt|

= c · (1 + ε) · OPTCAP(G[Vt]) − c · ε · OPTCAP(G[Vt]) + |S′| + (∆ + 1) · |Xt|
†
≤ c · (1 + ε) · OPTCAP(G[Vt]) − c · ε · |Vt|

∆ + 1 + |S′| + (∆ + 1) · |Xt|

≤ c · (1 + ε) · OPTCAP(G[Vt]) − 3 · c · (1 + ε) · (tw + 1) · (∆ + 1) + |S′| + (∆ + 1) · |Xt|
‡
≤ c · (1 + ε) · OPTCAP(G[Vt]) − 3 · c · (1 + ε) · |Xt| · (∆ + 1) + |S′|

+ c · (1 + ε) · (∆ + 1) · |Xt|
≤ c · (1 + ε) · OPTCAP(G[Vt]) − 2 · c · (1 + ε) · |Xt| · (∆ + 1) + |S′|
≤ c · (1 + ε) · OPTCAP(G[Vt]) − 2 · c · (1 + ε) · |Xt| + c · (1 + ε) · OPTCAP(G − Vt)
= c · (1 + ε) · (OPTCAP(G[Vt]) − 2|Xt| + OPTCAP(G − Vt))
¶
≤ c · (1 + ε) · OPTCAP(G)

The inequality marked † follows from Lemma 7(i) and the fact that OPTCAP(G) ≥ OPTDS(G).
‡ follows from the fact that c · (1 + ε) ≥ 1 and ¶ from Lemma 9(i). ◀

4.3 Independent Dominating Set
The next problem we consider is Independent Dominating Set.

▶ Lemma 11. Let G = (V, E) be a graph with maximum degree ∆ and A, B, C ⊆ V such
that A ∪ C = V , A ∩ C = B, and there are no edges from A \B to C \B.

(i) If X is an independent set in G, then there is an independent dominating set X ′ that
contains X and |X ′ \X| is at most the number of vertices not dominated by X, and
such a set X ′ can be computed in polynomial time.

(ii) OPTIND(G) ≥ OPTIND(G[A]) + OPTIND(G[C])− 2|B|.
(iii) Given independent dominating sets X and Y in G[A] and G[C], respectively, one can

in construct in polynomial time an independent dominating set for G of size at most
|X|+ |Y |+ (∆ + 1) · |B|.

IPEC 2023

32:12 Approximate Turing Kernelization and Lower Bounds for Domination Problems

Algorithm 3 A (1 + ε)-approximate polynomial Turing kernelization for Independent
Dominating Set parameterized by tw + ∆.

input : A graph G = (V, E), nice tree decomposition T of width tw, ε > 0
1 s← |V | ≤ 3 · 1+ε

ε · (tw + 1) · (∆ + 1)2

2 if |V | ≤ s then
3 Apply the c-approximate oracle to G and output the result.
4 else
5 Use Lemma 6 to find a node t in T such that s ≤ |Vt| ≤ 2s.
6 Apply the c-approximate oracle to G[Vt] and let St be the solution output by the

oracle.
7 Let T ′ be the tree obtained by deleting the subtree rooted at t except for the

node t from T .
8 Apply this algorithm to (G− (Vt \Xt), T ′, ε) and let S′ be the returned solution.
9 Apply Lemma 11(iii) with X = S′, Y = St, A = (V \ Vt) ∪Xt, B = Xt, and

C = Vt. Let S be the resulting solution for G.
10 Return S.
11 end

Proof.
(i) If X is a dominating set, then X ′ := X. Otherwise, there is a vertex v ∈ V \N [X]. We

add v to X and continue. Observe that when v is added to X, the latter remains an
independent set.

(ii) Let X be an independent dominating set of size OPTIND(G) in G. Let Y := X ∩ A.
Since Y ⊆ X, it follows that Y is an independent set. Moreover, Y dominates all
vertices in (A \ B) ∪ (X ∩ B), leaving at most B \ X vertices undominated. We
apply (i) to Y and obtain Y ′, an independent dominating set in G[A] of size at most
|X ∩A|+ |B|− |X ∩B|. We apply the same argument to G[C] to obtain an independent
dominating set Z of size at most |X ∩ C|+ |B| − |X ∩B|. It follows that:

OPTIND(G) = |X| = |X ∩A|+ |X ∩ C| − |X ∩B|
= |Y | − |B \X|+ |Z| − |B| − |X ∩B|
≥ |Y |+ |Z| − 2|B|
≥ OPTIND(G[A]) + OPTIND(G[C])− 2|B|.

(iii) Z := (X ∪ Y) \B is an independent set in G. Since X ∪ Y is a dominating set and at
most (∆ + 1) · |B| vertices can be dominated by vertices in B, it follows that Z leaves
at most that many vertices in G undominated. Applying (i) to Z yields an independent
dominating set of size at most |X|+ |Y |+ (∆ + 1) · |B|. ◀

▶ Theorem 12. For every ε > 0, there is a (1 + ε)-approximate Turing kernelization for
Independent Dominating Set with O(1+ε

ε · tw ·∆
2) vertices.

Proof. Consider Algorithm 3. This algorithm always returns an independent dominating set
of G. If the algorithm terminates in line 3, then this is true because the oracle always outputs
an independent dominating set. If it terminates in line 10, then St and S′ are independent
dominating sets for G[Vt] and G− (Vt \Xt), respectively. It follows by Lemma 11(iii), that
S is an independent dominating set for G.

S. Kratsch and P. Kunz 32:13

The algorithm runs in polynomial time.
Finally, we must show that the solution output by the algorithm contains at most

c · (1 + ε) ·OPTIND(G) vertices. We prove the claim by induction on the number of recursive
calls. If there is no recursive call, the algorithm terminates in line 3 and the solution contains
at most c ·OPTIND(G) vertices. Otherwise, by induction:

|S| ≤ |S′
t| + |S′| + (∆ + 1) · |Xt| ≤ c · OPTIND(G[Vt]) + |S′| + (∆ + 1) · |Xt|

= c · (1 + ε) · OPTIND(G[Vt]) − c · ε · OPTIND(G[Vt]) + |S′| + (∆ + 1) · |Xt|
†
≤ c · (1 + ε) · OPTIND(G[Vt]) − c · ε · |Vt|

∆ + 1 + |S′| + (∆ + 1) · |Xt|

≤ c · (1 + ε) · OPTIND(G[Vt]) − 3 · c · (1 + ε) · (tw + 1) · (∆ + 1) + |S′| + (∆ + 1) · |Xt|
‡
≤ c · (1 + ε) · OPTIND(G[Vt]) − 3 · c · (1 + ε) · |Xt| · (∆ + 1)

+ |S′| + c · (1 + ε) · (∆ + 1) · |Xt|
≤ c · (1 + ε) · OPTIND(G[Vt]) − 2 · c · (1 + ε) · |Xt| · (∆ + 1) + |S′|
≤ c · (1 + ε) · OPTIND(G[Vt]) − 2 · c · (1 + ε) · |Xt| + c · (1 + ε) · OPTIND(G − Vt)
= c · (1 + ε) · (OPTIND(G[Vt]) − 2|Xt| + OPTIND(G − Vt))
¶
≤ c · (1 + ε) · OPTIND(G)

The inequality marked with † follows from Lemma 7(i) and the fact that OPTIND(G) ≥
OPTDS(G). ‡ follows from the fact that c · (1 + ε) ≥ 1 and ¶ from Lemma 11(ii). ◀

4.4 Connected Dominating Set
Finally, we consider the problem Connected Dominating Set. If S ⊆ V is a vertex set in
a graph G = (V, E), then let R(G, S) denote the graph obtained by deleting S, introducing
a new vertex z, and connecting z to any vertex in V \ S that has a neighbor in S.

▶ Lemma 13. Let G = (V, E) be a connected graph and A, B, C ⊆ V such that A ∪ C = V ,
A∩C = B, there are no edges from A\B to C \B, and A\B and C \B are both non-empty.

(i) OPTCON(G) ≥ OPTCON(R(G[A], B)) + OPTCON(R(G[C], B))− 2.
(ii) Given connected dominating sets X and Y in R(G[A], B) and R(G[C], B), respectively,

one can in construct in polynomial time a connected dominating set for G of size at
most |X|+ |Y |+ 3|B|.

Proof.
(i) Let X be a connected dominating set in G of size OPTCON(G). We claim that

Y := (X ∩ (A \B)) ∪ {z} and Z := (X ∩ (C \B)) ∪ {z} are connected dominating sets
in R(G[A], B) and R(G[C], B), respectively. We only prove this for Y and R(G[A], B)),
as the case of Z and R(G[C], B) is analogous.
First, we show that Y is a dominating set. Let v be a vertex in R(G[A], B)). If
v ∈ {z, z′}, then v is dominated by z in Y . Otherwise, v ∈ A \B and there is a vertex
w ∈ X that dominates v in G. If w ∈ B, then z is adjacent to v in R(G[A], B)) and v

is dominated by z in that graph. If w ∈ A \B, then w ∈ Y and v is dominated by w in
R(G[A], B)).
We must also show that the subgraph of R(G[A], B) induced by Y is connected. Let
v, v′ ∈ Y . We must show that the subgraph of R(G[A], B) induced by Y contains a
path from v to v′. First we assume that v, v′ ̸= z, z′, implying that v, v′ ∈ X. Hence,
there is a path P from v to v′ in G[X]. If P ⊆ A \ B, then P ⊆ Y and we are done.
Otherwise, P must pass through B. Let w be the first vertex in B on P and w′ the

IPEC 2023

32:14 Approximate Turing Kernelization and Lower Bounds for Domination Problems

final one. Obtain P ′ by replacing the subpath of P between and including w and w′

with z. Then, P ′ is a path from v to v′ in the subgraph of R(G[A], B) induced by Y .
Finally, suppose that v′ = z. If v = z, there is nothing to show, so we assume that
v ≠ z and, therefore, v ∈ X ∩ (A \B). Because C \B is non-empty, X must contain a
vertex w ∈ B. Because G[X] is connected, G[X] must also contain a path P from v to
w. Let w′ be the first vertex in B on the path P (possibly, w′ = w). We obtain P ′, a
path from v to z in the subgraph of R(G[A], B) induced by Y , by taking the subpath of
P from v to w′ and replacing w′ with z. This proves that Y is a connected dominating
set in R(G[A], B). Then,

OPTCON(G) = |X| ≥ |X ∩ (A \B)|+ |X ∩ (C \B)|
≥ |Y | − 1 + |Z| − 1
≥ OPTCON(R(G[A], B)) + OPTCON(R(G[C], B))− 2.

(ii) Let Z ′ := X ∪ Y ∪B. Every connected component of G[Z ′] contains a vertex in B, so
this graph as at most |B| connected components. We obtain a connected dominating
set Z in G as follows. We start with Z := Z ′. Choose two connected components C1, C2
in G[Z]. Because G is connected, it contains a path P starting in v1 ∈ C1 and ending
in v2 ∈ C2. This path must contain a vertex that is not adjacent to any vertex in C1,
because if every vertex in P \C1 were adjacent to a vertex in C1, then v2 is adjacent to
a vertex in C1, implying that C1 and C2 are not distinct connected components in G[Z]
Let w be the first vertex on P that is not adjacent to a vertex in C1. Because Z is a
dominating set in G, there must be a vertex x ∈ Z \ C1 such that w ∈ N [x] (note that,
possible w = x). Adding w and x merges C1 with the connected component of G[Z]
containing x. This process must be repeated at most |B| times to obtain a connected
dominating set. In each iteration at most two vertices are added to Z. Since Z initially
contains |X|+ |Z|+ |B| vertices, we obtain a connected dominating set containing at
most |X|+ |Z|+ 3|B| vertices. ◀

▶ Theorem 14. For every ε > 0, there is a (1 + ε)-approximate Turing kernelization for
Connected Dominating Set with O(1+ε

ε · tw ·∆) vertices.

Proof. Consider Algorithm 4. This algorithm always returns a connected dominating set of
G. If the algorithm terminates in line 3, then this is true because the oracle always outputs a
connected dominating set. If it terminates in line 10, then St and S′ are connected dominating
sets for R(G[Vt], Xt) and R(G− (Vt \Xt)), respectively. It follows by Lemma 13(ii), that S

is a connected dominating set for G.
The algorithm runs in polynomial time.
Finally, we must show that the solution output by the algorithm contains at most

c · (1 + ε) ·OPTCON(G) vertices. We prove the claim by induction on the number of recursive
calls. If there is no recursive call, the algorithm terminates in line 3 and the solution contains
at most c ·OPTCAP(G) vertices. Otherwise, by induction:

|S| ≤ |S′
t|+ |S′|+ 3|Xt| ≤ c ·OPTCON(R(G[Vt], Xt)) + |S′|+ 3|Xt|

= c · (1 + ε) ·OPTCON(R(G[Vt], Xt))− c · ε ·OPTCON(R(G[Vt], Xt)) + |S′|+ 3|Xt|
†
≤ c · (1 + ε) ·OPTCON(R(G[Vt], Xt))−

c · ε · (|Vt| −Xt + 1)
∆ + 1 + |S′|+ 3|Xt|

= c · (1 + ε) ·OPTCON(R(G[Vt], Xt))−
c · ε · |Vt|

∆ + 1 + |S′|+ c · ε · (|Xt|+ 1)
∆ + 1 + 3|Xt|

S. Kratsch and P. Kunz 32:15

Algorithm 4 A (1 + ε)-approximate polynomial Turing kernelization for Connected
Dominating Set parameterized by tw + ∆.

input : A graph G = (V, E), nice tree decomposition T of width tw, ε > 0
1 s← 4 · 1+ε

ε (∆ + 1)(tw + 1) + (2∆+2)(1+ε)
ε

2 if |V | ≤ s then
3 Apply the c-approximate oracle to G and output the result.
4 else
5 Use Lemma 6 to find a node t in T such that s ≤ |Vt| ≤ 2s.
6 Apply the c-approximate oracle to R(G[Vt], Xt) and let St be the solution output

by the oracle..
7 Let T ′ be the tree obtained by deleting the subtree rooted at t except for the

node t from T .
8 Apply this algorithm to (R(G− (Vt \Xt), Xt), T ′, ε) and let S′ be the returned

solution.
9 Apply Lemma 13(ii) with X = S′, Y = St, A = (V \ Vt) ∪Xt, B = Xt, and

C = Vt. Let S be the resulting solution for G.
10 Return S.
11 end

≤ c · (1 + ε) ·OPTCON(G[Vt])− 4 · c · (1 + ε) · (tw + 2)− 2c(1 + ε) + |S′|

+ c · ε · (|Xt|+ 1)
∆ + 1 + 3|Xt|

‡
≤ c · (1 + ε) ·OPTCON(G[Vt])− 4 · c · (1 + ε) · (|Xt|+ 1)− 2c(1 + ε) + |S′|

+ c · (1 + ε) · (4|Xt|+ 1)
≤ c · (1 + ε) ·OPTCON(G[Vt])− 2 · c(1 + ε) + |S′|
≤ c · (1 + ε) ·OPTCON(G[Vt])− 2c(1 + ε) + c · (1 + ε) ·OPTCON(G− Vt)
= c · (1 + ε) · (OPTCON(G[Vt])− 2 + OPTCON(G− Vt))
¶
≤ c · (1 + ε) ·OPTCON(G)

The inequality marked with † follows from Lemma 7(ii) and the fact that OPTCON(G) ≥
OPTDS(G). ‡ follows from the fact that c · (1 + ε) ≥ 1 and ¶ from Lemma 13(i). ◀

5 Conclusion

We conclude by pointing out two open problems concerning approximate Turing kernelization:
Does Connected Feedback Vertex Set parameterized by treewidth admit an ap-
proximate polynomial Turing kernelization? The approach employed by Hols et al. [12]
for Connected Vertex Cover and here for Connected Dominating Set cannot be
used for Connected Feedback Vertex Set, because the ratio between the size of a
minimum connected feedback vertex and the size of a minimum feedback vertex set is
unbounded.
The biggest open question in Turing kernelization is whether or not there are polynomial
Turing kernelizations for the problems Longest Path and Longest Cycle param-
eterized by the solution size [11]. There has been some progress on this problem by
considering the restriction to certain graph classes [15, 16]. Developing an approximate
Turing kernelization may be another way of achieving progress in this regard.

IPEC 2023

32:16 Approximate Turing Kernelization and Lower Bounds for Domination Problems

References
1 Daniel Binkele-Raible, Henning Fernau, Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh,

and Yngve Villanger. Kernel(s) for problems with no kernel: On out-trees with many leaves.
ACM Transactions on Algorithms, 8(4), 2012. doi:10.1145/2344422.2344428.

2 M. Chlebík and J. Chlebíková. Approximation hardness of dominating set problems in
bounded degree graphs. Information and Computation, 206(11):1264–1275, 2008. doi:
10.1016/j.ic.2008.07.003.

3 Vasek Chvátal. A greedy heuristic for the set-covering problem. Mathematics of Operations
Research, 4(3):233–235, 1979. doi:10.1287/moor.4.3.233.

4 Michael Dom, Daniel Lokshtanov, and Saket Saurabh. Kernelization lower bounds through
colors and IDs. ACM Transactions on Algorithms, 11(2):1–20, 2014. doi:10.1145/2650261.

5 Uriel Feige, MohammadTaghi Hajiaghayi, and James R. Lee. Improved approximation
algorithms for minimum weight vertex separators. SIAM Journal on Computing, 38(2):629–
657, 2008. doi:10.1137/05064299X.

6 Michael R. Fellows, Ariel Kulik, Frances Rosamond, and Hadas Shachnai. Parameterized
approximation via fidelity preserving transformations. Journal of Computer and System
Sciences, 93:30–40, 2018. doi:10.1016/j.jcss.2017.11.001.

7 Fedor V Fomin, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi. Kernelization:
Theory of Parameterized Preprocessing. Cambridge University Press, 2019. doi:10.1017/
9781107415157.

8 Sudipto Guha and Samir Khuller. Approximation algorithms for connected dominating sets.
Algorithmica, 20:374–387, 1998. doi:10.1007/PL00009201.

9 Magnús M. Halldórsson. Approximating the minimum maximal independence number. Infor-
mation Processing Letters, 46(4):169–172, 1993. doi:10.1016/0020-0190(93)90022-2.

10 Pinar Heggernes, Pim van ’t Hof, Bart M.P. Jansen, Stefan Kratsch, and Yngve Villanger.
Parameterized complexity of vertex deletion into perfect graph classes. Theoretical Computer
Science, 511:172–180, 2013. doi:10.1016/j.tcs.2012.03.013.

11 Danny Hermelin, Stefan Kratsch, Karolina Sołtys, Magnus Wahlström, and Xi Wu. A
completeness theory for polynomial (Turing) kernelization. Algorithmica, 71(3):702–730, 2015.
doi:10.1007/s00453-014-9910-8.

12 Eva-Maria C. Hols, Stefan Kratsch, and Astrid Pieterse. Approximate Turing kernelization for
problems parameterized by treewidth. In Proceedings of the 28th Annual European Symposium
on Algorithms (ESA), pages 60:1–60:23, 2020. doi:10.4230/LIPIcs.ESA.2020.60.

13 Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-SAT. Journal of
Computer and System Sciences, 62(2):367–375, 2001. doi:10.1006/jcss.2000.1727.

14 Robert W. Irving. On approximating the minimum independent dominating set. Information
Processing Letters, 37(4):197–200, 1991. doi:10.1016/0020-0190(91)90188-N.

15 Bart M. P. Jansen. Turing kernelization for finding long paths and cycles in restricted graph
classes. Journal of Computer and System Sciences, 85:18–37, 2017. doi:10.1016/j.jcss.
2016.10.008.

16 Bart M. P. Jansen, Marcin Pilipczuk, and Marcin Wrochna. Turing kernelization for finding
long paths in graphs excluding a topological minor. In Proceedings of the 12th International
Symposium on Parameterized and Exact Computation (IPEC), pages 23:1–23:13, 2018. doi:
10.4230/LIPIcs.IPEC.2017.23.

17 Philip Klein and R. Ravi. A nearly best-possible approximation algorithm for node-weighted
Steiner trees. Journal of Algorithms, 19(1):104–115, 1995. doi:10.1006/jagm.1995.1029.

18 Ton Kloks. Treewidth: Computations and Approximations. Springer, 1994. doi:10.1007/
BFb0045375.

19 Daniel Lokshtanov. Wheel-free deletion is W[2]-hard. In Proceedings of the 3rd International
Symposium on Parameterized and Exact Computation (IPEC), pages 141–147, 2008. doi:
10.1007/978-3-540-79723-4_14.

https://doi.org/10.1145/2344422.2344428
https://doi.org/10.1016/j.ic.2008.07.003
https://doi.org/10.1016/j.ic.2008.07.003
https://doi.org/10.1287/moor.4.3.233
https://doi.org/10.1145/2650261
https://doi.org/10.1137/05064299X
https://doi.org/10.1016/j.jcss.2017.11.001
https://doi.org/10.1017/9781107415157
https://doi.org/10.1017/9781107415157
https://doi.org/10.1007/PL00009201
https://doi.org/10.1016/0020-0190(93)90022-2
https://doi.org/10.1016/j.tcs.2012.03.013
https://doi.org/10.1007/s00453-014-9910-8
https://doi.org/10.4230/LIPIcs.ESA.2020.60
https://doi.org/10.1006/jcss.2000.1727
https://doi.org/10.1016/0020-0190(91)90188-N
https://doi.org/10.1016/j.jcss.2016.10.008
https://doi.org/10.1016/j.jcss.2016.10.008
https://doi.org/10.4230/LIPIcs.IPEC.2017.23
https://doi.org/10.4230/LIPIcs.IPEC.2017.23
https://doi.org/10.1006/jagm.1995.1029
https://doi.org/10.1007/BFb0045375
https://doi.org/10.1007/BFb0045375
https://doi.org/10.1007/978-3-540-79723-4_14
https://doi.org/10.1007/978-3-540-79723-4_14

S. Kratsch and P. Kunz 32:17

20 Daniel Lokshtanov, Fahad Panolan, M. S. Ramanujan, and Saket Saurabh. Lossy kernelization.
CoRR, abs/1604.04111, 2016. Full version of [21]. doi:10.48550/arXiv.1604.04111.

21 Daniel Lokshtanov, Fahad Panolan, M. S. Ramanujan, and Saket Saurabh. Lossy kernelization.
In Proceedings of the 49th Annual ACM Symposium on Theory of Computing (STOC 2017),
pages 224–237, 2017. doi:10.1145/3055399.3055456.

22 Jelani Nelson. A note on set cover inapproximability independent of universe size. Electronic
Colloquium on Computational Complexity, TR07-105, 2007. URL: https://eccc.weizmann.
ac.il/eccc-reports/2007/TR07-105/index.html.

23 Laurence A. Wolsey. An analysis of the greedy algorithm for the submodular set covering
problem. Combinatorica, 2(4):385–393, 1982. doi:10.1007/BF02579435.

IPEC 2023

https://doi.org/10.48550/arXiv.1604.04111
https://doi.org/10.1145/3055399.3055456
https://eccc.weizmann.ac.il/eccc-reports/2007/TR07-105/index.html
https://eccc.weizmann.ac.il/eccc-reports/2007/TR07-105/index.html
https://doi.org/10.1007/BF02579435

A Parameterized Approximation Scheme for the
Geometric Knapsack Problem with Wide Items
Mathieu Mari
Institute of Informatics, University of Warsaw, Poland
IDEAS-NCBR, Warsaw, Poland

Timothé Picavet
ENS de Lyon, France
Aalto University, Finland

Michał Pilipczuk #

Institute of Informatics, University of Warsaw, Poland

Abstract
We study a natural geometric variant of the classic Knapsack problem called 2D-Knapsack: we
are given a set of axis-parallel rectangles and a rectangular bounding box, and the goal is to pack as
many of these rectangles inside the box without overlap. Naturally, this problem is NP-complete.
Recently, Grandoni et al. [ESA’19] showed that it is also W[1]-hard when parameterized by the
size k of the sought packing, and they presented a parameterized approximation scheme (PAS)
for the variant where we are allowed to rotate the rectangles by 90° before packing them into the
box. Obtaining a PAS for the original 2D-Knapsack problem, without rotation, appears to be a
challenging open question.

In this work, we make progress towards this goal by showing a PAS under the following
assumptions:

both the box and all the input rectangles have integral, polynomially bounded sidelengths;
every input rectangle is wide – its width is greater than its height; and
the aspect ratio of the box is bounded by a constant.

Our approximation scheme relies on a mix of various parameterized and approximation techniques,
including color coding, rounding, and searching for a structured near-optimum packing using dynamic
programming.

2012 ACM Subject Classification Theory of computation → Fixed parameter tractability; Theory
of computation → Packing and covering problems

Keywords and phrases Parameterized complexity, Approximation scheme, Geometric knapsack,
Color coding, Dynamic programming, Computational geometry

Digital Object Identifier 10.4230/LIPIcs.IPEC.2023.33

Funding Mathieu Mari: Partially supported by the ERC CoG grant TUgbOAT no 772346.
Timothé Picavet: This work was supported in part by the Research Council of Finland, Grant
333837.
Michał Pilipczuk: This work is a part of project BOBR that has received funding from the Euro-
pean Research Council (ERC) under the European Union’s Horizon 2020 research and innovation
programme (grant agreement No. 948057).

1 Introduction

We study a natural geometric variant of the classic Knapsack problem, called 2D Knapsack
and defined as follows. On input, we are given a rectangular box B and a set R of items,
each being a rectangle. The task is to place as many items from R as possible in B so that
the placed items do not overlap. Note that this problem generalizes classic Knapsack: given

© Mathieu Mari, Timothé Picavet, and Michał Pilipczuk;
licensed under Creative Commons License CC-BY 4.0

18th International Symposium on Parameterized and Exact Computation (IPEC 2023).
Editors: Neeldhara Misra and Magnus Wahlström; Article No. 33; pp. 33:1–33:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-7129-0127
mailto:michal.pilipczuk@mimuw.edu.pl
https://orcid.org/0000-0001-7891-1988
https://doi.org/10.4230/LIPIcs.IPEC.2023.33
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

33:2 Parameterized Approximation Scheme for Geometric Knapsack with Wide Items

an instance of Knapsack with items of sizes a1, . . . , an and a knapsack of size K, we can
create an instance of 2D Knapsack with B being the K × 1 rectangle and R consisting of
ai × 1 rectangles, for all i ∈ {1, . . . , n}.

As in the case of Knapsack, there are two natural variants of the problem depending
on how the input is encoded. In the binary variant, both B and the rectangles of R have
integral sidelengths encoded in binary, hence these sidelengths can be exponential in the
total input size. In the unary variant the difference is that the sidelengths are encoded in
unary, or equivalently, one assumes that all the sidelengths are bounded polynomially in the
total input size. In this work we focus on the unary variant.

Again as in the case Knapsack, adopting the unary variant helps tremendously for the
design of algorithms for 2D Knapsack, for instance due to allowing to perform dynamic
programming over the dimensions of the box. While the problem remains NP-hard even
in the unary variant [10], Adamaszek and Wiese [1] gave a QPTAS for the problem in this
setting. The best approximation factor known to be achievable in polynomial time in the
unary variant is 4/3 + ε due to Galvez et al. [6]; earlier, a (2 + ε)-approximation was given
in [8] and a (558/325 + ε)-approximation was given in [5]. It is believed that the problem
should admit a PTAS, but this question remains widely open to this day.

We remark that the abovementioned works also study the weighted variant of the problem.
In this work we only consider the unweighted version, hence an interested reader is invited
to the relevant discussion in the references.

Recently, Grandoni et al. [7] proposed to approach the question about the existence of
a PTAS for 2D Knapsack by adding parameterization by the solution size to the picture.
That is, they presented a parameterized approximation scheme (PAS) with running time of
the form kO(k/ε) · nO(1/ε3) that either finds a packing of size at least (1− ε)k or correctly
concludes that there is no packing of size k. However, this result applies only to the variant
of the problem where each input rectangle can be rotated by 90◦ before packing it into the
box, and the question about the existence of a PAS for 2D Knapsack without rotation was
explicitly left open by Grandoni et al. This is in contrast with the other mentioned works on
2D Knapsack which all apply both to the variant with rotation and without rotation (for
the variant with rotation, Galvez et al. [6] reported a better approximation ratio of 5/4 + ε).

We note that the PAS of Grandoni et al. actually works in the binary variant of the
problem. Also, reliance on approximation is probably necessary: as proved in [7], the exact
version of the problem is W[1]-hard when parameterized by k.

Our contribution. In this work we approach – though not completely solve – the open
problem left by Grandoni et al. [7] by giving a parameterized approximation scheme with
running time of the form f(k, ε, δ) ·ng(ε) for 2D Knapsack under the following assumptions:

we consider the unary variant of the problem, thus the dimensions of the box are bounded
polynomially in n;
we assume that every item is wide: its width is not smaller than its height; and
we assume that the aspect ratio (ratio between the dimensions, always greater or equal to
1) of the box is at most δ.

See Theorem 1 for a formal statement of our result and an explicit formula for the running
time. Note that in the context of the variant with rotation, the second assumption can
be always achieved by rotating every input rectangle so that it is wide, while the third
assumption for δ = 1 can be obtained by scaling both the box and all rectangles on input.

Let us elaborate on our approach and how it is different from the approach of Grandoni
et al. [7]. The approach of [7] can be summarized as follows.

M. Mari, T. Picavet, and M. Pilipczuk 33:3

Consider a hypothetical packing S of size k.
Freeing a strip: Remove a small fraction of S and shift the items slightly in order to free
up a horizontal strip of height N/kb at the bottom of the box, where N is the sidelength
of the box and b = O(1/ε) is an integer. This strip can now accommodate all thin items:
those of height at most N/kb+1.
Resource augmentation: After the previous step, we may assume that all items are large –
both dimensions are at least N/kb+1 – and there is still a considerable strip free at the
bottom of the box. Now, one can round the heights of items up to the nearest multiplicity
of, say, N/kb+2 and argue that even the rounded items can be packed, due to the free
strip at the bottom of the box. After rounding the rectangles have at most kO(1) different
heights, so keeping k narrowest rectangles of each possible height gives us a polynomial
in k number of candidate rectangles that can be reasonably used in the packing. This
easily leads to a PAS.

The possibility of rotating rectangles is crucially used in the second step, freeing a strip.
Without this assumption, thin rectangles come in two different flavors: there are wide
rectangles, of very small height and possibly large width, and symmetric tall rectangles.
The strategy of freeing a strip presented in [7] can be applied also in the setting without
rotation, but then it results in either freeing a horizontal strip at the bottom of the box, or a
vertical strip at the left side of the box; there is no control over which strip will be freed.
Consequently, only one type of thin rectangles can be disposed of as a result of freeing the
strip, and there is no control over which one it is.

In the setting of Grandoni et al., our assumptions on the problem essentially mean
that we allow the existence of wide rectangles, but not of the tall ones. The application of
the approach of Grandoni et al. could result in freeing a vertical strip, in which the wide
rectangles cannot fit. Consequently, we do not see how to fix the approach presented in [7]
to solve our case where only wide rectangles are present and no rotation is allowed. We
therefore abandon this approach and propose a completely new one.

Instead, we prove a different result about the existence of a well-structured near-optimum
solution. Our structural lemma (Lemma 9) says that at the cost of sacrificing a small fraction
of rectangles, the considered packing can be divided into regions B1, B2, . . . , Bm so that:

Every region Bi is delimited by the left side of the box, the right side of the box, and two
x-monotone axis-parallel polylines connecting the left and the right side. Moreover, each
of the polylines defining the division B1, B2, . . . , Bm consists of O(1/ε) segments.
Every region Bi is either light – contains only O(1/ε2) rectangles from the packing – or
roundable – rectangles within Bi could be packed inside Bi even after rounding them to
the nearest multiple of (roughly) N1/k2, where N1 is the width of the box.

Having such a structural lemma, a near-optimum solution can be constructed using a bottom-
up dynamic programming that guesses the regions Bi one by one. For each region Bi we
consider two cases: either Bi is light and a solution within it can be guessed (essentially) by
brute-force, or Bi is roundable and using the same trick as in [7], one can restrict attention
to kO(1) many different candidates for rectangles that will be packed into Bi.

There is a technical caveat in the plan presented above. Namely, in dynamic programming
we need to make sure that we do not reuse the same rectangle from R in two or more different
regions Bi. We resolve this issue using color-coding. Namely, by applying color-coding
upfront we may assume that all the rectangles in R are colored with k colors, and we
look for a packing consisting of rectangles of pairwise different colors. Then our dynamic
programming keeps track of the subset of colors that have already been used, which adds
only another dimension of size 2k to the dynamic programming table.

IPEC 2023

33:4 Parameterized Approximation Scheme for Geometric Knapsack with Wide Items

2 Preliminaries

Basic terminology. For a positive integer N , we write [N] = {1, 2, . . . , N}. For a pair of
reals (x, y), we call x the vertical coordinate and y the horizontal coordinate.

A rectangle is a pair of positive integers R = (w, h) ∈ Z2
+, and a placed rectangle is a set

of the form Q = [x, x + w]× [y, y + h] ⊆ R2, where R = (w, h) is a rectangle and (x, y) ∈ Z2

is the bottom-left corner of Q; we will also say that such Q is a placement of R. In the
notation, we will sometimes treat placed rectangles as their non-placed counterparts; the
meaning of this will be always clear from the context.

Both for placed and non-placed rectangles, w and h are called the width (length on the
horizontal dimension) and the height (length on the vertical dimension), respectively, and
may be denoted by w(P) and h(P), where P is the (placed) rectangle in question. The
interior of a placed rectangle Q = [x, x+w]× [y, y +h] is the set I(Q) = (x, x+w)× (y, y +h).
Two placed rectangles overlap if their interiors intersect.

A zone is simply a subset of R2. For a zone Z and a set of placed rectangles R, by
R[Z] = {R ∈ R | R ⊆ Z} we denote the set of all rectangles from R that are entirely
contained in Z. For a zone Z and a set of non-placed rectangles R, a packing of R in Z is a
set R′ = {R′ : R ∈ R} consisting of pairwise non-overlapping placed rectangles contained in
Z, where R′ is a placement of R for each R ∈ R.

The problem and the main result. In the (parameterized variant of) 2D Knapsack
problem, we are given a rectangular zone B = [0, N1]× [0, N2] ⊆ R2 called the box, where
N1, N2 are positive integers, a set R of rectangles called items, and an integer k. The question
is whether there exists a packing of some k items from R in the box B.

In the context of an instance (B,R, k) of 2D Knapsack, the size of the box B is
∥B∥ = N1 + N2, and the aspect ratio of B is δ(B) = max

(
N1
N2

, N2
N1

)
⩾ 1. Further, an item

R ∈ R is wide if w(R) ⩾ h(R). Note that in the variant of the problem where rotations by
90◦ are allowed, one may always rotate the items so that they are wide. When the instance
(B,R, k) is clear from the context, by a packing we mean a packing of a subset of R in B.

With these definitions in place, we can state our main result.

▶ Theorem 1. There exists an algorithm that given an accuracy parameter ε > 0 and an
instance (B,R, k) of 2D Knapsack, where R consists only of wide items, either returns a
packing of size at least (1− ε)k or correctly concludes that there is no packing of size k. The
running time of the algorithm is δ(B)O(k) · (k + 1/ε)O(k+1/ε2) · (|R|∥B∥)O(1/ε2).

Polylines and containers. In our algorithm for 2D Knapsack we will decompose the box
into zones delimited by borders of low complexity, allowing those borders to be efficiently
guessed. Formally, each border will be a polyline defined as follows.

▶ Definition 2 (Axis-parallel polyline). An axis-parallel polyline P is a union of horizontal
or vertical segments S1, S2, . . . , Sm such that for 1 ⩽ i ⩽ m− 1, the end of segment Si is the
beginning of segment Si+1. Then m is called the complexity of P.

For brevity, axis-parallel polylines will be just called polylines. We will only work with
monotone polylines, meaning that all horizontal coordinates of points on Sj will not be
smaller than the horizontal coordinates of the points on Si, whenever i < j. A polyline P

crosses a placed rectangle R if P intersects the interior of R.
Next we introduce containers. We will use them to capture the idea of decomposing the

box into zones.

M. Mari, T. Picavet, and M. Pilipczuk 33:5

▶ Definition 3 (Container). A container C is a union of horizontal or vertical segments
S1, S2, . . . , Sm such that:

for 1 ⩽ i ⩽ m− 1, the end of segment Si is the beginning of segment Si+1, and
the end of segment Sm is the beginning of segment S1.

Furthermore, we require that C is weakly-simple (as introduced in [9, 3, 2]) in the following
sense: if S1 is the unit circle and γ : S1 → R2 is a parameterization of C, then for every
ε > 0 there exists an injective continuous γε : S1 → R2 such that maxv∈S1 ∥γ(v)− γε(v)∥ ⩽ ε

for some norm ∥ · ∥.
The inside of the container, denoted I(C), is the bounded open region delimited by the

segments. Moreover, the complexity of the container is defined as m.

Note that the inside of a container is not necessarily connected. For clarification, see Figure 1.

3 Exact algorithm

In this section, we give an exact algorithm for the problem, which will be later used as
a subroutine in the proof of Theorem 1. The point here is that we allow the box to be
delimited by an arbitrary container, and we measure the running time in the complexity of
the container. Formally, we will prove the following statement.

▶ Lemma 4. Given a set of rectangles R and a container C of complexity m, one can
determine whether there is a packing of the rectangles of R inside C in time (m + |R|)O(|R|).

The main idea of our algorithm is to push the packing bottom-left, as explained in the
next definition.

▶ Definition 5. A packing R inside a container C is said to be pushed bottom-left if for every
rectangle R ∈ R, its left (resp. bottom) side intersects either a vertical (resp. horizontal)
segment of the container, or a right (resp. top) side of another rectangle R′ ∈ R.

It is not hard to see that if a packing is pushed bottom-left, then there must be a rectangle
in the packing whose left and bottom sides rest on the perimeter of the container. This is
formally proved in the following statement. (Proofs of statements marked with (♠) can be
found in Appendix B.)

▶ Proposition 6 (♠). Suppose R is a non-empty packing of rectangles inside a container
C that is pushed bottom-left. Then there exists a rectangle R ∈ R such that its left side
intersects a vertical segment of the container and its bottom side intersects an horizontal
segment of the container.

With Proposition 6 established, we can conclude our goal using a simple branching strategy.

Proof of Lemma 4. We prove a stronger statement where we allow C to be the union of
several disjoint containers, and we let m be the sum of their complexities.

Suppose there is a packing S of the rectangles of R into C. We can assume without loss
of generality that S is pushed bottom-left within every container of C. Now by Proposition 6,
there exists a rectangle R such that its left (resp. bottom) side intersects a vertical (resp.
horizontal) segment of a container in C.

So here is a recursive procedure to solve the problem. First, guess (by trying all
possibilities) the rectangle R satisfying the condition above; there are n different possibilities
for R, where n = |R|. Second, guess which pair of segments of the containers intersect the
left and the bottom side of R; there are at most m2 possibilities. Place rectangle R according

IPEC 2023

33:6 Parameterized Approximation Scheme for Geometric Knapsack with Wide Items

to the latter guess and verify that it is indeed fully contained in C. Then, “carve out” the
rectangle, i.e., define a new union of containers C′ so that the I(C′) = I(C) \R. It is easy to
see that the total complexity of the new union of containers C′ is at most m + 6 and it can
be computed in time polynomial in m. Then, recurse on R′ and C′ where R′ = R \ {R}.

It is clear that the algorithm is correct. To analyze its running time, note that the
recursion tree has depth bounded by n and branching bounded by n(m + 6n)2, hence it
consists of (m + n)O(n) nodes. The internal computation at each node take time polynomial
in n and m, so the total running time of (m + n)O(n) follows. ◀

4 Giving structure to the packing

In this section we prove structural results that can be summarized as follows: at the cost of
sacrificing a small fraction of the packing, one can apply resource augmentation – round the
packing – so that it gains a certain structure. Once this structure is achieved, we will argue
later that structured packings can be efficiently computed using dynamic programming.

Throughout this section we fix an instance (B,R, k) of 2D Knapsack, where B =
[0, N1]× [0, N2] and R consists only of wide rectangles: w(R) ⩾ h(R) for all R ∈ R.

To perform resource augmentation, we need the following notion of rounding a rectangle.
Informally, a rounded rectangle is the original rectangle with its width rounded up to the
nearest multiple of ℓ′ = ℓ2/N1; here is a formal definition.

▶ Definition 7 (Rounded rectangles). Let R = (w, h) be a rectangle and ℓ > 0 be a positive
real. Then the ℓ-rounded rectangle roundℓ(R) is the rectangle (ℓ′ ⌈w/ℓ′⌉ , h) where ℓ′ = ℓ2/N1.
For a set R of rectangles, we define similarly roundℓ(R) = {roundℓ(R) : R ∈ R}.

As mentioned, the key idea behind our algorithm is to look for a specifically structured
packing. This structure is quantified formally in the following definition. Broadly speaking,
we look for a packing that is partitioned into regions of low complexity and such that the
rectangles in each region behave well.

▶ Definition 8 (Structured packing). Fix any ε, ℓ > 0. Consider a set of pairwise non-
intersecting monotone polylines P1, P2, . . . , Pm contained in the box B, where each Pi starts
at the left side of B and finishes at the right side of B, and the polylines P1, . . . , Pm are
naturally numbered from bottom to top. We define the partition of the box B into regions
B0, B1, . . . , Bm so that each region Bi is delimited by the polylines Pi and Pi+1 and the left
and the right side of B (here we define for convenience P0 to be the bottom side of B and
Pm+1 to be the top of B).

We say that a packing of rectangles Q in B is an (ε, ℓ)-structured packing if every
rectangle in Q has width at least 2ℓ and there exist polylines P1, P2, . . . , Pm as above, each of
complexity at most 4/ε + 1, such that no rectangle of Q is crossed by any polyline Pi, i ∈ [m],
and for each i,0 ⩽ i ⩽ m at least one of the following conditions holds:
|Q[Bi]| ⩽ 2/ε2, or
roundℓ(Q[Bi]) can be packed into Bi.

The rest of the section is dedicated to proving the following structural lemma (recall that
the instance (B,R, k) is fixed in the context):

▶ Lemma 9 (structural lemma). Suppose ℓ > 0 is a positive real such that there is a packing
of size k consisting of rectangles of width at least 2ℓ each. Then for every ε > 0, there exists
also an (ε, ℓ)-structured packing of size at least (1− 3ε)k.

M. Mari, T. Picavet, and M. Pilipczuk 33:7

This section is divided into 3 parts. In the first subsection we study the assumed packing
of size k and define an associated conflict graph, which turns out to be planar. In the second
subsection, we show that if there exists a packing of rectangles in a specific zone on the
box, then at the cost of removing a few rectangles, there exists a packing of the rounded
rectangles into a slightly bigger rounded version of the zone. In the last section, we define
the specific polylines that will divide the zones and finish the proof of the Lemma 9.

By assumption, there exists a packing S in B consisting of k rectangles from R, each of
width at least 2ℓ. Fix S for the remainder of this section.

4.1 Conflict graph
For the definition of the conflict graph, we need the following notion of horizontal visibility.

▶ Definition 10. Two different placed rectangles R, R′ ∈ S see each other if there is an
horizontal segment s intersecting the interior of the right side of R and the interior of the left
side of R′ (or vice versa) such that s does not intersect any other rectangle of S. Notice that
s may consist of a single point, if R and R′ are intersecting. For convenience, we extend this
definition to the case where R is the left side of B or R′ is the right side of B. For instance
with the left side of B we associate the placed rectangle Rleft = [−1, 0]× [0, N2] and say that
R and the left side of B see each other if Rleft and R see each other; similarly for the right
side of B. The left side of B and the right side of B do not see each other.

Note two rectangles intersecting only at their common corner do not see each other.

▶ Definition 11 (Conflict graph). For a packing S, we define the conflict graph of S to be the
graph G defined as follows: the vertex set contains all the rectangles of S, and in addition
there are two special vertices s and t identified with the left side and the right side of B,
respectively. Two vertices of G are adjacent if and only if they see each other.

It is easy to see that the conflict graph is planar; see Figure 2. We formalize this intuition
in the following lemma.

▶ Lemma 12 (♠). For any packing Q, the conflict graph of Q is planar.

4.2 Packing rounded rectangles
Next, we analyze a packing within some zone Z ⊆ R2, with the goal of understanding when
and how the rectangles of this packing can be rounded to obtain a rounded packing of
substantial size. We fix some positive real ℓ > 0 for the rest of this subsection.

First, we need some definitions about expanding zones.

▶ Definition 13. Let Z ⊆ R2. We define:
the negatively shifted zone ←−Z⟨ℓ⟩ =

(⋃
(x,y)∈Z [x− ℓ, x]× {y}

)
∩ [0, N1 − ℓ]× [0, N2],

the positively shifted zone −→Z⟨ℓ⟩ =
(⋃

(x,y)∈Z [x, x + ℓ]× {y}
)
∩ [0, N1]× [0, N2],

and the rounded zone ←→Z ⟨ℓ⟩ =
(⋃

(x,y)∈Z [x− ℓ, x + ℓ]× {y}
)
∩ [0, N1]× [0, N2].

Note that if Z ′ =←−Z⟨ℓ⟩ then←→Z ⟨ℓ⟩ =
−→
Z ′⟨ℓ⟩, and that the first two definitions are not symmetric.

Our main goal in this subsection is to prove the following lemma. It intuitively says that
at the cost of removing an st-separator in the conflict graph, one can find a packing of the
rounded rectangles into a slightly extended zone. Here, an st-separator is a set of vertices
(rectangles) that hits every s-t path.

IPEC 2023

33:8 Parameterized Approximation Scheme for Geometric Knapsack with Wide Items

▶ Lemma 14. Let Q be a packing in a zone Z ⊆ B such that every rectangle of Q has width
at least 2ℓ. Further, let C be an st-separator in the conflict graph of Q. Then roundℓ(Q \ C)
can be packed inside the zone ←→Z ⟨ℓ⟩.

The first step towards the proof of Lemma 14 is to repack Q into the negatively shifted
zone Z at the cost of deleting a few rectangles.

▶ Proposition 15 (♠). Let Q be a packing in a zone Z ⊆ B such that every rectangle of
Q has width at least 2ℓ. Further, let C be an st-separator in the conflict graph of Q. Then
Q \ C can be packed inside the zone ←−Z⟨ℓ⟩.

For an illustration of the proof, see Figure 3.
Now that we have emptied a strip to the right of the zone, we can do some resource

augmentation in order to replace the original rectangles by their rounded versions, while still
being able to pack them inside the rounded zone.

▶ Proposition 16 (♠). Let Q be a packing in a zone Z ⊆ [0, N1− ℓ]× [0, N2] such that every
rectangle of Q has width at least 2ℓ. Then roundℓ(Q) can be packed inside the zone −→Z⟨ℓ⟩.

For clarification, see Figure 4. We may now combine Proposition 15 and Proposition 16 to
achieve our goal.

Proof of Lemma 14. Apply Proposition 15 and Proposition 16 to get that roundℓ(Q \ C)
can be packed in

−→
Z ′⟨ℓ⟩, where Z ′ =←−Z⟨ℓ⟩. As

−→
Z ′⟨ℓ⟩ =←→Z ⟨ℓ⟩, the proof is finished. ◀

4.3 Proof of the Structural Lemma
Finally, in this subsection we define the polylines that we are interested in and prove some
results about zones and polylines to finish the proof of Lemma 9. The main idea is to
construct some well-chosen polylines by looking at the rectangles on short s-t paths. These
polylines are then used to delimit zones in which we can find a separator of bounded size,
and apply the ideas of the previous subsections.

Recall that we are working with a packing S of size k consisting of rectangles of width
at least 2ℓ each. Let G be the conflict graph of S. For every R ∈ S, by vR we denote the
vertex of G corresponding to R. First, we need to understand how s-t paths in G can be
mapped to polylines.

▶ Definition 17 (Bottom polyline of a path). Consider an s-t path P = (s, vR1 , vR2 , . . . , vRm
, t)

in G, and suppose that for each i ∈ {0, 1, . . . , m}, that Ri and Ri+1 see each other is witnessed
by the segment si = [x(Ri) + w(Ri), x(Ri+1)]× {yi} (where R0 = s and Rm+1 = t). Then
define the bottom polyline of P as the polyline P formed by the union of the following
segments:

[x(Ri), x(Ri) + w(Ri)]× {y(Ri)} for each i ∈ [m],
{x(Ri)} × [min{y(Ri), yi−1}, max{y(Ri), yi−1}] for each i ∈ [m],
{x(Ri) + w(Ri)} × [min{y(Ri), yi}, max{y(Ri), yi}] for each i ∈ [m], and
si for each i ∈ {0, 1, . . . , m}.

Less formally, P is the union of the segments si joining the rectangles of the path, the bottom
sides of the rectangles, and parts of the left/right sides of the rectangles to join the segments
to the bottom sides.

Similarly, we define the notion of the top polyline of an s-t path in G. When defining at
the same time the top and the bottom polyline of the same path, we always use the same
segments si to define how rectangles Ri and Ri+1 should be linked. Finally, we will also
need the middle polyline.

M. Mari, T. Picavet, and M. Pilipczuk 33:9

▶ Definition 18 (Middle polyline of a path). Consider an s-t path P = (s, vR1 , vR2 , . . . , vRm , t)
in G, and suppose that for each i ∈ {0, 1, . . . , m}, that Ri and Ri+1 see each other is witnessed
by the segment si = [x(Ri) + w(Ri), x(Ri+1)]× {yi} (where R0 = s and Rm+1 = t). Then
define the middle polyline of P as the polyline P formed by the union of the following
segments:
{x(Ri)+w(Ri)/2}×[min{y(Ri)+h(Ri)/2, yi}, max{y(Ri)+h(Ri)/2, yi}] for each i ∈ [m],
{x(Ri) + w(Ri)/2} × [min{y(Ri) + h(Ri)/2, yi+1}, max{y(Ri) + h(Ri)/2, yi+1}] for each
i ∈ [m], and
[max(x(Ri)+w(Ri)/2, 0), min(x(Ri+1)+w(Ri+1)/2, N2)]×{yi} for each i ∈ {0, 1, . . . , m}.

Less formally, P is the union of:
a vertical segment from the center of each Ri to the vertical position of si,
a vertical segment from the center of each Ri to the vertical position of si+1,
all segments si extended so that they reach the horizontal coordinates of the centers of
the corresponding rectangles.

For a visual representation, see Figure 5. The following is clear.

▶ Proposition 19. The top, bottom and middle polylines of a path P have complexity at
most 4|P |+ 1, where |P | denotes the number of vertices on P .

Moreover, the middle polyline is defined so that we have space to the left and the right
when performing resource augmentation. This will be made clear in the following definitions
and lemmas; see Figure 6.

▶ Proposition 20 (♠). Suppose P is an s-t path in the conflict graph G of the packing S.
Let P be the middle polyline of P and let Q be the packing obtained from S by removing all
the rectangles participating in P . Then P does not cross ←−Q⟨ℓ⟩. The same goes for −→Q⟨ℓ⟩, and
therefore also for ←→Q⟨ℓ⟩.

Next, we need the following graph-theoretic observation.

▶ Proposition 21. Let G be a graph containing vertices s and t. Suppose every s-t path in
G contains at least 1/ε internal vertices. Then G contains an st-separator of size at most
ε(|V (G)| − 2).

Proof. As every s-t path in G contains at least 1/ε internal vertices, one cannot find more
than ε(|V (G)| − 2) internally disjoint s-t paths in G. By Menger’s theorem, there is an
st-separator of size at most ε(|V (G)| − 2). ◀

We can now wrap up the section by proving the Structural Lemma.

Proof of Lemma 9. Based on the assumed packing S, we construct another packing S ′ and
then we prove that it is structured and has size at least (1 − 3ε)k. Let G be the conflict
graph of S. Let F be an inclusion-wise maximal family F of internally disjoint s-t paths in
G, each with at most 1/ε internal vertices. As the paths from F are internally disjoint, we
can naturally enumerate them from bottom to top: F = {P1, P2, . . . , Pm}. For convenience,
let P0 = Pm+1 = ∅.

Because the conflict graph is planar by Lemma 12, by the Jordan Curve theorem, for
each i ∈ {0, 1, . . . , m} there is a set Vi of vertices of G that lies inside the cycle Pi ∪ Pi+1.
By construction of the conflict graph, Vi is exactly the set of rectangles lying in the area Zi

delimited by the box, the top polyline of Pi and the bottom polyline of Pi+1. For each Vi we
construct a separating polyline Pi as follows:

IPEC 2023

33:10 Parameterized Approximation Scheme for Geometric Knapsack with Wide Items

If |Vi−1| ⩽ 1/ε2 and |Vi| ⩽ 1/ε2, select the bottom polyline of Pi as the separating polyline.
Otherwise, select the middle polyline of Pi as the separating polyline.

All the polylines created are of complexity at most 4/ε + 1 by Proposition 19. They partition
the box into regions B0, B1, . . . , Bm+1 ⊆ B, from the bottom to the top. Note that Bi ⊇ Zi

for each relevant i.
Notice that in G[Vi ∪ {s, t}] there is no s-t path of length at most 1/ε, because F is

maximal. Let Ci be the separator given by Proposition 21 for the graph G[Vi ∪ {s, t}]. Then
we have |Ci| ⩽ ε|Vi|.

We can now specify which rectangles we want to include in S ′. We define S ′ to be the
union of sets V ′

i for i ∈ {0, 1, . . . , m}, where

V ′
i =

Vi ∪ V (Pi) \ {s, t} if |Vi−1| ⩽ 1/ε2 and |Vi| ⩽ 1/ε2,

Vi if |Vi−1| > 1/ε2 and |Vi| ⩽ 1/ε2,

Vi \ Ci otherwise.

We now argue that for each i ∈ {0, 1, . . . , m}, either |V ′
i | ⩽ 2/ε2 and V ′

i ⊆ S[Bi], or
roundℓ(V ′

i) can be packed in Bi.
First, observe that if |Vi| ⩽ 1/ε2, then |V ′

i | ⩽ |Vi ∪ V (Pi) \ {s, t}| ⩽ 1/ε2 + 1/ε ⩽ 2/ε2.
Further, if |Vi−1| > 1/ε2 then V ′

i = Vi and trivially S[Bi] ⊇ S[Zi] = Vi, and if |Vi−1| ⩽ 1/ε2

then Pi is the bottom polyline of Pi and we have S[Bi] ⊇ Vi ∪ V (Pi) \ {s, t} = V ′
i as well.

Second, consider the case when |Vi| > 1/ε2. Notice that then Pi is the middle polyline of
Pi and Pi+1 is the middle polyline of Pi+1, and V ′

i = Vi \Ci. Because Vi can be packed inside
Zi, we can use Lemma 14 on Vi and Zi to pack roundℓ(V ′

i) into
←−→
(Zi)⟨ℓ⟩. By Proposition 20,

we know that
←−→
(Zi)⟨ℓ⟩ ⊆ Bi, hence we can pack roundℓ(V ′

i) into Bi.
We conclude that indeed, S ′ is an (ε, ℓ)-structured packing, as witnessed by the polylines

Pi for i ∈ [m]. What is left to show is that |S ′| ⩾ (1 − 3ε)k. Call an index i ∈ [m] heavy
if |Vi| > 1/ε2. Observe that S ′ ⊇ S \

⋃
i : heavy(Ci ∪ V (Pi) ∪ V (Pi+1)), hence it suffices

to prove that
∣∣∣⋃i : heavy(Ci ∪ V (Pi) ∪ V (Pi+1)) \ {s, t}

∣∣∣ ⩽ 3εk. Fix a heavy index i. First,
observe that |(V (Pi) ∪ V (Pi+1)) \ {s, t}| ⩽ 2/ε ⩽ 2ε|Vi|, as each path Pi has at most 1/ε

internal vertices. Second, by construction we have |Ci| ⩽ ε|Vi|. Summing those inequalities
throughout all heavy i yields that∣∣∣∣∣∣

⋃
i : heavy

(Ci ∪ V (Pi) ∪ V (Pi+1)) \ {s, t}

∣∣∣∣∣∣ ⩽
∑

i : heavy
3ε|Vi| ⩽ 3εk,

as required. ◀

5 The algorithm

In this section we finalize the proof of Theorem 1. The section is divided into two parts. The
first subsection describes an algorithm working under the assumption that the input set R
only contains rectangles of width at least 2ℓ, for some ℓ > 0. In the second subsection, we
show how to obtain the assumption that R only contains rectangles of width at least 2ℓ for
ℓ = N1/(δ(B)k2), at the expense of deleting an ε fraction of the rectangles in the packing.
Therefore, we get a full algorithm as a corollary.

Throughout this section, fix an instance (B,R, k) of 2D Knapsack, where B = [0, N1]×
[0, N2] and R consists of wide items.

M. Mari, T. Picavet, and M. Pilipczuk 33:11

5.1 The algorithm for rectangles of substantial width
The dynamic programming algorithm will gradually guess a good partition of the box into
regions (that we know exists by Lemma 9), and then solve the problem in each region
independently. In order to avoid repeating the use of the same rectangles in different regions,
we use color-coding.

▶ Definition 22 (Good coloring). Given a set of rectangles R and a subset S ⊆ R of size k,
a function col : R → [k] is a good coloring for S if rectangles of S have pairwise different
colors under col.

We cannot directly guess a good coloring of the rectangles, as a priori there are too many
candidates. We instead use the following classic result of Naor et al. [11], which says that
there is only an fpt-sized family of candidates for a good coloring.

▶ Proposition 23 (Naor et al. [11]). For every set R and positive integer k, there exists a
family F of colorings of R with color set [k] such that |F| ⩽ ekkO(log k) log |R| and for every
S ⊆ R of size k, in F there is a good coloring for S. Moreover, F can be computed in time
ekkO(log k)|R| log |R|.

Next, we observe that once the number of different widths in the instance has been
bounded, one can restrict attention to a small set of candidate rectangles. For this, notice
the following: if we have a colored packing (a packing of colored rectangles) of size k that
contains a rectangle R, and in the packing we did not use another rectangle R′ of the same
color and width as R, but satisfying h(R′) ⩽ h(R), then we can replace R with R′ and we
will still have a colored packing. This observation leads to defining the following operation.

▶ Definition 24 (reducek(R, col)). Suppose col : R → [k] is a coloring of a set of rectangles
R with color set [k]. Then for a positive integer w and color i ∈ [k], let Rw,i be the set of k

smallest-height rectangles among the rectangles of {R ∈ R | w(R) = w, col(R) = i}. In case
|{R ∈ R | w(R) = w, col(R) = i}| < k, we set Rw,i = {R ∈ R | w(R) = w, col(R) = i}. We
define reducek(R) =

⋃
w∈w(R),i∈[k]Rw,i.

Notice that reducek(R) contains at most k2|w(R)| elements: for every possible width and
every possible color, the at most k rectangles of this specific width and of smallest height.
Also, we have the following very simple observation.

▶ Lemma 25 (♠). Suppose R is a set of rectangles and col : R → [k] is a coloring function
such that k′ ⩽ k rectangles from R with pairwise different colors can be packed in a zone
Z ⊆ R2. Then one can also pack in Z a set of k′ rectangles from reducek(R, col) with pairwise
different colors.

Next, we use the following definitions to guess the polylines in a bottom to top order.
For two monotone polylines P,P ′ that start at the left side of B and finish at the right side
of B, we say that P ′ is below P (denoted by P ′ ⩽ P), if for every x, y, y′, (x, y) ∈ P and
(x, y′) ∈ P ′ implies y′ ⩽ y. We write P ′ < P if P ′ ⩽ P and P ′ ̸= P. Given two polylines
P ′ < P, we want to be able to solve the problem in the following sub-region:

▶ Definition 26 (container(P ′,P)). For polylines P ′ < P, container(P ′,P) is the container
(c.f. Definition 3) delimited by the box B, P ′ at the bottom and P at the top.

Notice that if P has complexity m and P ′ has complexity m′ then container(P ′,P) has
complexity m + m′ + 2.

Now we give the algorithm in the case when all rectangles in R have substantial width.
This algorithm is encapsulated in the following lemma.

IPEC 2023

33:12 Parameterized Approximation Scheme for Geometric Knapsack with Wide Items

▶ Lemma 27. There is an algorithm that given ε > 0 and an instance (B,R, k) of 2D
Knapsack in which all items are wide and have width at least N1/α, either returns a packing
of size at least (1− ε)k or correctly concludes that there is no packing of size k. The running
time is (k + 1/ε)O(k+1/ε) · αO(k) · (|R|∥B∥)O(1/ε2).

Proof. Let ℓ = N1/(2α); thus every rectangle on input has width at least 2ℓ. For clarity of
presentation we allow the algorithm to output a packing of size at least (1− 3ε)k; then the
result as stated in the lemma can be obtained by rescaling ε by factor 3.

We first explain the algorithm. Compute F as given by Proposition 23. Then, guess
(by trying all choices) a coloring col ∈ F . The idea is now to use dynamic programming to
compute a maximum-size structured packing for the colored instance. More precisely, for
every monotone polyline P of complexity at most 4/ε + 1 connecting the left and the right
side of B, and for every C ⊆ [k], we shall compute the value dp[P, C] defined as follows:
dp[P, C] is a maximum-size packing that contains only rectangles with colors in C, is colored
injectively by col, and is placed entirely below P with the added constraint that it is a subset
of some (ε, ℓ)-structured packing.

To compute the value dp[P, C] for given P and C, we iterate over all polylines P ′ of
complexity at most 4/ε + 1 that are below P. Let B′ = container(P ′,P) be the container
between P and P ′. Iterate over all C ′ ⊆ C; this is the set of colors guessed to be used in B′.
Let R′ = reducek(roundℓ(R), col) be the reduced set of rounded rectangles, where colors are
naturally inherited from R during rounding. Compute the following packings:
S1 is the largest packing in B′ consisting of at most 2/ε2 rectangles with pairwise different
colors from C ′. This packing can be computed in time |R|O(1/ε2) · (1/ε)O(1/ε2) by first
guessing the set of rectangles participating in it, and then checking whether the packing
can be realized using the algorithm of Lemma 4.
S2 is the largest packing in B′ consisting of at most k rectangles from R′ with pairwise
different colors from C ′. Again, this packing can be computed in time |R′|O(k)·(k+1/ε)O(k)

by first guessing the set of rectangles participating in it, and then checking whether the
packing can be realized using the algorithm of Lemma 4.

Iterate over S ∈ {S1,S2}, and keep as dp[P, C] the set dp[P ′, C \ C ′] ∪ S of maximum size
over all the sets iterated on. Finally, as the solution to the overall problem, return dp[P, [k]]
where P is the top side of B, provided this packing has size at least (1− 3ε)k. Otherwise,
return that there is no packing of size k.

This concludes the description of the algorithm. We are left with (i) analyzing its running
time and (ii) arguing that in case there is a packing of size at least k, the algorithm will
output a packing of size at least (1− 3ε)k.

Let us start with assertion (ii). For this, suppose there exists a packing S of size k.
Since all rectangles of S have width at least 2ℓ, by Lemma 9 there exists an (ε, ℓ)-structured
packing S ′ of size at least (1− 3ε)k. Further, by the properties of F , there exists col ∈ F
such that col is injective on S ′. Now, let P1,P2, . . . ,Pm be the polylines witnessing the
structuredness of S ′, and let ∅ = C0 ⊆ C1 ⊆ C2 ⊆ . . . ⊆ Cm ⊆ Cm+1 = [k] be such that Ci

is the sets of colors used by the rectangles of S ′ lying below Pi, where P0 and Pm+1 are the
bottom and the top side of B, respectively. A straightforward inductive argument using the
structuredness of S ′ and Lemma 25 shows now that for i = 0, 1, . . . , m + 1, the cell dp[Pi, Ci]
will contain a packing of size at least as large as the number of rectangles of S ′ lying below Pi.
Hence, the algorithm will return a packing of size at least |S ′| ⩾ (1− 3ε)k, as promised.

We are left with analyzing the running time. The number of different colorings col ∈ F is
|F| ⩽ 2O(k) · log |R|. Further, observe that the number of different polylines considered by the
algorithm is bounded by ∥B∥O(1/ε) and there are 2k different subsets of colors. Hence, the

M. Mari, T. Picavet, and M. Pilipczuk 33:13

total number of cells dp[P, C] considered by the algorithm is bounded by 2k · ∥B∥O(1/ε). As
argued, the time spent on computing a single value of dp[P, C] is bounded by 2k · ∥B∥O(1/ε)

(the number of choices for P ′ and C ′) times

|R|O(1/ε2) · (1/ε)O(1/ε2) + |R′|O(k) · (k + 1/ε)O(k).

Observe now that the rectangles of roundℓ(R) have at most O(N1/ℓ′) different widths, where
ℓ′ = ℓ2/N1. Since ℓ = N1/2α, we conclude that the total number of different widths of the
rectangles of roundℓ(R) is bounded by

O(N1/ℓ′) = O(N2
1 /ℓ2) ⩽ O(α2).

Therefore,

|R′| = |reducek(roundℓ(R, col))| ⩽ O(α2k2).

Putting everything together, we infer that the running time of the algorithm is bounded by

2O(k) · log |R| · 2O(k) · ∥B∥O(1/ε) ·
(
|R|O(1/ε2) · (1/ε)O(1/ε2) + (α2k2)O(k) · (k + 1/ε)O(k)

)
⩽(k + 1/ε)O(k+1/ε2) · αO(k) · (|R|∥B∥)O(1/ε2),

as promised. ◀

5.2 Full algorithm
We now present the complete algorithm, which essentially boils down to making a reduction
to the case when all rectangles on input have width at least 2ℓ, where ℓ = N1/(δ(B)k2).
In the next lemma, we explain how to perform this reduction at the cost of removing εk

rectangles from the packing.

▶ Lemma 28. Let ε > 0. Suppose there is an algorithm A that, given a 2D Knapsack
instance (B = [0, N1] × [0, N2],R, p) in which all items are wide and have width at least
N1/(δq2) and the aspect ratio of B is δ, returns a packing of size at least (1− ε)p or attests
that there is no packing of size p in time f(p, q, ε, δ, ∥B∥, |R|). Then there is an algorithm
B that, given a 2D Knapsack instance (B = [0, N1]× [0, N2],R, k) in which all items are
wide and the aspect ratio of B is δ, returns a packing of size (1− 2ε)k or attests that there is
no packing of size k in time f(k, k, ε, δ, ∥B∥, |R|) + (1/ε + |R|)O(1/ε).

Proof. We present the algorithm B. Without loss of generality, we can assume k > 1/ε, as
otherwise the number of rectangles in the sought packing is at most 1/ε and we can solve the
problem in time (1/ε + |R|)O(1/ε) by applying Lemma 4 to every k-tuple of rectangles in R.

Let W be the set of rectangles of R that have width at most N1/(δk2), and let w = |W|.
Note that since all rectangles are wide, the rectangles of W also have height bounded by
N1/(δk2). If w ⩾ k, then we can immediately construct a packing of size k by stacking any
k rectangles of W vertically: they fit in the vertical dimension, because k ·N1/(δk2) ⩽ N2.
Otherwise, let k′ = k − w. Run A on a modified instance where all rectangles of W are
removed, with parameter k′. If there is no packing of size k′ for this instance, then clearly
there is no packing of size k for the original instance, and this conclusion may be reported
by the algorithm. Otherwise, B returns a packing S ′ of size at least (1− ε)k′ consisting of
rectangles from R \W. If S ′ consists only of rectangles of height at most N1/(δk), then
we can again immediately obtain a packing of size k by stacking the rectangles of S ′ ∪W
vertically; again they fit in the vertical dimension, because k · N1/(δk) ⩽ N2. Otherwise,

IPEC 2023

33:14 Parameterized Approximation Scheme for Geometric Knapsack with Wide Items

we modify S ′ by removing any single rectangle R present in S ′ whose height (and therefore
also width) is at least N1/(δk), and putting all the rectangles of W into the space freed
by the removal of R, by simply stacking them horizontally. They fit horizontally because
w ·N1/(δk2) ⩽ k ·N1/(δk2) = N1/(δk) ⩽ w(R), and their heights are not greater than the
height of R. The obtained modified packing S ′ is returned by the algorithm.

It is clear that the algorithm outputs a packing and that when it concludes that there is
no packing of size k, this conclusion is correct. What remains to show is that the packing
eventually output by the algorithm has always size at least (1 − 2ε)k. And indeed, the
algorithm always is able to pack all rectangles packed in S ′, except for possibly one rectangle
removed to accommodate W, and all rectangles of W. Hence, the packing output by the
algorithm has always size at least

(1− ε)k′ − 1 + w = (1− ε)k − (1− ε)w − 1 + w ⩾ (1− ε)k − 1 > (1− 2ε)k,

because εk > 1 due to k > 1/ε. ◀

Now, Theorem 1 follows immediately by combining the algorithm of Lemma 27 with the
reduction of Lemma 28. Observe that the running time is δ(B)O(k) · (k + 1/ε)O(k+1/ε2) ·
(|R|∥B∥)O(1/ε2), as promised.

6 Conclusion

The correctness of our entire algorithm heavily relies on the assumption that every input
rectangle is wide. Indeed, this assumption is used in the greedy arguments in the proof of
Lemma 28, which allows us to reduce to the case when every rectangle has a substantial
width: at least N1/poly(δ(B), k). This assumption is again heavily used later on: in the proof
of Lemma 9 it ensures that upon removing the rectangles corresponding to an st-separator in
the conflict graph, there is enough space available for vertical shifting. This eventually leads
to rounding the rectangles so that there are only poly(δ(B), k) different possible widths, and
thus effectively bounding the number of candidate rectangles to poly(δ(B), k). So while the
original problem – the existence of a parameterized approximation scheme for 2D Knapsack
– remains open, we hope that the new structural techniques proposed in this work might give
insight leading to its resolution.

References
1 Anna Adamaszek and Andreas Wiese. A quasi-PTAS for the two-dimensional geometric knap-

sack problem. In Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2015, pages 1491–1505. SIAM, 2015. doi:10.1137/1.9781611973730.98.

2 Hsien-Chih Chang, Jeff Erickson, and Chao Xu. Detecting weakly simple polygons. In
Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2015, pages 1655–1670. SIAM, 2015. doi:10.1137/1.9781611973730.110.

3 Erik D Demaine and Joseph O’Rourke. Geometric folding algorithms: linkages, origami,
polyhedra. Cambridge university press, 2007.

4 Manfredo P Do Carmo. Differential geometry of curves and surfaces: revised and updated
second edition. Courier Dover Publications, 2016.

5 Waldo Gálvez, Fabrizio Grandoni, Salvatore Ingala, Sandy Heydrich, Arindam Khan, and
Andreas Wiese. Approximating geometric knapsack via L-packings. ACM Trans. Algorithms,
17(4), 2021. doi:10.1145/3473713.

https://doi.org/10.1137/1.9781611973730.98
https://doi.org/10.1137/1.9781611973730.110
https://doi.org/10.1145/3473713

M. Mari, T. Picavet, and M. Pilipczuk 33:15

6 Waldo Gálvez, Fabrizio Grandoni, Arindam Khan, Diego Ramírez-Romero, and Andreas Wiese.
Improved approximation algorithms for 2-Dimensional Knapsack: Packing into multiple L-
shapes, spirals, and more. In 37th International Symposium on Computational Geometry,
SoCG 2021, volume 189 of LIPIcs, pages 39:1–39:17. Schloss Dagstuhl — Leibniz-Zentrum für
Informatik, 2021. doi:10.4230/LIPIcs.SoCG.2021.39.

7 Fabrizio Grandoni, Stefan Kratsch, and Andreas Wiese. Parameterized approximation schemes
for Independent Set of Rectangles and Geometric Knapsack. In 27th Annual European
Symposium on Algorithms, ESA 2019, volume 144 of LIPIcs, pages 53:1–53:16. Schloss
Dagstuhl — Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPIcs.ESA.2019.53.

8 Klaus Jansen and Guochuan Zhang. On rectangle packing: maximizing benefits. In Proceedings
of the Fifteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2004, pages
204–213. SIAM, 2004. URL: http://dl.acm.org/citation.cfm?id=982792.982822.

9 Yoshiyuki Kusakari, Hitoshi Suzuki, and Takao Nishizeki. A shortest pair of paths on the
plane with obstacles and crossing areas. International Journal of Computational Geometry &
Applications, 9(02):151–170, 1999.

10 Joseph Y.-T. Leung, Tommy W. Tam, C. S. Wong, Gilbert H. Young, and Francis Y. L.
Chin. Packing squares into a square. J. Parallel Distributed Comput., 10(3):271–275, 1990.
doi:10.1016/0743-7315(90)90019-L.

11 Moni Naor, Leonard J Schulman, and Aravind Srinivasan. Splitters and near-optimal deran-
domization. In Proceedings of IEEE 36th Annual Foundations of Computer Science, pages
182–191. IEEE, 1995.

A Figures

1
2

3
4

5

6

7
8

9
10

11

12

1
2

3

4
5

6

7
8

9
10

11

12

Figure 1 Left panel: an example of a container where the order of the segments is given by the
numbers, and some injective candidate γε in light blue. Right panel: an example of a non-container
(the paths cross in the middle), and some candidate γε in light red, that is not injective.

1

2 3
4
5
6

7

8 9

10

11

12 13 14

15
16s

t

Figure 2 Example of a conflict graph.

IPEC 2023

https://doi.org/10.4230/LIPIcs.SoCG.2021.39
https://doi.org/10.4230/LIPIcs.ESA.2019.53
http://dl.acm.org/citation.cfm?id=982792.982822
https://doi.org/10.1016/0743-7315(90)90019-L

33:16 Parameterized Approximation Scheme for Geometric Knapsack with Wide Items

Z

1

2 3
4
5
6

7

8 9

10

11

12 13 14

15
16s

t

1

2 3
4
5
6

7

8 9

10

11

12 13 14

15
16s

t

←−
Z⟨ℓ⟩

←−
Z⟨ℓ⟩

Figure 3 Illustration of the proof of Proposition 15. From top to bottom: First, a blue conflict
graph of the gray packing. The packing is entirely in Z, delimited by the blue border. Secondly, we
remove the orange separator C and want to pack the leftover rectangles inside the red region ←−Z⟨ℓ⟩.
The set of rectangles referred to as Y in the proof is in light blue, and X is left gray. Finally, we
pack in ←−Z⟨ℓ⟩ by shifting the rectangles at the right of the separator by ℓ to the left.

M. Mari, T. Picavet, and M. Pilipczuk 33:17

Z
R

−→
Z⟨ℓ⟩

R×

×(1 + ℓ/N1)

−→
Z⟨ℓ⟩

roundℓ(R)

Figure 4 Illustration of the proof of Proposition 16. From top to bottom: First, Q is packed
into Z (blue zone). Then, the rectangles in Q are scaled horizontally by a factor λ = 1 + ℓ/N1. We
argue in the proof that these scaled-up rectangles are packed in −→Z⟨ℓ⟩ (red zone). Finally, we replace
each scaled-up rectangle by its rounded version, which has smaller width.

top

R1

middle

bottom

R2

R3

R4

R5

Figure 5 In orange, the top polyline of the st-path formed by R1, R2, R3, R4 and R5. In blue, its
bottom polyline, and in green, its middle polyline. The dashed lines split their respective rectangles
into 4 equal parts.

IPEC 2023

33:18 Parameterized Approximation Scheme for Geometric Knapsack with Wide Items

s

←−
Q⟨ℓ⟩

Q

P t

P

Figure 6 In green, the middle polyline P of the blue st-path P constituted of the gray rectangles.
In light orange, Q, and in orange, ←−Q⟨ℓ⟩. Notice that the green polyline does not cross any orange
rectangles.

B Omitted proofs

Proof of Proposition 6. Create a directed graph D with vertex set R, where there is an
edge (R, R′) if the bottom side of R intersects the top side of R′ on more than a single point,
or if the left side of R intersects the right side of R′ on more than a single point. Let us show
that D has no directed cycle, so for contradiction suppose R1, . . . , Rℓ is a directed cycle in
D. In what follows, all indices behave cyclically modulo ℓ.

For each i ∈ [ℓ], select an arbitrary point pi in the intersection of Ri−1 and Ri that is
neither a corner of Ri−1 nor a corner of Ri. Further, observe that one can construct a curve
γi : [0, di]→ Ri, where di is the length of γi, such that:

γi is smooth (formally, C1) and monotone in both directions,
∥γ′

i(t)∥2 = 1 for all t ∈ [0, di],
γi(0) = pi and γi(di) = pi+1, and
the tangent of γi at pi and pi−1 is perpendicular to the respective side and faces the inside
(resp. outside) of Ri. For instance if pi is on the top side of Ri, we require γ′

i(0) = (0,−1),
and if pi+1 is on the left side of Ri, we require γ′

i(di) = (−1, 0).
An example of such a construction is shown below.

a

b

a

b

a
b a

b

Concatenating all the curves γi in order yields a smooth closed curve γ : S →
⋃ℓ

i=1 Ri

without self-crossings such that ∥γ′(t)∥2 = 1 for all t ∈ S, where S is the circle of length∑ℓ
i=1 di. Here is the crucial observation: by the way we oriented the arcs in D, the vector

γ′(t) is never in the positive orthant (i.e. γ′(t) has not both coordinates positive), for any
t ∈ S.

M. Mari, T. Picavet, and M. Pilipczuk 33:19

γ

However by Theorem 2 of [4, section 5-7, page 402], a smooth closed curve in the plane
without self-crossings has rotation index ±1, where the rotation index of a curve is the number
of times its tangent vector turns around the origin. This means that by the intermediate
value theorem, for every α ∈]0, 2π[, there exists a point of the curve where the tangent
vector is at angle α with the x-axis, and hence belongs to the positive orthant. This is a
contradiction.

We conclude that D is acyclic, hence it has a sink R – a rectangle with out-degree 0.
Therefore, R is the rectangle we want: its left side intersects a vertical segment of container
and its bottom side intersects a horizontal segment of the container. ◀

Proof of Lemma 12. Let G be the conflict graph of Q. For a rectangle R ∈ Q, we denote
its associated vertex in G by vR. We define a planar embedding of G as follows. We define
the position of a vertex vR to be the center c(R) = (x(R) + w(R)/2, y(R) + h(R)/2) of the
corresponding rectangle. If there is an edge e = vRvR′ , choose y ∈ R such that the horizontal
segment s = [x(R) + w(R), x(R′)]× {y} witnesses that R and R′ that see each other, where
we assume w.l.o.g. that x(R) + w(R) ⩽ x(R′). We define the embedding γe of e as the union
of 3 internally disjoint segments:

s1
e = [c(R), (x(R) + w(R), y))],

s2
e = s,

s3
e = [(x(R′), y), c(R′)].

It is straightforward to check that all the curves γe e ∈ E(G) are pairwise internally disjoint,
hence they constitute a planar embedding of G. ◀

Proof of Proposition 15. Let G be the conflict graph of Q. Since C is an st-separator in
G, we may partition Q into three disjoint sets X, C, and Y so that vertices of X are not
connected to t, vertices of Y are not connected to s, and no vertex of X is adjacent to any
vertex of Y . Now, construct a new set of placed rectangles Q′ by removing all rectangles of
C and shifting every rectangle of Y by ℓ to the left. It remains to prove that Q′ is a packing
and that all rectangles of Q′ are entirely contained in ←−Z⟨ℓ⟩.

For the second assertion, we need to prove that (i) no R′ ∈ Q′ crosses the left side of the
box, i.e., no R′ ∈ Q′ is such that x(R′) < 0, and (ii) no rectangle R′ ∈ Q′ contains a point
with horizontal coordinate larger than N2 − ℓ, i.e. x(R′) + w(R′) > N2 − ℓ. To prove (i),
suppose for the sake of a contradiction that there exists R′ ∈ Y such that x(R′) < 0. We
must have R′ ∈ Y because R′ was shifted, and hence R′ cannot see the left side of the box.
Let R ∈ Q be R′ before shifting. We know that x(R) < ℓ, therefore as every rectangle has
width at least ℓ, there is no rectangle in Q that would be placed between R and the left
side of the box. Therefore, the R must see the left side of the box, which is a contradiction
because R ∈ Y . A symmetric argument involving the right side of the box proves (ii).

IPEC 2023

33:20 Parameterized Approximation Scheme for Geometric Knapsack with Wide Items

For the first assertion, we need to prove that no two rectangles in Q′ overlap. The only
case when this could a priori happen is if R1 ∈ X and R2 ∈ Y are overlapping after the
shift. This would mean that x(R1) + w(R1) < x(R2)− ℓ. However, again in Q there cannot
be any rectangle lying in between R1 and R2, because every rectangle has width at least ℓ.
Therefore, the R1 and R2 must see each other, which is a contradiction because R1 ∈ X

and R2 ∈ Y . ◀

Proof of Proposition 16. First, scale horizontally every rectangle in Q by a factor λ =
1 + ℓ/N1, i.e., for a rectangle R = [x, x + w] × [y, y + h] we define the rectangle R× =
[λx, λ(x + w)] × [y, y + h]. These rectangles fit inside roundℓ(Z). Indeed, the maximum
possible displacement of a point is N1 · ℓ/N1 = ℓ, i.e. the image of a point under scaling
is at horizontal distance at most ℓ to the right of the original point. Next, observe that
every rectangle roundℓ(R) can be entirely placed inside the corresponding rectangle R×,
because λw = w + wℓ/N1 ⩾ w + ℓ2/N1 = ℓ′ + w = ℓ′(1 + w/ℓ′) ⩾ ℓ′ ⌈w/ℓ′⌉ . (Recall here
that we assumed all rectangles to have width at least ℓ.) Now, Q′ can be obtained from
Q by replacing each R ∈ Q′ with R×, fitting roundℓ(R) inside R×, and finally shifting all
rectangles to the left so that they have integer coordinates. The last step is always possible
as every rectangle has integer length. ◀

Proof of Proposition 20. Suppose P crosses ←−R⟨ℓ⟩ for some R ∈ Q. Then there exists
R1, R2 ∈ V (P) (which are possibly the left or the right side of the box) such that R1 and R2
see each other through a segment s = [x(R1) + w(R1), x(R2)]× {y} and R crosses one of the
following segments:
1. {x(R1) + w(R1)/2} × [min{y(R1) + h(R1)/2, y}, max{y(R1) + h(R1)/2, y}],
2. [x(R1) + w(R1)/2, x(R2) + w(R2)/2]× {y},
3. {x(R2) + w(R2)/2} × [min{y, y(R2) + h(R2)/2}, max{y, y(R2) + h(R2)/2}].
We show that every case leads to a contradiction.
1. Assume case 1. P crosses ←−R⟨ℓ⟩ but not R so x(R) ⩾ x(R1) + w(R1)/2 and x(R)− ℓ ⩽

x(R1) + w(R1)/2. Therefore x(R1) ⩽ x(R) ⩽ x(R1) + w(R1)/2 + ℓ ⩽ x(R1) + w(R1)
because w(R1) ⩾ 2ℓ. Moreover, [min{y(R1) + h(R1)/2, y}, max{y(R1) + h(R1)/2, y}] ⊆
[y(R1), y(R1) + h(R1)] by the definition of y. This means that R and R1 intersect
at (x(R), y′) where y′ ∈ [y(R), y(R) + h(R)] ∩ [min{y(R1) + h(R1)/2, y}, max{y(R1) +
h(R1)/2, y}], which is not possible.

2. Assume case 2. This would mean that y ∈ [y(R), y(R) + h(R)], x(R) ⩾ x(R2) + w(R2)/2
and x(R)−ℓ ⩽ x(R2)+w(R2)/2 because |[x(R1)+w(R1)/2, x(R2)+w(R2)/2]| ⩾ 2ℓ and P
crosses←−R⟨ℓ⟩ but not R. Therefore x(R2) ⩽ x(R) ⩽ x(R2)+w(R2)/2+ ℓ ⩽ x(R2)+w(R2)
because w(R2) ⩾ 2ℓ. This means that R and R2 intersect at (x(R), y), which is not
possible.

3. Assume case 3. This is a similar argument as case 1, replacing R1 by R2. ◀

Proof of Lemma 25. Let Q be the assumed packing of k′ ⩽ k rectangles from R of pair-
wise different colors in the zone Z. Note that if Q contains some rectangle of R ∈ R \
reducek(R, col), then there exists another rectangle R′ ∈ reducek(R, col) with w(R′) = w(R),
col(R′) = col(R) and h(R′) ⩽ h(R) such that R′ was not used in the packing Q. Hence, we
can substitute R with R′ in the packing Q, fitting R′ within the area freed by removing R

from the packing. By applying such substitutions exhaustively, we obtain a packing in Z

consisting of k′ rectangles from reducek(R, col). ◀

A Contraction-Recursive Algorithm for Treewidth
Hisao Tamaki #

Meiji University, Kawasaki, Japan

Abstract
Let tw(G) denote the treewidth of graph G. Given a graph G and a positive integer k such that
tw(G) ≤ k + 1, we are to decide if tw(G) ≤ k. We give a certifying algorithm RTW (”R” for
recursive) for this task: it returns one or more tree-decompositions of G of width ≤ k if the answer
is YES and a minimal contraction H of G such that tw(H) > k otherwise. Starting from a greedy
upper bound on tw(G) and repeatedly improving the upper bound by this algorithm, we obtain
tw(G) with certificates.

RTW uses a heuristic variant of Tamaki’s PID algorithm for treewidth (ESA2017), which we
call HPID. Informally speaking, PID builds potential subtrees of tree-decompositions of width
≤ k in a bottom up manner, until such a tree-decomposition is constructed or the set of potential
subtrees is exhausted without success. HPID uses the same method of generating a new subtree
from existing ones but with a different generation order which is not intended for exhaustion but
for quick generation of a full tree-decomposition when possible. RTW, given G and k, interleaves
the execution of HPID with recursive calls on G/e for edges e of G, where G/e denotes the graph
obtained from G by contracting edge e. If we find that tw(G/e) > k, then we have tw(G) > k

with the same certificate. If we find that tw(G/e) ≤ k, we ”uncontract” the bags of the certifying
tree-decompositions of G/e into bags of G and feed them to HPID to help progress. If the question
is not resolved after the recursive calls are made for all edges, we finish HPID in an exhaustive mode.
If it turns out that tw(G) > k, then G is a certificate for tw(G′) > k for every G′ of which G is a
contraction, because we have found tw(G/e) ≤ k for every edge e of G. This final round of HPID
guarantees the correctness of the algorithm, while its practical efficiency derives from our methods
of ”uncontracting” bags of tree-decompositions of G/e to useful bags of G, as well as of exploiting
those bags in HPID.

Experiments show that our algorithm drastically extends the scope of practically solvable
instances. In particular, when applied to the 100 instances in the PACE 2017 bonus set, the number
of instances solved by our implementation on a typical laptop, with the timeout of 100, 1000, and
10000 seconds per instance, are 72, 92, and 98 respectively, while these numbers are 11, 38, and 68
for Tamaki’s PID solver and 65, 82, and 85 for his new solver (SEA 2022).

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis

Keywords and phrases graph algorithm, treewidth, exact computation, BT dynamic programming,
contraction, certifying algorithms

Digital Object Identifier 10.4230/LIPIcs.IPEC.2023.34

Related Version Full Version: https://arxiv.org/abs/2307.01318

Supplementary Material Software (Source Code): https://github.com/twalgor/RTW

1 Introduction

Treewidth is a graph parameter introduced and extensively studied in the graph minor
theory [14]. A tree-decomposition of graph G is a tree with each node labeled by a vertex
set of G, called a bag, satisfying certain conditions (see Section 2) so that those bags form a
tree-structured system of vertex-separators of G. The width w(T) of a tree-decomposition T

is the maximum cardinality of a bag in T minus one and the treewidth tw(G) of graph G is
the smallest k such that there is a tree-decomposition of G of width k.

© Hisao Tamaki;
licensed under Creative Commons License CC-BY 4.0

18th International Symposium on Parameterized and Exact Computation (IPEC 2023).
Editors: Neeldhara Misra and Magnus Wahlström; Article No. 34; pp. 34:1–34:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:hisao.tamaki@gmail.com
https://orcid.org/0000-0001-7566-8505
https://doi.org/10.4230/LIPIcs.IPEC.2023.34
https://arxiv.org/abs/2307.01318
https://github.com/twalgor/RTW
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

34:2 A Contraction-Recursive Algorithm for Treewidth

The impact of the notion of treewidth on the design of combinatorial algorithms is
profound: there are a huge number of NP-hard graph problems that are known to be
tractable when parameterized by treewidth: they admit an algorithm with running time
f(k)nO(1), where n is the number of vertices, k is the treewidth of the given graph, and f

is some typically exponential function (see [10], for example). Those algorithms typically
perform dynamic programming based on the system of separators provided by the tree-
decomposition. To make such algorithms practically useful, we need to compute the treewidth,
or a good approximation of the treewidth, together with an associated tree-decomposition.

Computing the treewidth tw(G) of a given graph G is NP-complete [2], but is fixed-
parameter tractable [14, 4]. In particular, the algorithm due to Bodlaender [4] runs in time
linear in the graph size with a factor of 2O(tw(G)3). Unfortunately, this algorithm does not
seem to run efficiently in practice.

In more practical approaches to treewidth computation, triangulations of graphs play an
important role. A triangulation of graph G is a chordal graph H with V (G) = V (H) and
E(G) ⊆ E(H). For every tree-decomposition T of G, filling every bag of T into a clique gives
a triangulation of G. Conversely, for every triangulation H of G, there is a tree-decomposition
of G in which every bag is a maximal clique of H. Through this characterization of tree-
decompositions in terms of triangulations, we can enumerate all relevant tree-decompositions
by going through the total orderings on the vertex set, as each total ordering defines a
triangulation for which the ordering is a perfect elimination order (see [7], for example).
Practical algorithms in the early stage of treewidth research performed a branch-and-bound
search over these total orderings [7]. Dynamic programming on this search space results in a
2nnO(1) time algorithms [5], which works well in practice for graphs with a small number of
vertices. It should also be noted that classical upper bound algorithms, such as min-deg or
min-fill, which heuristically choose a single vertex ordering defining a tree-decomposition,
are fast and often give a good approximation of the treewidth in a practical sense [7].

Another important link between chordal graphs and treewidth computation was estab-
lished by Bouchitté and Todinca [9]. They introduced the notion of potential maximal
cliques (PMCs, see below in ”Our approach” paragraph for a definition) and gave an efficient
dynamic programming algorithm working on PMCs (BT dynamic programming) to find a
minimal triangulation of the given graph that corresponds to an optimal tree-decomposition.
They showed that their algorithm runs in polynomial time for many special classes of graphs.
BT dynamic programming is also used in an exponential time algorithm for treewidth that
runs in time O(1.7549n) [12].

BT dynamic programming had been considered mostly of theoretical interest until 2017,
when Tamaki presented its positive-instance driven (PID) variant, which runs fast in practice
and significantly outperforms previously implemented treewidth algorithms [18]. Further
efforts on treewidth computation based on or around his approach have been made since
then, with some incremental successes [17, 16, 19, 1].

In his most recent work [20], Tamaki introduced another approach to treewidth computa-
tion, based on the use of contractions to compute tight lower bounds on the treewidth. For
edge e of graph G, the contraction of G by e, denoted by G/e, is a graph obtained from G

by replacing e by a new single vertex ve and let ve be adjacent to all neighbors of the ends
of e in V (G) \ e. A graph H is a contraction of G if H is obtained from G by zero or more
successive contractions by edges. It is well-known and easy to see that tw(H) ≤ tw(G) for
every contraction H of G. This fact has been used to quickly compute reasonably good lower
bounds on the treewidth of a graph, typically to be used in branch-and-bound algorithms
mentioned above [7, 8]. Tamaki [20] gave a heuristic method of successively improving

H. Tamaki 34:3

contraction based lower bounds which, together with a separate heuristic method for upper
bounds, quite often succeeds in computing the exact treewidth of instances that are hard to
solve for previously published solvers.

Our approach
Our approach is based on the observation that contractions are useful not only for computing
lower bounds but also for computing upper bounds. Suppose we have a tree-decomposition
T of G/e of width k for some edge e = {u, v} of k. Let ve be the vertex to which e contracts.
Replacing each bag X of T by X ′, where X ′ = X \ {ve} ∪ {u, v} if ve ∈ X and X ′ = X

otherwise, we obtain a tree-decomposition T ′ of G of width ≤ k + 1, which we call the
uncontraction of T . In a fortunate case where every bag X of T with ve ∈ X has |X| ≤ k,
the width of T ′ is k. To increase the chance of having such fortunate cases, we deal with a
set of tree-decompositions rather than a single tree-decomposition. We represent such a set
of tree-decompositions by a set of potential maximal cliques as follows.

A vertex set of G is a potential maximal clique (PMC for short) if it is a maximal
clique of some minimal triangulation of G. Let Π(G) denote the set of all PMCs of G. For
each Π ⊆ Π(G), let TΠ(G) denote the set of all tree-decompositions of G whose bags all
belong to Π. Let twΠ(G) denote the smallest k such that there is a tree-decomposition in
TΠ(G) of width k; we set twΠ(G) = ∞ if TΠ(G) = ∅. Bouchitté and Todinca [9] showed
that TΠ(G)(G) contains a tree-decomposition of width tw(G) and developed a dynamic
programming algorithm (BT dynamic programming) to find such a tree-decomposition.
Indeed, as Tamaki [17] noted, BT dynamic programming can be used for arbitrary Π ⊆ Π(G)
to compute twΠ(G) in time linear in |Π| and polynomial in |V (G)|.

A set of PMCs is a particularly effective representation of a set of tree-decompositions
for our purposes, because BT dynamic programming can be used to work on Π ⊆ Π(G)
and find a tree-decomposition in TΠ(G) that minimizes a variety of width measures based
on bag weights. In our situation, suppose we have Π ⊆ Π(G/e) such that twΠ(G/e) = k.
Using appropriate bag weights, we can use BT dynamic programming to decide if TΠ(G/e)
contains T such that the uncontraction T ′ of T has width k and find one if it exists.

These observations suggest a recursive algorithm for improving an upper bound on
treewidth. Given a graph G and k such that tw(G) ≤ k +1, the task is to decide if tw(G) ≤ k.
Our algorithm certifies the YES answer by Π ⊆ Π(G) with twΠ(G) ≤ k. It uses heuristic
methods to find such Π and, when this goal is hard to achieve, recursively solves the question
if tw(G/e) ≤ k for edge e of G. Unless tw(G/e) = k + 1 and hence tw(G) = k + 1, the
recursive call returns Π ⊆ Π(G/e) such that twΠ(G/e) ≤ k. We use the method mentioned
above to look for T ∈ TΠ(G/e) whose uncontraction has width ≤ k. If we are successful, we
are done for G. Even when this is not the case, the uncontractions of tree-decompositions in
TΠ(G/e) may be useful for our heuristic upper bound method in the following manner.

In [17], Tamaki proposed a local search algorithm for treewidth in which a solution is a
set of PMCs rather than an individual tree-decomposition and introduced several methods
of expanding Π ⊆ Π(G) into Π′ ⊃ Π in hope of having twΠ′(G) < twΠ(G). His method
compares favourably with existing heuristic algorithms but, like typical local search methods,
is prone to local optima. To let the search escape from a local optimum, we would like to
inject “good” PMCs to the current set Π. It appears that tree-decompositions in TΠ′(G/e)
such that twΠ′(G/e) ≤ k, where k = twΠ(G)− 1, are reasonable sources of such good PMCs:
we uncontract T ∈ TΠ′(G/e) into a tree-decomposition T ′ of G and extract PMCs of G from
T ′. Each such PMC appears in a tree-decomposition of width ≤ k + 1 and may appear in a
tree-decomposition of width ≤ k. It is also important that Π′ is obtained, in a loose sense,
independently of Π and not under the influence of the local optimum around which Π stays.

IPEC 2023

34:4 A Contraction-Recursive Algorithm for Treewidth

Our algorithm for deciding if tw(G) ≤ k interleaves the execution of a local search
algorithm with recursive calls on G/e for edges e of G and injects PMCs obtained from the
results of the recursive calls. This process ends in either of the following three ways.
1. The local search succeeds in finding Π with twΠ(G) ≤ k.
2. A recursive call on G/e finds that tw(G/e) = k + 1: we conclude that tw(G) = k + 1 on

the spot.
3. Recursive calls G/e have been tried for all edges e and it is still unknown if tw(G) ≤ k.

We invoke a conventional exact algorithm for treewidth to settle the question.
Note that, when the algorithm concludes that tw(G) = k + 1, there must be a contraction H

of G somewhere down in the recursion path from G such that Case 3 applies and the exact
computation shows that tw(H) = k + 1. In this case, H is a minimal contraction of G that
certifies tw(G) = k + 1, as the recursive calls further down from H have shown tw(H/e) ≤ k

for every edge e of H.
As the experiments in Section 11 show, this approach drastically extends the scope of

instances for which the exact treewidth can be computed in practice.

Organization

The rest of this paper is organized as follows. After the preliminaries in Section 2, the main
algorithm in its basic form is described in Section 3. Sections 4, 6, 7, 8, 9, and 10 describe
some details of the techniques used to make the algorithm run fast in practice. Section 11
presents experimental results and Section 12 offers some concluding remarks.

The source code of the implementation of our algorithm used in the experiments is
available at https://github.com/twalgor/RTW.

2 Preliminaries

Graphs and treewidth

In this paper, all graphs are simple, that is, without self loops or parallel edges. Let G be
a graph. We denote by V (G) the vertex set of G and by E(G) the edge set of G. As G is
simple, each edge of G is a subset of V (G) with exactly two members that are adjacent to
each other in G. The complete graph on V , denoted by K(V), is a graph with vertex set V in
which every vertex is adjacent to all other vertices. The subgraph of G induced by U ⊆ V (G)
is denoted by G[U]. We sometimes use an abbreviation G \ U to stand for G[V (G) \ U]. A
vertex set C ⊆ V (G) is a clique of G if G[C] is a complete graph. For each v ∈ V (G), NG(v)
denotes the set of neighbors of v in G: NG(v) = {u ∈ V (G) | {u, v} ∈ E(G)}. For U ⊆ V (G),
the open neighborhood of U in G, denoted by NG(U), is the set of vertices adjacent to some
vertex in U but not belonging to U itself: NG(U) = (

⋃
v∈U NG(v)) \ U .

We say that vertex set C ⊆ V (G) is connected in G if, for every u, v ∈ C, there is a path
in G[C] between u and v. It is a connected component or simply a component of G if it is
connected and is inclusion-wise maximal subject to this condition. We denote by C(G) the
set of all components of G. When the graph G is clear from the context, we denote C(G[U])
by C(U). A vertex set S ⊆ V (G) is a separator of G if G \ S has more than one component.
A graph is a cycle if it is connected and every vertex is adjacent to exactly two vertices. A
graph is a forest if it does not have a cycle as a subgraph. A forest is a tree if it is connected.

A tree-decomposition of G is a pair (T,X) where T is a tree and X is a family {Xi}i∈V (T)
of vertex sets of G, indexed by the nodes of T , such that the following three conditions are
satisfied. We call each Xi the bag at node i.

https://github.com/twalgor/RTW

H. Tamaki 34:5

1.
⋃

i∈V (T) Xi = V (G).

2. For each edge {u, v} ∈ E(G), there is some i ∈ V (T) such that u, v ∈ Xi.

3. For each v ∈ V (G), the set of nodes Iv = {i ∈ V (T) | v ∈ Xi} ⊆ V (T) is connected in T .
The width of this tree-decomposition is maxi∈V (T) |Xi| − 1. The treewidth of G, denoted by
tw(G) is the smallest k such that there is a tree-decomposition of G of width k.

For each pair (i, j) of adjacent nodes of a tree-decomposition (T,X) of G, let T (i, j)
denote the subtree of T consisting of nodes of T reachable from i without passing j and
let V (i, j) =

⋃
k∈V (T (i,j)) Xk. Then, it is well-known and straightforward to show that

Xi∩Xj = V (i, j)∩V (j, i) and there are no edges between V (i, j)\V (j, i) and V (j, i)\V (i, j);
Xi ∩Xj is a separator of G unless V (i, j) ⊆ V (j, i) or V (j, i) ⊆ V (j, i). We say that T uses
separator S if there is an adjacent pair (i, j) such that S = Xi∩Xj . In this paper, we assume
G is connected whenever we consider a tree-decomposition of G.

In this paper, most tree-decompositions are such that Xi = Xj only if i = j. Because
of this, we use a convention to view a tree-decomposition of G as a tree T whose nodes are
bags (vertex sets) of G.

Triangulations, minimal separators, and Potential maximal cliques

Let G be a graph and S a separator of G. For distinct vertices a, b ∈ V (G), S is an a-b
separator if there is no path between a and b in G \ S; it is a minimal a-b separator if it is
an a-b separator and no proper subset of S is an a-b separator. A separator is a minimal
separator if it is a minimal a-b separator for some a, b ∈ V (G).

Graph H is chordal if every induced cycle of H has exactly three vertices. H is a
triangulation of graph G if it is chordal, V (G) = V (H), and E(G) ⊆ E(H). A triangulation
H of G is minimal if it there is no triangulation H ′ of G such that E(H ′) is a proper subset of
E(H). It is known (see [13] for example) that if H is a minimal triangulation of G then every
minimal separator of H is a minimal separator of G. In fact, the set of minimal separators of
H is a maximal set of pairwise non-crossing minimal separators of G, where two separators
S and R cross each other if at least two components of G \ S intersects R.

Triangulations and tree-decompositions are closely related. For a tree-decomposition T

of G, let fill(G, T) denote the graph obtained from G by filling every bag of T into a clique.
Then, it is straightforward to see that fill(G, T) is a triangulation of G. Conversely, for
each chordal graph H, consider a tree on the set K of all maximal cliques of H such that if
X, Y ∈ K are adjacent to each other then X ∩ Y is a minimal separator of H . Such a tree is
called a clique tree of H . It is straightforward to verify that a clique tree T of a triangulation
H of G is a tree-decomposition of G and that fill(G, T) = H.

We call a tree-decomposition T of G minimal if it is a clique tree of a minimal triangulation
of G. It is clear that there is a minimal tree-decomposition of G of width tw(G), since for
every tree-decomposition T of G, there is a minimal triangulation H of G that is a subgraph
of fill(G, T) and every clique tree T ′ of H has w(T ′) ≤ w(T).

A vertex set X ⊆ V (G) is a potential maximal clique, PMC for short, of G, if X is
a maximal clique in some minimal triangulation of G. We denote by Π(G) the set of all
potential maximal cliques of G. By definition, every bag of a minimal tree-decomposition of
G belongs to Π(G).

IPEC 2023

34:6 A Contraction-Recursive Algorithm for Treewidth

Bouchitté-Todinca dynamic programming

For each Π ⊆ Π(G), say that Π admits a tree-decomposition T of G if every bag of T

belongs to Π. Let TΠ(G) denote the set of all tree-decompositions of G that Π admits
and let twΠ(G) denote the smallest k such that there is T ∈ TΠ(G) of width k; we set
twΠ(G) =∞ if TΠ(G) = ∅. The treewidth algorithm of Bouchitté and Todinca [9] is based
on the observation that tw(G) = twΠ(G)(G). Given G, their algorithm first constructs Π(G)
and then search through TΠ(G)(G) by dynamic programming (BT dynamic programming)
to find T of width twΠ(G)(G). As observed in [17], BT dynamic programming can be used
to compute twΠ(G) for an arbitrary subset Π of Π(G) to produce an upper bound on tw(G).
As we extensively use this idea, we describe how it works here.

Fix Π ⊆ Π(G) such that TΠ(G) is non-empty. To formulate the recurrences in BT
dynamic programming, we need some definitions. A vertex set B of G is a block if B is
connected and either NG(B) is a minimal separator or is empty. As we are assuming that G

is connected, B = V (G) in the latter case. A partial tree-decomposition of a block B in G

is a tree-decomposition of G[B ∪NG(B)] that has a bag containing NG(B), called the root
bag of this partial tree-decomposition. Note that a partial tree-decomposition of block V (G)
is a tree-decomposition of G. For a graph G and a block B, let PΠ(B, G) denote the set
of all partial tree-decompositions of B in G all of whose bags belong to Π and, when this
set is non-empty, let twΠ(B, G) denote the smallest k such that there is T ∈ PΠ(B, G) with
w(T) = k; if PΠ(B, G) is empty we set twΠ(B, G) =∞.

A PMC X of G is a cap of block B if NG(B) ⊆ X and X ⊆ B ∪NG(B). Note that a
cap of B is a potential root bag of a partial tree-decomposition of B. For each block B,
let BΠ(B) denote the set of all caps of B belonging to Π. Recall that, for each vertex set
U ⊆ V (G), C(U) denotes the set of components of G[U]. The following recurrence holds.

twΠ(B, G) = minX∈BΠ(B) max{|X| − 1, maxC∈C(B\X) twΠ(C, G)}} (1)

BT dynamic programming evaluates this recurrence for blocks in the increasing order of
cardinality and obtains twΠ(G) = twΠ(V (G), G). Tracing back the recurrences, we obtain a
tree-decomposition T ∈ TΠ(G) with w(T) = twΠ(G).

Tamaki’s PID algorithm [18], unlike the original algorithm of Bouchitté and Todinca [9],
does not construct Π(G) before applying dynamic programming. It rather uses the above
recurrence to generate relevant blocks and PMCs. More precisely, PID is for the decision
problem whether tw(G) ≤ k for given G and k and it generates all blocks C with tw(C, G) ≤ k

using the recurrence in a bottom up manner. We have tw(G) ≤ k if and only if V (G) is
among those generated blocks.

Contractors and contractions

To extend the notation G/e of a contraction by an edge to a contraction by multiple edges,
we define contractors. A contractor γ of G is a partition of V (G) into connected sets.
For contractor γ of G, the contraction of G by γ, denoted by G/γ, is the graph obtained
from G by contracting each part of γ to a single vertex, with the adjacency inherited from
G. For notational convenience, we also view a contractor γ as a mapping from V (G) to
{1, 2, . . . , m}, the index set of the parts of the partition γ. In this view, the vertex set
of G/γ is {1, 2, . . . , m} and γ(v) for each v ∈ V (G) is the vertex of G/γ into which v is
contracted. For each w ∈ V (G/γ), γ−1(w) is the part of the partition γ that contracts to w.
For U ⊆ V (G/γ), we define γ−1(U) =

⋃
w∈U γ−1(w).

H. Tamaki 34:7

3 Main algorithm

The pseudo code in Algorithm 1 shows the main iteration of our treewidth algorithm. It
starts from a greedy upper bound and repeatedly improves the upper bound by algorithm
RTW. The call RTW (G, k, Π), where Π ⊆ Π(G) and twΠ(G) ≤ k + 1, decides if tw(G) ≤ k.
If tw(G) ≤ k, it returns YES with certificate Π′ ⊆ Π(G) such that twΠ′(G) ≤ k; otherwise it
returns NO with certificate H, a minimal contraction of G such that tw(H) = k + 1.

Algorithm 1 Main iteration for computing tw(G).

Ensure: compute tw(G) for given G

1: T ← a minimal tree-decomposition of G obtained by a greedy algorithm
2: Π← the set of bags of T

3: k ← w(T)
4: while true do
5: call RTW (G, k − 1, Π)
6: if the call returns NO with certificate H then
7: stop: tw(G) equals k with tw(G) ≤ k certified by Π and tw(G) ≥ k certified by H

8: else
9: k ← k − 1

10: Π← the certificate of the YES answer
11: end if
12: end while

The pseudo code in Algorithm 2 describes RTW in its basic form. We sketch here the
functions of subalgorithms used in this algorithm. More details can be found in subsequent
sections.

Our method of local search in the space of sets of PMCs is a heuristic variant, which we call
HPID, of the PID algorithm due to Tamaki [18]. PID constructs partial tree-decompositions
of width ≤ k using the recurrence of BT dynamic programming in a bottom up manner
to exhaustively generate all partial tree-decompositions of width ≤ k, so that we have a
tree-decomposition of width ≤ k if and only if tw(G) ≤ k. HPID uses the same recurrence
to generate partial tree-decompositions of width ≤ k but the aim is to quickly generate a
tree-decomposition of G of width ≤ k and the generation order it employs does not guarantee
exhaustive generation. The state of HPID computation is characterized by the set Π of
root bags of the generated partial tree-decompositions. Recall that the bags of the set of
partial tree-decompositions generated by the BT recurrence are PMCs, so Π ⊆ Π(G). Using
BT dynamic programming, we can reconstruct the set of partial tree-decompositions from
Π, if needed, in time linear in |Π| and polynomial in |V (G)|. Thus, we may view HPID as
performing a local search in the space of sets of PMCs. This view facilitates communications
between HPID and external upper bound heuristics. Those communications are done through
the following operations.

We consider each invocation of HPID as an entity having a state. Let s denote such an
invocation instance of HPID for G and k. Let Π(s) denote the set of PMCs that are root
bag of the partial tree-decompositions generated so far by s. The following operations are
available.
s. width() returns twΠ(s)(G).
s.usefulPMCs() returns the set of PMCs that are the root bags of the partial tree-

decompositions of width ≤ s.width() generated so far by s.

IPEC 2023

34:8 A Contraction-Recursive Algorithm for Treewidth

Algorithm 2 Procedure RT W (G, k, Π).

Require: Π ⊆ Π(G) and twΠ(G) ≤ k + 1
Ensure: returns YES with Π ⊆ Π(G) such that twΠ(G) ≤ k if tw(G) ≤ k; NO with a

minimal contraction H of G such that tw(H) = k + 1 otherwise
1: create an HPID instance s for G and k

2: s.importPMCs(Π)
3: if s. width() ≤ k then
4: return YES with s.usefulPMCs()
5: end if
6: order the edges of G appropriately as e1, e2, . . . em.
7: for i = 1, . . . , m do
8: Θ← contractPMCs(s.usefulPMCs(), G, ei)
9: call RTW (G/ei, k, Θ)

10: if the call returns NO with certificate H then
11: return NO with certificate H

12: else
13: Ψ← the certificate for the YES answer
14: Ψ′ ← uncontractPMCs(Ψ, G, e)
15: s.importPMCs(Ψ′)
16: s.improve(UNIT _BUDGET × i)
17: if s. width() ≤ k then
18: return YES with s.usefulPMCs()
19: end if
20: end if
21: end for
22: s.finish()
23: if s. width() ≤ k then
24: return YES with s.usefulPMCs()
25: else
26: return NO with certificate G

27: end if

s.importPMCs(Π) updates Π(s) to Π(s) ∪ Π and updates the set of partial tree-
decompositions by BT dynamic programming.

s.improve(budget) generates more partial tree-decompositions under the specified budget,
in terms of the number of search steps spent for the generation.

s.finish() exhaustively generates remaining partial decompositions of width ≤ k, thereby
deciding if tw(G) ≤ k.

See Section 4 for some details of these procedures.
We use two additional procedures.

uncontractPMCs(Π, G, e) , where e is an edge of G and Π ⊆ Π(G/e), returns Π′ ⊆ Π(G)
such that twΠ′(G) ≤ twΠ(G/e) + 1 and possibly twΠ′(G) ≤ twΠ(G/e)

contractPMCs(Π, G, e) , where e is an edge of G and Π ⊆ Π(G), returns Π′ ⊆ Π(G/e)
such that twΠ′(G/e) ≤ twΠ(G) and possibly twΠ′(G/e) ≤ twΠ(G)− 1

See Sections 6 and 7 for details of these procedures.
The correctness of this algorithm can be proved by straightforward induction and does

not depend on the procedures expand, contractPMCs, or uncontractPMCs except
that the procedure contractPMCs(Π, G, e) must return Θ such that twΘ(G/e) ≤ twΠ(G)

H. Tamaki 34:9

as promised. On the other hand, practical efficiency of this algorithm heavily depends on the
performances of these procedures. If they collectively work really well, then we expect that
the for loop would exit after trying only a few edges, assuming tw(G) ≤ k, and s.finish()
would be called only if tw(G) = k + 1 and tw(G/e) ≤ k for every edge e. On the other
extreme of perfect incapability of these procedures, the for loop would always run to the end
and s.finish() would be called in every call of RTW (G, k, Π), making the recursion totally
meaningless. Our efforts are devoted to developing effective methods for these procedures.

4 Heuristic PID

In this section, we give some details of the HPID algorithm. In particular, we describe in
some details how the procedures improve(budget) and finish() work.

We first describe how we use Recurrence (1) to generate a new partial tree-decomposition
from existing ones. The method basically follows that of PID [18] but differs in the way we
view tree-decompositions as rooted-decompositions. The differences are motivated by the
need of HPID to interact with external upper bound components through PMCs.

Fix G and k. We assume a total order < on V (G) and say that U ⊆ V (G) is larger then
V ⊆ V (G) if |U | > |V | or |U | = |V | and U is lexicographically larger than V . We say a block
B is small if there is some block B′ with NG(B′) = NG(B) such that B′ > B. We say that
a block B of G is feasible if tw(B, G) ≤ k. We use Recurrence (1), with Π set to Π(G), to
generate feasible blocks that are small.

Each HPID instance s maintains a set set F of small feasible blocks. To generate a new
feasible block to add to F , it invokes a backtrack search procedure searchNewFeasible(B)
on a block B ∈ F which enumerates B ⊆ F such that
1. B ∈ B and B is the largest block in B and
2. there is a block BB that is either small or is equal to V (G) and a PMC XB ∈ Π(G) such

that C(BB \XB) = B.
For each such B found, we add BB to F since the Recurrence (1) shows that BB is feasible.

Procedure s.improve(budget) uses this search procedure as follows. It uses a priority
queue Q of small feasible blocks, in which larger blocks are given higher priority. It first
put all blocks in F to Q. Then, it dequeues a block B, call searchNewFeasible(B), and
add newly generated feasible blocks to Q. This is repeated until either Q is empty or the
cumulative number of search steps exceeds budget. Because of the queuing policy, there is a
possibility of V (G) found feasible, when it is indeed feasible, even with a small budget.

The role of procedure s.finish() is to complete the PID computation by exhaustively
generating partial tree-decompositions. The implementation used in our experiment uses
another variant of PID called SemiPID [16] for this task.

5 Minimalizing tree-decompositions

Given a graph G and a triangulation H of G, minimalizing H means finding a minimal
triangulation H ′ of G such that E(H ′) ⊆ E(H). Minimalizing a tree-decomposition T of
G means finding a minimal tree-decomposition T ′ of G whose bags are maximal cliques
of the minimalization of fill(G, T). We want to minimalize a tree-decomposition for two
reasons. One is our decision to represent a set of tree-decompositions by a set of PMCs.
Whenever we get a tree-decomposition T by some method that may produce non-minimal
tree-decompositions, we minimalize it to make all bags PMCs. Another reason is that
minimalization may reduce the width. We have two procedures for minimalization. When

IPEC 2023

34:10 A Contraction-Recursive Algorithm for Treewidth

the second reason is of no concern, we use minimalize(T) which is an implementation of
one of the standard triangulation minimalization algorithm due to Blair et al [3]. When the
second reason is important, we use minimalizeOptimally(T), which finds a minimalization
of T of the smallest width. This task is NP-hard, but the following algorithm works well in
practice.

Say a minimal separator of G is admissible for T if it is a clique of fill(G, T). Observe
that, for every minimalization T ′ of T , every separator used by T ′ is a minimal separator
of G admissible for T . We first construct the set of all minimal separators of G admissible
for T . Then we apply the SemiPID variant of BT dynamic programming, due to Tamaki [16],
to this set and obtain a tree-decomposition of the smallest width, among those using only
admissible minimal separators. Because of the admissibility constraint, the number of
minimal separators is much smaller and both the enumeration part and the SemiPID part
run much faster in practices than in the general case without such constraints.

6 Uncontracting PMCs

In this section, we develop an algorithm for procedure uncontractPMCs(G, Π, e). In fact,
we generalize this procedure to uncontractPMCs(G, Π, γ), where the third argument is a
general contractor of G.

Given a graph G, Π ⊆ Π(G), and a contractor γ of G, we first find tree-decompositions
T ∈ TΠ that minimize w(γ−1(T)). This is done by BT dynamic programming over TΠ(G/γ),
using bag weights defined as follows. For each weight function ω that assigns weight ω(U)
to each vertex set U , define the width of tree-decomposition T with respect to ω, denoted
by tw(G, ω), to be the maximum of ω(X) over all bags of T . Thus, if ω is defined by
ω(U) = |U | − 1 then tw(G, ω) = tw(G). A natural choice for our purposes is to set
ω(X) = |γ−1(X)|− 1. Then, the width of a tree decomposition T of G/γ with respect to this
bag weight is w(γ−1(T)). Therefore, BT dynamic programming with this weight function ω

gives us the desired tree-decomposition in TΠ(G/r).
We actually use a slightly modified weight function, considering the possibility of reducing

the weight of γ−1(T) by minimalization.
Let T ∈ TΠ(G/γ) and X a bag of T . If X ′ = γ−1(X) is a PMC of G, then every

minimalization of γ−1(T) must contain X ′ as a bag. Therefore, if |X ′| > k + 1 then it is
impossible that the width of γ−1(T) is reduced to k by minimalization. On the other hand,
if X ′ is not a PMC, then no minimalization of γ−1(T) has X ′ has a bag and there is a
possibility that there is a minimalization of γ−1(T) of width k even if |X ′| > k + 1. These
considerations lead to the following definition of our weight function ω.

ω(U) = 2|γ−1(U)| if γ−1(U) is a PMC of G (2)
ω(U) = 2|γ−1(U)| − 1 otherwise (3)

Algorithm 3 describes the main steps of procedure uncontractPMCs(Π, G, γ).

7 Contracting PMCs

The algorithm for procedure contractPMCs is similar to that for uncontractPMCs.
Given a graph G, Π ⊆ Π(G), and a contractor γ of G, we first find tree-decompositions
T ∈ TΠ(G/γ) that minimize w(γ(T)). This is done by BT dynamic programming with the
following weight function ω.

ω(U) = 2|γ(U)| if γ(U) is a PMC of G/γ

ω(U) = 2|γ(U)| − 1 otherwise

H. Tamaki 34:11

Algorithm 3 Procedure uncontractPMCs(Π, G, γ).

Require: Π ⊆ Π(G/γ)
Ensure: returns Π′ ⊆ Π(G) that results from uncontracting Π and then minimalizing

1: let ω be the weight function on 2V (G/γ) defined by equations 2 and 3
2: use BT dynamic programming to obtain tree-decompositions Ti, 1 ≤ i ≤ m, of G/γ such

that w(Ti, ω) = twΠ(G, ω)
3: for each i, 1 ≤ i ≤ m do
4: T ′

i ← minimalizeOptimally(γ−1(Ti))
5: Πi ← the set of bags of T ′

i

6: end for
7: return

⋃
i Πi

Then, we minimalize those tree-decompositions and collect the bags of those minimalized
tree-decompositions.

8 Safe separators

Bodlaender and Koster [6] introduced the notion of safe separators for treewidth. Let
S be a separator of a graph G. We say that S is safe for treewidth, or simply safe, if
tw(G) = tw(G∪K(S)). As every tree-decomposition of G∪K(S) must have a bag containing
S, tw(G) is the larger of |S| − 1 and max{tw(G[C ∪NG(C)] ∪K(NG(C))}, where C ranges
over all the components of G \ S. Thus, the task of computing tw(G) reduces to the task of
computing tw(G[C ∪NG(C)]∪K(NG(C))} for every component C of G \S. The motivation
for looking at safe separators of a graph is that there are sufficient conditions for a separator
being safe and those sufficient conditions lead to an effective preprocessing method for
treewidth computation. We use the following two sufficient conditions.

A vertex set S of G is an almost-clique if S \ {v} is a clique for some v ∈ S. Let R be a
vertex set of G. A contractor γ of G is rooted on R if, for each part C of γ, |C ∩R| = 1.

▶ Theorem 1 (Bodlaender and Koster [6]).
1. If S is an almost-clique minimal separator of G, then S is safe.
2. Let lb be a lower bound on tw(G). Let C ⊆ V (G) be connected and let S = NG(C).

Suppose (1) tw(G[C ∪ S] ∪K(S)) ≤ lb and (2) G[C ∪ S] has a contractor γ rooted on S

such that G[C ∪ S]/γ is a complete graph. Then, S is safe.

We use safe separators both for preprocessing and during recursion. For preprocessing,
we follow the approach of [19]: to preprocess G, we fix a minimal triangulation H of G

and test the sufficient conditions in the theorem for each minimal separator of H. Since
deciding if the second condition holds is NP-complete, we use a heuristic procedure. Let S
be the set of all minimal separators of H that are confirmed to satisfy the first or the second
condition of the theorem. Let A be a tree-decomposition of G that uses all separators of S
but no other separators. Then, A is what is called a safe-separator decomposition in [6]. A
tree-decomposition of G of width tw(G) can be obtained from A by replacing each bag X of
A by a tree-decomposition of G[X] ∪

⋃
C∈C(G\X) K(NG(C)), the graph obtained from the

subgraph of G induced by X by filling the neighborhood of every component of G \X into a
clique.

Safe separators are also useful during the recursive computation. Given G, we wish
to find a contractor γ of G such that tw(G/γ) = tw(G), so that we can safely recurse on
G/γ. The second sufficient condition in Theorem 1 is useful for this purpose. Let C, S,

IPEC 2023

34:12 A Contraction-Recursive Algorithm for Treewidth

and γ be as in the condition. We construct γ′ such that tw(G/γ′) = tw(G) as follows. The
proof of this sufficient condition is based on the fact that we get a clique on S when we
apply the contractor γ on G[C ∪ S]. Thus, we may define a contractor γ′ on G such that
G/γ′ = (G \ C) ∪ K(S). As each tree-decomposition of tw(G/γ) can be extended to a
tree-decomposition of G, using the tree-decomposition of G[C ∪ S] ∪K(S) of width at most
lb ≤ tw(G), we have tw(G/γ′) = tw(G) as desired. When the recursive call on tw(G/γ′)
returns a certificate Π ⊆ Π(G/γ′) such that twΠ(G/γ′) ≤ k, we need to ”uncontract” Π into
a Π′ ⊆ Π(G) such that twΠ′(G) ≤ k. Fortunately, this can be done without invoking the
general uncontraction procedure. Observe first that each PMC in Π naturally corresponds to
a PMC of (G \C) ∪K(S), which in turn corresponds to a PMC of G contained in V (G) \C.
Let Π1 be the set of those PMCs of G to which a PMC in Π corresponds in that manner.
Let Π2 ⊆ Π(G[C ∪ S]∪K(S)) be such that twΠ2(G[C ∪ S]∪K(S)) ≤ lb. Similarly as above,
each PMC of Π2 corresponds to a PMC of G contained C ∪S. Let Π′

2 denote the set of those
PMCs of G to which a PMC in Π2 corresponds. As argued above, a tree-decomposition in
TΠ((G \C)∪K(S)) of (G \C)∪K(S) and a tree-decomposition in TΠ2(G[C ∪S]∪K(S)) of
G[C ∪ S] ∪K(S) can be combined into a tree-decomposition belonging to TΠ′

2
(G) of width

≤ k. Thus, Π′
2 is a desired certificate for tw(G) ≤ k.

9 Edge ordering

We want an edge e such that tw(G/e) = tw(G), if such exists, to appear early in our edge
order. Heuristic criteria for such an ordering have been studied in the classic work on
contraction based lower bounds [8]. Our criterion is similar to those but differs in that
it derives from a special case of safe separators. The following is a simple corollary of
Theorem 1.

▶ Proposition 2. Let e = {u, v} be an edge of G and let S = NG(v). Suppose S \ {u} is a
clique of G. Then, we have tw(G/e) = tw(G).

If e satisfies the above condition, then we certainly put e first in the order. Otherwise, we
evaluate e in terms of its closeness to this ideal situation. Define the deficiency of graph H,
denoted by defic(H), to be the number of edges of its complement graph. For each ordered
pair (u, v) of adjacent vertices of G, let deficG(u, v) denote defic(G[NG(v) ∪ {v}]/{u, v}).
Note that deficG(u, v) = 0 means that the condition of the above proposition is satisfied
with S = NG(v). Thus, we regard e = {u, v} preferable if either deficG(u, v) or deficG(v, u)
is small. We relativize the smallness with respect to the neighborhood size, so the value of
edge e = {u, v} is min{deficG(u, v)/|NG(v)|, deficG(v, u)/|NG(u)|}. We order edges so that
this value is non-decreasing.

10 Suppressed edges

Consider the recursive call on G/e from the call of RTW on G, where e is an edge of G.
Suppose there is an ancestor call on G′ such that G = G′/γ and edge e′ of G′ such that γ

maps the ends of e′ to the ends of e. If the call on G′/e′ has been made and it is known that
tw(G′/e′) ≤ k then we know that tw(G/e) ≤ k, since G/e is a contraction of G′/e′. In this
situation, we say that e is suppressed by the pair (G′, e′). We may omit the recursive call on
G/e without compromising the correctness if e is suppressed. For efficiency, however, it is
preferable to obtain the certificate Π ⊆ Π(G/e) for tw(G/e) ≤ k and feed the uncontraction of
Π to the HPID instance on G to help progress. Fortunately, this can be done without making

H. Tamaki 34:13

the recursive call on G as follows. Suppose e is suppressed by (G′, e′) and let Π′ ⊆ Π(G′/e′)
such that twΠ′(G′/e′) ≤ k. Let γ′ be the contractor of G′/e′ such that G′/e′/γ′ = G/γ/e:
such γ′ is straightforward to obtain from γ. Letting Π = contractPMCs(Π, G′/e′, γ′), we
obtain Π ⊆ Π(G/e) such that twΠ(G/e) ≤ k.

11 Experiments

We have implemented RTW and evaluated it by experiments. The computing environment for
our experiments is as follows. CPU: Intel Core i7-8700K, 3.70GHz; RAM: 64GB; Operating
system: Windows 10Pro, 64bit; Programming language: Java 1.8; JVM: jre1.8.0_271. The
maximum heap size is set to 60GB. The implementation uses a single thread except for
additional threads that may be invoked for garbage collection by JVM.

Our primary benchmark is the bonus instance set of the exact treewidth track of PACE
2017 algorithm implementation challenge [11]. This set, consisting of 100 instances, is
intended to be a challenge for future implementations and, as a set, are hard for the winning
solvers of the competition. Using the platform of the competition, about half of the instances
took more than one hour to solve and 15 instances took more than a day or were not solvable
at all.

We have run our implementation on these instances with the timeout of 10000 seconds
each. For comparison, we have run Tamaki’s PID solver [18], which is one of the PACE 2017
winners, available at [15] and his new solver [20] available at [21]. Figure 1 summarizes the
results on the bonus set. In contrast to PID solver which solves only 68 instances within the
timeout, RTW solves 98 instances. Moreover, it solve 72 of them in 100 seconds and 92 of
them in 1000 seconds. Thus, we can say that our algorithm drastically extends the scope
of practically solvable instances. Tamaki’s new solver also quickly solves many instances
that are hard for PID solver and is indeed faster then RTW on many instances. However,
its performance in terms of the number of instances solvable in practical time is inferior to
RTW.

Figure 1 Number of bonus instances solved within a specified time.

We have also run the solvers on the competition set of the exact treewidth track of PACE
2017. This set, consisting of 200 instances, is relatively easy and the two winning solvers of
the competitions solved all of the instances within the allocated timeout of 30 minutes for
each instance. Figure 2 summarizes the results on the competition set. Somewhat expectedly,

IPEC 2023

34:14 A Contraction-Recursive Algorithm for Treewidth

PID performs the best on this instance set. It solves almost all instances in 200 seconds for
each instance, while RTW fails to do so on about 30 instances. There are two instances that
RTW fails to solve in 10000 seconds and one instance it fails to solve at all. Tamaki’s new
solver shows more weakness on this set, failing to solve about 50 instances in the timeout of
10000 seconds.

These results seem to suggest that RTW and PID should probably complement each
other in a practical treewidth solver.

Figure 2 Number of competition instances solved within a specified time.

12 Conclusions and future work

We developed a treewidth algorithm RTW that works recursively on contractions. Experi-
ments show that our implementation solves many instances in practical time that are hard
to solve for previously published solvers. RTW, however, does not perform well on some
instances that are easy for conventional solvers such as PID. A quick compromise would be
to run PID first with an affordable timeout and use RTW only when it fails. It would be,
however, interesting and potentially fruitful to closely examine those instances that are easy
for PID and hard for RTW and, based on such observations, to look for a unified algorithm
that avoids the present weakness of RTW.

References
1 Ernst Althaus, Daniela Schnurbusch, Julian Wüschner, and Sarah Ziegler. On tamaki’s

algorithm to compute treewidths. In 19th International Symposium on Experimental Algorithms
(SEA 2021). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2021.

2 Stefan Arnborg, Derek G Corneil, and Andrzej Proskurowski. Complexity of finding embeddings
in a k-tree. SIAM Journal on Algebraic Discrete Methods, 8(2):277–284, 1987.

3 Jean RS Blair, Pinar Heggernes, and Jan Arne Telle. A practical algorithm for making filled
graphs minimal. Theoretical Computer Science, 250(1-2):125–141, 2001.

4 Hans L Bodlaender. A linear-time algorithm for finding tree-decompositions of small treewidth.
SIAM Journal on computing, 25(6):1305–1317, 1996.

5 Hans L Bodlaender, Fedor V Fomin, Arie MCA Koster, Dieter Kratsch, and Dimitrios M
Thilikos. On exact algorithms for treewidth. In Algorithms–ESA 2006: 14th Annual European

H. Tamaki 34:15

Symposium, Zurich, Switzerland, September 11-13, 2006. Proceedings, pages 672–683. Springer,
2006.

6 Hans L Bodlaender and Arie MCA Koster. Safe separators for treewidth. Discrete Mathematics,
306(3):337–350, 2006.

7 Hans L Bodlaender and Arie MCA Koster. Treewidth computations i. upper bounds. Inform-
ation and Computation, 208(3):259–275, 2010.

8 Hans L Bodlaender and Arie MCA Koster. Treewidth computations ii. lower bounds. Inform-
ation and Computation, 209(7):1103–1119, 2011.

9 Vincent Bouchitté and Ioan Todinca. Treewidth and minimum fill-in: Grouping the minimal
separators. SIAM Journal on Computing, 31(1):212–232, 2001.

10 Marek Cygan, Fedor V Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized algorithms. Springer, 2015.

11 Holger Dell, Christian Komusiewicz, Nimrod Talmon, and Mathias Weller. The pace 2017
parameterized algorithms and computational experiments challenge: The second iteration. In
12th International Symposium on Parameterized and Exact Computation (IPEC 2017). Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.

12 Fedor V Fomin and Yngve Villanger. Treewidth computation and extremal combinatorics.
Combinatorica, 32(3):289–308, 2012.

13 Pinar Heggernes. Minimal triangulations of graphs: A survey. Discrete Mathematics, 306(3):297–
317, 2006.

14 Neil Robertson and Paul D. Seymour. Graph minors. ii. algorithmic aspects of tree-width.
Journal of algorithms, 7(3):309–322, 1986.

15 Hisao Tamaki. PID. https://github.com/TCS-Meiji/PACE2017-TrackA, 2017. [github re-
pository].

16 Hisao Tamaki. Computing treewidth via exact and heuristic lists of minimal separators. In
International Symposium on Experimental Algorithms, pages 219–236. Springer, 2019.

17 Hisao Tamaki. A heuristic use of dynamic programming to upperbound treewidth. arXiv
preprint arXiv:1909.07647, 2019.

18 Hisao Tamaki. Positive-instance driven dynamic programming for treewidth. Journal of
Combinatorial Optimization, 37(4):1283–1311, 2019.

19 Hisao Tamaki. A heuristic for listing almost-clique minimal separators of a graph. arXiv
preprint arXiv:2108.07551, 2021.

20 Hisao Tamaki. Heuristic Computation of Exact Treewidth. In Christian Schulz and Bora
Uçar, editors, 20th International Symposium on Experimental Algorithms (SEA 2022), volume
233 of Leibniz International Proceedings in Informatics (LIPIcs), pages 17:1–17:16, Dagstuhl,
Germany, 2022. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.
SEA.2022.17.

21 Hisao Tamaki. twalgor/tw. https://github.com/twalgor/tw, 2022. [github repository].

IPEC 2023

https://github.com/TCS-Meiji/PACE2017-TrackA
https://doi.org/10.4230/LIPIcs.SEA.2022.17
https://doi.org/10.4230/LIPIcs.SEA.2022.17
https://github.com/twalgor/tw

PACE Solver Description: The PACE 2023
Parameterized Algorithms and Computational
Experiments Challenge: Twinwidth
Max Bannach #

European Space Agency, Advanced Concepts Team, Noordwijk, The Netherlands

Sebastian Berndt #

Institute for Theoretical Computer Science, University of Lübeck, Germany

Abstract
This article is a report by the challenge organizers on the 8th Parameterized Algorithms and
Computational Experiments Challenge (PACE 2023). As was common in previous iterations of
the competition, this year’s iteration implemented an exact and heuristic track for a parameterized
problem that has gained attention in the theory community. This year, the problem was to compute
the twinwidth of a graph, a recently introduced width parameter that measures the similarity of a
graph to a cograph. In the exact track, the competition participants were asked to develop an exact
algorithm that can solve as many instances as possible from a benchmark set of 100 instances – with
a time limit of 30 minutes per instance. The same task must be accomplished within 5 minutes in
the heuristic track. However, the result in this track is not required to be optimal.

As in previous iterations, the organizers handed out awards to the best solutions in both tracks
and to the best student submissions. New this year is a dedicated theory award that appreciates
new theoretical insights found by the participants during the development of their tools.

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis; Theory of
computation → Parameterized complexity and exact algorithms

Keywords and phrases Twinwidth, Algorithm Engineering, FPT, Kernelization

Digital Object Identifier 10.4230/LIPIcs.IPEC.2023.35

Acknowledgements The prize money (€4000) was generously provided by Networks [28], an NWO
Gravitation project of the University of Amsterdam, Eindhoven University of Technology, Leiden
University and the Center for Mathematics and Computer Science (CWI). We are grateful to the
whole optil.io team, led by Szymon Wasik, and especially to Jan Badura and Artur Laskowski for
the fruitful collaboration and for hosting the competition at the optil.io online judge system. We also
thank André Schidler and Stefan Szeider, who made their exact solver available to the organizers
prior to the competition for internal evaluations [29].

1 Introduction: History and Timeline of PACE

The Parameterized Algorithms and Computational Experiments Challenge (PACE) is an
algorithm engineering competition conceived in 2015 and held annually since. Its aim is to
bridge the theory of parameterized algorithms and their use in practice. The goals are to:
1. bridge the divide between the theory of algorithm design and analysis, and the practice

of algorithm engineering,
2. inspire new theoretical developments,
3. investigate the competitiveness of theoretical algorithms from the field of parameterized

complexity analysis and related fields in practice,
4. produce universally accessible libraries of implementations and repositories of benchmark

instances, and
5. encourage the dissemination of these findings in scientific papers.

© Max Bannach and Sebastian Berndt;
licensed under Creative Commons License CC-BY 4.0

18th International Symposium on Parameterized and Exact Computation (IPEC 2023).
Editors: Neeldhara Misra and Magnus Wahlström; Article No. 35; pp. 35:1–35:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:max.bannach@esa.int
https://orcid.org/0000-0002-6475-5512
mailto:s.berndt@uni-luebeck.de
https://orcid.org/0000-0003-4177-8081
https://doi.org/10.4230/LIPIcs.IPEC.2023.35
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

35:2 PACE Solver Description: PACE 2023: Twinwidth

In each of the now eight iterations, the participants were asked to provide implementations
that either solved small- to medium-sized instances of an NP-complete problem optimally or
to solve large-sized instances approximately. In previous iterations, the problems were
PACE 2016 treewidth and undirected-feedback-vertex-set [14];
PACE 2017 treewidth and minimum fill-in [15];
PACE 2018 steiner-tree [12];
PACE 2019 vertex-cover and hypertreewidth [17];
PACE 2020 treedepth [22];
PACE 2021 cluster-editing [21];
PACE 2022 directed-feedback-vertex-set [18] .

Several of the previous iterations also contained more specialized tracks. Starting with
the first iteration of PACE, many participants from all over the world were interested in the
challenge and quickly established PACE as a highly competitive challenge. Over the years,
the number of PACE participants has constantly grown, as Figure 1 illustrates. Furthermore,
papers inspired by concrete implementations were published in prestigious conferences such
as ACDA, ALENEX, ESA (Track B), SEA, and WADS. The instances provided by PACE
have also often been used to showcase further algorithmic improvements by being used
as an established benchmark, ranging also to other competitions such as the famous sat
competition [5].

25
50
75

100

N
um

be
r

of
Pa

rt
ic

ip
an

ts

2016 2017 2018 2019 2020 2021 2022 2023
PACE in Year

Figure 1 Overview of the number of participants (y-axis) of the PACE challenge over the years.

In this article, we report on the eighth iteration of the PACE challenge. The problem
chosen for this year’s iteration was twinwidth, a relatively young but promising parameter
introduced in 2020 by Bonnet et al. [10]. The challenge featured two tracks: an exact track
and a heuristic track. In the exact track, the task was to find an optimal solution of a given
instance within 30 minutes and a memory limit of 8 GB. In the heuristic track, the task was
to compute a valid solution with a width as small as possible within a time limit of 5 minutes
and a memory limit of 8 GB.

The PACE 2023 challenge was announced with both tracks in September 2022. Details
about the input and output format were provided in October 2022 together with a tiny test
set to allow the participants to start with the challenge. One reason being, in particular,
that algorithmic lectures that eventually start in this period may integrate PACE into course
related projects. The concrete ranking methods for both tracks were published in November
2022. In January 2023, the public instances were made available to the participants, and
the public leaderboard on the optil.io platform was opened in March 2023. This allowed
the participants to test their solvers on the public instances and provided a provisional
ranking. The leaderboard was frozen in May 2023, and the final version of the submission
was due on the first of June 2023. Afterwards, the submissions were evaluated on the private

optil.io

M. Bannach and S. Berndt 35:3

instances, which the participants did not know. The results of this evaluation were announced
in July 2023, and the award ceremony took place during the International Symposium on
Parameterized and Exact Computation (IPEC) 2023 in Amsterdam in September 2023. The
complete timeline can be found in Figure 2.

Announcement of
the Challenge

I/O Format
Tiny Test Set

Ranking Methods

Public Instances

Public Leaderboard

Leaderboard Frozen

Final Submission

Announcements of
the Results

Award Ceremony

Se
pte

mbe
r

Octo
be

r

Nove
mbe

r

Dece
mbe

r

Ja
nu

ary

Fe
bru

ary

Marc
h

Apri
l

May
Ju

ne Ju
ly

Aug
ust

Se
pte

mbe
r

Figure 2 Timeline of the PACE challenge in 2023 (the diagram ranges from September 2022 to
September 2023). The next iteration of the PACE for 2024 was announced at the award ceremony.

2 The Problem of the Challenge: Twinwidth

So-called width measures are graph parameters that capture the structural complexity of a
graph in terms of the minimum cost of an associated type of decomposition of the graph.
The poster child of such a parameter is treewidth, which measures the distance of a graph to
a tree. A recently proposed parameter is twinwidth, introduced by Bonnet, Kim, Thomassé,
and Watrigant [11]. Informally, the twinwidth of a graph measures the distance to a cograph.
Cographs are the graphs that can be generated from a single-vertex graph by complementation
and disjoint union; which are precisely the P4-free graphs. In the context of twinwidth, the
crucial property of these graphs is that they always contain a pair of twins, that is, vertices
sharing the same neighborhood. The contraction of twins in a cograph results again in a
cograph. In other words, cographs can be reduced to a single vertex by a sequence of twin
contractions.

If the input graph G = (V, E) is not a cograph, this process of contracting twins will
eventually get stuck with a graph that contains more than one vertex, but does not contain
any twins. We consider the contraction of non-twins (which may or may not be adjacent) as
“error” (because the goal is to measure the distance to cographs) and record this error by
coloring mixed edges “red,” while referring to the original edges as “black edges”. Precisely,
when contracting two vertices u and v into a single fresh vertex z, we form a new graph by
removing u and v. For each x ∈ V \ {u, v} that was connected to u or v, we add a new edge
between x and z. If x was connected to both u and v and both of these edges were black, the
edge between x and z is black as well. In all other cases, the edge between x and z is colored
red. Figure 3 presents an example: When a and c are contracted in the second picture into
the fresh vertex ac, then d gets connected to ac with a black edge (as d was connected to
both a and c). In contrast, e was only connected to c but not to a and, hence, a red edge
now connects e and ac. Finally, b was not connected to a or to c and hence, no edge is drawn
between b and ac.

A contraction sequence consists of |V | − 1 contractions transforming the input graph
(which does not contain any red edges) into a single vertex (which also does not contain red
edges). However, intermediate graphs in the sequence may contain red edges. The width of a

IPEC 2023

35:4 PACE Solver Description: PACE 2023: Twinwidth

contraction sequence is the maximal red degree of any vertex encountered in any intermediate
graph. The twinwidth of a graph G is the minimal width any contraction sequence of G must
have. We denote it by tww(G) and derive the following computational task:

▶ Challenge Problem (twinwidth).
Instance: A undirected graph G given as list of edges.
Task: Compute a contraction sequence S of G and output it as list of pairs.
Exact Track: The width of S must equal tww(G).
Heuristic Track: Any valid sequence S can be output. The quality is the width of S.

a

b

c

d e

a

b

c

d e

ac a

b

c

d e

ac

de

a

b

c

d e

ac

de

acde
abcde

Figure 3 An exemplary contraction sequence of width 2 from the The sequence shows that the
input graph (most left) has twinwidth at most 2. The reason being that the third graph has a red
degree of 2.

Twinwidth has received wide attention in the three years following its inception: dblp
alone lists (at the time of writing this report) 4 papers related to twinwidth in 2020, 15 in
2021, and already 37 in 2022. One of the reasons for its success is that the class of graphs
of bounded twinwidth is one of the largest known graph classes that still allows first-order
model checking in fpt-time [11]. There is also a growing number of intractable problems
for which efficient algorithms on graphs of bounded twinwidth were found [8, 10]. However,
all these results require that a contraction sequence of small width is given along with the
input, i. e., one needs to solve the aforementioned twinwidth problem as a preprocessing
step. Most desirable would, of course, be an algorithm with polynomial running time that
computes a contraction sequence of minimal width, or at least of width α tww(G) for some
constant α. Unfortunately, the existence of an exact XP-algorithm or an approximation
algorithm with α < 5/4 was ruled out by Bergé, Bonnet, and Déprés, who proved that
deciding whether tww(G) is at most 4 is already NP-complete [7]. Nevertheless, nothing is
known about α ≥ 5/4.

This is in strong contrast to problems chosen in previous iterations of PACE, where
usually a portfolio of parameterized algorithms was available before the competition. That
is, the first aim of PACE mentioned in the introduction, i. e., to bridge the divide between
the theory of algorithm design and analysis, and the practice of algorithm engineering was
interpreted mainly as “evolving theoretical insights into practical tools”. With twinwidth
as the problem of the challenge, the direction of this reasoning is inverted in this year’s
iteration, i. e., we wondered whether “techniques commonly used in practice may lead to
new results in theory”? This is also the reason that the organizers decided to hand out a
dedicated theory award along with the usual ranking: To value and highlight theoretical
insights gained during the competition in spirit of the second aim of the competition (to
inspire new theoretical developments).

3 The Setup of PACE 2023

As already mentioned before, this year’s challenge featured two tracks: An exact track in
which a contraction sequence of minimal width needs to be computed, and a heuristic track
in which a not necessarily optimal contraction sequence must be computed very quickly.

https://dblp.uni-trier.de

M. Bannach and S. Berndt 35:5

3.1 The Exact Track (Compute an Optimal Contraction Sequence)
The task of this track is to compute an optimal solution of twinwidth for 100 graphs,
which are not known by the participants (they are only presented to the solver during the
evaluation in a compartmentalized judge system). For each of the graphs, the solver has to
output a solution within a time limit of 30 minutes and a memory limit of 8 GB.

The organizers of the competition encouraged submissions that implement provably
optimal algorithms, however, this was not a formal requirement. Instead, submissions that
output an incorrect solution or a solution that is known to be non-optimal were disqualified
from the challenge. Fortunately, no submission was disqualified this year.

Submissions of this track are ranked by the number of solved instances. In case of a tie,
the winner is determined by the total time spent on the solved instances. In particular, there
was no need to abort a “hopeless” run early.

3.2 The Heuristic Track (Compute a Contraction Sequence Quickly)
In this track the solver shall compute a good solution quickly. The solver are run on each
instance for 5 minutes and receive the Unix signal sigterm afterwards. When receiving this
signal, the solver has to output a correct contraction sequence immediately to the standard
output and terminate. If the program does not halt in a reasonable time after receiving the
signal, it will be stopped via sigkill and the instance is counted as time limited exceeded.
The memory limit for this track is 8 GB as well.

For this track solutions do not have to be optimal. However, solvers that produce incorrect
solution were disqualified. Fortunately, we did not need to disqualify any solver in this track
either. Submissions were ranked by the geometric mean over all instances of

100 · width produced by the solver
smallest width known to the PC .

Note that the “smallest width known to the PC” may not be optimal, i. e., may be larger
than tww(G).

3.3 Internal Solver and the Benchmark Set
The fourth aim of the PACE challenge is to produce universally accessible libraries of
implementations and repositories of benchmark instances. While the first part of this aim is
exactly what we expect from the participants, it is the duty of the program committee to
produce the benchmark instances. A lot can be said about how to set up a good benchmarkset,
and what “good” in this context actually means. In the light of PACE, we found the following
points important:
a) the benchmarkset contains instances from various domains,
b) it contains easy, medium, hard instances,
c) it remains a challenging benchmark after the challenge.

The reason for a) being that we would like to evaluate the overall performance of the
approaches developed by the participants (and not the performance on, say, a specific graph
class). We include b) to make the challenge interesting and fun. We wanted a benchmarkset in
which every participant can solve at least a few instances, which should especially encourage
student teams to participate as well. The medium instances are the ones that are meant to
distinguish the quality of the various solvers, and the hard instances realize c). This last

IPEC 2023

35:6 PACE Solver Description: PACE 2023: Twinwidth

item is included, as we did not want a benchmarkset that is “completely solved” after the
competition. We expected that these hard instances are barely solvable by solvers developed
in the time span of the competition and, thus, leave room for further research.

The emerging question of course is: “What is an easy, medium, or hard instance”? This
question is not easy to answer, especially if barely anything is known about solving the
problem. The organizers used a sat-based internal solver to answer this question (the solver
was developed by André Schidler and Stefan Szeider [30], who provided the organizers with
an improved version of the tool before the competition).

The base set of graphs was generated from three sources:
Random and synthetic graphs, including: Erdős-Rényi graphs, random hyperbolic graphs,

random planar graphs, and graph products of various simple graph classes.
Instances from graph repositories, including: road networks, power grid graphs, graphs

from the UAI competition 2014, and max-flow instances from applications in computer
vision.

Instances generated by reduction from SAT, including: the instances of the sat competi-
tion 2022 Anniversary Track, reduced to vertex-cover and 3-coloring.

From this base set we generated an enhanced set by performing the following steps to
every graph multiple times: (i) sample a random vertex, (ii) perform a bfs for ℓ layers to
obtain a smaller subgraph, and (iii) add some noise to this subgraph by randomly (with a
small probability ϵ) add, remove, or contract edges. By varying ℓ and ϵ, graphs of various
sizes and difficulties can be generated. We ended up with an enhanced set of roughly 8000
graphs. To obtain the benchmarkset used in the competition, we let the internal solver run
on every instance of the enhanced set for eight hours. We classified an instance as
Easy if the internal solver solved the instance in 30 minutes;
Medium if the internal solver solved the instance;
Hard if the internal solver did not solve the instance.

For the exact track we sampled 200 instances from this set (50 easy, 50 medium, and 100
hard). We sorted these 200 instances by size. Graphs with an odd number were used as
private set to rank the participants, graphs with an even number were released in advance as
public test set. Figure 4 illustrates the number of vertices (left) and number of edges (right)
that the 200 instances of the exact track have. We used the same technique to derive the
instances for the heuristic track, but scaled them by varying (the aforementioned parameter)
ℓ after the classification into easy, medium, and hard. Figure 5 shows the distribution of
the number of vertices and edges of the benchmarkset from the heuristic track. Of course,
in the light of parameterized algorithms, not just the size of the instance, but also the
actual twinwidth is important. All instances from the exact track that were solved during
the competition have a twinwidth of at most 10 (see Figure 6 for the distribution). The
instances used in the heuristic track have a larger twinwidth, but over 50% of the instances
have a twinwidth of at most 60 (see the right plot in Figure 6). Both benchmarksets (all 200
instances per track) are publicly available at https://pacechallenge.org/2023/.

4 Participants and Results

There were 13 and 10 teams that officially submitted a solution to the exact and heuristic
track, respectively. There were four teams that submitted solutions to both tracks. Hence,
in total there were 19 distinct teams with a total number of 73 participants representing
three continents and a wide range of countries, which made this the second largest PACE
challenge. The results are listed below.

https://pacechallenge.org/2023/

M. Bannach and S. Berndt 35:7

25
50
75

100
10

0
25

0
50

0
75

0
10

00
15

00
20

00
50

00
10

00
0

20
00

00

Distribution of the Number of Vertices.

25
50
75

100

10
0

25
0

50
0

75
0

10
00

15
00

12
00

0
50

00
10

00
0

20
00

00

Distribution of the Number of Edges.

Figure 4 Distribution of the number of vertices (left) and number of edges (right) of the 200
instances of the PACE 2023 exact track. A bar at index x illustrates the number of instances that
have at most x vertices (edges), but more than the previous bar contained. That is, every instance
is counted in exactly one bar.

25
50
75

100

50
00

10
00

0
25

00
0

75
00

0
10

00
00

25
00

00
50

00
00

10
00

00
0

20
00

00
0

50
00

00
0

Distribution of the Number of Vertices.

25
50
75

100

10
00

00
20

00
00

40
00

00
60

00
00

80
00

00
12

00
00

0
16

00
00

0
32

00
00

0
64

00
00

0
12

80
00

00

Distribution of the Number of Edges.

Figure 5 Distribution of the number of vertices (left) and number of edges (right) of the 200
instances of the PACE 2023 heuristic track. A bar at index x illustrates the number of instances
that have at most x vertices (edges), but more than the previous bar contained. That is, every
instance is counted in exactly one bar.

23:2 PACE 2023: Twinwidth

≤ 2

≤ 4

≤ 6

0%

22 %

69 %

81 %

31

≤ 15

≤ 30

≤ 60
≤ 100

≤ 200

0%

23 %

37 %
57 %

69 %

77 %

32

23:2 PACE 2023: Twinwidth

≤ 2

≤ 4

≤ 6

0%

22 %

69 %

81 %

31

≤ 15

≤ 30

≤ 60
≤ 100

≤ 200

0%

23 %

37 %
57 %

69 %

77 %

32

Figure 6 All private instances of the exact track that were solved by any solver have a twinwidth
of at most 10. The left plot illustrates the twinwidth distribution these instances. The diagram
shows clockwise the percentage of instances that fall below a certain twinwidth threshold. The
right plot illustrates the same information for the private instances of the heuristic track (the best
twinwidth found by any submission was assigned to every instance).

IPEC 2023

35:8 PACE Solver Description: PACE 2023: Twinwidth

4.1 Ranking of the Exact Track
The ranking for the exact track is listed subsequently; We list the number of solved instances
from the 100 private instances. Submissions marked with “¹” are student submissions after
the following rules:

A student is someone who is not and has not been enrolled in a PhD program before the
submission deadline. A submission is eligible for a Student Submission Award if either
all its authors are students, or besides student co-author(s) there is one non-student co-
author that confirms, at the moment of submission, that a clear majority of conceptual and
implementation work was done by the student co-author(s).

The first three student submissions obtained a Student Submission Award. The submission
marked with “�” obtained the Theory Award, details follow in Section 4.5.

Rank 1 Hydra Prime solved 36 instances in 450 minutes. � [16]
Authors Yosuke Mizutani, David Dursteler, and Blair D. Sullivan
Affiliation University of Utah

Rank 2 GUTHMi solved 35 instances in 1257 minutes. [13]
Authors Alexander Leonhardt, Holger Dell, Anselm Haak, Frank Kammer, Johannes

Meintrup, Ulrich Meyer, and Manuel Penschuck
Affiliation Goethe University Frankfurt and THM, University of Applied Sciences Mittel-

hessen
Rank 3 Touiouidth solved 34 instances in 8885 minutes. [9]

Authors Gaétan Berthe, Yoann Coudert–osmont, Alexander Dobler, Laure Morelle,
Amadeus Reinald, and Mathis Rocton

Affiliation LIRMM, CNRS, Université de Montpellier and Université de Lorraine, CNRS,
Inria and Algorithms and Complexity Group, TU Wien

Rank 4 UAIC Twin Width solved 34 instances in 12781 minutes. ¹ [3]
Authors Andrei Arhire, Matei Chiriac, and Radu Timofte
Affiliation Alexandru Ioan Cuza University of Iasi, and ETH Zürich and University of

Würzburg
Rank 5 Soapen solved 33 instances in 250 minutes. [33]

Authors Christopher Weyand and Marcus Wilhelm
Affiliation KIT Karlsruhe

Rank 6 GBathie solved 31 instances in 1183 minutes. [6]
Authors Gabriel Bathie, Jérôme Boillot, Nicolas Bousquet and Théo Pierron
Affiliation DI ENS, PSL Research University and LaBRI, Université de Bordeaux and

Université Lyon
Rank 7 Zygosity solved 29 instances in 391 minutes. [23]

Authors Emmanuel Arrighi, Petra Wolf, Pål Grønas Drange, Kenneth Langedal, Farhad
Vadiee, and Martin Vatshelle

Affiliation University of Trier and University of Bergen
Rank 8 trex-ufmg solved 27 instances in 14760 minutes. ¹ [32]

Authors Alan Cabral Trindade Prado, Emanuel Juliano Morais Silva, Guilherme de
Castro Mendes Gomes, Kaio Henrique Masse Vieira and Laila Melo Vaz Lopes

Affiliation Departamento de Ciência da Computação, Universidade Federal de Minas
Gerais

M. Bannach and S. Berndt 35:9

Rank 9 tuw solved 26 instances in 967 minutes. [30]
Authors André Schidler and Stefan Szeider
Affiliation Algorithms and Complexity Group, TU Wien

Rank 10 HeiTwin solved 15 instances in 1187 minutes. ¹ [26]
Authors Thomas Möller, Nikita-Nick Funk, Dennis Jakob and Ernestine Großmann
Affiliation Heidelberg University

Rank 11 A Simple Twin-width Searcher solved 14 instances in 1490 minutes. [24]
Authors Alexander Meiburg
Affiliation University of California Santa Barbara

Rank 12 GOAT solved 8 instances in 1487 minutes. [1]
Authors Adam Barla, Václav Blažej, Radovan Červený, Michal Dvořák, Dušan Knop,

Josef Koleda, Jan Pokorný, Petr Šťastný and Ondřej Suchý
Affiliation Faculty of Information Technology, Czech Technical University in Prague and

University of Warwick
Rank 13 satwin solved 8 instances in 35833 minutes. [20]

Authors Yinon Horev, Shiraz Shay, Sarel Cohen, Tobias Friedrich, Davis Issac, Lior
Kamma, Aikaterini Niklanovits and Kirill Simonov

Affiliation School of Computer Science, The Academic College of Tel Aviv-Yaffo and
Hasso Plattner Institute, University of Potsdam

4.2 Strategies Used in the Exact Track
We give a short overview on the ideas used by the top three solvers. The interested reader is
referred to the corresponding papers published in the proceedings of IPEC 2023.

Winning Team. The winning solver, Hydra Prime, first applies a modular decomposition
on the graph and then considers all of the prime graphs and the quotient graph separately.
Then, a vast number of different algorithms is applied to derive upper and lower bounds for
the twinwidth of the graphs by choosing from four algorithms for the lower bounds and three
algorithms for the upper bound. In addition, the solver also contains an optimal solver for
trees, a branch-and-bound approach, and a sat-based tool for the remaining cases. The main
contributions are the timeline encoding and the hydra decomposition. The timeline encoding
is a data structure that efficiently computes the width of a given contraction sequence by
building up a set of red intervals representing the red edges during the contraction. The
hydra decomposition is a refinement strategy that iteratively uses small vertex separators by
splitting the graph into a set of heads and tails. This allows to find separators avoiding the
heads, to contract the heads, and to join two hydras efficiently.

Runner-Up. The runner-up solver, GUTHMI, is based on the branch-and-bound paradigm,
but drastically reduces the potentially large branching vector using a number of heuristics.
The authors obtain upper bounds using a heuristic, and lower bounds by sampling carefully
chosen subgraphs that are tried to be solved exactly. Finally, to order the remaining branches,
the authors use a scoring method to evaluate pairs of vertices. The scoring method aims to
minimize the difference between the red degrees of vertices for which a new red edge will
appear when contracting the pair, and the red degrees of vertices for which a red edge will
be removed. The solver also contains several low-level optimizations such as the caching of
small infeasible subproblems, the reusing of scores, and the use of appropriate data structures
depending on the structure of the given graph.

IPEC 2023

35:10 PACE Solver Description: PACE 2023: Twinwidth

Third Place. The third place solver, Touiouidth, uses the first 15 minutes to find a good
lower bound by considering the twinwidth of several carefully constructed induced subgraphs.
Next, two different heuristics are run for five minutes to obtain upper bounds. Finally, the
last ten minutes are used for a branch-and-bound algorithm. To reduce the search space, the
authors use the observation that two vertices u and v can safely be contracted if the black
neighborhood of u is a subset of the black neighborhood of v and, in addition, all neighbors
(black and red) of v are contained in the red neighborhood of u (or are equal to u or v). To
sort the possible branches for different pairs {u, v}, the authors first compute the size of the
symmetric difference in the neighborhoods of u and v and then perform bucket-sort.

4.3 Ranking of the Heuristic Track
The ranking for the heuristic track is listed subsequently; We list the score for the 100 private
instances, computed as described above. The larger the score, the better. As in the exact
track, submissions marked with “¹” are student submissions of which the top three obtained
a Student Submission Award.

Rank 1 GUTHM got a score of 9103 in 30004 seconds. ¹ [13]
Authors Alexander Leonhardt, Holger Dell, Anselm Haak, Frank Kammer, Johannes

Meintrup, Ulrich Meyer and Manuel Penschuck
Affiliation Goethe University Frankfurt and THM, University of Applied Sciences Mittel-

hessen
Rank 2 Zygosity got a score of 8603 in 24924 seconds. [23]

Authors Emmanuel Arrighi, Petra Wolf, Pål Grønas Drange, Kenneth Langedal, Farhad
Vadiee, and Martin Vatshelle

Affiliation University of Trier and University of Bergen
Rank 3 Red Alert got a score of 7739 in 22924 seconds. [34]

Authors Édouard Bonnet and Julien Duron
Affiliation Université Lyon

Rank 4 HATTER got a score of 6169 in 30003 seconds. ¹ [2]
Authors Aman Jain, Sachin Agarwal, Talika Gupta, and Srinibas Swain
Affiliation Department of Computer Science and Engineering, IIIT Guwahati

Rank 5 HeiTwin got a score of 6165 in 30122 seconds. ¹ [27]
Authors Thomas Möller, Nikita-Nick Funk, Dennis Jakob, and Ernestine Großmann
Affiliation Heidelberg University

Rank 6 UAIC Twin Width got a score of 5937 in 28015 seconds. ¹ [3]
Authors Andrei Arhire, Matei Chiriac, and Radu Timofte
Affiliation Alexandru Ioan Cuza University of Iasi, and ETH Zürich and University of

Würzburg
Rank 7 Greetwin got a score of 5749 in 7265 seconds. ¹ [19]

Authors Jippe Hoogeveen
Affiliation Utrecht University

Rank 8 METATWW got a score of 4265 in 27756 seconds. ¹ [25]
Authors William Bille Meyling
Affiliation University of Copenhagen

Rank 9 twin width fmi got a score of 3231 in 16081 seconds. ¹ [31]
Authors Lucian Trepteanu, Adrian Miclaus, Alexandru Enache, and Alexandru Popa
Affiliation Faculty of Mathematics and Computer Science, University of Bucharest

M. Bannach and S. Berndt 35:11

Rank 10 jbalasin got a score of 342 in 2345 seconds. [4]
Authors Jonathan Balasingham, Sebastian Wild and Viktor Zamaraev
Affiliation University of Liverpool

4.4 Strategies Used in the Heuristic Track
In the following, we give a short overview on the ideas used in the top three solvers. We
refer the interested readers to the corresponding papers in the proceedings of IPEC 2023 for
more details.

Winning Team. The winning solver, GUTHM, uses three different strategies that are
applied to the connected components of the graph separately. In the first strategy, a very
fast heuristic is used to obtain an initial contraction sequence. This strategy greedily selects
a vertex u of minimal red degree and then identifies the best partner v according to a scoring
method. The scoring method aims to minimize the difference between the red degrees of
vertices x, for which a new red edge will appear when contracting u and v, and the red degrees
of vertices y, for which a red edge will be removed. The efficiency of this approach stems
from the observation that few applications of a two-level breadth-first search can compute
this scoring function. Then, depending on the expected twinwidth of the components, one of
two possible strategies is applied to improve this first solution. If the twinwidth is sufficiently
low, the authors use a sweeping approach where all contractions that do not exceed the
width of the contraction sequence beyond a given threshold are performed. This threshold is
iteratively adapted by random sampling. If the twinwidth of the connected component is
expected to be high, the authors either contract two vertices chosen by the above heuristic
(i. e., contracting a vertex of minimal red degree) or apply MinHashing to identify near-twins
of large red degree. To speed up their computation, the authors use a data structure that
manages the deleted nodes via the union-find data structure.

Runner-Up. The runner-up solver, Zygosity, first contracts all twins and then contracts all
trees down to a single pendant vertex connected by a red edge. The remaining time is used for
multiple random contractions. Here, the quality of a contraction depends on the maximal red
degree in the graph (which should be minimized) and the size of the intersection between the
neighborhoods of the two chosen vertices. As the red degree is the more important measure,
the intersection size is only used as tiebreaker. Instead of choosing a pair of vertices randomly,
the solver chooses one vertex u randomly and then performs a random walk starting from u.
The random walk is determined by a biased coin that depends on the density of the given
graph. If the graph is sparse, the random walk takes only one step, and otherwise it takes
two. To optimize the running time, the authors only use arrays to avoid cache-faults when
iterating over the neighborhood of a vertex.

Third Place. The third place solver, Red Alert, uses a randomized approach to generate
about 10,000 possible vertex pairs for the contraction from which a certain number is chosen
later. The number of chosen pairs directly depends on the remaining time: The less available,
the rougher the subroutine to find the pairs. If t denotes the time used in the last iteration
and T the remaining time, then about n′ ·t/T pairs are chosen if the current graph contains n′

vertices. To select the vertices, the authors use different approaches based on the density of
the remaining graph. If the remaining graph is dense, the pair is chosen uniformly at random.
In the sparse case, a first vertex is chosen uniformly at random and then one or two of its

IPEC 2023

35:12 PACE Solver Description: PACE 2023: Twinwidth

neighbors get sampled. To evaluate a pair, the solver uses a scoring function consisting of
three parts: The most crucial part measures whether the contraction decreases the maximum
red degree; the second part determines whether the maximum red degree is close to the red
degree of the contracted vertex; and the third parts counts the total number of red edges. If
the time gets short, the authors partition the vertices of the remaining graph into equally
sized buckets, which are then contracted.

4.5 Theory Award

To bridge the gap between theory and practice, we gave out a theory award to encourage
submissions containing new theoretical insights. The theory award has been granted to the
solver Hydra Prime by Yosuke Mizutani, David Dursteler, and Blair D. Sullivan (highlighted
with a “�” in Section 4.1). The award was primarily given due to the development of two
novel ideas: the timeline encoding and hydra decompositions. The timeline encoding is an
innovative data structure that enables the efficient computation of the width of a contraction
sequence, resulting in enhanced local search capabilities. Hydra decompositions, conversely,
are a divide-and-conquer strategy that features compact vertex separators.

5 PACE Organization

The program comitee of PACE 2023 consisted of the co-chairs Max Bannach and Sebastian
Berndt. During the competition, the members of the steering committee were:

(since 2016) Holger Dell (Goethe University Frankfurt and IT University of Copenhagen)
(since 2019) Johannes Fichte (Linköping University)
(since 2019) Markus Hecher (MIT)
(since 2016) Bart M. P. Jansen (chair) (Eindhoven University of Technology)
(since 2020) Łukasz Kowalik (University of Warsaw)
(since 2021) André Nichterlein (Technical University of Berlin)
(since 2020) Marcin Pilipczuk (University of Warsaw)
(since 2022) Christian Schulz (Heidelberg Univerity)
(since 2020) Manuel Sorge (Technische Universität Wien)

6 Conclusion and Future Editions of PACE

We thank all the participants for their impressive work, vital contributions, and patience
in case of technical issues. The organizers especially thank the participants who presented
their work at IPEC 2023 in the poster session or during the award ceremony. We are pleased
about the large number of diverse participants and hope the PACE challenge will continue
to build bridges between theory and practice. We welcome anyone interested to add their
name to the mailing list on the PACE website to receive updates and join the discussion.

PACE 2024. We look forward to the next edition, which will focus on one-sided crossing
minimization and will be chaired by Philipp Kindermann. Detailed information will be
posted on the website of the competition at pacechallenge.org.

pacechallenge.org

M. Bannach and S. Berndt 35:13

References

1 Barla Adam, Blažej Václav, Červený Radovan, Dvořák Michal, Knop Dušan, Koleda Jozef,
Pokorný Jan, Šťastný Petr, and Suchý Ondřej. G2oat solver for pace 2023 (twinwidth) exact
track, June 2023. doi:10.5281/zenodo.7997817.

2 Sachin Agarwal, Aman Jain, Talika Gupta, and Srinibas Swain. Hatter: Hybrid approach to
twinwidth by taming red, June 2023. doi:10.5281/zenodo.8045969.

3 Andrei Arhire and Matei Chiriac. Uaic_twin_width: An exact twin-width algorithm, June
2023. doi:10.5281/zenodo.8010483.

4 Jonathan Balasingham, Sebastian Wild, and Viktor Zamaraev. Pace-2023, May 2023. doi:
10.5281/zenodo.7996417.

5 Tomas Balyo, Marijn Heule, Markus Iser, Matti Järvisalo, and Martin Suda, editors. Pro-
ceedings of SAT Competition 2023: Solver, Benchmark and Proof Checker Descriptions.
Department of Computer Science Series of Publications B. Department of Computer Science,
University of Helsinki, Finland, 2023.

6 Gabriel Bathie, Jérôme Boillot, Nicolas Bousquet, and Théo Pierron. Pace 2023 - tinywidth
solver, May 2023. doi:10.5281/zenodo.7991737.

7 Pierre Bergé, Édouard Bonnet, and Hugues Déprés. Deciding twin-width at most 4 is
NP-complete. In ICALP, volume 229 of LIPIcs, pages 18:1–18:20. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2022.

8 Pierre Bergé, Édouard Bonnet, Hugues Déprés, and Rémi Watrigant. Approximating highly
inapproximable problems on graphs of bounded twin-width. In STACS, volume 254 of LIPIcs,
pages 10:1–10:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023.

9 Gaétan Berthe, Yoann Coudert–Osmont, Alexander Dobler, Laure Morelle, Amadeus Reinald,
and Mathis Rocton. Doblalex/touiouidth: v1.0, June 2023. doi:10.5281/zenodo.8027196.

10 Édouard Bonnet, Colin Geniet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant.
Twin-width III: max independent set, min dominating set, and coloring. In ICALP, volume
198 of LIPIcs, pages 35:1–35:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.

11 Édouard Bonnet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant. Twin-width I:
tractable FO model checking. In FOCS, pages 601–612. IEEE, 2020.

12 Édouard Bonnet and Florian Sikora. The PACE 2018 parameterized algorithms and compu-
tational experiments challenge: The third iteration. In IPEC, volume 115 of LIPIcs, pages
26:1–26:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018.

13 Holger Dell, Anselm Haak, Frank Kammer, Alexander Leonhardt, Johannes Meintrup, Meyer
Ulrich, and Manuel Penschuck. GUTHM and GUTHMi: Exact and heurstic twin-width solvers,
June 2023. doi:10.5281/zenodo.7996074.

14 Holger Dell, Thore Husfeldt, Bart M. P. Jansen, Petteri Kaski, Christian Komusiewicz, and
Frances A. Rosamond. The first parameterized algorithms and computational experiments
challenge. In IPEC, volume 63 of LIPIcs, pages 30:1–30:9. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2016.

15 Holger Dell, Christian Komusiewicz, Nimrod Talmon, and Mathias Weller. The PACE 2017
parameterized algorithms and computational experiments challenge: The second iteration.
In IPEC, volume 89 of LIPIcs, pages 30:1–30:12. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2017.

16 David Dursteler and Yosuke Mizutani. Pace 2023 - exact, June 2023. doi:10.5281/zenodo.
7996823.

17 M. Ayaz Dzulfikar, Johannes Klaus Fichte, and Markus Hecher. The PACE 2019 parameterized
algorithms and computational experiments challenge: The fourth iteration (invited paper).
In IPEC, volume 148 of LIPIcs, pages 25:1–25:23. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2019.

18 Ernestine Großmann, Tobias Heuer, Christian Schulz, and Darren Strash. The PACE 2022
parameterized algorithms and computational experiments challenge: Directed feedback vertex
set. In IPEC, volume 249 of LIPIcs, pages 26:1–26:18. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2022.

IPEC 2023

https://doi.org/10.5281/zenodo.7997817
https://doi.org/10.5281/zenodo.8045969
https://doi.org/10.5281/zenodo.8010483
https://doi.org/10.5281/zenodo.7996417
https://doi.org/10.5281/zenodo.7996417
https://doi.org/10.5281/zenodo.7991737
https://doi.org/10.5281/zenodo.8027196
https://doi.org/10.5281/zenodo.7996074
https://doi.org/10.5281/zenodo.7996823
https://doi.org/10.5281/zenodo.7996823

35:14 PACE Solver Description: PACE 2023: Twinwidth

19 Jippe Hoogeveen. Greetwin pace 2023, June 2023. doi:10.5281/zenodo.8034100.
20 Yinon Horev, Shiraz Shay, Sarel Cohen, Tobias Friedrich, Davis Issac, Lior Kamma, Aikaterini

Niklanovits, and Kirill Simonov. Satwin, June 2023. doi:10.5281/zenodo.8047007.
21 Leon Kellerhals, Tomohiro Koana, André Nichterlein, and Philipp Zschoche. The PACE 2021

parameterized algorithms and computational experiments challenge: Cluster editing. In IPEC,
volume 214 of LIPIcs, pages 26:1–26:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2021.

22 Lukasz Kowalik, Marcin Mucha, Wojciech Nadara, Marcin Pilipczuk, Manuel Sorge, and
Piotr Wygocki. The PACE 2020 parameterized algorithms and computational experiments
challenge: Treedepth. In IPEC, volume 180 of LIPIcs, pages 37:1–37:18. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2020.

23 Kenneth Langedal, Emmanuel Arrighi, Pål Grønås Drange, Farhad Vadiee, Martin Vatshelle,
and Petra Wolf. Zygosity pace 2023, September 2023. doi:10.5281/zenodo.8370343.

24 Alex Meiburg. Timeroot/twinwidth: Pace 2023, June 2023. doi:10.5281/zenodo.8045233.
25 William Bille Meyling. Metatww solver for pace-2023, June 2023. doi:10.5281/zenodo.

8045541.
26 Möller, Funk, Jakob, and Großmann. Heitwin-exact - pace challenge 2023, May 2023. doi:

10.5281/zenodo.7988134.
27 Thomas Möller, Nikita-Nick Funk, Dennis Jakob, and Ernestine Großmann. Heitwin-heuristic

- pace challenge 2023, May 2023. doi:10.5281/zenodo.7986572.
28 Networks project, 2017. URL: https://www.thenetworkcenter.nl.
29 André Schidler and Stefan Szeider. A SAT approach to twin-width. In ALENEX, pages 67–77.

SIAM, 2022.
30 Andre Schidler and Stefan Szeider. Computing twin-width with branch & bound - PACE

Submission, June 2023. doi:10.5281/zenodo.8033459.
31 Lucian Trepteanu. luciantrepteanu/pace2023: pace-2023, May 2023. doi:10.5281/zenodo.

7991297.
32 Kaio Vieira, alanctprado, emanuel juliano morais silva, and Laila Melo Vaz Lopes. emanuelju-

liano/pace2023: pace-2023, June 2023. doi:10.5281/zenodo.8045380.
33 Christopher Weyand and Marcus Wilhelm. soap1, May 2023. doi:10.5281/zenodo.7989779.
34 Bonnet Édouard and Duron Julien. Redalert, June 2023. doi:10.5281/zenodo.8079499.

https://doi.org/10.5281/zenodo.8034100
https://doi.org/10.5281/zenodo.8047007
https://doi.org/10.5281/zenodo.8370343
https://doi.org/10.5281/zenodo.8045233
https://doi.org/10.5281/zenodo.8045541
https://doi.org/10.5281/zenodo.8045541
https://doi.org/10.5281/zenodo.7988134
https://doi.org/10.5281/zenodo.7988134
https://doi.org/10.5281/zenodo.7986572
https://www.thenetworkcenter.nl
https://doi.org/10.5281/zenodo.8033459
https://doi.org/10.5281/zenodo.7991297
https://doi.org/10.5281/zenodo.7991297
https://doi.org/10.5281/zenodo.8045380
https://doi.org/10.5281/zenodo.7989779
https://doi.org/10.5281/zenodo.8079499

PACE Solver Description: Hydra Prime
Yosuke Mizutani #

University of Utah, Salt Lake City, UT, USA

David Dursteler #

University of Utah, Salt Lake City, UT, USA

Blair D. Sullivan #

University of Utah, Salt Lake City, UT, USA

Abstract
This note describes our submission to the 2023 PACE Challenge on the computation of twin-width.
Our solver Hydra Prime combines modular decomposition with a collection of upper- and lower-
bound algorithms, which are alternatingly applied on the prime graphs resulting from the modular
decomposition. We introduce two novel approaches which contributed to the solver’s winning
performance in the Exact Track: timeline encoding and hydra decomposition. Timeline encoding is
a new data structure for computing the width of a given contraction sequence, enabling faster local
search; the hydra decomposition is an iterative refinement strategy featuring a small vertex separator.

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis

Keywords and phrases Twin-width, PACE 2023

Digital Object Identifier 10.4230/LIPIcs.IPEC.2023.36

Supplementary Material Software: https://github.com/TheoryInPractice/hydraprime
archived at swh:1:dir:eb6788de444b4d5277f0a400dea4a1affa0e6df7

Funding Blair D. Sullivan: This work was supported in part by the Gordon & Betty Moore
Foundation under award GBMF4560.

1 Introduction

The goal of the 2023 Parameterized Algorithms & Computational Experiments (PACE)
Challenge (https://pacechallenge.org/2023/) was to compute twin-width [2], a structural
graph parameter which measures how close a given graph is to a cograph – a graph which can
be reduced to a single vertex by repeatedly merging (contracting) pairs of twins – vertices
with identical open neighborhoods. More generally, twin-width measures the minimum
number of “mistakes” made in such a process when the pairs being contracted are no longer
twins. If u and v are being merged, we say uy becomes a red edge if y is a neighbor of
u but not v (and analogously for edges vy). The width of a contraction sequence is then
the maximum number of red edges incident to any vertex (red degree) at any time during
the process, and the twin-width of a graph is the minimum width of all valid contraction
sequences. While graphs with bounded twin-width admit many FPT algorithms, computing
the parameter is NP-hard, and prior to the PACE challenge its exact computation had
remained impractical even on relatively small graphs.

Most twin-width solvers naturally begin by removing twins, as all groups of twins can
be collapsed without incurring any red edges, making it a safe operation. In Hydra Prime,
we employ a stronger notion of this via modular decompositions [4], which decompose a
graph into a hierarchy of maximal modules. A key property of these decompositions is
that the twin-width of the original graph is exactly the maximum of the twin-width of
the twin-free, prime quotient graphs (Theorem 3.1 from [5]). We thus begin by running a

© Yosuke Mizutani, David Dursteler, and Blair D. Sullivan;
licensed under Creative Commons License CC-BY 4.0

18th International Symposium on Parameterized and Exact Computation (IPEC 2023).
Editors: Neeldhara Misra and Magnus Wahlström; Article No. 36; pp. 36:1–36:5

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:yos@cs.utah.edu
https://orcid.org/0000-0002-9847-4890
mailto:u1161522@utah.edu
https://orcid.org/0009-0000-6471-1504
mailto:sullivan@cs.utah.edu
https://orcid.org/0000-0001-7720-6208
https://doi.org/10.4230/LIPIcs.IPEC.2023.36
https://github.com/TheoryInPractice/hydraprime
https://archive.softwareheritage.org/swh:1:dir:eb6788de444b4d5277f0a400dea4a1affa0e6df7;origin=https://github.com/TheoryInPractice/hydraprime;visit=swh:1:snp:8ab61f425b77384aa304fcf74256f1d238b0d370;anchor=swh:1:rev:11ee767099ab31ed4b33509e07b6d63e9a237189
https://pacechallenge.org/2023/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

36:2 PACE Solver Description: Hydra Prime

re-implemented linear-time modular decomposition solver based on [6], then process each
prime graph separately, maintaining a global lower bound. If a prime graph is a tree, we run
PrimeTreeSolver, otherwise we run a series of lower- and upper-bound algorithms (listed at
the end of this section) alternatively until the bounds match, from the quickest algorithms
to the slowest. Those algorithms marked with (*) use a SAT solver as a subroutine; the
implementation submitted to PACE uses the Kissat solver [1].

Algorithm List.
Exact algorithms

PrimeTreeSolver: Linear-time exact solver for trees without twins.
BranchSolver: Brute-force solver equipped with caching mechanism and reduction rules.
DirectSolver (*): SAT-based solver implementing the relative encoding presented in [5].

Lower-bound algorithms
LBGreedy: Greedily removes a vertex u from the graph G such that |△(u, v)| is
minimized for some v. Reports the maximum value of min

u,v∈V (G),u ̸=v
|△G(u, v)|.

LBCore (*): SAT-based algorithm to find max
S⊆V (G)

min
u,v∈S,u ̸=v

|△G[S](u, v)|.

LBSample: Sampling-based algorithm. Finds a connected induced subgraph G′ of G

by random walk and computes the exact or lower-bound twin-width of G′.
LBSeparate (*): Similar to LBSample, but uses the hydra decomposition to find an
induced subgraph to check for the lower-bound.

Upper-bound algorithms
UBGreedy: Iteratively contract a vertex pair minimizing the weak red potential.
UBLocalSearch: Using the timeline encoding, we make small changes to the elimination
ordering and the contraction tree to see if there is a better solution.
UBSeparate (*): Iterative refinement algorithm using the hydra decomposition.

In this paper we focus on two additional contributions to solving twin-width which are used
in the LocalSearch and Separate algorithms implemented in Hydra Prime: “timeline encoding”
and “hydra decomposition”. Timeline encoding is a novel data structure which enables
faster computation of twin-width by storing red “sources” and “intervals” indicating the
cause and window of each red edge. In the Separate upper- and lower-bound algorithms, we
introduce hydra decomposition, an iterative refinement strategy using small vertex separators.
After defining necessary notation, we briefly describe these in Sections 2 and 3, respectively.
Additional details are in the appendix available on the code repository.

Notation. We follow standard graph-theoretic notation (e.g. found in [3]), the original
definition of twin-width [2], and terminology introduced by Schidler and Szeider [5]. Refer
to [4] and [6] for the definitions of a module, modular decomposition, a prime graph, etc. We
write u ← v when vertex v is contracted into vertex u. Given a trigraph G, the weak red
potential of u, v ∈ V (G), u ≠ v is the red degree of u after contraction u ← v. We further
define the unshared neighbors of vertices u and v, denoted by △(u, v) as N(u)△N(v) \ {u, v},
where △ denotes the symmetric difference of two sets. We write [n] for {1, . . . , n}.

2 Timeline Encoding

In this work we developed the timeline encoding, a data structure to compute the width of a
given contraction sequence. An instance of the timeline encoding stores the following data:

Y. Mizutani, D. Dursteler, and B. D. Sullivan 36:3

Figure 1 An illustration of the timeline encoding given a graph and its contraction sequence.
Vertex labels show the elimination ordering. For each time i with contraction j ← i (i < j), we create
red sources {k, j} for every k ∈ △>(j, i), which determines red intervals [i, min{k, j}) that will then
disappear or transfer at time min{k, j}. The red degree corresponds to the number of overlaps of red
intervals aggregated by vertices, and its maximum value is the width of the contraction sequence.

G: input graph with n vertices.
ϕ : V (G)→ [n]: bijection that encodes an elimination ordering (vertex v is eliminated at
time ϕ(v) if ϕ(v) < n).
p : [n− 1]→ [n]: encoding of a contraction tree. For i < j, p(i) = j if vertex ϕ−1(i) is
merged into vertex ϕ−1(j) (i.e. j is the parent of i in the contraction tree).

For internal data structures, we introduce a few terms. First, define △>(j, i) := {ϕ(w) |
w ∈ △(ϕ−1(i), ϕ−1(j)), ϕ(w) > i}. Then, the red sources at time t are a set of red edges
introduced at time t, defined as {{p(t), k} | k ∈ △>(p(t), t)}. Red sources determine the red
intervals – non-overlapping, continuous intervals where an edge is red, defined as follows: for
i < j, red source (i, j) at time t creates an interval [t, i) (red edge ij disappears at time i).
If p(i) ̸= j, then we recurse this process as if red source {p(i), j} was created (red edge ij

transfers to {p(i), j}), as illustrated in Figure 1.
Now we aggregate red intervals by vertices. We maintain a multiset of intervals for each

vertex such that a red interval of an edge accounts to its both endpoints. The maximum
number of the overlaps of such intervals gives the maximum red degree at a vertex over time.
Finally, we obtain the width of the contraction sequence by taking the maximum of the red
degrees over all vertices.

A key observation is that we can dynamically compute the number of overlaps of a multiset
of intervals efficiently with a balanced binary tree (e.g. modification in time O(log n), getting
the maximum number of overlaps in O(1), etc.). For local search, we implemented methods
for modifying a contraction tree and also updating a bijection ϕ.

3 Hydra Decomposition

We also implemented an iterative refinement strategy which we term hydra decomposition,
based on finding a small vertex separator. A hydra is a structured trigraph which consists of
a (possibly empty) set of heads and a (possibly empty) vertex set tail. Each head is a set of
vertices containing one top vertex and a nonempty set of boundary vertices. The neighbors of
the top vertex must be a subset of the boundary vertices. All red edges in the trigraph must
be incident to one of the top vertices. Heads must be vertex-disjoint, but the tail may contain
boundary vertices (but not a top vertex). A compact hydra is a hydra consisting of its tail and

IPEC 2023

36:4 PACE Solver Description: Hydra Prime

Figure 2 Structure of the hydra and two examples of performing a round of hydra decomposition.

one extra vertex, with no heads. A head of a hydra H can additionally be viewed as a compact
hydra C, where the boundary vertices of H are the tail of C. Now that we have defined the
parts of a hydra, we will now show the operations performed in hydra decomposition:
1. Separate: partitions the vertices of a hydra into three parts S, A, B such that S separates

A from B. The part S should not contain any vertices from the heads, and any tail
vertices cannot be in A. Figure 2 shows two ways of choosing a separator S of a hydra.

2. Contract: takes a hydra and contracts all vertices but its tail. The output is a contraction
sequence and the resulting compact hydra.

3. Join: combines a compact hydra C and another hydra H such that V (C) ∩ V (H) is the
tail of C. The output is the union of C and H, where the heads and tail of H remain
and C becomes an additional head.

We now present a description of UBSeparate. Given a graph H and a target width d for
a contraction sequence, UBSeparate runs contract on the original graph without any heads or
tails. The contract operation works as follows: If the input H is small enough, or a vertex
separator of size at most d is not found, we directly search for a contraction sequence of width
at most d for all but tail vertices, which can be done by modified UBGreedy and other exact
algorithms. Otherwise, we perform separate to obtain a partition S, A, B. We recursively
call contract with H[A ∪ S] with S being the tail. Then, we have a contraction sequence s1
and a compact hydra C. Next, we join C with H [B ∪ S] and obtain a hydra H ′. Notice that
the tail of C must be S. We again call contract with H ′ and get a contraction sequence s2,
resulting in a compact hydra C ′ with the original tail of H. Finally, C ′ is returned along
with the concatenation of s1 and s2 as the result of the original contract operation.

A key observation is that since red edges reside only in heads and the size of separators are
bounded by d, the red degree of a hydra is also upper-bounded by d, which helps construct
a d-contraction sequence part by part. For d = 1 we use a linear-time algorithm to find a
vertex separator, or a cut vertex (articulation point); for d ≥ 2, we instead call a SAT solver.

References
1 Armin Biere and Mathias Fleury. Gimsatul, IsaSAT and Kissat entering the SAT Competition

2022. In Proc. of SAT Competition 2022 – Solver and Benchmark Descriptions, volume
B-2022-1 of Department of Computer Science Series of Publications B, pages 10–11, 2022.

2 Édouard Bonnet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant. Twin-width I:
tractable FO model checking. In 2020 IEEE 61st Annual Symposium on Foundations of
Computer Science (FOCS), pages 601–612, 2020.

3 Reinhard Diestel. Graph Theory. Springer Publishing Company, Inc., 5th edition, 2017.
4 Michel Habib and Christophe Paul. A survey of the algorithmic aspects of modular decompos-

ition. Computer Science Review, 4(1):41–59, 2010.

Y. Mizutani, D. Dursteler, and B. D. Sullivan 36:5

5 André Schidler and Stefan Szeider. A SAT Approach to Twin-Width. In 2022 Proceedings of
the Symposium on Algorithm Engineering and Experiments (ALENEX), pages 67–77, 2022.

6 Marc Tedder, Derek Corneil, Michel Habib, and Christophe Paul. Simple, linear-time modular
decomposition, 2008. arXiv:0710.3901.

IPEC 2023

PACE Solver Description: Exact (GUTHMI) and
Heuristic (GUTHM)
Alexander Leonhardt #

Goethe University Frankfurt, Germany
Holger Dell #

Goethe University Frankfurt, Germany

Anselm Haak #

Goethe University Frankfurt, Germany
Frank Kammer #

THM, University of Applied Sciences
Mittelhessen, Gießen, Germany

Johannes Meintrup #

THM, University of Applied Sciences
Mittelhessen, Gießen, Germany

Ulrich Meyer #

Goethe University Frankfurt, Germany

Manuel Penschuck #

Goethe University Frankfurt, Germany

Abstract
Twin-width (tww) is a parameter measuring the similarity of an undirected graph to a co-graph [3].
It is useful to analyze the parameterized complexity of various graph problems. This paper presents
two algorithms to compute the twin-width and to provide a contraction sequence as witness. The
two algorithms are motivated by the PACE 2023 challenge, one for the exact track and one for
the heuristic track. Each algorithm produces a contraction sequence witnessing (i) the minimal
twin-width admissible by the graph in the exact track (ii) an upper bound on the twin-width as
tight as possible in the heuristic track.

Our heuristic algorithm relies on several greedy approaches with different performance char-
acteristics to find and improve solutions. For large graphs we use locality sensitive hashing to
approximately identify suitable contraction candidates. The exact solver follows a branch-and-bound
design. It relies on the heuristic algorithm to provide initial upper bounds, and uses lower bounds
via contraction sequences to show the optimality of a heuristic solution found in some branch.

2012 ACM Subject Classification Mathematics of computing → Graph algorithms

Keywords and phrases PACE 2023 Challenge, Heuristic, Exact, Twin-Width

Digital Object Identifier 10.4230/LIPIcs.IPEC.2023.37

Supplementary Material Software (Source Code): https://github.com/manpen/twin_width
archived at swh:1:dir:b01c88158d6a76db60ebeade64dbb8b9f8121127

Software (Archived Source Code): https://zenodo.org/record/7996074

Funding Johannes Meintrup: Funded by the Deutsche Forschungsgemeinschaft (DFG) – 379157101.
Manuel Penschuck: Funded by the Deutsche Forschungsgemeinschaft (DFG) – ME 2088/5-1 (FOR
2975 – Algorithms, Dynamics, and Information Flow in Networks).

Acknowledgements The order of authors is alphabetical with the exception that we moved Alexander
Leonhardt to the front as he contributed more than a proportional amount to the heuristic solver.

1 Introduction

Twin-width has been a recent focus of researchers in the field of parameterized complexity. It
was first introduced by Bonnet et al. [3] in the context of model-checking, and further results
by Bonnet et al. followed in a series of publications. Previously, there has been only one
work on exactly computing twin-width in practice, which is based on a SAT-formulation [5].

© Alexander Leonhardt, Holger Dell, Anselm Haak, Frank Kammer, Johannes Meintrup, Ulrich Meyer,
and Manuel Penschuck;
licensed under Creative Commons License CC-BY 4.0

18th International Symposium on Parameterized and Exact Computation (IPEC 2023).
Editors: Neeldhara Misra and Magnus Wahlström; Article No. 37; pp. 37:1–37:7

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:aleonhardt@ae.cs.uni-frankfurt.de
mailto:dell@em.uni-frankfurt.de
https://orcid.org/0000-0001-8955-0786
mailto:anhaak@em.uni-frankfurt.de
mailto:frank.kammer@mni.thm.de
https://orcid.org/0000-0002-2662-3471
mailto:johannes.meintrup@mni.thm.de
https://orcid.org/0000-0003-4001-1153
mailto:umeyer@ae.cs.uni-frankfurt.de
https://orcid.org/0000-0002-1197-3153
mailto:mpenschuck@ae.cs.uni-frankfurt.de
https://orcid.org/0000-0003-2630-7548
https://doi.org/10.4230/LIPIcs.IPEC.2023.37
https://github.com/manpen/twin_width
https://archive.softwareheritage.org/swh:1:dir:b01c88158d6a76db60ebeade64dbb8b9f8121127;origin=https://github.com/manpen/twin_width;visit=swh:1:snp:1b9abd0240cef4d31294970d3d7d168bbb7f9b87;anchor=swh:1:rev:497664a8882a90769e1a7e841f0c4684f6791b2f
https://zenodo.org/record/7996074
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

37:2 PACE Solver Description: GUTHMI (Exact) and GUTHM (heuristic)

P

P+LSH

S

No tww bound known High tww regime Low tww regime

Figure 1 Heuristic strategies. The solver always starts with P to quickly upper bound a connected
component’s tww. It then attempts to find better solutions with S or P+LSH based on the best
known tww bound. Hence, the solver may only move to the right in the figure.

To our knowledge, there has been no work on heuristics for obtaining contraction sequences
of low width. It is currently unknown if there exists an FPT-approximation algorithm for
computing the twin-width of a graph, and it is NP-complete to decide whether the twin-width
of a graph is at most four [1]. Graphs of twin-width one can be recognized in polynomial
time [2], for graphs of twin-width two or three the question remains open.1

2 Preliminaries

A tri-graph G = (V, B, R) is an undirected graph (V, B∪R) where the edge set is bi-partitioned
into so-called black edges B and red edges R. Let NB(v), NR(v) and N(v), denote the open
neighborhood of v in the graphs (V, B), (V, R), and (V, B ∪ R), respectively, and N [v] denote
its closed neighborhood in the graph (V, B ∪ R). Furthermore, denote by blkDeg(v) its black
degree |NB(v)| and by redDeg(v) its red degree |NR(v)|. The 2-neighborhood of v is defined
as the set of v’s neighbors and their neighbors (excluding v itself).

Given a tri-graph, the contraction of node v into u removes v and replaces all edges
incident to u by the following new edges: A black edge to any node that had a black edge
to both u and v. A red edge to any node that had a red edge to either u or v or was only
adjacent to either u or v, but not both. Here, self-loops on u are not added. Intuitively, this
can be seen as merging u and v and coloring all differences in their incident edges red.

Given a simple and undirected graph G = (V, E), a contraction sequence for G is a list
of n − 1 contractions transforming the all black tri-graph (V, E, ∅) into a tri-graph with a
single node. The width of such a contraction sequence is the maximal red degree of any node
in any of the intermediate graphs obtained by only applying a prefix of the sequence. The
twin-width of a graph G is the minimal width of any contraction sequence for G.

3 GUTHM: Greedily Unifying Twins with Hashing and More

Our heuristic solver GUTHM is greedy in nature as it repeatedly selects the locally best
contractions to carry out. Based on various heuristics locally suboptimal contractions may
be selected, though. Since there are Θ(|V |2) possible merges to consider at each step, a naive
greedy approach is prohibitively slow on large graphs.

As summarized in Figure 1, we use three strategies based on the information available to
derive a contraction sequence. A strategy is only changed after the input graph has been
fully contracted. Based on the information gathered either a new strategy is employed or the
same strategy is used again with a different seed.

1 Open problems for twin-width: http://perso.ens-lyon.fr/edouard.bonnet/openQuestions.html

http://perso.ens-lyon.fr/edouard.bonnet/openQuestions.html

A. Leonhardt et al. 37:3

(P) Priority based: Quickly constructs a somewhat good initial contraction sequence.
(S) Sweeping based: Primarily used as second stage for low twin-width graphs since
its runtime depends on characteristics exhibited by this kind of graphs.
(P+LSH) Priority with support for locality sensitive hashing: Primarily used
as second stage for high twin-width graphs extending the greedy approach with locality
sensitive hashing.

If the input is disconnected, each connected component (CC) can be processed in isolation.
Then, node contractions within a CC preserve connectivity. We start by processing each
CC using the solver P. After establishing a first trivial contraction sequence, we repeatedly
attempt to improve the partial solution for a CC with the currently largest twin-width bound.
In the following subsections unless otherwise stated a “best” contraction always refers to a
contraction minimizing the score given in Section 3.2.

3.1 P: Priority based solver
The priority based solver P always selects a node v with the smallest red degree. It then
identifies the best contraction partner for this node (see Section 3.2 for the scoring function).
To accelerate the second step, we devised a fast method to find all nodes in the 2-neighborhood
of v and rank each by the similarity between its neighbors and v’s neighbors:

▶ Observation 1. A two-level BFS can be adjusted to calculate the symmetric difference
between v’s neighborhood and the neighborhood of the nodes in its 2-neighborhood.

After calculating the score for all nodes in the 2-neighborhood of v as depicted in Figure 2,
one can calculate the cardinality of the symmetric difference of the neighborhoods of u and v

SD(u, v) =
{

|N [v] ⊕ N [u]| = | deg(v)| + | deg(u)| − 2 · αu, if u and v are adjacent
|N(v) ⊕ N(u)| = | deg(v)| + | deg(u)| − 2 · αu, otherwise,

where αu is the number of visited incoming edges of u during a two-level BFS from v.

▶ Lemma 2. The calculation of all symmetric neighbor set differences in a graph in the
2-neighborhood of an arbitrary node v is possible in time O(|E2-NB(v)|). Here, |E2-NB(v)| is
the total number of edges in the 2-neighborhood.

Proof. Every visited incoming edge of a node u during a two-level BFS traversal directly
corresponds to a shared neighbor with v. The number αu therefore measures the number of
shared neighbors between u and v, which is |N [u]∩N [v]| for direct neighbors and |N(u)∩N(v)|
otherwise. Since a shared neighbor is present in both u’s and v’s neighborhood, a factor of
two is necessary to calculate the symmetric difference of the neighborhoods. The time to
traverse all edges in a 2-neighborhood is bounded by O(|E2-NB(v)|). ◀

▶ Observation 3. This approach can be extended to a tri-graph by executing it twice; once on
the black induced subgraph and once on the red one. Now a single two-level BFS which only
traverses the paths which consist of different colored edges, red-black and black-red, suffices to
correct the overestimation provided by the sum of the first two BFS applications.

The above technique is used to find and rank all possible contraction partners by their
neighbor set similarity. After finding and scoring the top-k partners of v a best one is
selected as the next contraction partner. If the twin-width is increased due to a contraction
involving v, the solver might postpone contracting this node to a later point in time, and,
instead, selects the next best candidate.

IPEC 2023

37:4 PACE Solver Description: GUTHMI (Exact) and GUTHM (heuristic)

1-NB

2-NB

1

2 3

45

6

7

1-NB

2-NB

1

2 3

45

6

7

+
1 +

1

+
1+

1

+1

+
1

+1

+
1

Node y α |SD(1, y)|
2 1 4
3 1 3
4 2 2
5 2 4
6 2 6
7 1 6

Figure 2 Application of BFS to order all neighbors in the 2-neighborhood by their symmetric
neighbor set difference with the source node. Grey edges depict edges from BFS level ≥ 3 while blue
and magenta edges depict edges from BFS level 1 and 2 respectively.

After a successful merge involving v, the solver contracts the newly created leafs in the
direct vicinity of v (if there are multiple). If there are further “good” contractions involving
node v, they are executed as well before selecting a new v. We continue until the intermediate
tri-graph is sufficiently small to run an exhaustive final stage solver. The final stage solver
considers all possible contractions and greedily selects the best contraction at any time.

3.2 Move selection
If the contractions do not increase the twin-width of the current intermediate tri-graph this
heuristic is employed, otherwise the next contraction is greedily chosen as a contraction with
the smallest increase in twin-width. We say the best contractions are those which minimize
the following scoring function:

score(u, v) =
∑

(v,x)∈Rnew

(redDeg(x) + 1) −
∑

(v,y)∈Rrem

redDeg(y),

where Rnew and Rrem denote the sets of red edges the contraction of (u, v) introduces and
removes, respectively.

3.3 S: Sweeping based solver
The solver S sweeps over all nodes in the graph and carries out contractions that do not
increase the twin-width above a certain threshold. On one hand, the threshold helps to
guide the solver. On the other hand, it also speeds up the computation as it reduces the
number of contraction candidates to consider. As such, we only use this strategy on graphs
with a sufficiently low upper bound on the twin-width (previously established by P or
P+LSH). On top, we employ random sampling to establish an estimate of the new threshold
at the beginning of every round further curbing execution speed at the cost of accuracy.
In subsequent calls to this solver the threshold and the random samples are continuously
tweaked to improve accuracy at the cost of execution speed.

3.4 P+LSH: Priority with support for locality sensitive hashing
If the solver P found a contraction sequence witnessing a high twin-width graph, it is unlikely
that the sweeping solver S can process this graph within the time budget. Therefore, we
attempt to improve the solution quality of the fast solver P by adding global information
collected via MinHashing [4].

A. Leonhardt et al. 37:5

Local information: Just as solver P, we initially select the next vertex v based on the
smallest red degree. The local information is now derived from the possible contractions
involving v and node u selected from the 2-neighborhood of v.
Global information: The local perspective, however, fails to identify near-twins with
large red degrees. To overcome this restriction, we use a scheme based on MinHashing to
identify “almost twins” by approximately finding a solution for the closest pair problem.
From all similar pairs obtained, we order the pairs by their number of collisions in all
hash tables and the maximum red degree of the nodes in the pair.

Using MinHashing, we approximately find near twins even in large graphs. Despite the
obvious benefits of using MinHashing, we empirically found it is still important to retain the
initial approach of selecting a vertex with the lowest red degree and considering contractions
involving this vertex. This is because the performance of MinHashing strongly depends on
the choice of tuning parameters, which we cannot efficiently adapt during execution due to
time and memory constraints. From the ordered similar pairs we only consider the top-k pairs
and select a pair that minimizes the score given in Section 3.2. When the graph becomes
sufficiently small, we again switch to an exhaustive final stage solver.

Updates of MinHash-based all-pair nearest-neighbor

After a contraction of v into u, only neighbors of the survivor u need to be updated in
the MinHash table. Observe that at most 2 adjacent edges are changed for any node w in
N(u) = NB(u) ∪ NR(u). Thus, we can preserve the data structure even for large graphs,
since the probability of needing to update a neighbor is inversely proportional to its degree.

3.5 Graph reconstruction
Since the heuristic track requires processing of large graphs with only limited memory, we
devised a data structure allowing fast reversals of previous contractions. It uses O(|V | + |E|)
memory and has a runtime for reverting contractions proportional to the combined degree of
the involved nodes for all practical purposes. As illustrated in Figure 3, any data structure
keeping track of all previously existing edges requires Ω(|V |2) memory in the worst case.
Therefore, any algorithm trying to achieve better memory bounds has to delete previously
existing edges at some point, making the reconstruction considerably harder. Other algorithms
(Contraction tree based reconstruction), which trivially achieve these memory bounds, struggle
to reconstruct the previous state with a good time complexity. We present a data structure
achieving an acceptable memory consumption in addition to a fast reversal time.

Our data structure keeps track of any deleted node using a union-find data structure.
Every red edge keeps track of the node whose removal induced the color switch to red. This
value is transferred alongside the edge when it is transferred to a new node. In case of a
conflict, that is, when the contracted nodes both have a red edge to the same neighbor, the red
edge from the survivor is taken. Furthermore, for every contraction, we use a stack to store
certain tokens that allow us to reconstruct the previous state of the graph. Upon a contraction
of v into u, v and all incident edges are deleted. For every neighbor w ∈ N(v) ∪ N(u), let
(wu, wv) ∈ {∅, r, b}2 describe the relationship of u, v with the corresponding node w with
wx = ∅ if w /∈ N(x), wx = r if w ∈ NR(x), and wx = b otherwise.

From now on the special relationships w+ = (wu, wv) = (∅, r) and w− = (wu, wv) = (r, ∅)
are distinguished from all other possible relationships. For every neighbor in N(u) ∪ N(v)
the following case distinction is made alongside the rules to be able to revert a contraction
in case of a particular relationship:

IPEC 2023

37:6 PACE Solver Description: GUTHMI (Exact) and GUTHM (heuristic)

G5 G4 G3 G2 G1

Figure 3 Depicts the Θ(|V |2) different edges present during the whole lifetime of the graph even
though it never exceeds |E| = Θ(|V |) edges at any point in time.

(wu, wv) = (∅, b) - Put (τ−, w) on the stack. Reverse: NR(u) = NR(u) \ {w}.
(wu, wv) = (b, ∅) - Put (τ+, w) on the stack. Reverse: NR(u) = NR(u) \ {w} and
NB(u) = NB(u) ∪ {w}.
(wu, wv) = (r, b) - Put (τ<, w) on the stack. Reverse: NB(v) = NB(v) ∪ w.
(wu, wv) = (b, r) - Put (τ>, w) on the stack. Reverse: NB(v) = NB(v) \ {w} and
NR(v) = NR(v) ∪ {w}.
(wu, wv) = (r, r) - Put (τ=, w) on the stack. Reverse: NR(v) = NR(v) ∪ {w}.

Without going further into detail, every token on the stack either corresponds to a black
edge turning red (happens at most once for every black edge), or to two edges having a
conflict, which necessarily deletes one edge and can therefore only happen O(|E|) times.

▶ Observation 4. The cases w+, w− correspond to cases where exactly one of the nodes is
connected by a red edge to a neighbor w while the other one is not. Determining the source
of the red edge is equivalent to looking up the node responsible for the edge turning red in the
union-find data structure, which is in the same set as one of the last contraction’s nodes.

By Observation 4 the only potentially memory-wise unbounded cases left can be handled by
querying the union-find data structure. Combining the case distinction and the observation
above, a contraction can be reverted with the stated memory and time bounds.

▶ Lemma 5. There exists a data structure using O(|E| + |V |) memory and supporting the
reversal of the last contraction up to the initial graph in O(α(|V |) ·(deg(v) + deg(u))) expected
time for the reversal of any contraction (u, v) where α(·) is the inverse Ackermann function.

Proof. The union-find data structure needs at most O(|V |) memory for the currently deleted
nodes. Since all edges are removed from the graph upon a contraction and the number of
edges cannot increase by contracting two nodes, the memory needed to store the graph never
exceeds O(|V | + |E|). We only add an item to the stack used to distinguish the different
removals from the graph, if two edges are reduced to a single edge or a black edge turns red.
Therefore, this can happen at most |E| times. This leads to a total memory consumption
dominated by O(|V | + |E|). Since any reinsertion of edges can be done in linear time, the
worst case is having to look up every edge in the union-find data structure. In this case, the
running time is bounded by O(α(|V |) · (deg(v) + deg(u))). ◀

The implementation of the heuristic solver often uses approximations of the described
techniques to stay within the imposed time bounds.

4 GUTHMI: Germanely Unifying Twins with Hashing and Meticulous
Inspection

Our exact solver GUTHMI follows the branch-and-bound paradigm. At each level of the
recursion, the algorithm potentially follows Θ(|V |2) branches which is prohibitively expensive
even for small graphs. We use several heuristics to reduce the search space:

A. Leonhardt et al. 37:7

Safe contraction of twins: Before processing an (intermediate) graph, we search for exact
twins and contract them. For performance reasons, several rules (e.g., for multiple leaves
on the same node, general twins, etc.) are dedicated to this idea.
Upper bounds: Before engaging the exact algorithm, we obtain an upper bound from a
heuristic solution. This bound may be repeatedly improved during the runtime of the
exact solver. It allows us to prune branches that cannot improve the current best solution.
Branching order : We use scoring methods similar to Section 3 to descend into most
promising branches first. Thereby, we often discover improvements quite early in the
process. These improved upper bounds then translate into even more aggressive pruning.
Lower bounds: Given a graph G = (V, E) and an induced subgraph G′ of G, the twin-width
of G is bounded from below by the twin-width of G′. Based on this, we (non-uniformly)
randomly sample subgraphs and attempt to solve them exactly in the first 20 seconds of
the execution. In many cases (esp. for small graphs with low twin-width), this suffices
to prove the optimality of the heuristic solution. Otherwise, we compare any improved
solution to the lower bound, which, upon matching allows us to terminate early.
“Conditional lower bounds” : We pass the maximum red degree of the current contraction
sequence candidate down the recursion. Amongst others, this allows us to quickly prune
subtrees if an improved solution is found.
Infeasibility caching: Since the upper bound is non-increasing during an execution, a
subproblem that cannot improve the upper bound at one point in time, cannot do it later.
For this reason we cache small infeasible subproblems to avoid recomputing them later.

Several implementation details helped to shave-off constant factors.
While descending into the recursion tree, we attempt to reuse as much of the meta-
information (e.g., branch scoring) from the parent as possible.
We compile dedicated solvers for different graph size ranges using meta-programming. For
instance, small graphs are kept in bit matrices on stack, while larger graphs are escalated
on to the heap. This way, most set operation implementations are bit-parallel.

5 Conclusion

We presented two solvers for approximately and exactly finding contraction sequences of
small width. The solvers are able to handle arbitrary graph classes with varying success,
they are generic in that sense. Further research directions might involve using the weighted
Jaccard similarity such that one can directly approximate the score in Section 3.2.

References

1 Pierre Bergé, Édouard Bonnet, and Hugues Déprés. Deciding twin-width at most 4 is np-
complete. In ICALP 2022, volume 229 of LIPIcs, pages 18:1–18:20, 2022. doi:10.4230/
LIPIcs.ICALP.2022.18.

2 Édouard Bonnet, Eun Jung Kim, Amadeus Reinald, Stéphan Thomassé, and Rémi Watrigant.
Twin-width and polynomial kernels. Algorithmica, 2022. doi:10.1007/s00453-022-00965-5.

3 Édouard Bonnet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant. Twin-width I:
tractable FO model checking. J. ACM, 69(1):3:1–3:46, 2022. doi:10.1145/3486655.

4 A. Broder. On the resemblance and containment of documents. In Proceedings of the
Compression and Complexity of Sequences 1997, SEQUENCES ’97, page 21, USA, 1997. IEEE.
doi:10.1109/SEQUEN.1997.666900.

5 André Schidler and Stefan Szeider. A SAT approach to twin-width. In ALENEX 2022, pages
67–77. SIAM, 2022. doi:10.1137/1.9781611977042.6.

IPEC 2023

https://doi.org/10.4230/LIPIcs.ICALP.2022.18
https://doi.org/10.4230/LIPIcs.ICALP.2022.18
https://doi.org/10.1007/s00453-022-00965-5
https://doi.org/10.1145/3486655
https://doi.org/10.1109/SEQUEN.1997.666900
https://doi.org/10.1137/1.9781611977042.6

PACE Solver Description: Touiouidth
Gaétan Berthe #

LIRMM, CNRS, Université de Montpellier, France

Yoann Coudert–Osmont #

Université de Lorraine, CNRS, Inria, LORIA, France

Alexander Dobler #

Algorithms and Complexity Group, TU Wien, Austria

Laure Morelle #

LIRMM, CNRS, Université de Montpellier, France

Amadeus Reinald #

LIRMM, CNRS, Université de Montpellier, France

Mathis Rocton #

Algorithms and Complexity Group, TU Wien, Austria

Abstract
We describe Touiouidth, a twin-width solver for the exact-track of the 2023 PACE Challenge: Twin
Width. Our solver is based on a simple branch and bound algorithm with search space reductions
and is implemented in C++.

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis; Theory of
computation → Parameterized complexity and exact algorithms

Keywords and phrases Twinwidth, Pace Challenge

Digital Object Identifier 10.4230/LIPIcs.IPEC.2023.38

Supplementary Material Software (source code): https://doi.org/10.5281/zenodo.8027195

Funding Gaétan Berthe: Supported by the ANR project ELIT (ANR-20-CE48-0008-01).
Alexander Dobler : Supported by the Vienna Science and Technology Fund (WWTF) under grant
[10.47379/ICT19035].
Laure Morelle: Supported by the ANR project ELIT (ANR-20-CE48-0008-01) and the French-
German Collaboration ANR/DFG Project UTMA (ANR-20-CE92-0027).
Amadeus Reinald: Supported by the ANR project DIGRAPHS (ANR-19-CE48-0013).
Mathis Rocton: Supported by the European Union’s Horizon 2020 research and innovation COFUND
programme (LogiCS@TUWien, grant agreement No 101034440), and the FWF Science Fund (FWF
project Y1329).

1 Introduction

Twin-width is a graph parameter introduced in 2020 by Bonnet, Kim, Thomassé and
Watrigant [3]. The PACE 2023 Exact Challenge asks to compute the exact twin-width of
a dataset of 200 graphs. It is known that deciding whether a graph has twin-width 4 is
NP-complete [1], and no approximation algorithms are known. On the exact front, there
exists a polynomial-time algorithm for deciding whether a given graph has twin-width 1
[2], and the complexity remains open for twin-width 2 and 3. The exact computation of
twin-width has already been tackled using SAT solver methods in [4].

© Gaétan Berthe, Yoann Coudert–Osmont, Alexander Dobler, Laure Morelle, Amadeus Reinald, and
Mathis Rocton;
licensed under Creative Commons License CC-BY 4.0

18th International Symposium on Parameterized and Exact Computation (IPEC 2023).
Editors: Neeldhara Misra and Magnus Wahlström; Article No. 38; pp. 38:1–38:4

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:gaetan.berthe@lirmm.fr
https://orcid.org/0000-0003-0017-6922
mailto:yoann.coudert-osmont@inria.fr
mailto:adobler@ac.tuwien.ac.at
https://orcid.org/0000-0002-0712-9726
mailto:laure.morelle@lirmm.fr
https://orcid.org/0009-0000-1001-1801
mailto:amadeus.reinald@lirmm.fr
https://orcid.org/0000-0002-8108-4036
mailto:mrocton@ac.tuwien.ac.at
https://orcid.org/0000-0002-7158-9022
https://doi.org/10.4230/LIPIcs.IPEC.2023.38
https://doi.org/10.5281/zenodo.8027195
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

38:2 PACE Solver Description: Touiouidth

A trigraph G = (V, Eb, Er) consists of a vertex set V , a set of black edges Eb, and a set
of red edges Er. All trigraphs considered in this paper are undirected, finite, and without
loops or multiple edges (red or black). Let NG

b (v) = {x | {v, x} ∈ Eb} be the open black
neighbourhood of v in G, and NG

r (v) = {x | {v, x} ∈ Er} be its open red neighbourhood.
The red degree of v ∈ V is δr(v) = |{e ∈ Er | v ∈ e}|. The red degree of G is maxv∈V δr(v).

A contraction in a trigraph G consists of merging any two vertices u and v into a single
vertex w, and updating the edges of G as follows. Every vertex x ∈ NG

r (u) ∪ NG
r (v) ∪

(NG
b (u)∆NG

b (v)) is linked to w by a red edge, and every vertex x ∈ Nb(u) ∩Nb(v) is linked
to w by a black edge. All other edges in the graph (those not incident to u or v) remain
unchanged. A contraction sequence (G1, . . . , G|V |) for G is a sequence of contractions starting
from G1 = G with no red edge and ending in G|V | consisting of a single vertex, where Gi+1 is
obtained from Gi by performing a contraction. A k-contraction sequence is such a sequence
in which all graphs Gi have red degree at most k. Then, the twin-width of the graph is the
minimal k for which there exists a k-contraction sequence.

In the following sections we describe our algorithm finding such an optimal contraction
sequence. Section 2 describes a simple reduction rule. Section 3 describes the branch and
bound algorithm that is used in several parts of our final algorithm, which is described in
Section 5.

2 Reduction Rule

The following reduction rule is a generalisation of twins for trigraphs and is applied in all
parts of our algorithms.

▶ Reduction Rule 1. If there exist two vertices u, v ∈ V such that
NG

b (u) ⊆ NG
b (v), and

(NG
r (v) ∪NG

b (v)) ⊆ (NG
r (u) ∪ {u, v}),

then contract u and v.

The correctness of this reduction rule is immediate: Let G′ be the graph after contracting u

and v. Then G′ = G[V \ {v}] and the twin-width of induced trigraphs can only decrease [3].
Note that u and v are not symmetric in the above description of the reduction rule. But the
rule as it is presented above is easier to implement.

3 Main Branch and Bound Algorithm

The main building block of our algorithm is a branch and bound algorithm that tries all
pairs of possible contractions in each search tree node. In the following, we present a few
optimizations made in our solver.

Search space reduction. Consider a search tree node x of our branch and bound algorithm.
Assume we contract vertices u and v in G, and recurse into child node y of the search
tree. We do not have to try contracting u and v in the search trees rooted at sibling nodes
of y until some contraction “touches” N2

G(u) or N2
G(v) where N2

G is the closed radius-two
neighbourhood in G (considering black and red edges) (see Algorithm 1). We store these
so-called forbidden contractions (set S in Algorithm 1) using a global vector of sets.

G. Berthe, Y. Coudert–Osmont, A. Dobler, L. Morelle, A. Reinald, and M. Rocton 38:3

Algorithm 1 A sketch of the recursive branch and bound algorithm that avoids symmetries.
The input is a trigraph G and a set S of forbidden contractions. Both are updated during
the search tree.

1 SearchTree(G, S):
2 for (u, v) ∈ V (G)× V (G) do
3 if u < v ∧ (u, v) ̸∈ S then
4 S′ ← S \ ((N2

G(u) ∪N2
G(v))× V (G)) \ (V (G)× (N2

G(u) ∪N2
G(v));

5 SearchTree(contract(G, u, v), S′);
6 S ← S ∪ {(u, v), (v, u)};

Branching order. To guide the order in which we explore the search tree induced by our
branch and bound algorithm, we consider all possible contractions in a search tree node in a
given order. Namely, for u, v ∈ V , let ∆(u, v) = |((Nb(u)∆Nb(v))∪ (Nr(u)∪Nr(v))) \ {u, v}|.
Then we contract u1 and v1 before u2 and v2 if ∆(u1, v1) < ∆(u2, v2). We sort all pairs
using bucket sort, using one bucket for each k = ∆(u1, v1). This is faster than sorting all
pairs using standard sorting algorithms when k is small. We observed that our initial upper
bounds are small for most instances, so this improved the overall runtime of our algorithm.

Optimisations. We list further optimisations that we apply during the branch and bound
process.

If the current trigraph has at most 64 vertices then a vector of unsigned long long is used
to store the current adjacency lists (for red and black edges). If bit j for index i in this
data structure is one then this indicates the presence of an edge. This allows for faster
set operations on neighbourhoods of vertices.
At each search tree node, contract twins based on Reduction Rule 1. To find these twins,
we do not have to try all pairs of vertices, but only those that are in the neighbourhood
of contractions.
We use a global upper bound and local/global lower bounds to leave infeasible parts of
the search tree as early as possible.

4 Upper Bounds

We apply two heuristics that compute contraction sequences yielding us upper bounds. The
first, called Heuristic1, iteratively contracts two vertices u, v such that ∆(u, v) is minimal
among all pairs of vertices of the current graph. The second heuristic, called Heuristic2, uses
randomness and can be executed several times. Given the current graph and an upper bound
T , it contracts a random pair of vertices among all pairs u, v such that, after the contraction
of u and v, the red degree of the trigraph does not exceed T − 1. If Heuristic2 is able to find
a contraction sequence with twin-width less than T then this twin-width can be used as new
upper bound for the next iteration.

5 The Complete Algorithm

The complete algorithm consists of three phases: computing a lower bound, computing an
upper bound, and then using the branch and bound algorithm. It is run on each connected
component of the graph, and each phase is given a time limit as indicated below.

IPEC 2023

38:4 PACE Solver Description: Touiouidth

Lower bound (15 minutes). A lower bound is computed based on the twin-width of induced
subgraphs of G. We start with |V | induced subgraphs, each containing one distinct vertex of
the graph. Then, for each graph Gi, we iteratively add a vertex v; v has to be connected to
Gi and v’s minimum symmetric difference of neighbourhoods (in G) with vertices in Gi is
maximal. After adding a vertex, the twin-width of the newly obtained induced subgraph is
computed, and the lower bound is updated.

Upper bound heuristics (5 minutes). Next, Heuristic1 is ran once, and Heuristic2 is called
multiple times in the remaining time. In a lot of instances, Heuristic2 is able to match the
lower bound. So we are done and do not have to go to the next stage of the algorithm.

Exact Branch and Bound (10 minutes). The remaining time the exact branch and bound
algorithm is applied to the input trigraph G. The upper bound obtained from the previous
algorithm is used to leave infeasible parts of the search tree early. If a contraction sequence
with twin-width matching the lower bound from the first phase is found, we report that
contraction sequence as the solution. Otherwise, if the twin-width is larger than that lower
bound, the complete search space (without infeasible parts due to the upper bound and
without symmetries) is explored to find the contraction sequence with the smallest twin-width.

References

1 Pierre Bergé, Édouard Bonnet, and Hugues Déprés. Deciding Twin-Width at Most 4 Is
NP-Complete. In Mikołaj Bojańczyk, Emanuela Merelli, and David P. Woodruff, editors, Proc.
International Colloquium on Automata, Languages, and Programming (ICALP 2022), volume
229 of Leibniz International Proceedings in Informatics (LIPIcs), pages 18:1–18:20, Dagstuhl,
Germany, 2022. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.
ICALP.2022.18.

2 Édouard Bonnet, Eun Jung Kim, Amadeus Reinald, Stéphan Thomassé, and Rémi Watrigant.
Twin-width and polynomial kernels. Algorithmica, 84(11):3300–3337, 2022.

3 Édouard Bonnet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant. Twin-width I:
tractable FO model checking. J. ACM, 69(1):3:1–3:46, 2022. doi:10.1145/3486655.

4 André Schidler and Stefan Szeider. A SAT approach to twin-width. In Cynthia A. Phillips
and Bettina Speckmann, editors, Proc. Symposium on Algorithm Engineering and Experiments
(ALENEX 2022), pages 67–77. SIAM, 2022. doi:10.1137/1.9781611977042.6.

https://doi.org/10.4230/LIPIcs.ICALP.2022.18
https://doi.org/10.4230/LIPIcs.ICALP.2022.18
https://doi.org/10.1145/3486655
https://doi.org/10.1137/1.9781611977042.6

PACE Solver Description: Zygosity
Emmanuel Arrighi # Ñ

University of Trier, Germany

Pål Grønås Drange #

University of Bergen, Norway

Kenneth Langedal #

University of Bergen, Norway

Farhad Vadiee #

University of Bergen, Norway

Martin Vatshelle #

University of Bergen, Norway

Petra Wolf # Ñ

University of Bergen, Norway

Abstract
The graph parameter twin-width was recently introduced by Bonnet et al. Twin-width is a parameter
that measures a graph’s similarity to a cograph, which is a graph that can be reduced to a single
vertex by repeatedly contracting twins. This brief description introduces Zygosity, a heuristic for
computing a low-width contraction sequence that achieved second place in the 2023 edition of
Parameterized Algorithms and Computational Experiments Challenge (PACE). Zygosity starts by
repeatedly contracting twins. Then, any attached trees are contracted down to a single pendant
vertex. The remaining graph is then contracted using a randomized greedy algorithm.

2012 ACM Subject Classification Mathematics of computing → Graph algorithms

Keywords and phrases Twin-width, randomized greedy algorithm

Digital Object Identifier 10.4230/LIPIcs.IPEC.2023.39

Supplementary Material Software (Source Code): https://doi.org/10.5281/zenodo.8370343

1 Problem description

Let G = (V, E) be an undirected graph with vertex set V and edge set E, where the
edge set is partitioned into black edges B(E) and red edges R(E). The neighborhood of
a vertex u is denoted by N(u), formally N(u) = {v ∈ V | uv ∈ E}. A neighbor v of a
vertex u can be black or red, depending on whether uv is in B(E) or R(E). Formally, for
a vertex u ∈ V , we let Nr(u) = {v ∈ V | uv ∈ R(E)} be the red neighborhood of u and
N b(u) = {v ∈ V | uv ∈ B(E)} be the black neighborhood of u. The degree of a vertex u is
the size of the neighborhood |N(u)| and the black and red degree refers to the size of the
black and red neighborhood (|N b(u)| and |Nr(u)|), respectively.

A contraction between two vertices u and v is performed by removing u and v from G,
and adding a new vertex w as follow:

Nr(w) = Nr(u) ∪ Nr(v) ∪ (N b(u)∆N b(v)) \ {u, v} where N b(u)∆N b(v) is the symmetric
difference.
N b(w) = N b(u) ∩ N b(v).

A contraction sequence starts from the original graph and ends with a single vertex. This
original graph starts with no red edges. The width of a contraction sequence is the highest
red degree of any vertex along the way. And finally, the twin-width parameter introduced by
Bonnet et al. [1] is the lowest width among all possible contraction sequences for G.

© Emmanuel Arrighi, Pål Grønås Drange, Kenneth Langedal, Farhad Vadiee, Martin Vatshelle, and
Petra Wolf;
licensed under Creative Commons License CC-BY 4.0

18th International Symposium on Parameterized and Exact Computation (IPEC 2023).
Editors: Neeldhara Misra and Magnus Wahlström; Article No. 39; pp. 39:1–39:3

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:emmanuel@arrighi.eu
https://emmanuel.arrighi.eu/
https://orcid.org/0000-0002-0326-1893
mailto:Pal.Drange@uib.no
https://orcid.org/0000-0001-7228-6640
mailto:Kenneth.Langedal@uib.no
https://orcid.org/0009-0001-6838-4640
mailto:Farhad.Vadiee@uib.no
https://orcid.org/0000-0001-8106-2198
mailto:Martin.Vatshelle@uib.no
mailto:mail@wolfp.net
https://www.wolfp.net/
https://orcid.org/0000-0003-3097-3906
https://doi.org/10.4230/LIPIcs.IPEC.2023.39
https://doi.org/10.5281/zenodo.8370343
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

39:2 PACE Solver Description: Zygosity

2 Solver description

Zygosity is a randomized greedy heuristic for computing low-width contraction sequences.
Before the randomized part, it performs two preprocessing steps. First, all twins are
contracted. Secondly, as described by Bonnet et al. [1], trees are contracted by either
contracting two leaves with the same parent or a leaf with its parent. If the whole graph is a
tree, this gives a sequence with a width of at most two. Otherwise, the tree will contract
down to a single pendant vertex connected by a red edge.

The remaining sequence is constructed by considering multiple random contractions at
each step and selecting the best one. The exact number of contractions to consider is updated
continuously during the construction. The number is updated every second based on the
remaining time and the average time it takes to check one contraction. Zygosity employs
two measures to evaluate the quality of a contraction.

Red degree: This red degree refers to the highest red degree of a vertex that increased
its red degree due to this contraction. The newly merged vertex is considered increased if
its red degree is greater than both of the merged vertices. Intuitively, the red degree is the
most important thing to keep low when constructing a low-width contraction sequence.
Intersection size: This is the size of the intersection between the neighborhoods of
the two merged vertices. This number also says how many edges will be removed due
to this contraction. If an edge connects the two merged vertices, this counts one to
the intersection size. The intuition for this measure is that fewer edges make for fewer
problems later.

Zygosity prioritizes the smallest red degree and uses intersection size as a tiebreaker. The
only exception to this rule is when both contractions being compared have a red degree lower
than the current width of the sequence generated so far. In such cases, only the intersection
size is taken into account.

Instead of randomly picking a pair of vertices, Zygosity randomly picks the first vertex
and then does a random walk from there. The random walk performs either one or two steps,
depending on a biased coin toss. The odds on this coin are decided based on the density of
the input graph, favoring distance one walks on sparser graphs and distance two on dense
ones.

3 Implementation details

For this randomized procedure, it is crucial to quickly compute the intersection and red
degree of a potential contraction. Therefore, spending more time elsewhere can be beneficial
if it speeds up the contraction checking. For this reason, we don’t use any associative data
structure but instead store the neighborhood of a vertex continuously in a single array. The
black and red edges are kept separate and sorted separately. With this setup, computing the
intersection and red degree can be done by scanning through the two neighborhoods in a
cache-friendly manner. It is possible to make a single pass using four pointers. However, we
noticed that doing a separate pass over the red neighborhoods first was faster. This pass
copies the difference to a separate array. Then, a second pass over the black parts and the
temporarily stored difference from the red ones. This captures every relation a vertex can
have with the contraction in question, and the intersection and max degree are registered
accordingly.

E. Arrighi, P. G. Drange, K. Langedal, F. Vadiee, M. Vatshelle, and P. Wolf 39:3

References

1 Édouard Bonnet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant. Twin-width I:
tractable FO model checking. ACM Journal of the ACM (JACM), 69(1):1–46, 2021.

IPEC 2023

PACE Solver Description: RedAlert - Heuristic
Track
Édouard Bonnet # Ñ

Univ Lyon, CNRS, ENS de Lyon, Université Claude Bernard Lyon 1, LIP UMR5668, France

Julien Duron #

Univ Lyon, CNRS, ENS de Lyon, Université Claude Bernard Lyon 1, LIP UMR5668, France

Abstract
We present RedAlert, a heuristic solver for twin-width, submitted to the Heuristic Track of the 2023
edition of the Parameterized Algorithms and Computational Experiments (PACE) challenge.

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis

Keywords and phrases twin-width, contraction sequences, heuristic, pair sampling, pair filtering

Digital Object Identifier 10.4230/LIPIcs.IPEC.2023.40

Related Version Full Version: https://bitbucket.org/tennobe/red-alert

Funding This work was supported by the ANR projects TWIN-WIDTH (ANR-21-CE48-0014) and
Digraphs (ANR-19-CE48-0013).

1 Twin-width and contraction sequences

To keep our description short, we refer the reader to the first two sections of [2] for the
definitions and motivations behind contraction sequences and twin-width. A trigraph has
two disjoint edge relations: red edges and black edges. Its total graph consists of the union
of these two relations. The red degree (resp. total degree) is the degree in the graph formed
by the red edges (resp. in the total graph). We aim to find a contraction sequence (that
iteratively identifies two vertices and updates the color of their incident edge, until there is
only one vertex left) with overall maximum red degree as low as possible.

2 Overview of RedAlert

In the search of contraction sequences of low width, a natural subroutine consists of finding
a good pair of vertices, that is, one whose contraction results in a trigraph with maximum
red degree as low as possible. An oracle providing the greedily best pair in 10−5s would have
likely won the competition. However, this is far from what is physically possible. In theory,
getting a best pair within the allowed 300s is already challenging, since the largest instances
had order of 107 vertices, and Closest Vector Pair –more or less the best pair problem
when starting from a graph– (like the task of finding an orthogonal pair of 0,1-vectors) has
no truly subquadratic algorithm unless the Strong Exponential-Time Hypothesis fails [3].

We thus resolve to sampling the pairs of vertices as candidates for the next contraction.
Based on the remaining time and number of vertices, we compute an integer minPairs
indicating the minimum number of pairs to be contracted from the sampled pairs (to finish
in time). We then contract at least minPairs candidate pairs according to a cost function
detailed below. Challenging instances produce denser and denser trigraphs as we contract
them. This results in a progressive increase of the time to sample and select pairs to contract.
In such cases, we may resort to faster (and rougher) subroutines to finish the contraction
sequences: totDegAlert and balancedScheme. We will briefly detail them.

© Édouard Bonnet and Julien Duron;
licensed under Creative Commons License CC-BY 4.0

18th International Symposium on Parameterized and Exact Computation (IPEC 2023).
Editors: Neeldhara Misra and Magnus Wahlström; Article No. 40; pp. 40:1–40:5

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:edouard.bonnet@ens-lyon.fr
http://perso.ens-lyon.fr/edouard.bonnet/
https://orcid.org/0000-0002-1653-5822
mailto:julien.duron@ens-lyon.fr
https://orcid.org/0009-0004-0925-9438
https://doi.org/10.4230/LIPIcs.IPEC.2023.40
https://bitbucket.org/tennobe/red-alert
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

40:2 PACE Solver Description: RedAlert - Heuristic Track

To summarize, the main loop of RedAlert is as follows:

1. Estimation of minPairs;

2. Sampling of the candidate pairs;

3. Selection of at least minPairs most favorable pairs among the candidate pairs;

4. Contraction of these pairs;

5. If running out of time, finish with increasingly cruder heuristics.
Also see Figure 1.

Parsing
Input

Computing
minPairs

Sampling
Candidates

Filtering
Candidates Contractions

One vertex remaining?zeitnot or minPairs too high

totDegAlert

balancedScheme

Output

Main Loop

Computing
minPairs

Sampling
Candidates

Filtering
Candidates Contractions

One vertex remaining?zeitnot or minPairs too high No

Yes

No

Yes

no time left

Figure 1 Sketch of RedAlert. We exit the main loop when (we have a solution or) the time
budget of 260s is depleted or we would have to contract over 40% of our sampled pairs. We then
call totDegAlert up to second 285. If by then no complete contraction sequence was found, we call
balancedScheme which takes less than a second to terminate.

3 Dense and Small vs. Sparse and Large Inputs

Before we start parsing the input graph, we decide based on its number of vertices and edges
whether we want to work with adjacency matrices or adjacency lists. Typically the former
shall be preferred on graphs with few vertices but high edge density, while it is simply not an
option when the number of vertices becomes too large. Only the first three or four instances
(below 2500 vertices) of the Heuristic Track were such that our treatment with adjacency
matrices performed better. Thus we will mainly describe the part of our algorithm using
adjacency lists. Nevertheless, let us mention one nice feature of using adjacency matrices:
one can test the quality of a pair of vertices by sampling an appropriate number of indices,
and computing the number of disagreements (potential red edges) at these indices.

In the sparse case, we represent our trigraphs with slightly-modified adjacency lists: the
neighbors of a vertex are stored in a set. Each vertex has a set for its black neighbors, and
a set for its red neighbors. While contracting the trigraph, we maintain other useful elements
such as the remaining number of vertices, edges, maximum red degree, overall maximum
red degree, list of pairs vertex/red degree, list of pairs vertex/total degree, and some arrays
to keep the conversion between local labels and global labels. The contraction operation
remains reasonably fast and takes a typical 10−4s on the large instances.

É. Bonnet and J. Duron 40:3

4 Sampling candidates

4.1 Computing minPairs

At each iteration of the main loop, we sample around 10000 pairs of vertices, and contract
minPairs pairs of them. To choose minPairs, we compute the time used in the last iteration
of the loop, say t and the remaining time say T . In the hypothesis where the next iterations
will use the same time t, we can afford T/t more iterations. In practice, not all the iterations
take the same amount of time, but the changes are sufficiently gradual for the approximation
to work.

If the current number of vertices of the graph is k, then each of those iterations should
contract k

T/t = tk/T pairs, which leads to minPairs = tk/T . Typical values of minPairs are
1 for the smallest instances, 30 for medium ones, and above 1000 for the largest, a problem
that we tackle in Section 6. When minPairs is too small (1 for example) we increase the
sampling size to better use our time. To achieve this, we increase it while minPairs is
below 30, decrease it if later minPairs gets above 70, and reset it to its minimum of 10000
when minPairs reaches 500.

4.2 Candidates distribution
In the sparse case, our distribution is biased towards pairs of vertices that are close to each
other. We pick a vertex v uniformly at random. Then with probability 1/2, we uniformly
pick a first neighbor of v (in the total graph) to complete the pair, and with probability 1/2,
we uniformly choose a second neighbor of v (still in the total graph). This performs well
on the sparsest instances. As half of our sampled pairs consist of vertices at distance 2, we
naturally find contractions that are decreasing the red degree of high-degree vertices.

We experimented a bit with favoring vertices v with low red degree or low total degree,
or adding pairs of red neighbors of a vertex with highest red degree. This did not seem to
improve the overall performance of the heuristic, so we opted for this simple distribution.

In the dense case, this distribution is not helpful: most pairs of vertices are at distance 2.
We thus used the uniform distribution.

5 Filtering candidates

We evaluate the sampled pairs based on a cost function f , defined as follows. If G is
the current trigraph, u, v two vertices of G, and G′ the resulting trigraph if u and v were
contracted into w, we set f(u, v) = (r, p, e) where

r ∈ {0, 1}, and r = 0 iff the maximum red degree of G′ is smaller than that of G;
p is the maximum red degree among vertices of G′ in the closed red neighborhood of w;
e is the total number of red edges in G′.

When comparing two pairs of vertices, we prefer the one whose image by f is lexicograph-
ically smaller. When different sampled pairs share vertices, we cannot contract both of them.
In the same way, the contraction of a pair can drastically change the evaluation of another
pair. To overcome those issues, we build a min-heap (according to f) of the candidates, and
contract them in the following way:

Pop the minimal candidate c

If one of the vertices of c does not exist anymore, we continue
We evaluate f(c) in the current trigraph
If f(c) is not worst than the previous time it was evaluated, we contract c

Otherwise we add c to the min-heap with the new value of f(c).

IPEC 2023

40:4 PACE Solver Description: RedAlert - Heuristic Track

And we loop until we contracted minPairs candidates. This procedure is particularly useful
in the case of a path: If we did not evaluate again the candidates after one contraction, then
we would contract both endpoints of the path with their neighbor, resulting in a sequence of
width 2 (instead of 1). We found out that further contracting all pairs tying with the worst
contracted pair may advantageously clear some time up, heading to an uncertain and more
complicated future.

A major issue with f is that computing f(u, v) is linear in d(u)+d(v) where d(u) and d(v)
are the degrees of u and v. This implies that increasing the density of the trigraph increases
the time taken to evaluate f . In this case, we cannot afford to be as picky as before in the
choice of candidate we contract, which is implemented by the augmentation of minPairs.

6 When time gets shorter or minPairs gets too large

It can happen that minPairs, which is computed based on the number of remaining time and
vertices (or contractions), and the time spent in the previous loop iteration per performed
contraction, steadily increases. This typically happens when the densification of the current
trigraph accelerates. This may result in a situation when, to meet its deadline, the heuristic
has to contract a large fraction of the sampled pairs, making it close to the random heuristic.

In this case, remark that the initial average degree was quite low, and as the black degree
cannot increase, the densification of the trigraph come from red edges. We can deduce from
this observation that the degree of a vertex is a good approximation of its red degree. We
thus break out of the main loop and call a faster subroutine, totDegAlert, which greedily
contracts pairs of smallest total degree. This subroutine still requires to explicitly perform
contractions, which takes some time on the largest instances. It is thus possible that we
run out of time even inside totDegAlert. Therefore, when we have only 15 seconds left, we
call balancedScheme. This subroutine is based on the O(

√
m)-sequence for m-edge graphs

(see [1] for a more precise bound). It partitions the vertex set into O(
√

m) buckets of roughly
equal sum of total degrees, plus an additional bucket with vertices of total degree Ω(

√
m)

(large degree), see Figure 2.

. . .

O(
√

m) buckets of total degree O(
√

m)

Bucket of large-degree vertices

Figure 2 Partition of the trigraph in buckets yielding an O(
√

m)-sequence.

The idea is then to contract every bucket into a single vertex, finishing with the
bucket of large-degree vertices, and end the contraction sequence arbitrarily. What makes
balancedScheme particularly fast is that we do not need to make these contractions expli-
citly. As a simple but effective optimization, we contract each bucket in such a way that
the contraction tree is a balanced binary tree rather than a caterpillar. When RedAlert
is about to output a solution for which it knows the actual width (i.e., without invoking
balancedScheme), we first compare it to some small multiple of

√
m where m is the number

of edges of the input graph. In some cases, indeed, running balancedScheme from scratch
on the original graph gives a better contraction sequence.

É. Bonnet and J. Duron 40:5

References
1 Jungho Ahn, Kevin Hendrey, Donggyu Kim, and Sang-il Oum. Bounds for the twin-width of

graphs. SIAM J. Discret. Math., 36(3):2352–2366, 2022. doi:10.1137/21m1452834.
2 Édouard Bonnet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant. Twin-width I:

tractable FO model checking. J. ACM, 69(1):3:1–3:46, 2022. doi:10.1145/3486655.
3 Ryan Williams. A new algorithm for optimal 2-constraint satisfaction and its implications.

Theor. Comput. Sci., 348(2-3):357–365, 2005. doi:10.1016/j.tcs.2005.09.023.

IPEC 2023

https://doi.org/10.1137/21m1452834
https://doi.org/10.1145/3486655
https://doi.org/10.1016/j.tcs.2005.09.023

	p000-Frontmatter
	Preface
	Program Committees
	Reviewers

	p001-Arrighi
	1 Introduction
	2 Preliminaries
	3 Lower Bounds
	4 Polynomial Kernel for Bounded Number of Edge Appearances

	p002-Arrighi
	1 Introduction
	2 Preliminaries
	3 NP-hardness
	4 A faster algorithm
	5 Conclusion

	p003-Bannach
	1 Introduction
	2 Background in Descriptive and Parameterized Complexity
	3 Classifying Parameterized ESO Classes: Arbitrary Structures
	3.1 Solution Weight Equals the Parameter for Arbitrary Structures
	3.2 Solution Weight Is At Least the Parameter for Arbitrary Structures
	3.3 Solution Weight Is At Most the Parameter for Arbitrary Structures

	4 Classifying Parameterized ESO Classes: Basic Graphs
	4.1 The Case E_{1}^{> =}ae for Basic Graphs
	4.2 The Case E_{1}^leaa for Basic Graphs

	5 Conclusion

	p004-Bentert
	1 Introduction
	2 Basic Observations
	3 Problem-Specific Parameters
	4 Structural Graph Parameters
	5 Conclusion

	p005-Bhyravarapu
	1 Introduction
	2 Preliminaries
	3 Kernelization
	4 Kernel Lower bound
	5 Conclusion

	p006-Bodlaender
	1 Introduction
	2 Preliminaries
	3 Hardness Results – Unary Capacities
	4 Hardness Results – Binary Capacities
	5 Algorithm for Parameter Weighted Tree Partition Width
	6 Conclusions

	p007-Bodlaender
	1 Introduction
	2 Definitions and preliminaries
	3 A simple proof for co-bipartite graphs
	4 Cubic graphs
	5 Special cases
	6 Conclusions

	p008-Bonnet
	1 Introduction
	2 Preliminaries
	2.1 Contraction sequences and twin-width
	2.2 Partition sequences
	2.3 Separation number

	3 Stretch-width
	4 Matrix characterization
	5 Overlap graph
	6 Subdivisions
	7 Classes with bounded Delta+stw have logarithmic treewidth

	p009-C.M.Gomes
	1 Introduction
	2 Preliminaries
	3 Preprocessing and general observations
	4 Polynomial-time algorithms
	5 Hardness of finding short sequences of jumps
	6 Preprocessing for token jumping
	7 Parameterizing by the size of the separators
	7.1 FPT algorithm
	7.2 No polynomial kernel for parameter k

	8 Polynomial kernel for parameter l
	9 Concluding Remarks

	p010-Chaudhary
	1 Introduction
	1.1 Our Contribution
	1.2 Organization of the paper

	2 Preliminaries
	3 Kernelization Results on EDP
	3.1 A Subcubic Vertex Kernel for Split Graphs
	3.1.1 A Bound on the Length of the Paths in a Minimum Solution
	3.1.2 An Vertex Kernel for Split Graphs

	3.2 A Quadratic Vertex Kernel for Block Graphs
	3.3 A Linear Vertex Kernel for Clique Paths

	4 Kernelization Results on VDP on Split Graphs
	5 Conclusion
	A Brief Survey of Related Works
	B Preliminaries
	B.1 Parameterized Complexity
	B.2 Graph Classes

	C NP-hardness for Complete Graphs

	p011-Dabrowski
	1 Introduction
	2 Preliminaries
	3 Overview
	4 Bad Cycles
	5 FPT Algorithms
	6 W[1]-hard Problems
	6.1 Paired Problems
	6.2 Simultaneous Problems
	6.3 Intractable Fragments

	7 Discussion

	p012-Dondi
	1 Introduction
	2 Preliminaries
	3 An FPT Algorithm
	4 Conclusion

	p013-Doron-Arad
	1 Introduction
	2 Representative Set
	3 An FPT Approximation Scheme
	4 Hardness Results
	5 A Polynomial-time 1/(2* l)-Approximation for BM
	6 Discussion

	p014-Drange
	1 Introduction
	2 Preliminaries
	2.1 Set dictionaries
	2.2 Bipartite patterns and left-covers

	3 A general pattern-finding algorithm
	4 Concrete applications
	4.1 Finding bicliques and co-matchings
	4.2 Finding shattered sets
	4.3 Approximating the ladder and semi-ladder index

	5 Implementation and experiments
	5.1 Results

	6 Conclusion
	A Complete results

	p015-Dumas
	1 Introduction
	2 Preliminaries
	3 Reduction rules
	3.1 Standard reduction rules
	3.2 An O(k) bound on the size of trivially perfect modules
	3.3 Combs with large teeth
	3.4 Reducing the graph exhaustively

	4 The deletion variant
	5 Conclusion

	p016-Eiben
	1 Introduction
	2 Preliminaries
	3 The Parameterized Complexity of Pow-Hyp-IS-Completion
	3.1 Dealing with Unstructured Missing Data
	3.2 Lower Bounds

	4 On Graph Problems on Induced Subgraphs of the Hypercubes
	5 Conclusion

	p017-Esmer
	1 Introduction
	2 Our Results
	2.1 Membership Oracles and Weighted Approximate Brute Force
	2.2 Extension Oracles and Weighted Approximate Monotone Local Search

	3 Applications
	4 Weighted Approximate Brute Force
	5 Weighted Monotone Local Search
	6 Discussion
	A Missing Proofs from Section 5
	B Problem Definitions

	p018-Ganian
	1 Introduction
	2 Preliminaries
	2.1 Consistency Checking
	2.2 PAC-Learning
	2.3 Parameterized PAC-Learning
	2.4 Consistency Checking for PAC-Learning

	3 Partitioning Problems: 2-Coloring and Split Graphs
	4 Consistency Checking for Selected Edge Search Problems
	5 Consistency Checking for Selected Vertex Search Problems
	6 Concluding Remarks

	p019-Garvardt
	1 Introduction
	2 Preliminaries
	3 NP-Hardness of PDCO
	4 Parameterized Algorithms
	4.1 Number of gaps
	4.2 Treewidth
	4.3 Number of hazy vertices
	4.4 Potential Reticulations

	5 Hardness with respect to treewidth
	6 Conclusion

	p020-Garvardt
	1 Introduction
	2 Preliminaries
	3 Algorithms for Permissive Problem variants
	3.1 An Algorithm for LS-Cluster Deletion
	3.2 An Algorithm for LS-Cluster Editing

	4 Lower Bounds
	5 Conclusion

	p021-Gima
	1 Introduction
	2 Preliminaries
	3 An FPT-algorithm parameterized by cluster vertex deletion number plus clique number
	3.1 Types and buckets
	3.2 Nice orderings
	3.3 ILP formulation

	4 W[1]-hardness parameterized by cluster vertex deletion number
	5 Conclusion

	p022-Gupta
	1 Introduction
	1.1 Related Works
	1.2 Our Contribution and Methods
	1.3 Choice of Parameter

	2 Preliminaries
	3 Reinterpretation Based on Eulerian Cycles
	4 High-Level Overview
	4.1 FPT Algorithm with Respect to Vertex Cover
	4.1.1 Encoding E^_i by a Valid Pair
	4.1.2 Robot and Cycle Types
	4.1.3 Vertex Type
	4.1.4 The Correctness of The Reduction

	4.2 Approximation Algorithm with Additive Error of O(vc)

	A W[1]-Hardness for CGE
	A.1 Reduction From Exact Bin Packing to CGE

	p023-Gupta
	1 Introduction
	1.1 The Concept of Drawn Tree Decomposition
	1.2 Comparison with Other Graph Width Parameters
	1.3 Our Scheme
	1.4 Applications of Our Scheme to Problems in Graph Drawing

	A Preliminaries
	A.1 Graph Notation and Decompositions
	A.2 Graph Drawing
	A.3 Problem Definitions

	p024-Heeger
	1 Introduction
	2 Preliminaries
	3 The 1 | overline{d}_j | sum w_j U_j problem
	3.1 Hardness results
	3.2 Constant number of deadlines
	3.3 Few jobs with nontrivial deadlines

	4 The 1|overline{d}_j |sum w_j C_j problem
	4.1 Hardness
	4.2 Constant number of deadlines

	5 Conclusion

	p025-Heinrich
	1 Introduction
	2 Preliminaries
	3 Twin-width of graphs of bounded strong tree-width
	4 Twin-width of graphs with small separators
	4.1 Biconnected components
	4.2 Apices and contractions respecting subsets
	4.3 Tree decompositions of small adhesion
	4.4 Simplifying the parts
	4.5 Tri- and quasi-4-connected components

	5 Conclusion and further research

	p026-Jaffke
	1 Introduction
	2 Overview of our techniques
	2.1 Dynamic programming algorithms
	2.1.1 FPT-algorithms
	2.1.2 XP-algorithms

	2.2 Hardness results

	3 General dynamic programming to obtain FPT-algorithms
	3.1 Preliminaries
	3.2 General dynamic programming scheme
	3.3 Generalizations
	3.4 Application to Maximum Cut

	4 Further research
	A Graphs, treewidth, boundaried graphs, and nice problems
	B Definition of the problems and their annotated extensions

	p027-Jansen
	1 Introduction
	2 Preliminaries
	3 Counting feedback vertex sets
	4 Conclusion
	A An FPT algorithm for #minFVS

	p028-Jansen
	1 Introduction
	2 Preliminaries
	3 FPT algorithm for MWNS
	4 Constructing a near-separator avoiding a specified vertex
	4.1 Algorithm
	4.2 Analysis

	5 Bounding the number of terminals
	6 Conclusions
	A Additional preliminaries
	B Hardness proof for Multiway Near-Separator

	p029-Jansen
	1 Introduction
	2 Preliminaries
	3 Kernelization for Weighted K_h-Packing on Sparse Graphs
	4 Conclusions

	p030-Jones
	1 Introduction
	2 Preliminaries
	3 Relationship to Item-Weighted Partial Set Cover
	4 Fixed-Parameter Tractability Results
	4.1 Preserved and lost Diversity
	4.2 Proximity to a tree

	5 Discussion

	p031-Koutis
	1 Introduction
	1.1 Our Contribution
	1.2 Other Related Works

	2 Preliminaries
	3 Parameter: Treewidth
	4 Parameter: Size of Vertex Modulator to Constant Treewidth
	5 Parameter: Vertex Cover Number
	6 Parameter: Feedback Edge Set Number: FPT Algorithm
	7 Conclusion and Future Directions

	p032-Kratsch
	1 Introduction
	2 Preliminaries
	3 Lower bounds
	3.1 Exponential-time hypothesis
	3.2 MK[2]-hardness

	4 Turing kernelizations for parameter treewidth plus maximum degree
	4.1 Dominating Set
	4.2 Capacitated Dominating Set
	4.3 Independent Dominating Set
	4.4 Connected Dominating Set

	5 Conclusion

	p033-Mari
	1 Introduction
	2 Preliminaries
	3 Exact algorithm
	4 Giving structure to the packing
	4.1 Conflict graph
	4.2 Packing rounded rectangles
	4.3 Proof of the structural lemma

	5 The algorithm
	5.1 The algorithm for rectangles of substantial width
	5.2 Full algorithm

	6 Conclusion
	A Figures
	B Omitted proofs

	p034-Tamaki
	1 Introduction
	2 Preliminaries
	3 Main algorithm
	4 Heuristic PID
	5 Minimalizing tree-decompositions
	6 Uncontracting PMCs
	7 Contracting PMCs
	8 Safe separators
	9 Edge ordering
	10 Suppressed edges
	11 Experiments
	12 Conclusions and future work

	p035-Bannach
	1 Introduction: History and Timeline of PACE
	2 The Problem of the Challenge: Twinwidth
	3 The Setup of PACE 2023
	3.1 The Exact Track (Compute an Optimal Contraction Sequence)
	3.2 The Heuristic Track (Compute a Contraction Sequence Quickly)
	3.3 Internal Solver and the Benchmark Set

	4 Participants and Results
	4.1 Ranking of the Exact Track
	4.2 Strategies Used in the Exact Track
	4.3 Ranking of the Heuristic Track
	4.4 Strategies Used in the Heuristic Track
	4.5 Theory Award

	5 PACE Organization
	6 Conclusion and Future Editions of PACE

	p036-Mizutani
	1 Introduction
	2 Timeline Encoding
	3 Hydra Decomposition

	p037-Leonhardt
	1 Introduction
	2 Preliminaries
	3 GUTHM: Greedily Unifying Twins with Hashing and More
	3.1 P: Priority based solver
	3.2 Move selection
	3.3 S: Sweeping based solver
	3.4 P+LSH: Priority with support for locality sensitive hashing
	3.5 Graph reconstruction

	4 GUTHMI: Germanely Unifying Twins with Hashing and Meticulous Inspection
	5 Conclusion

	p038-Berthe
	1 Introduction
	2 Reduction Rule
	3 Main Branch and Bound Algorithm
	4 Upper Bounds
	5 The Complete Algorithm

	p039-Arrighi
	1 Problem description
	2 Solver description
	3 Implementation details

	p040-Bonnet
	1 Twin-width and contraction sequences
	2 Overview of RedAlert
	3 Dense and Small vs. Sparse and Large Inputs
	4 Sampling candidates
	4.1 Computing minPairs
	4.2 Candidates distribution

	5 Filtering candidates
	6 When time gets shorter or minPairs gets too large

