
On the Convergence Time in Graphical Games:
A Locality-Sensitive Approach
Juho Hirvonen #

Aalto University, Finland
Helsinki Institute for Information Technology (HIIT), Espoo, Finland

Laura Schmid #

Kim Jaechul Graduate School of AI, KAIST, Seoul, Republic of Korea

Krishnendu Chatterjee #

IST Austria, Klosterneuburg, Austria

Stefan Schmid #

TU Berlin, Germany
Weizenbaum Institute, Berlin, Germany

Abstract
Graphical games are a useful framework for modeling the interactions of (selfish) agents who are
connected via an underlying topology and whose behaviors influence each other. They have wide
applications ranging from computer science to economics and biology. Yet, even though an agent’s
payoff only depends on the actions of their direct neighbors in graphical games, computing the
Nash equilibria and making statements about the convergence time of “natural” local dynamics
in particular can be highly challenging. In this work, we present a novel approach for classifying
complexity of Nash equilibria in graphical games by establishing a connection to local graph
algorithms, a subfield of distributed computing. In particular, we make the observation that the
equilibria of graphical games are equivalent to locally verifiable labelings (LVL) in graphs; vertex
labelings which are verifiable with constant-round local algorithms. This connection allows us to
derive novel lower bounds on the convergence time to equilibrium of best-response dynamics in
graphical games. Since we establish that distributed convergence can sometimes be provably slow,
we also introduce and give bounds on an intuitive notion of “time-constrained” inefficiency of best
responses. We exemplify how our results can be used in the implementation of mechanisms that
ensure convergence of best responses to a Nash equilibrium. Our results thus also give insight into
the convergence of strategy-proof algorithms for graphical games, which is still not well understood.
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1 Introduction

Modeling the interactions of multiple selfish agents, whose decisions and behavior influence
each other and are in some way dependent on an underlying topology, is an important
aspect of solving problems from a wide range of diverse fields. Game theory offers a natural
approach to this issue in the form of multiplayer network games [28, 9]. Instances of such
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11:2 On the Convergence Time in Graphical Games

network games are ubiquitous [3, 40, 28, 2, 43, 1]. They all have in common that interactions
and players’ decisions are in some way governed by the underlying graph and that players’
payoffs usually depend on the network that links them. Considering their heterogeneity and
complexity, general network games, such as the rich class of congestion games [40], can be
difficult to analyze. A considerable amount of research has thus been dedicated to more
restricted versions of such games, such as those where each player’s utility is solely determined
by their own and their direct neighbors’ actions. These so-called graphical games (see [31]
for a comprehensive introduction and survey) capture the locality of effects on players, and
are useful for settings where there are only a few strong direct influences on every agent [9].

Computing the Nash equilibria of graphical games or proving results about their properties
or convergence is challenging in general. Previous work has dealt with aspects such as
deciding whether a given strategy profile is a Nash equilibrium or whether equilibria exist,
and classifying the complexity of these tasks [41]. Algorithms for computing (approximate)
equilibria, often for various specific types of graphs, have also been a focus of a considerable
number of studies [37, 20, 21, 44, 27, 22]; however, it is important to note that these
algorithms usually do not reflect natural game dynamics. Hence, they are not guaranteed
to be efficient or strategy-proof: players can have incentives to deviate from the algorithm.
Additionally, we also still lack a systematic understanding and classification in terms of
computational complexity. In particular, the convergence time of strategy-proof algorithms
and local dynamics, such as best-response dynamics, to Nash equilibria is still not fully
understood, except for special cases [32, 26, 42].

In this work, we approach graphical games from a new perspective, demonstrating that
the theory of distributed computing is particularly well-suited as a tool to study the behavior
and computational power of decentralized game-theoretic systems with multiple players.
In particular, distributed computing offers the tools to prove unconditional and general
impossibility results, which demonstrate natural limits to the behavior of systems. One
of the most significant limiting factors in distributed computing is locality [39], or how
far information must propagate in a system to solve a particular task. Advantageously,
impossibility results based on locality then apply independently of more specific factors,
such as the model of strategic behavior considered. This makes it possible to analyse games
without a fixed model of play.

Distributed computing further provides a benchmark for optimal cooperation. By com-
paring the outcome of models such as best-response dynamics to the best efficient distributed
algorithm, we can assess the inefficiency of systems that are not perfectly coordinated. We
also get natural algorithmic tools for mechanism design: properly incentivised, distributed
algorithms can potentially be run by the agents without the need for centralised control.
We also note that the tools of distributed computing theory help us understand games with
multiple equilibria. We can consider questions such as which subset of equilibria can be
computed efficiently, and what their properties are. Additionally, we can study how likely
undesirable behavior is, noting that bad equilibria are also often hard to compute.

Investigating graphical games as distributed systems may seem very natural, but has
only been rarely explored [19]. In order to showcase the rich set of tools resulting from
this perspective, we show how Nash equilibria and other stable state concepts in graphical
games correspond to a family of computational problems in distributed computing called
locally verifiable labellings (LVLs) [36]. The computational complexity of these problems is
well studied (see e.g. [36, 16, 11, 17, 5]). Using the properties of LVLs, we can then classify
graphical games based on how hard it is to compute a Nash equilibrium, i.e. based on the
distributed hardness of computing a stable state. We show how this implies lower bounds
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on the convergence time of best-response dynamics in network games: these dynamics can
converge only as fast as a distributed algorithm can compute solutions to the equivalent
graph problem. We find three types of graphical games in the process: (1) Games where
Nash equilibria are easy to compute and best responses also converge fast; (2) games where
computing a Nash equilibrium is hard, and thus best responses cannot converge fast; and (3)
games where Nash equilibria are easy to compute, but best responses may fail to converge
fast. We exemplify our approach with three corresponding fundamental graphical games that
have been studied in the literature [8, 9, 30].

Games of the third type are particularly interesting, as the existence of fast distributed
algorithms offers possibilities for mechanism design. We show a way of constructing games
where best responses simulate distributed algorithms, thus ensuring convergence in games
of type 3. Since best-response dynamics are rational with respect to the restricted local
knowledge of agents, our work also connects to the open question of strategy-proof algorithms
for distributed Nash equilibria computation that is posited by [29].

Finally, we define a notion called inefficiency of best responses: It is a time-constrained
analogue of the Price of Anarchy that compares the evolution of the system state over a
time period with the best solution that can be computed with the same time complexity.
We demonstrate that Price of Anarchy can be an unfair measure by comparing strategic
behavior with perfect distributed cooperation.

Overall, our approach of classifying games based on the computational hardness of their
equilibria provides a powerful new perspective on graphical games that allows for a deeper
understanding of strategic behavior, and contributes to a strengthened connection between
game theory and distributed computing.
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Figure 1 Two simple networks with preferences indicated by numbers: each agent prefers the
neighbour labelled 1 over the neighbour labelled 2. The two networks only differ in the preferences
of the agent labelled v. Still, the unique stable matchings (marked with bold edges) are disjoint.

Stable matching [24] is a classic example of a graphical game: we have a bipartite network
where each agent on the left is connected to some subset of agents on the right. Agents
have some preference relation over the other agents they are connected to, and the goal is to
find a matching such that no pair of connected agents prefer each other over their current
matches. While there is a polynomial-time truthful centralised mechanism for finding a
stable matching, the problem becomes hard when agents form a decentralized distributed
system [23]: in the worst case, the output of an agent depends on the preferences of other
agents at linear distance (see Figure 1). This example highlights the goal of our work: we
study games that are considered “easy” is the literature of game theory and provide a more
fine-grained view of their hardness from the perspective of decentralised systems.
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11:4 On the Convergence Time in Graphical Games

1.1 Organization of the paper
We begin with a primer on graphical games and locally verifiable labelings in Section 2.
We proceed to show in Section 3 how Nash equilibria of graphical games correspond to a
family of computational tasks called locally verifiable labellings. Then, we show how to
apply these results to best-response game dynamics. In Section 4 we study and classify three
fundamental graphical games. In Section 5 we study how distributed algorithms can be used
to incentivize desired agent behavior. In Section 6, we use theory of distributed computing
to study how inefficient best-response dynamics are compared to distributed algorithms. We
conclude with an outlook on the connection between theory of distributed computing and
game theory. To improve readability and provide intuition, we, as indicated, defer technical
details and full proofs to the Appendix.

2 Model

2.1 Graphical games
Define a multiplayer game in its general form as consisting of n players i ∈ I, each equipped
with a pure strategy space or action space Ai. The cartesian product A1 × A2 × ... × An of
the action spaces of individual agents is denoted by A. Every player has a utility function
ui(a) mapping each strategy profile to a value: ui : A × I → R. We use a−i to denote the
joint strategy profile of all players except for player i.

Throughout the paper, our examples will focus on pure strategies, but all of the general
results also apply to mixed strategies. A strategy profile a∗ is a (pure) Nash equilibrium if
for all players i it holds that ui(a∗

i , a∗
−i) ≥ ui(ai, a∗

−i) ∀ai ∈ Ai. In other words, no player
in a Nash equilibrium can gain a higher utility by unilaterally deviating. We say that the
strategy a∗

i is a best response to the rest of the strategy profile a∗
−i.

We can now define graphical games, given by a triple (A, u, N). As introduced in [31],
graphical games are a concisely representable form of multiplayer games on networks. A
network or a graph N = (V, E) consists of a set of n nodes V and a set E of edges between
pairs of nodes. The nodes of the network N then represent the agents, or players, in the
graphical game. We define the local neighborhood of a node v as B(v) ⊆ {1, .., n} = {j ∈
V, (v, j) ∈ E}, with v ∈ B(v) as well. A player’s utility function uv(a) now depends only on
a strategy profile restricted to their local neighborhood B(v), i.e. the partial strategy profile
a(v) = (ai : i ∈ B(v)). We denote the product of the individual agents’ utility functions by u.

A classic example of graphical games are coloring games [30]. In a k-coloring game, the
agents must choose resources (colors) that differ from the resources chosen by their neighbors.
The action set Ai = {1, 2, . . . , k} for all agents. Utility is 1 if the strategy ai is a color that
is not chosen by its neighbors, and 0 otherwise. A strategy profile is a Nash equilibrium if
none of the agents with a similarly colored neighbor can choose a free color.

In this work, we consider the question of convergence to Nash equilibria via best-response
dynamics, a specific example of local dynamics. We assume that players can update their
strategy in between gameplay. In one step of the dynamics, one player is selected and this
player then updates her strategy with the best response to her neighborhood’s strategy
profile. That is, the action of a node v is a best response to the partial strategy profile
av(t − 1). There is some fixed order on the actions that is used to break ties. We assume
that nodes only have local information and cannot look beyond their neighborhood. Their
restricted knowledge makes such local dynamics rational. In this work, we will subsequently
only consider best responses. However, our results also hold for more general local dynamics.
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In order to have a reasonable definition of a running time for local dynamics, we define
a model of fair best responses. The play consists of fair rounds. During each round an
adversary schedules all agents to act exactly once and one at a time. The convergence time
of best-response dynamics on a fixed network is the maximum number of fair rounds until
all players have reached a Nash equilibrium over, all possible orders of play. For random
initial strategy profiles we say that best-response dynamics converge if they converge with
high probability over the initial strategy assignment.

We choose the liveness criterion of each player playing each round for two reasons. First,
if there is no bound on how often each player is guaranteed to play, then best responses
will not converge, simply because the adversary can stop some fixed subset of players from
playing. Second, the effect of e.g. each player playing every k rounds simply appears as a
multiplicative factor in the convergence times.

2.2 Distributed complexity theory and locally verifiable labelings
Our work establishes a connection between graphical games and the LOCAL model of
computation [35, 39]). We are given a fixed network N = (V, E) (a graph) connecting
n = |V (N)| nodes. To identify the nodes, each node gets an O(log n)-bit unique name as an
input. We will also consider the randomized LOCAL model, where instead each node has
access to its own private source of random bits. The nodes then collaboratively aim to solve
a given task, but can only communicate with their neighbors. The computation proceeds in
synchronous rounds. In each round each node in the graph can (1) send a message to each
of its neighbors (there is no bound on the message size), (2) receive a message from each
neighbor, and (3) perform local computations (there is no bound on the complexity of these
local computations). Initially the nodes do not know anything about the input network.
Each node is responsible for computing its own part of the output.

Running time is measured in the number of communication rounds until all nodes have
stopped and announced their outputs. The running time of a distributed algorithm (over a
family N of networks) is the maximum running time over all networks and inputs (identifiers,
random bits). The distributed complexity of a problem P for a family N of networks is the
running time of the optimal algorithm for solving P over N .

We note that the crucial property of the LOCAL model is that in T communication
rounds each node can gather information from only its T -hop neighborhood in the network.
Information outside this radius cannot affect the actions of a node, due to requiring a longer
time to propagate. We denote this T -hop neighborhood of a node v by B(v, T ), and the
radius-1 neighborhood simply by B(v).

We study a class of problems called locally verifiable labelling (LVL) problems. This is a
generalization of locally checkable labellings (LCLs) [36], a family of problems that has been
studied extensively in recent years (for example [11, 16, 17, 5, 14, 10, 4]). These are the class
of problems that can be verified efficiently with a distributed algorithm: a solution is correct
if and only if it is correct in the constant-radius neighborhood of each node. Conversely, if a
solution is not correct, at least one node can detect this by looking at its constant-radius
neighborhood. For example, coloring is locally verifiable, as each node can compare its color
with its neighbors and verify that the colors differ.

As we will show in Section 3, LVLs also capture the Nash equilibria of graphical games
(as computational problems). This follows naturally from the fact that the stability of each
agent only depends on the strategies of its neighbors.

An important result in the theory of distributed computing is a “complexity gap” of
LVLs [16]. It allows us to classify LVLs into easy and hard problems:

OPODIS 2023



11:6 On the Convergence Time in Graphical Games

▶ Fact 1 (Chang et al. [16], Informal). There is a superexponential gap in the possible
distributed complexities of LVL problems. Easy problems below this gap can be solved in
almost constant time, and hard problems above this gap require logarithmic time.

The running time for easy problems is at most the iterated logarithm of the size of the
network – an extremely slowly growing function. We say that an algorithm with this running
time is fast. Hard problems require at least logarithmic time in the size of the network. We
call such running times slow. For more details, see Appendix A.2.

3 Distributed computing and graphical games

Our work is motivated by our observation that graphical games and local algorithms are
fundamentally connected. In particular, we will show that all Nash equilibria (and in fact all
equilibria that are based on local information only) are LVLs. Thus, if we assume that agents
playing a game converge to an equilibrium, they are implicitly solving the corresponding
computational task.

We note that the LOCAL model of distributed computing is particularly well-suited for
realizing this connection. First, it is possible to prove unconditional impossibility results in
the LOCAL model. Existing results cover many LVLs that are potentially interesting from
the perspective of game theoretical applications (see e.g. [11, 35, 15, 6]). Second, any such
impossibility results proven in the LOCAL model apply to a wide range of more realistic
settings. In particular, they apply to game models where the play of the agents is constrained
by the available information. This is due to the fact that algorithms in the LOCAL model
are only limited by information propagation.

We show how to transfer existing impossibility results for computational tasks in the
distributed setting to a model of games. To do this, we first establish an equivalence between
the Nash equilibria of graphical games and locally verifiable labellings. Then, to transfer
impossibility results to the model of fair sequential best responses, we show that the LOCAL
model can simulate best responses. This implies that if all Nash equilibria of a game are
hard to compute as LVLs, then the best-response dynamics cannot converge fast to these
equilibria. Note that we study a notion of families of graphical games as an asymptotic
generalisation of single games. These are defined formally in Appendix A.3. In what follows,
when referring to a graphical game, we actually mean a family of graphical games.

Theorem 1 then states the foundational observation for our work: the Nash equilibria of
graphical games can be seen as locally verifiable labelling problems.

▶ Theorem 1 (Informal). The Nash equilibria of a family of graphical games uniquely define
an LVL.

The LVL is constructed by taking all locally stable strategy assignments: Each node
accepts a labelling if and only if it has no better response with respect to the utility function.
We illustrate the correspondence in Figure 2.

Theorem 1 means that we can study LVLs to understand graphical games: We can, e.g.,
ask if all Nash equilibria of a game are hard to compute. If they are, this fact has implications
for the underlying game. A formal version of the theorem is given in Appendix A.3.

3.1 Bounding convergence time of best responses
Next we discuss how impossibility results about LVLs can be turned into lower bounds for
the convergence time of best responses. We show that best responses can be simulated in the
LOCAL model. Formal versions of these results with their proofs are given in Appendix A.4.
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Figure 2 We illustrate the correspondence between Nash equilibria of graphical games and LVLs
for the games described in Section 4. a, In the best-shot public goods game, nodes can pay a cost to
produce a good (P) or to forego producing (F), relying on neighbors to produce. The Nash equilibria
of this game are maximal independent sest of producers. b, The minority game gives players a
choice between two resources. Their goal is to choose the opposite of the majority of their neighbors.
The Nash equilibrium is a locally optimal cut: players have at least as many neighbors playing the
opposite strategy as the same strategy.

▶ Theorem 2 (Informal). Best-response dynamics can be efficiently simulated in the LOCAL
model.

Proof sketch. The high-level idea is to compute an order of play such that many agents can
move in parallel without affecting each other. Such an order is given by a suitable coloring of
the underlying network. Each color class can move in parallel and the outcome is the same
as if they had moved one by one. A coloring can be computed fast, it needs to be computed
only once, and given a e.g. k-coloring one round of fair best responses can be simulated in k

rounds in the LOCAL model. ◀

Since convergence time of best-response dynamics is defined as the worst case over all
orders of play, Theorem 2 implies that if best-response dynamics converge fast, then there is
a fast distributed algorithm as well. Conversely, if no fast algorithm exists, best-response
dynamics cannot converge fast either.

▶ Corollary 3 (Informal). If the Nash equilibria of a family of games, as an LVL, have
distributed complexity Ω(T ), then best-response dynamics require Ω(T ) − O(log∗ n) fair
rounds to converge for that game.

We want to highlight a particular implication of Corollary 3: together with the complexity
gap of LVLs (Lemma 1) it implies a gap in the possible convergence times of best-response
dynamics as well.

▶ Corollary 4 (Informal). Best-response dynamics of a graphical game either converge fast or
take at least logarithmic time to converge.

We finish this section by noting that in fact the applicability of impossibility results from
distributed computing is much more general. Consider the following model of local dynamics:
agents play one at a time, and when it is an agent’s turn to move it decides its strategy based
on all information inside its constant-radius neighborhood, for an arbitrarily large constant.
There are no restrictions on the algorithm the agent uses to compute its decision, except
that it is a function of the information available to it.

OPODIS 2023



11:8 On the Convergence Time in Graphical Games

4 Classification of graphical games

In this section we describe a classification of families of graphical games based on Corollary 4,
and then study examples of graphical games from three different classes.

We use two dimensions for this classification. The first dimension is computational
hardness. Consider a graphical game family: computing a Nash equilibrium is either an easy
or a hard problem. The second dimension is the convergence time of best-response dynamics:
they also either converge fast or slow (at least logarithmic time). From this, we get the
following types of game families:
1. There is a graphical game family such that a Nash equilibrium can be computed fast and

best-response dynamics converge in constant number of rounds.
2. There is a graphical game family such that all Nash equilibria are hard to compute and

therefore best-response dynamics converge slow.
3. There is a graphical game family such that a Nash equilibrium can be computed fast but

best response dynamics converge slowly.
However, note that one combination is not possible: if computing a Nash equilibrium is hard,
then best-response dynamics cannot converge fast by Corollary 3: distributed algorithms are
at least as powerful as best-response dynamics.

4.1 Best-shot public goods game
This game family deals with the provision of public goods such as finding a cure for a disease
or filling an important supply, assuming that only the maximal contribution counts towards
the provision level instead of the sum of all players’ contributions [18, 9]. In contrast to
public goods games often studied as social dilemmas, i.e. where the social optimum is reached
by all agents cooperating (producing) despite the incentive to do nothing, the problem here
is not only one of free-riding, but also one of coordination. Agent groups have to figure out
which of them should optimally be the one to provide the good, in order to avoid redundant
costs. Here we consider the simplest version of the game where agents only have two choices,
to provide a good, or not to provide it. More formally, each agent has two possible actions,
i.e. Ai = {P, F}. Agents’ utilities ui are as following: if a focal agent plays F and one of
their neighbors plays P , the utility is ui = 1. If the agent plays P , ui = 1 − c (for some
0 < c < 1), but if they and all their neighbors play F , the utility is 0. Simply put, providing
the public good is costly, and it is preferable for an agent to have a neighbor do so; however,
they are still better off providing it themselves than if nobody in their neighborhood does so.

The correspondence of this game family with distributed graph problems is a prominent
one: the Nash equilibria of the best-shot public goods game correspond to maximal inde-
pendent sets of agents playing P [9]. The set is independent (i.e. no two agents with P are
adjacent), as two adjacent agents with the strategy P would have incentive to choose F . On
the other hand the set is maximal (i.e. each agent plays P or has a neighbor that plays P )
as otherwise such an agent would have incentive to play P .

Maximal independent set is an “easy” LVL [38]. Correspondingly, best responses converge
in two fair rounds for the best-shot public goods game. We can compare this with the
complexity analysis of best-shot public goods games by [32], and point out that our approach
considers a natural concept of distributed complexity whereas previous work usually takes a
different, more centralized view.

▶ Theorem 5. Fair best responses in the best-shot public goods game converge in two rounds
from any initial configuration.



J. Hirvonen, L. Schmid, K. Chatterjee, and S. Schmid 11:9

Proof. Assume that the system starts with some arbitrary strategy profile. We claim that
after the first round the set of agents playing P is independent and after the second round it
is maximal.

Assume that after the first round neighboring agents u and v play P . Then the one that
played last would have seen that the other plays P , and their best response is F . Therefore
the set of agents playing P is independent. In the second round no agent will switch from P

to F , as all of their neighbors play F . If an agent plays F and their neighbors play F it will
switch to P . After two rounds the agents playing P form a maximal independent set, which
is a Nash equilibrium. ◀

The best-shot public goods game falls into the first category of our classification: Nash
equilibria are easy to compute and best-response dynamics converge fast.

4.2 Minority game
Minority game is a basic anti-coordination and potential game (also called social game) [13, 8]
where agents attempt to do the opposite of what their neighbors are doing. That is, they
attempt to anti-coordinate with what the majority of their surrounding co-players do. This
can be seen e.g. as a model competition for limited resources.

Agents have two possible actions, i.e. Ai = {−1, 1}. A focal player’s utility ui is defined
as ui(a) = 1 + |{j ∈ B(i) \ {i} : aj ̸= ai}| − |{j ∈ B(i) \ {i} : aj = ai}|, i.e. the difference
between the number of neighbors with a different label and the same label, plus 1 (for
technical reasons to avoid Nash equilibria with utility 0).

The Nash equilibria correspond to strategy profiles where each agent has at least as
many neighbors playing the opposite strategy as the same strategy. In this game, we again
have a correspondence with a prominent graph problem: in distributed computing, the
corresponding LVL is known as locally optimal cut. A cut is a binary labelling of the nodes,
where an edge is said to be cut if its endpoints have different labels. A maximum cut
maximises the number of cut edges, and a cut is locally optimal if no node can flip its label
to improve the cut. Locally optimal cut is known to be a hard problem [6]. This immediately
implies that best-response dynamics must also converge slow in minority games (Corollary 3).
Minority games therefore fall into the second category of our classification: computing a
Nash equilibrium is hard and best-response dynamics converge slowly.

4.3 Coloring game
Coloring games [30] are another family of basic anti-coordination games: each agent must
choose a color from some palette of size k and it gains utility if and only if none of its
neighbours choose the same color. Coloring games can be used to model scheduling and
other resource allocation scenarios.

For a positive integer k, define the family of k-coloring games as follows: the action set
is Ai = {1, 2, . . . , k} for each agent i. The utility function is ui(a) = 1 if ai ̸= aj for all
neighbours j of i, and 0 otherwise. That is, an agent receives utility 1 if it is properly colored,
and 0 otherwise.

An important threshold for coloring games happens with k = ∆ or k = ∆ + 1, where ∆ is
the maximum degree of the underlying network. If k ≥ ∆ + 1, a k-coloring can be computed
fast [7] and best responses also converge in one fair round. To see the latter, consider an
arbitrary player making its move: since it has at most ∆ neighbors, these neighbors can use
at most ∆ colors and it can always find a free color that gives it utility 1. After each agent
has played once, everyone has chosen a free color, and this is a Nash equilibrium.
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Figure 3 A lower bound construction for the convergence time of best-response dynamics for the
∆-coloring game. Top: initial configuration. Bottom: final stable configuration. Initially only the
highlighted agent v is unstable: it has 3 as a free color. When it changes its strategy, it causes a
cascade of agents, highlighted on the bottom, to change their strategies.

In contrast, finding a ∆-coloring is hard [11, 16]. This, however, does not necessarily
mean that k-coloring games cannot converge fast. A greedy solution is no longer guaranteed,
as the ∆ neighbors of an agent could use all ∆ colors. Thus the Nash equilibria of the
coloring game do not match one to one with proper colorings. There exist Nash equilibria
that are not proper colorings. This observation has an important implication, as there is a
simple fast algorithm for finding a Nash equilibrium of any ∆-coloring game.

▶ Theorem 6. There is fast algorithm that computes a Nash equilibrium of the ∆-coloring
game, and the total utility of the Nash equilibrium is within factor (1 − ε) of the optimum.

We describe and analyse the algorithm in the full version of the paper. In contrast,
best-response dynamics may take up to linear time to converge:

▶ Theorem 7. When k ≤ ∆, the worst-case convergence time of best responses for the
k-coloring game is Ω(n).

The idea for the proof is illustrated in Figure 3. The full proof is given in the full version
of the paper.

This example shows that best-response dynamics can be computationally much less
powerful than even simple distributed algorithms. In the next section we will show how
distributed algorithms can be used as a tool to incentivise coordination and fast convergence
for the coloring game.

5 Simulation games: incentivizing algorithmic cooperation

In this section, we introduce a novel way of incentivizing desired behavior in best-response
dynamics. We show how to construct simulation games, where the best responses simulate
a distributed algorithm. The Nash equilibria of simulation games then correspond to the
outputs of the algorithm.

We illustrate two potential use cases for such games:
1. If a game has efficiently computable Nash equilibria, but best-response dynamics fail to

converge, simulation games can be used to ensure convergence.
2. When best-response dynamics may converge to undesirable equilibria, simulation games

can be used to select the Nash equilibria computed by an efficient distributed algorithm.
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To incentivise the agents we assume they are guaranteed a certain utility if they follow
the simulation game. This is the cost of the game, and do not try to optimise it. It is an
interesting open question when simulation games could be made self-sufficient: the cost of
incentive payments would be less than the utility gained from computing a better outcome.
We present a case study in Section 5.2.

Simulation games always converge fast, requiring just one fair round. The drawback
is that each agent needs to know the structure of the network and the strategies of its
neighbours up to some constant distance, requiring additional means of communication.

The strategic guarantee of simulation games is that at each step, the best response of each
agent is to continue to run the simulation, making these games strategy-proof. We note that
even though there are multiple equilibria, we define them such that they all have the same
value for a single agent. Therefore at no point should the agent take any action but their
best response. Now if e.g. the agents would also get the utility from the outcome computed
by the simulation game, this would no longer hold: there can be multiple equilibria, and
some of these might be better than others. Agents could potentially have incentive to do
something else than best response in order to affect the actions of the other agents.

5.1 Simulation games: overview
Simulation games are always based on the existence of a fast distributed algorithm. The
algorithm defines the action sets and utility functions of the agents. Given an underlying
network, these define a game where best responses converge to a simulation of the algorithm.

▶ Theorem 8 (Informal). Assume a fast distributed algorithm solves an LVL P for family
of networks N . Then for each network there exists a simulation game where best-responses
converge in one round and Nash equilibria correspond to solutions computed by the algorithm.

Simulation games are based on a special property of fast distributed algorithms: they can
always be decomposed into a normal form with two parts [16]. In the first part, the input
network is colored. In the second part, a specific version of the algorithm is applied with the
coloring as input. The role of the coloring is to insulate the algorithm from the size of the
input: we can use the same, constant-time algorithm on all networks. This makes it possible
to encode the algorithm into a game.

5.1.1 Construction of simulation games
On a high level, simulation games are constructed as follows. We are given a network N and
a fast distributed algorithm A, with some constant running time T , as input. While T is
a constant independent of the size of N , it can be larger than 1, the distance to which we
assume agents in best-response dynamics “see”. To simulate a distributed algorithm, the
agents must receive information from some larger distance that is linear in T . This requires
additional communication. To be consistent with the definition of graphical games, we model
this communication by adding edges to N : the simulation game G is played on a network
N ′ that is obtained by connecting all nodes in N within some specific constant distance
R = O(T ). In addition, each agent initially knows the structure of its R-neighborhood in N .

The action sets are defined in two parts. The first part corresponds to all possible colorings
of the neighbors of the agent. These are used to encode the first part in the normal form of
the fast algorithm. The second part corresponds to the possible outputs of the algorithm. In
addition there is an empty action, and we assume all agents start with this as their strategy.
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The utility function is then used to incentivise correct simulations. For the first part,
agents receive utility only if they choose a coloring of their R-neighborhood that is (1) a
proper coloring (all agents have different color, a technical requirement) and (2) the coloring
is consistent with the colorings chosen by other agents – all neighbors of a specific agent v

choose the same color for v, and v agrees. The first part ensures that there is a properly
defined notion of coloring for the T -neighborhood of each agent. For the second part, agents
receive utility if they choose the output label that the algorithm A would choose with the
coloring as input. This ensures that the agents choose an outcome A could have computed.

From this description we can see how the strategies will encode the output of A. In
particular, if A computes a Nash equilibrium of some game, then we can also directly project
the Nash equilibria of the simulation game into Nash equilibria of the original game by
considering only the output label.

Proof of Theorem 8, sketch. The most important properties of simulation games are that
(1) they converge to Nash equilibria that correspond to outputs of the algorithm, and (2)
they converge fast.

Initially all agents start with the empty strategy. When it is an agents time to move,
it always gains utility by choosing an action that corresponds to a proper coloring of its
neighbors. We ensure that there are enough colors so that this is always possible. Additionally,
since the initial state is chosen to be empty, there are no conflicts with respect to the colors
and agents always prefer to choose a coloring that is consistent with the colorings already
chosen by other agents.

This ensures that in one fair round agents have chosen a proper coloring of the network.
Given the coloring, the output labels are already defined: the agents only gain utility if
they choose the output chosen by A given the input coloring. This ensures that the Nash
equilibrium of the simulation game encodes a possible execution of the algorithm A. Once
the agents have reached one simulation, they have no incentive to change: all equilibria
yield the same utility. Choosing the output label does not require additional communication:
it can be chosen based on the coloring chosen by the agent. Therefore the best responses
converge in one round. ◀

A formal description of simulation games and their construction is given in Appendix B.

5.2 Case study: coloring game
In this section we show how simulation games can be used to both ensure convergence and
select equilibria in coloring games (see Section 4.3). Formal proofs are given in the full
version.

First, consider the ∆-coloring game on general networks of maximum degree ∆. As
shown in Section 4.3, this is a game where best-response dynamics require Ω(n) fair rounds
to converge (Theorem 7). There is, however, an algorithm for efficiently computing a Nash
equilibrium where (1 − ε)-fraction of optimum total welfare (Theorem 6).

This shows that by constructing the simulation game of the algorithm from Theorem 6,
we guarantee both fast convergence and almost optimal total utility.

▶ Theorem 9 (Informal). There is a simulation game that computes a Nash equilibrium of
the ∆-coloring game with utility (1 − ε)-fraction from the optimum.

If we restrict the graph class to d-dimensional toruses, we can do even better. By previous
work, it is known that for any constant d, there exists a fast algorithm for 4-coloring of
d-dimensional toruses [12].
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Consider the coloring game on two-dimensional n-by-n torus networks. That is, the set
of nodes consists of vi,j : i, j ∈ {0, 1, . . . , n − 1}, there is an edge between nodes vi,j and vi,k

if k = (j + 1) mod n, and there is an edge between nodes vi,j and vk,j if k = (i + 1) mod n.
The complexity of k-coloring is completely understood in this setting:

▶ Theorem 10 ([12]). Computing a k-coloring on d-dimensional torus is easy when k ≥ 4
and hard when k = 2 or k = 3.

Both the 2-coloring problem and the 3-coloring problem are global (i.e. require Ω(n)
rounds to compute). By Theorem 16 this implies that best responses also require at least
Ω(n) rounds to converge. Even when best-response dynamics converge, they may converge
to a Nash equilibrium where some agents are not properly colored.

In contrast, by Theorems 10 and 8, when k ≥ 4 for each d-dimensional torus there exists
a simulation game such that best-response dynamics converge in one round to an optimal
solution: all agents are properly colored.

▶ Theorem 11 (Informal). There is a simulation game that computes a Nash equilibrium
with optimal total utility for the 4-coloring game on any d-dimensional torus.

Theorems 9 and 11 demonstrate how simulation games can be applied to games that have
efficiently computable Nash equilibria but best-response dynamics do not converge efficiently.

6 Inefficiency of best responses

In this section we introduce and study a distributed analogue of Price of Anarchy [33]:
what is the price of greedy behavior compared to optimal distributed coordination? The
classic price of anarchy compares the total welfare of the optimal assignment to the worst
Nash equilibrium. In a distributed setting, in particular, both of these are typically hard to
compute. We want to replace these measures with more reasonable distributed analogues:
what can be computed efficiently with locality T ? In this way, our notion can be viewed as a
refinement of the classic PoA concept from a distributed perspective.

Importantly, as we have seen in Section 3, efficient convergence is not possible in all
graphical games. This means that an analogue of worst Nash equilibrium does not necessarily
even exist! We consider a specific model of play, best-response dynamics, and compare the
evolution of the state over time with respect to the best solution that can be computed with
the same complexity. This leads to the notion of inefficiency of best responses (IoBR).

This notion of inefficiency is computational inefficiency with respect to a time bound
T . As a computational notion, it stands in contrast to the Price of Anarchy, which is an
existential notion. Hence, it must be defined over families of games: a single game can always
be solved perfectly by an algorithm that specifically encodes a solution to that game.

We show that there exist games such that we can bound the inefficiency of best responses
away from the Price of Anarchy. This illustrates that the Price of Anarchy does not always
fairly reflect the quality of solutions computed by best responses when time constraints are
taken into account.

6.1 Defining inefficiency of best responses
To measure the performance of best responses, we compare the total welfare of a solution
produced by T fair rounds of best responses to the best solution that can be computed in T

rounds. The running time bound T is a function of the size of the game. We assume that
the system starts from a random initial strategy profile. We consider random initial strategy
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profiles, as worst-case strategy profiles make any computational arguments moot: the initial
strategy profile could be the worst Nash equilibrium, even if it is hard to compute. To have
a fair comparison, we consider what can be computed by randomised distributed algorithms.

Consider a family of games G and a distributed algorithm F with running time T = T (n).
For each G ∈ G, let F (G) denote total utility of the solution computed by F on G. Let
BR(G, T ) denote total utility of the solution produced in G by T rounds of best responses.

We define the T -inefficiency of best responses as

IoBR(G, T ) = max
F ∈FT

min
G∈G

F (G)
E[BR(G, T )] ,

where FT denotes the family of all distributed algorithms with running time at most T . The
definition compares the worst relative performance (over games of G) of the best algorithm
to the expected performance of best responses. The idea is that G represents some family of
“similar” games: they are an asymptotic analogue of a single game in the definition of the
Price of Anarchy.

To estimate the quantity IoBR(G, T ) we will bound all F (G) from above using computa-
tional arguments, and bound BR(G, T ) from below using both arguments about the behavior
of best-response dynamics and computational arguments.

Note that when we consider the best strategy profile that is computable in T commu-
nication rounds, we consider distributed algorithms for optimization problems. That is, the
algorithms might not compute a solution corresponding to some Nash equilibrium, but more
generally any strategy assignment that tries to optimize the total welfare of all agents.

In the next section we show how the inefficiency of best responses can be estimated using
tools from distributed computing.

6.2 Case study: best-shot public goods game
We begin by analysing the inefficiency of best responses in the public goods game. We show
that the Price of Anarchy can be bounded away from the inefficiency of best responses. We
prove that there exists an infinite family of best-shot public goods games such that even
though good and bad solutions exist, no distributed algorithm can compute them efficiently.
Therefore best responses cannot produce the bad solutions either. The following theorem
states the outcome of our analysis for the best-shot public goods game.

▶ Theorem 12 (Informal). There exists a family G of public goods games such that for all
G ∈ G:
1. Price of Anarchy is the same for all G ∈ G, and
2. Inefficiency of best responses, compared to fast algorithms, for G is strictly less than Price

of Anarchy.

The good solutions correspond to small dominating sets of producing agents: each agent
has exactly one adjacent producer. The bad solutions are very redundant dominating sets:
each non-producing agent has only producing neighbors.

To construct these games, we argue that there exist two families of networks:
1. In the first family, networks have both good and bad solutions, as described above.
2. In the second family, the networks are locally indistinguishable from networks of the first

family, but do not have the bad and good solutions.
No algorithm can find the good or bad solutions in the second family, as they don’t exist.
Fast algorithms cannot distinguish between the two families. This means that fast algorithms
cannot produce the good or bad solutions in the first family: if such algorithms existed, they
would imply good and bad solutions for the second family as well, a contradiction.
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We give a formal version of Theorem 12 and its proof in in the full version of this paper.
There we also study the minority game and show a similar separation result for it: there
exists a family of games such that Price of Anarchy is bounded away from the inefficiency of
best responses.

7 Conclusion

In this work we introduced a novel approach to classifying the complexity of Nash equilibria
in graphical games, and to understanding the convergence behavior of best-response and
even general local dynamics. By establishing a connection to the analysis of distributed
graph problems, we showed that the Nash equilibria of graphical games correspond to locally
verifiable labelings: solutions to graph problems which are verifiable with constant round
algorithms. Impossibility and complexity results provably transfer from the distributed
setting to the game setting. In particular, the complexity gap observed in LVL problems
also directly translates to the classification of equilibrium convergence times.

Thus, we can leverage this very natural connection to give lower bounds for convergence
of best-response dynamics, to quantify the time-constrained inefficiency of best responses
when convergence is slow or even absent, and to present how these results can be used for
implementing mechanisms where best responses converge to a Nash equilibrium that is a
solution of the corresponding graph problem. We also want to highlight once more that while
our lower bounds are only strengthened by the simplicity of our examples, our results are
relevant beyond the limited instances we have presented.

Our findings also relate to the open question of strategy proof algorithms for reaching
equilibria in graphical games, as posed by Kearns in his 2007 survey. We note that in contrast
to algorithms as in [29], our discussion indeed pertains to how agents reach equilibria while
playing the game in a way that is rational with respect to their locally restricted knowledge.
This poses an interesting avenue for further research.

In this work, we have only considered pure Nash equilibria. However, we note that our
approach is much more general than that, since it first and foremost depends on information
being locally restricted without making additional assumptions like the game being a potential
game. One can prove similar results as in this work for mixed Nash equilibria, but even for
different equilibrium concepts altogether, such as correlated equilibria. The latter correspond
to a model where information is local, but can in some sense be exchanged between neighboring
nodes, introducing correlated strategy distributions. A further simple extension of our model
could see different local strategy update dynamics (e.g. ficitious play) at work, instead of
restricting the analysis to best response dynamics only. This also highlights the connection
of this research direction with evolutionary graph theory, which as a generalized approach to
evolutionary dynamics features players with similarly bounded rationality [34]. Furthermore,
it is also easily conceivable to analyze a far wider range of graphical games or LVLs with our
approach, and to even extend the analysis to infinite graphs.

Naturally, there are limitations to our approach. Our techniques are relevant only in
relatively sparse networks. Graphs of low diameter do not give impossibility results based
on information propagation, as information can spread quickly. The results for such a
setting would look quite different; furthermore, computation in a setting that comes closer
to a centralized one where nodes do not have as strongly limited information is not well
understood. Another issue lies with the fact that we only show lower bounds for convergence.
This means that for instances that are not efficiently solvable, it could be the case that true
convergence is far slower than what our results give. For further understanding, a complexity
theory of the convergence of best-response dynamics is needed.
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What we have considered in this paper should only represent a first taste for how powerful
the connection between game theory and distributed computing is. We also highlight at this
point that interpreting agents interacting in games on networks as a distributed system is
highly intuitive. There are many possibilities to harness this, and we have only explored a
very limited number of them. We hope that this work can serve as a proof of concept and be
the starting point of exciting further research.

References
1 Guillermo Abramson and Marcelo Kuperman. Social games in a social network. Physical

Review E, 63(3):030901, 2001. doi:10.1103/PhysRevE.63.030901.
2 James Aspnes, Kevin Chang, and Aleksandr Yampolskiy. Inoculation strategies for victims of

viruses and the sum-of-squares partition problem. Journal of Computer and System Sciences,
72(6):1077–1093, 2006. doi:10.1016/J.JCSS.2006.02.003.

3 Guy Avni, Thomas A. Henzinger, and Orna Kupferman. Dynamic resource allocation games.
In Algorithmic Game Theory, pages 153–166. Springer Berlin Heidelberg, 2016. doi:10.1007/
978-3-662-53354-3_13.

4 Alkida Balliu, Sebastian Brandt, Yuval Efron, Juho Hirvonen, Yannic Maus, Dennis Oliv-
etti, and Jukka Suomela. Classification of distributed binary labeling problems. CoRR,
abs/1911.13294, 2019. arXiv:1911.13294.

5 Alkida Balliu, Juho Hirvonen, Janne H Korhonen, Tuomo Lempiäinen, Dennis Olivetti,
and Jukka Suomela. New classes of distributed time complexity. In Proc. 50th ACM
Symposium on Theory of Computing (STOC 2018), pages 1307–1318. ACM Press, 2018.
doi:10.1145/3188745.3188860.

6 Alkida Balliu, Juho Hirvonen, Christoph Lenzen, Dennis Olivetti, and Jukka Suomela. Locality
of not-so-weak coloring. In Proc. 26th International Colloquium on Structural Information and
Communication Complexity (SIROCCO 2019), volume 11639 of Lecture Notes in Computer
Science, pages 37–51. Springer, 2019. doi:10.1007/978-3-030-24922-9_3.

7 Leonid Barenboim. Deterministic (∆ + 1)-coloring in sublinear (in ∆) time in static, dynamic,
and faulty networks. J. ACM, 63(5):47:1–47:22, 2016. doi:10.1145/2979675.

8 Yann Bramoullé. Anti-coordination and social interactions. Games and Economic Behavior,
58(1):30–49, 2007. doi:10.1016/J.GEB.2005.12.006.

9 Yann Bramoullé and Rachel Kranton. Public goods in networks. Journal of Economic Theory,
135(1):478–494, 2007. doi:10.1016/J.JET.2006.06.006.

10 Sebastian Brandt. An automatic speedup theorem for distributed problems, 2019. arXiv:
1902.09958.

11 Sebastian Brandt, Orr Fischer, Juho Hirvonen, Barbara Keller, Tuomo Lempiäinen, Joel
Rybicki, Jukka Suomela, and Jara Uitto. A lower bound for the distributed Lovász local
lemma. In Proc. 48th ACM Symposium on Theory of Computing (STOC 2016), pages 479–488.
ACM Press, 2016. doi:10.1145/2897518.2897570.

12 Sebastian Brandt, Juho Hirvonen, Janne H Korhonen, Tuomo Lempiäinen, Patric R J Öster-
gård, Christopher Purcell, Joel Rybicki, Jukka Suomela, and Przemysław Uznański. LCL
problems on grids. In Proc. 36th ACM Symposium on Principles of Distributed Computing
(PODC 2017), pages 101–110. ACM Press, 2017. doi:10.1145/3087801.3087833.

13 Damien Challet and Y-C Zhang. Emergence of cooperation and organization in an evolutionary
game. Physica A: Statistical Mechanics and its Applications, 246(3-4):407–418, 1997. doi:
10.1016/S0378-4371(97)00419-6.

14 Yi-Jun Chang, Qizheng He, Wenzheng Li, Seth Pettie, and Jara Uitto. The Complexity
of Distributed Edge Coloring with Small Palettes. In Proc. 29th ACM-SIAM Symposium
on Discrete Algorithms (SODA 2018), pages 2633–2652. Society for Industrial and Applied
Mathematics, 2018. doi:10.1137/1.9781611975031.168.

https://doi.org/10.1103/PhysRevE.63.030901
https://doi.org/10.1016/J.JCSS.2006.02.003
https://doi.org/10.1007/978-3-662-53354-3_13
https://doi.org/10.1007/978-3-662-53354-3_13
https://arxiv.org/abs/1911.13294
https://doi.org/10.1145/3188745.3188860
https://doi.org/10.1007/978-3-030-24922-9_3
https://doi.org/10.1145/2979675
https://doi.org/10.1016/J.GEB.2005.12.006
https://doi.org/10.1016/J.JET.2006.06.006
https://arxiv.org/abs/1902.09958
https://arxiv.org/abs/1902.09958
https://doi.org/10.1145/2897518.2897570
https://doi.org/10.1145/3087801.3087833
https://doi.org/10.1016/S0378-4371(97)00419-6
https://doi.org/10.1016/S0378-4371(97)00419-6
https://doi.org/10.1137/1.9781611975031.168


J. Hirvonen, L. Schmid, K. Chatterjee, and S. Schmid 11:17

15 Yi-Jun Chang, Tsvi Kopelowitz, and Seth Pettie. An Exponential Separation between
Randomized and Deterministic Complexity in the LOCAL Model. In Proc. 57th IEEE
Symposium on Foundations of Computer Science (FOCS 2016), pages 615–624. IEEE, 2016.
doi:10.1109/FOCS.2016.72.

16 Yi-Jun Chang, Tsvi Kopelowitz, and Seth Pettie. An exponential separation between random-
ized and deterministic complexity in the LOCAL model. SIAM J. Comput., 48(1):122–143,
2019. doi:10.1137/17M1117537.

17 Yi-Jun Chang and Seth Pettie. A time hierarchy theorem for the LOCAL model. SIAM J.
Comput., 48(1):33–69, 2019. doi:10.1137/17M1157957.

18 Todd L Cherry, Stephen J Cotten, and Stephan Kroll. Heterogeneity, coordination and the
provision of best-shot public goods. Experimental Economics, 16(4):497–510, 2013. doi:
10.1007/s10683-012-9349-1.

19 Simon Collet, Pierre Fraigniaud, and Paolo Penna. Equilibria of games in networks for
local tasks. In Proc. 22nd International Conference on Principles of Distributed Systems
(OPODIS 2018), volume 125 of LIPIcs, pages 6:1–6:16. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2018. doi:10.4230/LIPICS.OPODIS.2018.6.

20 Constantinos Daskalakis and Christos H Papadimitriou. Computing pure nash equilibria in
graphical games via markov random fields. In Proceedings of the 7th ACM Conference on
Electronic Commerce, pages 91–99, 2006. doi:10.1145/1134707.1134718.

21 Constantinos Daskalakis and Christos H. Papadimitriou. On a network generalization of the
minmax theorem. In Susanne Albers, Alberto Marchetti-Spaccamela, Yossi Matias, Sotiris
Nikoletseas, and Wolfgang Thomas, editors, Automata, Languages and Programming, pages 423–
434, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg. doi:10.1007/978-3-642-02930-1_
35.

22 Edith Elkind, Leslie Ann Goldberg, and Paul Goldberg. Nash equilibria in graphical games
on trees revisited. In Proc. 7th ACM Conference on Electronic Commerce, pages 100–109.
Association for Computing Machinery, 2006. doi:10.1145/1134707.1134719.

23 Patrik Floréen, Petteri Kaski, Valentin Polishchuk, and Jukka Suomela. Almost stable
matchings by truncating the gale-shapley algorithm. Algorithmica, 58(1):102–118, 2010.
doi:10.1007/S00453-009-9353-9.

24 David Gale and Lloyd S. Shapley. College admissions and the stability of marriage. The
American Mathematical Monthly, 69(1):9–15, 1962. doi:10.2307/2312726.

25 Mohsen Ghaffari and Hsin-Hao Su. Distributed Degree Splitting, Edge Coloring, and Ori-
entations. In Proc. 28th ACM-SIAM Symposium on Discrete Algorithms (SODA 2017),
pages 2505–2523. Society for Industrial and Applied Mathematics, 2017. doi:10.1137/1.
9781611974782.166.

26 Samuel Ieong, Robert McGrew, Eugene Nudelman, Yoav Shoham, and Qixiang Sun. Fast
and compact: A simple class of congestion games. In Proc. 20th National Conference on
Artificial Intelligence – Volume 2 (AAAI 2005), pages 489–494. AAAI Press, 2005. URL:
http://www.aaai.org/Library/AAAI/2005/aaai05-077.php.

27 Matthew O Jackson and Leeat Yariv. Diffusion of behavior and equilibrium properties in
network games. American Economic Review, 97(2):92–98, 2007. doi:10.1257/aer.97.2.92.

28 Matthew O Jackson and Yves Zenou. Games on networks. In Handbook of game the-
ory with economic applications, volume 4, pages 95–163. Elsevier, 2015. doi:10.1016/
B978-0-444-53766-9.00003-3.

29 Michael Kearns. Graphical games. Algorithmic game theory, 3:159–180, 2007. doi:10.1017/
CBO9780511800481.009.

30 Michael Kearns, Siddharth Suri, and Nick Montfort. An experimental study of the coloring
problem on human subject networks. Science, 313(5788):824–827, 2006. doi:10.1126/science.
1127207.

OPODIS 2023

https://doi.org/10.1109/FOCS.2016.72
https://doi.org/10.1137/17M1117537
https://doi.org/10.1137/17M1157957
https://doi.org/10.1007/s10683-012-9349-1
https://doi.org/10.1007/s10683-012-9349-1
https://doi.org/10.4230/LIPICS.OPODIS.2018.6
https://doi.org/10.1145/1134707.1134718
https://doi.org/10.1007/978-3-642-02930-1_35
https://doi.org/10.1007/978-3-642-02930-1_35
https://doi.org/10.1145/1134707.1134719
https://doi.org/10.1007/S00453-009-9353-9
https://doi.org/10.2307/2312726
https://doi.org/10.1137/1.9781611974782.166
https://doi.org/10.1137/1.9781611974782.166
http://www.aaai.org/Library/AAAI/2005/aaai05-077.php
https://doi.org/10.1257/aer.97.2.92
https://doi.org/10.1016/B978-0-444-53766-9.00003-3
https://doi.org/10.1016/B978-0-444-53766-9.00003-3
https://doi.org/10.1017/CBO9780511800481.009
https://doi.org/10.1017/CBO9780511800481.009
https://doi.org/10.1126/science.1127207
https://doi.org/10.1126/science.1127207


11:18 On the Convergence Time in Graphical Games

31 Michael J. Kearns, Michael L. Littman, and Satinder P. Singh. Graphical models
for game theory. In Proc. 17th Conference in Uncertainty in Artificial Intelligence
(UAI 2001), pages 253–260, San Francisco, CA, USA, 2001. Morgan Kaufmann Pub-
lishers Inc. URL: https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1&smnu=
2&article_id=107&proceeding_id=17.

32 Zohar Komarovsky, Vadim Levit, Tal Grinshpoun, and Amnon Meisels. Efficient equilibria in a
public goods game. In Proceedings of the 2015 IEEE / WIC / ACM International Conference
on Web Intelligence and Intelligent Agent Technology (WI-IAT) – Volume 01, WI-IAT ’15,
pages 214–219. IEEE Computer Society, 2015. doi:10.1109/WI-IAT.2015.91.

33 Elias Koutsoupias and Christos H. Papadimitriou. Worst-case equilibria. In Proc. 16th Annual
Symposium on Theoretical Aspects of Computer Science (STACS 1999), volume 1563 of Lecture
Notes in Computer Science, pages 404–413. Springer, 1999. doi:10.1007/3-540-49116-3_38.

34 E. Lieberman, C. Hauert, and M. A. Nowak. Evolutionary dynamics on graphs. Nature,
433:312–316, 2005. doi:10.1038/nature03204.

35 Nathan Linial. Locality in Distributed Graph Algorithms. SIAM Journal on Computing,
21(1):193–201, 1992. doi:10.1137/0221015.

36 Moni Naor and Larry Stockmeyer. What Can be Computed Locally? SIAM Journal on
Computing, 24(6):1259–1277, 1995. doi:10.1137/S0097539793254571.

37 Luis E Ortiz and Michael Kearns. Nash propagation for loopy graphical games. Advances in
neural information processing systems, pages 817–824, 2003. doi:10.5555/2968618.2968720.

38 Alessandro Panconesi and Romeo Rizzi. Some simple distributed algorithms for sparse networks.
Distributed Computing, 14(2):97–100, 2001. doi:10.1007/PL00008932.

39 David Peleg. Distributed Computing: A Locality-Sensitive Approach. Society for Industrial
and Applied Mathematics, 2000. doi:10.1137/1.9780898719772.

40 Tim Roughgarden. Routing games. Algorithmic game theory, 18:459–484, 2007.
41 Grant R Schoenebeck and Salil Vadhan. The computational complexity of nash equilibria in

concisely represented games. ACM Transactions on Computation Theory (TOCT), 4(2):1–50,
2012. doi:10.1145/2189778.2189779.

42 Richard Southwell, Yanjiao Chen, Jianwei Huang, and Qian Zhang. Convergence dynamics
of graphical congestion games. In Vikram Krishnamurthy, Qing Zhao, Minyi Huang, and
Yonggang Wen, editors, Game Theory for Networks, pages 31–46. Springer Berlin Heidelberg,
2012. doi:10.1007/978-3-642-35582-0_3.

43 Alexander J Stewart, Mohsen Mosleh, Marina Diakonova, Antonio A Arechar, David G Rand,
and Joshua B Plotkin. Information gerrymandering and undemocratic decisions. Nature,
573(7772):117–121, 2019. doi:10.1038/S41586-019-1507-6.

44 David Vickrey and Daphne Koller. Multi-agent algorithms for solving graphical games.
AAAI/IAAI, 2:345–351, 2002. URL: http://www.aaai.org/Library/AAAI/2002/aaai02-053.
php.

A Preliminaries

A.1 Definining LVLs
Formally LVLs are defined as follows.

▶ Definition 13 (Locally verifiable labelings). An LVL P is a computational problem para-
metrized by a constant maximum degree ∆, and consists of an input alphabet Σ, an output
alphabet Γ, and a set of configurations C. The input alphabet Σ is finite set of labels, and
the output alphabet Γ is possibly an infinite set (this generalises LCLs). Each configuration
C ∈ C is a graph G centered on some node v with radius at most k for some constant k (the
verification radius of P ). Each node of C is labelled with some element σ ∈ Σ and γ ∈ Γ.

https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1&smnu=2&article_id=107&proceeding_id=17
https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1&smnu=2&article_id=107&proceeding_id=17
https://doi.org/10.1109/WI-IAT.2015.91
https://doi.org/10.1007/3-540-49116-3_38
https://doi.org/10.1038/nature03204
https://doi.org/10.1137/0221015
https://doi.org/10.1137/S0097539793254571
https://doi.org/10.5555/2968618.2968720
https://doi.org/10.1007/PL00008932
https://doi.org/10.1137/1.9780898719772
https://doi.org/10.1145/2189778.2189779
https://doi.org/10.1007/978-3-642-35582-0_3
https://doi.org/10.1038/S41586-019-1507-6
http://www.aaai.org/Library/AAAI/2002/aaai02-053.php
http://www.aaai.org/Library/AAAI/2002/aaai02-053.php


J. Hirvonen, L. Schmid, K. Chatterjee, and S. Schmid 11:19

An instance of P is a pair (N, x) where N = (V, E) is a network of maximum degree ∆
and x is a mapping x : V → Σ. If P has no input labels (i.e. |Σ| = 1), any network N is an
instance of P . We say that a mapping f : V → Γ is a solution to P on (N, x) if and only if
each k-neighborhood of N labelled with x and f is a configuration in C.

We note here that in this work, we only consider LVLs with radius k = 1, as this matches
the definition of graphical games. The definition assumes a constant bound on the maximum
degree of the input network. Throughout this work, we will assume that networks have
a constant maximum degree ∆. This is important assumption from the perspective of
distributed complexity theory, as it is very different in dense networks (large maximum
degree).

A.2 Complexity gap of LVLs
There is a gap in the possible complexities of LVL problems: they can either be solved very
fast or require logarithmic time.

▶ Fact 2 (Chang et al. [16]). On general bounded-degree graphs, i.e., if the maximum degree
of the graph N is bounded by a constant ∆, the deterministic distributed complexity of an
LVL is either O(log∗ n), or Ω(log n). The randomized complexity is either O(log∗ n) or
Ω(log log n).

Here, log∗ n is the iterated logarithm (pronounced “log-star”), a function which grows
significantly more slowly than the logarithm: e.g. log∗ of the number of atoms in the
observable universe is 5. Formally, log∗ n is defined as:

∀x ≤ 2 : log∗ x := 1, ∀x > 2 : log∗ x := 1 + log∗(log x)

The complexity gap on bounded-degree networks is also the best possible: there exists an
LVL such that its deterministic complexity is Θ(log n) and the randomized complexity is
Θ(log log n) [16, 11, 25]. This also proves that the deterministic and randomized complexities
of an LVL can be exponentially separated.

On other graph families, the complexity gap between easy and hard problems can be
even larger. For example, on paths and cycles LVLs have complexity either O(log∗ n) or
Θ(n) [16], and on two-dimensional grids and toruses either O(log∗ n) or Ω(

√
n) [12].

Throughout this paper, we will call a distributed algorithm with complexity O(log∗ n)
fast.

A.3 Correspondence of LVLs and Nash equilibria of graphical games
To study the asymptotic hardness of computing equilibria, we define families G of graphical
games, parametrized by a constant degree bound ∆ and some (possibly infinite) set N of
networks of maximum degree ∆. For example, this could be all networks of maximum degree
∆, or all trees of maximum degree ∆.

▶ Definition 14 (Family of graphical games). A family of graphical games then consists of all
possible games on N generated from some base set of rules. The type of an agent is a pair
(A, u), where A is an action set and u is a utility function. Fix ∆ finite collections of types
T = (T1, T2, . . . , T∆), one for each possible degree of an agent. Then the family of games
G = G(N , ∆, T ) is defined as the set of all possible games on each N ∈ N such that for each
degree d, each agent of degree d is assigned an action set and utility function according to
some type in Td.
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Using this definition we can construct a locally verifiable labelling that captures exactly
the Nash equilibria of the family of graphical games.

▶ Theorem 15. Let G be a family of graphical games. There is a locally verifiable labelling
P (G) such that for each G ∈ G the pure strategy Nash equilibria of G correspond exactly to
solutions of P .

Proof. This follows from the locality of the utility functions of graphical games: whether
each agent is stable only depends on the strategies of its neighbours, and a strategy profile is
a Nash equilibrium if and only if all agents are stable.

Consider an arbitrary family of graphical games G. To construct the corresponding LVL
P , do the following. The set of input labels is the union of the types of G. The set of output
labels Γ is the set of all possible pure strategies, i.e. the union of action sets of the types of
G. To construct the set of configurations C of P , let B denote all possible 1-neighbourhoods
of G labelled with types, over all G ∈ G. Consider an arbitrary such 1-neighbourhood B ∈ B
centered at some agent i. Each agent j ∈ B is labelled with a type (Aj , uj). Consider all
possible strategy profiles a drawn from the action sets of the agents. For each a, if ai is a
best response of i with respect to a−i, add B with the input labelling given by the types and
the output labelling given by a to C.

By construction, for each specific G ∈ G there exists a corresponding instance of P such
that the solutions are exactly the Nash equilibria of G. ◀

It should be stressed that the correspondence does not use any properties specific to pure
Nash equilibria. For example mixed strategy Nash equilibria of graphical games can also be
used to define LVLs analogously: the output labels of the LVL consist of mixed strategies
instead of pure strategies, as above.

A.4 Simulating best responses
In this section we show how best-response dynamics can be simulated in the LOCAL model
with small overhead.

Let G = (A, u, N) be a graphical game. We construct a corresponding instance in the
LOCAL model by taking the network N and labelling each agent with its type. Then, if we
consider the deterministic LOCAL model, an adversary assigns O(log n)-bit names to the
nodes. In the randomized LOCAL model, each node gets a uniformly random infinite string
of bits as input instead.

We define the convergence time of best-response dynamics for a family of graphical games
as the worst-case convergence time over all games. We show that if the best responses
converge in T (n) rounds, where n is the size of the underlying network, then this can be
turned into a distributed algorithm that computes the corresponding Nash equilibrium in
O(log∗ n + T (n)) rounds.

▶ Theorem 16 (best responses correspondence). Fix a function T . Consider a family G of
graphical games.
1. If the best-response dynamics converge on each G ∈ G in T (n) rounds from a constant

initial strategy profile, then there exists a deterministic distributed algorithm in the LOCAL
model that solves the LVL P (G) corresponding to the (pure) Nash equilibria of G on each
G in O(log∗ n + T (n)) rounds.

2. If the best-response dynamics converge with high probability on each G ∈ G in T (n) rounds
from a random initial strategy profile, then there exists a randomized distributed algorithm
in the LOCAL model that solves the LVL P (G) corresponding to the (pure) Nash equilibria
of G on each G in O(log∗ n + T (n)) rounds with high probability.
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Before proving the theorem we show a helper lemma that shows how best-response
dynamics can be simulated from any specific initial state.

▶ Lemma 17. Assume that (A, u, N) is a graphical game and a is some strategy profile. A
distributed algorithm that is given a as an input can simulate T rounds of best responses, for
some ordering of the play, in O(log∗ n + T ) rounds.

Proof. The simulation consists of two phases. In the first phase, the nodes compute a
coloring of N2 (the virtual network obtained by connecting all nodes at distance at most 2
in N) with k = ∆2 + 1 colors. That is, each node v chooses a label c(v) from {1, 2, . . . , k}
such that any two nodes u and v within distance 2 in N have different labels c(u) ̸= c(v).
This can be computed in O(log∗ n) rounds [7].

In the second phase this coloring is treated as a schedule: at round j of the second phase
each node with color i = j mod k is active, applies the best response to the current strategy
profile, and sends its new strategy to its neighbors. The key is that any two nodes updating
their strategy at the same time do so independently: since they are not neighbors, their
choices do not depend on each other. Therefore applying best responses at all nodes of the
same color class is equivalent to letting the corresponding agents play in any sequential
order: given an initial strategy profile a, all orderings produce the same strategy profile a′.
Simulating all color classes one by one therefore corresponds to some ordering of sequential
play.

Since there are k = ∆2 + 1 color classes, simulating one fair round of best responses takes
k rounds in the LOCAL model. Since we assume ∆ is a constant, simulating T rounds of
best responses can be done in O(T ) rounds. With the initial coloring step we have that the
total running time of the simulation is O(log∗ n + T ), as required. ◀

It follows that simulating best responses until convergence can be done with an additive
O(log∗ n) overhead.

Proof of Theorem 16. First, assume that the best responses start from a constant or worst-
case initial strategy profile. Each node can simply choose the same initial value and simulate
T (n) rounds of best responses by Lemma 17. Since we assume that best responses converge
for any order of play in T (n) rounds, it follows that T (n) rounds of simulation converge
as well. Computing the simulation until convergence takes O(log∗ n + T (n)) rounds in the
deterministic LOCAL model.

Next, assume that the best responses start from a random initial strategy profile. Now it
is no longer possible to use deterministic algorithms to run the simulation. Using the random
inputs, each node can choose a random initial strategy. Then it can simulate best responses
for T (n) rounds by Lemma 17. Since we assume that the best responses converge with high
probability and the dynamics are deterministic given the initial configuration, the simulation
also converges with high probability in T (n) rounds. The simulation can be computed in
O(log∗ n + T (n)) rounds in the randomized LOCAL model. ◀

As shown in Theorem 15, a family of graphical games G defines an LVL P (G). It also
defines a family of problem instances of P : each G can be seen as network N with input
labelling given by the types of the agents.

▶ Corollary 18. Assume that problem of solving the LVL P (G) over the instances defined
by G has deterministic complexity Ω(T (n)) and randomized complexity Ω(T ′(n)), for any
T (n), T ′(n) = Ω(log∗ n). Then best-response dynamics for G require Ω(T (n)) and Ω(T ′(n))
fair rounds to converge from a constant and a randomized initial strategy profile, respectively.
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Proof. This follows from Theorem 16: if best-response dynamics converge faster, then this
can be turned into a fast distributed algorithm, a contradiction. ◀

The complexity gap of LVLs in the LOCAL model, in the context of our result, implies
that if the Nash equilibria of a game are not efficiently computable, then best responses
converge significantly slower.

▶ Corollary 19. Let G be a family of games such that P (G) cannot be solved in time O(log∗ n).
Then the best-response dynamics for G require Ω(log n) fair rounds to converge from constant
initial strategy profile, and Ω(log log n) fair rounds to converge from a random initial strategy
profile.

We emphasize that the deterministic and randomized convergence time lower bounds
hold even if we consider best-response dynamics that start respectively from any constant or
a randomized initial state.

B Simulation games

B.1 Simulation games: Overview
Simulation games are based on the existence of fast distributed algorithms: assume there
exists an algorithm A with running time T (n) = O(log∗ n) solving some LVL P . Then for
any network N we can construct a graphical game G where best-response dynamics converge
in one fair round to a Nash equilibrium that encodes the output of A on N . In particular, if
A computes Nash equilibria for some family of games, then best-response dynamics in the
corresponding simulation games will also converge to the Nash equilibria computed by A.

Our construction has several desirable properties.
1. Convergence time. Best responses converge in one fair round.
2. Equilibrium selection. Since best responses converge to an output of algorithm A, the

resulting Nash equilibria inherit the properties of solutions computed by A. In Section 5.2
we show how this can be used to ensure convergence to a desirable subset of Nash
equilibria.

3. Locality. It would be trivial to construct a new game with the above two properties: an
outside observer could set a utility function structured such that agents have to choose
a specific outcome. This, however, would essentially amount to a centralised authority
assigning the strategies to the agents. In our construction, each agent only receives the
description of the algorithm A and information about other agents up to some constant
distance, independent of the size of the underlying network. This means that assuming
limited local communication, the agents can set up this simulation game locally without
centralised control.

Due to the locality of simulation no similar constructions exist for games that don’t
have efficiently solvable Nash equilibria: this would also imply efficient algorithms for the
corresponding LVL problems.

On a high level, simulation games are constructed as follows: We are given a network N

and an efficient algorithm F . The actions of each agent consist of all possible correct local
executions of the algorithm F on N . The utility of an agent is 1 if and only if its strategy is
an execution that is compatible with the executions of its neighbors. As a correct execution
always exists, best responses converge to such an execution when starting from an empty
initial state (i.e. each agent has a special empty action).

The following theorem is the formal version of Theorem 8.
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▶ Theorem 20. Let F be a distributed algorithm that solves LVL P in time O(log∗ n) in
networks of maximum degree ∆. Then for each P -instance (N, x) there exists a simulation
game G = (A, u, N ′) with the following properties.
(P1) Best responses converge in one fair round from the empty initial strategy profile in G.
(P2) Nash equilibria of G correspond to legal outputs of F .
(P3) Given (N, x) and F , simulation game G can be constructed in O(t) rounds with a

distributed algorithm.

A particularly interesting use case for the simulation games is when a fast algorithm
computes the Nash equilibria of a graphical game.

▶ Corollary 21. If F solves LVL P (G) corresponding to the Nash equilibria of a family of
graphical games G, then the simulation game converges to a Nash equilibrium of G.

We will next give the technical details for the construction of simulation games.

B.2 Constructing simulation games
To define simulation games, we need to consider algorithms in a specific normal form, the
existence of which is implied by the speedup result of [16]. Lemma 22 (stated in the following
section) states that O(log∗ n)-time algorithms can be decomposed into two phases. In the
first phase the algorithm computes a distance-(2t + 2) coloring for some constant parameter t

that depends on the algorithm. Then a t-round algorithm is applied with the coloring taking
the role of unique identifiers. We say that this is the t-normal form of the algorithm. In
simulation games the best responses construct these colorings and then choose the output of
the algorithm on that particular coloring.

Now let F be a distributed algorithm in t-normal form that solves LVL P . For a P instance
(N, x) with maximum degree ∆, define the simulation game of F on N as G = (A, u, N ′) as
follows.
1. The set of agents are the nodes of N . Construct a new network N ′ by connecting two

nodes u and v if and only if their distance in N is at most 4t + 2 (some constant).
2. The actions Av of each agent v encode the possible locally correct simulations of F . This

is defined in two parts Rv and L. The first set Rv consists of all possible labellings of
the t-neighborhood of v in N with distinct colors from {1, 2, . . . , ∆2t+2 + 1}. The second
part L consists of the possible output labels of P . Include the pair (r, ℓ) in Av if and
only if F would output ℓ at v given x as the input labelling and r as the input coloring
of B(v, t). In addition there is the empty action.

3. The utility functions uv encode the correct simulations. The utility uv(s) = 1 if and only if
the following hold. First, the coloring rv ∈ Rv is compatible with the colorings ru ∈ Ru of
each neighbor u with a non-empty strategy. That is, for each w ∈ BN (v, t) ∩ BN (u, t), we
have that rv(w) = ru(w) or ru is empty. Second, the colorings form a proper (2t + 2)-hop
coloring of N . That is, if we map all the compatible colorings rv for all v onto N , then
two nodes in N at distance at most 2t + 2 have distinct colors. Since two agents are
connected in N ′ if they are within distance 4t + 2 in N , it is possible to encode this in u.
The color assigned to each agent at distance t from some agent v must differ from the
colors of other agents within distance 2t + 2 of it. These agents can only be colored by
agents within distance 4t + 2. Note that by construction we only allow actions where ℓ

corresponds to the correct output of F so there is no need to encode this in the utility
function.
For the empty action and for strategy profiles that do not have these properties the utility
is 0.
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We will show that simulation games converge in one fair round to an equilibrium that is
equivalent to an equilibrium of the original game.

We also note that similar constructions do not exist for algorithm that solve hard
problems. If they did, by Theorem 16 we would get a faster algorithm for solving the problem,
a contradiction.

B.3 Proving the properties of simulation games
Before proving Theorem 20, we need the following technical lemma. It establishes that
O(log∗ n)-time solvable LVLs can also be solved by algorithms in the required normal form.

▶ Lemma 22. Assume that LVL P can be solved in O(log∗ n) rounds by a deterministic
distributed algorithm. Then there exists an algorithm F in the following normal form: the
algorithm runs in t = O(1) rounds (for some t dependent on P ), it takes a (2t + 2)-hop
c-coloring, for c = ∆2t+2 + 1, as an input, and outputs the solution to P .

The proof follows from the speedup theorem of [16]. A similar normal form construction
has been used by Brandt et al. [12].

We are now ready to prove the properties of simulation games.

Proof of Theorem 20. We show that the strategies of agents who have already played will
constitute a correct partial simulation in N ′. Initially this is trivially true, as all agents are
assumed to start from the empty strategy.

Now assume that a is the strategy profile after some number of best responses such that
the non-empty strategies agree on the color of each agent and assume that some agent v is
scheduled to play. Since the utility is 0 if the agent chooses an action that is not compatible
as a coloring, it must choose a compatible coloring. Since we assumed that a encodes a
partial coloring and there are always enough colors to choose from (i.e. there are ∆2t+2 + 1
colors), v can always choose an action that gives it utility 1.

After one fair round, each agent v has chosen a strategy such that the colorings rv agree
on all applicable nodes, and this is a Nash equilibrium of G′. The output label σv of each
action, by definition, corresponds to the output of F on (N, x) given the input coloring that
the agents have chosen.

Finally, it remains to show that G′ can be constructed efficiently in the LOCAL model
on the network N . This is achieved using a standard approach. First each node v gathers its
(4t + 2)-hop neighborhood and outputs its neighbors in N ′. Since the algorithm has access
to F , the algorithm in the normal form, it can consider every coloring of B(v, t) and form
the action set A′

v. Finally, since the algorithm has access to the (4t + 2)-neighborhood of v

in (N, x), it can compute the value of the utility function uv for all possible strategies of the
neighbors. ◀
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