
Improved Distributed Algorithms for Random
Colorings
Charlie Carlson #

Department of Computer Science, University of California, Santa Barbara, CA, USA

Daniel Frishberg #

Department of Computer Science and Software Engineering, California Polytechnic State University,
San Luis Obispo, CA, USA

Eric Vigoda #

Department of Computer Science, University of California, Santa Barbara, CA, USA

Abstract
Markov Chain Monte Carlo (MCMC) algorithms are a widely-used algorithmic tool for sampling
from high-dimensional distributions, a notable example is the equilibirum distribution of graphical
models. The Glauber dynamics, also known as the Gibbs sampler, is the simplest example of an
MCMC algorithm; the transitions of the chain update the configuration at a randomly chosen
coordinate at each step. Several works have studied distributed versions of the Glauber dynamics
and we extend these efforts to a more general family of Markov chains. An important combinatorial
problem in the study of MCMC algorithms is random colorings. Given a graph G of maximum
degree ∆ and an integer k ≥ ∆ + 1, the goal is to generate a random proper vertex k-coloring of G.

Jerrum (1995) proved that the Glauber dynamics has O(n log n) mixing time when k > 2∆.
Fischer and Ghaffari (2018), and independently Feng, Hayes, and Yin (2018), presented a parallel
and distributed version of the Glauber dynamics which converges in O(log n) rounds for k > (2 + ε)∆
for any ε > 0. We improve this result to k > (11/6 − δ)∆ for a fixed δ > 0. This matches the state
of the art for randomly sampling colorings of general graphs in the sequential setting. Whereas
previous works focused on distributed variants of the Glauber dynamics, our work presents a parallel
and distributed version of the more general flip dynamics presented by Vigoda (2000) (and refined
by Chen, Delcourt, Moitra, Perarnau, and Postle (2019)), which recolors local maximal two-colored
components in each step.
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1 Introduction

This paper presents parallel and distributed algorithms for sampling from high-dimensional
distributions. An important application is sampling from the equilibrium distribution of a
graphical model. The equilibrium distribution is often known as the Gibbs or Boltzmann
distribution, and efficient sampling from the Gibbs/Boltzmann distribution is a key step for
Bayesian inference [24, 28].
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Our focus is algorithms in the LOCAL model for the k-colorings problem. The k-colorings
problem is a graphical model of particular combinatorial interest and has played an important
role in the development of algorithmic sampling techniques with provable guarantees. The
LOCAL model is a standard model of distributed computation due to Linial [26].

In the LOCAL model, the input to a problem is generally a graph G = (V, E). Each
vertex is identified with a processor and is assigned a unique identifier. In each round of an
algorithm, each vertex is allowed to send an unbounded amount of information (a message)
to each of its neighbors, and may perform an unbounded amount of computation locally.

For an input graph G = (V, E) and integer k ≥ 2, let Ω denote the proper (vertex)
k-colorings of G, namely Ω = {σ : V → {1, . . . , k} : for all (v, w) ∈ E, σ(v) ̸= σ(w)} is
the collection of assignments of k colors to the vertices so that neighboring vertices receive
different colors. The associated Gibbs distribution µ is the uniform distribution over Ω, the
space of proper k-colorings.

Under mild conditions on G (e.g., triangle-free [3]), the number of k-colorings is ex-
ponentially large, i.e., |Ω| = exp(Ω(n)). Nevertheless, our goal is to sample from µ, the
uniform distribution over this exponentially large set, in time poly(n), and ideally in time
O(n log n). Furthermore, in the distributed setting our goal is to generate samples ideally in
time O(log n).

A common technique for sampling from the Gibbs distribution in a wide range of scientific
fields is the Markov Chain Monte Carlo (MCMC) method. The simplest example of an
MCMC algorithm is the Glauber dynamics, also known as the Gibbs sampler.

Consider an input graph G = (V, E) with maximum degree ∆, and k ≥ ∆ + 2. The
Glauber dynamics updates the color of a randomly chosen vertex in each step. In particular,
from a coloring Xt ∈ Ω at time t, the transitions Xt → Xt+1 of the Glauber dynamics
work as follows. We choose a random vertex v uniformly at random from V , and a color
c uniformly at random from the set of colors {1, . . . , k}. If no neighbor of v has color c in
the current coloring Xt, i.e., c ̸∈ Xt(N(v)) where N(v) are the neighbors of vertex v, then
we recolor v as Xt+1(v) = c and otherwise we set Xt+1(v) = Xt(v). For all other vertices
w ≠ v we set Xt+1(w) = Xt(w). This corresponds to the Metropolis version of the Glauber
dynamics. Alternatively one can choose the color c uniformly from {1, . . . , k} \ Xt(N(v)),
which is the set of colors that do not appear in the neighborhood of v in Xt; this is the
heat-bath version of the Glauber dynamics.

When k ≥ ∆ + 2 then the Glauber dynamics is ergodic and the unique stationary
distribution is uniform over Ω. The mixing time is the number of steps, from the worst
initial state X0, so that the chain is within total variation distance ≤ 1/4 of the stationary
distribution (see Section 2.2 for a more formal definition).

There are various attempts at running asynchronous versions of the Glauber dynamics in
the distributed setting, namely HOGWILD! [35, 40], but there are few theoretical results and
the resulting process is not guaranteed to have the correct asymptotic distribution [8, 7, 36].
There is also considerable work in constructing distributed sampling algorithms, including
distributed versions of the Glauber dynamics [14, 13, 22, 12, 11, 27]; we discuss below the
relevant results in our setting of the colorings problem. An important caveat about previous
results is that they require a strong form of decay of correlations, such as the Dobrushin
uniqueness condition, and our results hold in regions where Dobrushin’s uniqueness condition
does not hold.

In the sequential setting, a seminal work of Jerrum [21] proved O(n log n) mixing time
of the Glauber dynamics whenever k > 2∆ where ∆ is the maximum degree. Vigoda [37]
presented an alternative dynamics which we will refer to as the flip dynamics and proved
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O(n log n) mixing time of the flip dynamics when k > 11
6 ∆. The flip dynamics is a general-

ization of the Glauber dynamics which “flips” maximal 2-colored components (clusters) in
each step by interchanging the pair of colors on the chosen cluster; Vigoda’s analysis chooses
particular flip probabilities which depend on the size of the chosen cluster and do not flip
any cluster larger than size six.

Vigoda’s result was recently improved to k > ( 11
6 − ε0)∆ for some fixed ε0 ≈ 10−5 by

Chen, Delcourt, Moitra, Perarnau, and Postle [5]. This later result of k > ( 11
6 − ε0)∆ is the

best known result for general graphs. There are various improvements (e.g., [9, 6]), however
they all require particular girth or maximum degree assumptions; the girth is the length of
the shortest cycle.

In the distributed setting, Feng, Sun and Yin [12] achieved O(∆ log n) rounds in LOCAL
model when k > (2+ε)∆ and O(log n) rounds when k > (2+

√
2)∆. Fischer and Ghaffari [14],

and independently, Feng, Hayes and Yin [11], presented a distributed algorithm which
converges in O(log n) rounds for k-colorings on any graph of maximum degree ∆ when
k > (2 + ε)∆ for any ε > 0. These results match Jerrum’s result (in the sequential setting)
for general graphs. We improve upon these works to match the current state of the art
results in the sequential setting for general graphs for k > (11/6)∆.

We present the following improved result:

▶ Theorem 1. For all ε > 0, all ∆ ≥ 2, all δ > 0, and any k > (11/6 + ε)∆, for any graph
G = (V, E) of maximum degree ∆, a random k-coloring within total variation distance ≤ δ

from uniform can be generated in O(log(n/δ)) rounds, where n = |V |.

The above result is optimal as there is a matching Ω(log(n/δ)) lower bound due to Feng,
Sun, and Yin [12]. Moreover, combining our analysis with the refined analysis of Chen et
al. [5] we obtain the following result.

▶ Theorem 2. There exists ε∗ > 0, for all ∆ ≥ 2, all δ > 0, and any k > (11/6 − ε∗)∆, for
any graph of maximum degree ∆, a random k-coloring within total variation distance ≤ δ

from uniform can be generated in O(log(n/δ)) rounds.

The Dobrushin uniqueness condition, which is a sufficient condition in several previous
distributed sampling works, holds for colorings on general graphs of maximum degree ∆
iff k > 2∆ [33]. Thus, our results hold beyond the Dobrushin uniqueness threshold, and
thereby resolves an open problem of [14] who asked “whether efficient distributed algorithms
intrinsically need to be stuck at Dobrushin’s condition.”

Our proof of fast convergence of our new distributed flip dynamics utilizes the path
coupling framework of Bubley and Dyer [4], which is an important tool in the analysis of
the mixing time for sequential Markov chains. In a coupling analysis path coupling allows
one to only consider “neighboring pairs”. In the special case of the Glauber dynamics,
path coupling is related to Dobrushin’s uniqueness condition but path coupling is a weaker
condition (namely, Dobrushin’s uniqueness condition implies path coupling). We believe our
work raises the following intriguing open question. For any spin system, or equivalently any
undirected graphical model, does the path coupling condition for a local (sequential) Markov
chain imply the existence of an efficient distributed algorithm which converges in O(log n)
steps?

1.1 Motivation
Designing a distributed algorithm for constructing a coloring is a seminal problem in the
study of distributed algorithms [26, 29]. It is an important problem in the study of symmetry
breaking and is useful in the design of networking algorithms [2, 34, 25, 26]. One of the
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fundamental problems in this context that has received significant attention is minimizing
the number of rounds required to construct a (∆ + 1)-coloring in the LOCAL model; see
Barenboim, Elkin, and Goldenberg [1] for a recent breakthrough, and see [15, 16] for more
recent follow-up works.

Our focus is on generating a random coloring, in other words to generate a sample from
the uniform distribution over all colorings, or more precisely, from a distribution that is
arbitrarily close (in total variation distance) to the uniform distribution. More generally, our
goal is to sample from the equilibrium distribution of a graphical model.

Graphical models are a fundamental tool in machine learning [28], and the associated
sampling problem is important for associated learning, inference, and testing problems. A
noteworthy example in the history of graphical models and in the importance of the associated
sampling problem is the work on Restricted Boltzmann Machines (RBMs) of Hinton [18].
An RBM is an instance of the Ising model on a bipartite graph. The Ising model is a simpler
variant of the random colorings problem in which we are sampling labelings of the vertices
of a bipartite graph with only 2 colors where the labelings are weighted exponentially by
the number of monochromatic edges; the generalization to k > 2 colors is the Potts model,
and the zero-temperature (antiferromagnetic) Potts model is the random colorings problem
that we study. The design of fast learning algorithms for RBMs was fundamental in the
development of deep learning algorithms [19, 20, 30, 31, 32].

Given the proliferation of machine learning tasks on high-dimensional data, there is a clear
need for distributed sampling algorithms for graphical models. For example, speeding up
inference in latent Dirichlet allocation models via parallel and distributed Gibbs sampling [38,
23] and via the stochastic gradient sampler [39] has received attention in the machine learning
community, as has the distributed problem of finding a k-coloring as a subroutine for Gibbs
sampling [17].

Sampling colorings is a natural combinatorial problem to address particularly because of its
importance in the study of sequential sampling algorithms. Jerrum’s sampling algorithm [21]
for k > 2∆ colors was a seminal work as it pioneered the use of the coupling method
for sampling problems on graphical models. As mentioned earlier, Vigoda [37] improved
Jerrum’s result to k > 11∆/6 and this was the state of the art until the recent improvement
to k > (11/6 − ε)∆ [5]. One of the major open problems in the area of sequential sampling is
to obtain an efficient sampling scheme when k > ∆ + 1, see [6] for the most recent progress.

Our general question is whether efficient sequential sampling schemes yield efficient
distributed sampling algorithms, by which we mean an O(log n) round algorithm in the
LOCAL model. A distributed version of the Metropolis version of the Glauber dynamics for
colorings was introduced in [14, 11] and was proved to be an efficient distributed sampling
scheme when k > (2 + ε)∆ for all ε > 0. Our work goes beyond the single-site Glauber
dynamics to designing efficient distributed sampling schemes for more general dynamics.

1.2 Technical Contribution
Recall that the Glauber dynamics updates a single vertex in each step. Several recent works
present and analyze distributed versions of the Glauber dynamics (specifically, the Metropolis
version) in various contexts [14, 11, 27, 12]. For more general MCMC algorithms which
update larger regions than a vertex in each step, do efficient convergence results in the
sequential setting for such Markov chains yield efficient distributed sampling algorithms?

A prime example to consider for this more general question is Vigoda’s flip dynamics [37].
Attaining a distributed version of the flip dynamics is more challenging as we need to
simultaneously recolor clusters of up to 6 vertices; here a cluster refers to a maximal 2-colored
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component and the recoloring acts by interchanging the respective pair of colors on each
cluster. Our first contribution is presenting a distributed version of Vigoda’s flip dynamics.
The challenge is to make a distributed version which is efficient but simple enough that we
can still analyze it.

To parallelize the cluster recolorings, we need to ensure that no two overlapping clusters
are simultaneously active, and that no two neighboring clusters that share colors are both
active. On the other hand, we need to “activate” each cluster for potential recoloring with a
sufficiently large probability to obtain a mixing time that is independent of the maximum
degree, namely O(log n).

Our analysis of our distributed version of Vigoda’s flip dynamics follows the high-level
coupling presented in Vigoda’s original work [37]. A coupling analysis of a Markov chain,
considers two copies of the Markov chain (in this case the distributed flip dynamics), each
with arbitrary starting states. Our aim is that there are “coupled transitions” for the two
chains so that after O(log n) steps the two chains have coalesced in the same state with
sufficiently large probability; by coupled transition we mean that the two chains can couple
their transitions as long as when viewed in isolation, each is a faithful copy of the original
Markov chain. The idea is that if we consider one of the chains to be in the stationary
distribution, then we showed that after O(log n) steps our algorithm has likely reached the
stationary distribution and hence the mixing time is O(log n).

There are several important technical challenges that arise when doing a coupling analysis
in the distributed setting for the flip dynamics. First, we need to ensure that the clusters we
flip (which means swap the pair of colors in a maximal 2-colored component) do not interfere
with any other clusters we might flip by either overlapping, or by neighboring and containing
a common color. Subsequently when we do try to couple a pair of flips in the two coupled
chains, we need to consider the case that one of these two clusters is not flippable in only one
chain due to one of these aforementioned conflicts (such as an overlapping cluster in only
one of the chains).

Finally, similar to the original analysis of Vigoda [37], we use the path coupling frame-
work [4] from which we only need to design and analyze a coupling for pairs of chains that
differ at a single vertex, which we call v∗; in contrast, without path coupling we need to
analyze pairs of chains that differ on an arbitrary number of vertices. However, the coupling
analysis for a pair of chains Xt, Yt that differ at this single vertex v∗ is more complicated
than in Vigoda’s sequential setting. In Vigoda’s original analysis, the only pertinent cluster
flips in Xt or Yt are those clusters that either include v∗ or include a neighbor of v∗. In our
analysis in the distributed setting, we also need to consider the effect from clusters that are
distance exactly 2 away from v∗, where distance is measured by cluster adjacencies. These
distance-2 clusters are identical sets of vertices in both chains Xt and Yt but they may be
flippable in only one of the chains (due to differing distance-1 clusters).

Our work suggests that a more general phenomenon is at play. We conjecture that, for
any graphical model, a path coupling analysis for any local Markov chain in the sequential
setting yields an efficient distributed sampling scheme. We believe our work will be an
important step towards proving this general conjecture.

1.3 Paper Overview
In Section 3, we present a parallel and distributed version of Vigoda’s flip dynamics. We
analyze the mixing time of our distributed flip dynamics when k > (11/6 + ε)∆ for any
ε > 0, thereby proving Theorem 1, in Sections 4 and 5. We use a coupling argument that
builds upon the analysis in Vigoda [37]. Our analysis is more complicated than the original
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argument of Vigoda due to clusters which appear in both coupled chains, but possibly being
“flippable” in one chain but not the other chain due to differing conflicts with neighboring
clusters, see Section 1.2 for a very high-level overview. In the appendix of the full version
of this paper, we further utilize the linear programming (LP) framework and the refined
metric on colorings presented in Chen et al. [5] to achieve the further improved result as
stated in Theorem 2. This proof combines our proof approach for Theorem 1 with the more
technical analysis of Chen et al. [5].

2 Preliminaries

Let [k] = {1, . . . , k}. For a graph G = (V, E) let i ∼ j denote (i, j) ∈ E, and for v ∈ V , let
N(v) = {w ∈ V : v ∼ w} denote the neighbors of a vertex v. For integer k ≥ 2, let Ω∗ = [k]V
denote the set of k-labelings and Ω = {σ ∈ [k]V : for all i ∼ j, σ(i) ̸= σ(j)} denote the set of
k-colorings of G. Throughout this paper, a coloring (or k-coloring) refers to a proper vertex
k-coloring.

2.1 Clusters
For a coloring σ, a cluster S in σ is a maximal 2-colored component of size at most 6; this is
formally defined in the following definition.

▶ Definition 3. Let G = (V, E) be a graph and σ ∈ Ω∗. For a vertex v ∈ V and color c ∈ [k]
let Sσ(v, c) denote the set of vertices reachable from v by a (σ(v), c) alternating path, i.e.,
a path of vertices v = v1, v2, . . . , vℓ ∈ V for some ℓ ≥ 1 that alternate between colors σ(v)
and c. When |Sσ(v, c)| ≤ 6 then we refer to S = Sσ(v, c) as a cluster. Let

Sσ =
⋃

v∈V,c∈[k]

{Sσ(v, c) : |Sσ(v, c)| ≤ 6},

denote the collection of all clusters in σ of size at most 6, where the size of a cluster refers to
the number of vertices in the cluster. The restriction to size at most 6 is due to the Markov
chain used as in previous works [37, 5].

The key operation of our Markov chain is “flipping” clusters which we define now.

▶ Definition 4. For a labeling σ ∈ Ω∗, vertex v ∈ V , and color c ∈ [k], the flip of cluster
Sσ(v, c) interchanges colors σ(v) and c on the set Sσ(v, c).

Let σ′ denote the resulting coloring after this flip of cluster Sσ(v, c). Notice that if σ ∈ Ω
then σ′ ∈ Ω, i.e., if it is a proper coloring before the flip, then after the flip it remains a
proper coloring since the clusters are maximal 2-colored components. Hence for Vigoda’s
flip dynamics, if we start the flip dynamics at a proper coloring, i.e., X0 ∈ Ω, then we are
guaranteed to stay at proper colorings, i.e., Xt ∈ Ω for all t ≥ 0.

The subsequent flip dynamics defined in Section 3 is defined on the set Ω, which is the
set of proper k-colorings, and for algorithmic purposes one only needs to consider proper
colorings. The extension of the state space to Ω∗, which is the set of all labelings, is only
needed in the proof for technical reasons pertaining to the use of the path coupling method [4],
which we present in Section 2.3. The introduction of improper colorings in the coupling
analysis arises in all related path coupling proofs for colorings [4, 37, 5], see Section 4.2 for
further discussion of this technicality of introducing improper colorings in the proof.

Consider a coloring σ ∈ Ω and a vertex v ∈ V . For every color c which does not appear
in the neighborhood of v, i.e., c ̸∈ σ(N(v)) then the corresponding cluster is of size 1, i.e.,
|Sσ(v, c)| = 1 since Sσ(v, c) = {v}. Flips of these singleton clusters are exactly the transitions
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of the Glauber dynamics. The flip dynamics of Vigoda [37] is a generalization of the Glauber
dynamics in which clusters of size at most 6 are flipped with positive probability (depending
on the size of the cluster). Note, for c = σ(v) then we get a singleton cluster and the flip
does not change the coloring, hence the flip dynamics has a non-zero self-loop probability
and thus is aperiodic.

For clusters S, T ∈ Sσ, we say S and T are neighboring clusters, which we denote as
S ∼ T , if there exists v ∈ S and w ∈ T where v ∼ w.

2.2 Markov Chains
Consider a Markov chain (Xt) with state space Ω and transition matrix P and unique
stationary distribution π. We say that the chain is aperiodic if gcd{t : P t(x, x) > 0} = 1 for
all x ∈ Ω and irreducible if for all x, y ∈ Ω, there exists a t such that P t(x, y) > 0. Recall that
if the chain is both aperiodic and irreducible, then it is ergodic and the chain has a unique
stationary distribution π where: for all x, y ∈ Ω, limt→∞ P t(x, y) = π(y). If P is symmetric,
then π is the uniform distribution over Ω.

The mixing time is the number of steps, from the worst initial state X0, until the chain is
within total variation distance ≤ 1/4 of the stationary distribution:

Tmix := max
x∈Ω

min{t | ∥P t(σ, ·) − π∥TV ≤ 1/4},

where dT V is the total variation distance, ∥µ − ω∥TV := 1
2

∑
x∈Ω|µ(x) − ω(x)|. The choice

of constant 1/4 is somewhat arbitrary since, for any ε > 0, we can obtain total variation
distance ≤ ε after ≤ log(1/ε)Tmix steps.

2.3 Path Coupling
Consider an ergodic Markov chain MC with state space Ω and transition matrix P . A coupling
for MC defines, for all pairs Xt, Yt ∈ Ω, a joint transition (Xt, Yt) → (Xt+1, Yt+1) such that
the individual transitions (Xt → Xt+1) and (Yt → Yt+1), when viewed in isolation from each
other, act according to the transition matrix P . The goal is to find a coupling that minimizes
the coupling time: Tcouple := min {t | for all X0, Y0 ∈ Ω, Pr (Xt ̸= Yt | X0, Y0) ≤ 1/4} . This
implies that Tmix ≤ Tcouple.

To bound the coupling time and hence the mixing time, we use the use the path coupling
method of Bubley and Dyer [4] which allows us to only consider a small subset of pairs
of states. We will analyze the coupling with respect to the Hamming distance H(σ, τ) :=∑

v∈V 1(σ(v) ̸= τ(v)). We present the more general form of path coupling in the appendix
of the full version of this paper which allows more general metrics.

▶ Theorem 5 ([4, 10]). Consider an ergodic Markov chain on Ω∗ = [k]V . Let β > 0. If for
all pairs of states Xt, Yt ∈ Ω∗ where H(Xt, Yt) = 1, there exists a coupling such that:

E (H(Xt+1, Yt+1) | Xt, Yt) ≤ (1 − β),

then the mixing time is bounded by Tmix ≤ O
(

log(|V |)
β

)
. Moreover, the mixing time within

total variation distance ≤ δ, for any δ > 0, in time O(log(|V |)/(βδ)).

3 Algorithm Description: Distributed Flip Dynamics

We begin by defining a sequential process and then show that this process can be implemented
efficiently in a distributed manner.
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We have the following parameters in our algorithm. Let α = ε/(5000k) where k ≥
(11/6 + ε)∆ for some ε > 0. The parameter α will be used for the activation probability of a
cluster. In the full version of this paper when we strengthen the main result for k < (11/6)∆
we redefine α so that it depends on the distance of k below (11/6)∆.

Let 1 ≥ fi ≥ 0 for all i ≥ 1 be a sequence of “flip” probabilities that contain the following
key properties: f1 = 1, fi ≥ fi+1 for all i, and fi = 0 for all i ≥ 7. The following process is
well-defined for any choice of flip probabilities with these properties. To prove Theorems 1
and 2 we will choose slightly different flip probabilities. In particular, to prove the slightly
weaker result (Theorem 1) in Section 4 we will choose flip probabilities as in [37], and then
to get the refined result (Theorem 2) in the appendix of the full version of this paper we will
use the setting in [5].

We now define the Markov chain MCflip with state space Ω. For a coloring Xt ∈ Ω, the
transitions Xt → Xt+1 of MCflip are defined as follows:
1. Independently for each S ∈ Sσ, cluster S is active with probability α.
2. A cluster S = SXt(v, c) is flippable if the following hold:

(a) S is active;
(b) Overlapping clusters: There is no active S′ ̸= S where S ∩ S′ ̸= ∅;
(c) Conflicting neighboring clusters: For all active clusters T = TXt

(w, c′) where S ∼ T ,
{Xt(v), c} ∩ {Xt(w), c′} = ∅.

3. Independently for each flippable cluster S, flip S with probability fi where i = |S|.
4. Let Xt+1 denote the resulting coloring.

Notice that step 2c is saying that for a pair of active and neighboring clusters S and T ,
the pair of colors defining cluster S are disjoint from the pair of colors defining cluster T .

▶ Lemma 6. The Markov chain MCflip is ergodic and symmetric and hence the unique
stationary distribution is the uniform distribution over Ω.

Proof. Observe that with positive probability, no cluster is active and P (σ, σ) > 0 for
all σ ∈ Ω. Thus, the Markov chain is aperiodic. For irreducibility, since f1 > 0, the
irreducibility of MCflip follows from irreducibility of the Glauber dynamics which holds
whenever k ≥ ∆ + 2 (see, e.g., Jerrum [21]). Hence, the chain is ergodic. Moreover, the
chain is symmetric, for σ ∈ Ω, let σ′ be the coloring obtained from σ after flipping clusters
Sσ(v1, c1), . . . , Sσ(vℓ, cℓ) in one step of MCflip. Then, starting from σ′ and flipping clusters
Sσ′(v1, σ(v1)), . . . , Sσ′(vℓ, σ(vℓ)) recovers σ. Since MCflip is ergodic and symmetric then the
uniform distribution is the unique stationary distribution. ◀

▶ Lemma 7. Each step of the Markov chain MCflip can be implemented in the LOCAL
model in O(1) rounds.

Proof. We describe the steps of the algorithm and how to implement them in the LOCAL
model. At a given time step t, denote the current coloring as σ = Xt.
1. For each vertex v ∈ V and for each color c ∈ [k], identify the cluster Sσ(v, c). We

accomplish this step by (i) sending a message indicating the index of v to each neighboring
vertex w with σ(w) = c, (ii) passing this message, along with the index of w, to each
neighbor x of w with σ(x) = σ(v), and (iii) repeating this process for up to six rounds.
After the six rounds, each vertex has received the identities of all other vertices in its
six-hop neighborhood with which it might share a cluster, and thus can determine the
clusters (and their sizes) to which it belongs. Moreover, any 2-colored components of size
> 6 will be identified and discarded.
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2. Fix an arbitrary ordering of the vertex set of G and for each cluster S, identify pres(S),
the lowest-index vertex v ∈ S. We can accomplish this step by letting each vertex u ∈ S

compare its own index to each of the indices of other vertices in S, which have been
passed during step 1.

3. For each cluster S, activate S with probability α. More precisely, for each v ∈ V

and for each c ∈ [k], if v = pres(Sσ(v, c)), activate Sσ(v, c) by sending a message to
every u ∈ Sσ(v, c).

4. Detect conflicts:
(a) Overlapping clusters: For all v ∈ V , if Sσ(v, c), Sσ(v, c′) are both active for some c ̸= c′,

send messages to pres(Sσ(v, c)), pres(Sσ(v, c′)) to “deactivate” Sσ(v, c), Sσ(v, c′).
(b) Conflicting neighboring clusters: For all v ∈ V , for every neighbor w of v, if there

exist clusters Sσ(v, c) ̸= Sσ(w, c′) such that {σ(v), c} ∩ {σ(w), c′} ≠ ∅ and if Sσ(v, c)
and Sσ(w, c′) are both active, deactivate Sσ(v, c) and Sσ(w, c) (by sending messages
to pres(Sσ(v, c)) and pres(Sσ(w, c))).

5. For all v ∈ V , for all c ∈ [k], if Sσ(v, c) is still active and v = pres(Sσ(v, c)), flip Sσ(v, c)
with probability fi, where i = |Sσ(v, c)| (by sending a message to each w ∈ Sσ(v, c) to
change its color from c to σ(v) or vice versa).

Since, in step 5, only pres(S) is responsible for flipping S, the probability of a given cluster S

being flipped, conditioned on S being active and having no active neighboring or overlapping
cluster, is f|S|.

Each of the above steps requires a constant number of rounds, proving the claim. Fur-
thermore, the amount of computation performed locally at each vertex depends only (and
polynomially) on the maximum degree of the graph and the number of colors. That is, not
only is the number of rounds in the LOCAL model O(1), but also the algorithm is efficient
with respect to the local computation performed in each round. ◀

4 Analysis of Distributed Flip Dynamics

Here we prove our main result Theorem 1, namely fast convergence of the distributed flip
dynamics when k > (11/6 + ε)∆ for any ε > 0. Hence, fix ε > 0 and k > (11/6 + ε)∆. Our
specific choice of flip probabilities for this section and for Section 5 are the following:

f1 = 1, f2 = 13/42, f3 = 1/6, f4 = 2/21, f5 = 1/21, f6 = 1/84. (1)

These parameters match the original paper of Vigoda [37]; there are other parameter choices
for which the analysis works, e.g., see [5], in fact, we will utilize these alternative parameters
in the appendix of the full version of this paper.

4.1 Overview
We will analyze the mixing time of the chain MCflip using path coupling. Consider a pair
of colorings Xt, Yt which differ at exactly one vertex and let v∗ denote the disagreement,
i.e., Xt(v∗) ̸= Yt(v∗) and for all w ̸= v∗, Xt(w) = Yt(w). Our coupling is the identity
coupling for all clusters that are the same in both chains, i.e., for all clusters S where
S = SXt

(w, c) = SYt
(w, c) for some w ∈ V, c ∈ [k], we use the identity coupling for the

activation probability. By the identity coupling for the activation probability we mean that
with probability α the cluster S is active in both chains, and with probability 1 − α it is
inactive in both chains. Moreover, if the cluster S is flippable in both chains then we also use
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Figure 1 The vertex v has Xt(v) = R and Yt(v) = B. Here, T = Sσ(v, R) = Sτ (v, B),
where σ = Xt and τ = Yt. By Definition 8, dist(v∗, T ) = 0, dist(v∗, T ′) = dist(v∗, T ′′) = 1.

the identity coupling for the flip probability, which means that if both clusters are flippable
then with probability α we flip the cluster in both chains and with probability 1 − α we flip
the cluster in neither of the chains.

We will define the distance of cluster T from the disagree vertex v∗ based on the shortest
path via neighboring clusters.

▶ Definition 8. For a coloring σ ∈ {Xt, Yt}, and a cluster T ∈ Sσ, we define dist(v∗, T )
inductively as follows. If T = {v∗} then let distσ(v∗, T ) = 0. In general, let

distσ(v∗, T ) = min{i : there exists S ∈ Sσ where S ∼ T, distσ(v∗, S) = i − 1}.

▶ Remark 9. Note, this notion of distance is equivalent to the shortest path distance from the
singleton cluster {v∗} in the cluster graph; the cluster graph is the graph on all clusters in
coloring σ where clusters S and T are adjacent if S ∼ T . Distance 0 clusters are the singleton
sets {v∗} for every color which does not appear in the neighborhood of v∗. Distance 1 clusters
are those that contain a neighbor of v∗ (regardless of whether they also contain v∗).

Any clusters T where no vertex in T is adjacent to v∗ are identical in the two chains, and
thus, for every i ≥ 2:

T ∈ SXt , distXt(v∗, T ) = i ⇐⇒ T ∈ SYt , distYt(v∗, T ) = i.

Similarly, the only clusters T which “disagree” in the sense that they appear in only one
chain then T is at distance 1 from v∗; more formally, if T ∈ SXt

\ SYt
, then distXt

(v∗, T ) = 1,
and if T ∈ SYt

\ SXt
, then distYt

(v∗, T ) = 1. We use dist(v∗, T ) when the distances are equal,
i.e., distXt(v∗, T ) = distYt(v∗, T ).

For such clusters T where dist(v∗, T ) ≥ 2 we use the identity coupling for the activation
probability in Xt and Yt, and thus the cluster T is active in both chains or in neither chain.
It follows that for clusters T ′ with dist(v∗, T ′) ≥ 3 then the cluster is flippable in both
chains or in neither chain, as their neighboring active clusters are identical in the two chains.
Therefore, we can use the identity coupling for the flip probability of this cluster T if the
cluster is flippable, and such clusters are flipped in both chains or neither chain; this leads to
the following observation.

▶ Observation 10. For any cluster T ′ where dist(v∗, T ′) ≥ 3, Xt+1(T ′) = Yt+1(T ′).



C. Carlson, D. Frishberg, and E. Vigoda 13:11

For clusters T where distG(T, v∗) = 2, it can occur that T is flippable in only one of the
chains (due to a neighboring cluster at distance 1 that occurs in only one of the chains).
Hence, there is a probability that such clusters can be a new disagreement. The upcoming
Lemma 11 proves that this occurs with an arbitrarily small constant probability.

The following lemma bounds the expected increase in Hamming distance from flips on
clusters at distance exactly 2 from v∗.

▶ Lemma 11.∑
T :dist(v∗,T )=2

|T |Pr (Xt+1(T ) ̸= Yt+1(T )) ≤ αε∆/10,

where k ≥ ( 11
6 + ε)∆.

We will account for these potential disagreements at distance 2 via the clusters at
distance 1. For a cluster T at distance 1 to occur in only one of the chains, the pair of colors
defining T must include color Xt(v∗) or color Yt(v∗).

Proof of Lemma 11. Let SXt ⊕ SYt := (SXt \ SYt) ∪ (SYt \ SXt) denote the set of clusters
that appear in one chain but not in the other chain. Consider a cluster S ∈ SXt

⊕ SYt
. Note,

all such S are at dist(v∗, S) = 1.
Let cX = Xt(v∗) and cY = Yt(v∗). These clusters S ∈ SXt

⊕ SYt
are either:

SXt(w, cX), SXt(w, cY ), SYt(w, cX), or SYt(w, cY ),

for some neighbor w ∈ N(v∗). Hence, there are ≤ 4∆ such clusters S ∈ SXt ⊕ SYt .
Each such cluster S has size ≤ 6 and hence it has ≤ 6 · 2∆ neighboring clusters T that

share a color with S. These clusters T are at distance = 2 from v∗. Note that if S and T

are both active then T is not flippable in one of the chains, but it may be flippable in the
other chain where S does not appear; hence, the chains Xt+1 and Yt+1 potentially differ at
T . This yields the following:∑

T :dist(v∗,T )=2

|T |Pr (Xt+1(T ) ̸= Yt+1(T )) ≤ 6 × (4∆)(12∆)α2 = 288∆2α2 ≤ εα∆/10. ◀

We now account for the “good moves” where the disagreement at v∗ is removed. This
occurs by Glauber updates at v∗ where we update v∗ to an available color, which is a color
that does not appear in its neighborhood.

▶ Definition 12. Denote the set of available colors for v∗ in Xt as:

A(v∗) = AXt
(v∗) := {c : c /∈ Xt(N(v∗))}.

Note, the sets AXt(v∗) = AYt(v∗) since v∗ is the only disagreement at time t. Consider a color
c ∈ A(v∗). The clusters involving c to which v∗ belongs satisfy SXt

(v∗, c) = SYt
(v∗, c) = {v∗}

and hence the identity coupling is used for this cluster. Therefore, with probability α the
cluster is active in both chains and if no active clusters overlap and no neighboring clusters
have a common color then v∗ is recolored to c.

We can now bound the probability of v∗ agreeing at time t + 1 in terms of the number of
available colors for v∗.

▶ Lemma 13. Pr (Xt+1(v∗) = Yt+1(v∗)) ≥ |A(v∗)|α(1 − ε/500).
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Proof. For each color c ∈ A(v∗) note SXt(v∗, c) = SYt(v∗, c) = {v∗}. Hence, for c ∈ A(v∗),
let Sc = SXt

(v∗, c) = SYt
(v∗, c) denote this cluster of size 1 which appears in both chains.

Since Sc appears in both chains we use the identity coupling for being active so that with
probability α the cluster Sc is active in both chains, and with probability 1 − α the cluster
Sc is inactive in both chains. The cluster Sc may have different neighboring clusters in the
two chains (which affects whether it is flippable) but if it is flippable in both chains then
with probability f1 = 1 we flip the cluster in both chains.

There are at most 2∆ neighboring clusters in each chain that share a color with one of
the respective cluster, and there are k − 1 clusters (namely those at v∗) that overlap with
these clusters. If none of the 2 · 2∆ neighboring clusters is active, and none of the 2(k − 1)
overlapping clusters is active in either chain, then we can flip {v∗} in both chains. After this
flip, v∗ agrees in both chains, and hence we obtain:

Pr (Xt+1(v∗) = Yt+1(v∗)) ≥ |A(v∗)|α(1 − α)4∆+k−1

≥ |A(v∗)|α exp(−ε(4∆ + k − 1)/2500k)
≥ |A(v∗)|α exp(−ε/500)
≥ |A(v∗)|α(1 − ε/500),

where the second inequality uses the fact that 1 − x ≥ exp(−2x) for x ≤ 1/2. ◀

The upcoming lemma captures the potential disagreements that arise from flipping
clusters at distance one. The coupling on clusters containing v∗ or neighboring v∗ in at least
one chain will be coupled based on the new color c.

▶ Definition 14. For a color c ∈ [k], let Nc(v∗) = {w ∈ N(v) : Xt(w) = c} = {w ∈ N(v) :
Yt(w) = c} denote the neighbors of v∗ with color c, and let dc(v∗) = |Nc(v∗)| denote the
number of neighbors of v∗ with color c at time t.

Let SXt
(c) denote the collection of clusters at distance 1 in Xt that involve color c:

SXt(c) := {SXt(w, Xt(v∗)) | w ∈ Nc(v∗)} ∪ {SXt(w, Yt(v∗)) | w ∈ Nc(v∗)},

and similarly let SYt(c) denote the corresponding collection for the coloring Yt.

The sets SXt
(c) and SYt

(c) are coupled with each other. We will specify the detailed
coupling later, for now all that is needed is that these sets SXt(c) and SYt(c) are coupled with
each other. We can now state the key lemma bounding the increase in Hamming distance
when we do a coupled update on these sets SXt(c), SYt(c).

In the following statement, recall, that for σ, τ ∈ Ω, H(σ, τ) = |{v ∈ V : σ(v) ̸= τ(v)}| is
the Hamming distance.

▶ Lemma 15. Let c ∈ [k] where dc(v∗) > 0. Recall that the flips of clusters in SXt(c) for
Xt → Xt+1 are coupled with clusters in SYt

(c) for Yt → Yt+1. Let Fc denote the event that
one of these coupled flips occurred in at least one of the chains. Then,∑

c∈[k]

E (H(Xt+1, Yt+1)1(Fc)) ≤
∑
c∈[k]

[
1 + α(1 + ε/5)

(
11
6 dc(v∗) − 1

)]
+ αε∆/10.

The proof of Lemma 15 is deferred to Section 5. Note the error term αε∆/10 is coming
from Lemma 11. Combining the above lemmas we can prove the main result (this is the
slightly weaker version for k ≥ (11/6 + ε)∆ for any ε > 0).
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4.2 Proof of Theorem 1
We can extend the definition of our Markov chain (see Section 3) to be over all labelings Ω∗ =
[k]V instead of just proper colorings Ω. This is necessary to apply path coupling Theorem 5.
An identical approach is used in both [37] and [5]. The reason for this extension of the
state space is the following. In the path coupling analysis we start with a pair of chains
Xt, Yt that differ at a single vertex v∗. In the coupling analysis we may introduce a new
disagreement at time t + 1 at a neighbor w ∈ N(v∗) where the pair of disagreements at
time t + 1 are colored as Xt+1(w) = Yt+1(v∗), Yt+1(w) = Xt+1(v∗) and Xt+1(v∗) ̸= Yt+1(v∗).
Hence, the Hamming distance between Xt+1 and Yt+1 is two but the number of Glauber
dynamics steps (or cluster flips) to go from Xt+1 to Yt+1 is three, and therefore in the path
coupling analysis this new disagreement at w increases the distance by two (even though the
Hamming distance increases by just one). This issue is resolved by extending the space to
labelings Ω, subsequently there is an intermediate improper coloring so that Xt+1 and Yt+1
are distance two apart.

The definition of the Markov chain described in Section 3 is identical, we simply extend
the state space. A set Sσ(v, c) is still defined as the set of vertices reachable from v by a
(σ(v), c) alternating path. And hence the notion of a cluster is still the same as before. Note,
that while the chain restricted to proper colorings is symmetric, this is not necessarily true
for improper colorings. All of the bounds stated in Section 4 hold for possibly improper
colorings Xt, Yt ∈ Ω∗.

Consider a labeling X0 ∈ Ω∗ \ Ω; note, X0 is not a proper coloring since X0 ̸∈ Ω. For
k ≥ ∆ + 2, there is a sequence of transitions with non-zero probability (e.g., a sequence of
Glauber moves as in the proof of irreducibility) so that it reaches a proper coloring, i.e.,
Xt ∈ Ω for some t ≥ 0. Moreover, for any proper coloring Xt ∈ Ω then it stays on proper
colorings, i.e., Xs ∈ Ω for all s ≥ t, as the process does not introduce improper colorings.
Therefore, states in Ω are the only ones which have positive probability in the stationary
distribution, and hence the stationary distribution of the chain is uniform over the set of
proper colorings Ω, even though the state space is all labelings Ω∗.

If the initial state is restricted to Ω, i.e., X0 is a proper coloring, then the chain is identical
to the process defined in Section 2.2. Furthermore, since the mixing time is defined from the
worst initial state then a mixing time upper bound for the chain defined on Ω∗ implies the
same bound on the mixing time for the chain from Section 2.2 defined only on Ω.

We now have all the tools necessary to prove Theorem 1.

Proof of Theorem 1. First consider the available colors for v∗. Note that, since there is an
extra available color for every time a color repeats in N(v∗), we have

|A(v∗)| ≥ k − d(v∗) +
∑

c∈[k]:dc(v∗)≥2

(dc(v∗) − 1), (2)

where d(v∗) =
∑

c∈[k] dc(v∗) = |N(v∗)| is the degree of v∗.
Now by combining Lemmas 11, 13, and 15 we can complete the proof of the theorem:

E (H(Xt+1, Yt+1) | Xt, Yt)

≤ 1 − Pr (Xt+1(v∗) = Yt+1(v∗)) +
∑

c:dc(v∗)>0

(E (H(Xt+1, Yt+1)1(Fc)) − 1)

+
∑

T :dist(v∗,T )=2

|T |Pr (Xt+1(T ) ̸= Yt+1(T ))

≤ 1 − α|A(v∗)|(1 − ε/5) + α(1 + ε/5)
∑

c∈[k]:dc(v∗)>0

(
11
6 dc(v∗) − 1

)
+ αε∆/5 (3)
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= 1 − α|A(v∗)|(1 − ε/5) + α(1 − ε/5)
∑

c∈[k]:dc(v∗)>0

(
11
6 dc(v∗) − 1

)

+ α(2ε/5)
∑

c∈[k]:dc(v∗)>0

(
11
6 dc(v∗) − 1

)
+ αε∆/5

≤ 1 − α|A(v∗)|(1 − ε/5) + α(1 − ε/5)
∑

c∈[k]:dc(v∗)>0

(
11
6 dc(v∗) − 1

)
+ αε∆(22/30) + αε∆/5

where Equation (3) follows from Lemmas 11, 13, and 15. Then using Equation (2) we get

E (H(Xt+1, Yt+1) | Xt, Yt) ≤ 1 − α(1 − ε/5)
[
k − 11

6 d(v∗)
]

+ αε∆(28/30) (4)

≤ 1 − α(1 − ε/5)ε∆ + αε∆(28/30) (5)
≤ 1 − αε∆(29/30) + αε∆(28/30) (6)
≤ 1 − ε2/60000,

where Equation (5) uses that k ≥ (1 + ε) 11
6 ∆ and Equation (6) uses that (1 − ε/5) ≥ 29/30

when ε ≤ 1/6. Note, the case when ε > 1/6 and k > 2∆ is handled by [14, 11] or can be
handled in our analysis by setting α in terms of 1/∆ instead of 1/k. Finally, applying the
path coupling Theorem 5 we obtain mixing time O(log n). Moreover, we obtain mixing time
within total variation distance ≤ δ, for any δ > 0, in time O(log(n/δ)). ◀

5 Coupling Analysis for Neighboring Clusters

We now prove Lemma 15. Before delving into the proof we state several key properties of
the settings for the flip probabilities in Equation (1):
1. For all integer i, j ≥ 1, i(fi − fi+1) + (j − 1)(fj − fj+1) ≤ 5/6.

2. For all integer i ≥ 1, 2(i − 1)fi + f2i+1 ≤ 2/3.

Fix a color c ∈ [k] where dc(v∗) > 0; we will consider two cases: dc(v∗) = 1 or dc(v∗) ≥ 2.

5.1 Flippable Difference
▶ Lemma 16. For any cluster C, Pr (C is active and not flippable) ≤ αε/250.

Proof. The cluster C is active with probability α. Assuming C is active, there are two ways
that C is not flippable, either (i) an overlapping cluster, or (ii) a neighboring cluster that
shares a color with C. For case (i), since |C| ≤ 6 and each vertex is in k clusters, then the
probability of a cluster that overlaps C also being active is ≤ α6kα. For case (ii), there are
≤ 6∆ neighboring vertices, each has ≤ 2 clusters that share a color, and hence the probability
of case (ii) is ≤ α12∆α. Combining the above calculations we have the following:

Pr (C is active and not flippable) ≤ α(6kα + 12∆α) ≤ α
18kε

5000k
< αε/250. ◀

5.2 Color Appears Once
Suppose dc(v∗) = 1. Let w ∈ N(v∗) be the unique neighbor where Xt(w) = Yt(w) = c, and
let R := Xt(v∗) and B := Yt(v∗). We are coupling the clusters in the set SXt(c) with SYt(c),
and since dc(v∗) = 1 these sets are the following:
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SXt
(c) = {SXt

(w, R), SXt
(w, B)} and SYt

(c) = {SYt
(w, R), SYt

(w, B)}.

Observe SXt
(w, R) = SYt

(w, R)∪{v∗} and SYt
(w, B) = SXt

(w, B)∪{v∗}. Let i := |SYt
(w, R)|

(hence, |SXt(w, B)| = i + 1), and let j := |SXt(w, B)| (|SYt(w, B)| = j + 1). Note, i, j ≥ 1.
We couple the clusters in the following manner. With probability α, cluster SXt

(w, R) is
active in Xt and SYt

(w, R) is active in Yt, while with probability 1 − α both of these clusters
are inactive . Similarly, with probability α then both: cluster SXt(w, B) is active in Xt and
SYt

(w, B) is active in Yt.
Suppose that SXt

(w, R) and SYt
(w, R) are both flippable. In this case we maximize the

probability that we flip both clusters. Since fi ≥ fi+1 then with probability fi+1 we flip
both clusters SXt

(w, R) and SYt
(w, R), assuming they were both flippable. Similarly, with

probability fj+1 we flip both clusters SXt(w, B) and SYt(w, B), assuming they were both
flippable. Note in both of these cases where we flip both SXt

(w, R) and SYt
(w, R) or we flip

both SXt(w, B) and SYt(w, B), then the Hamming distance does not change as the chains
only differ at v∗ after the coupled update.

Suppose that all 4 clusters were flippable. (Recall an active cluster S is flippable if
there is no overlapping active cluster and no neighboring active cluster which shares one
of the two colors with S.). Then after the above coupling of SXt

(w, R) with SYt
(w, R),

and SXt(w, B) with SYt(w, B), there remains probability fj − fj+1 to flip SXt(w, B), and
probability fi − fi+1 to flip SYt

(w, R). We maximally couple these remaining flips and hence
with probability min{fi − fi+1, fj − fj+1} we couple the flips of clusters SXt(w, B) and
SYt

(w, R). Note in this case where we flip both SXt
(w, B) and SYt

(w, R) then the Hamming
distance increases by ≤ (i + j − 1) since SXt

(w, B) ∩ SYt
(w, R) ⊇ {w}.

In the above coupling, we considered 3 coupled flips of cluster pairs SXt(w, R), SYt(w, R);
SXt

(w, B), SYt
(w, B); and SXt

(w, B), SYt
(w, R). For each pair, it may occur that one of

these clusters is flippable and the other is not flippable (due to a neighboring or overlapping
cluster also being active). In that case we flip the flippable cluster by itself. In which case,
the Hamming distance increases by at most 6 since the cluster is of size at most 6. By
Lemma 16 the probability of this occurring for a specific cluster is at most αε/250, and since
there are 3 pairs we have the effect is at most 36αε/250 = αε/5.

Let us assume without loss of generality that i ≤ j and hence fi − fi+1 ≥ fj − fj+1. Now
we can simplify and summarize the effect of the above coupled flips that change the Hamming
distance. Since the clusters are active with probability α, with probability ≤ α(fj − fj+1)
we flip SXt

(w, B) and SYt
(w, R) and then the Hamming distance increases by ≤ (i + j − 1).

Moreover, with probability fi −fi+1 −(fj −fj+1) we flip SXt
(w, B) by itself and the Hamming

distance increases by i. Therefore, we have the following:

E (H(Xt+1, Yt+1)1(Fc))
≤ 1 + α(i + j − 1)(fj − fj+1) + i((fi − fi+1) − (fj − fj+1)) + αε/5
= 1 + αi(fi − fi+1) + (j − 1)(fj − fj+1) + αε/5

≤ 1 + α

(
5
6 + ε/5

)
where the last inequality follows by Property 1.
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5.3 Color Appears More Than Once
The analysis of the case when the color appears more than once, i.e., dc(v∗) > 1, follows the
same general approach as in Section 5.2 for the case dc(v∗) = 1. In particular, we use the
same high-level coupling as used by Vigoda [37] but in addition we use Lemma 16 to bound
the probability that a cluster is flippable in one chain and the coupled cluster is not flippable
in the other chain. We refer the reader to the appendix of the full version of this paper for
details.

6 Proof of Theorem 2: Mixing below 11/6

Sections 4 and 5 present the proof of Theorem 1 which establishes O(log n) mixing time of
the distributed flip dynamics when k > (11/6 + ε)∆ for all ε > 0. The improved result for
k > (11/6 − ε∗)∆ for a fixed ε∗ > 0 as stated in Theorem 2 is proved in the appendix of the
full version of this paper.

The proof of Theorem 2 uses the new metric introduced in [5], which is a weighted
Hamming distance. In particular, in [5] they identify the configurations on the local
neighborhood of the disagree vertex v∗ for which the coupling analysis is tight, these are
referred to as extremal configurations. Hence, for a pair of configurations Xt, Yt which
differ at a single vertex v∗, let γ denote the fraction of neighbors of v∗ in non-extremal
configurations. Then, [5] defines a new weighted Hamming distance as H(Xt, Yt) = 1 − γη

for an appropriately defined small constant η > 0.
Using this new weighting, [5] proves rapid mixing of the flip dynamics in the sequential

setting for k > (11/6 − ε∗)∆. The challenge in their analysis is that one has to consider the
effect of coupled flips which do not change the Hamming distance but simply change whether
some neighbors of v∗ are in extremal configurations.

To obtain Theorem 2 we combine the approaches of [5] with our analysis in Sections 4 and 5
of the effect of the distributed synchronization. However the analysis becomes considerably
more complicated than in [5] because multiple clusters in the neighborhood of v∗ can flip in
a single step, this leads to many new cases where the new weighted Hamming distance can
change. The detailed analysis is contained in the appendix of the full version of this paper.
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