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Abstract
By Programmable Matter (PM) is usually meant a system of weak and self-organizing computational
entities, called particles, which can be programmed via distributed algorithms to collectively achieve
some global tasks. We consider the SILBOT model where particles are modeled as finite state
automata, living and operating in the cells of a hexagonal grid. Particles are all identical, executing
the same deterministic algorithm which is based on local observation of the surroundings, up to two
hops. Particles are asynchronous, without any direct means of communication and disoriented but
sharing a common handedness, i.e., chirality is assumed. Within such a basic model, we consider a
foundational primitive for PM, that is Coating: a set of n particles must move so as to ensure the
closed surrounding of an object occupying some connected cells of the grid. We present an optimal
deterministic distributed algorithm – along with the correctness proof, that in Θ(n2) rounds solves
the Coating problem, where a round concerns the minimal time window within which each particle
is activated at least once.
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1 Introduction

In distributed computing, the research for a basic model to address different situations
is certainly one of the mostly investigated issues. On the one hand there is reality, with
powerful entities like agents or robots that provide many useful capabilities. On the other
hand, models should be formalized with the minimal set of assumptions. In fact, the weaker
a model, the wider the range of applications, as well as dependability and robustness with
respect to possible disruptions increase. Consequently, also the algorithms designed for weak
models turn out to cover a wider set of possible scenarios. Within this context, we investigate
on the so-called Programmable Matter (PM). This is intended as a matter with the ability to
change its physical properties (e.g., shape, optical properties, etc.) in a programmable way.
From its origin [36], PM denotes a system of computational entities, called particles, that
can be programmed via distributed algorithms to collectively achieve global tasks. Initially,
such systems have found main interest in the field of biology and nano-technologies, see
e.g., [14, 34]. However, more and more natural applications in various contexts can be
imagined, including smart materials, ubiquitous computing, repairing at microscopic scale,
and tools for minimally invasive surgery.
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Figure 1 A configuration in SILBOT with an object represented by five connected full-black cells,
seven contracted particles represented by black circles and three expanded particles represented
by black drop-like shapes expressing the intent to move toward a neighboring cell.

So far, one of the most investigated models for PM is certainly the geometric Amoebot [22,
24, 21]. The name comes from the behavior of the amoebae. Particles are modeled as finite
state automata, living and operating in the cells of a hexagonal grid. They are all identical,
executing the same distributed algorithm based on local observation of the surroundings,
memory and exchanged messages.

Recently, in [21], an approach to homogenize the referred literature on Amoebot has
appeared. One of the main intent was to enhance the model with concurrency. Along that
line, one of the weakest models for PM, that includes concurrency and eliminates direct
communication among particles as well as local and shared memory, is SILBOT [16, 15].
The aim has been to investigate on the minimal settings for PM under which it is possible
to accomplish basic global tasks in a distributed fashion. Actually, SILBOT assumes a 2
hops distance visibility for the particles rather than just 1 hop as for Amoebot. It is worth
remarking that the observation of the surrounding is the only means for the particles in
SILBOT to collect information. Hence such a view must be thought to concern not only other
particles in the neighborhood but also any other “ visible” information within the sensing
range. To that respect, particles in Amoebot are less powerful. However, the information
that can be obtained by means of communications (and memory) in Amoebot may concern
particles that are very far apart from each other.

In SILBOT, particles operate independently, in a fully asynchronous way, and they admit
no persistent memory. Of course, an algorithm designed within such a weak context allows
to build a safe, energy-efficient and fault-tolerant system when applied in real scenarios.

In SILBOT, the movement of a particle occurs from one cell to another by alternating
between a contracted state (a particle uniformly occupies a central area of one cell) and
an expanded state (a particle occupies one cell but its disposal expresses the intent to move
toward a neighboring cell), see, e.g., Figure 1.

Relative positioning among particles is their only (implicit) way of communicating, i.e.,
stigmergic paradigms are exploited.

Within such a weak system, fundamental tasks have been solved so far, like the Leader
Election in [15]; the Scattering problem in [32], where the particles are required to reach
a configuration where they are at distance at least two hops from each other; the Line
formation in [30, 31]. One of the main open questions posed is about the solvability of other
basic primitives.

1.1 Our results
In this paper, we investigate the Coating problem in SILBOT. Given a convex object
occupying some connected cells of the grid and given a sufficiently large set of particles, the
problem asks for a distributed algorithm that moves particles so as to surround the object
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by occupying all the cells adjacent to it. For the ease of the discussion, we prefer to deal
with convex objects. In fact, when dealing with concave objects, still particular cases must
be excluded, see, e.g. the so-called tunnels as in [26, 20].

We provide a deterministic and distributed algorithm that optimally solves the Coating
within Θ(n2) rounds, with n being the number of particles, and a round being the minimal
time window within which each particle is activated at least once. Moreover, while solving
the Coating, our algorithm also resolves the Hole Compaction, where a hole is a connected
subset of empty cells enclosed by particles and possibly the object, provided that particles
are able to recognize holes. An example of hole composed of just one cell can be seen in
the top-left of Figure 1, where an empty cell is surrounded by five particles (one of which is
expanded) and the object. Furthermore, we prove that the designed algorithm is optimal in
terms of number of rounds.

1.2 Related work

The Coating problem has been widely investigated in PM but all the approaches so far are
mainly based on stronger assumptions with respect to our algorithm. In particular, the only
assumption we share with such works is about chirality, i.e., particles agree on the clockwise
and anti-clockwise directions.

The relevance of Coating has been deeply provided for instance in [3] where it is envisioned
how PM (intended in terms of swarm of nanobots) in the future might be used to attack
cancer cells, surrounding them (i.e., solving the Coating) and then destroy them so as to
stop the further growth of the disease. In their approach, first the Leader Election is solved,
and then the leader coordinates the other particles so as to accomplish the Coating task for
a cave-shaped object.

Another approach used in [4] consists of making the particles able to calculate their
distance from the object, and to set an internal value called Own_Distance. After each
particle have calculated its Own_Distance, they send this information to the other particles
so that everyone knows each particle’s relative distance from the object. Unbounded memory
is considered. Then, the particles with the biggest distance from the object send this
information to the ones that have a smaller Own_Distance so that these ones can make
space for the furthest ones and everyone can get closer to the object.

In [20], the Amoebot model is considered. The problem is solved by means of a randomized
algorithm, with high probability, within O(n) rounds.

A different model introduced in [26] that reminds PM is the so-called Pairbot. In such a
work, Coating has been considered and everything revolves around the Pairbot, a single unit
formed by two distinguished robots which are each other’s buddy. It is assumed that initially
the pairbots are line-formed and they all agree on the direction where to move in order to
reach the object. The movement is guided by the head pairbot which starts by changing
state from short, where the two buddies are occupying the same cell, to long, where the two
robots occupy two adjacent cells.

3D Coating has been faced in [35] within the 3D Catom model [33]. This is a micro-scale
lattice-based modular robot that has been investigated also in the context of PM. In fact,
modular robots represent a good means for implementing PM theory. They refer to robotic
systems where interconnected individual (electro-mechanical) modules can recover from
failures or rearrange in order to better adapt to their task-environment (see, e.g. [1, 5, 6,
13, 25, 37, 38]). Recently, the 3D environment has also been approached in [29] for a single
agent that has to move tiles in order to cover the surface of an object.

OPODIS 2023
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Figure 2 The same configuration of Figure 1 but with the triangular lattice representation. The
object is represented by the trapezoidal shaded area; contracted particles are represented by
black circles; expanded particles are represented by black ellipses occupying one node and one
neighboring edge.

1.3 Outline
In the next section, we review the SILBOT model in detail and we formalize the Coating
problem. In Section 3, we describe and formally present our algorithm for Coating. In
Section 4, the correctness proof for the proposed algorithm is presented. Finally, in Section 5,
we provide concluding remarks and pose some interesting research directions.

2 SILBOT model and the Coating problem

In this section, we review the SILBOT model for PM introduced in [15], and we formalize
the Coating problem.

Operating Environment. Particles operate on an infinite triangular lattice (representing
the described hexagonal grid) embedded in the plane, where each node has six incident
edges: nodes correspond to hexagonal cells and each edge represents a boundary shared by
two cells. Each node can be occupied by at most one particle. There are n particles in the
considered system and there is an object occupying a connected and convex set of nodes, see,
e.g., Figure 2. From now on we will always refer to the lattice representation, hence cells are
referred to as nodes.

Particles and Configurations. Each particle is an automaton with two states, contracted
or expanded (they do not have any other form of persistent memory). In the former state,
a particle occupies a single node of the lattice while in the latter, the particle occupies one
single node and one of the adjacent edges. Hence, a particle always occupies one node, at
any time.

Each particle can sense its surroundings up to a distance of 2 hops, i.e., if a particle
occupies a node v, then it can see the neighbors of v and the neighbors of the neighbors
of v. Specifically, a particle can determine (i.e., sense) if a node is empty or occupied by
a contracted particle, or occupied by an expanded particle, for each node in its 2-hop
visibility range.

Any positioning of contracted or expanded particles that includes all n particles
composing the system plus the object is referred to as a configuration.

Furthermore, particles have the so called exterior awareness, that informally is the power
of detecting what is “outside” the configuration and what is “inside” (that is, holes).2
Formally, a hole is a subset of empty nodes enclosed by particles and possibly by the object.

2 It is worth remarking that the exterior awareness as well as many other useful information can be
obtained in other systems by means of communications combined with memory, both absent in SILBOT.
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A particle can distinguish whether a node v within its visibility range is cont, exp, in, out
or obj where: a cont node is a node occupied by a contracted particle; an exp node is a
node occupied by an expanded particle; an in node is an empty node that is part of a hole;
an out node is an exterior empty node (an empty node that is not part of any hole); an obj
node is a node occupied by the object. From a practical point of view, the exterior awareness
can be implicitly provided by a different level of light among in and out, or a different level
of humidity, pressure or the presence/absence of some substance like a liquid or a gas.

Although the exterior awareness might seem a strong assumption, it is worth remarking
that the sensing capability of the robots is the only means to acquire information of the
surrounding as they cannot exchange messages and have no memory.

Initially, it is assumed that particles are all contracted and along with the object and
possible holes, they constitute a connected set of nodes.

In what follows, we show that starting from any initial configuration, the particles endowed
with the simple capabilities described above are able to achieve compaction of holes, if any,
while solving Coating. Note that, during the process, the set of particles plus holes plus the
object always forms a connected set of nodes.

It is worth remarking that in SILBOT, particles do not have any explicit means of
communication. Thus, a particle can acquire information about its surroundings only via its
limited view, by means of direct sensing, e.g., weak electromagnetic fields or radars.

Movement and States. As described above, each particle p can occupy only one node v at
a time. In order to move to a neighboring node u, p expands on the edge (v, u). Thus, in
the expanded state, p occupies node v and edge (v, u) (the physical interpretation is that
the particle is occupying one hexagonal cell and has partially entered into the adjacent one,
see Figure 1). Note that node u may still be occupied by another particle p′. If p′ leaves
node u in the future, then p, the expanded particle, will contract into node u during its
next activation. There might be arbitrary but finite delays between the actions of these two
particles, while the connectivity is still maintained. For example, when p′ has moved to
another node, edge (v, u) is still occupied by p, the originally expanded particle. In this
case, we say that node u is semi-occupied. We denote by SO the set of semi-occupied nodes.
We ensure that the set of occupied and semi-occupied nodes (plus holes and the object)
always induces a connected configuration during the execution of the proposed algorithm.

A very strong constraint of SILBOT, called Commitment Property, is that:
A particle commits itself into moving to node u by expanding in that direction, and at the
next activation of the same particle, it is constrained to move to node u, if u is empty. A
particle cannot revoke its expansion once committed.

Asynchrony and Rounds. The SILBOT model introduces a fine grained notion of asynchrony
with possible delays between observations and movements performed by the particles. This
reminds the so-called ASYNC model designed for theoretical models dealing with mobile and
oblivious robots (see, e.g., [9, 7, 8, 10, 11, 17, 19, 18, 28, 27]). All operations performed by
the particles are non-atomic: that is, there can be arbitrarily finite delays between the actions
of sensing the surroundings, computing the next decision (e.g., expansion or contraction),
executing the decision.

There are no assumptions nor restrictions on the scheduling of these events; thus any
possible execution of an actual physical system can be captured by the model. This has
important consequences for computability of the particle systems and requires more rigorous
techniques for proving correctness of the algorithms (see, e.g. [8, 12, 11]). In particular,
algorithms for this model must be inherently simple with a few rules, since this already
provides an uncountable large number of possible execution sequences.

OPODIS 2023
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A round is the time within which all particles have been activated and concluded their
activation time at least once. Clearly, the duration of a round is finite but unknown and
may vary from time to time.

We include the well-established fairness assumption that each particle must be activated
within finite time, infinitely often in any execution of the particle system. Due to the
asynchronous nature of the system, it may happen that a particle decides (or is forced, in
case of contraction) at time t to take an action, and that this action will actually be executed
at time t′ > t, when other particles might have changed their state; in other words, the
action executed at time t′ might be based on the obsolete observation of the surrounding
taken at time t. The time required to accomplish an action is finite but arbitrary. Hence a
round is the shortest time period during which each particle has performed an action (where
an action could be the nil one if a contracted particle decides to remain as such, or if an
expanded particle finds the target node still occupied).

Orientation and Chirality. We do not make any additional assumptions about the local
coordinate systems of a particle but we assume handedness, that is particles agree on
chirality, i.e., on the clockwise and anti-clockwise directions. Various papers on Coating
assume chirality (e.g., [2, 23, 24]). The removal of such an assumption for the Coating
problem remains an open problem. Intuitively, in SILBOT, if two sets of particles start
surrounding the object along opposite directions, a deadlocked situation might be reached
where expanded particles cannot reverse their direction of expansion.

Randomness. We do not assume the possibility of using randomness: particles take de-
terministic decisions and do not have access to random numbers. Each particle may be
activated at any time independently from the others. Once activated, a particle looks at its
surrounding (i.e., at its neighbors and at the neighbors of its neighbors) and, on the basis of
such an observation, decides (deterministically) its next action as follows:
1. A contracted particle occupying node v, when activated may become expanded, thus

occupying node v and one of the edges leading to a neighboring node u, if the edge (v, u)
is unoccupied. In this case, we say that the particle expands along edge (v, u) and toward
node u;

2. An expanded particle occupying node v and edge (v, u), when activated, always contracts
to u (i.e., moves to u changing its state to contracted), if u is unoccupied. If u is
occupied, then the particle does not change state or location. In other words, as dictated
by the Commitment property, a particle in expanded state is obliged to contract as soon
as it is activated and the destination node is empty.

The activation of each particle is intended to be decided by an “adversarial” scheduler
and cannot be controlled by the algorithm designer. If two contracted particles decide
to expand on the same edge simultaneously, exactly one of them (arbitrarily chosen by the
scheduler) succeeds. If two particles are expanded along two distinct edges incident to the
same node u, and both particles are activated simultaneously, exactly one of them (again,
chosen arbitrarily by the scheduler) contracts to node u, while the other particle does not
change its expanded state.

Connectivity. An important property we preserve is that the set of particles plus the object
plus the set of holes never get disconnected, apart for the aforementioned semi-occupied
nodes. As in [15], we allow the particles to move asynchronously while maintaining a “
relaxed” sense of connectivity with the object. We remind that when a particle in a node
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Figure 3 Example of a connected configuration where black circles represent particles; the shaded
area includes all the nodes occupied by the object; the dashed line represents EP .

v is expanded along edge (v, u), and u is empty, then u is considered as semi-occupied.
Throughout the paper, we say that a configuration is connected if the set of nodes that are
occupied or semi-occupied or containing the object or holes form a connected subgraph of the
lattice. The algorithm we provide to solve the Coating problem always maintains a “relaxed”
connected configuration while reduces possible holes and unoccupied nodes surrounding the
object.

Given a triangular lattice G, a subgraph of G is simply connected if the envelope of its
standard planar embedding (i.e. the area delimited by the subgraph) has only one exterior
boundary and no interior boundaries (i.e., no holes). A configuration is said to be simply
connected if the subgraph of lattice G induced by the nodes occupied by particles plus the
object is simply connected.

Coating and Holes Compaction Problem. We assume the system is initially in a connected
configuration where n particles are all contracted and sufficient to surround an object obj.
Note that obj constitutes any convex subset of connected nodes.

▶ Definition 1. The External Perimeter (EP ) of obj is considered to be formed by all the
nodes adjacent to obj.

▶ Remark. Due to the above definition and to the assumed chirality, given a node v ∈ EP , the
predecessor and the successor of v in EP in the clockwise (and hence also in the anti-clockwise)
order are well-defined.

▶ Definition 2 (Coating and Holes Compaction Problem (chcp)). Given an initial configuration
of n ≥ |EP | particles, an algorithm solves chcp if there exists a time t after which no
expansion occurs and the following conditions hold:

i) the configuration is simply connected;

ii) the external perimeter EP is fully occupied by particles.

OPODIS 2023
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a) b) c)

Figure 4 a) Possible initial instance where the object (represented by the rectangular shaded area)
is completely surrounded by holes, in fact there is no particle in EP ; b) An instance representing the
bridge problem where the particles of degree 3 shouldn’t expand, especially in opposite directions, as
otherwise they may disconnect the particles; c) A portion of a possible configuration that requires
the rule at Line 12 of Algorithm 1.

3 Algorithm CHC

In this section, we propose an algorithm for chcp by exploiting the very basic capabilities
of the particles dictated by the SILBOT model. In particular, starting from any initial
connected configuration of contracted particles (not necessarily simply connected), the
system eventually leads particles to surround obj and compact any possible hole.

The pseudocode of Algorithm chc is reported in Algorithm 1. It is described from the
point of view of a single particle. Before analyzing all details, we need the following further
notation: given a particle p, we denote by N(p) the set of six nodes adjacent to p, by N(p, C)
and N(p, I) the set of cont and in nodes, respectively, adjacent to p, and by N(p, IC) the
set N(p, I) ∪ N(p, C).

The rationale of Algorithm chc is to make the most external particles expanded toward
the internal ones, until “ pushing” those adjacent to obj. Once particles on EP start to be
pushed from the external, they can start moving along EP toward the successive position,
according to the ordering provided by Definition 1, e.g., the anti-clockwise direction. In this
way, the pushing from the external makes more and more particles move along EP until the
Coating problem is solved. In the meanwhile, possible holes are also compacted. A slightly
different behavior may occur when, in the initial configuration, obj is already surrounded by
particles but nodes in EP are not totally occupied, i.e., EP contains some holes, see, e.g.,
Figure 4.a where EP contains no particles.

Following the aforementioned approach, Algorithm chc determines two different behaviors
according to whether a particle belongs to EP or not:

For particles not in EP , the algorithm allows to expand only particles p such that
G(N(p, IC)) is connected, there are no semi-occupied nodes in N(p) and |N(p, IC)| ≤ 3.
When a node in N(p, IC) is an empty internal node (i.e., a hole) with |N(p, I)| = 1 and
p is allowed to expand, then p always expands toward the internal node. In particular, if
there exists a contracted particle p such that |N(p, IC)| = |N(p, I)| = 1 (Line 3), then
p expands toward the only internal node, while if |N(p, IC)| = |N(p, C)| = 1, it expands
toward the only contracted particle.

If |N(p, IC)| = 2, instead, then:
i) if there is a node q ∈ N(p, I), p expands along edge (p, q) (Line 5);
ii) otherwise, it expands toward any contracted particle (Line 6).

It is worth remarking that holes have priority with respect to contracted particles.
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Algorithm 1 Algorithm chc (Coating and Holes Compaction).

Require: A connected configuration (including holes and the object) with node p occupied by a
contracted particle.

Ensure: Coating plus Hole Compaction.
1: if p ̸∈ EP then
2: if G(N(p, IC)) is connected ∧ N(p) ∩ SO = ∅ then
3: if N(p, IC) = {q} then Expand along (p, q);
4: if N(p, IC) = {q, r} then
5: if q ∈ N(p, I) then Expand along (p, q)
6: else Expand along (p, r);
7: if N(p, IC) = {r, q, s}, with q being between r and s then
8: if {r, q, s} ∩ N(p, I) = {x} then Expand along (p, x)
9: else

10: if |N(r, C)| > 2 ∧ |N(q, C)| > 3 ∧ |N(s, C)| > 2 then Expand along (p, q)
11: else
12: if {r, q} ⊆ N(p, C) ∩ EP ∧ |N(r, C)| = 2 ∧ |N(q, C)| > 3 ∧ |N(s, C)| > 2

then Expand along (p, q);
13: else let r, p and q be sequential along EP ;
14: if N(p, C) \ EP = ∅ then
15: if ∃ x in N(p) \ EP : x is expanded toward p ∨ r in EP is expanded toward p then

Expand along (p, q);

If |N(p, IC)| = 3, then we have three cases:
i) If there is exactly one empty internal node among the three neighbors, then p expands

toward it (Line 8);
ii) If the condition at Line 10 is satisfied then p expands toward the central contracted

neighbor (Line 10). This is introduced in order to avoid that in a configuration similar
to that depicted in Figure 4.b, particles with degree 3 expand toward opposite directions,
hence potentially producing a disconnection. We refer to this situation as the bridge
problem;

iii) If the condition at Line 12 is satisfied, then p expands toward EP (Line 12). Note that,
this case captures a special occurrence as depicted in Figure 4.c. Basically, the presence
of obj requires a special rule in order to not incur in a deadlock where no particle can
expand.

For particles in EP , the algorithm allows the movement of a particle p in EP only if there
is at least one particle expanded toward p and all adjacent particles of p not in EP , if any,
is expanded. The movement is performed along nodes in EP as well (Line 15). Basically,
the idea is that particles in EP tend to occupy new empty nodes of EP only when there is
at least one particle which is expanded toward EP and hence eventually moves there. In so
doing, a particle in EP remains in EP forever. Note that |EP | particles are required and
sufficient to solve the Coating (and Holes Compaction) problem.

It is worth reminding that Algorithm chc does not deal with expanded particles as
those are forced (under the control of the adversarial scheduler) to move toward the chosen
direction as soon as possible as dictated by the Commitment property.

In the next section, we show that Algorithm chc converges to a simply connected
configuration where each node in EP is occupied within a finite number of rounds. Note
that, the algorithm deals also with (not necessarily simply) connected configurations since
there might occur semi-occupied nodes meanwhile. Moreover, the final configuration reached
by the algorithm is either composed by all expanded particles and all the nodes in EP

occupied, or exactly n = |EP | contracted particles occupying EP .

OPODIS 2023
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4 Correctness

In this section, we show the correctness of Algorithm chc, i.e., it terminates in a finite
number of rounds in a connected configuration where the object is totally surrounded and
no holes appear anymore.

We show that, in a connected configuration, there always exists (at least) a particle that
can expand, until the Coating (and the Hole Compaction) is solved. Moreover, during the
execution of the algorithm, all the generated configurations are guaranteed to be connected
(in the “relaxed” way that includes semi-occupied nodes and holes), while the number of
empty nodes in EP decreases.

The proof follows an interesting technique where we model each execution of Algorithm
chc as a path in a directed graph H = (V, E), where, given an object, the vertices in V

correspond to any connected configuration with n ≥ |EP | particles, and the edges in E

correspond to transitions among configurations determined by Algorithm chc. In particular,
each vertex u ∈ V corresponds to a configuration Cv, and there is a directed edge (v, u) ∈ E

if there exists an execution of Algorithm chc that leads from Cv to Cu, without generating
in between further configurations different from Cu.

Note that, each vertex in H only encodes the positions of the particles and not their
actual states. I.e., if during an execution of Algorithm chc a particle p has already decided
to expand from a configuration Cv but the expansion occurs after other actions taken by
different particles, it means that from Cv there is an edge leading to the configuration Cu

where p is expanded and all other particles involved in actions have already computed
their actions. However, graph H also contains an edge from Cv to another configuration
Cw that differs from Cv only by the expansion of particle p, since this is certainly another
possible execution of Algorithm chc. As we said, graph H represents all possible executions
of Algorithm chc starting from an initial configuration. We do not really need to compute
H, it is just intended for analysis purposes. The next theorem exploits the ideal graph H in
order to show that Algorithm chc always terminates and solves the Coating problem.

▶ Theorem 3. Given a convex object obj and n ≥ |EP | contracted particles forming a
connected configuration, Algorithm chc terminates within Θ(n2) rounds in a simply connected
configuration where EP is totally occupied. Moreover, any configuration generated during
the execution of chc is connected in the relaxed sense.

Proof. Initially, there are n contracted particles that along with possible holes and obj

form a connected configuration. Let H = (V, E) be the directed graph representing the
executions of Algorithm chc as defined above. We prove the correctness of Algorithm chc
by showing the three following properties:
P1: Evolution. Each vertex in H, excluding those corresponding to final configurations,

where chcp is accomplished, has at least one outgoing edge;
P2: Connectivity. H is connected, and hence any configuration obtained by an expansion

dictated by chc is connected;
P3: Acyclicity. Graph H is acyclic.

Note that, the finite number of particles along with the preservation of the connectivity
imply that there exists a finite number of configurations. Hence, the three properties
guarantee that a final configuration is reached, eventually, where chcp is accomplished. In
fact, P1 guarantees that from any configuration, a different one is generated apart from
final configurations. Moreover, by P2 we have that any generated configuration is connected.
Since P3 guarantees that no configuration can be generated twice, any execution always
leads to a final configuration.
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Figure 5 Example of trees of polygons connected via EP , corresponding to the configuration in
Figure 3, used in the proof of Theorem 3 for Property P1.

Proof of property P1 (Evolution). If there are semi-occupied nodes, then certainly the
configuration will change, eventually. This is due to the fact that expanded particles always
complete the committed movement once activated, and due to the fairness of the scheduler.
Hence we can assume there are no semi-occupied nodes, i.e., SO = ∅.

We show that in any (non-final) connected configuration there always exists a contrac-
ted particle p that is allowed to move by algorithm chc such that:

(i) p is not in EP , G(N(p, IC)) is connected and |N(p, IC)| ≤ 3 or
(ii) p is in EP .

Assume (ii) false and, by contradiction, let us assume each particle p admitting
G(N(p, IC)) connected, such that |N(p, IC)| ≥ 4 and hence Algorithm chc does not
allow any expansion. Let us consider the standard planar embedding of the subgraph of
lattice G induced by a maximal set of connected cont and in nodes, and the envelope
containing all nodes of such an embedding. By construction, there might be many of such
subgraphs that all together along with obj form a connected configuration, see Figure 5.

Since each considered subgraph is connected, the shape of the corresponding envelope is
given by a “tree of polygons”, i.e., a set of polygons that are connected by paths of straight
lines, possibly of length 0 (i.e., connected via one single point corresponding to a single
particle). Each tree is connected (“rooted”) to obj – apart for the special cases provided by
configurations like in Figure 4.a where obj is contained within a polygon. Moreover, there
might be also the case that the mentioned tree of polygons reduces to just one polygon. By
hypothesis, the leaves of the tree are not single particles since this would imply that there is
at least a particle with only one neighbor. Now, let us consider a leaf of a tree of polygons,
and let us assume that it has m vertices (corresponding to m particles). Note that since this
polygon is a leaf of the tree, only one of its vertices is connected to the rest of the tree and
any other vertex of the polygon corresponds to a particle that has a connected neighborhood.

By hypothesis, we have that any particle has at least 4 neighbors of type cont or in.
Then, the interior angle of each vertex in the polygon corresponding to these particles
measures at least π. Therefore, the sum of the interior angles of the polygon is at least
(m − 1)π, which is a contradiction since it is known that such a sum equals (m − 2)π in any
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Figure 6 Configurations used in the proof of Theorem 3.

polygon. Hence, we can conclude that there must exist a contracted particle p such that
G(N(p, IC)) is connected and |N(p, IC)| ≤ 3. Furthermore, such a particle belongs to a leaf
of a tree of polygons.

Next we show that, given the existence of such a particle, in any non-final configuration
where (ii) is false, there exists at least one particle that decides to expand according to
Algorithm chc. In particular, if |N(p, C)| ≤ 2, then p will expand (see Lines 3-6).

If |N(p, C)| = 3, then p is allowed to expand according to three possible conditions
dictated by Algorithm chc. Let r, q and s be the three neighbors of p, with q being the
central one. If |N(r, C)| ≤ 2 (|N(s, C)| ≤ 2, resp.), then r (s, resp.) will expand, as imposed
by Lines 3-6. We remind that we have assumed (ii) false, hence r (s, resp.) is not in EP . By
referring to Figures 6.a and 6.b, if |N(r, C)| > 2 and |N(s, C)| > 2, then r shares neighbor q

with p and has a further neighbor, say tr. Similarly, s is adjacent to p, q, and has a further
neighbor ts. Then two cases can occur: if tr and ts are not neighbors of q, then we have a
contradiction as the considered polygon is not a leaf of a tree (see Figure 6.a). Otherwise, if
at least one among tr and ts is a neighbor of q, we have |N(q, C)| > 3 and the condition at
Line 10 is satisfied (see Figure 6.b), hence p will expand.

About condition at Line 12, it requires that (ii) is true, that is there must exist con-
tracted particles in EP . If the condition at Line 12 is satisfied, then p expands toward
EP (Line 12). Note that this case captures a special occurrence as depicted in Figure 4.c.
Basically, the presence of the object requires a special rule in order to not incur in a deadlock.
In fact, without such an exception, the particles in the figure would not expand.

If the configuration is non-final but (i) is false and (ii) is true, by the polygon arguments
above we have that particles not in EP are all expanded. Moreover, particles cannot be
all in EP as otherwise the configuration would be final. We are now going to show that
none of the particles at distance 2 from obj and adjacent to particles in EP can be expanded
by Algorithm chc toward nodes at distance 3 from obj. In so doing, by considering the
number of edges among particles at distance 2 from obj, we conclude that there must exist at
least one particle at distance 2 from obj that is expanded toward a particle in EP . Hence,
Lines 12-15 are activated and at least one particle in EP expands.

Considering that, for particles not in EP , Algorithm chc makes particles expanding only
toward cont or in nodes, let p be a contracted particle at distance 2 from obj, r be a
contracted neighbor of p at distance 3 from obj and q be a contracted neighbor of p

in EP . By referring to Figure 7, the first three configurations concern situations where p

(the particle at distance 2 from obj) cannot expand because G(N(p, IC)) is not connected.
Whereas, if s is at distance 2 from obj, then G(N(p, IC)) is connected, hence p would expand
toward s. If |N(p, IC)| > 3 then p cannot expand. This concludes the proof of Property P1.
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Figure 7 Four possible cases occurring with respect to a particle at distance 2 from the object. In
the first three cases, the particle in the middle cannot expand since its neighborhood of contracted
particles is not connected whereas in the last case, Algorithm chc allows the particles at distance 2
from the object to expand toward each other and, if both activated, by the model only one succeeds.

Proof of property P2 (Connectivity of H). According to Algorithm chc, we have to
analyze when a particle is expanded and whether this (or a combination of such moves)
may cause a disconnection.

In fact, the algorithm has been designed to mimic an erosion process from the outer part
of the configuration toward obj, plus an oriented movement along EP .

In particular, a particle p not in EP moves toward an in node v only if p is the central
neighbor of the three neighbors of v, say r, p and q, occupied by particles. By the polygon
property exploited before, we know that whenever there is a hole, there must exist also a
particle in the conditions of p. The movement of p by itself cannot disconnect the configuration.
However, this may happen, in principle, because before p actually moves, r and/or q have
moved (due to the asynchrony). However, our algorithm guarantees that if r or q move, they
can only do it toward the same node v, competing with p.

Movements toward out nodes are not allowed, but again a node v may become of type
out while p has already decided to move toward it. If this is the case, we are guaranteed
by the algorithm that the particle that left v won’t move again as long as p makes v semi-
occupied (see Line 2). Similarly, movements toward nodes occupied by particles cannot cause
disconnections.

If p ∈ EP , then p is expanded by the algorithm only if there is another particle expanded
toward p, hence the node where p resides may become at most semi-occupied but never purely
empty (i.e., without particles expanded toward it), hence again maintaining the configuration
connected.

This concludes the proof of Property P2, i.e., H is connected.

Proof of property P3 (Acyclicity of H). Let us associate to each vertex u of H (representing
configuration Cu) a pair (αu, βu), where αu is the sum of the number of cont and in nodes
plus |SO| plus the number of empty nodes in EP in Cu, while βu is the number of in nodes
plus |SO| plus the number of empty nodes in EP in Cu. We observe that, for each edge (u, v)
of H, (αv, βv) is lexicographically smaller than (αu, βu): in fact, after an action is performed,
either at least a contracted particle in Cu is expanded in Cv (hence the number of cont
nodes decreases) or at least an expanded particle in Cu becomes contracted in Cv (hence
|SO| or the number of in nodes or the number of empty nodes in EP decreases by at least
k ≥ 1 but the number of cont nodes increases of the same amount k). Therefore, it is
possible to define a topological ordering of the nodes of H as a linear extension of the partial
ordering given by the pair (αi, βi) of the corresponding configurations Ci.

This concludes the proof of Property P3, i.e., H is acyclic.
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Time complexity of Algorithm CHC. About the complexity of the algorithm, each path
in H that starts from the node corresponding to the initial configuration and ends in a node
corresponding to a final configuration, has a length bounded by the sum of the initial number
of contracted particles plus the number of movements required to occupy EP plus the
number of movements necessary to “ fill” the initial in nodes.

The first factor is exactly n. For the second factor, one may think about particles initially
disposed in a path shape configuration, touching the object just in one place (say the “
head” of the path). Then, the advancement of one step along EP (i.e., toward the final
configuration) requires the movement of all the particles in order to not loose connectivity,
and consequently the direction toward the object. However, the (adversarial) scheduler may
activate all the particles concurrently. In so doing, a whole round is consumed but just one
particle expands, namely the “ tail” . It follows that when |EP | = n then O(n2) rounds are
required. For the third factor, the number of movements necessary to “ fill” the initial in
nodes is upper bounded by O(n2) with respect to the proposed strategy.

Since an edge of H may correspond to a round of a generic execution, the theorem
follows. ◀

Intuitively, the O(n2) cost of Algorithm chc in terms of number of rounds turns out
to be necessary. In particular, the arguments given for the case of particles disposed in a
path shaped configuration provided in the proof of the above theorem turns out to be rather
general, i.e., holding for any possible strategy within SILBOT. In fact, when the particles are
all aligned and touching the object just in one place, they are forced to proceed one after the
other while moving along EP . Any other movement may incur in disconnecting the particles
and, or in loosing the direction toward the object, or even worst, in a deadlock with particles
expanded in opposite directions. As described above, the sequential movement might be
accomplished one step per round. We can then state the following:

▶ Theorem 4. Algorithm chc requires Θ(n2) rounds for solving the Coating and Holes
Compaction problem.

5 Conclusion

In this paper, we considered the SILBOT model to manage programmable matter. In
particular, particles do not have any direct means of communication (i.e., via messages or
pebbles), nor local or shared memory, and each particle can retrieve information about its
surrounding just up to distance of 2 hops. Moreover, the system is totally asynchronous.
This means that a particle can be activated at any time, possibly simultaneously with other
particles, and also its actions of expansion and contraction can take different time. All such
a freedom is left to the hands of an ideal adversarial scheduler whose only constraint is
a kind of fairness, i.e., each particle must be activated within finite time, infinitely often.
Finally, particles can only decide on expansions, whereas contractions are automatic and
depend on the activations dictated by the scheduler. By adding chirality to the particles we
have been able to solve the Coating and Hole Compaction problem. The requirement is to
make particles move so as to suitably surround a given static object while obtaining a simply
connected configuration. We proposed an optimal algorithm that starting from any initial
connected configuration of n particles, eventually leads to solve the problem within Θ(n2)
rounds.
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As future work, one may investigate whether the current assumptions can be further
reduced or if other basic tasks can be approached within the same setting. A variant of
the Coating problem requires that all the particles contribute to surround the object in a
multi-layer fashion. This seems unfeasible within SILBOT with the current setting and gives
rise to the investigation on the minimal assumptions for approaching it.
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