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—— Abstract

We consider the message complexity of verifying whether a given subgraph of the communication
network forms a tree with specific properties both in the KT, (nodes know their p-hop neighborhood,
including node ids) and the KTy (nodes do not have this knowledge) models. We develop a rather
general framework that helps in establishing tight lower bounds for various tree verification problems.
We also consider two different verification requirements: namely that every node detects in the case
the input is incorrect, as well as the requirement that at least one node detects. The results are
stronger than previous ones in the sense that we assume that each node knows the number n of
nodes in the graph (in some cases) or an « approximation of n (in other cases). For spanning tree
verification, we show that the message complexity inherently depends on the quality of the given
approximation of n: We show a tight lower bound of Q(n?) for the case o > v/2 and a much better
upper bound (i.e., O(nlogn)) when nodes are given a tighter approximation. On the other hand,
our framework also yields an Q(n?) lower bound on the message complexity of verifying a minimum
spanning tree (MST), which reveals a polynomial separation between ST verification and MST
verification. This result holds for randomized algorithms with perfect knowledge of the network size,
and even when just one node detects illegal inputs, thus improving over the work of Kor, Korman,
and Peleg (2013). For verifying a d-approximate BFS tree, we show that the same lower bound
holds even if nodes know n exactly, however, the lower bounds is sensitive to d, which is the stretch
parameter. First, under the KTy assumption, we show a tight message complexity lower bound of
Q(n?) in the LOCAL model, when d < 2++(1) For the KT, assumption, we obtain an upper bound
on the message complexity of O(nlogn) in the CONGEST model, when d >

-1

maxT{LQ,p+1}’ and use
14+ <

a novel charging argument to show that 2 %(%) M messages are required even in the LOCAL

model for comparison-based algorithms. For the well-studied special case of KT1, we obtain a tight
lower bound of Q(n?).
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1 Introduction

Verifying the correctness of a given solution to a graph problem is an important problem
with numerous applications. In this setting, there are n nodes that communicate via message
passing over the edges of some arbitrary synchronous communication network G. Certain
edges in G are labeled and the labeling of an edge e is part of the initial state of the nodes
incident to e. For example, when considering the verification of a minimum spanning tree
(MST), the label could indicate whether e is part of the MST, whereas for verifying a
breadth-first search (BFS) tree, e’s label may indicate the direction of the edge in the BFS
tree T in addition to whether e € T
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Generally, for a graph verification problem P, we assume that the labels correspond
to some (possibly weighted and/or directed) graph structure L of G. After observing the
labels of their incident edges, the nodes may exchange messages with their neighbors and,
eventually, every node needs to output 1 (“accept”) if L corresponds to a legal solution to P
for the communication network G. On the other hand, if L is illegal, we study two different
requirements:

1. All-Detect: Every node outputs 0 (“reject”).

2. One-Detects: At least one node outputs 0, whereas the other nodes may output either 0
or 1.

We point out that All-Detect and One-Detects have both been assumed in previous works.
The One-Detects requirement, originally proposed in [1], is the basis of the area of distributed
verification, e.g., see [19, 8, 25], whereas [17], which is closely related to the results of our
work, considers All-Detect. We refer the reader to the survey of [7] for a more thorough
survey of these results.

Apart from the spanning tree (ST) and minimum spanning tree (MST) verification
problems, we also consider verifying approximate versions of breadth-first search (BFS) trees,
which we define next: Consider a connected graph G and some subgraph H C G. We define
disty (u,v) to denote the minimum hop distance of nodes u and v, when using only edges
in H.

» Definition 1. A spanning tree T is a d-approximate Breadth-first Search Tree (d-
approximate BFS) of G if, for a designated root node ug, the stretch of the shortest-path dis-
tance between ug and any other node in T is at most d. Formally, distr(ug,v) < d-distg(up, v)
for all nodes v in G.

The input labeling for this problem is similar to that of BFS: it induces a directed subgraph
and the labels should indicate, for each node, which one of its ports points to its parent and
its children in T (if any).

Closely related to our work are the results of [17], which show that any deterministic
distributed algorithm that verifies a minimum spanning tree without any knowledge of the
network size and guarantees All-Detect must send 2(m) messages in the worst case. We
emphasize that the knowledge of n often strengthens algorithms and reduces their complexity,
so our results that are given in spite of assuming nodes posses such knowledge (or, sometimes,
the knowledge of an approximation of n) are stronger. The work of [30] proves that checking
whether a given set of edges induces a spanning tree requires (y/n + Diam) rounds in the
CONGEST model even for randomized algorithms and in fact, they prove that the same bound
holds for a long list of fundamental graph verification and construction problems. Since [17]
also gives a deterministic algorithm that has worst-case complexities of O(y/n 4 Diam) rounds,
the time complexity of spanning tree verification is completely resolved, up to logarithmic
factors. While the time complexity of distributed verification problems has been studied
extensively in previous works, far less is known about the best possible bounds on the message
complexity. To the best of our knowledge, the only result on the message complexity of
verifying a tree problem was given in the aforementioned work of [17], where they prove
that ©(m) messages are essentially tight for MST verification. However, their lower bound
technique only holds for deterministic algorithms that do not use any knowledge of the
network size.
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1.1 OQur Contributions

We show almost-tight bounds on the message complexity of distributed verification for
spanning trees and d-approximate breadth-first search trees. All our lower bounds for the
clean network model (i.e. KTg) hold even in the LOCAL model, whereas the upper bounds
work in the CONGEST model.

In Section 2, we present a general lemma for deriving message complexity lower bounds
for graph verification problems under the KTy assumption, where nodes are unaware of
their neighbors’ IDs initially, which may be of independent interest.
For spanning tree (ST) verification, we show that the knowledge of the network size
n is crucial for obtaining message-efficient verification algorithms:
When nodes know the ezact network size, we give a deterministic ST verification
algorithm that guarantees the strong All-Detect property with a message complexity
of only O(nlogn) messages (see Theorem 19 on page 15).
If nodes have an a-approximation of n, for any 1 < a < v/2, we still obtain O(nlogn)
messages, although we can only achieve One-Detects (i.e., at least one node detects
illegal inputs). We prove that this is unavoidable by showing that All-Detect requires
Q(n?) messages for any a > 1 (see Theorem 10 on page 8).
On the other hand, we show that, when a > /2, there is no hope for obtaining a
message-efficient algorithm that guarantees One-Detects, as we prove that there are
graphs with ©(n?) edges, where the message complexity is (n?).
For MST verification, we show that (n?) poses an insurmountable barrier, as it holds
for randomized algorithms, when nodes have perfect knowledge of the network size, and
even under the weak requirement that just one node detects illegal inputs.
For verifying a d-approximate BFS tree, we obtain the following results:
Under the KTy assumption, we prove that any randomized verification algorithm must
send Q(n?) messages (Theorem 6 on page 6), for any d < 2_~_7TL(1), even if the nodes
have perfect knowledge of the network size. This bound is essentially tight in terms of
the stretch d, as we also give an efficient algorithm in Section 5 that achieves O(nlogn)
messages, when d > % — %
We also consider the d-approximate BFS verification problem under the KT, assump-
tion, for p > 1, where nodes are aware of their p-hop neighborhood initially, excluding
the private random bits of the nodes. When d is small, we show that the lower bound
of Q(n?) continues to hold in KT; for comparison-based algorithms. For p > 2 and

142
any d < O (4[)"—_2), we develop a novel charging argument to show that €2 (; (%) f’>

messages are required, which may turn out to be useful for proving lower bounds for
other graph problems in KT, in particular, for p > 2 (see Theorem 12). We also show
that the restriction on d cannot be improved substantially, by giving an upper bound
of O(nlogn) messages when d > (see Theorem 21 on page 15).

n—1
max{2,p+1}

1.2 Additional Related Work

The research on ST, MST and BFS is too vast to provide a comprehensive survey. The
d-approximate BFS tree problem is an important but limited (to a single source) version
of the heavily studied spanner concept [29] of a subgraph with a few edges over which the
distance of routing (here, just from the source) is an approximation of the original distance.
The study of BFS approximation (in KTp) has been motivated by the potential saving in
the message and time complexities, especially when compared to those of the Bellman-Ford
algorithm; see e.g., [2, 24, 6, 21, 12].
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Tarjan [31, 14, 11, 5] considered the question of verifying a minimum weight spanning tree
(MST) in the context of centralized computing, [16] addressed the problem in the context
of PRAM, and [18] studied this question in the context of distributed computing with non-
determinism, or with pre-processing. A verification algorithm may be a part of a fault-tolerant
algorithm. Specifically, a verification algorithm can be executed repeatedly. If at some point,
the verification fails, then an algorithm for re-computation is activated, followed again by
repeated activations of the verification algorithm. In the context of self-stabilization, this
was suggested in [13, 1] (the algorithms here are not self-stabilizing, though). More generally,
in complexity theory and in cryptography, the issue of the complexity of verifying vs. that of
computing is one of the main pillars of complexity theory, see, for example, the example of
NP-hardness, Zero Knowledge, PCP, and IP (Interactive Proofs). In recent years there has
been a lot of research in trying to adapt this kind of theory to distributed computing. We
refer the reader to [19, 8, 25] for a more thorough survey of these results. It seems that the
idea to verify a program while it is already running (as opposed to methods such as theorem
proving, model checking, or even testing) appeared in general computing possibly after they
were studied in distributed computing, but meanwhile, this has become a very developed
area, see e.g. [22].

1.3 Preliminaries

We consider the standard synchronous CONGEST and LOCAL models [28], where all nodes
are awake initially and communicate via message passing. Our main focus of this work is
on the message complexity of distributed algorithm, which, for deterministic algorithms, is
the worst-case number of messages sent in any execution. We assume that each node has a
unique ID that is chosen from some polynomial range of integers.

When considering message complexity, the initial knowledge of the nodes becomes
important: We follow the standard assumptions in the literature, which are KT, in the case
where nodes do not know the IDs of their neighbors initially. Under the KTq assumption [3],
which is also known as the clean network model [28], a node u that has § neighbors also
has bidirectional ports numbered 1,...,d over which it can send messages; however, u
does not know to which IDs its ports are connected to until it receives a message over
this port. In contrast, the KT; assumption ensures that each node knows in advance the
IDs of its neighbors and the corresponding port assignments. While it takes just a single
round to extend KTy knowledge to KTy, this would have required 2(m) messages in general.
Several algorithms have exploited the additional knowledge provided by KT; for designing
message-efficient algorithms (e.g., [23, 15]).

2 A Framework for Message Complexity Lower Bounds in the KT,
LOCAL Model

In this section, we present a general framework for deriving lower bounds on the message
complexity of verification problems in the KT¢ LOCAL model.

We remark that the general framework is inspired by the bridge crossing lower bound
of [20, 26, 27]. which, however, were designed for specific graph construction and election
problems and do not apply to graph verification. We give some fairly general requirements for
a hard graph and a corresponding labeling (see Definition 4) that, if satisfied, automatically
yield nontrivial message complexity lower bounds. We start by introducing some technical
machinery.
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Rewireable Graphs, Rewirable Components, and Important Edges. Let H be a graph
and V(H) denotes that set of nodes in H. We use the notation H[S] to denote the subgraph
induced by a subset of nodes S C V(H), and also define L[S] to denote the labeling restricted
to graph H|[S]. We say that an n-node graph H is rewirable if there exist disjoint subsets
Ay, Ay CV(H) such that H[A;] and H[A2] each contains at least an edge, but there are no
edges between A; and A;. We call H[A;] and H[As] the rewirable components of H.

In our lower bounds, we identify two important edges ey = (u1,v1) € H[A;] and ey =
(ug,v2) € H[As]. We define H*2 to be the rewired graph of H on the same vertex set, by
removing e; and es, and instead connecting A; and As via these four vertices. Concretely,
we have E(H*?) = (E(H) \ {e1,e2}) U {(u1,v2), (uz,v1)}, whereby (u1,v2) and (usg,v;)
are connected using the same port numbers in H>°2 as for e; and ey in H.

» Lemma 2. Let H be a rewirable graph. Then each node in H has an identical initial state
in both H and H® 2 where HV°? is any rewired graph of H.

The proof is straightforward since rewiring does not change the degrees of the nodes
and we are considering KTy, where each node does not have information on the IDs of its
neighbors.

We define Inp(G, L, ) to denote the input where we execute the algorithm on graph G
with the labeling L, and equip all nodes with the network size approximation 7. An input
Inp(G, L,7) is said to be legal for problem P if L is a legal solution to P on the graph G. For
a given algorithm A, we say that inputs Inp(H, L,7) and Inp(H', L', 1) are indistinguishable
for a node u if u has the same probability distribution over its possible state transitions
at the start of every round when A is executed on input Inp(H, L,7) as it does on input
Inp(H', L', 7). Formally, we write Inp(H, L,n) = Inp(H', L', ) if this indistinguishability is

s
true for every node in the graph, and we use the notation Inp(H, L, ) = Inp(H’, L', 1) when
this holds for every node in some set S. The following is immediate from the definition of
indistinguishability and Lemma 2:

» Lemma 3. Consider a graph H, a labeling L, and a rewired graph H»¢2 of H. Let Found
be the event that some node sends a message over an important edge, i.e., e; or ea. Then,
conditioned on event —Found, it holds that Inp(H, L,7) = Inp(H®¢2, L, 7).

» Definition 4 (Hard Base Graph). Let 7i be an a-approzimation of the network size. We say
that a rewirable graph H is a hard base graph for an algorithm A that solves a verification
problem P, if there is a labeling L and disjoint vertex sets S1 and Sz, where Sy U Sy = V(H)
such that, for any important edges e1 and es, the following properties hold:

(A) Inp(H[S1) LISi], ) = Inp(1, L, 1) = Inp(H[S3], LISe], ).
(B) Inp(H[S1], L[S1],7) and Inp(H[S2], L[S2], ) are legal for problem P.
(C) Inp(H®ev#2, L 1) is illegal for P.

Remarks. Before stating our lower bound framework based on Definition 4, we provide
some clarifying comments: Note that H does not need to be an admissible input to problem
P. In particular, H can be a disconnected graph even though problem P is defined for
connected networks. We emphasize that S; and S5 are not necessarily related to the rewirable
components A; and As, introduced above. The difference is that A; and Ay define where
the important edges are selected from, whereas S; and Sy partition V(H) in a way such
that both Inp(H[S1], L[S1], ) and Inp(H[S2], L[S2],72) are legal for problem P (even though
Inp(H, L, ) might not actually be an admissible input to problem P).

26:5
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Note that Property (A) is only relevant when the hard base graph H consists of multiple
(i.e., disconnected) components. This will become apparent when proving a lower bound for
d-approximate BFS tree verification in Section 2.1, where S; = V(H) and Sy = ), which
makes the conditions on H[Ss] stated in Property (A) and Property (B) vacuously true.

We prove the following result in Appendix A:

» Lemma 5 (General KTy Lower Bound). Consider any e-error randomized algorithm A for
a graph verification problem P, where ¢ < %. If there exists a hard base graph H for problem
P such that the rewirable components H[A1] and H[A3] are both cliques of size ©(n), then
A has an expected message complexity of Q(n?) in the KTo LOCAL model.

2.1 A Lower Bound for d-Approximate BFS Verification

In this section, we assume that the labeling T is an arbitrary directed subgraph of the
network G. The verification task requires checking whether 7 is indeed a d-approximate BFS
tree of G (see Def. 1). Since the subgraph T is directed, each node in T knows its parents
and children in 7. We remark that this explicit specification of the direction of the tree
(compared to the case where T is an undirected subtree of G)) can only help the algorithm
and hence strengthens our lower bound.

» Theorem 6. Suppose that d = 5 — v, for some v < § — 1. Consider any e-error
randomized algorithm that solves d-approzimate BFS tree verification in the KTg
LOCAL model, and for any e < %. There exists an n-node network where the message
complezity is Q(7?) in expectation under the KTy assumption. In particular, for any
d < 24-#(1)’ this yields Q(nz) messages. This holds even when all nodes know the
exact network size n.

In the remainder of this section, we prove Theorem 6. To instantiate Lemma 5, we define
a hard base graph H that satisfies Def. 4. For the sake of readability and since it does not
change the asymptotic bounds, we assume that 2d and ~ are integers. We group the vertices
of H into 2d + 2 levels numbered 0,...,2d + 1. Levels 1 and 2d + 1 contain v nodes each,
denoted by u§1), . ,uﬁ,l) and u(12d+1) (WZCH_U, respectively. All the other levels consist of
only a single node, and we use u(?) to denote the (single) node on level i € ([0,2d] \ {1}).

Next, we define the edges of H. Every node on level i < 2d+ 2 is connected via inter-level
edges to every other node on level i + 1. Moreover, the nodes on each level form a clique.
Figure 1la gives an example of this construction.

To ensure that H is rewirable, we set A; to be the clique nodes on level 1 and As to
contain the clique nodes on level 2d 4+ 1. We summarize the properties of H in the next
lemma:

PR

» Lemma 7. Graph H has 27y + 2d = n nodes and * + 2y +2d — 2 = ©(4?) edges. It is a
rewirable graph that contains two cliques, each on v nodes, as rewirable components. The
directed subgraph T C H which contains all nodes of H and all directed inter-level edges is a
d-approximate BFS tree of H.

The next lemma tells us that the properties of Definition 4 hold, which will allow us to
instantiate Lemma 5 for obtaining the sought lower bound.

» Lemma 8. Consider the directed tree T' defined in Lemma 7. Then, T is a d-approximate
BFS tree of H, but not of any rewired graph H®°? and, consequently, graph H is a hard
base graph for d-approximate BFS verification with labeling T'. This holds even if all nodes
know the exact network size.
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w(2d)
u(12d+1) u§2d+1) ug2d+1) ufd—’_l) ug2d+1) u§2d+1) u§2d+1) de—H)
(a) The hard base graph H for d-approximate (b) The rewired graph H®"°? with the
BF'S tree verification. (dashed) important edges e; and ez that are

replaced by the thick blue edges.

Figure 1 The graphs used in the lower bound for d-approximate BFS verification. The directed
orange edges show the labeling, which is a BFS tree, and hence a legal input for any d.

Proof. We define S; = V(H) and thus Sy = ). For a given pair of important edges e; and e,
we need to show Properties (A), (B), and (C) of Definition 4. Property (A) is trivial. For (B),
note that Inp(H[S1], L[S1],n) = Inp(H,T,n), and by Lemma 7, T is indeed a d-approximate
BFS tree of H. For property (C), observe that the input tree T is not a d-approximate BFS
tree of the rewired graph H°2, for any e; and e, because distT(u(O),u,(de)) = 2d + 1,
whereas distger,ea (u(o), u,(fdﬂ)) =2 for k> 1. >

Theorem 6 follows by combining Lemma 7 and Lemma 8 with the general lower bound
Lemma 5.

2.2 A Lower Bound for MST Verification

We now show that the lower bound graph used for d-approximate BFS tree verification in
Section 2.1 is versatile enough to also yield a lower bound for MST verification.

» Corollary 9. Suppose that all nodes know the exact network size. Let € > 0 be a
sufficiently small constant. Any e-error randomized algorithm that verifies whether an
input is a minimum spanning tree in the KTg LOCAL model sends Q(n?) messages in
expectation, even if the algorithm only ensures that at least one node detects illegal
inputs (i.e. One-Detects). The same result holds for verifying an approzimate MST.

Proof. We use a variant of the hard base graph H that we employed in the proof of Theorem 6,
which is shown in Figure 1. The main difference is that now we consider an input labeling L
that induces an undirected weighted subgraph, and we consider only 5 layers, where layer 1
and layer 4 are cliques, and the other layers consist of a single node each. Hence, there is a
single edge e = (u(®,u(®) that acts as a bridge between the two cliques. The edge e has

26:7
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weight W > 1 whereas every other edge in the graph has weight 0. The labeling L that we
consider induces an MST that contains e and some arbitrary spanning tree on the rest of
the graph. We now show that this satisfies Properties (A), (B), and (C) of Definition 4: We
choose S; = V(H) and Sy = (J, which makes Property (A) vacuously true. For Property (B),
observe that Inp(H[S1], L[S1],n) corresponds to a valid MST of H and hence is legal. To see
why Property (C) holds, it is sufficient to observe that any MST of the rewired graph H¢:¢2
must include one of the rewired edges (connecting the two cliques) instead of the bridge edge
e that has weight W. <

2.3 A Lower Bound for Spanning Tree Verification

We now consider the Spanning Tree (ST) wverification problem where nodes have an a-
approximation of the network size. The input is a connected graph G, a subgraph T of G,
and an integer 7 which is an a-approximation to the actual network size. The verification
task requires checking distributively whether T' is an ST of G, i.e., T is a tree that contains
all nodes.

We remark that a message complexity lower bound of (n?) assuming All-Detect was
previously shown by Kor, Korman, and Peleg [17] for deterministic algorithms in the setting
where the network size is unknown. By using our framework, we generalize the message
complexity lower bound to randomized algorithms and to the setting where nodes have an
a-approximation of the network size. We also show that the bound depends on whether we
assume One-Detects or All-Detect.

» Theorem 10. Consider an e-error randomized algorithm A that solves spanning
tree verification in the KTog LOCAL model, where € < %, and suppose that nodes know
an a-approximation of the network size:
If all nodes detect an illegal input (i.e. All-Detect), then the message complexity is
Q(n?) in expectation, for any a > 1.
If the algorithm satisfies only One-Detects, then the expected message complezity
is still Q(n?), for any a > /2.

We emphasize that the bounds on the approximation ratio in Theorem 10 are tight, since
in Section 4 we show that, if & < v/2, then the message complexity reduces drastically to
just O(nlogn) for One-Detects, and this holds even for All-Detect in the case where o = 1.

Combining the following lemma with Lemma 5 immediately yields Theorem 10:

» Lemma 11. There exists a graph H that is a hard base graph for ST verification with
a suitable labeling where the rewireable components are cliques of size Q(n), assuming the
following restriction on the network size approximation known by the nodes:

(i) For All-Detect, this holds for any a > 1.

(ii) For One-Detects, we require that o > /2.

Proof. We define a suitable lower bound graph H that consists of two (disconnected) cliques
C and C’. We will specify the sizes of C' and C’ below. To obtain a labeling, we define T
and T” be a spanning tree of the subgraphs C' and C’, respectively. To make H rewirable, we
fix Ay = V(C) and Ay = V(C'"), i.e., the important edges will connect the cut (C,C”") when
being rewired.

We fix the sets S; = V(C) and Sy = V(C") as required by Def. 4. For both cases, (i) and
(ii), it is easy to see that Property (A) of Def. 4 holds since C' and C’ are (disconnected)
components.
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Thus, we only need to focus on Properties (B) and (C). First, we show Case (i) which
is for All-Detect. We define C' to be of size t and C’ to be of size (a — 1)t,} which means
that n = at. We equip nodes with the approximate network size 1 = ¢. It follows that both
H[A;] and H[As] contain ©(n?) edges. Consider the input Inp(H[S1], L[S1],7) = Inp(C, T, ),

which is legal since T' is a spanning tree for C. This shows (B), since we consider All-Detect.

For Property (C), consider any important edges e; and e3. Graph H®"°2 is connected, but
the subgraph induced by the labeling L := T UT" is not. Recalling that V (H¢°?) contains
at nodes, it follows that the network size approximation n = t is indeed an a-approximation
and thus the input Inp(H®>¢2, T UT’,t) is admissible for the algorithm and represents an
illegal labeling. This completes the proof of (i).

Next, we show Case (ii) which is for One-Detects. Both C' and C” contain exactly ¢ nodes,
and hence, again, it follows that H is rewirable. Here, we equip nodes with a network size
approximation 7 = at. To show that Property (B) holds, we only need to prove that the
network size approximation is admissible, since the rest of the argument is the same as for
(i). Clearly Inp(H[S1], L[S1],7) = Inp(C, T, at) and Inp(H[S2], L[Ss],71) = Inp(C’",T", v t) are
both admissible and legal since C' and C’ contain ¢ nodes each. Finally, For Property (C), fix
any two important edges e; and e5. We only need to argue that the input Inp(H® 2, TUT", o t)
has an admissible network size approximation, as the rest of the argument that shows that it
is not a valid spanning tree is the same as for (i). Observe that n = |V (H®*?)| = 2t whereas
7= «-t. It holds that 7 € [n/a, an] if and only if

<n=a-t<2at.

QIR

In particular, the left inequality is true for any o > v/2, as required. |

3 A Lower Bound for d-Approximate BFS Verification in KT, (p > 1)

Throughout this section, we consider comparison-based algorithms in the KT,, CONGEST
model. Apart from the result for broadcast of [3], we are not aware of any other superlinear
(in n) message complexity lower bounds in the KT, setting that hold for p > 2.2 Even though
it is relatively straightforward to generalize our approach to other verification problems such
as spanning tree verification, here we exclusively focus on verifying a d-approximate BFS
tree, which is more challenging in terms of techniques, as it requires us to exclusively deal
with connected graphs. In particular, the charging argument in the lower bound approach of
[3] crucially exploits the assumption that their “base” graph is disconnected.

In KT,, a node = knows the IDs of all nodes that are at a distance less than or equal to p
from z, and also knows the adjacencies of all nodes that have a distance of up to p — 1 from

. When considering the special case KT, a node simply knows the IDs of all its neighbors.

Formally, we define S,(z) = Ui<,<,Cr(z), where C,(z) consists of all nodes that are at
distance r from x. Let E,(z) = {(y,2) € Ely,z € S,(2)} \ {(y,2) € E|y,z € Cy(x)}. The
p-neighborhood of x is the subgraph N,(z) = (5,(z), E,(x)).

We focus on comparison-based algorithms in the KT, CONGEST model, which operate

under the following restrictions: We assume that each node u has two types of variables.

ID wariables which contain u’s neighborhood information, and ordinary variables that are

! For the sake of readability, we assume that (o — 1)t is an integer. In the case that (o — 1)t is not an
integer, we set the size of G’ to be [(a — 1)t].
2 We point out that [3] only provide a full proof of their result for the special case p = 1.
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initialized to 0. During its local computation, a node may compare ID variables and it may
perform some arbitrary computation on its ordinary variables. It can store the result of these
computations in other ordinary variables. Each message sent by u may include B = O(1)
node IDs and it may also contain u’s entire list of ordinary variables. Note that these are
standard assumptions for comparison-based algorithms (see e.g., [3, 9, 27]). In the remainder
of this section, we prove Theorem 12.

» Theorem 12. Let § > 0 and € > 0 be suitable constants. Consider any p > 1,

and d < (}1;7?)2", For any e-error randomized comparison-based algorithm that solves
d-approzimate BFS tree verification under the KT, assumption with the guarantee

that at least one node detects illegal inputs (i.e., One-Detects), there exists a network

<

where its message complexity is €} %(%) "), for some constant ¢ > 0. This holds

even when all nodes know the exact network size. For the special case p = 1, we obtain
a lower bound of Q(nQ)

The Lower Bound Graph Family

For a given p > 1 and d > 1, we construct an infinite family of n-node graphs (and their
respective rewired variants) that yield the claimed bound of Theorem 12. We consider
a graph H of n vertices that resembles the lower bound graph that sufficed for the KT
assumption (see Lemma 7). In the KT, setting, a crucial difference is that, in order to show
that the initial state of a node x has an order-equivalent p-neighborhood in H and in H®?¢,
we need to add p — 1 layers before and after each of the rewirable components A; and As,.

Figure 2 on page 12 gives an example of the graph construction that we now describe in
detail: Let £ = (p+ 1)d + p. The vertices of H are partitioned into £ + 1 levels numbered
0,...,0. Let L=[1,2p—1] and L' = [{ — 2p+ 2,¢]. The vertices of levels in L correspond to
the nodes of the first 2p — 1 layers after the layer 0. The vertices of levels in L’ correspond
to the nodes of the last 2p — 1 layers. Let

1 1 d 1)—3p+3 1 d

_ 1 1 dlp+1)=3p+3 _ o4, 1)
dp—2 n 4p — 2 4p — 2 n

and let v = kn.? For each i € L U L/, level 4 contains v nodes each, denoted by ugi), e ufyi).

All the other levels consist of only a single node, and we use u(*) to denote the (single) node
on level 7 for all ¢ € [0,4] \ {LU L'}.

Next, we define the edges of H: There is an edge from the root to every node in level 1.
For each i € L\ {1} U L'\ {£ — 2p + 2}, there is an edge between nodes u;lfl) and ug-l), for
1<j<~. Let M = [2p,¢ — 2p+ 2]. For each i € M, all nodes at level i have an edge to
every node at level i — 1; note that a level may only contain one such node. The nodes at
level p form a subgraph C, (defined below) and, similarly, the nodes at level d(p + 1) + 1
form another subgraph C’,’) which is isomorphic to C,. We call the edges that connect nodes
at different levels the inter-level edges.

For a node = € C, (resp. z € (), we use the notation Z to refer to its copy in CJ, (resp.
in C,), and we extend this notation to the edges in C, U C}, in a natural way. An edge
e = (u,v) € C, induces the rewired graph H*°, where é = (@, 7) is e’s copy in C,. Ttis

3 For the sake of readability, we assume that ¢ and ~ are integers, which does not affect the asymptotic
bounds.
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straightforward to verify that each node in H has the same initial state in H and in H®*¢,
since the p-neighborhood of each node z in C,, is isomorphic to the p-neighborhood z, by
construction.

Let T be the directed tree, which contains all nodes of H and all directed inter-level
edges. Then, T is indeed a (l-approximate) BFS tree of H. However, T is not a d-
approximate BFS tree of H*¢ because distT(u(O),uéd(pH)H)) = d(p + 1) + 1, whereas
distHe,e(u(O),u,(fd(pﬂ)ﬂ)) = p+1 for k > 1. Hence the algorithm must produce different
outputs on these two graphs when the input labeling is T'.

The subgraph C,,

Intuitively speaking, the achieved message complexity lower bound will be determined by
the number of edges in C),, and thus we aim to make C, as dense as possible. For p =1, we
simply define C (and hence also C7) to be the clique on v vertices.

To simplify our argument needed for the lower bound result, we require that the subgraph
C, is such that if two nodes have distance at most p from each other, then there exists a
unique path of that length between the two nodes, which we call the p-unique shortest path
property. This trivially holds for p = 1 since C; and C are cliques. For p > 2, we define
C), (and hence also C}) to be a subgraph of v nodes with girth greater than 2p and with
Q(fy”ﬁ) edges for a constant ¢ > 0. Recall that the girth is the length of the shortest cycle
in a graph and that a graph with a girth greater than 2p has the p-unique shortest path
property that we specified earlier. The existence of such graphs C, is known due to [4].

We summarize the properties of H in the following lemma:

» Lemma 13. The graph H contains subgraphs C, and C,f) which satisfy the p-unique shortest
path property, and |V (C,)| = |V(C})| = v = kn such that k satisfies (1). If p =1, the
subgraph Cy U C{ has Q(n?) edges. If p > 2, the subgraph C, U C) has Q(y'5) edges for
some constant ¢ > 0.The directed tree T', which contains all nodes of H and all directed
inter-level edges, is a d-approzimate BFS tree of H but not of H*®.

In our analysis, we make use of a particular notion of “connectedness” similar to the
notion in [3]:

» Definition 14 (e-connected). Consider an edge e in a graph that satisfies the p-unique
shortest path property. We say that nodes © and z are e-connected, denoted by v =z, if
dist(z, z) < p and the (unique) shortest path from x to z contains e.

As outlined above, the proof of [3], for showing a lower bound on the message complexity
of broadcast in KT, crucially relies on the fact that their base graph is disconnected. For
showing a lower bound for the d-approximate BFS tree verification problem, we need the
base graph as well as the rewired graphs to be connected. Thus, we need to introduce
different rules for utilizing and charging edges, which have the added benefit of leading to a
significantly simplified indistinguishability proof, as we will see in the proof of Lemma 18
below.

» Definition 15 (utilized/unutilized edge). We say that an edge e=(u,v) € C,UC, is utilized
if one of the following conditions hold:

1. a message is sent across e = (u,v);

2. there are two nodes v and z such that v -z, and x receives or sends the ID of z or 2.
Otherwise, we say that the edge e is unutilized.

26:11
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(a) The base graph H. (b) The rewired graph H®*®.

Figure 2 The graph construction for proving a lower bound in KT, for verifying a d-approximate
BFS tree, where we have omitted the input labeling and node IDs. The shaded subgraphs are high
girth graphs on v nodes that have Q(fyH%) edges. We emphasize that even the base graph H is

connected, and thus the approach of [3] does not apply in our setting.

» Definition 16 (charging rule). If an edge (z,y) is used to send a message that contains the
ID of node z, we charge one unit to each of the following edges:

1. (z,9);

2. for each edge e, such that either x %z or x ° 2.

3. for each edge e, such that either y =z ory 2.

» Lemma 17. Let p be the number of utilized edges in an execution on H. Then the message
complezity of the execution is Q(u/p).

Proof. Let p be the number of utilized edges, M be the number of messages sent and C be
the total cost charged in the execution. A message sent on an edge (x,y) will incur one unit
of charge to (x,y) and for each z where its ID is in the message, a unit of charge is applied
to each edge e where =z, t-= 2, y-= 7 and y-—— 2. Note that there are at most p edges of
each of these types since the graph H satisfies the p-unique shortest path property. Note
that each message can carry at most B IDs of other nodes. Consequently, for each of the
messages sent, at most 1 + 4Bp edges are charged. Hence, we have C' < (14 4Bp)M. On the
other hand each utilized edge is charged at least once. Hence, p < C. As a result, we have
M > 1+4B and the lower bound Q(p/p) follows. <
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Next, we present a suitable ID assignment ¢ for V(H) (= V(H®?)) defined as follows:

1. assign a distinct even integer in [0,2(2p — 1)7] to each node in levels 1,...,2p — 1;

2. assign a distinct odd integer in [1,2(2p — 1)y 4 1] to each node x in levels £ —2p+2,... ¢
such that ¢(z) = ¢(z) + 1;

3. assign arbitrary unique integers from [2(2p — 1)y + 2, n] to the remaining nodes in V (H).

We are now ready to present the indistinguishably result. For now, we focus on determin-
istic algorithms; we later extend the result to randomized algorithms via a simple application
of Yao’s lemma.

» Lemma 18. Consider a deterministic comparison-based algorithm A, the ID assignment
®, graph H and any rewired graph H®¢, where e € C,. If e and é are both unutilized (see
Def. 15), then H and H®¢ are indistinguishable for every node u when executing A, i.e., u
has an order equivalent initial state in both networks, and it sends and receives the same
sequence of messages in H as it does in H®¢.

Proof. Let e = (u,v). We first show that the statement holds for round 1, which is immediate
for any node not in the (p — 1)-neighborhood of either u, v, @, or ¢. Thus we focus on these
nodes. We denote the set of these nodes as N = N,_(u) U N,—1(v) UN,—1(@) UN,_1(D).

First, we show that the initial state of a node € N has an order-equivalent (p — 1)-
neighborhood in H and in H¢¢. We observe that the (p — 1)-neighborhood of x is isomorphic
(ignoring the ID assignments) to the (p — 1)-neighborhood of . However, the IDs in the
(p — 1)-neighborhood of  in H are not the same as the IDs in the (p — 1)-neighborhood
of x in H%€. For instance, node u is adjacent to v in H but is adjacent to ¥ in H®*®.
Nevertheless, it follows from the definition of ¢ that the IDs in the (p — 1)-neighborhood of
x in H are order-equivalent to the IDs in the (p — 1)-neighborhood of z in H%€, and thus z
has order-equivalent neighborhoods in H and H®¢.

Second, we show that each node sends the same messages in round 1. Since x has
order-equivalent neighborhoods in both executions and recalling that the algorithm is
comparison-based, any ordinary variable that x computes at the start of round 1 must have
the same value in both executions. Next, we show that the ID type variable used for z in
sending messages is identical in both executions as well. Recall that the IDs that « knows at
the start of round 1 are exactly the IDs in its p-neighborhood, which may be different in
H compared to H*¢, as we have observed above. In particular, the IDs in N,(z) of H that
are not in N,(z) of H*¢ are the IDs of all vertices z, for which it holds that = and z are
e-connected. The reason for this is that, in H*?, nodes = and Z are e-connected, whereas x
and z are not. However, since e and € are unutilized,  can neither include the ID of z in the
execution on H, nor the ID of its neighbor Z in the execution on H%¢, for any node z for
which z-° 2. Hence, all IDs in the message sent by node x are identical in both executions.
Therefore, x sends the same messages in both networks, H and H®*®.

Finally, we show that if every node sends the same messages during round r — 1, then
every node sends the same messages in round r. We use induction over the rounds, where
the basis already follows from above. Now consider some round r > 1 and assume that every
node sent the same messages in round r — 1 in both H and H®¢. In this case, every node
also receives the same messages during round r» — 1 in both executions. Consider the set of
messages M received by x. Since e and € are unutilized, no message in M contains the ID of
z or Z for all nodes z that x is e-connected to. Hence, all IDs received by = correspond to the
same nodes in H and H%®. Again, using the fact that the algorithm is comparison-based
and the fact that all IDs that may be contained in the messages in M belong to nodes that
have an identical p-neighborhood in H and H¢¢, it follows that x sends the same messages
in round r. <
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3.1 Proof of Theorem 12

First, consider any deterministic comparison-based algorithm. Assume towards a contradic-
tion that there exists a deterministic comparison-based algorithm .4 that solves d-approximate

BF'S verification on input Inp(H, T, n) with message complexity o(%ryl"'%). Then by Lemma

17, the number of utilized edges is o(y'7#). Lemma 13 tells us that there are Q(y*77) edges
inC,U C[’). Hence, there exists an edge e from C), such that e and € are unutilized. Consider
the rewired graph H®°. Lemma 18 ensures that every node outputs the same result in both
executions. However, according to Lemma 13, T is a d-approximate BFS of H but not of
H¢®2, which provides a contradiction.

. 145
To obtain the claimed bound, we need to show that Q(%fy”r?) = Q(; (ﬂ) ) By

P
definition,
v =kn
d 1 3(p—1
(rom (1)) =" _ (p+1)  3p=1)
4p—2  4p—2 2(p—2)
op—1 n d(p+1)
1 > —
(smcep_2> ) =12 1p—2
(since d < ] ) _4;)*2_9 )

Randomized Algorithms. So far, we have restricted out attention to deterministic algorithms
that succeed on every input. To extend this result to randomized Monte Carlo algorithms
that fail with some small probability e, we follow the standard approach of showing a lower
bound for deterministic algorithms that succeed with a sufficiently large probability, when
sampling the input graph from a hard distribution, defined as follows: We first flip a fair
coin that determines whether we choose the base graph H or a rewired graph. In the latter
case, we sample a rewired graph uniformly at random from the set of all possible rewired
graphs R. Observe that the algorithm cannot fail on graph H, since this would result in an
error probability of at least % Consequently, it is sufficient to show a lower bound under the
assumption that the algorithm succeeds on a large fraction of the rewired graphs. We point
out that a straightforward generalization of the above proof shows that the argument still
holds for deterministic algorithms that succeed on a (1 — j3)-fraction of the graphs in R of
the base graph H, for a sufficiently small 8 > 0. Thus, similarly to [27], a simple application
of Yao’s minimax lemma yields the sought message complexity lower bound for randomized
Monte Carlo algorithms, and completes the proof of the theorem.

4 An Algorithm for Spanning Tree Verification in the KT, CONGEST
Model

In this section, we give a message-efficient algorithm that verifies whether the input 7" is
an ST of the network GG under the One-Detects assumption, in the setting where all nodes
have knowledge of some a-approximation 7 of the network size n, for some o < v/2; formally
speaking, 7 € [n/a,an]. Our result stands in contrast to the strong lower bound of Q(n?)
shown by [17] that holds for deterministic ST verification assuming All-Detect and without
any knowledge of the network size.

We obtain our algorithm by adapting the classic GHS algorithm for constructing an ST,
see [10]. However, in contrast to the GHS algorithm, we do not employ the communication-
costly operation of exchanging the fragment IDs between neighboring nodes, which requires
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Q(m) messages per iteration. Considering that our goal is to verify that a given tree T is
indeed a spanning tree, we can select an arbitrary edge e from T (when growing a fragment)
that is incident to some vertex of the fragment: we can stop the growing process immediately
if e turns out to close a cycle. We prove the following result in Appendix B:

» Theorem 19. Suppose that all nodes know an a-approximation of the network
size, for some a < /2. There is a deterministic KTo CONGEST algorithm that
solves spanning tree verification with a message complexity of O(nlogn) and a time
complexity of O(nlogn) rounds while ensuring at least one node detects illegal inputs
(i.e., One-Detects). Moreover, if nodes have perfect knowledge of the network size, the
algorithm guarantees All-Detect.

While our main focus is on the message complexity, we point out that the round complexity
of the algorithm in Theorem 19 can be as large as O(nlogn). This comes as no surprise,
considering that the state-of-the-art solution [23, 15] for computing a spanning tree with
O(npolylogn) messages (even under the stronger KTy assumption) requires at least 2(n)
rounds.

5 Algorithms for Verifying a d-Approximate BFS Tree

We now turn our attention to the d-BFS tree verification problem. The following lemma
suggests that we can extend the algorithm for ST verification described in Section 4 by
inspecting the neighborhood of the root when considering a sufficiently large stretch d:

» Lemma 20. Let T be a d-approximate BFS tree of G with root r, and suppose that

d> Z—_ﬁ, for some integer x > 1. If disty(r,u) > d - distg(r,u) for some node u in G, then

distg(r,u) < z.
Proof. Consider a node u such that disty(r,u) > d - distg(r, u). It holds that

distr(r,u) _n-—1
< < 1

iS4 =t

.

distg(r,u) <

and thus distg(r, u)

» Theorem 21. Consider the KT, assumption, for any p > 0. If d > ﬁ;ﬁl},
there exists a deterministic algorithm for d-approrimate BFS verification that satis-
fies One-Detects with a message complexity of O(nlogn) and a time complexity of
O(nlogn) rounds, assuming that nodes are given an a-approximation of the network
size, for some a < /2. If nodes have perfect knowledge of the network size, the

algorithm ensures All-Detect.

We point out that there is no hope of getting O(nlogn) messages for significantly smaller

values of d, as the lower bound in Theorem 12 holds for any d < O(LLPL72 .

Proof of Theorem 21. First consider the case p € {0,1}. Instantiating Lemma 20 with
x = 1, tells us that we only need to check if T is a spanning tree and that all edges incident to
the root are in 7' in order to verify if a subgraph T is a d-approximate BFS. More concretely,
after executing the spanning tree verification, each node computes its distance in 7" from the
root. Then the root directly contacts all its neighbors (in G): If there is a node at distance at
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least "7_1 from the root (in 7') who is not a neighbor of the root, it outputs 0, and broadcasts
a fail message to all nodes in T'; otherwise, it broadcasts an accept message. Each node in
T decides accordingly once it receives this message from its parent.

The argument for the case p > 2 is similar, except that we now instantiate Lemma 20
with «x = p. That is, since the root knows its p-hop neighborhood, it can contact all nodes
within distance p (in G) by using only O(n) messages. <

6 Discussion and Open Problems

In this paper, we study the message complexity of ST verification, MST verification and
d-approximate BF'S verification distributed algorithms. To the best of our knowledge, the
message complexity of d-approximate BFS verification distributed algorithms has never
been studied before, hence, we focus our discussion on this problem. In our study, we show
that the message complexity is largely determined by the stretch d. When d is small, we
obtain a message complexity lower bound of 2(n?) for KTy and KTy, and a lower bound of

c

+7
%(%) p> (for some constant ¢ > 0) for KT, where p > 1. The bound of d is almost

tight for KTo model, but not for KT,. In particular, for KT, model where p > 1, it is still
open whether we can match the lower bound that holds for d < ﬁ;ﬂrl}.

In addition, all the bounds we obtain for KT, where p > 1 are restricted to comparison-
based algorithms, while the bound for KTy holds for general algorithms. This gives rise to
the following important unanswered question: Can the lower bound of Q(n?) for KT be

improved by using non-comparison based algorithms?
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A Proof of Lemma 5

» Lemma 5 (restated). Consider any e-error randomized algorithm A for a graph verification
problem P, where € < %. If there exists a hard base graph H for problem P such that the
rewirable components H[A1] and H[A3] are both cliques of size ©(n), then A has an expected
message complexity of Q(n?) in the KTo LOCAL model.

Assume towards a contradiction, that there exists a randomized algorithm A that satisfies
the premise of Lemma 5, while having an expected message complexity of o(n?). Consider a
rewired graph H¢'°2 where the important edges ey, e5 are chosen uniformly at random from
their respective rewirable components. Let Few be the event where at most o(n?) messages
are sent and note that the bound on the expected message complexity ensures that Few
happens with probability at least 1 — o(1). Recall that Found is the event that a message
is sent over an important edge (see Lemma 3). We start our analysis by proving an upper
bound on the probability that this happens.

» Lemma 22. Pr[Found] < 1.

Proof. Since Pr[—Few] = o(1), we have
Pr[—=Found | > Pr[-Found | Few] Pr[Few] > Pr[—Found | Few] — o(1), (2)

and hence it will be sufficient to show that Pr[-Found | Few] > 1 + Q(1).

We say that a port p incident to some node u is unezplored, if u has neither sent nor received
a message over p. By assumption, the important edges e; = (u1,v1) and ea = (ug, v2) of the
rewirable graph H are chosen uniformly at random such that ui,v; € A1 and ug, vy € As.
Let n; = |A;]|, for ¢ € {1,2}, and recall that n; = ¢; n, for some constant ¢; > 0. Conditioned
on Few, there must exist a subset A] C A; of size (1 —0(1))nq, such that every u € A} sends

2L messages. Since A; is a clique and n; = ¢1n, every such u has at

and receives at most =

least
ny 15
n—1—-—=—n—-1>-n
! 6 16" ~=8"

unexplored ports at any point in the execution, for sufficiently large n. A symmetric argument
implies the existence of a set Ay C Ay with analogous properties. Let A* be the event that
up,v1 € A} and ug, vy € A, We first show that A* happens with probability at least 1 —o(1).
The probability that u; € A is }’21} > 1—o0(1), and analogous statements hold for vy, ug,
and vy. Hence, A* occurs with probability 1 — o(1). Now, since Pr[-A*] = o(1), we have

Pr[—Found | Few] > Pr[—Found | Few, A*] — o(1). (3)
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Conditioned on Few and A*, we know that u; sends at most 7% messages and has at least
7% unexplored ports, and thus the probability that it sends a message over the important

edge ey is at most ﬁ. Moreover, us, v1, and vy send a message over their incident important
5

edge also with probability at most -. Thus, Pr[-Found | Few, A*] is at least 1 — -, = 2.

14
Plugging this into the right-hand side of (3), we obtain

Pr[-Found | Few] > g —o(1) = 24+ Q1) (@)

1
2
which is sufficient due to (2). <

For a given input Inp(G, L,7) and a subgraph X C G, we define the event Z[X] (“Zero
output”) as follows:
1. For One-Detects, Z[X] occurs if at least one node in X outputs 0.
2. For All-Detect, Z[X] occurs if all nodes in X output 0.
We slightly abuse notation and also write Z[S] when considering the subgraph induced by a
set of nodes S C V(G).

According to Lemma 22, Pr(Found) < 1, and thus

Pr(Z[H ] | Inp(H®*2, L, 7))

5
< Pr(Z[H® ] | Inp(H****, L, ), ~Found) Pr(-Found) + 1. )

Property (C) of Definition 4 tells us that Inp(H¢>¢2, L, 71) is illegal, and hence the assumption
that A fails with probability at most € implies that

Pr(Z[H® ] | Inp(H®**2,L,n)) > 1 —e. (6)
Therefore,

Pr(Z[H*] | Inp(H®°?, L, ), —Found) > Pr(Z[H"°?] | Inp(H*?, L, 1), ~Found)
- Pr(=Found)
>Pr(Z[H] | Inp(H***, L, 7)) — 1
(by (6) =73 —e (7)
Conditioned on —Found (i.e., no important edge is discovered), Lemma 3 tells us that the

algorithm behaves the same on the inputs Inp(H, L,n) and Inp(H®"2, L, 1), and hence (7)
also yields

Pr(Z[H] |Inp(H,L,7t)) > § — €. (8)

In Lemma 23 below, we show an upper bound of 2¢ on the left-hand side of (8), which yields
the sought contradiction € > %, and completes the proof of Lemma 5.

» Lemma 23. Pr(Z[H] | Inp(H, L,7)) < 2e.

Proof. We start by observing that the following inequalities hold for the events Z[S;] and
Z[SQ]Z

Pr[Z[S] | Inp(H[S1], L[S1], 1))
If Sy # 0: Pr[Z[S:] | Inp(H[S2], L[S2], 7)]

c. 9)
€. (10)
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These inequalities follow from Property (B) of Definition 4, which ensures Inp(H|[S1], L[S1],7)
and Inp(H[Ss], L[S2], ) are both legal for P. If S = (), then

Inp(H, L, %) = Inp(H[S1], L[S1], ) < e

due to (9), and we are done. Thus, we assume that Sy # ) in the remainder of the proof.

First, consider the case that the algorithm satisfies All-Detect, i.e., Z[H] can only be true
if Z[S1] and Z[Ss] are both true: Using the indistinguishability guaranteed by Property (A)
of Definition 4, the nodes in S; have the same probability distribution over their state
transitions in Inp(H[S1], L[S1],72) as they do in Inp(H, L, 7), and a similar argument applies
to the nodes in So. From (9), (10), it follows that

Pr[Z[H] | Inp(H, L,n)] = Pr[Z[S\] | Inp(H[S:], L[S1], )] Pr[Z[S5]|Inp(H [S2], L[S2], 7)]

€2 < 2e.

IN

Now, suppose that the algorithm satisfies One-Detects, where Z[H] is true if either Z[S]
or Z[Ss] are true. Again, using the indistinguishability guaranteed by Property (A), we
obtain that

Pr[Z[H] | Inp(H,L,7)] <1 — (1 —Pr[Z[S1] | Inp(H[S1], L[S1], 7))
(1 =Pr[Z[S] | Inp(H[S2], L[S2], 1)])
(by (9) and (10)) < 2e — €2 < 2e. <

B Omitted Details of Section 4

In the following, we describe and analyze the deterministic algorithm claimed in Theorem 19.
We have omitted some proofs, which can be found in the full paper.

B.1 Description of the Algorithm
Growing Fragments

Each node forms the root of a directed tree, called fragment, that initially consists only of
itself as the fragment leader, and every node in the fragment knows its (current) fragment
ID, which is simply the ID of the fragment leader. The algorithm consists of iterations each
comprising ¢; n rounds, for a suitable constant ¢; > 1, and the goal of an iteration is to
merge the fragment with another fragment by finding an unexplored edge, i.e., some edge
e over which no message has been sent so far. We point out that, in contrast to other ST
construction algorithms that follow the Boruvka-style framework of growing fragments, e is
not guaranteed to lead to another fragment.

In more detail, we proceed as follows: At the start of an iteration, each fragment leader
broadcasts along the edges of its fragment F'. Upon receiving this message from a parent in
F', a node u checks whether it has any incident edges in T over which it has not yet sent a
message. If yes, u immediately responds by sending its ID to its parent; otherwise, it forwards
the request to all its children in F. If u does not have any children, it immediately sends
a nil-response to its parent. On the other hand, if u does have children and it eventually
receives a non-nil message from some child, it immediately forwards this response to its
parent and ignores all other response messages that it may receive from its other children in
this iteration. In the case where u instead received nil responses from every one of its children,
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u finally sends a nil message to its own parent. This process ensures that the fragment leader
up eventually learns the ID of some node v in its fragment that has an unexplored incident
tree edge e, € T, if such a v exists.

Next, ug sends an explore!-message along the tree edges that is forwarded to v, causing
v to send a message including the fragment ID (i.e., u,’s ID) on edge e,, over which it has
not yet sent a message. Assume that this edge is connected to some node w.

We distinguish two cases: First, assuming that w is in the same fragment as v, node w
responds by sending an illegal message to v who upcasts this message to the fragment
leader ug, who, in turn, initiates a downcast of this message to all nodes in the fragment,
instructing every node in F' to output 0 (“reject”). In this case, the fragment F' stops growing
and all its nodes terminate. Since we are assuming a synchronous network, it is clear that
when nodes from other fragments happen to contact a node from F', they can detect this
silence and will also immediately output 0 and terminate.

In the second case, w is in a distinct fragment, and, before we start the next iteration,
we run a cycle detection procedure described next.

Acyclicity Check

Since all (non-terminated) fragments attempt to find outgoing edges in parallel in this
iteration, we may arrive at the situation where there is a sequence of fragments F}, Fs, ..., Fy
such that the unexplored edge found by F; leads to F; 41, for i € [1, k—1], and the unexplored
edge discovered by Fj, may lead “back” to some F; (j < k). Conceptually, we consider the
fragment graph F where vertex f; corresponds to the fragment leader of F;, and there is a
directed edge from f; to f; if the edge explored by F; points to some node in F}. (Note that,
unlike the case in, e.g.[10], it is not guaranteed that no cycle is formed in the fragment graph,
if T is not in fact, a tree.) If two fragments f and f’ happen to both explore the same edge
e in this iteration, then we say that e is a core edge.

» Lemma 24. Fvery component C of F has at most one cycle. Moreover, C is a tree
(i.e., contains no cycle) if and only there exist exactly two fragments f and f' in C that are
connected by a core edge.

Proof. If C' contains just a single fragment, the statement is trivial; thus assume that there
are at least two fragments in C. Since each fragment explores one outgoing edge, it is clear
that C' has at most one cycle, which proves the first statement. Now suppose that C' is a
directed tree. Recalling that each fragment in C' has exactly one outgoing edge in F, it
follows that there must exist a core edge between two fragments, as otherwise there would be
a cycle. Finally, since C' has the same number of edges as it has fragments and is connected,
it follows that there cannot be any other core edges. <

Lemma 24 suggests a simple way for checking whether C' contains a cycle. We describe
the following operations on F. It is straightforward to translate these operations to the actual
network G via broadcasting and convergecasting along the fragment edges. The fragment
leaders first confirm with their neighboring fragments (in F) whether they have an incident
core edge. Every fragment leader that does not have an incident core edge simply waits by
setting a timer of ¢ = cont rounds, for a suitable constant co > 0. If there exists a core edge
between f and f’, then the leader with the greater ID, say f, broadcasts a merge! message,
which is forwarded to all fragments in C' by ignoring the direction of the inter-fragment edges,
and is guaranteed to arrive within ¢ rounds at every fragment leader of C'. Upon receiving
this message, every node in C' adopts f’s ID as its new fragment ID.
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On the other hand, if the fragments form a cycle, then, after ¢ rounds, all leaders in C'
conclude that there is no core edge in C. Lemma 24 ensures that there must be cycle. Thus,
the nodes in C' do not receive a merge! message, causing them to output 0, and terminate
at the end of this iteration.

Check Size Requirement

Eventually, in some iteration, it may happen that the fragment leader u, receives nil messages
from all its children, which means that none of the nodes in the fragment has any unexplored
edges left. (Note that this also includes the special case where a node does not have any
incident edges of T'.) In that case, u, initiates counting the number of nodes in the fragment
via a simple broadcast and convergecast mechanism. Once the counting process is complete,
the root uy outputs 0 if the fragment contains less than % nodes, and it disseminates its
output to all fragment nodes who in turn output 0 and terminate. Otherwise, u, instructs

all nodes to output 1.
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