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Abstract

We study the SUPPORTED model of distributed computing introduced by Schmid and Suomela [27],
which generalizes the LOCAL and CONGEST models. In this framework, multiple instances of the
same problem, differing from each other by the subnetwork to which they apply. recur over time,
and need to be solved efficiently online. To do that, one may rely on an initial preprocessing phase
for computing some useful information. This preprocessing phase makes it possible, in some cases,
to obtain improved distributed algorithms, overcoming locality-based time lower bounds.

Our main contribution is to expand the class of problems to which the SUPPORTED model
applies, by handling also multiple recurring instances of the same problem that differ from each other
by some problem specific input, and not only the subnetwork to which they apply. We illustrate this
by considering two extended problem classes. The first class, denoted PCS, concerns problems where
client nodes of the network need to be served, and each recurring instance applies to some Partial
Client Set. The second class, denoted PFO, concerns situations where each recurrent instance of the
problem includes a partially fixed output, which needs to be completed to a full consistent solution.

Specifically, we propose some natural recurrent variants of the dominating set problem and the
coloring problem that are of interest particularly in the distributed setting. For these problems, we
show that information about the topology can be used to overcome locality-based lower bounds. We
also categorize the round complexity of Locally Checkable Labellings in the SUPPORTED model
for the simple case of paths. Finally we present some interesting open problems and some partial
results towards resolving them.
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22:2 Local Recurrent Problems

1 Introduction

1.1 Background and motivation
The area of distributed network algorithms concerns the development and analysis of dis-
tributed algorithms operating on a network of processors interconnected by communication
links. In particular, a substantial body of research has been dedicated to the development
of various graph algorithms for problems whose input consists of the network topology.
Examples for such problems are finding a maximal independent set (MIS) for the network,
finding a maximal or maximum matching (MM), a minimum dominating set (MDS), a proper
coloring with few colors, and so on, and considerable efforts were invested in developing
sophisticated and highly efficient algorithms for these problems. Such algorithms are par-
ticularly significant in settings where the distributed network at hand is dynamic, and its
topology keeps changing at a high rate.

The observation motivating the current study is that in many practical settings, the
network itself may be static, or change relatively infrequently. In such settings, problems
depending solely on the graph structure need be solved only once. In contrast, there are
a variety of other problems, related to computational processes that occur repeatedly in
the network, which need to be solved at a much higher frequency, and whose input consists
of the network topology together with some other (varying) elements. For such problems,
the traditional model might not provide a satisfactory solution, in the sense that it may be
unnecessarily expensive to solve the entire problem afresh for each instance. Rather, it may
be possible to derive improved algorithmic solutions that take advantage of the fact that the
network topology is static. We refer to such problems as recurrent problems.

We envision that depending on the desired problems that the network needs to support,
one can compute and store additional information about the topology of the network within
each node, to enable recurrent problems to be solved faster. Inherently this captures an
aspect of network design. When a network is built, it maybe useful to compute useful
information about its topology keeping in mind the recurrent problems that it must support
during its lifetime.

This framework has been studied in the literature as the SUPPORTED model [27].
However, the recurrent problems studied so far within this framework were mostly limited to
instances of the original problem defined on an edge induced subgraph of the original graph1.

We believe that this limited class of problems does not fully capture all recurrent problems
of interest that can arise in the SUPPORTED model. To demonstrate this, we introduce
two new classes of recurring problems that can occur in the SUPPORTED model, namely,
problems with partial client set (PCS) and problems with partially fixed output (PFO),
defined below. We illustrate these classes by focusing on natural extensions of the classical
local problems of coloring and dominating set, and developing algorithms and lower bounds
for them in the SUPPORTED model.

1.2 Recurrent Problems
We consider graph-related optimization problems each of whose instances ⟨G, S⟩ consists
of a network topology G = (V, E), on which the distributed algorithm is to be run, and
some problem-specific input S. The term “recurrent problem” refers to a setting where the

1 One recent exception [19] introduced a different type of recurrent problem concerning matrix multiplica-
tion, where the structure of the input matrices is fixed but the specific values of the nonzero elements
are different in each recurring instance. The problem is studied in the (supported) node-congested
clique model of distributed computing.
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network G is fixed, and is the same in all instances (hence we often omit it). Formally, there
is a stream of instances that arrive from time to time and must be solved efficiently. The
optimization problem itself may be a variant of some classical graph optimization problem,
except it has some additional restrictions, specified in each instance S. Two concrete types
of restrictions that are of particular interest are partial client set (PCS) and partially fixed
output (PFO).

Partial client set (PCS)

An instance S restricted in this manner specifies a subset C ⊆ V of client vertices to which
the problem applies. The rest of the vertices are not involved (except in their capacity as
part of the network). For example, consider the maximum matching problem. In the PCS
variant of this problem, a PCS-restricted instance will specify a vertex subset C such that
the matching is only allowed (and required) to connect vertex pairs of C.

Partially fixed output (PFO)

An instance S restricted in this manner specifies a part of the output. The rest of the
output must be determined by the algorithm. For example, consider the k-centers problem
(where the goal is to select a subset C of k vertices serving as centers, so as to minimize the
maximum distance from any vertex of V to C). In the PFO variant of the k-centers problem,
a PFO-restricted instance will specify a vertex subset Cpre of k′ vertices that were already
pre-selected as centers, and the task left to the algorithm is to select the remaining k − k′

centers.
Naturally, some recurrent problems may involve other novel restrictions as well as hybrids,

thereby opening up the possibility for rich theory to be developed.

1.2.1 Two representative examples: CDS and PCC
In this paper, we will focus on two concrete examples for recurrent problems of practical
significance, and use them for illustration. The first of these two example problems, named
CDS, serves to illustrate a recurrent problem with PCS-restricted instances (where the set of
clients changes in each instance). The second problem, named CC, illustrates a recurrent
problem with PFO-restricted instances (where parts of the output are fixed in advance in
each instance).

Minimum client-dominating set (CDS)

In certain contexts, a dominating set D in a network G (i.e., such that every vertex v ∈ V

either belongs to D or has a neighbor in D) is used for placing servers providing some service
to all the vertices in the network (interpreted as clients), in settings where it is required
that each vertex is served by a server located either locally or at one of its neighbors. The
minimum dominating set (MDS) problem requires finding the smallest possible dominating
set for G.

We consider the recurrent variant of the CDS problem with PCS-restricted instances.
This problem arises in settings where the set of clients in need of service does not include
all the vertices of G, but rather varies from one instance to the next. In such settings, the
network G is static, and from time to time, a set of clients C ⊆ V , formed in an ad-hoc
manner due to incoming user requests, requests to select and establish a (preferably small)
subset D of vertices from among their neighbors, which will provide them some service. In
other words, the set D is required to dominate the vertices in C. On the face of it, solving
the minimum dominating set problem once on G may be useful, but not guarantee optimal

OPODIS 2023



22:4 Local Recurrent Problems

results for each recurrent instance S; rather, for each instance S, it may be necessary to solve
the specialized problem once the request appears in the network. Hereafter, we refer to this
problem as minimum client-dominating set (MCDS).

Note that one may also consider a generalized problem that includes also a PFO component,
by specifying in each instance S also a partial set D′ of vertices that were pre-selected as
servers (or dominators). Our results are presented for the MCDS problem (without PFO
restrictions), but it should be clear that they can easily be extended to the generalized
problem with PFO restrictions2.

Color Completion (CC)

In certain contexts, a proper coloring of a distributed network is used for purposes of
scheduling various mutually exclusive tasks over the processors of the network. For example,
suppose that performing a certain task by a processor requires it to temporarily lock all its
adjacent links for its exclusive use, preventing their use by the processor at the other end.
Employing a proper coloring as the schedule (in which all the processors colored by color t

operate simultaneously at round t) enables such mutually exclusive operation. Naturally, it
is desirable to use as few colors as possible, in order to maximize parallelism.

We consider the recurrent variant of the coloring problem with PFO-restricted instances.
From time to time we may receive a partial (collision-free) coloring assignment to some subset
C ⊆ V of the vertices, representing processors constrained to operate on some particular time
slots. We are required to color all the remaining vertices in V \ C properly and consistently
with the initial coloring. Typically, using colors already occurring in the precoloring (i.e.,
used by some vertices in the set C) is fine, since these time slots are already committed for
the task at hand. However, it is desirable to use as few new time slots (or new colors), to
minimize the overall time spent on the task.

Note that one may also consider a generalized problem that includes also a PCS component,
by specifying in each instance S also a partial set V ′ of vertices that are interested in being
scheduled, and hence need to be colored. Our results are presented for the CC problem
(without PCS restrictions), but it should be clear that they can easily be extended to the
generalized problem with PCS restrictions3.

1.3 The SUPPORTED model
The SUPPORTED model is an extension of the well studied LOCAL and CONGEST models
with an additional preprocessing phase. Specifically the solution to a problem in the
SUPPORTED model consists of two stages, (i) a preprocessing stage and (ii) an online stage.

In the preprocessing stage, run an algorithm Apre(G) on the topology of the network G

and obtain information Inf(G) to be stored at the network vertices (different vertices may
of course store different information).
During runtime, a stream of instances arrive. Whenever a new instance S arrives, run a
distributed algorithm A(S, Inf(G)) to solve this problem instance.
In view of the fact that the preprocessing stage takes place only once, the particulars

of the preprocessing algorithm are less important to us, and we allow it to be arbitrary
(even oracular). For the scope of this paper, in the upper bounds that we show, all our
preprocessing phases are explicitly computable, whereas the lower bounds hold for any
arbitrary preprocessing.

2 Essentially, for this problem, the pre-selected vertices of D′ can be used to satisfy all the clients that
neighbor them, leaving us with a smaller set C′ of unsatisfied clients that need to be covered.

3 Essentially, for this problem, the vertices of V \ V ′, which do not require coloring, can simply avoid
participating in the coloring process.
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In the online stage, we insist that the computation performed by each node in a single
round must be polynomial in the size of the graph. Therefore even knowledge of the complete
network for each node might not be sufficient, as underlying information about the topology
(such as chromatic number) might not be computable in polynomial time.

For a given problem Π on a graph G, one may seek to optimize several parameters. For
the scope of this paper, we consider only two, (i) the round complexity of the online algorithm,
i.e., the number of synchronous rounds required to solve each recurrent instance and (ii) the
size of the output to each node in the preprocessing phase, i.e., the amount of additional
information that needs to be stored in each node of the graph from the preprocessing phase.

1.4 Our Contributions
Client Dominating Set (Section 2). We first show that even on a path of n nodes, it is
not possible to (i) optimally solve CDS in o(n) time and (ii) compute a 1 + ϵ approximation
in Ω(ϵ−1) rounds (whenever ϵ = Ω(1/D)). On the other hand, we show that for trees and
planar graphs, one can obtain a 1 + ϵ approximation in O(ϵ−1) and O(poly(ϵ−1)) rounds
respectively. The algorithm for trees decomposes it into blocks of depth Θ(ϵ−1) and executes
an optimal algorithm within each block. The algorithm for planar graphs is an adaptation of
the O(poly(ϵ−1) log∗ n) round LOCAL algorithm of [14]. We look at the most time consuming
part of their algorithm and we speedup a particular sub-routine. In order to do that, we
make use of a combinatorial object called non-repetitive coloring, first proposed by [2] who
conjectured that it is bounded in planar graphs and recently [15] showed an upper bound
of 768. To the best of our knowledge, this is the first application of such a coloring in the
distributed setting.

Color Completion (Section 3). We provide an algorithm to complete a given coloring using
at most χ(∆ + 1)/k new colors in k rounds, for any 1 ≤ k ≤ χ. We show that for k = 1, the
number of colors used is asymptotically tight in the worst case. Tighter analysis of the same
algorithm when k = χ shows that only χ new colors are needed when k = χ.

Locally Checkable Labellings (Section 4). We study a generic class of problems called
Locally Checkable Labellings (LCL) [26]. We show that on a path, every LCL problem either
has worst case complexity O(1) or Θ(n). In the specific case of recurrent problems where the
online instances are a specific LCL on a sub-path of the given path, we provide an efficient
centralized algorithm to classify the LCL into one of the two cases and also construct the
distributed algorithm to solve an LCL given its description.

Miscellaneous Problems (Section 5). Finally, we provide some partial results on sub-graph
maximal matching and sub-graph maximal independent set that could potentially be useful
in finding optimal solutions for these problems in the SUPPORTED model.

1.5 Related Work
The SUPPORTED model was first proposed by [27]. [16] provide several results including
lower bounds for problems such as sinkless orientation and approximating independent set.
[20] provide near optimal algorithms for global network optimization problems, such as
minimum spanning tree, min-cut etc.

Dominating Set. [14] provided an O(poly(ϵ−1) log∗ n) round algorithm for a 1 + ϵ approxi-
mation for the dominating set problem and it was later extended to bounded genus graphs
by [3]. [16] briefly discuss about extending these results to the SUPPORTED model.

OPODIS 2023
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Coloring. Color Completion has been one of the methods used for ∆ + 1 coloring graphs in
log∗ n + f(∆) rounds. Existing algorithms decide on a coloring for a sub-graph of the given
graph and then recursively complete the chosen coloring. [7] provided the first sub-linear in
∆ algorithm. The current best known algorithm has round complexity log∗ n + O(

√
∆ log ∆)

(see [24, 8, 17]). [24] also provided a smooth tradeoff between the number of colors and the
round complexity, specifically in k + log∗ n rounds, graphs can be properly colored using
O(∆2/k2) colors for any 1 ≤ k ≤

√
∆. We note that Maus’s algorithm ([24]) does not provide

a ∆ + 1 coloring but rather an O(∆) coloring.

LCL. Locally Checkable Labellings (LCL) were first proposed by [26]. [11] showed gaps in
the deterministic complexity of LCL’s. They showed that the worst case deterministic round
complexity of LCL’s on any hereditary graph class is either ω(log∆ n) or O(log∗ n). They
also show that for paths, there is no LCL with complexity o(n) and ω(log∗ n). Later [12]
and [18] showed that on trees, the deterministic worst case complexities for LCL’s is either
O(1), Θ(log∗ n), Θ(log n) or nΘ(1). More recently, [6] showed that for a more restricted class
of LCL problems, on rooted trees, there is a centralized algorithm that takes as input the
description of the LCL and decides which of the above complexity classes it belongs to. Given
the LCL, deciding its distributed complexity class on trees was shown to be EXPTIME hard
by [10].

[13] studied the complexity of LCL’s on unlabelled paths and cycles. For this easier case,
they showed the correspondence between a solution to the LCL and a non-deterministic
finite automaton. This observation helps to identify polynomial-time computable properties
of the LCL which almost exactly determine its worst round complexity, with the exception
of a case that turns out to be co-NP complete. Our characterisation of LCL problems in
SUPPORTED in Section 4 follows along the same ideas. [9] study the round complexity of
LCL problems in two dimensional grid and toroids. Even though these topologies are simple
extensions of paths and cycles, and the complexity classes of LCL problems are exactly the
same (O(1), Θ(log∗ n), Θ(n)), characterizing the round complexity is undecidable.

2 Dominating Sets

2.1 Client Dominating Set
▶ Definition 1 (Client Dominating Set (CDS)). Given a graph G and a subset of its vertices
C ⊆ V (G), called the client set, we say that a set D ⊆ V (G) dominates C if for every client
c ∈ C, there exists v ∈ D such that either v = c or v is a neighbor of c. D is said to be a
client dominating set of G for the clients C.

The minimum client dominating set problem (MCDS) asks for a CDS of minimum size.
The CDS problem is of course a generalization of the classical Dominating Set problem as the
dominating set is precisely the case when C = V (G). It is also possible to reduce the CDS
problem to an instance of the Dominating Set problem. See the full paper [1] for a discussion
of the reductions. Our reduction does not preserve locality and so it does not provide any
insight into the round complexity of this problem in distributed settings.

2.2 Lower Bound for Paths
We establish two lower bounds for MCDS on a path. First, we argue that, regardless of the
preprocessing, the online runtime of every (exact) deterministic distributed algorithm for the
MCDS problem must take time Ω(D) on networks of diameter D. Second, we show that the



A. Agrawal, J. Augustine, D. Peleg, and S. Ramachandran 22:7

online runtime of every deterministic distributed approximation algorithm for MCDS with
ratio 1 + ϵ must require time Ω(1/ϵ) on some input. The proofs of these theorems appear in
the full paper [1].

▶ Theorem 2. Let A be a deterministic distributed local algorithm for CDS with arbitrary
preprocessing. Then there exists some input for which A requires Ω(D) time.

▶ Theorem 3. Let A be a deterministic distributed local approximation algorithm for CDS,
with arbitrary preprocessing, whose online runtime on every path and every instance is at
most k = 4ℓ + 1 for some integer ℓ ≥ 1. There exists a network and a set of clients for which
the approximation ratio of A is at least 1 + 1/(k + 2).

2.3 A CTAS for Trees
In this section we describe a constant time approximation scheme (CTAS) for MCDS on
trees, i.e., a 1 + ϵ approximation in O(ϵ−1) rounds.

The algorithm for trees is based on a preprocessing stage in which the tree is partitioned
into subtrees of depth O(k) for some integer parameter k. Each recurrent instance is then
solved by computing a local near-optimal CDS on each subtree, while taking care to ensure
that the resulting solutions combine into a 1 + 4/(k− 1) approximation of the optimal global
solution. The “interface” between adjacent subtrees is more difficult to handle, as making a
single change in the selection in one subtree (e.g., in one of its leaves) might affect several
adjacent subtrees, which makes both the algorithm and its analysis somewhat more complex.

Let us first describe the preprocessing stage, which is applied to the network tree T . The
algorithm has an integer parameter ℓ ≥ 1 and sets k = 4ℓ + 1. Root the tree T at a root
vertex r0, and mark each vertex v by its layer, layer(v), namely, its distance from r0 (by
definition layer(r0) = 0). Partition the tree T into subtrees by taking every vertex v with
layer(v) = pk for integer p ≥ 0 as a root and defining T [v] as the subtree of depth k rooted
at v. See Fig. 1(a). For notational convenience, we sometimes use T [v] to denote also the
vertex set of the subtree T [v]. Also, for any subtree T [v] and vertex set X ⊆ T , we denote
X[v] = X ∩ T [v].

The leaves of a subtree T [v] can be classified into real leaves and layer-leaves, namely,
leaves of T [v] that are internal nodes in T . A subtree that has no other subtree below it
(namely, all of whose leaves are real) is called a leaf-subtree or simply L-tree. Otherwise, it is
called an internal-subtree or I-tree. (See Fig. 1(a).) We partition the vertices of T into two
subsets. Let lleaves be the set of all layer-leaves, and int be the set of all remainig vertices.
This induces a partition of the vertices of each subtree T [v] into lleaves[v] and int[v]. (For
an L-tree, lleaves[v] = ∅.)

During the recurrent stage, each instance consists of a set S of clients. This induces
additional distinctions on the tree structure. Internal subtrees are classified into two types.
The I-tree T [v] is called a cut I-tree if on every path from v to a root w hanging from a
layer-leaf of T [v] there are two consecutive vertices that do not belong to S. See Fig. 1(b).
The figure also illustrates the fact that in a cut I-tree T [v] one can identify a subtree Ť [v],
referred to as the peak of T [v], the minimal sub-tree with the property that for every edge
(x, y) connecting a vertex x ∈ Ť [v] to a child y /∈ Ť [v], both x, y ̸∈ S. This implies that nodes
below Ť [v] cannot help in dominating clients in Ť [v], namely, taking them into D cannot
dominate client vertices in Ť [v]. T [v] is a full I-tree if it is not a cut I-tree, namely, there
is at least one path from v to a root w hanging from some layer-leaf of T [v] with no two
consecutive vertices of V \ S.

OPODIS 2023



22:8 Local Recurrent Problems

Figure 1 (a) A decomposition of the tree T into subtrees for ℓ = 1, k = 5. Layer-leaves are
marked by a blue dashed circle, and real leaves are marked by a green double circle. (b) A
cut I-tree, k = 5. The client vertices of S are drawn as double red circles. The cuts along root-to-root
paths are marked by blue dashed ellipses. The peak-tree Ť [v] is marked by a purple dashed curve.

The idea behind the approximation scheme is as follows. Our algorithm solves the CDS
problem separately, in an optimal manner, on each subtree T [v] of depth at most k for the
client set S[v]. This can be done in time O(k), but might entail inaccuracies. As illustrated
in the lower bound of Sect. 2.2, the main hindrance to the accuracy of a local distributed
algorithm for MCDS stems from long paths with a periodic occurrence of client vertices.
Such a path, threading its way along some root-to-leaf path in T , might be handled poorly
by the local computations. Our goal is to bound the loss by at most 1 per subtree in the
decomposition. This is justified for full I-trees, since in a full I-tree the optimum solution D∗

must also use Ω(k) dominators to cover all the clients, so the inaccuracy ratio is just 1/Ω(k).
This approach is made complicated due to the fact that some subtrees are not full, and

may require only a small number of dominators. For such subtrees (specifically, L-trees and
cut I-trees), we cannot allow the algorithm to “waste” more than the optimum solution.
Hence when comparing the number of dominators used by the algorithm to that of the
optimum D∗, we must use an accounting method that will equate the costs over L-trees and
cut I-trees, and charge all the “waste” to full I-trees.

This is done as follows. In a first phase, we locally solve the problem optimally in each
L-tree and cut I-tree, i.e., dominate clients in these sub-trees using only vertices of these
sub-trees. This is only used in order to decide, for each such subtree T [v], whether the root’s
parent, denoted parent(v), must belong to the dominating set. This is important since these
vertices cover the “interference layers” between adjacent subtrees. For the full I-trees, an
optimal local solution cannot be computed. Therefore, we artificially impose a “waste” in
every full I-tree T [v], by selecting the parent of its root, parent(v), as a dominator, whether or
not necessary. As explained above, this “waste” is justified by the fact that D∗ must also use
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Ω(k) dominators in these subtrees. As a result, when we compute a dominating set for the
remaining undominated clients in the second phase of the algorithm, the solution computed
by the algorithm on each subtree T ′ is no greater than the number of D∗ dominators in T ′.

Optimal procedure Pup

A simple procedure Pup we use is an optimal algorithm for CDS on rooted trees, which runs
in time O(depth(T )) on a tree T . The algorithm starts with an empty set of dominators D

and works its way from the leaves up, handling each node w only after it finishes handling
all its children. It adds w to the set D in one of the following two cases:
(1) Some of w’s children are clients and are not yet dominated, or
(2) w itself is an undominated client and is the root.

It is easy to verify that this algorithm yields a minimum cardinality solution for CDS. It
is also easy to implement this greedy algorithm as an O(depth(T )) time distributed protocol.

Modification for subtrees. When applying this procedure to a subtree T [v] of T where
v is not the root of T , we make the following small but important modification: When
the procedure reaches v itself, if v ∈ S and v is still non-dominated, then we add parent(v)
instead of v to the solution. (This can be done since parent(v) belongs to the tree T , although
it is outside the subtree T [v].)

The above modification is enough to obtain an approximation scheme. For complete
pseudocode and analysis, see the full paper [1]. We get the following result.

▶ Theorem 4. For every positive integer k, there exists a deterministic distributed local
approximation algorithm for CDS, with preprocessing allowed, whose online runtime on every
n-vertex tree and every instance is at most O(k) with approximation ratio of at most 1 + 4

k−1 .

2.4 A CTAS for MCDS on Planar Graphs

2.4.1 Constant Approximation for MCDS on Planar Graphs
The state of the art algorithm for constant round planar dominating set approximation in
the LOCAL model achieves an approximation ratio of 20 by a recent work of [21]. Their
algorithm and analysis extend to the client dominating set problem with slight modifications.
See Algorithm 1 for the pseudocode.

Algorithm 1 Constant Approximation for MCDS in Planar Graphs.

1: C ← client set
2: For every A ⊆ V (G), define NC(A) = {w | w ∈ C and (w, v) ∈ E(G) for some v ∈ A}
3: NC [A] = NC(A) ∪ (A ∩ C)
4: D1 ← {v ∈ V (G) | ∀A ⊆ V (G) \ {v}, NC [A] ⊇ NC(v)⇒ |A| ≥ 4}
5: For every v ∈ V (G), compute Bv =

{
w ∈ V (G) \D1

∣∣ |NC(v) ∪NC(w)| ≥ 10
}

6: D2 ←
{

v ∈ V (G) \D1
∣∣ Bv ̸= ∅

}
7: D3 ← C \NC [D1 ∪D2]
8: Return D1 ∪D2 ∪D3

▶ Theorem 5. Algorithm 1 provides a 39-approximation for the MCDS problem in planar
graphs.

OPODIS 2023



22:10 Local Recurrent Problems

2.4.2 A 1 + ϵ approximation
We adapt the distributed 1 + ϵ-approximation scheme of [14], whose round complexity is
O(

( 1
ϵ

)c log∗ n) where c = log24/23 3.
The only non-constant round part of their algorithm is in 3-coloring several pseudo-forests4

that are obtained as follows. A partition of the vertices of the graph is computed such that
each part induces a connected component of diameter O(poly(ϵ−1)). Each component is
then contracted into a single node and a pseudo-forest of the resulting graph is computed
by a greedy procedure. The choice of the pseudo-forest and the partition is dictated by the
clients, and thus hard to predict without knowledge of the clients.

We first describe the major changes required to adapt this method to the CDS problem.
We then discuss the preprocessing that helps to 3-color the pseudo-forests in O(poly(ϵ−1))
rounds, thus removing the log∗ n factor.

Adapting to CDS. First, we remove the edges that are not incident on any client. These
edges do not contribute to the criteria for a set to be a dominating set, and they can be
ignored. We then compute a constant approximation D̃ as per Algorithm 1. The initial
clustering is obtained by choosing for each client c an arbitrary dominator of c from D̃ and
contracting the edge between them. Additionally, every vertex that is neither a client nor a
dominator chooses an arbitrary neighboring client and the edge between them is merged.
The remaining steps are identical to the previous procedure.

Speeding up using a preprocessing phase. One natural candidate to consider for the
preprocessing stage is a proper 4-coloring of the planar graph. Unfortunately, while a coloring
of any graph remains valid after the removal of edges or vertices, it does not remain valid
after contractions. An arbitrary precomputed coloring might not be of much use in coloring
the contracted graphs that arise from repeated contractions. To accommodate contractions,
we precompute a non-repetitive coloring of G (which is the only output of our preprocessing
phase). A non-repetitive coloring is a coloring of the graph such that for any odd length
simple path, the ordered set of colors in the first half of the path is different from that of the
second half. Non-repetitive colorings were first proposed by [2]. The minimum number of
colors required to realise a non-repetitive coloring is called the Thue number of the graph
and is denoted by π(G). [15] showed recently that π(G) ≤ 768 for all planar graphs G.

Suppose we have a pseudo forest F that needs to be 3-colored and suppose F is obtained
from Gt, the contracted graph. Let out(v) denote the other end of the outgoing edge of
v in F . In order to 3-color the forest, it is sufficient to choose colors in such a way that
out(v) and v have different colors, for every v. We can associate with each node v of Gt, a
connected component (denoted Gv) in the original graph G that contains the ends of all
edges that were contracted to v. Choose any edge e that crosses Gv and Gout(v). Construct
a spanning tree of Gv and root it at the endpoint r(v) of e that lies in Gv. We now color v

with the ordered set of non-repetitive colors traced on the unique path from r(v) to r(out(v)),
excluding r(out(v)), in the graph Gv ∪Gout(v) ∪ {e}. We enumerate these colors from 1 to
768d+1 where d is the maximum diameter of the clusters. Let the computed path be Pv.
Observe that whenever out(out(v)) ̸= v, the paths Pv and Pout(v) can be concatenated to
form a simple path in the graph G. If Pv and Pout(v) have different lengths, then the colors
assigned to them are different. Otherwise, by the property of a non-repetitive coloring, the

4 A pseudo-forest is a directed graph wherein every node has exactly one outgoing edge.
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ordered set of colors of Pv and Pout(v) must be different. When out(out(v)) = v, we have a
2-cycle. In this case we color one of the nodes {v, out(v)} (whichever has higher id, say v)
with its own non-repetitive color and redefine Pv = {out(v)}. Now the paths Pv and Pout(v)
may be concatenated to obtain a simple path P . See Algorithm 2 for the pseudo-code.

Algorithm 2 3-coloring pseudo-forest.

1: procedure 3-color
Input:
(i) color : V (G)→ [768], A non-repetitve coloring of the given planar graph G

(ii) cluster : V (G)→ N, describes a partitioning of the vertices of G that induce connected
components of diameter at most d

(iii) Gt : the graph where every cluster is contracted to a single node.
(iv) out : V (Gt)→ V (Gt), describes a pseudoforest in the graph Gt ▷ out(v) is the other
end of the unique outgoing edge from v

Output: colorf : V (Gt)→ [3], a proper 3-coloring of the given pseudoforest
2: for all clusters v ∈ V (Gt) (in parallel) do
3: p← out(v), the parent of v in pseudo-forest of Gt

4: Let Gv, Gp be the connected components of G that are contracted to v, p in Gt

5: ev ← any edge in G that crosses Gv, Gp and rv ← the end of e in Gv

6: Tv ← Any spanning tree of Gv, rooted at rv

7: end for
8: for all clusters v ∈ V (Gt) (in parallel) do
9: if out(p) ̸= v or v < p then ▷ detect cycles of length 2

10: path(v)← The unique path from rv to rp in the graph Tv ∪ Tp ∪ {e}
11: else ▷ Treating the case of cycle of length 2 separately
12: path(v)← {rv}
13: end if
14: end for
15: colorf (v)← the ordered set of colors in path(v)
16: Enumerate colorf (v) using integers from 1 to 768d+1

17: Reduce colorf (c) to a 3-coloring using the Cole-Vishkin Algorithm
18: return colorf

19: end procedure

We now have a 768d+1 coloring of the pseudo-forest F , which can then be reduced to a 3-
coloring using the Cole-Vishkin Algorithm. The complexity is O(d log∗ 768d+1) = O(d log∗ d).
This leads us to our main lemma:

▶ Lemma 6. Given a clustering of G into connected components of diameter d, let G′ denote
the graph obtained after contracting each cluster into a single vertex, and let H be a given
pseudo-forest subgraph of G′, Algorithm 2 provides a 3-coloring of H in O(d log∗ d) rounds.

Algorithm 2 is the main unique ingredient to our adaptation of [14]’s algorithm. Plugging
this component into their algorithm directly leads to an O(poly(ϵ−1)) round algorithm. For
concreteness, the complete clustering procedure is described in Algorithm 3 with some minor
changes to account for the clients. Once the clustering is done, we proceed in the same
way, i.e., solve the CDS problem optimally and independently within each cluster. Solving
CDS exactly requires NP-Hard problems to be solved in the online phase, which may be
undesirable. This can be fixed by replacing the optimal solution with a PTAS in planar
graphs for the CDS problem by a similar adaptation of Baker’s algorithm [4].
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Algorithm 3 Clustering for Planar CDS.

Input: Client set C, a non-repetitive coloring of G and ϵ.
Output: A 1 + ϵ approximation of the optimal set dominating C.
Phase 1: Finding a good initial clustering.

1: Remove all edges that do not have a client incident on them.
2: Remove isolated vertices after previous step.
3: Compute a constant approximation D⋆ for C using Algorithm 1.
4: for all nodes v ∈ V (G) \D⋆ do
5: if v has a neighbor in D⋆ then
6: u← any neighbor in D⋆

7: else
8: u← any neighbor in C or ⊥ (if such a node doesn’t exist)
9: end if

10: Contract the edge e = (u, v), if u exists
11: end for

▷ Done in parallel and implicitly, i.e., contracted vertices know their neighbors
Phase 2: Improving the clustering

12: G0 ← underlying simple graph obtained at end of Phase 1.
13: Set wt(e)← 1 for all e ∈ E(G0)
14: for all t = 0, 1, . . . ⌈log24/23

234
ϵ ⌉ do

15: out(u)← any neighbor v such that wt((u, v)) is maximized
16: H ← induced by the edges {(out(u), u) | u ∈ Gt} ▷ Heavy pseudo-forest
17: col← 3-coloring of H obtained using Algorithm 2.
18: for all u ∈ H with col(u) = 1 (in parallel) do
19: Iu, Ou ← {(u, v) | u = out(v)}, {(u, v) | v = out(u)}
20: Remove either Iu or Ou from H, whichever has smaller total weight
21: end for
22: for all u ∈ H with col(u) = 2 (in parallel) do
23: Iu, Ou ← {(u, v) | u = out(v), col(v) = 3}, {(u, v) | v = out(u), col(v) = 3}
24: Remove either Iu or Ou from H, whichever has smaller total weight
25: end for
26: ▷ H now consists of connected components with diameter at most 10.
27: F ← rooted spanning forest of H

28: EF , OF ← edges of F at even and odd depths respectively
29: Remove either EF or OF , whichever has smaller total weight
30: For all edges e ∈ E(H), contract e in Gt

31: Gt+1 ← underlying simple graph obtained after contractions.
32: For all edges e = (u, v) ∈ Gt+1, set wt(e)← number of edges between u, v after all

contractions of edges in H.
33: end for
34: return GT

▶ Theorem 7. For every planar graph G, 1 + ϵ approximation of MCDS can be obtained in
O(ϵ−c log∗ ϵ−1) SUPPORTED rounds, where c = log24/23 3, using only O(1) additional bits
stored in each node as the output of the preprocessing phase.

The complete pseudocode and proof of completeness appear in the full paper [1].
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3 Color Completion

Consider a graph G(V, E) and a coloring c : V 7→ {1, . . . , k}. The vertex v is properly colored
if each of its neighbors has a different color. The classical vertex coloring problem requires
deciding if there exists a coloring for which all vertices are properly colored. When some
of the vertices are already assigned a predefined coloring, the resulting recurrent problem
is referred to as color completion (CC). We use the following measures for evaluating the
number of colors used in any valid solution.

Let Ppc be the set of colors used by the precolored vertices, and denote χpc = |Ppc|.
Let Pun be the set of colors used for the uncolored vertices; denote χun = |Pun|.
Let Pnew = Pun \ Ppc be the new colors used for the uncolored vertices; denote χnew =
|Pnew|.
Let Pall = Ppc ∪ Pnew be the final set of colors of all vertices; denote χall = |Pall|.

For a given instance of CC, let χ∗
un (respectively, χ∗

new, χ∗
all) be the smallest possible

value of χun (resp., χnew, χall) over all possible proper color completions of the precoloring.
Additionally, for a given algorithm A, let χA

un (respectively, χA
new, χA

all) be the value of χun

(resp., χnew, χall) in the solution computed by A for the instance.
The efficiency of an algorithm for CC can be measured by two parameters of interest,

namely, χnew and χall. The difference between them becomes noticeable in instances where
the colors in Ppc are not contiguous, i.e., when there are colors x such that x /∈ Ppc but
x + 1 ∈ Ppc. We denote by CCnew(t) (resp. CCall(t)) the problem of color completion such
that χnew (resp. χall) is at most t.

3.1 Single Round Color Completion
We first consider what can be done when the online algorithm is restricted to a single round
of communication.

▶ Theorem 8. Consider a graph G with maximum degree ∆ = ∆(G) and chromatic number
χ = χ(G) with ∆ > 0, then CCnew(χ ·∆) can be solved in a single SUPPORTED round.

Proof. The algorithm uses the color palette

P = {(i, j) | 1 ≤ i ≤ χ, 1 ≤ j ≤ ∆}.

In the preprocessing stage, compute a proper default coloring dc of the graph using the color
palette Pdef = {i | 1 ≤ i ≤ χ}, and let each vertex v store its default color dc(v) for future
use. These values are not used as colors in the final coloring.

In the online stage, we are given an arbitrary precoloring c(w) ∈ P for some nodes, and
need to complete it to a proper coloring by selecting a color c(v) for each non-precolored node
v. (It is assumed that the precoloring itself is proper, i.e., no two precolored neighboring
vertices use the same color.)

The algorithm requires a single round of communication. Each precolored node w informs
its neighbors about its color c(w). Now consider a non-precolored node v. If all neighbors of
v are colored, then v chooses a free color from the color palette. As χ ·∆ ≥ 2∆ ≥ ∆ + 1,
such a color is guaranteed to exist.

Otherwise, v finds a free color of the form (dc(v), j) for 1 ≤ j ≤ ∆ satisfying c(w) ̸= (i, j)
for all precolored neighbors w of v. The node v then selects c(v)← (dc(v), j).

OPODIS 2023



22:14 Local Recurrent Problems

Kχ

∆− χ + 1

Figure 2 Graph whose single round color completion assigns at least χ · (∆ − χ + 1) different
colors across all instances. In this example χ = 6, ∆ = 9.

By this algorithm, the color (i, j) selected by v is different from the color of any precolored
neighbor of v. Also, (i, j) cannot be the selected color of any non-precolored neighbor w of v.
This is because the default color dc(w) = i′ of w satisfies i′ ̸= i, and therefore, the selected
color c(w) of w is of the form (i′, k) for some k, which must differ from (i, j) at least on the
first component. Thus, the coloring c is proper. ◀

▶ Remark 9. In the absence of any preprocessing, [22] showed that we require
Ω(log∗ n) rounds to color the graph even if it is just a path. To complement this, [22] also
provides an O(log∗ n) round algorithm that colors the graphs with maximum degree ∆ with
O(∆2) colors. In the full paper [1] we show that the same algorithm can be adapted to CC
with at most ⌈23∆2 log2 n⌉ new colors.

A consequence of the above is that one can readily adapt existing solutions of graph
coloring to color completion. For example the results of [23], [8] can be extended to CC, with
the number of colors used replaced by χnew and retaining the same round complexities.

We complement the result of Thm. 8 with the following lower bound, see Figure 2 for
the graph.

▶ Theorem 10. For every integer χ, ∆, there exists a graph G with chromatic number χ and
maximum degree ∆ such that for every single round deterministic distributed algorithm A, the
total number of colors used by A over all recurrent instances of CC is at least χ · (∆− χ + 2)
even after an arbitrary preprocessing of G.

The single round algorithm can be extended to multiple round algorithm providing a
similar color-round tradeoff as that of Maus’ algorithm [23]. See the full paper [1] for the
algorithm and discussions.

3.2 CC with fewer than ∆ + 1 colors

We next discuss coloring algorithms based on a preprocesing stage which, in many cases, use
fewer than ∆ + 1 colors.

Our main result is an algorithm that, for a graph G with chromatic number χ, uses
preprocessing, and in the recurrent stage solves any instance of CC with at most χ new colors
in χ rounds. The algorithm operates as follows.
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Preprocessing. The preprocessing stage computes a proper-χ coloring of the graph G. This
is stored implicitly, i.e., each node v stores a single color (a positive integer) dc(v). We call
this coloring the initial coloring of G.

Online algorithm. We call the algorithm the “priority recoloring” algorithm. The set of
nodes with the same initial coloring form an independent set which implies that nodes
belonging to this set may be colored independently. We use the standard greedy algorithm
to simultaneously color nodes with the same initial color in a single round. The initial colors
are only computed to partition the original set of nodes into χ independent sets.
The input of each recurrent instance is a subset S of the nodes that were precolored, i.e., each
v ∈ S has a precolor c(v). For convenience, consider c(v) = 0 for all v ̸∈ S. The required
output is a color completion of the precoloring: each node v ̸∈ S outputs a color c(v) ∈ N
such that the colors assigned to all vertices form a proper coloring of the graph G.

The online algorithm A operates as follows.
For r = 1, 2, . . . χ rounds, do

If dc(v) = r and c(v) = 0 , then c(v) ← min(N \ Γ(v)), where Γ(v) = {c(w)|(w, v) ∈
E(G)}

For a given instance of the problem, χ∗
un (respectively, χ∗

new, χ∗
all) is the smallest possible

value of χun (resp., χnew, χall) over all possible proper color completions of the precoloring,
and χA

un (respectively, χA
new, χA

all) is the value of χun (resp., χnew, χall) in the solution
computed by the priority algorithm.

▶ Observation 11. For any coloring, χall = χpc + χnew. In particular, χ∗
all = χpc + χ∗

new

and χA
all = χpc + χA

new.

▶ Lemma 12. χA
new ≤ χ.

Proof. For every integer k ≥ 1, let Nk = {1, . . . , k}. Let M = maxPpc, and let FREE =
NM+χ \ Ppc be the set of free colors (not used in the precoloring) up to M + χ. Note that
the cardinality of the set FREE is at least χ. Let F̂ = {f1, . . . , fχ} consist of the smallest χ

integers in the set FREE.
By induction on k from 1 to χ, one can verify that during iteration k of the algorithm,

the colors the algorithm uses for the uncolored vertices of default color dc(v) = k are taken
from Ppc ∪ {f1, . . . , fk}. Hence PA

un ⊆ Ppc ∪ F̂ , implying that χA
new ≤ |F̂ | = χ. ◀

▶ Theorem 13. Consider a graph G with chromatic number χ = χ(G). CCall(χ + χ∗
all − 1)

and CCnew(χ) can be solved in χ SUPPORTED rounds.

In the full paper [1] we discuss how tight these bounds are and prove the following lower
bounds.

▶ Theorem 14. (Lower bound for χA
new). For every deterministic distributed algorithm

A, and every integer D > 3, that solves CC with the guarantee that χA
new < χ, there exists

a graph G with diameter D and an instance of CC for which A takes Ω(D) SUPPORTED
rounds.

▶ Theorem 15. For every integer χ ≥ 2 and deterministic algorithm A that solves CC with
the guarantee that χA

new ≤ χ∗
new + 1, there exists a graph G with chromatic number χ and an

instance of CC for which A takes χ SUPPORTED rounds.
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4 Locally Checkable Labellings

Locally Checkable Labellings (LCL) were first proposed by Naor and Stockmeyer [26].
Formal definitions and some examples can be found in the full paper [1].

4.1 Subgraph LCL’s without Input Labels on Paths
In this section we consider a subset of recurrent LCL’s, named subgraph LCL’s without input
labels, which were studied by Foerster et al. [16]. In subgraph LCL’s, the online instances ask
for a valid labelling for some (edge induced) subgraph of the given graph G. This sub-class
of LCL’s are easier to solve, but already captures several classical problems, such as finding
a dominating set, maximal matching, maximal independent set, (k, l)-ruling sets etc.

We consider subgraph LCL on a path Pn. Before getting to the solution, we first remark
that one may consider without loss of generality only LCL’s with radius 1. Given an LCL
problem of radius r, one may construct another LCL with the same round complexity but
with radius 1 at the cost of increasing the output label size and the set of rules.

From a prior work (Theorem 3 in Foerster et al. [16]), we may infer that if the round
complexity of Π in the LOCAL model is o(n), then it must be O(1) in the SUPPORTED
model. This result is non-constructive, i.e., it argues that given a o(n) round distributed
algorithm, one can transform it into an O(1) round algorithm. Additionally, it does not help
categorize LCL problems that are Θ(n) in the LOCAL model. Some LCL problems (such as
2-coloring) are Θ(n) in the LOCAL model, but clearly O(1) in the SUPPORTED model. One
can also construct LCL’s that remain Θ(n) in the SUPPORTED model. Furthermore, the
proof offers no insight about the additional amount of memory per node that is needed for
the preprocessing stage. The following theorem addresses the above questions. Note that
as done in prior work, we treat the size of the description of Π as constant in the round
complexity (in particular, |Σout| and |Σin| are constants).

▶ Theorem 16. Let Π be a subgraph LCL with |Σin| = 1 and let Pn be a path on n vertices,
then

The SUPPORTED round complexity of Π is either O(1) or Ω(n)
There exists a round optimal SUPPORTED algorithm for Π that stores only O(1) bits as
the output of the preprocessing phase
The optimal SUPPORTED algorithm can be efficiently (polynomial in size of description
of Π) computed by a centralized algorithm.

4.2 Recurrent LCL’s on Paths
In this section we look at a broader class of recurrent in-labeled LCL’s, namely, LCL’s
augmented with input labels, wherein the online instances specify different input labels.
The set of rules C and the set of output labels Σout remain the same across instances. The
only components of the input that vary across instances are the input labels Γin. Subgraph
LCL’s, studied in Sect. 4.1, can be represented in this framework by encoding the adjacent
edges that are present in the input labels for each vertex, hence in-labeled LCL’s are a
generalisation of subgraph LCL’s. Problems such as finding a Client Dominating Set, Color
Completion, Maximal Matching and in general variants of classical local problems with PFO
and / or PCS instances fall into this category.

We show that even for these instances, the optimal round complexity is either O(1) or
Θ(n), thus extending the distributed speed up theorem in Foerster et al. [16]. However, so far
we were unable to find a characterization as obtained in the previous subsection. Therefore,
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we are left with a couple of intriguing open questions. First, we do not know any bounds on
the constant of the running time in terms of the size of the LCL Π, namely, |Σin|+ |Σout|.
Second, we do not know if it is possible to decide the online round complexity in polynomial
time given the description of the LCL.

▶ Theorem 17. Let Π be a recurrent LCL problem whose online instances differ only in
the assignment of input labels, then either Π can be solved in O(1) SUPPORTED rounds
or Π requires Ω(n) SUPPORTED rounds. Furthermore, there exists an algorithm with
asymptotically optimal online round complexity using only O(1) bits as the output of the
preprocessing phase.

Our proof of the above theorem is almost the same as that of Theorem 6 in [11] (for
the LOCAL model) and Theorem 3 in [16] (for the SUPPORTED model). Note that, for
paths, the above theorem is stronger than Theorem 3 of [16], which only translates o(n) time
algorithms in LOCAL to O(1) time algorithms in SUPPORTED, whereas our argument also
translates o(n) time algorithms in SUPPORTED to O(1) time algorithms in SUPPORTED.
Theorem 3 of [16] holds for any hereditary graph family (for e.g. graphs with maximum
degree ∆).

5 Conclusion and Future Directions

We discussed three recurrent problems and the advantages that a preprocessing phase has on
their distributed round complexities. Several open problems remain, in particular:

Can we extend state of the art algorithms for client dominating set on bounded arboricity
graphs or other families? For example, the combinatorial algorithms of Morgan et al. [25]
extend readily to the client dominating set problem. Is it possible to improve the round
complexity of these algorithms in the SUPPORTED model?
Can we obtain algorithms with better round complexities for color completion? We can
perform color completion with at most χ new colors within χ rounds. Is this optimal?
Extend the complexity gap theorems for trees - It is known that the distributed round
complexity of LCL problems is either O(1), Θ(log∗ n), Θ(log n) or Θ(n1/k) for some integer
k. (See [10] and [18]). These methods do not seem to be readily extendable to rooted
trees in the SUPPORTED model.

5.1 Maximal Matchings and Maximal Independent sets
Apart from these questions, there are also other local problems of interest for which the
round complexities in the SUPPORTED model are yet to be known. For example, consider
the sub-graph maximal matching and sub-graph maximal independent set problem. For
these problems tight bounds are known in the LOCAL model (see [5]), however these do
not translate easily to the SUPPORTED model. We offer some partial results towards this
direction. Proofs and detailed discussions appear in the full paper.

▶ Theorem 18. Sub-graph Maximal Matching on graphs of arboricity a can be computed in
O(a) SUPPORTED rounds.

▶ Theorem 19. If subgraph MM can be solved in o(∆) SUPPORTED rounds for all bipartite
graphs, then subgraph-MM can be solved in o(∆) SUPPORTED rounds for all graphs.

▶ Theorem 20. Sub-graph MIS for a graph G with chromatic number χ can be solved in χ

SUPPORTED rounds.
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