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Abstract
We present new lower and upper bounds on the number of communication rounds required for
asynchronous Crusader Agreement (CA) and Binding Crusader Agreement (BCA), two primitives
that are used for solving binary consensus. We show results for the information theoretic and
authenticated settings. In doing so, we present a generic model for proving round complexity lower
bounds in the asynchronous setting. In some settings, our attempts to prove lower bounds on round
complexity fail. Instead, we show new, tight, rather surprising round complexity upper bounds for
Byzantine fault tolerant BCA with and without a PKI setup.
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1 Introduction

Agreement problems are at the core of many distributed systems, finding applications in repli-
cated and reliable systems, transactional systems, cryptocurrencies, and more. It is therefore
not surprising that they have gained a lot of attention in the research community, with tens of
papers written about agreement problems each year. A key metric of the performance of many
distributed tasks, agreement problems included, is their round complexity, or, intuitively,
the number of sequential network round trips required to solve the task. In practice, round
complexity often translates directly to latency, since communication over distributed networks
is slow and forms a major bottleneck in many systems [2, 3, 11, 19, 21, 26, 27, 28, 29].

Arguably the most important and well-known agreement problem, called consensus,
requires all non-faulty parties to unanimously agree on the same valid input value. Unfortu-
nately, a seminal result of Fischer, Lynch and Paterson shows that no consensus algorithm can
guarantee termination in an asynchronous failure-prone system [17]. Interestingly, however,
weaker agreement problem variants can be solved in such systems, and can be sufficient for
many applications.
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In one such problem, known as Crusader Agreement, all parties receive an input, and non-
faulty parties must output either one of the input values or a special value ⊥. All non-faulty
parties outputting a non-⊥ value must agree, and are only allowed to output ⊥ if there were at
least two unique input values among the non-faulty parties [12]. This weakening of consensus
can be quite powerful; intuitively, if a non-⊥ decision represents an action, it ensures that no
conflicting actions will be taken by non-faulty parties. Furthermore, CA and its variants
have been used as subroutines to solve consensus in randomized protocols [1, 6, 7, 9, 25].

Our contributions
In this paper, we focus on the Crusader Agreement (CA) problem, and present an in-depth
study of the achievable round-complexity of the problem and its variants. In particular,
we consider classic CA, as well as two important variants: Binding Crusader Agreement
(BCA) and Graded (Binding) Crusader Agreement (G(B)CA). In BCA, crusader agreement
must be solved, but with the additional requirement that at the time at which the first
non-faulty process decides its output, there exists a non-⊥ value v such that no non-faulty
party can output a different non-⊥ value in any continuation of the execution. Intuitively,
the adversary is bound to one non-⊥ output value and cannot adaptively affect outputs
based on future knowledge. This property has recently been shown to be crucial for solving
randomized consensus an an asynchronous setting [1]. In GBCA, in addition to binding,
confidence levels or grades are introduced, so that parties outputting a non-⊥ value do so
with a grade 1 or grade 2 label, with the guarantee that if any non-faulty party outputs v

with grade 2, no non-faulty party outputs ⊥. This variant of CA is also useful in solving
randomized consensus [1]. For all of these problems, we present lower and upper bounds on
their round complexity in the asynchronous model, considering both crash and Byzantine
failures. We consider networks with n parties and f faulty parties.

The lower bounds for crash-resilient protocols specifically deal with protocols in which
the adversary can adaptively choose the inputs of some of the parties when it schedules their
first actions. While this notion of adaptive inputs might seem unnatural, when using binding
crusader agreement protocols to construct consensus protocols, it is advantageous to use
protocols that are also secure when the adversary is able to choose inputs adaptively, both
in terms of efficiency and simplicity. For further discussion on this topic, we refer the reader
to the full version of the paper.

We first show that binding crusader agreement (BCA) requires 2 rounds if f parties can
crash and 2f + 1 ≤ n ≤ 3f in the adaptive input setting.

▶ Theorem 1. It is impossible to solve crash fault tolerant BCA in 1 round when 2f + 1 ≤
n ≤ 3f , and the adversary can adaptively choose the inputs of the parties.

We next turn to more complex lower bounds showing tasks where at least 3 rounds are
required. First, we show that at least 3 rounds are required for crash-fault resilient graded
binding crusader agreement (GBCA) if 2f + 1 ≤ n ≤ 3f in the adaptive input setting.

▶ Theorem 2. It is impossible to solve crash fault tolerant GBCA in 2 rounds when 2f + 1 ≤
n ≤ 3f , and the adversary can adaptively choose the inputs of the parties.

Protocols solving crash-fault tolerant BCA in 2 rounds and crash-fault tolerant GBCA in
3 rounds have been constructed in [1], showing that these lower bounds are tight.

Next, we show that at least 3 rounds are required for solving Byzantine-fault tolerant
crusader agreement (CA) if there is no PKI setup and 3f + 1 ≤ n ≤ 4f .
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▶ Theorem 3. It is impossible to solve Byzantine fault tolerant CA in 2 rounds when
3f + 1 ≤ n ≤ 4f without PKI.

We also show that this lower bound is tight in the full version of this paper. Lastly, we
show that the same bound holds for Byzantine-fault tolerant binding crusader agreement
(BCA) if there is a PKI setup and f ≥ 2, 3f + 1 ≤ n ≤ 4f .

▶ Theorem 4. It is impossible to solve Byzantine fault tolerant BCA in 2 rounds with PKI
when 3f + 1 ≤ n ≤ 4f and f ≥ 2.

The lower bounds are first proven for one (or two) failures and then generalized to an
arbitrary number of failures. Somewhat surprisingly, for our lower bounds that start with
f = 2, the generalization to arbitrary f > 2 requires a non-trivial argument, requiring both
a stronger lower bound for the f = 2 case and a more intricate method of generalization
(see Appendix B).

Our Contributions: Upper Bounds
While thinking through the aforementioned lower bounds, some bounds seemed elusive and
quite hard to achieve. This led us to the discovery of some surprising upper bounds. For
example, the final lower bound described in the previous section looks suspiciously different
from the other bounds: it only holds when f ≥ 2. It turns out that the reason a more general
lower bound couldn’t be constructed is that there exists a protocol solving Byzantine-fault
tolerant binding crusader agreement in 2 rounds if there is a PKI setup and n = 4, f = 1!
Following this discovery, we constructed two more protocols that work for a small number of
parties but don’t seem to obviously generalize to any n and f . More precisely, we construct
protocols solving Byzantine-fault tolerant binding crusader agreement in 3 rounds without a
PKI setup for n = 4, f = 1 and for n = 7, f = 2. The resulting protocol is also a 3-round
Byzantine-fault tolerant crusader agreement protocol for any n, providing a matching upper
bound to one of above lower bounds.

A key insight to constructing these protocols is to design them to be as patient and
conservative as possible. By conservative, we mean that parties output a non-⊥ value only
if they have to. More concretely, they output the value v only if they see that their view
could have been generated in a run in which all nonfaulty parties had the input v. In this
case, parties must output v; otherwise, they may violate the validity of the protocol in some
run. In all other cases, parties output ⊥. By patient, we mean that parties wait and output
a value only when they absolutely have to. More precisely, we aim to have parties output
a value only when their view could have been generated in a run of the protocol in which
they may not receive any more messages. Clearly, if they do not output a value at that
point, there is a run in which they never output a value. This allows us to gather as much
information as possible before parties output some value.

A somewhat surprising realization is that many protocols aren’t as patient as they are
allowed to be. For example, many protocols simply wait to hear n − f messages in a given
round before proceeding to the next. On the other hand, patient protocols could wait for
even more information. For example, in the second round of the protocol, parties could
wait to hear both round 1 and round 2 messages from the same n − f parties, and for each
others’ reports to be consistent. From our upper bounds it seems like these conditions can be
quite intricate and potentially very expensive to compute for large values of n. As such, we
don’t suggest these protocols as realistic upper bounds, but rather almost as an impossibility
result, showing that a lower bound cannot be constructed for these cases. In further work,
we hope to either show that these upper bounds are general, or that a lower bound can be
constructed for some f ≥ 3.

OPODIS 2023
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Related Work
It is well known that there are many impossibility results and lower bounds on distributed
protocols [23]. Early results in the field show lower bounds on the round complexity in
synchronous networks. For example, Fischer and Lynch show that f + 1 rounds are needed to
reach Byzantine consensus in [16]. This lower bound was later generalized to authenticated
protocols in [10] and [14]. In addition, similar lower bounds have been shown for synchronous
crash-resilient consensus [4, 15]. Bounds are also known on early-stopping consensus, showing
that if the number of actually faulty parties is smaller than the corruption threshold, the
number of needed rounds is at least 2 more than the number of corrupted parties [13].

On the other hand, fewer lower bounds are known on the round complexity of asynchronous
protocols. The FLP result [17] shows that no deterministic consensus algorithm exists in an
asynchronous system, even in the face of a single crash failure. More precisely, the proof
shows that any consensus protocol in this setting has an infinite execution, essentially showing
that the round complexity of such protocols is infinite. Similarly, the CAP theorem states
that no distributed database can have consistency, availability and resilience to network
partitioning [18, 24].

Concurrent work by Attiya and Welch deals with a new primitive called connected
consensus [5]. This primitive generalizes both crusader agreement and graded crusader
agreement. In this work, Attiya and Welch construct several protocols solving this task,
and provide lower bounds on the efficiency of such protocols. For example, they construct
unauthenticated protocols solving binding crusader agreement and graded binding crusader
agreement in 1 and 2 rounds respectively, as well as several other protocols. Note that
their protocols do not consider adaptive inputs, meaning they can avoid the lower bounds
of Theorems 1 and 2. In addition, their work includes lower bounds showing that GBCA
requires 2 rounds in the case of crash failures with n ≤ 4f and in the case of Byzantine
failures with n ≤ 9f .

2 Model & Definitions

2.1 Model
Network

This work deals with a network of n parties connected via point-to-point communication
channels. The network is asynchronous, meaning that there is no bound on message delay,
but every message is eventually delivered in finite time. We assume that the point-to-point
channels deliver messages in a FIFO order. The means that if a party sends a message m

and then a message m′ to the same party, the messages are delivered in that order. This can
be enforced by simply adding a counter to each message, signifying when it was sent.

We model message delivery as being controlled by an adversary that can choose any
delivery schedule as long as all messages are eventually delivered. We consider two types of
faults in this work: crash and Byzantine faults. In networks with crash faults the adversary
may cause up to f parties to crash, meaning that those parties do not take any further actions
(including receiving or sending messages). On the other hand, in networks with Byzantine
faults the adversary can control up to f parties and cause them to deviate arbitrarily from
the protocol.

Finally, when we say that a network has a PKI setup, we mean that each party has a
well-known public key and a private key that allow it to sign messages. Every party can use
the public key to check that a message was indeed sent by a given party. In addition, parties
can forward received messages with their signatures, proving that the message was indeed
sent by the signing party.
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Asynchronous Rounds

In the synchronous setting, rounds are very clearly defined using the bound ∆ on message
delivery. Defining the notion of round complexity for asynchronous protocols is less straight-
forward [8, 20, 22], and we follow [22]. We use the idea of “causal chains” in our definition of
asynchronous round complexity. Intuitively, we can think of chains of messages, with each
message being sent as a result of receiving previous messages. When a message is sent, it
lengthens its chain by 1, and it is considered a round k message if its chain is of length k.
When mapping this behaviour to synchronous systems, all of the messages that are sent
without receiving any message will be sent in round 1. Round 2 messages will be sent after
receiving round 1 messages, etc.

More precisely, if a message is sent in the beginning of the protocol without receiving any
other message, we consider it to be a round 1 message. If a message is sent by a nonfaulty
party as a result of receiving all messages in a set M , we consider it a round k + 1 message,
where k is the maximal round number for nonfaulty messages in M (or k = 0 if there is no
such message). We say that a party is in round k if it sent or received at least one round k

message, and did not send or receive any higher-round message.
Using this notion of round complexity, we can define a k-round protocol:

▶ Definition 5 (k-Round Protocol). A protocol is a k-round protocol if all honest parties
decide a value after at most k rounds.

Note that it is possible that protocols never terminate or do not have a bound k on the
number of rounds. If this happens, these protocols can be defined as having infinite round
complexity, but we deal only with finite round complexity protocols in this work.

Adaptive Inputs

We say that an adversary can choose inputs adaptively if parties only have their inputs
defined by the adversary at the moment they start participating in the protocol. When
dealing with binding protocols, to be defined below, this means that the binding values can
only depend on the state of the nonfaulty parties that started participating in the protocol
at that time, and cannot depend on the inputs of parties that haven’t started participating
in the protocol.

2.2 Definitions
We start by defining the different tasks for which we have constructed lower and upper
bounds. In this work we only consider protocols in which parties decide on values but
continue sending messages even after their decision. This is a very common technique in the
design of asynchronous protocols, allowing parties to help each other even after they have all
the information needed to complete the protocols.

▶ Definition 6 (Crusader Agreement (CA)). In a Crusader Agreement protocol, each party
has either 0 or 1 as an input, and parties decide either 0, 1 or ⊥. A Crusader Agreement
protocol has the following properties:
(Agreement) If two nonfaulty parties decide values x and y, then either x = y or one of the

values is ⊥.
(Validity) If all nonfaulty parties have the same input, then this is the only possible decision

for nonfaulty parties.
(Termination) All nonfaulty parties eventually decide.

OPODIS 2023
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To be able to implement CA with an optimal tolerance to crash faults, we must weaken
its validity property to the following:

(Weak Validity) If all parties have the same input v, then all nonfaulty parties decide v.

▶ Definition 7 (Graded Crusader Agreement (GCA)). In a Graded Crusader Agreement
protocol, each party has either 0 or 1 as an input, and parties decide on pairs (v, g) such that
v ∈ {0, 1, ⊥}, g ∈ {0, 1, 2} and v = ⊥ if and only if g = 0. A Graded Crusader Agreement
protocol has the following properties:
(Graded Agreement) If two nonfaulty parties decide on the pairs (v, g), (v′, g′), then |g − g′| ≤

1 and if v ̸= v′, either v = ⊥ or v′ = ⊥.
(Validity) If all nonfaulty parties have the same input v, then all nonfaulty parties decide

(v, 2).
(Termination) All nonfaulty parties eventually decide.

We define crash fault tolerant CA by weakening the validity property as with the non-
graded version. We are also interested in the binding versions of both of these protocols.
These protocols add an additional requirement that once the first nonfaulty party completes
the protocol, the decision values are “bound”. In a BCA protocol this means that even if the
first party decides ⊥, at that time we know which is the only possible non-⊥ decision value.

▶ Definition 8 (Binding Crusader Agreement (BCA)). A Binding Crusader Agreement protocol
has all of the properties of a Crusader Agreement protocol as well as the following property:
(Binding) At the time at which the first nonfaulty party to decide decides on a value, there

exists a value b ∈ {0, 1} such that no nonfaulty party decides 1 − b in any extension of
this execution.

Note that the binding property is only interesting in the case that the nonfaulty party
referred to in the definition decided ⊥. Otherwise, it trivially follows from agreement. Like
in the binding definition of crusader agreement, once the first nonfaulty party decides on a
value in a graded binding crusader agreement protocol, there is only one non-⊥ value that
can be output from the protocol (with some grade).

▶ Definition 9 (Graded Binding Crusader Agreement (GBCA)). A Graded Binding Crusader
Agreement protocol has all of the properties of a Graded Crusader Agreement protocol as well
as the following property:
(Graded Binding) At the time at which the first nonfaulty party to decide decides on a value,

there exists a value b ∈ {0, 1} such that no nonfaulty party decides either (1 − b, 2) or
(1 − b, 1) in any extension of the protocol.

We define crash fault tolerant BCA and GBCA by weakening the validity property as
with the non-graded version.

3 Lower Bounds

General Proof Approach

Each of the presented lower bounds is proven in two steps. We start by proving a lower
bound for a small number of parties, setting f to be 1 or 2. We then generalize these proofs
in Appendix B. We show that if a protocol exists for some larger values of n and f , then
such a protocol exists for the n and f for which we proved the original lower bound with the
same round complexity. This is done by assuming that more general protocols exist, and
showing that parties can simulate these protocols in the original settings (with a smaller
number of parties).
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For the proof of each lower bound, we construct a series of worlds. The worlds are
constructed strategically to show that a party must take a certain action because their view
is indistinguishable from another world where taking a different action would violate some
property. In particular, we show indistinguishability with worlds where (1) all (nonfaulty)
parties start with the same value, so deciding a different value would result in a violation of
validity, and (2) all nonfaulty parties have sent all possible messages, so waiting for additional
messages before deciding would result in a violation of termination. We put the descriptor
“nonfaulty” in parenthesis where relevant due to the difference in the validity condition for
crash and Byzantine fault tolerant protocols. To give the reader a hint as to the purpose of
each world in our proofs, we add certain labels to the worlds.

We now describe the labels. In an x-validity world, all (nonfaulty) parties have input
value x. In a false x-validity world, the view of some (nonfaulty) party is the same as in an
x-validity world, causing them to decide a non-⊥ value (and grade 2, where relevant) even
though all (nonfaulty) parties did not have the same input values. In a maximally patient
world, a party receives all the messages that will be sent to them by nonfaulty parties, and
therefore must decide without waiting for additional messages that depend on the actions
of faulty parties. For the maximally patient label, we also indicate the party that crashes,
meaning another party cannot wait for messages that depend on this party before deciding
without violating termination. In a false maximally patient world, a nonfaulty party’s
view is the same as in a maximally patient world, so they decide before receiving all of the
messages sent by nonfaulty parties. As previously mentioned, our proofs generally proceed
by constructing a chain of worlds, where there are “validity worlds” on opposite ends, and in
the middle of the chain some property (binding or agreement) is violated. We indicate when
a world is symmetric to another previously-described world on the opposite end of the
chain. We use the labels binding violation and agreement violation to indicate worlds
in which the properties of binding and agreement are violated, respectively.

In addition to using labels, we separate the description of each world into two bullets.
The first bullet indicates the messages sent by the parties and any message delays or specific
orderings where needed. The second bullet indicates the view of one or more nonfaulty
parties and the actions they take accordingly.

3.1 Results

For our first result, we start with a simple 1 round lower bound for crash fault tolerant BCA
with adaptive inputs.

▶ Theorem 1. It is impossible to solve crash fault tolerant BCA in 1 round when 2f + 1 ≤
n ≤ 3f , and the adversary can adaptively choose the inputs of the parties.

We show a proof for a network of three parties: p1, p2, and p3. Our ultimate goal is
to build up to World 4, in which binding is violated. In World 4, a party decides while
p3 lags behind; after this, the adversary adaptively chooses the input of p3 and forces p3
to decide 1 or 0 after a party has already decided. In order to show why p3 decides 1 or
0 in those executions, we show indistinguishability from World 1 or World 2, where all
parties start with input 1 or 0, respectively. In those worlds, p3 must decide 1 or 0 in order
to not violate validity. To show why the first-deciding party decides in World 4 without
waiting for any messages from p3, we show indistinguishability from World 3, in which p3
crashes without sending any messages. In World 3, parties cannot wait for messages that
are dependent on p3 before deciding, as this would result in a violation of termination.

OPODIS 2023
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3 party proof.
World 1 (1−validity, maximally patient for p2 crash):

p1 and p3 are nonfaulty. p2 crashes immediately. All parties have input 1.
p1 and p3 must decide 1 after receiving each other’s messages without waiting for any
additional messages by validity and termination.

World 2 (0−validity, maximally patient for p1 crash):
p2 and p3 are nonfaulty. p1 crashes immediately. All parties have input 0.
p2 and p3 must decide 0 after recieving each other’s messages without waiting for any
additional messages by validity and termination.

World 3 (maximally patient for p3 crash):
p1 and p2 are nonfaulty. p3 crashes immediately. p1 and p3 start with inputs 1 and 0
respectively.
p1 and p2 must decide after receiving each other’s messages without waiting for any
additional messages by termination.

World 4 (false maximally patient, false validity, binding violation):
p1, p2, and p3 are nonfaulty. p1 starts with input 1 and p2 starts with input 0; p3
lags behind, and its input will be adaptively chosen later. p1 and p2’s messages are
delivered to each other, so they decide due to indistinguishability from World 3. The
adversary now chooses one of the following extensions:

1. p3 has input value 1. p1’s messages are delivered to p3, and p2’s messages are only
delivered after p3 decides.

2. p3 has input value 0. p2’s messages are delivered to p3, and p1’s messages are only
delivered after p3 decides.

In extension 1, p3 outputs 1 due to indistinguishability from World 1; or in extension 2,
p3 outputs 0 due to indistiguishability from World 0. This constitutes a binding
violation, as we show that both 1 or 0 are possible values that p3 decides after another
party has already decided. Note that this does not imply a violation of agreement, as
it is possible for the party (or parties) deciding before p3 to decide ⊥. ◀

We now present our second result in the crash case: a 2 round lower bound for GBCA.

▶ Theorem 2. It is impossible to solve crash fault tolerant GBCA in 2 rounds when 2f + 1 ≤
n ≤ 3f , and the adversary can adaptively choose the inputs of the parties.

We show a proof using a network of three parties: p1, p2, and p3. Our approach is to
build up to a world, World 3, in which there is a violation of binding. The strategy of the
adversary to violate binding is as follows. First, p1 is forced to output before p3’s input value
is chosen. Then, the adversary chooses p3’s input and forces them to decide 1 or 0, thus
breaking binding. To show how the adversary has p3 decide 1 or 0 in World 3, we present 2
symmetric sets of 3 worlds. Each set consists of the following three types of worlds:
1. A validity world showing why a party must decide a non-⊥ value with grade 2
2. A world where one of the parties crashes
3. A world that is both indistinguishable from the first type of world for some party other

than p3 (meaning that it decides a non-⊥ value with grade 2) and indistinguishable from
the second type of world for p3, showing why p3 decides the non-⊥ value that it does (so
as not to violate graded agreement) in each extension of World 3 without waiting for
more messages (so as not to violate termination).

For ease of exposition, we include only the worlds described in point 3 above (World 1 and
World 2) in the main proof of this theorem. We separate the indistinguishability arguments
and the corresponding worlds into two lemmas: Lemma 10 and 12. Apart from the 2 sets of



I. Abraham, N. Ben-David, G. Stern, and S. Yandamuri 29:9

3 symmetric worlds described above, and World 3 in which binding is broken, we construct
an additional world to show why p1 decides in World 3 while p3 lags behind. This world
and the corresponding indistinguishability argument are proven separately in Lemma 13.
We provide the proof of the first lemma after the proof of Theorem 2 and refer the reader
to Appendix A for similar proofs of the next two lemmas.

3 party proof. In the description of the following worlds, we only describe the runs until a
specific point, and have some arbitrary message scheduling following that.

World 1 (false 1-validity, false maximally patient):
p1, p2, and p3 are nonfaulty. p1 and p3 have input 1, while p2 has input 0. Initially,
p1’s round 1 messages are delivered to p2 and p3, and then p3’s round 1 messages
are delivered to p1 and p2. Following that, any round 2 messages that p1 sends are
delivered to p2, and any of p3’s round 2 messages are delivered to p1 and p2. From
this point on, p2 and p3’s messages are delivered to each other without delay.
By Lemma 10, p3 decides without waiting for additional messages, and its output is of
the form (1, g) such that g ∈ {1, 2}.

World 2 (false 0-validity, false maximally patient, symmetric to World 1):
p1, p2 and p3 are nonfaulty. p1 has input 1, and p2 and p3 have input 0. Initially,
p2’s round 1 messages are delivered to p1 and p3, and then p3’s round 1 messages
are delivered to p1 and p2. Following that, any round 2 messages that p2 sends are
delivered to p1, and any of p3’s round 2 are delivered to p1 and p2. From this point
on, p1 and p3’s messages are delivered to each other without delay.
By Lemma 12, p3 must decide (0, g) for g ∈ {1, 2}.

World 3 (binding violation, false maximally patient):
p1, p2 and p3 are nonfaulty. p1 has input 1, p2 has input 0, and p3’s input will be
adaptively chosen by the adversary based on the value it wants p3 to output after
the first party to output does so. At the start of the execution, p1 and p2’s round 1
messages are delivered to each other, and then any resulting round 2 messages are
delivered to each other. By Lemma 13, p1 outputs without waiting for any messages
that depend on p3 at this time. We will now show two extensions of this run, one in
which p3 outputs (1, g) for some g ∈ {1, 2}, and one in which it outputs (0, g) for some
g ∈ {1, 2}, showing that the protocol is not binding.

1. The adversary adaptively chooses input 1 for p3. Following that, p3 receives p1’s
round 1 messages, and then continues communicating freely with p2 without any
delays. At this point in time, p3’s view consists of round 1 messages from p1 and
p2 and any round 2 messages from p2 sent as a result as receiving p1’s round 1
messages and then p3’s round 1 messages. This view is identical to the one it has in
World 1, so p3 decides (1, g) for some g ∈ {1, 2}.

2. The adversary adaptively chooses input 0 for p3. Following that, p3 receives p2’s
round 1 messages, and then continues communicating freely with p1 without any
delays.
At this point in time, p3’s view consists of round 1 messages from p1 and p2 and
any round 2 messages from p1 sent as a result as receiving p2’s round 1 messages
and then p3’s round 1 messages. This view is identical to the one it has in World
2, so p3 decides (0, g) for some g ∈ {1, 2}. ◀

▶ Lemma 10. In World 1 from the proof of Theorem 2, p3 must decide (1, g) for g ∈ {1, 2}
without waiting for any round 2 messages from p1.

OPODIS 2023
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Proof.
World 1.a) (1-validity, maximally patient for p2 crash):

p1 and p3 are nonfaulty. p2 crashes without sending any initial messages. All three
parties start with input 1. p1 and p3 communicate without delay.
p1 and p3 must decide (1, 2) without waiting for any messages from p2 by validity and
termination.

World 1.b) (maximally patient for p1 crash):
p1 and p3 have input 1, while p2 has input 0. p1 is faulty, sends round 1 messages,
which are delivered to both p2 and p3, and then p1 crashes. Following that, p3’s round
1 messages are delivered to p2. Finally, p2 and p3’s messages are delivered to each
other without delay.
Because p1 crashed, p2 and p3 must decide without waiting for any round 2 messages
sent by p1, by termination.

We now argue why in World 1 from the proof of Theorem 2, p3 must decide (1, g) such
that g ∈ {1, 2} without waiting for any round 2 messages from p1. First, we show that p1
decides (1, 2), in World 1. Observe that p1’s view in World 1 is indistinguishable from
its view in World 1.a because p1 and p3 have input 1 and they start by exchanging both
round 1 and round 2 messages. It follows that p1 decides (1, 2), and thus when p3 decides
some value, it must decide (1, g) such that g ∈ {1, 2} by graded agreement. Next, we argue
that p3 must decide in World 1 without waiting for any round 2 messages from p1. Observe
that in World 1, since p1’s messages (apart from any round 1 messages) are delayed for p3,
p3’s view is indistinguishable from its view in World 1.b. As a result, p3 must not wait for
any round 2 messages from p1 before deciding so as not to violate termination. Note that p2
cannot send any messages which rely on p1’s round 2 messages, because this is a 2-round
protocol, so p3’s view is indeed indistinguishable in both worlds. ◀

For our third result, we show a lower bound for Byzantine fault tolerant CA without PKI.
With a Byzantine adversary and no PKI, the faulty parties are able to simulate receiving
certain messages from nonfaulty parties.

▶ Theorem 3. It is impossible to solve Byzantine fault tolerant CA in 2 rounds when
3f + 1 ≤ n ≤ 4f without PKI.

We present a proof for 4 parties: p1, p2, p3 and p4. In this proof, we build up to World 5
in which agreement is violated because nonfaulty parties p1 and p4 decide 1 and 0, respectively.
We start by showing two maximally patient worlds (World 1 and World 2), where one
party has omission failures and sends its input value message only to one other party. By
termination, the nonfaulty parties must not wait to hear more messages before deciding. We
then show two symmetric validity worlds (World 3 and World 4) in which a Byzantine
party simulates receiving a message from a non-faulty party that it didn’t send. Due to
indistinguishability from the maximally patient worlds, honest parties must decide without
waiting for additional messages, but they must decide non-⊥ values by validity. Finally, in
World 5, the adversary uses a Byzantine p3 to have p1 and p4 decide different non-⊥ values
using indistinguishability from the previously defined worlds.

4 party proof. In the following discussion, when we say that parties p1, p2 and p3 have each
other’s messages delivered, we mean that the party receives its own messages first, and then
p1’s messages are delivered first, then p2’s and then p3’s (similarly for p2, p3 and p4).
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World 1 (maximally patient for p4 crash):
All parties except p4 are nonfaulty. p4 crashes immediately without sending any
messages. p1 and p2 have input 1; p3 and p4 have input 0. p1, p2 and p3 have their
round 1 messages delivered to each other, and then any round 2 messages that they
send as a result are delivered to each other.
All nonfaulty parties must decide without waiting for any messages dependent on p4.

World 2 (maximally patient for p1 omission, symmetric to World 1):
All parties other than p1 are nonfaulty; p1 has omission failures. p1 and p2 have input
1, while p3 and p4 have input 0. p1 sends round 1 messages as an honest party would
with input 1 only to party p2, and the messages are delivered first for p2. Following
that, p2, p3 and p4 have their round 1 messages delivered to each other, and then any
round 2 messages that they send as a result are delivered to each other.
All nonfaulty parties must decide without waiting for any more messages from p1 by
termination.

World 3 (0-validity, false maximally patient, simulation):
All parties except for p2 are nonfaulty. p2 is Byzantine. p1, p3 and p4 start with 0. p2
acts as if it started with input 1 and simulates p1 starting with input 1. All messages
from p1 are delayed to p3 and p4, until they both decide. p2 acts as if it is a nonfaulty
party with input 1 such that the first message it received was a round 1 message from
an honest p1 with input 1. Following that, p2, p3 and p4 have their round 1 messages
delivered to each other, and then any round 2 messages that they send as a result are
delivered to each other.
Due to indistinguishability from World 2, p4 decides without waiting for any additional
messages. By validity, p4 decides 0.

World 4 (1-validity, false maximally patient, simulation, symmetric to World 3): p3 is
Byzantine, and the remaining parties are nonfaulty. p1, p2, and p4 start with input 1;
p3 acts as if it nonfaulty and has the input 0. All messages from p4 are delayed to p1
and p2. p1, p2 and p3 have their round 1 messages delivered to each other, and then
their round 2 messages delivered to each other.
Due to indistinguishability from World 1, p1 decides before receiving any messages
from p4. By validity, p1 decides 1.

World 5 (agreement violation, false maximally patient, false validity): p3 is Byzantine,
and the remaining parties are nonfaulty. p1 and p2 have input 1, while p3 and p4 have
input 0. p3 starts by acting as a nonfaulty party would with input 0. Parties p1, p2
and p3’s round 1 messages are delivered to each other, and then any round 2 message
that they sent as a result of receiving the round 1 messages. Following that, p3 acts as
if it did not receive any round 1 messages from p1. Now, p4’s round 1 messages are
delivered to p2 and p3, and their round 1 messages are delivered to p4. Finally, all
round 2 messages sent by p2 and p3 are delivered to p4.
This world is indistinguishable from World 4 for p1 since it exchanged round 1 and
round 2 messages with parties p2 and p3 with the same inputs without hearing from
p4. In addition, this world is indistinguishable from World 3 for p4 because p1 acts
as if it first received round 1 messages from p1 with input 1, and then p2, p3 and
p4 exchange round 1 and round 2 messages without receiving any further messages
from p1. Therefore, p1 and p4 decide 1 and 0 respectively, violating the agreement
property. ◀
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For our second lower bound in the Byzantine case, we prove the impossibility of Byzantine
fault tolerant BCA with PKI in 2 rounds when f ≥ 2. Since there is PKI, the faulty parties
can no longer simulate receiving messages from nonfaulty parties. This necessitates a slightly
more complex approach than that required for the previous lower bound.

▶ Theorem 4. It is impossible to solve Byzantine fault tolerant BCA in 2 rounds with PKI
when 3f + 1 ≤ n ≤ 4f and f ≥ 2.

In this proof, we build up to a World 6 where we show a binding violation by having an
extension where a nonfaulty p1 decides 1 and an extension where a nonfaulty p7 decides 0
after another nonfaulty party p5 decides. Unlike in the proof of the previous lower bound,
we can no longer rely on simulation due to the presence of PKI. If we want a nonfaulty party
to decide a non-⊥ value v ∈ {0, 1}, it can hear that at most f = 2 parties started with 1 − v.
This is because, in order to argue that a party must decide a non-⊥ value in a given world,
we show that this party’s view is indistinguishable from its view in another world in which
all nonfaulty parties started with that value, enabling us to invoke validity. With PKI, if a
party hears that more than f parties started with the value opposite its input value, then it
knows that it is not in a validity world. As such, when attempting to understand this proof
it is helpful to work backwards, starting from World 6 to see the views of p1 and p7 when
they decide 1 and 0, respectively. The maximally patient worlds World 1, World 2, and
World 5 show why p1, p5, and p7 decide without waiting for additional messages in World
6. To show why the views of p1 and p7 are indistinguishable from validity worlds, forcing
them to decide 1 and 0 respectively, we show World 3 and World 4 in which the honest
parties all start with the same value.

Proof. As in previous proofs, when we say a party receives messages from a list of parties,
they receive the messages in the listed order. For example, if a party receives messages from
p1, . . . , p4, it receives the messages from p1 first, then p2, and so on.

World 1 (maximally patient for p2 and p1 crash):
All parties except p1 and p2 are nonfaulty. p1 and p2 crash immediately without
sending any messages. p3 and p4 start with input 1, while p5, p6 and p7 start with
input 0.
All nonfaulty parties must decide without waiting for any messages dependent on p1
or p2; otherwise, termination is violated.

World 2 (maximally patient for p5 crash and p6 omission):
All parties except p5 and p6 are nonfaulty. p1, p2, p3, and p4 start with input 1. p6
and p7 start with input 0. p5 crashes immediately without sending any messages. p6
is omission failure; all messages except for any round 1 messages it sends to p2 are
omitted, and these messages are delivered for p2 before any messages from any other
parties.
Nonfaulty parties must decide without waiting for any messages dependent on p5
or any messages dependent on p6 (other than any round 1 messages it sends to p2);
otherwise, termination is violated.

World 3 (0-validity, false maximally patient):
p3 and p4 are Byzantine and have input 1. The rest of the parties are honest and start
with input 0. All messages from p1 and p2 are delayed for the other parties. p3, p4, p5,
p6 and p7 exchange the same messages as in World 1 and in the same order.
This world is indistinguishable from World 1 for p7. Therefore, it decides without
waiting for any additional messages. By validity, p7 decides 0.
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World 4 (1-validity, false maximally patient):
p6 and p7 are Byzantine and start with input 0; the rest of the parties are honest and
start with input 1. All messages from p5 are delayed for the other parties. p6 doesn’t
send any messages except for any round 1 messages that it would have sent to p2 if it
was honest, and as in World 2, this message is delivered for p2 before any messages
from any other parties. p1, p2, p3, p4 and p7 send the same messages in the same order
as in World 2.
The world is indistinguishable from World 2 for p1, so it decides without waiting for
any additional messages. By validity, p1 decides 1.

World 5 (maximally patient for p7 and p1 omission):
All parties except for p1 and p7 are nonfaulty. p1, . . . , p4 start with input 1 and p5, . . . , p7
start with input 0. All honest parties start by sending their round 1 messages. p7
crashes immediately after sending its round 1 messages to all of the other parties. p1
is omission failure, and the only message it sends is its round 1 message to p2. p2
receives round 1 messages from p6 first, then from p1, . . . , p4 and p7, and finally from
p5. p2 sends round 2 messages as a result of receiving the aforementioned round 1
messages. Parties p3, . . . , p6 receive round 1 messages from p3, . . . , p7 and send any
resulting round 2 messages. They receive any round 1 messages from p2 following
that, and possibly send additional round 2 messages. Finally, p5 receives all round 2
messages from parties p2, . . . , p6.
Note that parties p2, . . . , p6 received all round 1 messages sent by each other, and
p5 received any round 2 message sent as a result from these parties as well. This
means that p5 receives all messages from nonfaulty parties in this world, and thus by
termination, p5 decides without waiting for any additional messages.

World 6 (binding violation, false maximally patient):
p3 and p4 are Byzantine, and the remaining parties are nonfaulty. p1, . . . , p4 have the
input 1 and p5, . . . , p7 have the input 1, like World 5. Initially, all messages from
other parties are delayed for p7 and p1. In addition, messages from p1 are delayed
for p3, . . . , p6. The beginning of the run is exactly the same the run in World 5 for
p2, . . . , p6, with p3, p4 sending the required messages only to parties p2, . . . , p6 and not
to p1, p7. Since p5’s view is identical to one which causes it to decide, it decides some
value in this world as well. Next, we show the two executions in which the adversary
can get p1 to decide 1 or p7 to decide 0, which would mean the protocol isn’t binding.

(Extension where p1 decides 1) p1 and p7 start by receiving round 1 messages
from p1, . . . , p4, p7. p1 then receives any round 2 messages from p1, . . . , p4, p7 except
for p2 final round 2 message sent by p2 as a result of receiving p5’s round 1 message
(which it received last). In the above, p3 and p4 are Byzantine, and they only send
p1 the round 2 messages they would have as a result of receiving round 1 messages
from p1, . . . , p4, p7. Note that p1 receives round 1 messages from p1, . . . , p4, p7 and
then round 2 messages from p1, . . . , p4, p7 corresponding to p2 receiving p6’s round
1 messages first, and then all of the parties receiving round 1 messages from each
other. p1’s view is identical to the view it would have in World 4, so it decides 1.
(Extension where p7 decides 0) p7 sees round 1 messages from p3, . . . , p6, and
then all round 2 messages that they sent as a result of receiving round 1 messages
from p3, . . . , p7. Note that they received round 1 message from p1, p2 only after
receiving those messages. At this point, p7’s view is identical to its view in World
3, so it decides 0. ◀
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▶ Remark 11. It is possible to define S = {p2, p3, p5, p7} and T = {p1, p4, p6}. For these sets,
S∪T = {p1, . . . , p7}, S∩T = ∅ and |S| = 4, |T | = 3. In the proof of Theorem 4, the adversary
always corrupts at most one party in S and one party in T . From Theorem 15 we can conclude
that no 2-round Byzantine fault tolerant protocol exists even for any 3f + 1 ≤ n ≤ 4f and
f ≥ 2.

4 Upper Bounds

Notation

The notation for a message from a party pi is i. The initial message from a party is a special
case, as it also contains a subscript v ∈ {0, 1} indicating the party’s input value. The first
message in a valid chain of messages is always an initial message of this form. Chains of
messages are separated by the operator ·. As an example, ⟨i1 · j⟩ is a length two chain where
pj is forwarding the initial message of pi, where pi has input value 1. We define the notion
of a prefix of a chain recursively. Message chain C ′ is a prefix of chain C if C ′ = C or there
exists a party pj such that ⟨C ′ · j⟩=⟨C⟩. We say that a message chain C depends on party
pi if the first message in the chain is of the form ix such that x ∈ {0, 1} or there exists a
prefix of chain C, P , such that ⟨P · i⟩ is also a prefix of chain C.

4.1 Results
The following upper bounds are designed such that parties forward any message they receive
each other and wait for as long as they can (or nearly as much as they can). By this we
mean that parties only decide on values if the messages they received could have been all
messages nonfaulty parties ever send throughout an execution of the protocol. The protocols
are also conservative in the sense that parties default to outputting ⊥ unless doing so might
lead to a validity violation. A party is forced to output a value x ̸= ⊥ if its view could have
been obtained in an execution in which all nonfaulty parties have the input x.

The protocol described in Algorithm 1 is designed to work as described above. Parties
start by sending their signed input to all parties, and then forwarding that input to all
parties. Whenever a party receives a signed input message it forwards that message to all
parties. Every party pi then waits until there are three parties (including itself) such that pi

received all of these parties’ inputs, and the messages forwarding each other’s inputs. Once
that happens, pi chooses whether to output the value x that it received as input, or the value
⊥. If pi saw that more than one party reported its input as 1 − x (either by receiving its
input directly, or by receiving a forwarded input), pi outputs ⊥. Otherwise, pi outputs x.
We prove this protocol is a binding crusader agreement protocol in the full version of this
paper.

Similarly to the previous protocol, in the protocol described in Algorithm 2, parties start
by sending each other their inputs. They then forward any received input and any message
forwarding an input, also indicating the messages’ senders. Every party pi then waits until
there are three parties (including himself) that report consistent information about each
other’s messages. More specifically, they forward the same messages about each other as the
messages the pi received and forwarded. Then, pi outputs its input x if it forwarded at most
one input message with the value 1 − x and at most one of the three aforementioned parties
forwarded more than one input message with the value 1 − x. Otherwise, pi outputs ⊥.

We show that the protocol is a CA protocol for any number of parties n such that
n ≥ 3f + 1 in the full version of this work. We then proceed to show that the protocol is
also binding for n = 4, f = 1 and n = 7, f ≥ 2 in the full version of the paper, meaning that
in these cases it is also a BCA protocol.
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Algorithm 1 4-party authenticated Asynchronous BCA for Byzantine faults for party pi.

Input: x

1: fwdV als1 = fwdV als2 = fwdV als3 = fwdV als4 = {}, initV als = {}
2: send ⟨ix⟩ and ⟨ix · i⟩ to all, fwdV alsi = fwdV alsi ∪ {ix}
3: upon receiving ⟨kv⟩ from pk and not having forwarded a message from pk:
4: send ⟨kv · i⟩ to all
5: fwdV alsi = fwdV alsi ∪ {kv}
6: initV als = initV als ∪ {kv}
7: upon receiving ⟨jv · k⟩ from pk

8: initV als = initV als ∪ {jv}
9: if j1−v hasn’t been added to fwdV alsk: fwdV alsk = fwdV alsk ∪ {jv}

10: upon ∃pj , pk ̸= pi s.t. ix, kv, and jv′ are in fwdV alsi ∩ fwdV alsk ∩ fwdV alsj s.t.
v, v′ ∈ {0, 1}:

11: let S be the set {s|s1−x ∈ initV als}
12: if |S| ≤ 1 then decide x

13: else, decide ⊥

Algorithm 2 7-party unauthenticated Asynchronous BCA for Byzantine faults for party pi.

Input: x

1: coreSeti = {}
2: for j ∈ 1 . . . n:
3: initV alsj = {}
4: for k ∈ 1 . . . n:
5: fwdedMsgsj,k =[]
6: send ⟨ix⟩ to all
7: upon receiving ⟨jv⟩ from pj and fwdedMsgsi,j = []:
8: send ⟨jv · i⟩ to all
9: initV alsi = initV alsi ∪{jv}

10: fwdedMsgsi,j = fwdedMsgsi,j .append(jv)
11: upon receiving ⟨kv · j⟩ from pj and k∗ · j /∈ fwdedMsgsi,j :
12: send ⟨kv · j · i⟩ to all
13: initV alsj = initV alsj ∪{kv}
14: fwdedMsgsi,j = fwdedMsgsi,j .append(kv · j)
15: fwdedMsgsj,k = fwdedMsgsj,k.append(kv)
16: upon receiving ⟨kv · l · j⟩ from pj and having received kv · l from pl:
17: fwdedMsgsj,l = fwdedMsgsj,l.append(kv · l)
18: upon ∃ a set of n − f distinct parties coreSeti s.t. the following 3 conditions hold:

1. pi ∈ coreSeti

2. ∀(j, k, l) ∈ coreSeti, fwdedMsgsj,k = fwdedMsgsl,k

3. ∀j ∈ coreSeti, ∃v ∈ {0, 1} s.t. fwdedMsgsi,j [1] = vj and ∀k ∈ coreSeti,
vj ∈ initV alsk

19: ∀j ∈ {1 . . . n} let Sj = {s|s1−x ∈ initV alsj}
20: if |Si| ≤ f and |{j ∈ {1 . . . n} s.t. |Sj | > f}| ≤ f :
21: decide x

22: else decide ⊥
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A Proofs of Lower Bounds

▶ Lemma 12. In World 2 from the proof of Theorem 2, p3 must decide (0, g) for g ∈ {1, 2}
without waiting for any round 2 messages from p2.

Proof.
World 2.a) (0-validity, maximally patient for p1 crash, symmetric to World 1.a):

All three parties have the input 0. p2 and p3 are nonfaulty, and p1 crashes prior to
sending any messages.
p2 and p3 must decide (0, 2) without waiting for any messages dependent on p1 by
validity and termination.

World 2.b) (maximally patient for p2 crash, symmetric to World 1.b):
p1 has input 1, while p2 and p3 start with input 0. p2 sends round 1 messages, which
are delivered to both p1 and p3, and then p2 crashes. Following that, p3’s round 1
messages are delivered to p1. Finally, p1 and p3’s messages are delivered to each other
without delay.
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Because p2 crashed, p1 and p3 must decide without waiting for any additional messages
from p2, by termination.

We now argue why p3 must decide (0, g) for g ∈ {1, 2} in World 2 without waiting for
any of p2’s round 2 messages. First, we show that p2 decides (0, 2). Since p1’s messages
are initially delayed, p2 decides (0, 2) due to indistinguishability from World 2.a, in which
p1 crashes. As a result, if p3 decides, it must decide (0, g) such that g ∈ {1, 2} so as not to
violate graded agreement. Next, we show why p3 decides without waiting for any round 2
messages from p2. This follows an indistinguishability argument with World 2.b for p3, since
any messages from p2 apart from its round 1 messages are delayed for p3 in World 2. ◀

▶ Lemma 13. In World 3 from the proof of Theorem 2, p1 must output without waiting for
any messages that depend on p3.

Proof.
World 3.a) (maximally patient for p3 crash):

p1 and p2 are nonfaulty, while p3 crashes immediately before sending any messages. p1
has input 1 and p2 has input 0.
p1 and p2 must decide without waiting for any messages dependent on p3 by termination.

The lemma follows from a straightforward indistinguishability argument from World
3.a), as any messages from p3 and dependent on p3 are delayed for p1 in World 3. ◀

B Generalizing the Lower Bounds

In this section, we generalize the lower bounds from lower bounds specifically for n = 3, n = 4
or n = 7 to lower bounds for n ≥ 3, n ≥ 4 or n ≥ 7. The techniques for generalizing the lower
bound in the case that n ≥ 3, n ≥ 4 are standard and provided for completeness. On the
other hand, generalizing the lower bound for n ≥ 7 is slightly more intricate. In the following
we simply show how to generalize two of the lower bounds presented above, but generalizing
the other ones (with different corruption models or numbers of rounds) is done in the same
manner.

We start by showing how to generalize the lower bound for n = 4 and f = 1 to any n, f

such that 4f ≥ n ≥ 3f + 1. Identical arguments can be made to generalize the lower bounds
for n = 3 and f = 1 to any n, f such that 3f ≥ n ≥ 2f + 1.

▶ Theorem 14. Assume that it is impossible to solve Byzantine fault tolerant crusader
agreement in two rounds with n = 4 parties and f = 1 faults. Then it is impossible to
construct such a protocol for any f ∈ N and 4f ≥ n ≥ 3f + 1.

Proof. Assume by way of contradiction, that for some f, n such that 4f ≥ n > 3f there exists
a Byzantine fault tolerant crusader agreement protocol for n parties resilient to f corruptions
in which all parties decide on a value after at most two rounds without a PKI setup. We
will use this protocol to construct a Byzantine fault tolerant crusader agreement protocol
for 4 parties with 1 corruption that requires the same number of rounds, contradicting the
theorem statement.

The protocol is designed for 4 parties p′
1, . . . , p′

4 which simulate a full run of the n-party
protocol running with parties p1, . . . , p4. Start by partitioning the parties p1, . . . , pn into 4
roughly-equal groups: P1, . . . , P4. Since n is not necessarily a multiple of 4, it is possible
that some of the groups will contain one more party than the other groups. More precisely,
set ℓ = (n mod 4), and let P1, . . . , Pℓ be of size ⌈ n

4 ⌉ and Pℓ+1, . . . P4 be of size ⌊ n
4 ⌋. In case
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that ℓ = 0, this means that all set are exactly of size n
4 . Note that in all other cases, this

means that the sets do indeed contain a total of n parties, since their combined sizes are
ℓ · ⌈ n

4 ⌉ + (4 − ℓ)⌊ n
4 ⌋ = ℓ · (⌊ n

4 ⌋ + 1) + (4 − ℓ)⌊ n
4 ⌋ = 4 · ⌊ n

4 ⌋ + (n mod 4) = n.
Now, in the 4-party protocol each party p′

i simulates the full n-party protocol for the
parties in Pi. Every party p′

i receives an input xi and simulates the actions of all parties in
Pi after starting with the input xi. This is done by running the code of each of those parties
after receiving that input, and sending messages if required as described below. Whenever p′

i

sees that party p ∈ Pi sends a message m to some party q ∈ Pj it does the following: if j = i,
it simulates q receiving m by running the code that q would have run upon receiving the
message from p. Otherwise, p′

i sends the message m to p′
j , along with the information that

p sent the message to q. Similarly, when a party p′
j receives a message m from p′

i with the
information that p ∈ Pi sent that message to q ∈ Pj , p′

j simulates q receiving that message
by running the code that q would have run upon receiving that message from p. Once p′

i

sees that all of the simulated parties in Pi output values, it does the following: if at least one
party in Pi output ⊥, it outputs ⊥. Otherwise, it outputs some non-⊥ value that a party in
Pi output2. In this setting, the adversary can only corrupt a single party p′

i, which simulates
the parties in Pi. The number of parties in Pi is at most ⌈ n

4 ⌉. By assumption, n ≤ 4f ,
so ⌈ n

4 ⌉ ≤ ⌈ 4f
4 ⌉ = f . All other simulated parties act exactly the same as they would when

receiving messages in the original protocol, since they are instructed to send and receive
messages exactly as they would in the original protocol. In other words, the simulated run
perfectly corresponds to a run in which the adversary corrupts at most f parties, in which
messages between parties in the same set Pi are delivered immediately and the rest of the
messages are delivered according to the scheduling dictated by the adversary. The protocol
is secure under these conditions, and thus Validity, Agreement and Termination hold in the
simulated run.

In order to complete the proof, all that is left to show is that the resulting 4-party protocol
is a two-round Byzantine fault tolerant crusader agreement protocol with n = 4 and f = 1,
reaching a contradiction to the theorem statement.
Validity. If all parties have the same input b, then each nonfaulty p′

i simulates all of the
parties in Pi with the input b. This means that the run corresponds to a run in which
all parties simulated by nonfaulty parties have the input b. From the Validity property
of the original protocol, all simulated nonfaulty parties output b as well, and thus every
nonfaulty p′

i output b after seeing that all of the parties in Pi output that value.
Agreement. Assume that two nonfaulty parties p′

i and p′
j output the non-⊥ value bi and

bj respectively. Before doing so, each one saw that all of the parties simulated by it
completed the protocol and that at least one of the parties simulated by p′

i and p′
j output

bi and bj respectively. Those parties are simulated as nonfaulty parties, so bi = bj from
the Agreement property of the original protocol.

Termination. If each nonfaulty p′
i starts the protocol, it simulates all of the parties in Pi

correctly throughout the whole protocol. This means that all of the parties in the Pi sets
simulated by nonfaulty parties act as nonfaulty parties would in the original protocol,
and thus eventually decide. After seeing that all of the parties in Pi output some value,
every nonfaulty p′

i outputs a value as well.
Round Complexity. In the original n-party protocol, all parties output a value after two

rounds. More precisely, all nonfaulty parties send only round 1 or round 2 messages.
Observe a given run of the 4-party protocol. In the simulated n-party protocol, all

2 An alternative choice is to output ⊥ only if all simulated parties did, and otherwise output some non-⊥
value.
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simulated parties output a value after at most 2 rounds without sending any message
from round 3 or higher. Therefore, in the 4-party protocol, no party sends a message
from round 3 message or higher, and after every nonfaulty simulated party decides a
value, every nonfautly p′

i outputs a value as well. ◀

▶ Theorem 15. Assume there is a network of 7 parties p1, . . . , p7, and let S, T be a partitioning
of the parties such that |S| = 4, |T | = 3, S ∪ T = {p1, . . . , p7} and S ∩ T = ∅. Assume that
it is impossible to solve Byzantine fault tolerant binding crusader agreement in two rounds
with n = 7 parties and f = 2 faults, even if the adversary can corrupt at most one party in S

and one party in T . Then it is impossible to construct such a protocol for any f ≥ 2 and
4f > n > 3f .

Proof. Assume by way of contradiction that such a protocol exists for some n, f such
that f ≥ 2 and 4f > n > 3f . The proof follows a similar outline to the previous proof,
simulating the n party protocol in the 7 party setting. Without loss of generality, assume
that S = {p1, . . . , p4} and that T = {p5, . . . , p7}. Since 4f > n > 3f , there exists some
k ∈ [f − 1] such that n = 3f + k.

We will now construct a protocol for 7 parties p′
1, . . . , p′

7. Start by partitioning the
parties {p1, . . . , pn} into 7 sets P1, . . . , P7. Each set in P1, . . . , P4 contains k parties for the k

defined above, and each party in P5, . . . , P7 contains f − k parties such that for every i ̸= j,
Pi ∩ Pj = ∅. First, note that by definition f > k > 0 and thus also f > f − k > 0. This
means that each of these sets has a positive number of parties, smaller than f . In addition,
the total number of parties is 4 · k + 3 · (f − k) = 3f − 3k + 4k = 3f + k = n. In other words,
it is possible to partition the n parties into non-intersecting sets of these exact sizes.

From this point on, the simulation is exactly the same as in Theorem 14. Each party p′
i is

in charge of simulating the parties in Pi. It starts the protocol by receiving its input xi and
simulating all of the parties in Pi starting the protocol with the same input xi. Following that,
if some simulated party p ∈ Pi sends a message m to q ∈ Pj it either delivers it immediately
if i = j or sends m to p′

j and signifies that p sent the message to q. Upon p′
j receiving a

message m from p′
i saying that p sent that message to q, p′

j checks that p ∈ Pi and q ∈ Pj . If
that is the case, p′

j simulates q receiving that message from p. In all of the above discussion,
by “simulating receiving the message” we mean that the simulating party runs the code
that the simulated party would have run, and sends any messages according to the above
description.

Once p′
i sees that all of the parties in Pi output some value, it outputs if at least one of

the parties in Pi output ⊥, p′
i outputs ⊥ as well. Otherwise, it outputs some non-⊥ value

that a party in Pi output. All that is left to do, is to show that the protocol is a 2-round
protocol, resilient against a Byzantine adversary that controls at most one party in S and
one party in T , reaching a contradiction. An adversary controlling at most one party in S

and one party in T is in charge of simulating at most f − k + k = f parties. This means
that any run of the 7-party protocol corresponds to a run of the n-party protocol in which
the adversary controls at most f parties, and the scheduling is the same as the one described
in Theorem 14. Therefore, the simulated run terminates in two rounds and has the Validity,
Agreement, Termination and Binding properties.

The proof that the 7-party protocol requires two rounds and that it has the Validity,
Agreement and Termination properties is identical to the proof in Theorem 14 and is thus
omitted. For the final property, Binding, assume some nonfaulty party p′

i outputs some value.
At that point in time, it saw that all of the parties in Pi output values. All of those parties
are nonfaulty, and thus from the Binding property of the n-party protocol, at that time
there exists some value b ∈ {0, 1} such that all nonfaulty parties output either b or ⊥ in the
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n-party protocol. We will show that all nonfaulty parties output either b or ⊥ in the 7-party
protocol. Observe some nonfaulty party p′

j in the 7-party protocol. If it outputs the value ⊥
from the protocol, the property holds. Otherwise, it output some value b′ after seeing that at
least one party p ∈ Pj output b′, and no party in Pj output ⊥. From the Binding property
of the n-party protocol, b′ = b, and thus p′

j outputs b as well. ◀
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