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Abstract
The field of distributed local decision studies the power of local network algorithms, where each
network can see only its own local neighborhood, and must act based on this restricted information.
Traditionally, the nodes of the network are assumed to have unbounded local computation power,
and this makes the model incomparable with centralized notions of efficiency, namely, the classes P
and NP. In this work we seek to bridge this gap by studying local algorithms where the nodes are
required to be computationally efficient: we introduce the classes PLD and NPLD of polynomial-time
local decision and non-deterministic polynomial-time local decision, respectively, and compare them
to the centralized complexity classes P and NP, and to the distributed classes LD and NLD, which
correspond to local deterministic and non-deterministic decision, respectively.

We show that for deterministic algorithms, requiring both computational and distributed efficiency
is likely to be more restrictive than either requirement alone: if the nodes do not know the network
size, then PLD ⊊ LD ∩ P holds unconditionally; if the network size is known to all nodes, then the
same separation holds under a widely believed complexity assumption (UP ∩ coUP ̸= P). However,
when nondeterminism is introduced, this distinction vanishes, and NPLD = NLD ∩ NP. To complete
the picture, we extend the classes PLD and NPLD into a hierarchy akin to the centralized polynomial
hierarchy, and we characterize its connections to the centralized polynomial hierarchy and to the
distributed local decision hierarchy of Balliu, D’Angelo, Fraigniaud, and Olivetti.
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1 Introduction

The field of distributed local decision studies the computation power of distributed network
algorithms, where every node can observe only its own neighborhood in the network. There is
a rich body of literature characterizing the types of network properties that such algorithms
can decide, including deterministic algorithms (e.g., in [23, 7, 6, 8]), randomized algorithms
(e.g., in [5, 4]), nondeterministic algorithms (e.g., in [21, 12, 19, 20, 9]), and other variants.
However, to our knowledge, all prior work on distributed decision allows the network nodes
to have unbounded computation power – they can locally run arbitrary Turing machines
(e.g., in [6, 9]), or sometimes even compute any function, even if it is undecidable (e.g., [23]).
This puts the theory of efficient distributed decision on different footing from centralized
notions of efficiency such as P and NP, and makes the notion of an efficient local distributed
algorithm incomparable with that of an efficient centralized algorithm: some problems that
are considered hard for a single machine to solve are considered “easy” for a network, simply
because we do not take into consideration the computational power of the network nodes. In
this paper we introduce a computationally-bounded version of local decision, and study the
effects of imposing both locality restrictions and computational efficiency requirements at
the same time.
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27:2 On Polynomial Time Local Decision

Deterministic computationally bounded local decision. The class LD (for “local decision”),
introduced in [9], encompasses all network properties that can be decided by a deterministic
constant-round distributed algorithm (see Section 2 for the formal definition). As explained
above, this includes algorithms that are not computationally efficient, e.g., algorithms where
a network node is required to perform exponential-time computations. Consequently, the
class LD is incomparable with classes representing efficient sequential computation: it is
not contained in, nor does it contain, any class DTIME(f(n)) or NTIME(f(n)) for any
time-constructible function f : N → N. For instance, there are problems that are known
to be NP-hard even in constant-diameter graphs,1 and these problems are in LD – that is,
considered “easy” for local distributed algorithms – even though they would be considered
“hard” by mainstream complexity theory.

To study the importance of local computation at the network nodes, we define the class
PLD ⊆ LD, which includes all network properties that can be decided by a deterministic
constant-round distributed algorithm that uses local computation time poly(n) at every node.
The “plain” version of the model does not assume that the size n of the network is known
to the nodes, but we also consider a stronger model, PLD[n], where the nodes do know the
network size. We ask:

What is the power of algorithms in PLD / PLD[n]?

Clearly, algorithms that are both local and computationally efficient cannot decide
languages that are not in LD, nor can they decide languages that are not in P. But can they
decide every language that is both in LD and in P? It turns out that the answer depends on
whether or not the network size is known:

In the “plain” version of the model, where the network size is not known to the nodes,
we can prove unconditionally that the answer is no: PLD ⊊ LD ∩ P.
In the version where the size is known, we show that the corresponding separation,
PLD[n] ̸= LD[n] ∩ P, implies that P ̸= NP. This makes it unlikely that we can prove such
a separation unconditionally.
However, we are able to prove a conditional separation: under the assumption that
UP ∩ coUP ̸= P, we can show that PLD[n] ̸= LD[n] ∩ P.

The class UP includes all languages that can be decided by a nondeterministic Turing machine
with at most one accepting computation path on every input, and the class coUP includes all
langauges whose complements are in UP. The intersection UP ∩ coUP includes the decision
version of the problem of integer factorization, which is believed not to be in P, and whose
conjectured hardness serves as the basis for RSA public-key encryption.

Our conditional proof that PLD[n] ̸= LD[n] ∩ P relies on a connection to worst-case
cryptography. It is well known that UP ∩ coUP ̸= P implies the existence of worst-case
one-way functions [18, 13, 15, 16], that is, functions that can be computed in polynomial
time, but cannot be inverted in polynomial time (in the worst case sense: there does not
exist a polynomial-time algorithm that correctly computes the inverse of the function on
all inputs). Our proof can be viewed as implicitly constructing such a worst-case one-way
function from the hardness of UP ∩ coUP, following a construction similar to the one used
in [18, 13], and then applying a simple worst-case version of the Goldreich-Levin Theorem [11]
to the function we constructed.

Our results for deterministic algorithms are summarized by the following theorem.

1 For example, the Forwarding Index Problem [25], which asks whether every pair of vertices in the graph
can be connected by a path, such that every vertex appears on at most k paths.
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▶ Theorem 1. The following holds:
1. PLD ⊊ P ∩ LD.
2. If PLD[n] ̸= P ∩ LD[n], then P ̸= NP.
3. Assuming that UP ∩ coUP ̸= P, we have PLD[n] ⊊ P ∩ LD[n].

Nondeterministic computationally bounded local decision and beyond. In [9], the class
NLD (for “nondeterministic local decision”) is introduced to capture network properties
that can be decided by a nondeterministic constant-round distributed algorithm: this is an
algorithm where every node is given a certificate (or witness). The class NLD can be viewed
as a distributed analog of NP. It is of particular importance because of its connections to
self-stabilization and fault-tolerance: certificates are used in proof labeling schemes [22] to
help identify illegal network configurations that require attention.

Just as we did with deterministic algorithms, we introduce a computationally-bounded
version of NLD, which we call NPLD, and which captures network properties that can be
decided nondeterministically by a constant-round algorithm where nodes run in polynomial
local time. We again ask whether the restriction to both distributed and computational
efficiency is more restrictive than either restriction alone: is NPLD = NLD ∩ NP? Perhaps
surprisingly, the answer this time is that the combination is not more restrictive than either
restriction alone:

▶ Theorem 2. NPLD = NP ∩ NLD, and NPLD[n] = NP ∩ NLD[n].

Here, NPLD[n], NLD[n] are versions of NPLD and NLD (resp.) where the size of the network is
known to all nodes. We note that it was shown in [9] that NLD[n] contains all Turing-decidable
languages, which implies that NP ∩ NLD[n] = NP.

In sequential complexity theory, P and NP are the lowest levels of the polynomial hierarchy,
PH = {Σk, Πk}∞

k=0, which extends the notion of nondeterminism (“x ∈ L iff there exists a
witness that causes us to accept”) and co-nondeterminism (“x ∈ L iff every witness causes
us to accept”) into a hierarchy of complexity classes, with an increasing number of quantifier
alternations on the witness. At the k-th level of the hierarchy, the class Σk allows k quantifier
alternations starting with ∃, and the class Πk allows k quantifier alternations starting with
∀. The polynomial hierarchy has been the subject of intense research, and one of the most
important open problems in complexity theory is whether the inclusions between the levels
of the polynomial hierarchy are strict or not. It is commonly believed that they are [10],
and “the polynomial hierarchy does not collapse to level k” is a fairly standard hardness
assumption, like P ̸= NP.

Inspired by the polynomial hierarchy, in [2], the classes LD and NLD were extended into
a full hierarchy of local decision,

{
Σlocal

k , Πlocal
k

}∞
k=0, where the classes in the k-th level of

the hierarchy allow k quantifier alternations on the certificates, starting with ∃ for Σ and
with ∀ for Π. The authors of [2] were able to fully characterize the power of each level of the
hierarchy: they showed that

LD ⊊ Πlocal
1 ⊊ NLD = Σlocal

1 = Σlocal
2 ⊊ Πlocal

2 = ALL.

(The class ALL is defined to be all Turing-decidable languages, and all classes Σlocal
k , Πlocal

k

are restricted to Turing-decidable languages as well.)
What happens to the local decision hierarchy when nodes are restricted to run in

polynomial time? We already noted that at the first level, nondeterministic local decision
(the class Σlocal

1 = Σlocal
2 = NLD) is unaffected by this additional restriction. We show that

the same holds for all levels above as well (Σlocal
k for k ≥ 3, and Πlocal

k for k ≥ 2).

OPODIS 2023
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Our results for the local decision hierarchy (other than NLD, which was discussed above)
are summarized in the following theorems. Here, ΣP-local

k (resp. ΠP-local
k ) denotes the class of

network properties that can be decided by a Σlocal
k -algorithm (resp. Πlocal

k ) where every node
runs in poly-time (see Section 2 for the formal definition).

▶ Theorem 3. The following holds:
1. ΣP-local

2 = ΣP
2 ∩ Σlocal

2 ⊊ ΣP
2 .

2. For every k ≥ 2 we have ΠP-local
k = ΠP

k , and for every k ≥ 3 we have ΣP-local
k = ΣP

k .

The relationships between the different levels of the hierarchy
{

ΣP-local
k , ΠP-local

k

}∞
k=0 are

as follows:

▶ Theorem 4. The following holds:
1. PLD ⊊ ΠP-local

1 ∩ NPLD.
2. NPLD ̸⊆ ΠP-local

1 .
3. NPLD ⊊ ΠP-local

2 .
4. ΠP-local

1 ⊊ ΣP-local
2 ∩ ΠP-local

2 .
5. For every k ≥ 0, if either ΣP-local

k+1 or ΠP-local
k+1 equals ΠP-local

k or ΣP-local
2 , or if ΣP-local

k+1 =
ΠP-local

k+1 , then PH = Πlocal
k .

A partial and preliminary version of this work appeared as a brief announcement in [1].
While our model allows nodes to run in time that is polynomial in the size of the network, a
follow-up work [24] considered a model where the runtime of each node must be polynomial in
the size of its neighborhood. This yields a different model, where nodes with many neighbors
are allowed to use more local computation than nodes with few neighbors.

Organization. For lack of space, many proofs are omitted here; we focus on proving
Theorems 1 and 2, in Sections 3 and 4 respectively, omitting some minor technical details. In
Section 5 we define the polynomial-time local hierarchy, and sketch the proof of Theorem 3.
The remaining proofs will appear in the full version of the paper.

2 Preliminaries

Distributed languages and algorithms. A distributed language is a set of graph configurations
(G, x), where G is an undirected graph and x : V (G) → X is an input assignment which
assigns an input x(v) from some input domain X to each node v ∈ V (G). To simplify the
notation, we sometimes write (G, (x1, . . . , xk)) or (G, x1, . . . , xk) for a configuration where
each node v ∈ V (G) is given a list of inputs x1(v), . . . , xk(v), assigned by a compound input
assignment x1 : V (G) → X1, . . . , xk : V (G) → Xk.

We assume that nodes have unique identifiers (UIDs) from some fixed UID space U , and
that during the execution of a distributed algorithm, each node has access to its own UID
and its neighbors’ UIDs. We denote by (G, x, id) an identified graph configuration, where
(G, x) is a graph configuration, and id : V (G) → U assigns a UID to each node. Note that
the UIDs are not part of the definition of a distributed language. However, they can be used
by a distributed algorithm that decides the language, e.g., to break symmetry (see the formal
definition of an algorithm below).

We make the standard assumption that in graphs of size n, the inputs and the UIDs
assigned to the nodes can be encoded in poly(n) bits, meaning that an identified configuration
with a graph of size n can be represented in poly(n) bits. (This assumption is not essential,
but if the representation length of the inputs and the UIDs is not polynomially-related to
the size of the graph, we would need to introduce another parameter to bound their sizes.)
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Let N t
G,x,id(v) denotes the t-neighborhood of v in the identified configuration (G, x, id),

including the UIDs and the inputs of the nodes in the t-neighborhood. In some cases, when
the UID assignment or the input assignment are irrelevant, we may use the notations N t

G,x(v)
or N t

G(v), respectively. When both G and x are clear from the context, we write simply N t(v).
Let Bt be the set of all t-neighborhoods that appear in some identified graph configuration
using inputs from X and UIDs from U .

Next we formally define local distributed algorithms. In a distributed algorithm, each
node observes the neighborhood around itself, and then decides whether to accept or reject:

▶ Definition 5 (Local decision algorithms). A t-local decision algorithm is a computable
mapping A : Bt → {0, 1}, which outputs a Boolean value (accept/reject). If A(N t

G,x,id(v)) = 1
at all nodes v ∈ V (G), then we say that A accepts (G, x, id), and write A(G, x, id) = 1. We
say that A decides the distributed language L if for every graph configuration (G, x) and for
every UID assignment id : V (G) → U ,

(G, x) ∈ L ⇔ A(G, x, id) = 1.

Given a t-local decision algorithm, we refer to t as the algorithm’s locality radius.

▶ Definition 6 (The classes LD, PLD). Let t : N → N be a function. A distributed language
L is in the class LD(t(n)) if it can be decided in graphs of size n by a t(n)-local decision
algorithm A. We refer to such algorithms as “LD(t)-algorithms”. If in addition the algorithm
A (i.e., the mapping from t(n)-neighborhoods to an accept/reject bit) can be computed by a
Turing machine that runs in time poly(n) in graph configurations of size n, then L is in the
class PLD(t).

For every function t : N → N, define LD(O(t)) =
⋃

c>0 LD(c · t), and similarly,
PLD(O(t)) =

⋃
c>0 PLD(c · t). Let LD = LD(O(1)), and let PLD = PLD(O(1)).

Note that, as usual in the area of local decision, the local algorithm does not necessarily
know the size n of the network; nevertheless, as external observers, we can study the
dependence of the algorithm’s locality radius and its local running time on n. We introduce a
separate class, PLD[n], for local algorithms where the nodes do know the size of the network:

▶ Definition 7 (The class PLD[n]). Let t : N → N be a function. A distributed language L is
in the class PLD[n](t(n)) if the following language L′ is in PLD(t(n)):

L′ = {(G, (x, 1n)) : (G, x) ∈ L and n = |V (G)|} .

3 Deterministic Polynomial-Time Local Decision

In this section we study deterministic algorithms that are both local and run in polynomial
time, and prove Theorem 1.

3.1 Unconditional Separation of PLD from P ∩ LD
We begin by proving the first part of Theorem 1, which states that PLD ⊊ P ∩ LD. The non-
strict containment, PLD ⊆ P∩LD, is easy to see: every PLD-algorithm is also an LD-algorithm,
so PLD ⊆ LD; moreover, if every node of the network computes its decision in poly(n) time,
then a poly-time centralized Turing machine can simulate the distributed algorithm by
computing the output of every node, and accepting iff all nodes accept. Therefore PLD ⊆ P.
The main challenge is to prove that the containment is strict, that is, PLD ̸= P ∩ LD.

OPODIS 2023
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High-level overview. To separate PLD from P ∩ LD, we use a variation on the language
ITER, which was used in [2] to separate Πlocal

1 from LD with unbounded computation power.
We call our variation ITER-BOUND.

The idea is to construct a language of paths, where the center node is given a Turing
machine M , two inputs a, b ∈ {0, 1}∗, and a bound s ∈ N; the goal is to decide whether M

halts on both a and b within at most s computation steps, and accepts either a or b (or both).
The bound s may be much larger than the length of the overall size of the configuration:
it is encoded in binary. An efficient algorithm cannot afford to run M for s steps and
check whether it accepts a or b, but a local algorithm with unbounded computation time
can do so, and therefore ITER-BOUND ∈ LD. The bound s serves as a “trap door” that
allows unbounded-time local algorithms to decide membership in ITER-BOUND, so that
ITER-BOUND ∈ LD.

To make the task solvable for a polynomial-time centralized algorithm we would like to
restrict the length n of the path to be at least as long as the number of steps required for M

to halt on a and on b. This would allow a centralized algorithm to run the machine M for n

steps on a and on b, and check that it halts on both inputs and accepts at least one of them.
However, we cannot simply add this restriction on the length of the path, as the resulting
language would no longer be in LD: a local algorithm cannot necessarily “see” the entire path
and does not know its length. Fortunately, there is a way to indirectly impose this restriction
in a way that is locally-checkable: we annotate the nodes of the path (using the inputs of
the nodes). On the left side of the path, from the center outwards, we write the sequence of
configurations that M goes through in its computation on a, until it halts; on the right side
of the path we do the same for b. (In particular, the length of the path must indeed be at
least the number of steps required for M to halt on a and on b.) A centralized algorithm
can run now either run M for n steps on a and on b as described above, or it can simply
examine the computation sequence of M , make sure it obeys the transition function of M ,
and verify that at either the left or the right side of the path (or both) we have an accepting
configuration of M . Thus, ITER-BOUND ∈ P. The annotations can also be checked by
a local distributed algorithm which simply verifies that every two neighboring nodes have
consecutive computation steps of M , and that nodes at the end of the path (that is, nodes
of degree 1) have halting configurations of M . Thus, even after adding the annotations, the
language is still in LD.

Finally, we prove that an algorithm that is both local and efficient cannot decide the
language ITER-BOUND: intuitively, this is because it can neither afford to run M for s

steps, nor can it “see” both endpoints of the path at the same time, to verify that at least
one of them has an accepting configuration. The formal proof shows that if there existed
a PLD-algorithm for ITER-BOUND then we could use it to decide in polynomial time a
language that is not in P.

Detailed construction. Recall that the configuration of a Turing machine consists of the
contents of the tape, the location of the tape head, and the current state of the machine.
To avoid confusion, in the sequel we refer to configurations of Turing machines as TM-
configurations, and to graph configurations as simply configurations.

Given a Turing machine M , an input a ∈ {0, 1}∗, and a number i ∈ N, let config(M, a, i)
denote the Turing machine configuration that M reaches after taking i steps on input a; if
M halts in fewer than i steps on input a, then config(M, a, i) is the configuration in which
M halts on input a.
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Let M be a Turing machine, let a, b ∈ {0, 1}∗ be inputs on which M halts, and let
s, nL, nR ∈ N such that nL ≥ |a|, nR ≥ |b| and s ≤ c · 2nL+nR+1, for some constant c whose
value will be fixed later.2 We define a configuration CnL,nR(M, a, b, s) = (G, x), as follows:

G is a path of the form unL
, . . . , u1, v, w1, . . . , wnR

, consisting of a pivot node v ∈ V (G),
a left sub-path L = unL

, . . . , u1, and a right sub-path R = u1, . . . , unR
.

The input of the pivot node v is x(v) = (0, ⟨M⟩, a, b, s), where ⟨M⟩ is the encoding of the
Turing machine M .
For each node ui ∈ L on the left sub-path, the input of ui is x(ui) =
(i, ⟨M⟩, config(M, a, i)). Similarly, for each node wi ∈ R on the right sub-path, the
input of wi is given by x(wi) = (i, ⟨M⟩, config(M, b, i)).

The language ITER-BOUND consists of all configuration CnL,nR(M, a, b, s) such that
The TM-configurations config(M, a, nL), config(M, b, nR) that are written at the ends of
the two sub-paths are both halting, and
M halts in at most s steps on a and on b, and accepts at least one of them.

Given a configuration CnL,nR(M, a, b, s) = (G, x) as defined above, we say that a node
u ∈ V (G) is r-central if the distance of u from the pivot is at most r.

As we explained above, it is not difficult to see that ITER-BOUND can be decided by a
local algorithm, and is also in P. In particular, a local algorithm that decides membership in
ITER-BOUND only needs to check the following conditions: at any node v,

If v’s input starts with the number 0, then the input is of the form x(v) = (0, ⟨M⟩, a, b, s),
where M halts on both a and b in at most s steps, and accepts at least one of them. Also,
the degree of v is 2.
If v’s input starts with a number i > 0, then the input is of the form x(v) = (i, ⟨M⟩, cfg),
and v has a neighbor u whose input is (i − 1, ⟨M⟩, cfg′), where cfg′ is a TM-configuration
that precedes cfg according to the transition function of M . The degree of v must be
either 2 or 1. If the degree is 1, then cfg must be a halting configuration of M (that is,
the state of M in cfg is either the accepting or the rejecting state of M). If the degree is
2, then v must have another neighbor whose input is (i + 1, ⟨M⟩, cfg′′), where cfg′′ is the
TM-configuration that follows cfg according to the transition function of M .

A centralized poly-time algorithm can decide membership in ITER-BOUND by verifying the
same local consistency conditions that the local algorithm checks (e.g., that each non-pivot
node’s input has a TM-configuration that follows the TM-configuration given to the preceding
node, and so on). It can also directly check that at least one of the two endpoints of the
path contains an accepting configuration. Finally, to verify that M halts in at most s steps
on a (and similarly for b), the centralized algorithm can compute the lengths nL of the left
sub-path, and compare: if s ≥ nL, then indeed, since nL computation steps suffice for M to
half on a (which is checked using the local consistency conditions), s ≥ nL steps also suffice.
On the other hand, if s < nL, then it is permissible for the algorithm to run M for s steps
and check whether it halts – the time required to do so is polynomial in s < nL < n and in
the input size |a| ≤ nL < n.

Next we prove that ITER-BOUND is not decidable by a polynomial-time local algorithm.
In fact, the claim below generalizes to any sublinear locality radius (that is, the class
PLD(t(n)) for any t(n) = o(n)), but for the sake of simplicity we state it for a constant
locality radius (the class PLD = PLD(O(1)).

2 This is to ensure that the size of the graph is indeed polynomially-related to the length of the inputs (in
bits). For simplicity, we assume that this constraint is imposed externally, that is, the nodes do not
need to verify that their inputs have the correct number of bits. However, it is not difficult to modify
the proof to verify that the inputs are not too long, though this requires some modifications to the
definition of the language ITER-BOUND.

OPODIS 2023



27:8 On Polynomial Time Local Decision

▷ Claim 8. ITER-BOUND ̸∈ PLD.

Proof. Suppose for the sake of contradiction that there is a PLD-algorithm A that decides
ITER-BOUND, and let t > 0 be its locality radius. Let L ∈ DTIME(2n)\P be some language
that is Turing-decidable in time O(2n) but not in polynomial time, and such that ϵ ̸∈ L (here
and in the sequel, ϵ denotes the empty word). Such a language exists by the Time Hierarchy
Theorem [14]. We claim that using the PLD-algorithm A that decides ITER-BOUND, we
can construct a polynomial-time Turing machine that decides L for inputs of size n for any
sufficiently large n, a contradiction to the fact that L ̸∈ P.

Let M be a DTIME(2n)-time Turing machine that decides L, and let f ∈ O(2n) be a
function bounding the running time of M on inputs of length n. We assume that for all
n > 0 we have f(n) ≥ f(0) (if not, simply define f ′(n) = max(f(n), f(0)) and use f ′(n) in
place of f(n)).

Given input z ∈ {0, 1}∗, let Cz = Cf(|z|),f(|z|)(M, ϵ, z, f(|z|)) be the configuration that
encodes the runs of M on ϵ on the left sub-path, and on z on the right sub-path, until M

halts, using sub-paths of length f(|z|) in both directions. Since f(|z|) steps suffice for M to
halt on ϵ and on z, but ϵ ̸∈ L, we have Cz ∈ ITER-BOUND iff z ∈ L.

We define a poly-time Turing machine M ′ that decides L as follows: on input z ∈ {0, 1}∗,
M ′ constructs the configuration C ′

z := C2t,2t(M, ϵ, z, f(|z|)), which is essentially the central
portion of Cz, including only 2t nodes to the left and to the right of the pivot (a total of
4t + 1 nodes). Next, M ′ simulates the local algorithm A at all the nodes of C ′

z. Finally, M ′

accepts iff A outputs 1 at all t-central nodes of C ′
z, ignoring the outputs of the other nodes.

It is not difficult to verify that the running time of M ′ is polynomial in |z|, in the
description length of M (which is constant), and in t (which is also constant). To show that
M ′ indeed decides L, suppose first that z ∈ L. Then Cz ∈ ITER-BOUND by construction,
and therefore A must output 1 at all nodes of Cz. But this means that all t-central nodes in
C ′

z must also accept: for each t-central node u in C ′
z, the t-local view of u is the same in Cz

and in C ′
z, because C ′

z is obtained from Cz by removing only nodes at distance greater than
t from u. Since the output of u depends only on its t-local view, and we know that u accepts
in Cz, it must also accept in C ′

z. Therefore M ′ accepts z.
Now suppose that z ̸∈ L. In this case, Cz ̸∈ ITER-BOUND, because in Cz the two inputs

encoded in the configuration are both rejected by M (as ϵ, z ̸∈ L). We claim that at least
one t-central node of Cz must reject; as above, this means that the same node also rejects in
C ′

z, causing M ′ to reject z.
Suppose for the sake of contradiction that all t-central nodes of Cz accept. However,

since Cz ̸∈ ITER-BOUND, we know that some node of Cz rejects; let u be such a node. The
distance of u from the pivot v must be greater than t, since we assumed that no t-central node
rejects. Now fix some string a ∈ L (which must exist, as ∅ ∈ P and we assumed L ̸∈ P), let
n′ = max(f(|a|), f(|z|)), and let Ca,z = Cn′,n′(M, a, z, f(max(|a|, |z|))) be the configuration
encoding the runs of M on a (on the left sub-path) and on z (on the right sub-path), using
sub-paths of length n′, so that M halts on both by the end of both sub-paths. Since a ∈ L,
we have Ca,z ∈ ITER-BOUND, and thus all nodes must accept Ca,z. This includes node u.
However, u is at distance greater than t from the pivot, and therefore its t-local view is the
same in Ca,z and in Cz; thus, u also accepts in Cz, a contradiction. ◁

As to the constant c that appears in the definition of the language ITER-BOUND (where we
required that s ≤ c · 2nL+nR+1), we can choose c to be any constant such that the function
f ∈ O(2n) in the proof above satisfies f(n) ≤ c · 2n for sufficiently large n.
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3.2 Conditional Separation for Polynomial-Time Local Algorithms with
Known Network Size

In the previous section we showed that P ∩ LD ̸⊆ PLD, but our proof used the fact that the
nodes do not know the size of the graph, and therefore their output when the graph is a
short path is the same as their output on a long path, provided their local neighborhood
stays the same. This is a common assumption in distributed computing, but it could be
considered problematic when bounding computational resources as a function of the size
of the graph. In classical computational complexity, this issue typically does not arise, as
centralized algorithms are able to read their entire input and compute its length – with some
notable exceptions, such as sublinear-time algorithms, but there it is usually assumed that
the input’s size is known to the algorithm.

In this section we ask whether the separation of PLD from LD ∩ P continues to hold if the
size of the network is known: let LD[n], PLD[n] be variants of LD, PLD (resp.), where nodes
receive the size n of the graph as part of their input. Is it still true that P ∩ LD[n] ̸⊆ PLD[n]?

In what follows, we prove the second and third parts of Theorem 1. We first prove
that P ∩ LD[n] ̸⊆ PLD[n] would imply P ̸= NP, which makes an unconditional proof of this
separation unlikely. We then show that this separation is implied by the assumption that
UP ∩ coUP ̸= P, which is stronger than assuming P ̸= NP, but still reasonable.

▷ Claim 9. If P ∩ LD[n] ̸⊆ PLD[n], then P ̸= NP.

Proof. We prove the contrapositive: assume that P = NP, and let us show that every language
L ∈ P ∩ LD[n] is also in PLD[n].

Let L ∈ P ∩ LD[n]. We show that L ∈ PLD[n] by constructing a t-local algorithm for L
where every node runs in polynomial time. The idea is to have each node check whether
its t-neighborhood can be extended into a configuration in L. We prove that this decides
L, relying on the fact that L can be decided by a t-local algorithm. Since L ∈ P, asking
whether there exist a configuration (G, x) ∈ L that extends the current t-neighborhood of
the node is an NP-question, and since we assumed that P = NP, the resulting algorithm can
also be computed in deterministic polynomial time, yielding a PLD[n]-algorithm for L.

More formally, let A be a t-local algorithm where each node accepts its t-neighborhood
N t(v) if and only if there exists an identified configuration (G̃, x̃, ĩd) ∈ GC such that

The t-neighborhood of v appears in (G̃, x̃, ĩd), that is, there exists some u ∈ V (G̃) such
that N t(v) = N t

G̃,x̃,ĩd
(u)); and

(G̃, x̃) ∈ L.

We claim that A decides L, and that A is indeed a PLD[n]-algorithm.
To see that A decides L we must prove that for every identified configuration (G, x, id),
If (G, x) ∈ L then all nodes accept: indeed, for every node v ∈ V (G), there exists an
identified configuration (G̃, x̃, ĩd) = (G, x, id), in which the t-neighborhood of v of course
appears, such that (G̃, x̃) = (G, x) ∈ L.
If all nodes accept, then (G, x) ∈ L: fix some LD[n]-algorithm B for L, which exists by
our assumption that L ∈ LD[n]. To show that (G, x) ∈ L, it suffices to show that under
B, all nodes accept in (G, x, id). To that end, let v ∈ V (G). Because v accepts under A,
there exists some identified configuration (G̃, x̃, ĩd) in which v’s t-neighborhood appears,
such that (G̃, x̃) ∈ L. But since B decides L, all nodes must accept in (G̃, x̃, ĩd), which
means that v’s t-neighborhood is accepted under B.

To see that A is an PLD[n]-algorithm, let M be a poly-time Turing machine that decides
L, which exists by our assumption that L ∈ P. Observe that A can be implemented by a
nondeterministic Turing machine M ′ that takes as input the t-neighborhood of node v, and
as witness the identified configuration (G̃, x̃, ĩd) (verifying first that it is a legal identified
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configuration); to verify that the t-neighborhood of v appears in (G̃, x̃, ĩd), we find the unique
node u ∈ V (G̃) that has ĩd(u) = id(v) and verify that N t(v) = N t

G̃,x̃,ĩd
(u); and to verify that

(G̃, x̃) ∈ L, we run M . We note that since the input of node v includes the size of the network
in unary (1n), this computation requires polynomial time in the input of v. Finally, since
we assumed that P = NP, the fact that A can be computed in nondeterministic polynomial
time also implies that it can be computed in deterministic polynomial time, as desired. ◁

Next we prove that the separation PLD ⊊ P ∩ LD holds assuming that UP ∩ coUP ≠ P.
First, let us formally define the class UP [26], which stands for “unambiguous nondeterministic
polynomial-time”:

▶ Definition 10. The class UP is the set of all languages L ⊆ {0, 1}∗ for which there exists
a polynomial-time Turing machine M and a polynomial p, such that

x ∈ L ⇔ ∃! w ∈ {0, 1}p(|x|) : M(x, w) = 1.

Here, ∃! is the quantifier for unique existence.

The class coUP is the class of all languages whose complement is in UP. The intersection
UP ∩ coUP contains some natural problems, such as integer factorization and finding the
winner of parity games [3, 17]. It is easy to see that P ⊆ UP ∩ coUP ⊆ NP ∩ coNP, and it
is widely assumed that UP ∩ coUP ̸= P, as otherwise factoring, upon whose hardness some
cryptographic systems rely, is decidable in polynomial time.

High-level overview. To prove the separation, we fix some language L ∈ UP ∩ coUP\P, and
UP, coUP machines for it, ML, ML̄, respectively. We construct a distributed language on
paths PL, where each configuration is of the form C(z, w, j, b), such that:

z ∈ {0, 1}∗,
w is either the unique witness for the statement “z ∈ L” or the unique witness for the
statement “z ̸∈ L”, depending on which of the two statements is true (clearly both cannot
be true at the same time),
j ∈ [|w|] is an index, and
b = wj is the j-th bit of the witness w.

In the configuration C(z, w, j, b), we give a string z and index j ∈ [|w|] to every node of the
path except for the first and the last nodes of the path. We give the bit b to the first node of
the path, and we give the entire witness w to the last node of the path.

It is not hard to see that PL ∈ P ∩ LD[n]: since the configuration encodes the witness
(it is the input of the last node), a centralized algorithm can decide whether a given path
configuration is in the language or not in polynomial time, using the machines ML and ML̄.
A local algorithm with unbounded computation power can also decide membership in PL by
having each node verify that its input is correctly formatted and matches its neighbors; in
addition, the first node obtains z and j from its neighbor, computes the witness w using its
unbounded computation time, and verifies that b = wj ; the last node computes the witness
w and verifies that it matches its input.

Now assume for the sake of contradiction that PLD[n] = P ∩ LD[n]. Then since PL ∈
P ∩ LD[n], we also have PL ∈ PLD[n], meaning there is a t-local algorithm for PL where
every node runs in poly-time. We show that a centralized poly-time verifier is able to decide
membership in the original language L, by essentially “guessing” the witness bit-by-bit: given
input z ∈ {0, 1}∗, the verifier guesses the j-th bit of the witness w for z by simulating the
first t nodes of the configuration C(z, 0⃗, j, 0): if the first t nodes accept, we guess that wj = 0,
and otherwise we guess that wj = 1. Recall that in PL, the witness w is only supposed to be
given to the last node on the path. We prove that the first t nodes of the configuration must
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“know” whether wj = 0 or wj = 1, even though they do not “see” the witness w at the end
of the path, and this can be exploited to compute the j-th bit in poly-time. After computing
all bits of the witness w, the verifier simply runs ML(z, w), and outputs the same.

Detailed construction. Let z, w ∈ {0, 1}∗ be strings, let j ∈ [|w|] be an index, and let
b ∈ {0, 1} be a bit. We define a configuration C(z, w, j, b) = (G, x) as follows:

G is a path v1, . . . , vn, where n = |z|.
The input assignment x is given by x(v1) = (1, b), x(vi) = (i, z, j) for every 1 < i < n,
and x(vn) = (n, w).

Let L be a language such that L ∈ UP ∩ coUP, and let ML and ML̄ be the respective
verifying Turing machines for L and for L̄. We assume w.l.o.g. that ML and ML̄ take
witnesses of the same polynomial length p; that is, let p be such that for every instance z

of size n, there exists a unique witness w such that |w| = p(n) and either ML(z, w) = 1 or
ML̄(z, w) = 1 (but not both). For a string z ∈ {0, 1}n, let w(z) ∈ {0, 1}p(n) be that witness.

The language PL consists of all configurations C(z, w, j, b) such that w = w(z) and
wj = b.

It is not hard to see that for every L ∈ UP ∩ coUP, we have PL ∈ P ∩ LD[n]. We now
show that for L ∈ UP ∩ coUP\P we have PL /∈ PLD[n].

▷ Claim 11. Assume UP ∩ coUP ̸= P, and let L ∈ UP ∩ coUP\P. Then PL /∈ PLD[n].

Proof. Suppose for the sake of contradiction that PL ∈ PLD[n], and let A be a t-local
polynomial-time algorithm for PL, for some constant t. Let time(A) denote the running time
of A in each node. Then the following centralized, polynomial-time algorithm B decides L
for all inputs of size n > 2t, contradicting the fact that L ̸∈ P. (Inputs of length ≤ 2t can
be decided by, e.g., exhaustive tabulation – going through all of them and hard-coding the
answer into the Turing machine, since there are only finitely many such inputs.)

Given input z of length |z| = n > 2t, for each j ≤ p(n), let aj ∈ {0, 1} be the bit
computed by the following procedure:
1. Construct the configuration C(z, 0⃗, j, 0), where 0⃗ is a vector comprising p(n) zeroes.
2. Simulate the execution of A on the first t nodes v1, . . . , vt of C(z, 0⃗, j, 0).
3. If nodes v1, . . . , vt all accept, set aj = 0, and otherwise set aj = 1.
Finally, let a = a1, . . . , ap(n). The centralized algorithm B runs ML(z, a), and accepts iff
ML(z, a) accepts.

To prove the correctness of our algorithm B, fix z ∈ {0, 1}∗, and let w = w(z) be the
witness corresponding to z. First observe that if z ̸∈ L, then algorithm B rejects: in this
case there does not exist any string a ∈ {0, 1}∗ such that ML(z, a) accepts, so no matter how
a is computed, B will always reject.

Now suppose that z ∈ L. We claim that the string a computed by B is exactly the
witness w such that ML(z, w) accepts: for each j ∈ [p(n)],

If wj = 0, then in the configuration C(z, 0⃗, j, 0), the first t nodes have the same view as
they do in C(z, w, j, wj = 0). (Recall that we assumed n > 2t, and therefore the view
of the first t nodes does not include vn, the only node that is given the full witness w.)
By definition, C(z, w, j, wj) ∈ PL, and therefore all nodes must accept; thus, the first t

nodes must accept in C(z, 0⃗, j, 0). This causes us to set aj = wj = 0.
If wj = 1, then in the configuration C(z, w, j, 0) some node must reject, as this configura-
tion is not in PL. Moreover, every node vk where k > t must accept, because all nodes at
distance > t from v1 have the same view that they would in C(z, w, j, 1), which is in PL.
Therefore it is one of the first t nodes that rejects, causing us to set aj = wj = 1.

This shows that w = a, which means that B accepts z.
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Regardless of whether z ∈ L or not, the runtime of B is polynomial: simulating the
execution of a PLD[n]-algorithm at t = O(1) nodes requires polynomial time, and we repeat
this p(n) times to compute all the bits of the witness. ◁

4 Adding Nondeterminism

In this section we characterize the computation power of nondeterministic local algorithms
with polynomial time local computation, and show that they can decide any language that
can be decided by both a computationally unbounded nondeterministic local algorithm and
poly-time nondeterministic Turing machine. This holds regardless of whether the size of the
network is known or not.

We begin by formally defining the nondeterministic variants of LD, PLD and PLD[n]. Given
a graph G, let C(G) denote the set of all assignments c : V (G) → {0, 1}∗. A nondeterministic
algorithm is one where the nodes are given “nondeterministic advice”, in the form of a
certificate assignment c ∈ C(G):

▶ Definition 12 (The classes NLD, NPLD, NLD[n] and NPLD[n]). A distributed language L is
in the class NLD if there exists an LD-algorithm A such that for every configuration (G, x),

(G, x) ∈ L ⇔ ∃c ∈ C(G)∀id (A accepts (G, (x, c), id) ) .

The class NPLD is defined similarly, but the algorithm A is required to run in polynomial
time at every node, and the certificate c(v) is required to have polynomial length at every
node v.

The classes NLD[n], NPLD[n], are the variants of NLD, NPLD (respectively), where the
size of the network is known to all nodes: each node receives 1n in addition to its usual input.

We emphasize that, following [9], the certificates c are chosen before the UID assignment; in
other words, the certificates may not depend on the UIDs.

Our proof of the first part of Theorem 2, which asserts that NPLD = NP ∩ NLD, uses a
characterization of the class NLD from [7]: NLD is the class of distributed languages that are
closed under lift. A configuration (G′, x′) is a t-lift of a configuration (G, x) if there exists a
mapping ϕ : V (G′) → V (G) such that for every u ∈ V (G′), ϕ induces an input-preserving
isomorphism between N t

G,x(ϕ(u)) and N t
G′,x′(u), meaning that for each v ∈ V (G′) we have

x′(v) = x(ϕ(v)). A distributed language L is closed under lift if there exists some t ≥ 0 such
that for every configuration (G, x) ∈ L, all t-lifts of (G, x) are also in L.

▶ Lemma 13 ([7]). NLD is the class of all distributed languages closed under lift.

We are now ready to prove the first part of Theorem 2.

▷ Claim 14. NPLD = NP ∩ NLD.

Proof. The inclusion NPLD ⊆ NP ∩ NLD is easy to see, as an NPLD-algorithm is in particular
an NLD-algorithm, and it can also be efficiently simulated by a polynomial-time Turing
machine that is given all the nodes’ certificates.

To see that NP ∩ NLD ⊆ NPLD, let L ∈ NP ∩ NLD, let A be a t-local algorithm for L,
and let M be an NP-verifier for L. We construct the following NPLD-algorithm, B: given
a configuration (G, x) on n nodes, we give to each node a certificate c(v) = (i, (G′, x′), w),
where

i ∈ {1, . . . , n} is an index,
G′ and x′ represent the configuration (G, x), using {1, . . . , n} as the vertices,
w is an NP-witness such that M accepts ((G′, x′), w).



E. Aldema Tshuva and R. Oshman 27:13

The nodes locally verify that
Their t-neighborhood in G′ is isomorphic to their true neighborhood in G, using the
indices provided in the certificates as the isomorphism,
x′ correctly describes their input, again using the index,
They received the same (G′, x′) as their neighbors, and finally,
M accepts ((G′, x′), w).

The first part of the verification passes if and only if (G, x) is a t-lift of (G′, x′). If (G, x) ∈ L,
then the certificates specified above cause all nodes to accept. Conversely, if all nodes accept,
then (G′, x′) is a lift of (G, x), and since M((G′, x′), w) accepts, we have (G′, x′) ∈ L. This
implies that (G, x) ∈ L as well, because L is closed under t-lifts. ◁

Finally, consider the setting where the network size is known, that is, the class NLD[n].
In [9], all Turing-decidable distributed languages are shown to be in NLD[n]: the proof is
similar to the proof of Claim 14 above, except that when the size of the graph is known, the
only possible lift is the graph itself. Computational efficiency was not taken into consideration
in [9].

Using a very similar argument, we can modify the proof of Claim 14 to show that
NPLD[n] = NP ∩ NLD[n]: in the proof of Claim 14, if nodes know the network size and
check that the configuration (G′, x′) described in their certificate has that size, then we are
guaranteed (G′, x′) is the true input configuration, rather than merely a lift of it. Thus, when
nodes run M on (G′, x′) using the witness w and verify that it accepts, they are actually
verifying that M accepts the true input configuration, i.e., that the input configuration is in
the language L.

5 A Polynomial-Time Local Hierarchy

Inspired by the centralized polynomial hierarchy on one hand, and by the local hierarchy
of [2] on the other, we conclude by studying a hierarchy that combines both locality and
computational constraints.

5.1 Defining a Polynomial Time Local Hierarchy
In what follows, we let U(G) denote the set of UID assignments V (G) → U .

▶ Definition 15 (The classes Σlocal
k , Πlocal

k , ΣP-local
k , ΠP-local

k ). A distributed language L is in
the class Σlocal

k (resp., ΣP-local
k ) if it can be decided by an LD-algorithm (resp., PLD-algorithm)

A where the nodes are given certificates c1, . . . , ck, quantified as follows:

(G, x) ∈ L ⇒ ∃c1∀c2 . . . Qck ∈ C(G)∀id ∈ U(G) : A(G, x, c1, . . . , ck, id) = 1
(G, x) /∈ L ⇒ ∀c1∃c2 . . . Q′ck ∈ C(G)∀id ∈ U(G) : A(G, x, c1, . . . , ck, id) = 0,

where if k is even then Q is the universal quantifier (∀), and if k is odd then Q is the
existential quantifier (∃); in both cases, Q′ is the opposite quantifier to Q. In the case of the
class ΣP-local

k , the certificates c1, . . . , ck are required to be of polynomial length at every node
(that is, for some polynomials p1, . . . , pk, the quantifiers range only over certificates of length
p1(n), . . . , pk(n), respectively).

The class Πlocal
k (resp., ΠP-local

k ) is defined similarly to Σlocal
k (resp., Πlocal

k ), with the first
quantifier being universal instead of existential.
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We remark that as in the nondeterministic case, the certificates may not depend on the UIDs
(this is the original definition from [2]). This leads to some complications: for example, in
the centralized polynomial hierarchy, ΣP

1 = NP and ΠP
1 = coNP, and in general, for every

k ∈ N we have ΠP
k = coΣP

k (in other words, L ∈ ΠP
k iff L ∈ ΣP

k). This is not the case with the
local hierarchy and with the polynomial-time local hierarchy. For example, the complement
of the condition “there exist certificates such that under all UID assignments, all nodes
accept”, which corresponds to Σlocal

1 , is not the condition “for all certificates and for all UID
assignments, all nodes accept”, which corresponds to membership in Πlocal

1 . Thus, it is not
necessarily the case that L ∈ Πlocal

1 iff L ∈ Σlocal
1 .

Nevertheless, some characteristics of the centralized polynomial hierarchy do carry over
to the local hierarchy, and similarly, to the polynomial local hierarchy: for example, for every
k ≥ 0 we have Σlocal

k ⊆ Πlocal
k+1 and Πlocal

k ⊆ Σlocal
k+1 , as we can simply have the algorithm ignore

the (k + 1)-th level of certificates if desired.

5.2 The Upper Levels of The Hierarchy
We show that on the higher levels of the polynomial local hierarchy, the local computation
constraint dominates the locality constraint: each higher-level class of the polynomial local
hierarchy is equal to the corresponding class of the centralized polynomial hierarchy, with no
loss in expressiveness caused by the locality restriction.

▷ Claim 16 (Theorem 3, part 2). For every k ≥ 2 we have ΠP-local
k = ΠP

k , and for every k ≥ 3
we have ΣP-local

k = ΣP
k .

The proof follows almost immediately from an argument used in [2] to prove that Πlocal
2

contains all Turing-decidable languages: we can use the same argument to prove Claim 16,
taking care to analyze the running times involved.

In [2], to prove that all decidable languages L are in Πlocal
2 , the authors construct a local

distributed algorithm D which, informally speaking, verifies the following statement: “for
every configuration (G′, x′), either (G′, x′) is in L, or (G′, x′) is not the current configuration”.
(This statement is logically equivalent to asserting that the current configuration is in L.) To
that end, the algorithm D is given two certificates: c1, which is universally quantified, is a
description of a configuration (G′, x′), along with indices embedding each node into (G′, x′),
as in the proof of Claim 14; c2, which is existentially quantified, can take one of two forms:

If (G′, x′) ∈ L, then c2 = ⊥ at all nodes.3 The nodes can verify by themselves that
(G′, x′) ∈ L, as they have no computational restrictions, and this is what they do in this
case.
If (G′, x′) ̸∈ L, then c2 points out some inconsistency that convinces the nodes that
(G′, x′) is not the current configuration. For example, c2 may prove that c1 assigns two
nodes the same index, or that there is some node whose true neighborhood does not
match G′, or that there exist two nodes that received different descriptions of (G′, x′).

Together, both certificates assert that “every input configuration that is not in L is not
the current input configuration”, which implies that the current input configuration is in L.
Although this is not stated explicitly in [2], the algorithm that verifies the certificates c1, c2
runs in time polynomial in the size of the graph and the input to the nodes, except when
c2 = ⊥, in which case the nodes need to run some Turing machine whose running time can
be unbounded. This is the part we will replace.

3 This differs from the description of the algorithm in [2], but it is convenient for the way we will use
their algorithm later on.
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To obtain Claim 16 from the argument of [2] described above, consider a language L ∈ ΠP
k

where k ≥ 2 is odd (the proof for even k, and for ΣP
k with k ≥ 3, is similar). Let M

be a ΠP
k-Turing machine for L, such that (G, x) ∈ L iff ∀w1∃w2 . . . ∀wkM(G, x, w1, . . . , wk)

accepts. Let D be the algorithm of [2]. We construct a ΠP-local
k -algorithm D′, which interprets

the certificates c′
1, . . . , c′

k that it receives as follows:
c′

1(v) = (c1(v), w1), where c1(v) is the universally-quantified certificate from the algorithm
D of [2], and w1 is the universally-quantified first witness of M .
c′

2(v) = (c2(v), w2), where c2(v) is the existentially-quantified certificate from the al-
gorithm D of [2], and w2 is the existentially-quantified second witness of M .
For all j > 2 we interpret c′

j(v) = wj , the corresponding witness of M .
The algorithm D′ first verifies that all nodes receive the same witnesses w1, . . . , wk, and that
if c2 = ⊥ at some node, then c2 = ⊥ at all nodes. If c2 = ⊥ at all nodes, then each node
runs M on the configuration (G′, x′) that it extracts from c1, using the witnesses w1, . . . , wk,
and outputs the output of M . On the other hand, if c2 ̸= ⊥, then the nodes collectively run
D on the certificates c1, c2, and output the output of D. Correctness is similar to that of the
original algorithm D: together, the certificates assert that either c1 describes a configuration
in L, or c1 describes a configuration that differs from the current configuration. This is
equivalent to asserting that the current configuration is in L.

The local running time of D′ is equal to that of D when c2 ̸= ⊥, plus the running time of
M . Both are polynomial.

The proof of Claim 16 that we sketched above works for any class in the hierarchy that
includes an alternation of the form ∀∃, as this is what we require to use the algorithm from [2]
(recall that it was originally intended to prove membership in the class Πlocal

2 , which has exactly
this quantifier alternation). Thus, the proof applies to ΠP-local

k for k ≥ 2, and to ΣP-local
k for

k ≥ 3. What about ΣP-local
2 , which has the quantifier alternation ∃∀? It turns out that this

class is indeed different: in the claim below, we prove that ΣP-local
2 = Σlocal

2 ∩ ΣP
2 ⊊ ΣP

2 . This
shows that for Σ2, there is a loss in expressive power compared to centralized computation:
ΣP-local

2 ⊊ ΣP
2 , unlike the classes to which Claim 16 applies.

▷ Claim 17 (Theorem 3, part 1). We have ΣP-local
2 = ΣP

2 ∩ Σlocal
2 ⊊ ΣP

2 .

Proof sketch. The containment ΣP-local
2 = ΣP

2 ∩ Σlocal
2 is, as usual, easy to see. The other

direction follows from the fact, proven in [2], that Σlocal
2 contains only languages that are

closed under lift (in fact, [2] proves that Σlocal
2 = NLD). This means we can apply a proof

very similar to that of Claim 14: given a language L ∈ ΣP
2 ∩ Σlocal

2 , we can construct a
ΣP-local

2 -algorithm for L in the same way that we did in Claim 14, except that the algorithm
is now also given a second, universally-quantified witness w′, which the nodes feed to the
Turing machine M along with the first witness w.

As for the claim that ΣP
2 ∩ Σlocal

2 ⊊ ΣP
2 , it suffices to show that there is some language

L ∈ ΣP
2 \ Σlocal

2 . One such language is defined in [2]: the language EXTS, “exactly two
selected”, which includes all graph configurations where every node is given a Boolean input
and exactly two nodes have the input 1, is not in Σlocal

2 [2], but it is easy to see that this
language is in P, and hence it is in ΣP

2 . ◁
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