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Abstract
The amortized step complexity of operations on all previous lock-free implementations of double-ended
queues is linear in the number of processes. This paper presents the first concurrent double-ended
queue where the amortized step complexity of each operation is polylogarithmic. Since a stack is a
special case of a double-ended queue, this is also the first concurrent stack with polylogarithmic step
complexity. The implementation is wait-free and the amortized step complexity is O(log2 p + log q)
per operation, where p is the number of processes and q is the size of the double-ended queue.
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1 Introduction

This paper describes a linearizable, wait-free implementation of a double-ended queue (deque)
[20], which allows items to be added or removed at both ends. As an example of the
concurrent deque’s ubiquity, the class ConcurrentLinkedDeque is part of the Java standard
library. Unlike previous lock-free deques, the amortized number of steps per operation in ours
is polylogarithmic. To achieve this, we build on the recent wait-free queue of Naderibeni and
Ruppert (N&R) [26], which was the first lock-free queue with polylogarithmic step complexity.
All prior lock-free queues shared by p processes had Ω(p) amortized step complexity due to
what Morrison and Afek called the CAS retry problem [25], which occurs when all contending
update operations must repeatedly perform compare-and-swap (CAS) instructions on one
location until they succeed. A successful CAS may thwart an attempt of each other process,
yielding the Ω(p) amortized bound. Moreover, operations may starve.

To avoid the CAS retry problem and achieve polylogarithmic step complexity, the N&R
queue uses a helping technique that was introduced by Afek, Dauber and Touitou [1] and
used in Jayanti and Petrovic’s single-dequeuer queue [18]. Each process is assigned a leaf in a
static binary tree called an ordering tree. A process inserts its operation op into its leaf and
then propagates op to the tree’s root. At each node along the path to the root, op collects
non-propagated operations from the node’s children and attempts to CAS the set of all these
operations into the node. If op fails its CAS on a node twice, some other process must have
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17:2 A Wait-Free Deque with Polylogarithmic Step Complexity

propagated op to this node, so op can continue up the tree. Operations are linearized in
the order they reach the tree’s root. A key innovation of the N&R queue is their implicit
representation of sets of operations designed so that sets can be efficiently collected and
propagated, while still supporting efficient retrieval of each dequeue’s result.

Since it is unclear that the implicit representation of sets of operations in the N&R queue
can be extended to deques (or stacks), we design a very different explicit representation that
stores the sets of operations in balanced search trees. In addition to allowing us to gather and
propagate sets of operations up the tree quickly, our new representation allows us to apply
these batches of operations when they reach the root to obtain an explicit representation
of the current state of the deque. As a byproduct, we also get an explicit representation
of the results of all dequeue operations in a batch of operations. This contrasts with the
implicit representation used by the N&R queue, where the result of a dequeue had to be
reconstructed by searching through the history of all operations applied to the queue.

Using our new representation, we obtain a wait-free, linearizable deque for p processes
with amortized step complexity O(log2 p + log q) per operation, where q is the number of
items in the deque. This matches the step complexity of the more restricted queue of N&R
and is the first time sublinear amortized step complexity has been obtained for a lock-free
deque (or stack, which is a restricted form of a deque). We unlink unneeded objects from
our data structure to ensure it does not grow too large, which would slow operations down.
However, we leave the orthogonal problem of reclaiming memory of unlinked items to a
garbage collector, such as the highly optimized one provided by Java. Our ordering tree data
structure uses O(q + p2 log p) space, improving on the N&R queue by a factor of p.

2 Related Work

Deques. The deque is a classical data structure [20], and lock-free implementations of deques
have been studied for decades. Although it is a fairly simple data structure, implementing
it in a concurrent setting can be tricky. For example, Koval et al. [22] recently reported a
linearizability bug in the ConcurrentLinkedDequeue of the Java standard library. Early
lock-free deques [2, 6, 10, 23] used double-word CAS instructions, which are generally not
provided by hardware. Michael [24] introduced the first lock-free deque based on single-word
CAS. It uses a doubly-linked list. Each operation uses a CAS to update an Anchor object,
which has pointers to both ends of the list. If the CAS fails, the operation tries again. This
CAS retry problem yields Ω(p) amortized step complexity per operation, where p is the
number of processes. Ideally, operations on opposite ends of the deque should not interfere
with each other, but they do in the Michael deque since they are serialized by their accesses
to the Anchor. Sundell and Tsigas [28] gave a lock-free deque, also based on a doubly-linked
list, where operations at opposite ends of the deque do not interfere with each other, unless
the deque is empty or nearly empty. This deque also suffers from the CAS retry problem.

Herlihy, Luchangco and Moir [16] gave an array-based deque satisfying the weaker progress
condition of obstruction-freedom, where operations terminate if they run without interference
from other processes for sufficiently long. Graichen, Izraelevitz and Scott [9] described how
to use a doubly-linked list of these array-based deques to get an obstruction-free deque with
unlimited capacity. Both implementations have unbounded amortized step complexity.

Restricted Deques. Both FIFO queues and LIFO stacks are restricted versions of deques:
each provides only two of the four deque operations. Naderibeni and Ruppert [26] survey
the extensive previous literature on lock-free queues, all having amortized step complexity
Ω(p), before providing their wait-free queue with polylogarithmic step complexity. An
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unbounded-space version of their queue achieves a step complexity of O(log p) per enqueue
and O(log2 p + log q) per dequeue, where q is the size of the queue. A space-bounded version
of their queue has amortized step complexity of O(log p log(p + q)) per operation.

Treiber [30] described a lock-free stack based on a singly-linked list with a pointer to the
top element. Pushes and pops do a CAS on this pointer and retry if the CAS fails. It has Ω(p)
amortized step complexity due to the CAS retry problem. Array-based stacks (e.g., [27]) also
suffer from the CAS retry problem. Hendler, Shavit and Yerushalmi [14] used elimination
to improve the performance of stacks: a concurrent push and pop can eliminate each other,
with the pop returning the argument of the push. Operations access a traditional list- or
array-based stack only if they fail to find a partner operation to eliminate. However, if
pushes are only concurrent with other pushes, accesses to that underlying stack still take Ω(p)
steps. Dodds, Haas and Kirsch’s [7] lock-free stack assigns timestamps to pushed elements.
Timestamps provide a partial order on the elements: elements added by concurrent pushes
need not be ordered. Each process maintains a list of elements it has pushed, and a pop must
check each of these lists to find an element with the youngest timestamp, which requires
Ω(p) steps in the worst case. Pushes are artificially slowed down to make elimination more
likely, thereby improving performance. The authors also sketch how a similar approach could
be used for a queue or deque (in which dequeue operations would also require Ω(p) steps).
Haas’s thesis [12] gives pseudocode for the queue and deque, but says the linearization proof
for the deque “is still a work in progress”.

There are also lock-free deques where some operations are restricted to certain processes.
For example, Arora, Blumofe and Plaxton [3] designed a lock-free deque for their work-
stealing algorithm. In their deque, only one process can access one end, and only dequeues
can be performed at the other end. It uses a fixed-size array and therefore has bounded
capacity. Hendler et al. [13] used a doubly-linked list of arrays to remove this limitation. In
both deques, the CAS retry problem occurs at the end of the queue that supports concurrent
accesses: one successful dequeue at that end can cause all concurrent dequeues to fail.

Universal Constructions. A universal construction [15] is a general technique for construct-
ing a lock-free implementation of any data structure. However, the resulting implementation
is typically much less efficient than hand-crafted ones. Afek, Dauber and Touitou’s universal
construction [1] can achieve O(log p) steps per operation, as observed by Jayanti [17], but
only if memory words can store Ω(p log p) bits. With more reasonably sized O(log p)-bit
words, the universal construction would take Ω(p log p) steps per operation. Nevertheless,
the technique introduced in this construction forms the basis of our deque design.

Lower Bounds. Attiya and Fouren [4] gave lower bounds in terms of contention c, the
number of operations that run concurrently. They showed the amortized step complexity of
a lock-free stack or queue must be Ω(min(c, log log p)). Jayanti, Tarjan and Boix-Adserà [19]
showed the amortized step complexity of any stack or queue implementation is Ω(log p).

Red-Black Trees. Our algorithm uses a classical search tree data structure. A red-black
tree (RBT) [11] is a balanced binary search tree that can store a set of items sorted by key
values. Insertions, deletions and searches on a RBT of n items can be done in O(log n) time.
In addition, we make use of O(log n)-time algorithms for splitting and joining RBTs [29].
As in an order-statistic tree [5], an RBT can be augmented with a count of the number of
nodes in the subtree rooted at that node, so that we can also select the ith element in an
in-order traversal of the tree, or split the tree at that ith element, in O(log n) time. We
assume a purely functional implementation of RBTs for a single process. In other words, we
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17:4 A Wait-Free Deque with Polylogarithmic Step Complexity

assume update operations do not destroy the original version of the RBT, but rather create a
new, modified version. This persistence can be achieved through path copying [8]: each RBT
operation makes a copy of any node it visits, and modifies that copy without overwriting the
tree’s original state. In our deque algorithm, a process that wishes to update a shared RBT
creates a new copy of the RBT using path copying and then swings a pointer from the old
root to the new root. Processes essentially get a snapshot of the RBT simply by reading the
pointer to the root, since all RBT nodes are immutable. Other persistent search trees (such
as B-trees or AVL trees) could be used in place of RBTs.

3 Implementation

Our deque uses an ordering tree, which is a static binary tree of height ⌈log2 p⌉ with one
leaf assigned to each process. Each node stores a sequence of Blocks; each Block represents
a set of concurrent deque operations. The four deque operations TopEnqueue, TopDequeue,
BotEnqueue and BotDequeue allow items to be enqueued or dequeued from either end of the
deque, which we call top and bottom to avoid confusion with the right and left directions
used to describe children in the ordering tree. To perform an operation on the deque, a
process inserts a Block containing just that operation into its own leaf, and then ensures
that the operation is propagated up to the root. Processes help propagate one another’s
operations along with their own. Operations are linearized when they reach the root. To
propagate its operation, a process performs a double refresh at each node along the path from
its leaf to the root. A refresh at a node v creates a Block that contains any unpropagated
operations in v’s children and attempts to insert the Block into v using a CAS instruction. If
the process fails this CAS twice, then it is guaranteed that some other process has propagated
its operation to v. So far, this overall approach is similar to previous constructions [1, 18, 26].

In the N&R queue [26], each internal node does not have an explicit representation of the
operations that have reached the node. More specifically, an item that is enqueued is stored
in the leaf of the process that enqueued it, but is not stored in any of the internal nodes.
Instead, each Block in an internal node stores some metadata that serves as an implicit
representation of its set of operations. This metadata is used to navigate to an operation’s
Block in each node along the root-to-leaf path. Processes can compute the response for
each dequeue by navigating these paths (both up and down the tree). Because each Block
can contain up to p operations, Naderibeni and Ruppert claimed that building an explicit
representation of the operations in Blocks of internal nodes would be too costly to achieve
polylogarithmic step complexity. However, our new representation shows that, in fact, we
can create such explicit representations without sacrificing the polylogarithmic running time.
Moreover, this explicit representation is essential for our deque. In a queue, the FIFO
ordering makes it easy for a dequeue to find its response using very little information about
the sequence of operations: the ith (non-empty) dequeue returns the argument of the ith
enqueue. Since a deque (or stack) permits LIFO access, matching dequeues to enqueues is
less straightforward. The explicit state of our deque allows us to determine this matching.

The key idea is to use red-black trees (RBTs) to represent the state of the deque and
batches of items to be enqueued into the deque. We use persistent RBTs, meaning that
update operations are non-destructive because they create a new copies of RBT nodes and
modify those copies, leaving the original nodes unchanged. Since RBT nodes are immutable,
reading a pointer to an RBT’s root gives us a snapshot of the RBT. At the root of the ordering
tree, we store a state RBT whose in-order traversal gives the items in the implemented deque
from bottom to top. In each node v of the ordering tree, we store an RBT called topEnqs
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whose in-order traversal is the sequence of values enqueued by all TopEnqueues that have
been propagated to the node, in the order they reached v. Another such RBT botEnqs is
used for BotEnqueues. This use of RBTs allows us to perform five key actions efficiently:
1. gather the batch of items enqueued by several consecutive Blocks of a node v by splitting

off the required number of most recently added items from v’s topEnqs or botEnqs RBT,
2. add such a batch to v’s parent’s topEnqs RBT (or botEnqs RBT) during a refresh by

joining two RBTs,
3. apply a batch of enqueues to the state of the deque when they reach the root by joining

the state RBT with the RBT representing the batch of enqueued items,
4. apply a batch of dequeues to the state of the deque when they reach the root by splitting

the the required number of items off one side of the state RBT, and
5. discard old information when it is no longer needed (again by splitting an RBT) to avoid

having RBTs that grow too large, which in turn would slow down operations on RBTs.

We linearize operations on our deque based on the order in which they were propagated
to the root and applied to state. Because other operations may help propagate a dequeue to
the root, a dequeue has to retrace the path it took from its leaf to the root to retrieve its
response. When dequeues are linearized, RBTs of the items split off of the state RBT are
saved in the root for later retrieval by those dequeues.

The Blocks of a node are also stored in an RBT called blocks. This makes it easy to
garbage-collect old Blocks that are no longer needed by splitting the RBT. Each Block stores
some metadata to describe its batch of operations. For example, this allows us to find the
portion of the topEnqs tree that corresponds to TopEnqueues within a Block. When a Block
is added to a node’s blocks RBT, we want to ensure that the items of all enqueue operations
represented by that Block are simultaneously added to the topEnqs and botEnqs RBTs of
the node. For this reason, we actually store pointers to the roots of all of the node’s RBTs in
an object that we call the rbts tuple of the node. Thus, we can update all of a node’s RBTs
atomically by writing a pointer to this tuple in the node’s rbts field. Likewise, we can get a
consistent snapshot of all the node’s RBTs by simply reading the node’s rbts field.

3.1 Data Structure Description
We now describe the objects of our data structure in more detail. Nodes in our static ordering
tree contain the following fields.

parent – a pointer to the node’s parent node.
left – a pointer to the node’s left child.
right – a pointer to the node’s right child.
rbts – a pointer to a tuple of (pointers to the roots of) RBTs, described below.

In non-root nodes, the rbts tuple has the following five fields.
blocks – an RBT composed of Block objects that each represent a set of concurrent
operations. This tree is sorted by the order the Blocks were added to the node. Initially,
blocks contains a single dummy Block whose fields are all 0.
topEnqs and botEnqs – RBTs that store items to be enqueued at the top and bottom
ends, respectively, of the deque. These trees are initially empty. When a Block of
operations is added to blocks, the enqueued items of those operations are added to to
the right end of these enqueue trees. Thus, the items added to the enqueue trees are all
items enqueued by operations in Blocks that have been added to the blocks RBT, in the
order the operations were added to blocks. Garbage collection will remove from the left
end of these enqueue trees those items that are no longer needed because they have been
propagated up to the enqueue trees in the parent node.
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17:6 A Wait-Free Deque with Polylogarithmic Step Complexity

discardedtopEnqs and discardedbotEnqs – integers that store the number of items that
have been discarded from the left side of the topEnqs and botEnqs RBTs, respectively,
by garbage collection.

In the root, the rbts tuple has the following two fields.
blocks – defined the same way as for non-root nodes.
state – an RBT storing the items in the deque after all the blocks of operations that have
reached the root have been performed. The in-order traversal of the state RBT gives the
order of the items from the bottom of the deque to the top. It is initially empty.

Each Block object in a node’s blocks RBT has the following five fields.
index – the number of Blocks that were added to the node’s blocks RBT before this one.
sumtopEnqs, sumbotEnqs, sumtopDeqs and sumbotDeqs – the total number of operations of
each type that have been propagated to the node up to and including the current Block.

Blocks in internal nodes have the following two additional fields.
endleft – index of the last Block propagated from the node’s left child into this Block.
endright – index of the last Block propagated from the node’s right child into this Block.

Each Block object in the root has the following two additional fields.
topDeqs and botDeqs – RBTs containing the responses to be returned to the TopDequeues
or BotDequeues, respectively, contained in the Block. The in-order traversals of topDeqs

and botDeqs in a root Block B gives the order in which elements were dequeued from
the top and bottom of the deque respectively.

Each Block in a leaf node has the following additional field.
response – the response to a leaf Block’s operation, if it is dequeue.

Most fields of objects are immutable, except for the rbts field of nodes and the response

field in leaf Blocks. That is, after a process creates an object, it sets the values of all its
immutable fields before writing a pointer to that object in shared memory, and those fields’
values never change thereafter. Even the persistent red-black trees within our data structure
have immutable nodes, as described above. This simplifies reasoning about concurrency in
our algorithm, because a process can essentially obtain a snapshot of the rbts field of a node
v and all of the information contained within it, including the information inside v’s Blocks,
simply by reading v.rbts. Thus, when proving correctness, we can often focus on the few
lines of code where nodes’ rbts fields are read or updated.

We assume RBTs have Split and Join operations [29]. Join(RBT l, RBT r) returns an
RBT whose in-order traversal contains the elements of l’s in-order traversal followed by r’s
in-order traversal. The inverse operation Split(RBT t, int count) returns a pair of RBTs
⟨l, r⟩ such that Join(l, r) would yield t, and where r contains count objects (or t.size items
if count > t.size) and l has the rest. The enqueue and dequeue RBTs have the additional
operations Append and SearchByRank. Append(RBT t, Object e) returns the RBT that is
produced by inserting e into t as the rightmost element. SearchByRank(RBT t, int r) returns
the rth item in the in-order traversal of t. The blocks RBTs are sorted by the index field
of the Blocks and also have Insert, MaxBlock and SplitByIndex operations. Insert(RBT t,
Block B) inserts B into t. MaxBlock(RBT t) returns the Block with the highest index in t.
Similar to a Split operation, SplitByIndex(RBT blocks, int i) returns a pair of RBTs ⟨l, r⟩,
where l contains the Blocks with indices less than i and r contains the rest.

3.2 Pseudocode Description
Pseudocode for our implementation appears in Algorithms 1 to 3. We omit BotEnqueue,
BotDequeue, GetBotEnqs, CompleteBotDeq and IndexBotDeq, which are identical to the
corresponding routines for the top end of the deque, except for replacing all occurrences
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of top by bot, and making the changes noted in comments on lines 6, 17 and 87. We use
blocks[i] as a shorthand for the Block with index i that was inserted into the blocks RBT:
when the code reads blocks[i] (e.g., on line 71), it does a BST search for index i in blocks.

To enqueue an item e at the top end of the deque, a process calls TopEnqueue(e). It
creates a new Block B to represent the TopEnqueue in the process’s leaf. B’s index is one
higher than the previous Block, and its sumtopEnq is one higher than the previous Block.
The call to GC at line 7 makes a copy rbtsnew of the rbts field of the leaf and may perform
garbage collection (described in Section 3.4) to discard obsolete information. Line 8 inserts
B into rbtsnew.blocks and line 9 appends e to the right end of rbtsnew.topEnqs. Then, line
10 writes rbtsnew into the process’s leaf. Finally, line 11 calls Propagate to propagate the
new operation to the root, thereby ensuring that it is linearized.

A TopDequeue follows a similar pattern. It creates a new Block B whose index and
sumtopDeqs fields are one higher than the previous Block in the process’s leaf. It creates a
new copy rbtsnew of the leaf’s rbts field, possibly discarding unneeded information in GC,
appends B to rbtsnew.blocks (lines 13–19), and writes rbtsnew into the process’s leaf (line 20).
TopDequeue then calls Propagate at line 21 to propagate the new operation upward, and
finally calls CompleteTopDeq (described below) at line 22 to find the TopDequeue’s response.
This CompleteTopDeq may return null, but if this happens then another process helping the
TopDequeue must have written the TopDequeue’s response into B.response.

The Propagate method recursively propagates operations from leaves of the ordering
tree to its root. Propagate calls Refresh at most twice on each internal node v along the path
from the process’s leaf to the root. As in previous work [1, 18, 26], this suffices to ensure
that a Block containing the operation is added to the root.

To propagate the non-propagated Blocks in v’s children along with their enqueued items
to v, an operation calls Refresh(v). Refresh(v) constructs a new rbts tuple for v that includes
the non-propagated Blocks of v’s children and their enqueued items, and attempts to CAS
the tuple into v.rbts (line 51). To do this, it first reads snapshots of v.rbts, v.left.rbts and
v.right.rbts into rbtsold, rbtsleft and rbtsright (lines 28–30). Line 31 ensures that Refresh has
a consistent view of v and its children; otherwise the Refresh aborts and returns false. Line 34
calls CreateBlock (described below) to construct a Block Bnew with an index one higher
than its preceding Block in v, Bprev. Bnew contains the metadata of the non-propagated
operations from rbtsleft and rbtsright. If there are no non-propagated operations in rbtsleft
and rbtsright, then CreateBlock returns null at line 64 and Refresh returns true at line 35
because another Refresh already propagated operations from v’s children into v.

If Bnew is non-empty, line 36 of Refresh performs GC on rbtsold, which may discard
unneeded Blocks and enqueued items in rbtsold (see Section 3.4), and saves the updated
tuple in rbtsnew. Refresh then inserts Bnew into rbtsnew.blocks, retrieves the enqueued items
corresponding to the enqueues in Bnew using GetTopEnqs and GetBotEnqs (described below),
and stores them in newTopEnqs and newBotEnqs, respectively (lines 39–40). If v is not
the root, Refresh joins newTopEnqs and newBotEnqs to the right ends of rbtsnew.topEnqs

and rbtsnew.botEnqs (lines 42–43) so that the in-order of these trees represent enqueued
items propagated to v in the order they reached v. Finally, line 51 attempts to CAS rbtsnew

into v.rbts, returning the result of the CAS to indicate whether it succeeded.
If v is the root, Refresh instead performs the concurrent batch of operations represented by

Bnew on rbtsold.state to obtain the new state of the deque, rbtsnew.state. To do so, Refresh
first calculates numtopDeqs and numbotDeqs, the numbers of TopDequeues and BotDequeues
it must perform on the state, using the sum fields in Bnew and Bprev (lines 45–46). Refresh
then does a batch of concurrent TopDequeues by Splitting numtopDeqs items off of the right
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17:8 A Wait-Free Deque with Polylogarithmic Step Complexity

Algorithm 1 Implementation of deque: main routines.
1: TopEnqueue(Object e) ▷ enqueue e to the top of the deque
2: B′ ← MaxBlock(leaf .rbts.blocks) ▷ previous Block in process’s leaf
3: let B be a new Block object with fields: index← B′.index + 1,
4: sumtopDeqs ← B′.sumtopDeqs, sumbotDeqs ← B′.sumbotDeqs

5: sumtopEnqs ← B′.sumtopEnqs + 1, ▷ increment sumtopEnqs for top enqueue
6: sumbotEnqs ← B′.sumbotEnqs, ▷ BotEnqueue increments this instead
7: rbtsnew ← GC(leaf , leaf .rbts, B, B′) ▷ returns new rbts (after GC if necessary)
8: rbtsnew.blocks← Insert(rbtsnew.blocks, B)
9: rbtsnew.topEnqs← Append(rbtsnew.topEnqs, e) ▷ insert e as rightmost element

10: leaf .rbts← rbtsnew ▷ write new tuple into process’s leaf
11: Propagate(leaf .parent) ▷ propagate enqueue to root

12: TopDequeue : Object ▷ dequeue item from top of deque
13: B′ ← MaxBlock(leaf .rbts.blocks) ▷ previous Block in process’s leaf
14: let B be a new Block object with fields: index← B′.index + 1,
15: sumtopEnqs ← B′.sumtopEnqs, sumbotEnqs ← B′.sumbotEnqs,
16: sumtopDeqs ← B′.sumtopDeqs + 1, ▷ increment sumtopDeqs for top dequeue
17: sumbotDeqs ← B′.sumbotDeqs ▷ BotDequeue increments this instead
18: rbtsnew ← GC(leaf , leaf .rbts, B, B′) ▷ returns new rbts (after GC if necessary)
19: rbtsnew.blocks← Insert(rbtsnew.blocks, B)
20: leaf .rbts← rbtsnew ▷ write new tuple into process’s leaf
21: Propagate(leaf .parent) ▷ propagate the operation to the root
22: response← CompleteTopDeq(leaf , B.index) ▷ retrieve dequeue response
23: return (response = null ? B.response : response)

24: Propagate(Node v) ▷ propagate operations from v’s children up to root
25: if not Refresh(v) then Refresh(v) ▷ double Refresh on v

26: if v ̸= root then Propagate(v.parent) ▷ recurse to parent

27: Refresh(Node v) : boolean ▷ propagate operations into v

28: rbtsold ← v.rbts

29: rbtsleft ← v.left.rbts

30: rbtsright ← v.right.rbts

31: if v.rbts ̸= rbtsold then return false
32: Bprev ← MaxBlock(rbtsold.blocks) ▷ previous Block in v

33: ▷ create a new Block Bnew from non-propagated blocks in v.left and v.right
34: Bnew ← CreateBlock(v, Bprev, rbtsleft , rbtsright)
35: if Bnew = null then return true ▷ no new operations to propagate into v
36: rbtsnew ← GC(v, rbtsold, Bnew, Bprev)
37: rbtsnew.blocks← Insert(rbtsnew.blocks, Bnew) ▷ insert new block
38: ▷ get the enqueued items from children that have not previously been propagated to v

39: newT opEnqs← GetTopEnqs(Bprev, Bnew, rbtsleft , rbtsright)
40: newBotEnqs← GetBotEnqs(Bprev, Bnew, rbtsleft , rbtsright)
41: if v ̸= root then ▷ join new items to enqueue RBTs
42: rbtsnew.topEnqs← Join(rbtsold.topEnqs, newT opEnqs)
43: rbtsnew.botEnqs← Join(rbtsold.botEnqs, newBotEnqs)
44: else ▷ apply operations on root’s state

45: numtopDeqs ← Bnew.sumtopDeqs −Bprev.sumtopDeqs

46: numbotDeqs ← Bnew.sumbotDeqs −Bprev.sumbotDeqs

47: ⟨newstate, Bnew.topDeqs⟩ ← Split(rbtsold.state, numtopDeqs)
48: ⟨Bnew.botDeqs, newstate⟩ ← Split(newstate, newstate.size− numbotDeqs)
49: newstate← Join(newstate, newT opEnqs)
50: rbtsnew.state ← Join(newBotEnqs, newstate)
51: return CAS(v.rbts, rbtsold, rbtsnew) ▷ CAS new rbts tuple into v
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Algorithm 2 Implementation of deque: helper routines.
52: CreateBlock(Node v, Block Bprev, rbts rbtsleft , rbts rbtsright) : Block
53: ▷ create new Block B from subblocks in v.left and v.right
54: BL ← MaxBlock(rbtsleft .blocks)
55: BR ← MaxBlock(rbtsright.blocks)
56: ▷ create a new Block B from non-refreshed blocks in v.left and v.right
57: let B be a new Block object with fields: index← Bprev.index + 1,
58: endleft ← BL.index, endright ← BR.index, ▷ new ends are max blocks in children
59: sumtopEnqs ← BL.sumtopEnqs + BR.sumtopEnqs,
60: sumtopDeqs ← BL.sumtopDeqs + BR.sumtopDeqs,
61: sumbotEnqs ← BL.sumbotEnqs + BR.sumbotEnqs,
62: sumbotDeqs ← BL.sumbotDeqs + BR.sumbotDeqs

63: if B.endleft = Bprev.endleft and B.endright = Bprev.endright then
64: return null ▷ B is empty (it has no subblocks)
65: else return B

66: GetTopEnqs(Block Bprev, Block Bnew, rbts rbtsleft , rbts rbtsright) : RBT
67: ▷ retrieve top enqueue items belonging to a new Block Bnew from children
68: blocksL ← rbtsleft .blocks

69: blocksR ← rbtsright.blocks

70: ▷ calculate number of newly promoted enqueues
71: leftEnqs ← blocksL[Bnew.endleft ].sumtopEnqs − blocksL[Bprev.endleft ].sumtopEnqs

72: rightEnqs ← blocksR[Bnew.endright].sumtopEnqs − blocksR[Bprev.endright].sumtopEnqs

73: ▷ split the required number of items from right ends of the children’s topEnqs RBTs
74: ⟨∗, leftChunk⟩ ← Split(rbtsleft .topEnqs, leftEnqs)
75: ⟨∗, rightChunk⟩ ← Split(rbtsright.topEnqs, rightEnqs)
76: return Join(leftChunk, rightChunk) ▷ join the child chunks left to right

77: CompleteTopDeq(Node leaf , int h) : Object ▷ return response of TopDequeue in Block h of leaf
78: ▷ after it has propagated to root, or null if helper has already recorded response.
79: ▷ first, find Block index of the dequeue in the root and its position within the block
80: ⟨b, i⟩ ← IndexTopDeq(leaf , h, 1)
81: ▷ find response to the top dequeue according to its position in the root
82: if ⟨b, i⟩ ̸= ⟨0, 0⟩ then
83: B ← root.rbts.blocks[b] ▷ root Block containing dequeue
84: if B ̸= null then
85: if B.topDeqs.size < i then return empty
86: else return SearchByRank(B.topDeqs, B.topDeqs.size− i + 1)
87: ▷ in CompleteBotDeq do SearchByRank(B.botDeqs, i) instead
88: return null ▷ dequeue needs a Block discarded by GC

89: IndexTopDeq(Node v, int b, int i) : ⟨int, int⟩ ▷ returns ⟨b′, i′⟩ s.t. ith TopDequeue in Block b of v

90: ▷ is i′th TopDequeue of root Block b′ or ⟨0, 0⟩ if GC discarded Block needed to find answer
91: if v = root then return ⟨b, i⟩
92: dir ← (v.parent.left = v ? left : right)
93: blocks← v.rbts.blocks

94: blocksp ← v.parent.rbts.blocks

95: ▷ N.B. if any Block required on lines 96–99 is not found, stop and return ⟨0, 0⟩ instead
96: Bp ← min Block in blocksp with enddir ≥ b ▷ Bp contains TopDequeue
97: B′

p ← max Block in blocksp with enddir < b

98: i′ ← i + blocks[b− 1].sumtopDeqs − blocks[B′
p.enddir].sumtopDeqs

99: if dir = right then i′ ← i′ + v.parent.left.rbts.blocks[Bp.endleft ].sumtopDeqs

− v.parent.left.rbts.blocks[B′
p.endleft ].sumtopDeqs

100: return IndexTopDeq(v.parent, Bp.index, i′)
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end of rbtsold.state to obtain newstate and storing an RBT of the TopDequeue responses
in Bnew.topDeqs (line 47). If the split point (numtopDeqs in this case) is 0 or greater than
the size of the RBT being split, Split returns the original tree and an empty tree. A batch
of concurrent BotDequeues is then performed in a similar way at line 48. The batches of
items enqueued by operations in Bnew are contained in newTopEnqs and newBotEnqs, and
they are added to newstate by joining them at the left and right of newstate, respectively
(lines 49–50). Finally, Refresh attempts to CAS rbtsnew into v as in the non-root case.

CreateBlock creates a new Block Bnew to be inserted into node v after Block Bprev.
Bnew will represent all operations in v’s children that are not included in v’s Blocks up to
Bprev. CreateBlock calculates the endleft and endright fields of Bnew by finding the indices of
the latest Blocks in v’s children (line 58). The sum fields of Bnew are calculated by adding the
sum fields of these end Blocks in v’s children (lines 59–62). If Bnew has no new operations,
that is, if the end fields of Bnew and Bprev are the same, CreateBlock returns null at line 63.

GetTopEnqs retrieves the items of TopEnqueues to be propagated with a new Block into
a node v. It first calculates the number of items to be split from the topEnqs trees of v’s
children (lines 71–72), splits those trees to get rightChunk and leftChunk (lines 74–75), and
returns the RBT that results from joining the two chunks together (line 76).

To retrieve its response, a TopDequeue calls CompleteTopDeq on the dequeue’s leaf Block
after the dequeue has propagated to the root (line 22). Because operations help propagate
one another, CompleteTopDeq first calls IndexTopDeq (line 80), a modified version of N&R’s
IndexDequeue, which uses recursion to “retrace” the TopDequeue’s path from its location
in a leaf Block to its location in the root’s blocks. At each node v along the path up the
tree, IndexTopDeq finds the Block Bp in v.parent that contains the TopDequeue at location
⟨b, i⟩ in v (where b is a Block index and i is the rank of the TopDequeue in that Block) by
searching for the minimum block in v.parent’s Blocks whose end field is at least b (line 96).
The rank i′ of the TopDequeue in Bp is found by adding to i the number of TopDequeues in
Bp that came from Blocks before B in v (line 98). In the case that v is a right child, line 99
also adds to i′ the number of all TopDequeues in Bp that came from v’s left sibling, because
they will be linearized before Bp’s TopDequeues that came from v (see Section 3.3). If any
Block that is needed to find the location of the TopDequeue has been discarded by garbage
collection, IndexTopDeq returns ⟨0, 0⟩ (line 90). Before discarding the Block, the garbage
collection will ensure that some helper writes the TopDequeue’s response in the response

field of the TopDequeue’s leaf Block. In this case, CompleteTopDeq returns null, indicating
the TopDequeue should look there for its response (see line 23).

After IndexTopDeq finds that the TopDequeue is the ith TopDequeue in root.rbts.blocks[b],
CompleteTopDeq checks at line 85 if the deque was empty when that operation was per-
formed, and if so, returns null. Otherwise, CompleteTopDeq returns the response to the ith
TopDequeue in B by searching B.topDeqs for the item with the correct rank (line 86). (We
use opposite orderings of the topDeqs and botDeqs trees, as described in line 87, because
both trees hold a chunk of items split off the deque ordered from the bottom to top of the
deque, so BotDequeues should take them in this order and TopDequeues should take them in
the reverse order; this allows us to use a more uniform ordering of operations when we define
the linearization in the next section.)

3.3 Linearization
We shall show that operations within a Block are all concurrent, which allows us to choose
how to linearize them. Here, we define the order that is consistent with our pseudocode.
We define Dtop(B), Dbot(B), Etop(B), and Ebot(B) to be the sequences of TopDequeues,
BotDequeues, TopEnqueues and BotEnqueues, respectively, in a Block B. We define them
recursively after first defining the direct subblocks of a Block.
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▶ Definition 1. The direct subblocks of a Block Bi = v.rbts.blocks[i] (where i > 0) in an in-
ternal node v are the blocks that were inserted in v.left with indices from
v.blocks[i − 1].endleft + 1 to v.blocks[i].endleft and the blocks that were inserted in v.right

with indices from v.rbts.blocks[i − 1].endright + 1 to v.rbts.blocks[i].endright.

If B is in a leaf node, Dtop(B) is either a single TopDequeue if a TopDequeue created B,
or empty otherwise. If B is in an internal node v, where BL

1 · · · BL
l are the direct subblocks

of B in v.left and BR
1 · · · BR

r are the direct subblocks of B in v.right,

Dtop(B) = Dtop(BL
1 ) · · · Dtop(BL

l ) · Dtop(BR
1 ) · · · Dtop(BR

r ). (3.1)

Etop(B) is defined similarly except that if B is a leaf Block, Etop(B) is either a single
TopEnqueue(e) if a call to TopEnqueue(e) created B or the empty sequence otherwise. Dbot(B)
and Ebot(B) are defined similarly to Dtop(B) and Etop(B).

Operations are linearized in the order their Blocks reach the root. Within each Block,
Refresh does them in the following order: TopDequeues, BotDequeues, TopEnqueues, and
BotEnqueues (lines 47–50). Thus, if B0, ..., Bn are the blocks that get inserted into the root,
ordered by their indices, we define the linearization order as:

Ltotal = L(B0) ·L(B1) · · ·L(Bn), where L(B) = Dtop(B) ·Dbot(B) ·Etop(B) ·Erev
bot (B). (3.2)

It is convenient to linearize BotEnqueues in the reverse order of Ebot, denoted Erev
bot , for

uniformity in the pseudocode.

3.4 Garbage Collection
To guarantee the efficiency of our deque, we bound the size of the RBTs at each node so that
operations on them can be done efficiently. To do so, we use a more refined version of the
garbage collection method of the N&R queue. Specifically, GC discards obsolete elements of
the RBTs of a node v every Gv = p2

v⌈log p⌉ operations added to v, where pv is the number
of leaves in the sub-tree rooted at v.

Before adding a new Block to v at line 8, 19 or 37, GC is called on v at line 7, 18 or 36.
GC first creates an rbts object rbtsnew with fields copied from v.rbts. The test at line 106
checks if the new Block to be added to v includes an operation whose rank among operations
propagated to v is a multiple of Gv. (Since the number of operations in the new Block is
at most pv and pv < Gv, the test detects when the total number of operations propagated
surpasses another multiple of Gv.) If so, lines 107–120 perform garbage on collection rbtsnew.

If v is not the root, lines 112–117 of GC discard unneeded items from the enqueue trees
of rbtsnew by splitting off from their left sides all enqueued items that have already been
propagated to v’s parent. Since enqueued items are propagated along with the Blocks that
represent the enqueues, we can discard the items enqueued by operations in all blocks up to
Blast, computed on lines 108–110 to be the last Block of v propagated to v’s parent. Thus,
the number of items to discard is calculated on lines 112–113 by subtracting the number of
enqueued items that have already been discarded by previous garbage collection phases from
the total number of enqueues in v’s Blocks up to Blast.

Unlike enqueued items in v, which can be discarded once they are propagated into
v.parent, a Block of v must be retained if a pending dequeue will need to examine the Block
while retracing its path to the root in IndexTopDeq. Discarding a Block in v could prevent a
dequeue in the sub-tree rooted at v.parent (or v if v = root) from retrieving its response.
To avoid this problem, GC first calls SplitBlock (line 118), which recursively finds the latest
Block B in v that has been propagated to the root by following end fields from the last Block
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Algorithm 3 Implementation of deque: garbage collection routines.
101: GC(Node v, rbts rbtsold, Block Bnew, Block Bprev) : rbts
102: ▷ garbage collect the RBTs of node v before Bnew gets appended to v.blocks

103: rbtsnew ← new rbts object with fields copied from rbtsold

104: sumprev ← Bprev.sumtopEnqs + Bprev.sumbotEnqs + Bprev.sumtopDeqs + Bprev.sumbotDeqs

105: sumnew ← Bnew.sumtopEnqs + Bnew.sumbotEnqs + Bnew.sumtopDeqs + Bnew.sumbotDeqs

106: if sumprev mod Gv ≥ sumnew mod Gv then ▷ trigger garbage collection
107: if v ̸= root then ▷ discard propagated enqueues
108: Bp ← MaxBlock(v.parent.rbts.blocks)
109: dir ← (v.parent.left = v ? left : right)
110: Blast ← rbtsnew.blocks[Bp.enddir]
111: if Blast ̸= null then ▷ skip if GC already done
112: numoldT opEnq ← Blast.sumtopEnqs − rbtsnew.discardedtopEnqs

113: numoldBotEnq ← Blast.sumbotEnqs − rbtsnew.discardedbotEnqs

114: rbtsnew.discardedtopEnqs ← Blast.sumtopEnqs

115: rbtsnew.discardedbotEnqs ← Blast.sumbotEnqs

116: ⟨∗, rbtsnew.topEnqs⟩ ← Split(rbtsnew.topEnqs, numoldT opEnq)
117: ⟨∗, rbtsnew.botEnqs⟩ ← Split(rbtsnew.botEnqs, numoldBotEnqs)
118: i← SplitBlock(v).index ▷ find index of oldest Block to keep
119: Help(v) ▷ help pending dequeues in v’s subtree
120: ⟨∗, rbtsnew.blocks⟩ ← SplitByIndex(blocks, i) ▷ discard blocks with indices < i

121: return rbtsnew

122: SplitBlock(Node v) : Block ▷ returns v’s latest Block propagated to root
123: if v = root then B ← MaxBlock(root.rbts.blocks)
124: else
125: Bp ← SplitBlock(v.parent)
126: B ← (v.parent.left = v ? v.rbts.blocks[Bp.endleft ] : v.rbts.blocks[Bp.endright])
127: return (B = null ? MinBlock(v.rbts.blocks) : B)

128: Help(Node v) ▷ complete pending dequeues in v.parent’s sub-tree
129: for each leaf l in subtree rooted at v.parent (or at v if v = root) do
130: Bcur ← MaxBlock(l.rbts.blocks)
131: if Bcur.index ̸= 0 then ▷ do not help dummy Block
132: Bprev ← l.rbts.blocks[Bcur.index− 1]
133: response← null

134: if Bcur.sumtopDeqs ̸= Bprev.sumtopDeqs and Propagated(l, Bcur.index) then
135: response← CompleteTopDeq(l, Bcur.index)
136: else if Bcur.sumbotDeqs ̸= Bprev.sumbotDeqs and Propagated(l, Bcur.index) then
137: response← CompleteBotDeq(l, Bcur.index)
138: if response ̸= null then
139: Bcur.response← response

140: Propagated(Node v, int b) : boolean ▷ has v’s Block with index b been propagated to root?
141: if v = root then return true
142: else
143: blocksp ← v.parent.rbts.blocks

144: dir ← (v.parent.left = v ? left : right)
145: if MaxBlock(blocksp).enddir < b then return false
146: else ▷ Block b has been propagated to parent
147: Bp ← min Block in blocksp with enddir ≥ b ▷ Bp exists, by line 145’s test
148: return Propagated(v.parent, Bp.index)
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in the root. Then, GC calls Help, which helps pending dequeues in all leaves in the subtree
rooted at v’s parent to compute their responses. Finally, GC splits rbtsnew.blocks to discard
all Blocks strictly older than B (line 120).

Help ensures that the response to any pending dequeue that may need Blocks that are
being discarded is written in the dequeue’s leaf Block. Help only has to help dequeues that
have been propagated to the root, since only those might need the discarded Blocks. For
each leaf l in the subtree of v.parent (or v if v = root) (see line 129), Help checks at line 134
or 136 if l contains a dequeue (using the first condition) that has been propagated to the root
(using the call to Propagated). If so, Help completes the dequeue by calling CompleteTopDeq
or CompleteBotDeq at line 135 or 137, and records the response in the response field of the
dequeue’s leaf Block (line 139). If CompleteTopDeq or CompleteBotDeq returns null, due to
a missing Block on the path used by IndexTopDeq (or IndexBotDeq) at line 80, Help does
nothing further since another process must have already helped the dequeue.

Help uses Propagated to check if a leaf’s dequeue operation has been propagated to the
root. Propagated recurses from the leaf to the root, finding in each node along that path the
Block that contains the operation, returning false if there is no such Block.

4 Correctness

The goal of the correctness proof is to show that each operation is propagated to the root
and applied to the state of the deque before the operation terminates. This allows us to
argue that the linearization ordering of Equation (3.2) is valid. Garbage collection requires
us to prove that no operation needs to access any of the discarded information. Due to space
constraints, some details of the correctness proof are deferred to the full version.

4.1 Basic Properties
We first prove some basic properties of nodes’ rbts fields. The first lemma describes how the
blocks RBT is updated, ensuring the RBT’s Blocks always have consecutive indices.

▶ Lemma 2. If a node’s blocks field is updated from T to T ′ and I is the set of indices in
the RBT T , then the set of indices in T ′ is {I ∩ [i, ∞)} ∪ {max(I) + 1} for some i ≥ 0 and
the only new Block is the one with index max(I) + 1.

Proof Sketch. Each node’s blocks field initially contains one dummy Block with index = 0.
The blocks field of a node can change only when the rbts field of the node is updated at
line 10, 20 or 51. It is straightforward to check that each such change modifies the RBT by
optionally splitting off some blocks with indices below some threshold i (if GC is called) and
adding one new Block with index max(I) + 1. ◀

▶ Definition 3. Define v.blocks[i] to mean the Block with index i that was in v.rbts.blocks

at some point during the execution. By Lemma 2, this Block is unique.

Next, we show that endleft and endright fields of Blocks in a node are in sorted order.
This ensures that Definition 1, which defines direct subblocks of a Block, makes sense.

▶ Lemma 4. If a Block with index h > 0 has been added to an internal node v’s blocks then
v.blocks[h].endleft ≥ v.blocks[h−1].endleft and v.blocks[h].endright ≥ v.blocks[h−1].endright.

Proof. Let Bh−1 and Bh be the Blocks with indices h − 1 and h installed in v by two calls to
Refresh, Rh−1 and Rh, respectively. Since Rh performs a successful CAS at line 51, it must
have read v.rbts at line 28 after Rh−1 performed its successful CAS at line 51. Thus, Rh read
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v.left.rbts at line 29 after Rh−1 did. By Lemma 2, the maximum index in v.left.rbts.blocks

can only increase over time. Thus, the value stored in B.endleft at line 58 of Rh−1’s call to
CreateBlock is less than or equal to the value stored in B′.endleft by Rh’s call to CreateBlock,
as required. The argument for endright is identical. ◀

▶ Definition 5. The subblocks of a Block B are defined recursively to be either direct
subblocks of B (as defined by Definition 1), or subblocks of the direct subblocks of B.

▶ Definition 6. A Block B is propagated to node v if it is a subblock of some Block that has
been inserted into v.rbts.blocks.

▶ Definition 7. A Block B contains an operation if the Block inserted by the operation into
a leaf is a subblock of B.

Next, we show the sum fields of a Block B in node v correctly capture the number
of operations contained in v’s Blocks up to and including Block B. We use the notation
Etop(blocks[i...j]) for Etop(blocks[i]) · · · Etop(blocks[j]), and likewise for Ebot, Dtop, and Dbot.

▶ Invariant 8. If v is a node in the ordering tree and B = v.rbts.blocks[i], then

B.sumtopEnqs = |Etop(v.blocks[0...i])|, B.sumbotEnqs = |Ebot(v.blocks[0...i])|,
B.sumtopDeqs = |Dtop(v.blocks[0...i])|, and B.sumbotDeqs = |Dbot(v.blocks[0...i])|.

Proof Sketch. The invariant holds initially, since each blocks RBT contains a single empty
Block with no operations and sum fields set to 0. Lemma 2 ensures each update of the RBT
adds only a single Block B. We check that each such step preserves the invariant. When
B is added to a leaf’s blocks RBT at line 10 or 20, it contains a single operation, which is
recorded in the appropriate sum field at lines 4–6 or 15–17. If an internal node’s blocks RBT
is updated at line 51, the new Block B was created by the call to CreateBlock on line 34
and inserted into the RBT at line 37. By Definition 1 and Lemma 2, the direct subblocks
of v.blocks[0 . . . B.index] are v.left.blocks[0 . . . B.endleft ] and v.right.blocks[0 . . . B.endright].
It follows that B’s sum fields are computed correctly at lines 59–62 of the CreateBlock. ◀

The following result is easy to prove by induction on the height of the node(s) containing
B and B′, using Definition 1 and Lemma 4.

▶ Lemma 9. The sets of subblocks of two Blocks B and B′ at the same level of the ordering
tree are disjoint.

Since the set of operations contained in a Block B is the set of all operations that appear
in subblocks of B in the leaves of the ordering tree, we have the following corollary.

▶ Corollary 10. For any node v in the ordering tree, if i ̸= j, v.blocks[i] and v.blocks[j]
cannot contain the same operation.

4.2 Operations are Propagated to the Root
In this section, we prove that operations are correctly propagated to the root of the ordering
tree, where they are applied to the state field that represents the sequence of items in the
deque. This requires showing (in Invariant 12) that enqueued items are added to a node’s
topEnqs or botEnqs RBT at the same time the corresponding Enqueues are added to the
node’s blocks RBT. But first, we must show that garbage collection does not discard any
required information. Since Blocks in a node are propagated upwards in order by their index
and also discarded by GC in order by their index, the following invariant implies that the GC
routine only discards Blocks (at line 120) that are already propagated to the root.
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▶ Invariant 11. For any non-root node v, the minimum Block in v.rbts.blocks and any Block
returned by SplitBlock(v) are subblocks of a Block that has been inserted into the root.

Proof Sketch. Initially, each node has a single dummy Block whose index, endleft and
endright fields are 0. Thus, every Block is a subblock of the dummy Block in the root.

We show that each step maintains the invariant. The minimum Block in v is only modified
because GC discards Blocks (at line 120) whose indices are smaller than the result of the call
to SplitBlock at line 118. Assuming the invariant held for the response of the SplitBlock, the
new minimum Block in v also satisfies the invariant. Proving the claim for the response of a
SplitBlock is an easy induction on the depth of v, since SplitBlock simply returns a subblock
of the Block returned by SplitBlock(v.parent). ◀

The next invariant says that the items stored in the topEnqs tree of a non-root node v are
the arguments of all TopEnqueues that have propagated to v, except that some of the oldest
ones may have been discarded by garbage collection. The discardedtopEnqs field keeps track
of how many have been discarded. The second claim of the invariant ensures that we never
discard items from the topEnqs tree before they have been propagated to v’s parent. The
invariant also holds if all occurrences of top are replaced by bot (and the proof is identical).

▶ Invariant 12. Let v be a non-root node and let k be the maximum index of any Block
in v.rbts.blocks. The in-order traversal of v.rbts.topEnqs yields the arguments of some
suffix of the sequence Etop(v.blocks[1 . . . k]), where the suffix is obtained by removing the first
v.rbts.discardedtopEnqs elements of the sequence. Moreover, v.rbts.discardedtopEnqs is less
than or equal to the sumtopEnqs field of the last propagated Block in v.

Proof Sketch. Initially, v.rbts.blocks has one Block with index 0, v.rbts.topEnqs is empty,
and v.rbts.discardedtopEnqs is 0. We show each update to v.rbts preserves the invariant.

If v is a leaf, the argument is straightforward because the rbts field is updated by an
Enqueue or Dequeue that adds one Block containing a single operation at line 8 or 19, and
topEnqs gets one new item at line 9 in the case of TopEnqueue or none in the case of other
operations.

If v is an internal node, we must show that a Refresh operation’s successful CAS on line 51
preserves the invariant. The CAS adds a new Block Bnew created by the call to CreateBlock
at line 34 to v’s blocks RBT and simultaneously joins newTopEnqs to the right side of v’s
topEnqs RBT (see line 42). We must therefore prove the following claim.

▷ Claim 12.1. The call to GetTopEnqs on line 39 returns a RBT newTopEnqs whose in-order
traversal yields the arguments of the sequence Etop(Bnew).

This claim is proved by tracing the code of GetTopEnqs and using the fact that the sum

fields are accurate (by Invariant 8). The proof also uses the fact that the required enqueued
items have not been discarded from v’s children’s topEnqs trees, which follows from the
induction hypothesis that the second claim of the invariant holds prior to updating v’s rbts

field. ◀

When a Block reaches the root, instead of appending its enqueued items to topEnqs or
botEnqs, the Refresh attaches them to the left and right ends of the state RBT. Similarly, it
detaches the appropriate number of items for dequeues and saves them in the topDeqs and
botDeqs fields of the Block (lines 45–50). This allows us to prove the folllowing key invariant
that the state field represents the state an abstract deque would have after sequentially
performing, in their linearization order, all the operations that have been propagated to the
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root so far. Moreover, the topDeqs and botDeqs fields of each Block contain the non-empty
results of all the dequeue operations contained in that Block, a fact that is crucial for showing
that Dequeues return results consistent with the linearization. Recall that L(B) is defined in
Equation (3.2) to be the linearization order of operations in a Block B of the root.

▶ Invariant 13. Let B0, . . . , Bn be all the Blocks that have so far been added to the root’s
blocks RBT. The in-order traversal of root.rbts.state is the state of an initially empty deque
after the sequential execution L(B0)·L(B1) · · · L(Bn). Moreover, for 0 ≤ i ≤ n, the reverse in-
order traversal of Bi.topDeqs gives the sequence of non-empty responses to the TopDequeues
of L(Bi) in this sequential execution, and the in-order traversal of Bi.botDeqs gives the
sequence of non-empty responses to the BotDequeues of L(Bi) in this sequential execution.

Proof Sketch. The claim holds initially: the root has a single Block B0 with no operations
and the state is empty. We show each addition of a Block to the root preserves the invariant.

Consider the Refresh whose CAS on line 51 adds Bn to the root’s blocks tree. This CAS
simultaneously updates the state field to rbtsnew.state, which was constructed by performing
two Split and two Join operations on the previous state (see lines 45–50).

By Invariant 8, line 45 sets numtopDeqs to |Dtop(Bn)|. Thus, line 47 splits |Dtop(Bn)|
elements off the right end of the old state and stores these values, which are the non-empty
responses to operations the TopDequeues of Bn, into Bn.topDeqs. Line 48 handles the
BotDequeues of Dbot(Bn) similarly. By Claim 12.1, line 49 adds the items enqueued by the
TopEnqueues of Etop(Bn) to the right end of the state. Line 50 handles the BotEnqueues
similarly. The order in which the operations are applied matches L(Bn) defined in Equa-
tion (3.2). ◀

A double Refresh on a node v guarantees that all operations that had previously propagated
to v’s children are propagated to v: if both Refreshes fail their CAS, then a concurrent Refresh
must have successfully propagated the operations. The following two lemmas formalize this
argument, similarly to previous papers that use a double Refresh [1, 18, 26].

▶ Lemma 14. All operations contained in Blocks of v’s children when a Refresh(v) performed
line 28 are contained in Blocks of v when the Refresh returns true at line 35 or performs a
successful CAS at line 51.

Proof. Suppose an operation op is contained in a Block B of v’s left child v′ when Refresh
performs line 28. (The proof for the right child of v is identical.) Refresh gets a snapshot of
v′.rbts at line 29. Then, the call to CreateBlock on line 34 finds the Block BL in this snapshot
of v′.rbts.blocks with the maximum index at line 54. By Lemma 2, B′.index ≥ B.index. At
line 58, CreateBlock writes B′.index into the endleft field of the new Block Bnew.

If the Refresh returns true at line 35, then Bprev.endleft = Bnew.endleft ≥ B.index. If the
Refresh performs a successful CAS at line 51 then that CAS successfully installs Block Bnew

in v’s Blocks tree. Either way, v contains a Block whose endleft field is greater than or equal
to B.index. It follows from Definition 1 and Lemma 4, that B is a direct subblock of some
Block that has been added to v. Thus, op is contained in a Block of v, as required. ◀

▶ Lemma 15. All operations contained in Blocks of v’s children when a Propagate(v) was
invoked are contained in Blocks of v when the Propagate completes line 25.

Proof. If either call to Refresh on line 25 returns true, then the claim follows from Lemma 14.
So, suppose the Propagate’s calls R1 and R2 to Refresh both return false, which can happen
at line 31 or 51. In either case, some other Refresh must have changed v.rbts between line 28
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of the Refresh and the time it returns false. Let R′
1 and R′

2 be instances of Refresh that
update v.rbts during R1 and R2, respectively. Because R′

2 performs a successful CAS, it
must have read v.rbts at line 28 after R′

1 modifies it (and hence after R1 executes line 28).
Moreover, R′

2 performs its successful CAS before R2’s failed CAS. Thus, the claim follows
from Lemma 14 applied to R′

2. ◀

The following lemma implies that each operation’s linearization point is within the interval
of time when the operation is executing. It follows easily from Lemma 15.

▶ Lemma 16. Propagate ensures that the operation that has called it is contained in a Block
in the root before the Propagate terminates.

It follows from Invariant 13 and Lemma 16 that each operation is performed on the root’s
state when a Block containing the operation reaches the root and the root’s state is updated.

4.3 Retrieval of a Dequeue’s Response and Linearizability
In this section, we show each dequeue returns the response it would in the sequential execution
Ltotal. We first show IndexTopDeq correctly locates the TopDequeue in the root.

▶ Lemma 17. If v.rbts.blocks[b] contains at least i TopDequeues and it is a subblock
of a root Block, then IndexTopDeq(v, b, i) returns ⟨b′, i′⟩ such that the ith TopDequeue in
Dtop(v.rbts.blocks[b]) is the i′th TopDequeue in Dtop(root.rbts.blocks[b′]), or ⟨0, 0⟩ in the
case that any of the Blocks looked up at lines 96–99 have been discarded.

Proof Sketch. We use induction on the depth of v. If v is the root, line 91 satisfies the
claim. Suppose the claim holds for v.parent and Blocks looked up at lines 96–99 are found.
By Definition 1, v.rbts.blocks[b] is a direct subblock of the Block Bp found on line 96. It
follows from Invariant 8 that line 98 computes i′ to be the rank of the ith TopDequeue within
Dtop(v.rbts.blocks[b]) plus the number of TopDequeues in the subblocks of Bp in v that
precede Dtop(v.rbts.blocks[b]). By Definition 1, the i′th TopDequeue in Dtop(Bp) is the ith
TopDequeue in Dtop(v.rbts.blocks[b]) if v is the left child of v.parent. If v is the right child
of v.parent, the i′th dequeue in Dtop(Bp) is shifted at line 99 by the number of TopDequeues
in the left subblocks of Bp. Thus, the ith TopDequeue in Dtop(v.rbts.blocks[b]) is the i′th
TopDequeue in Dtop(Bp). By the induction hypothesis, the call to IndexTopDeq(v.parent,
Bp.index, i′), at line 100 returns the required pair. ◀

The next two lemmas show that each dequeue returns a result consistent with the
linearization, either because the dequeue reads the result directly from the botDeqs or
topDeqs field of the root Block that contains the dequeue, or because some other operation
has retrieved the response from there and stored it in the dequeue’s leaf Block as part of the
helping performed in GC. The argument about GC’s helping must also carefully show that
information is never discarded before all operations that need the information have been
helped.

▶ Lemma 18. A call to CompleteTopDeq(leaf, h) returns either the response the TopDequeue
in leaf.rbts.blocks[h] would receive in the sequential execution Ltotal or null. Moreover, it
returns null only if one of the Blocks looked up in lines 96–99 or line 83 have been discarded.
The same claim holds for CompleteBotDeq.

Proof Sketch. Before calling CompleteTopDeq at line 22 or 135, the call to Propagate at line
21 or the test at line 134 ensures the TopDequeue to complete is already propagated to the
root. By Lemma 17, the call to IndexTopDeq at line 80 returns the TopDequeue’s location in
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the root, or ⟨0, 0⟩ if some Block needed has been discarded. In the latter case, or if the search
at line 83 does not find the required Block, CompleteTopDeq returns null at line 88, and the
lemma is satisfied. Otherwise, line 83 finds the root Block B containing the TopDequeue.
Then, if B.topDeqs contains fewer than i elements (line 85), CompleteTopDeq returns empty,
since there are fewer than i non-empty TopDequeues in B, by Invariant 13. Otherwise,
Invariant 13 ensures the response of the ith TopDequeue in B is the (n − i + 1)th element in
B.topDeqs, which is returned by line 86. The argument for BotDequeues is similar. ◀

▶ Lemma 19. If a call to CompleteTopDeq on a leaf Block returns null, then either the
TopDequeue in that leaf Block has terminated or the value returned by that TopDequeue in
the sequential execution Ltotal has been written into the TopDequeue’s leaf Block. The same
claim holds for CompleteBotDeq.

Proof Sketch. We use induction on the number of completed calls to CompleteTopDeq. (The
proof for CompleteBotDeq is identical.) Consider a call C to CompleteTopDeq and assume
the claim holds for all calls that complete before C does. By Lemma 18, C can return null

only if one of the Blocks it searches for on line 83 or lines 96–99 has been discarded.
First, suppose C fails to find a required Block B in some node v on line 83, 96 or 97. B

is either the Block that contains the TopDequeue or the preceding Block. B must have been
discarded by some call to GC(v) whose call to SplitBlock(v) on line 118 returned a Block
B′ with a larger index than B. By Invariant 11, B′ was already propagated to the root,
so B must also have been propagated to the root. If the TopDequeue has not terminated,
the call to Help(v) on line 119 performs CompleteTopDeq on that TopDequeue. If that call
of CompleteTopDeq returned null, the claim holds by the induction hypothesis. Otherwise,
it returned the correct response of the TopDequeue by Lemma 18 and this response was
recorded in the response field of the dequeue’s leaf Block, so the claim holds.

The case where C returns null because a required Block is not found in the left sibling
of v on line 99 of IndexTopDeq can be argued similarly. (This is where we use the fact that
Help helps all processes in the subtree of v.parent, not just in v’s subtree.) ◀

Finally, we prove the main result of our correctness proof.

▶ Theorem 20. The deque is linearizable.

Proof. By Corollary 10 applied to the root, Ltotal is a permutation of operations in the
concurrent execution. Lemma 16 ensures that the permutation includes all completed
operations, since they are propagated to the root before they terminate. Lemma 16 also
ensures that an operation appears in Ltotal before any operations that begin after it terminates.
Finally, we show each TopDequeue returns the same response as it would in the sequential
execution Ltotal. (The proof for BotDequeues is identical.) This follows from Lemma 19 if
the call to CompleteTopDeq at line 22 returns null, or from Lemma 18 otherwise. ◀

5 Space Complexity

We bound the amount of memory accessible through the ordering tree data structure. We
assume that the number of operations performed on the deque can be represented in binary
using O(1) memory words. We first bound the number of operations and Blocks in a node v’s
blocks tree. We say that GC on v succeeds if the test at line 106 is satisfied and the operation
that called GC successfully installs the resulting RBTs tuple in v. A successful GC discards at
line 120 any Blocks that have propagated to the root. Thus, each Block that remains after a
successful GC has an operation that was in the process of propagating that Block to the root
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at the time the RBTs field of v was read prior to GC. Since each process has at most one
pending operation, at most pv Blocks remain immediately after GC, where pv is the number
of leaves in the subtree rooted at v. Since each Block contains at most pv operations, there
are at most p2

v operations remaining immediately after GC. The next GC on v succeeds after
another Gv = p2

v⌈log p⌉ operations propagate to v. Thus, the number of operations in v’s
blocks tree can never exceed p2

v + Gv = O(p2
v log p). The test on line 63 ensures that each

Block added to a node has at least one subblock, and it follows that each Block contains at
least one operation. Thus, the number of Blocks in v is also O(p2

v log p) at all times.
When GC on a non-root node v succeeds, all items in v’s enqueue RBTs that have been

propagated to v’s parent are discarded at lines 116–117. So, following the GC, at most
pv enqueued items remain (at most one per process). Since GC succeeds every p2

v⌈log p⌉
operations added to v (line 106), there are at most pv + p2

v⌈log p⌉ items in v’s enqueue RBTs
at any time. Thus, the total size of v.RBTs is O(p2

v log p) for each non-root node v.
Each Block in the root contains a RBT of responses to dequeues in that Block. Since it

was shown above that the blocks RBT of the root contains O(p2 log p) operations, the total
size of the dequeue trees in all of the root’s Blocks is O(p2 log p). The space used by the
state tree in the root is O(qmax) where qmax is the maximum size of the deque. The root’s
total space, including its state, blocks, and its Blocks’ dequeue trees, is O(qmax + p2 log p).

The value of pv of a non-root node v at each level of our ordering tree, from top to
bottom, is p

2 , p
4 , ..., 1, and there are 2, 4, ..., p non-root nodes at each level of the tree. Since

each non-root node v uses O(p2
v log p) space, the total space used by the non-root nodes is

O(
⌈logp⌉∑

i=1
2i

(
p
2i

)2 log p) = O(p2 log p
⌈logp⌉∑

i=1

1
2i ) = O(p2 log p). Together with the space used by

the root, the total space usage of the ordering tree is O(qmax + p2 log p).1

6 Step Complexity

RBT operations on the root’s state tree take O(log qmax) steps. Since the sizes of all other
RBTs are polynomial in p, operations on them each take O(log p) steps.

We first bound the step complexity of operations excluding garbage collection. Each
operation performs O(log p) steps to insert the operation at a leaf of the ordering tree and
then calls Propagate. Propagate calls Refresh at most twice at each of O(log p) nodes along a
path from the leaf to the root. At non-root nodes, each Refresh, including the calls to the
subroutines CreateBlock, GetTopEnqs and GetBotEnqs, does O(1) RBT operations and O(1)
other steps, for a total of O(log p) steps. At the root, Refresh also does RBT operations
on the state tree (lines 47–50), so it takes O(log p + log qmax) steps. Thus, Propagate takes
O(log2 p+log qmax) steps in total. A TopDequeue also calls CompleteTopDeq at line 22, which
calls IndexTopDeq. IndexTopDeq searches a blocks tree at each level of the ordering tree, for
a total of O(log2 p) steps and the rest of CompleteTopDeq searches two RBTs in O(log p)
steps. Summing up, each enqueue or dequeue takes O(log2 p + log qmax) steps, excluding
calls to GC.

Now we consider the contribution of GC to the amortized step complexity of operations.
First, we bound the steps taken by routines called by GC. Propagated takes at most O(log2 p)
steps to search blocks RBTs (lines 145–147) at each level of the ordering tree. In the worst

1 In addition, processes could have pointers to additional objects in local memory. For example, in a
pathological execution where processes fall asleep during a Refresh holding pointers in their local memory
to old, totally disjoint states of the deque, this could add an additional Θ(pqmax) memory usage.
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case, Help(v) performs a blocks search (line 130), calls Propagated (line 134 or 136) and
calls CompleteTopDeq (line 135) or CompleteBotDeq (line 137) for the 2pv leaf descendants
of v.parent. So Help(v) takes O(pv log2 p) steps. SplitBlock(v) takes O(log2 p) steps since it
recurses to the root from v, searching a blocks RBT at each level.

If garbage collection is not triggered at line 106, GC takes O(1) steps. If it is triggered,
GC performs O(log p) steps on RBTs (lines 108–117) and calls SplitBlock (line 118), Help
(line 119), and SplitByIndex on a blocks tree (line 120) for a total of O(pv log2 p) steps.
Each of the pv processes whose leaves are descendants of v satisfy the trigger at line 106
only once every Gv operations added to v, and each of them performs O(pv log2 p) steps
in that case. So, all processes perform a total of O(p2

v log2 p) steps doing GC at v once
every Gv operations propagated to v. So the amortized number of steps for GC at node v

is O(p2
v log2 p/Gv) = O(log p) per operation. Each operation does GC at each level of the

tree, the total amortized number of steps spent on GC is O(log2 p) per operation. The total
amortized step complexity of a deque operation, including GC, is thus O(log2 p + log qmax).

Our deque is wait-free because each recursion recurses from a leaf of the ordering tree
to the root or vice versa, and its only loop (line 129) iterates through a finite set. Also, all
RBT operations are applied to a local snapshot of the RBT, and are therefore wait-free.

7 Elimination

As an optimization, it would be straightforward to incorporate elimination [14] into our deque.
If any block (in any non-root node) contains both enqueues and dequeues on the same end
of the deque, they can be eliminated and there is no need to propagate them further up the
tree. For example, suppose a Refresh builds a block Bnew that represents 5 TopDequeues and
8 TopEnqueues. We could eliminate 5 pairs of operations by reducing the sumtopDeqs field of
the block by 5, removing 5 elements from the newTopEnqs tree constructed on line 39 using
Split, and storing those 5 elements in a new topDeqs RBT field of the block, as is done in the
Blocks of the root. Thus, only the 3 remaining TopEnqueues would be propagated further.
Elimination also requires some changes to the CompleteTopDeq function: when tracing a
TopDequeue up the tree, it would detect if the operation got eliminated at some node, and
then use the operation’s rank among TopDequeues eliminated in that Block to select the
response from the Block’s topDeqs RBT. The eliminated operations would not appear in
the Etop and Dtop sequences of the Block that are used to define the linearization ordering
Ltotal. The eliminated operations would be linearized when the Block that eliminates them
is installed in the node, instead of when they are propagated to the root.

8 Open Questions

It would be interesting to experimentally compare the performance of the new deque to
existing lock-free deques. Such experiments could also measure the effects of elimination on
throughput. Our new deque is designed to ensure time bounds even in worst-case executions.
However, this comes at the cost of operations performing more steps in the best case (for
example, when an operation runs with no contention). Could the deque be made adaptive so
that its step complexity depends on the number of concurrent operations, rather than on the
number of processes in the system? This might be achieved by having operations choose a
leaf at which to inject an operation (as in [1]) rather than having a statically assigned leaf
for each process. (This might also handle the case where the set of processes is not known in
advance.) Or perhaps the fast-path slow-path methodology of [21] could be used to make the
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best case faster while maintaining good bounds in the worst case. An interesting theoretical
direction would be narrowing the gap between the Ω(log p) lower bound on the amortized
step complexity of operations [19] and our O(log2 p + log q) upper bound. Can we design
(implicit or explicit) representations of batches of operations for other data structures so that
ordering trees yield sublinear-time operations for still more data structures?
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