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Abstract
For k ≥ 0, k-partial (k + 1)-coloring asks to color the nodes of an n-node graph using a palette of
k +1 colors such that every node v has at least min{k, deg(v)} neighbors colored with colors different
from its own color. Hence, proper (∆ + 1)-coloring is the special case of k-partial (k + 1)-coloring
when k = ∆. Ghaffari and Kuhn [FOCS 2021] recently proved that there exists a deterministic
distributed algorithm that solves proper (∆ + 1)-coloring of n-node graphs with maximum degree ∆
in O(log n · log2 ∆) rounds under the LOCAL model of distributed computing. This breakthrough
result is achieved via an original iterated rounding approach. Using the same technique, Ghaffari
and Kuhn also showed that there exists a deterministic algorithm that solves proper O(a)-coloring
of n-node graphs with arboricity a in O(log n · log3 a) rounds. It directly follows from this latter
result that k-partial O(k)-coloring can be solved deterministically in O(log n · log3 k) rounds.

We develop an extension of the Ghaffari and Kuhn algorithm for proper (∆ + 1)-coloring, and
show that it solves k-partial (k + 1)-coloring, thus generalizing their main result. Our algorithm
runs in O(log n · log3 k) rounds, like the algorithm that follows from Ghaffari and Kuhn’s algorithm
for graphs with bounded arboricity, but uses only k + 1 color, i.e., the smallest number c of colors
such that every graph has a k-partial c-coloring. Like all the previously mentioned algorithms, our
algorithm actually solves the general list-coloring version of the problem. Specifically, every node v

receives as input an integer demand d(v) ≤ deg(v), and a list of at least d(v) + 1 colors. Every node
must then output a color from its list such that the resulting coloring satisfies that every node v

has at least d(v) neighbors with colors different from its own. Our algorithm solves this problem
in O(log n · log3 k) rounds where k = maxv d(v). Moreover, in the specific case where all lists of
colors given to the nodes as input share a common colors c∗ known to all nodes, one can save one
log k factor. In particular, for standard k-partial (k + 1)-coloring, which corresponds to the case
where all nodes are given the same list {1, . . . , k + 1}, one can modify our algorithm so that it runs
in O(log n · log2 k) rounds, and thus matches the complexity of Ghaffari and Kuhn’s algorithm for
(∆ + 1)-coloring for k = ∆.
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1 Introduction

1.1 Partial Coloring
Proper coloring of the vertices of an arbitrary graph G with maximum degree ∆ using
∆ + 1 colors is one of the most studied symmetry-breaking problems in the context of
distributed computing in networks [3, 17]. A natural generalization of proper coloring is
partial coloring [2, 5, 11, 15]. Given two integers k ≥ 0 and c ≥ 1, k-partial c-coloring asks
for a coloring of the vertices with colors in {1, . . . , c}, such that every vertex v has at least
min{k, deg(v)} neighbors with a color different from its own color. In particular, k-partial
(k + 1)-coloring is equal to proper (∆ + 1)-coloring for k = ∆, 0-partial coloring is trivial,
and, for 0 < k < ∆, k-partial (k + 1)-coloring relaxes the requirement of proper coloring for
vertices of degree larger than k. The case k = 1 is referred to as weak coloring in [15].

Note that for every integer k ≥ 0 there exists a k-partial (k + 1)-coloring of G. Such a
coloring can be constructed by a simple centralized greedy algorithm as follows. Initialize all
vertices with color 1, and consider all vertices sequentially, one by one. For each considered
vertex v, let C(v) be the set of colors present in the neighborhood of v. If |C(v)| = k+ 1 then
v keeps color 1, otherwise it recolors itself with an arbitrary color in {1, . . . , k + 1}∖ C(v).
The resulting coloring is k-partial because (1) node v has at least min{k,deg(v)} neighbors
with a color different from its own color when it adopts its final color, and (2) two neighboring
vertices with different colors at some time t during the execution of the greedy algorithm will
remain with different colors at any time t′ ≥ t. This paper studies the design of a distributed,
deterministic algorithm for k-partial (k + 1)-coloring, that works for every k ≥ 0.

We consider the standard LOCAL model of distributed computing [13]. This model
assumes an n-node network modeled as a graph G = (V,E), where each node is a computer,
and the nodes communicate by exchanging messages along the edges of the graph. Each
node is assigned an identifier in {1, . . . , nc}, for some c ≥ 1, which is unique in the network.
Initially, every node knows solely its identifier, the range of identifiers, and potentially some
inputs, e.g., a non-negative integer k in the case of k-partial coloring. All nodes execute the
same algorithm, which proceeds in synchronous rounds. At each round, every node sends
one message to each of its neighbors, receives the messages from its neighbors, and performs
some individual computation. After a certain number of rounds, every node outputs, and
terminates. In the case of coloring, every node must eventually output a color in a prescribed
range of colors, e.g., {1, . . . , k + 1}.

1.2 Previous Work
For many years, the best known (deterministic) algorithms for proper (∆ + 1)-coloring
graphs with maximum degree ∆ were running in essentially 2O(

√
log n) rounds in n-node

networks [1, 16]. This was the state of the art for almost a quarter of a century, and it is only
a few years ago that an algorithm for (∆+1)-coloring running in a polylogarithmic number of
rounds was proposed [18]. All these algorithms were based on a specific graph decomposition,
and the efficient algorithm in [18] actually shows how to compute such a decomposition in
a polylogarithmic number of rounds. Recently, a breakthrough result has been achieved,
stating that (∆ + 1)-coloring can be solved in O(logn · log2 ∆) rounds [10], without using
graph decomposition. Moreover, for large ∆, the algorithm sill runs in O(log3 n) rounds –
this has been very recently improved to Õ(log2 n) rounds [8]. There are indeed algorithms
for (∆ + 1)-coloring running in Õ(

√
∆) +O(log∗ n) rounds (see [4, 7, 14]). However, such

algorithms are efficient for small ∆ only, that is, their complexities are polylogarithmic in n

only when ∆ is itself growing polylogarithmically with n.
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The algorithm in [10] is based on an original gradual rounding technique which, starting
from a uniform selection of a color by each node, produces a non-necessarily proper coloring
which leaves only a linear number of edges monochromatic (i.e., with both end-points having
the same color). This technique has even been extended to computing a maximal independent
set (MIS) [6], and to computing network decomposition [9]. In the present paper we show
that the O(logn · log2 ∆)-round (∆ + 1)-coloring algorithm from [10] can be modified to
solve the generalized partial coloring problem. We note the gradual rounding technique can
also be applied to coloring graphs with given arboricity a. Indeed, it was shown [10] that
there exists a deterministic algorithm that solves proper O(a)-coloring of n-node graphs
with arboricity a in O(logn · log3 a) rounds. As a consequence, k-partial O(k)-coloring
can be solved deterministically in O(logn · log3 k) rounds: one can let every node v pick
min{k, deg(v)} incident edges arbitrarily, and then remove from the input graph G all edges
that were not picked. The resulting graph G′ has degeneracy at most 2k (simply because it
has at most kn edges, and therefore minimum degree 2k), and therefore it has arboricity at
most 2k as well. By running in G′ the algorithm from [10] for proper coloring graphs with
bounded arboricity, we get that a k-partial O(k)-coloring of G′, and therefore of G too, in
O(logn · log3 k) rounds. The question remains however whether one can reduce the number
of colors from O(k) to k+ 1. Indeed, for every k ≥ 1, k+ 1 is the smallest number c of colors
such that every graph has a k-partial c-coloring.

Note that the coloring algorithms in [10] actually solve the general list-coloring versions
of the various problems. In the proper c-list-coloring problem, every node is also given a
list of at least c colors as input, and its output color is bounded to belong to its list. We
also slve the list-coloring version of partial coloring. In addition, we allow the demand of
the nodes to vary, i.e., every node can have a different demand regarding how many of its
neighbors must have a different color than its own.

Under restricted hypotheses, fast partial coloring algorithms exists. For instance, in
regular graphs, there is a O(log⋆ n)-round deterministic algorithm for k-partial 3-coloring
whenever ∆ ≥ 3k − 4 and k ≥ 3, and for k-partial k-coloring whenever ∆ ≥ k + 2 and
k ≥ 4 (see [2]). Moreover, the same paper shows that computing 2-partial 2-coloring in ∆-
regular graphs requires Ω(logn) rounds deterministically, and Ω(log logn) rounds randomized,
for any ∆ ≥ 2. More generally, computing a k-partial c-coloring in ∆-regular graphs with
k ≥ ∆(c−1)

c +1 requires Ω(logn) rounds deterministic, and Ω(log logn) rounds randomized [2].
It was recently shown [5] that 1-partial 2-coloring in odd-degree graphs cannot be solved in
o(log⋆ ∆) rounds, thereby providing a matching lower bound to the 30-year old upper bound
in [15]. Finally, k-partial O(k2)-coloring as well as d-defective O(∆2/d2)-coloring can both
be computed in O(log∗ n) rounds [11].

1.3 Our Results
For a non-negative integer k, the k-partial list-coloring problem in a graph G = (V,E) is
defined as follows.

Input of node v: A demand d(v) ∈ N satisfying d(v) ≤ deg(v), a list L(v) of colors, of size
at least d(v) + 1, and the value k = maxv∈V d(v).

Output of node v: A color δ(v) ∈ L(v) such that

|{u ∈ V : {u, v} ∈ E ∧ δ(v) ̸= δ(u)}| ≥ d(v)

.
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30:4 Distributed Partial Coloring via Gradual Rounding

The k-partial (k+ 1)-coloring problem is the special case of k-partial list-coloring problem
in which every node has demand min{k, deg(v)}, and all lists are all equal to {1, . . . , k + 1}.
Our main results are the following.

▶ Theorem 1. There exists a deterministic distributed algorithm solving k-partial list-coloring
in all n-node networks, and running in O(logn · log3 k) rounds under the LOCAL model.

Note that the round-complexity of our algorithm scales as a function of the upper bound k
on the demands, and not as a function of ∆. In particular, for k = O(1), our algorithm runs
in just O(logn) rounds, even in graphs with large maximum degrees. Also note that even if
it is possible to design faster algorithms for specific values of the demand, e.g., for 1-partial
2-coloring, a.k.a. weak coloring [15], our algorithm is generic, and works for all k ≥ 0.

If the lists given to the nodes satisfy ∩v∈V L(v) ̸= ∅, and the nodes are given a color
c∗ ∈ ∩v∈V L(v) ̸= ∅ as input, one can modify our algorithm so as to solve k-partial list-
coloring in O(logn · log2 k) rounds. An important application is k-partial (k + 1)-coloring in
which every node has demand min{k,deg(v)}, and all lists are all equal to {1, . . . , k + 1}.
Indeed, 1 ∈ ∩v∈V L(v) in k-partial (k + 1)-coloring, and this holds even if, for every node v,
L(v) = {1, . . . , d(v) + 1} for a demand d(v).

▶ Theorem 2. There exists a deterministic distributed algorithm solving k-partial (k + 1)-
coloring in all n-node networks, and running in O(logn · log2 k) rounds under the LOCAL
model.

1.4 Our Techniques
We base ourselves on the main ideas of the algorithm by Ghaffari and Kuhn [10] for (∆ + 1)-
coloring, which actually works for list-coloring as well, and on the core rounding procedure
of that algorithm. The algorithm in [10] proceeds in O(logn) iterations of a procedure
whose objective is to fix the color of a constant fraction of the remaining uncolored nodes.
Specifically, at each iteration, if Gi = (Vi, Ei) denotes the subgraph of the input graph G

whose nodes are still uncolored at the ith iteration, the procedure starts from a fractional
coloring of Gi, where each color c ∈ Li(v) in the current list of colors assigned to every
node v ∈ Vi appears with “weight” 1/|Li(v)|. Given this fractional coloring, the procedure
produces, in O(log2 ∆) rounds, an integral coloring γi of the nodes of Gi, that is, for every
v ∈ Vi, all colors c ∈ Li(v) but one have weight 0, and the remaining color has weight 1. This
coloring γi is not necessarily proper. However, it is shown (see Corollary 3.6 in [10]) that
the total number of monochromatic edges Fi in Ei is O(|Vi|). As a consequence, a constant
fraction of the nodes in the graph G′

i = (Vi, Fi) have degrees upper bounded by a constant,
from which it follows that a maximal independent set (MIS) Ii in the subgraph Hi of G′

i

induced by these low degree nodes can be computed in O(log⋆ n) rounds [12]. Moreover,
since the maximum degree of Hi is bounded, there is a constant fraction of its nodes in Ii.
The nodes in Ii adopt their colors given by γi, and terminate. The remaining nodes update
their lists by removing the colors adopted by neighboring nodes that terminated, and carry
on with yet another iteration. The algorithm in [10] uses other clever tricks, but the above
summarizes the core of the algorithm, which is the part that we shall modify for handling
partial coloring.

Our first change is in the preprocessing stage where we compute a k-partial O(k2)-
coloring α of the graph and then remove all monochromatic edges. Since the computed
coloring α is k-partial, the removal of the monochromatic edges still leaves us with a graph
on which a k-partial coloring is a k-partial coloring of the original graph. On the other hand
we have a proper coloring of the remaining graph, a condition that is needed to apply the
core procedure in [10].
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At the start of each iteration i, a preprocessing phase selects arbitrarily, for each node,
a number of “outgoing” edges equal to the size of this node’s color list (or demand), and
removes all edges that were not selected by any of their endpoints. The remaining graph
Gi = (Vi, Ei) has the property that a partial coloring on it is also a corresponding partial
coloring on the original graph (for that iteration), and the (remaining) degree of each node is
not bigger that the size of its (remaining) list of colors. The rounding procedure of Ghaffari
and Kuhn [10] is applied on Gi, providing each node v ∈ Vi with a color γi(v) ∈ Li(v). We
then introduce the notion of saturated nodes w.r.t. γi, which are nodes v such that, for
each color c in their lists, they have a neighbor uc colored c by γi. These nodes might get
“saturated” with respect to the following consideration. Let Si denotes the set of saturated
nodes, and let v ∈ Si. If a neighbor uc of v, colored c, belongs to the MIS computed at
iteration i, it is expected that uc terminates with color c, and v removes c from its list Li(v)
so that to eventually provide uc with a neighbor with a color different from c. But if v is
saturated, this would result in exhausting all possible colors in the list of Li(v), preventing v
from eventually choosing a color during further iterations.

To overcome the issue of saturated nodes, we proceed differently from [10], by first letting
all nodes that are saturated w.r.t. γi adopting their current color, and terminate. Then,
we also introduce the notion of idle nodes. Roughly, an idle node is a node which is not
saturated, but which has so many saturated neighbors with potentially the same color as its
own color that it has not sufficiently many other neighbors for guaranteeing that its demand
will eventually be satisfied. In our algorithm, idle nodes abort the search for a color during
the remaining iterations. They do not participate to the subsequent iterations, but update
their demand and list of colors according to the colors picked by neighboring (active) nodes.
Finally, if Ki denotes the set of nodes that become idle at the ith iteration, then all nodes in
Ii ∖ (Si ∪Ki), that is, all nodes in the MIS that are neither saturated nor idle, adopt their
current colors. In this way, k-partial coloring is guaranteed for the non-idle nodes, and each
of the O(logn) iterations performs in O(log2 k) rounds.

After all iterations are completed, it remains to assign colors to the nodes which became
idle during some of the iterations, during a post-processing stage. We note that the subgraph
induced by the idle nodes can be viewed as “layered”, where the nodes that became idle
at iteration i form layer Ki of the subgraph, i = 1, . . . , O(logn). We then show that the
preconditions required for applying Lemma 5.4 in [10], which provides an algorithm for
proper coloring layered graphs, are fulfilled (in particular, the degree towards the upper
layers is bounded by k). Indeed, it occurs that the threshold for the number of saturated
neighbors, which defines idle nodes, precisely corresponds to the ability to properly color
the idle nodes. By application of Lemma 5.4 in [10], this post-processing stage runs in
O(logn · log3 k) rounds. Note that, up to the post-processing stage, our algorithm runs in
O(logn · log2 k) rounds as each of the O(logn) iterations consumes O(log2 k) rounds, and
the extra log k factor is only due to the post-processing stage.

Partial Coloring

Assuming that all lists contain a common color c∗, which fits with the setting of k-partial
(k + 1)-coloring, enables to simplify the coloring procedure performed at each of the O(logn)
iterations of the algorithm, and to avoid the costly post-processing stage. Roughly, we can
avoid introducing the notion of idle nodes as follows. The color c∗ is removed from all lists,
and will play the role of a backup color in case a node has exhausted all the colors in its list
for satisfying neighbors. Specifically, as in [10], we serve first all the nodes in the maximal
independent set (MIS) Ii computed at iteration i, i.e., for every v ∈ Ii, node v adopts its
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color γi(v). Then, if a node v gets saturated (i.e., all the colors in its list are picked by at least
one of its neighbor, which also happens to be in the MIS), then v adopts color c∗ – recall that
c∗ was removed from all lists. Letting the saturated nodes adopting color c∗ does not cause
other nodes to saturate at further iterations even if it may seem that a node v with many
neighbors that have fixed their color to c∗ at previous iterations might be prevented from
using color c∗ itself (in case it becomes saturated). Indeed, we show that while the number
of neighbors of a node v may decrease at a given iterations as these neighbors adopt color c∗

and terminate, the set of colors currently in the list of that node v is not affected by these
neighbors. As a consequence, we can show that if a node has “many” neighbors colored c∗

then the size of its list actually becomes larger than its current degree, and thus this node
cannot become saturated anymore. This guarantees the correctness of the algorithm. Finally,
avoiding the post-processing stage enables saving one log k factor in the round complexity,
since each iteration performs in O(log2 k) rounds. Due to lack of space, the details are moved
to Appendix A.

2 The Algorithm

We describe our distributed algorithm for solving partial list-coloring in an arbitrary graph.
The algorithm is to be executed in the LOCAL model by the nodes of an n-node graph
G = (V,E). Due to lack of space, we do not re-explain some of the features of the algorithm
in [10], but mostly focus on the parts that differ significantly from this latter algorithm for
extending it from (∆ + 1)-list coloring to k-partial list coloring. Our algorithm proceeds as
follows.

2.1 Preprocessing Stage

The nodes compute a k-partial O(k2)-coloring of G, which we denote by α. This can be done
in O(log∗ n) rounds (see [11]). Then, the nodes remove the monochromatic edges to obtain a
sub-graph of G, denoted by G1 = (V1, E1), where V1 = V . Note that in G1 the degree of any
node v ∈ V is at least min{k, degG(v)}, and therefore d(v) ≤ degG1(v). Note also that α is
a proper O(k2)-coloring of G1.

2.2 Core of the Algorithm

The coloring produced by our algorithm is denoted δ(·). Initially, δ(v) = ⊥ for every v ∈ V .
For computing their colors, the nodes perform O(logn) iterations of a series of phases, called
preprocessing, derandomization, color assignment, and update. At each iteration, some nodes
v ∈ V fix their colors δ(v) ∈ L(v). Once a node v becomes colored (i.e., it adopts a color
δ(v) ̸= ⊥), its color never changes. At each iteration, we classify the nodes of G into three
categories: active, idle, and terminated.

A terminated node v is a node that has adopted its color δ(v).
An idle node is a node that has not yet adopted its color, but it stops participating in
the subsequent iterations after it became idle. However, its demand, as well as its list of
colors are updated in each subsequent iteration.
An active node is a node that is neither idle nor terminated (such a node will carry on to
the next iteration).
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An active node may, in a subsequent iteration, be colored (in which case it becomes
terminated), or become idle. Only active nodes proceed with another iteration. An idle node
remains idle until the post-processing stage starts1. When this is the case, no more iterations
are performed, and the idle nodes perform a specific post-processing stage of computation
for finalizing their colors (this stage to be described further in the text, in Section 2.3). Once
this is done, the algorithm terminates. Initially, i.e., before the first iteration starts, all nodes
are active.

We now describe one iteration of the algorithm. The input to iteration i ≥ 1 is a graph
Gi = (Vi, Ei), a demand function di : Vi → N, and a color list function Li : Vi → 2N. If,
for a node v still active at iteration i, |Li(v)| > di(v) + 1, then v prunes its list arbitrarily
for keeping exactly di(v) + 1 colors in its list. For every node v, we set d1(v) as the input
demand d(v), and L1(v) as the input list L(v).

2.2.1 Preprocessing Phase
Every vertex v arbitrarily selects di(v) many edges incident to it – we shall show later, in
the proof of correctness, that v has sufficiently many edges for performing this selection.
Note that an edge can be selected by one or two of its endpoints. Any non-selected edge is
removed from Gi. In what follow, we slightly abuse notation, and Gi = (Vi, Ei) still refers
to the actual graph after the removal of the non-selected edges. Note that Gi has average
degree at most 2k , and therefore O(kn) edges.

2.2.2 Derandomization Phase
Every vertex v picks an arbitrary set L′

i(v) ⊆ Li(v) of 2⌊log |Li(v)|⌋ colors. Observe that
|Li(v)|

2 ≤ |L′
i(v)| ≤ |Li(v)|. For any set p = {pv : v ∈ Vi} of random distributions over the

lists L′(v), v ∈ Vi, and for L = ∪v∈V L
′
i(v), we define a weight function wp : (Vi×L)2 → [0, 1]

as follows:

wp

(
{(u, a), (v, b)}

)
=


0 if {u, v} /∈ Ei

0 if {u, v} ∈ Ei and a ̸= b

pu(a) · pv(b) if {u, v} ∈ Ei and a = b

Moreover, we define

W (p) =
∑

((u,a),(v,b))∈(Vi×L)2

wp

(
(u, a), (v, b)

)
.

Corollary 3.6 in [10] provides a way to “derandomize” the uniform distribution punif, defined as

punif
v (c) = 1

|L′
i(v)|

for every node v and every color c ∈ L′
i(v), while almost preserving W (p) . We use

Corollary 3.6 in [10] with ϵ = 1, using the proper O(k2)-coloring α computed during the
pre-processing stage (cf. Section 2.1), and observing that our node “labeling” uses at most
2⌊log(k+1)⌋ colors.

1 Note that since all nodes know k = maxv∈V d(v) and the (polynomial) range of IDs, they can individually
compute how long lasts each phase, each iteration, and each stage of the algorithm. In particular, a
node becoming idle at a given iteration knows when it has to start executing the post-processing stage.

OPODIS 2023
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▶ Lemma 3 (Corollary 3.6 in [10]). A coloring γi satisfying γi(v) ∈ L′
i(v) for every v ∈ Vi

can be computed in O(log2 k) rounds, such that W (pγi) ≤ 2 ·W (punif), where the distribution
pγi = (pγi

v )v∈Vi
is defined as

pγi
v (c) =

{
1 if γi(v) = c

0 otherwise .

2.2.3 Color Assignment Phase
Given the graph Gi = (Vi, Ei), and the coloring γi from Lemma 3, let us consider the graph
G′

i = (Vi, Fi) where Fi ⊆ Ei is the set of monochromatic edges w.r.t γi. As we will prove
later in the proof of correctness (see Lemma 10), we have |Fi| ≤ 4 · |Vi|. As a consequence,
the number of nodes v ∈ Vi with degG′

i
(v) ≥ 16 is at most |Vi|/2. Let us denote by Hi the

subgraph of G′
i induced by the nodes with degree less than 16 in G′

i. By construction, Hi

has at least |Vi|/2 nodes (again, see Lemma 10), and it has maximum degree at most 15.
The facts that Hi has bounded degree, and that it has a O(k2) proper coloring thanks to the
pre-processing stage imply that its nodes can compute a maximal independent set (MIS) Ii

in Hi in O(log⋆ k) rounds [12] . Note that, since each of the at least |Vi|/2 nodes in Hi has
maximum degree 15, we have |Ii| ≥ |Vi|

32 .
We now introduce a notion that plays an important role in our algorithm. For every

node v, let NGi(v) denote the set of v’s neighbors in Gi.

▶ Definition 4. A node v ∈ Vi is saturated with respect to the coloring γi if, for every
c ∈ Li(v), there exists a neighbor u ∈ NGi(v) with γi(u) = c.

Note that some nodes in the maximal independent set may be saturated, whereas some
other nodes in the independent set may not be saturated, and the same holds for nodes
outside the independent set. At this point, nodes may turn from active to idle or terminated
according to one of the following three rules.

Saturated Node Rule: Every saturated node w.r.t. γi fixes its final color as δ(v) = γi(v),
and terminates. Let us denote by Si the set of nodes that become saturated w.r.t. γi at
the ith iteration.
Idle Node Rule: For every node v ∈ Vi ∖ Si, if

|NGi(v)| − |{u ∈ NGi(v) ∩ Si : γi(u) = γi(v)}| < di(v) (1)

then v becomes idle. Let us denote by Ki the set of nodes that become idle at the ith
iteration.
MIS Node Rule: Every vertex v ∈ Ii ∖ (Si ∪Ki) fixes its final color as δ(v) = γi(v), and
terminates. We denote by Ji the set of non-saturated node nodes in the independent set
that terminate at iteration i, i.e., Ji = Ii ∖ (Si ∪Ki).

Remark. The intuition guiding the above three rules is that a saturated node v has all
colors in Li(v) present its neighborhood and hence it has at least di(v) neighbors with colors,
in γi, different than γi(v). It can therefore safely set its final color to its current color: for
each neighbor either that neighbor adopts its current (different) color, or will be “instructed”
not to use v’s color is subsequent iterations. On the other hand, nodes satisfying Eq. (1) are
nodes that are in some sense “stuck” because they have too many neighbors with the same
color as their own color, which do not leave them enough “space” for accommodating their
demand. This is why the algorithm “freezes” them, as idle nodes, to be treated after the
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termination of all iterations, during the post-processing stage (see Section 2.3). Finally, nodes
in the MIS fix their colors. For making sure that its demand will be eventually satisfied, each
MIS node will require its neighbors to remove its color from their lists (see the updating
phase hereafter). Here comes the main reason of introducing saturated nodes. It may indeed
be the case that a node v is surrounded by MIS nodes, with colors covering its list entirely.
All these MIS nodes will prevent v from using any of its available colors, resulting in color
starvation. For avoiding this, a saturated node fixes its color anyway, and terminates. We
shall see that this does not prevent its adjacent MIS nodes to have their demands eventually
satisfied. Essentially, the reason is that if they could not be satisfied, then they would have
become idle.

2.2.4 Updating Phase

Towards the next iteration we perform a series of list and demand updates, applying to
both the active and the idle nodes. Let us denote by K the entire set of idle nodes, i.e.,
K =

⋃i
j=1 Kj .

List Update. The lists are updated as follows:
For every active node v, i.e., for every v ∈ Vi ∖ (Si ∪Ki ∪ Ji),

Li+1(v) = Li(v) ∖ {δ(u) : u ∈ NGi(v) ∩ (Si ∪ Ji)}.

For every idle node v, i.e., for all v ∈ K (and not only v ∈ Ki),

Li+1(v) = Li(v) ∖ {δ(u) : u ∈ NG1(v) ∩ (Si ∪ Ji)}.

Note that for idle nodes we consider u ∈ NG1(v), and not only u ∈ NGi
(v), since

v ∈ K may have became idle before iteration i, say at iteration j < i, i.e., v ∈ Kj , and
thus v may not belong to Vi.

Demand Update. The demands are updated as follows:
For every active node v, i.e., for every v ∈ Vi ∖ (Si ∪Ki ∪ Ji),

di+1(v) = max{0, di(v)− |NGi(v) ∩ (Si ∪ Ji ∪Ki)|}.

For every idle node v, i.e., for all v ∈ K (and not only for those in Ki),

di+1(v) = max{0, di(v)− |NG1(v) ∩ (Si ∪ Ji)|}.

Note again that we consider for idle nodes NG1(v), and not only NGi
(v) for the same

reasons as above.

Graph Update. The graph Gi is updated to Gi+1 = (Vi+1, Ei+1) as follows:
Vi+1 = Vi ∖ (Si ∪ Ji ∪Ki)
Ei+1 =

{
{u, v} ∈ Ei : u ∈ Vi+1 ∧ v ∈ Vi+1

}
The nodes that remain active at the end of the iteration proceed to the next iteration.
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2.3 Post-Processing Stage
After all active nodes eventually become either terminated (with their final color) or idle, it
remains to provide the idle nodes with a color. Every idle node belongs to one of the set Ki,
1 ≤ i ≤ T , where T is the number of iterations of the four phases described in Section 2.2
– we shall prove later that T = O(logn). Therefore, for K = ∪T

i=1Ki, the graph G1[K]
induced by the idle vertices can be viewed as layered, with layers K1, . . . ,KT . Every idle
node has a list of available colors equal to LT +1(v), as computed during the updating phase
of the last iteration T . We will apply Lemma 5.4 in [10] with h = T , ∆̂ = k, and the lists
M(v) = LT +1(v) for all v ∈ K. Let i ∈ {1, . . . , T}, and let v ∈ Ki. We denote by deg+(v)
the number of neighbors of v belonging to layers Ki, . . . ,KT .

▶ Lemma 5 (Lemma 5.4 in [10]). Let us consider a layered graph G1[K] with h layers
K1, . . . ,Kh such that, for every node v ∈ K, v is assigned a list of colors M(v) with
|M(v)| > deg+(v). Let ∆̂ = maxv∈K deg+(v). There is a deterministic distributed algorithm
that solves proper list-coloring with input lists M in G[K], running in O(logn log2 ∆̂+h log3 ∆̂)
rounds.

In the proof of correctness, we shall show that the conditions in Lemma 5 hold for the
post-processing stage with ∆̂ = k. Every idle node adopts the color returned by the proper
list-coloring algorithm in Lemma 5.

This completes the description of our algorithm. In the next section, we shall prove its
correctness.

3 The Proof

We first prove that our algorithm does solve k-partial list-coloring. Next, we will prove that
it runs in the prescribed number of rounds.

3.1 Proof of Correctness
The lemma below shows the correctness of the preprocessing stage described in Section 2.1.

▶ Lemma 6. The k-partial list-coloring problem is well defined on the graph G1 = (V1, E1).
Moreover, any k-partial list-coloring on the graph G1 = (V1, E1) is also a k-partial list-coloring
on the original graph G = (V,E).

Proof. To show that the k-partial list-coloring problem is well defined on the graph G1, we
must show that, for every node, its demand does not exceed its degree (in G1). Recall that
the graph G1 = (V1, E1) (i.e., the graph after the preprocessing stage) satisfies V1 = V , so
the demands and lists are defined on the same set of vertices. Let v ∈ V be a vertex. We
have d(v) ≤ degG(v), d(v) < |L(v)|, and d(v) ≤ k = maxu∈V d(u).

If degG(v) ≤ k, then none of the edges incident to v in G is monochromatic in the
k-partial coloring α of G computed in the preprocessing phase (see Section 2.1). It follows
that degG1(v) = degG(v).
If degG(v) > k, then degG1(v) ≥ k as the coloring α computed in the preprocessing phase
is a k-partial coloring of G.

Therefore, either degG1(v) = degG(v) or degG1(v) ≥ k. As a consequence, d(v) ≤ degG1(v),
as claimed. Now, let ψ be a k-partial list-coloring on the graph G1. We have ψ(v) ∈ L(v),
and v has at least d(v) neighbors in G1 with another color. Since E1 ⊆ E, v has also at
least d(v) neighbors in G with another color. Therefore ψ is a k-partial list-coloring on the
original graph G. ◀
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By Lemma 6, it is sufficient to prove the correctness of the algorithm on the graph G1 (i.e.,
the graph after the preprocessing stage). Let us start by establishing a series of invariants
which hold throughout the execution of the algorithm. The following holds by construction.

▶ Observation 7. For every iteration i ≥ 1, Si, Ji, Ki, and Vi+1 form a partition of Vi.

The next lemma shows that the conditions necessary for partial list-coloring are preserved.

▶ Lemma 8. For every iteration i ≥ 1, and every node v ∈ Vi, we have that di(v) ≤ degGi
(v),

and di(v) < |Li(v)|.

Proof. We prove the lemma by induction on the iteration number, i. The basis of the
induction holds for i = 1 by Lemma 6. Let us assume that the lemma holds for i ≥ 1, and
let v ∈ Vi+1. We have Vi+1 = Vi ∖ (Si ∪ Ji ∪Ki), and

di+1(v) = max{0, di(v)− |NGi
(v) ∩ (Si ∪ Ji ∪Ki)|},

from which it follows that di+1(v) ≤ degGi+1(v). For the list update, we have

Li+1(v) = Li(v) ∖ {δ(u) : u ∈ NGi
(v) ∩ (Si ∪ Ji)}.

Therefore, since

|{δ(u) : u ∈ NGi
(v) ∩ (Si ∪ Ji)}| ≤ |NGi

(v) ∩ (Si ∪ Ji ∪Ki)|,

we have di+1(v) < |Li+1(v)|. Thus the lemma holds for i+ 1, which completes the proof. ◀

The idle nodes carry on updating their lists and demands after they become idle, but the
invariant di(v) < |Li(v)| remains true for idle nodes too, as shown below.

▶ Lemma 9. Let i ≥ 1, and let v ∈ Ki. For every j ≥ i, dj(v) < |Lj(v)|.

Proof. Let us fix i ≥ 1. We prove the claim by induction on j ≥ i. Since v ∈ Ki, the base
case holds by Lemma 8, as v ∈ Vi. For the induction step, let us assume that dj(v) < |Lj(v)|,
for j ≥ i. We have

Lj+1(v) = Lj(v) ∖ {δ(u) : u ∈ NG1(v) ∩ (Sj ∪ Jj)}.

and

dj+1(v) = max{0, dj(v)− |NG1(v) ∩ (Sj ∪ Jj)|},

Therefore, since

|{δ(u) : u ∈ NG1(v) ∩ (Sj ∪ Jj)}| ≤ |NG1(v) ∩ (Sj ∪ Jj)|,

we get that dj+1(v) < |Lj+1(v)|, as desired. ◀

We now prove that the number of iterations performed during the core of the algorithm
(see Section 2.2) is finite. We start with the following lemma that we obtain by modifying a
similar proof from [10].

▶ Lemma 10. Let i ≥ 1. The graph G′
i = (Vi, Fi) induced by the monochromatic edges in

Gi = (Vi, Ei) w.r.t. γi has a linear number of edges. Specifically, |Fi| ≤ 4 |Vi|.
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Proof. Let us analyze the total “weight” W (punif) of the uniform distribution punif before
applying rounding (all notations except one are defined at the beginning of Section 2.2.2).
We introduce just one new notation: Nselect

Gi
(v) denotes the set of selected neighbours of

v according to the operation performed in Section 2.2.1 where v selects di(v) many edges
incident to it. We have

W (punif) =
∑

(u,a),(v,b)∈(Vi×L)2

wpunif((u, a), (v, b)) =
∑

{u,v}∈Ei

c∈L′
i(u)∩L′

i(v)

pu(c) · pv(c)

=
∑

{u,v}∈Ei

c∈L′
i(u)∩L′

i(v)

1
|L′

i(u)| ·
1

|L′
i(v)| =

∑
{u,v}∈Ei

|L′
i(u) ∩ L′

i(v)| · 1
|L′

i(u)| ·
1

|L′
i(v)|

≤
∑
v∈Vi

∑
u∈Nselect

Gi
(v)

|L′
i(u) ∩ L′

i(v)| · 1
|L′

i(u)| ·
1

|L′
i(v)| ≤

∑
v∈Vi

∑
u∈Nselect

Gi
(v)

1
|L′

i(v)| .

Now, |L′
i(v)| ≥ di(v)/2, and |Nselect

Gi
(v)| = di(v). Thus

W (punif) ≤
∑
v∈Vi

∑
u∈Nselect

Gi
(v)

1
di(v)/2 =

∑
v∈Vi

di(v)
di(v)/2 = 2 |Vi|.

By applying lemma 3, we have that W (pγi) ≤ 4 |Vi|. It follows from the definition of pγi that
the size of the set Fi of monochromatic edges in Gi w.r.t. γi is at most 4 |Vi|. ◀

As a consequence of the previous lemma, the core of our algorithm terminates.

▶ Lemma 11. The algorithm described in Section 2 terminates.

Proof. Lemma 10 states that, for every i ≥ 1, the subgraph G′
i = (Vi, Fi) of Gi = (Vi, Ei)

satisfies |Fi| ≤ 4 |Vi|. Therefore, the subset V ′
i ⊆ Vi of the nodes v ∈ Vi with degG′

i
(v) ≤ 16

satisfies |V ′
i | ≥ |Vi|/2. As a consequence, the subgraph Hi of G′

i = (Vi, Fi) induced by the
nodes in V ′

i has at least |Vi|/2 nodes. It follows that there is a non-empty maximal independent
set in Hi, which guarantees that Ii ̸= ∅. Therefore, either Si ≠ ∅, or Ji = Ii ∖ (Si∪Ki) ̸= ∅,
which ensures that at least one vertex terminates at iteration i. As a consequence, the
number of iterations performed during the core of the algorithm is at most n (we shall show
later that it is actually at most O(logn)). ◀

Let T be the number of iterations of the algorithm until there are no more active nodes
left, and let us first focus on the status of the idle nodes at the end of the T iterations. For
any idle node v, let i ≥ 1 be the iteration during which v becomes idle, i.e., v ∈ Ki, and let
us then denote by

deg+(v) = |NG1(v) ∩ (Ki ∪ · · · ∪KT )|,

the number of neighbors of v in G1 that belong to the set Ki ∪ · · · ∪KT . Note that the
idle nodes update their demands and lists at the end of the T th iteration, so dT +1(v) and
LT +1(v) are well defined for an idle node v ∈ K = ∪T

i=1Ki. The following justifies the use of
Lemma 5 in the post-processing stage (see Section 2.3).

▶ Lemma 12. For every v ∈ K, deg+(v) < |LT +1(v)| and deg+(v) ≤ k.
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Proof. Let i be such that v ∈ Ki. By definition of idle nodes, v satisfies that

|NGi
(v)| − di(v) < |Sv

i |,

where Sv
i = {u ∈ NGi

(v) ∩ Si : γi(u) = γi(v)}. It follows that

|NGi
(v)| − |Sv

i | < di(v) < |Li(v)|

where the second inequality follows from Lemma 9. Since Sv
i ⊆ NGi

(v), we get

|NGi
(v) ∖ Sv

i | = |NGi
(v)| − |Sv

i |,

and di(v) ≤ |Li(v) ∖ {γi(v)}|, we get that

|NGi
(v) ∖ Sv

i | < |Li(v) ∖ {γi(v)}|.

Therefore, since each time the algorithm removes a color from Li(v), it also removes a node
from NGi(v), we get that

|NGi
(v) ∖ (Si ∪ Ji)| < |Li+1(v)|.

For j = i, . . . , T , let us denote by

deg+
j (v) = NG1(v) ∩ (Ki ∪ · · · ∪Kj ∪ Vj+1)

the degree of v in Ki ∪ · · · ∪Kj ∪ V (Gj+1) at the end of iteration j. For j = i, we have just
shown that deg+

i (v) < |Li+1(v)|. For j ≥ i, assuming deg+
j (v) < |Lj+1(v)|, we have

deg+
j+1(v) = deg+

j (v)− |NG1(v) ∩ (Sj ∪ Jj)|

because the nodes in Sj ∪ Jj are removed from Gj to get Gj+1. Similarly, by the list updates
performed by the algorithm, we have

Lj+1(v) = Lj(v) ∖ {δ(u) : u ∈ NG1(v) ∩ (Sj ∪ Jj)}.

Since a node is removed each time a color is removed, we get that deg+
j+1(v) < |Lj+2(v)|.

Therefore deg+
j (v) < |Lj+1(v)| holds for every j ≥ i. The lemma follows from taking j = T ,

because deg+
T (v) = deg+(v) is the degree of v in Ki ∪ · · · ∪KT as VT +1 = ∅.

Finally, since, at every iteration i, every active node v truncates its list Li(v) to be of
size exactly di(v) + 1 at the beginning of the iteration, all lists involved in the algorithm are
of size at most k + 1. It follows that deg+(v) ≤ k. ◀

The next lemma states that the idle nodes eventually become properly colored.

▶ Lemma 13. For every idle node v ∈ K, and for every u ∈ NG1(v), we have δ(u) ̸= δ(v).

Proof. Let v ∈ K, and let u ∈ NG1(v). If u ∈ V ∖K, then u terminated at some iteration
i, 1 ≤ i ≤ T . By the list update applied at node v, δ(u) /∈ Li+1(v), and thus δ(u) /∈ LT +1(v).
By lemma 12, the graph G1[K] is properly colorable, and is properly colored by the algorithm
in Lemma 5. ◀

The next technical lemma concerns the nodes which did not become idle.

▶ Lemma 14. For every i ≥ 1, and every v ∈ Si ∪ Ji, let

Xi = {u ∈ NGi(v) ∩ (Si ∪ Ji) : δ(u) ̸= δ(v)}, and Yi = NGi(v) ∖ (Si ∪ Ji).

Then |Xi|+ |Yi| ≥ di(v).
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Proof. Let i ≥ 1, and v ∈ Si ∪ Ji. From Observation 7, the neighbors of node v can be
partitioned into Si, Ji, and Yi = Ki ∪ Vi+1. The set Xi ⊆ Si ∪ Ji is the subset of nodes u
which adopts their final color as δ(u) = γi(u) ̸= γi(v) = δ(v). The nodes in (Si ∪ Ji) ∖Xi

adopts the same final color as v, i.e., for every u ∈ (Si ∪ Ji) ∖Xi, we have γi(u) = γi(v).
If v ∈ Si, then the coloring γi is such that the neighborhood of v contains all the colors

in Li(v), and thus, thanks to Lemma 8, the neighborhood of v contains at least di(v) + 1
colors. These colors are those assigned by γi to nodes either in Yi or Xi. Therefore, the
neighborhood of v contains at least di(v) colors different from γi(v). Hence the lemma holds
for v ∈ Si.

If v ∈ Ji, then v /∈ Ki, i.e., v does not become idle at iteration i. As a consequence,

|NGi
(v)| − |{u ∈ NGi

(v) ∩ Si : γi = γi(v)}| ≥ di(v).

Since v ∈ Ji, we have NGi(v) ∩ Ji = ∅. Therefore

|NGi
(v)| − |{u ∈ NGi

(v) ∩ (Si ∪ Ji) : γi = γi(v)}| ≥ di(v).

The lemma follows from the fact that the left hand side of the latter inequality is precisely
equal to |Xi|+ |Yi|. ◀

For computing the total contribution of the neighbors of a node v to the original de-
mand d(v) of that node, we introduce the following notion, which applies to nodes that have
not yet terminated, i.e., they are still active, or became idle at previous iterations. For every
i ≥ 1, and v ∈ Vi ∪ (∪i−1

j=1Kj), we denote by

goodi(v) = {u ∈ NG1(v) : ∃j ∈ {1, . . . , i− 1}, u ∈ Sj ∪ Jj}

the set of neighbors of v in G1 that have terminated at a round less than i. Note also that,
by the list update rules, for every u ∈ goodi(v), δ(u) /∈ Li(v).

▶ Lemma 15. For every i ≥ 1, and every vertex v ∈ Vi ∪ (∪i−1
j=1Kj), we have

|goodi(v)|+ di(v) + |NG1(v) ∩ (∪i−1
j=1Kj)| ≥ d(v).

Proof. The proof is by induction on i ≥ 1. For i = 1, good1(v) = ∅, d1(v) = d(v), and
∪0

j=1Kj = ∅, so the lemma holds. Let us now assume that this lemma is true for i ≥ 1.
By the definition of good vertices, goodi+1(v) = goodi(v) ∪ (NGi

(v) ∩ (Si ∪ Ji)). Since,
goodi(v) ∩ (NGi(v) ∩ (Si ∪ Ji)) = ∅, it follows that

|goodi+1(v)| = |goodi(v)|+ |(NGi
(v) ∩ (Si ∪ Ji))|. (2)

Now, by the updates of the demands performed in the algorithm,

di+1(v) = di(v)− |NGi(v) ∩ (Si ∪ Ji ∪Ki)|.

Since Si, Ji, and Ki are disjoint, we can rewrite the previous equation as

di+1(v) = di(v)− (|NGi
(v) ∩ Si|+ |NGi

(v) ∩ Ji|+ |NGi
(v) ∩Ki|). (3)

Finally, we have that

|NG1(v) ∩ (∪i
j=1Kj)| =

i∑
j=1
|NG1(v) ∩Kj |. (4)
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Adding Equations (2), (3), and (4), and using the fact that Si, Ji, and Ki are disjoint, we get

|goodi+1(v)|+ di+1(v)+ |NG1(v) ∩ (∪i
j=1Kj)|

= |goodi(v)|+ di(v) +
i∑

j=1
|NG1(v) ∩Kj | − |NGi ∩Ki|.

Since NG1(v) ∩Ki = NGi
∩Ki for every i ≥ 1, we obtain that

|goodi+1(v)|+ di+1(v)+ |NG1(v) ∩ (∪i
j=1Kj)|

= |goodi(v)|+ di(v) +
i−1∑
j=1
|NG1(v) ∩Kj |

= |goodi(v)|+ di(v) + |NG1(v) ∩ (∪i−1
j=1Kj)|.

The claim then follows from the induction hypothesis. ◀

We can now conclude with the correctness of our algorithm.

▶ Proposition 16. The algorithm described in Section 2 terminates, and the coloring δ

returned by the algorithm is a solution to k-partial list-coloring in G.

Proof. The fact that the algorithm execute a finite number of iterations has been established
in Lemma 11. For every vertex v ∈ V , either v terminates at some iteration i ∈ {1, . . . , T},
or v becomes idle at some iteration i ∈ {1, . . . , T}.

Let us consider a node v that terminates at some iteration i ∈ {1, . . . , T}. By Lemma 14,
and the fact that if u ∈ NGi

(v) \ (Si ∪ Ji), then δ(v) /∈ Li(u), we deduce that the number of
neighbors of v in Gi which will take different color that v is at least di(v). As v is active in
the beginning of round i, it follows from Lemma 15 that

|goodi(v)|+ di(v) + |NG1(v) ∩K| ≥ d(v).

Thanks to the definition of good vertices, Lemma 13, and the fact that d(v) ≤ |NG1(v)|, it
results that the lemma holds for terminating nodes.

Let us now consider a node that becomes idle at some iteration i ∈ {1, . . . , T}. In that
case, the results immediately follows from Lemma 13. ◀

3.2 Complexity Analysis
We now prove that our algorithm terminates in the prescribed number of rounds.

▶ Proposition 17. The algorithm described in Section 2 terminates in O(logn · log3 k) rounds.

Proof. The algorithm starts with a preprocessing stage which takes O(log⋆ n) rounds [11].
The removal of the monochromatic edges from the graph takes O(1) rounds. For each iteration
i of the algorithm, the prepocessing phase takes O(1) rounds for each vertex to select incident
edges and remove unselected edges. The derandomization phase takes O(log2 k) rounds by
Lemma 3. Finally, for the color assignment phase, computing the graph G′

i takes O(1) rounds,
and computing the MIS Ii on Hi takes O(log⋆ k) rounds [12]. Therefore, each iteration takes
at most O(log2 k) rounds. The assignment of colors to the terminated vertices, and the
update of the graph from Gi to Gi+1 takes O(1) rounds.

Thanks to Lemma 10, the graph Hi induced by the nodes with degree less than 16 in
G′

i = (Vi, Fi) has at least |Vi|
2 vertices. For every maximal independent set Ii in Hi, every

v ∈ Ii dominates at most 16 nodes (itself, plus its at most 15 neighbors). Therefore, at least
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|Vi|
32 vertices are in Ii during the ith iteration. Each vertex in Ii either terminate (in Si or Ji)

or become idle (in Ki). Therefore, at most 31|Vi|
32 vertices participate in the next iteration.

Therefore, the number of iterations for the core of the algorithm is at most O(logn). It
follows that, in total, the core of the algorithm takes at most O(log2 k · logn) rounds.

For the post processing phase, by lemma 12, G1[K] is a layered graph for which ∆̂ =
maxv∈K deg+(v) ≤ k. By lemma 5, G1[K] it takes at most O(log3 k ·logn) rounds to properly
list-color the vertices of this graph. ◀

Theorem 1 directly follows from Propositions 16 and 17.

4 Conclusion

We have shown that the breakthrough result of Ghaffari and Kuhn [10], stating that (∆ + 1)-
list-coloring can be computed in O(logn · log2 ∆) rounds, can be generalized to k-partial
list coloring, where k is the maximum demand, for all k ≥ 0. Our algorithm for k-partial
list-coloring runs in O(logn · log3 k) rounds. The extra log k factor is due to the post-
processing stage, for assigning colors to the idle nodes, which itself comes from the extra
log k factor in proper list-coloring of layered graphs in [10]. However, in the specific case of
k-partial (k + 1)-coloring, this extra log k factor can be avoided, and our algorithm runs in
O(logn · log2 k) rounds. It would be interesting to know whether this extra log k factor could
be avoided for general partial list-coloring, and of course whether O(logn · log2 k) rounds is
the best that can be achieved for k-partial (k + 1)-coloring for general k.

Another interesting generalization of proper coloring is to consider the extension of
proper ∆-coloring to k-partial k-coloring, for k = 1, . . . ,∆. Brook’s theorem states that, in a
connected graph with maximum degree ∆, the vertices can be properly colored with only ∆
colors in all graphs, except for complete graphs, and cycle graphs of odd length, which require
∆ + 1 colors. The algorithm in [10] can be used to properly ∆-color every ∆-colorable graph
in O(log2 n log2 ∆) rounds. We do not know whether this can be generalized to k-partial
k-coloring every graph for which there exist a k-partial coloring using a palette with only k
colors.
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A Partial List-Coloring with a Common Color

In this section, we consider k-partial list-coloring with the additional assumption that all
lists share a common “special” color c∗ that is known to all nodes. This setting includes
the important case of k-partial (k + 1)-coloring, with c∗ = 1. In this context, it is easier to
assume that each node v has a specific list of colors of size at least d(v) not containing c∗,
and the color outputted by each node must be either c∗ or a color from its list L(v).

A.1 The Algorithm
Our algorithm remains based on the structure of the algorithm in [10] for (∆+1)-list-coloring,
as our algorithm for general k-partial list-coloring, but the color assignment phase is much
easier, thanks to the presence of the special color c∗, which can be used as a backup for
saturated nodes. Specifically, our algorithm works as follows.

OPODIS 2023

https://doi.org/10.1137/1.9781611977554.CH168
https://doi.org/10.1137/1.9781611977554.CH168
https://doi.org/10.1109/FOCS.2016.73
https://doi.org/10.1145/3564246.3585243
https://doi.org/10.1137/1.9781611977554.CH97
https://doi.org/10.1109/FOCS52979.2021.00101
https://doi.org/10.1145/1583991.1584032
https://doi.org/10.1109/SFCS.1987.20
https://doi.org/10.1109/SFCS.1987.20
https://doi.org/10.1137/0221015
https://doi.org/10.4230/LIPICS.DISC.2020.16
https://doi.org/10.4230/LIPICS.DISC.2020.16
https://doi.org/10.1137/S0097539793254571
https://doi.org/10.1006/JAGM.1996.0017
https://doi.org/10.1145/3357713.3384298


30:18 Distributed Partial Coloring via Gradual Rounding

Preprocessing Stage. This stage is identical to what was done in the algorithm for
general k-partial list-coloring. Specifically, we compute a k-partial O(k2)-coloring of G,
which we denote by α. Again, this can be done in O(log∗ n) rounds [11]. Remove the
monochromatic edges to obtain a sub-graph of G, denoted by G1 = (V1, E1). Note that
in G1 the degree of any node v is at least min{k,deg(v)}, and therefore at least d(v). We
further arbitrarily truncate each list L(v) to be of size d(v).
Computing the coloring δ. Initially, δ(v) = ⊥ for every v ∈ V . For computing their
colors, the nodes performs O(logn) iterations. At each iteration, some nodes v ∈ V fix
their colors δ(v) ∈ L(v) ∪ {c∗}. Once a node becomes colored (i.e., different from ⊥),
its color never changes. We proceed with another iteration as long as there is at least
one node v with δ(v) = ⊥. Note that, as opposed to the previous algorithm for general
k-partial list-coloring, there is no post-processing stage.
For every v ∈ V , we set d1(v) to be the input demand d(v), and we set L1(v) to be the
input list L(v). The input to iteration i ≥ 1 is a graph Gi = (Vi, Ei), a demand function
di : Vi → N, and a color list function Li : Vi → 2N.
We now describe one iteration of the algorithm.

1. Preprocessing Phase. Every vertex v arbitrarily selects di(v) many edges incident
on it, and orient them as outgoing edges, as we did before in the general k-partial
list-coloring algorithm. Note that an edge can be oriented both ways, by its two
endpoints. Any unoriented edge is removed from Gi. In what follow, we slightly abuse
notations, and Gi = (Vi, Ei) now refers to the graph after the removal of these edges.
We define

Nout
Gi

(v) := {u ∈ NGi(v) : v selected e = {u, v} as outgoing edge}.

2. Derandomization Phase. This phase is identical to the derandomization phase of the
general k-partial list-coloring, excepted that we are using lists of d(v) colors at nodes v,
instead of lists of d(v) + 1 colors, as nodes can use the wildcard color c∗ in addition
to the colors in their list. Corollary 3.6 in [10] provides a way to “derandomize” the
uniform distribution while almost preserving the weights assigned by wp (cf. Lemma 3).

3. Color Assignment Phase. Given the graph Gi = (Vi, Ei), and the coloring γ from
Lemma 3, we consider the graph G′

i = (Vi, Fi) where

Fi :=
{
{u, v} ∈ Ei : γ(u) = γ(v)

}
.

As we have seen in Lemma 10, we have |Fi| ≤ 4 · |Vi|. As a consequence, the number
of nodes v ∈ Vi with degree degG′

i
(v) ≥ 16 is at most |Vi|/2. We denote by Hi the

subgraph of G′
i induced by the nodes with degG′

i
(v) < 16. By construction, Hi has

maximum degree at most 15 = O(1). In addition, Hi has a proper (O(k2)) coloring
(by the preprocessing stage operations). It follows that the nodes of Hi can compute a
maximal independent set (MIS) Ii in Hi in O(log∗ k) rounds [12] . Note that, since
each of the at least |Vi|/2 nodes in Hi has maximum degree 15, we have |Ii| ≥ |Vi|

32 .

We now modify the notion of saturated nodes, for adapting it to the setting in which
all lists share a common color c∗.
▶ Definition 18. We say that a node v ∈ Vi is saturated by Ii with respect to the
coloring γ if the following condition holds: for every c ∈ Li(v), there exists a neighbor
u ∈ NGi(v) ∩ Ii with γ(u) = c.
Let us denote by Si the set of nodes saturated by Ii w.r.t. γ. It is easy to see that
Si ∩ Ii = ∅ (cf. Lemma 22).
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All nodes in Ii∪Si fix their final δ-colors in a way different from the color assignment in
the case of general k-partial list-coloring, using the existence of the common “wildcard”
color c∗, as follows:

MIS Node Rule: if v ∈ Ii, then δ(v)← γ(v), i.e., v adopts its γ-color as its final
color, and
Saturated Node Rule: if v ∈ Si, then δ(v) ← c∗, i.e., v adopts the wildcard
color c∗ as its final color.

Towards the next iteration we perform the following updates.
The list of colors available to each node v ∈ Vi ∖ (Ii ∪ Si) is updated as follows.

Li+1(v)← Li(v) ∖ {δ(u) : u ∈ NGi(v) ∩ Ii} .

The graph itself is updated to be Gi+1 = (Vi+1, Ei+1) as
a. Vi+1 = Vi ∖ (Si ∪ Ii)
b. Ei+1 =

{
{u, v} ∈ Ei : u /∈ Si ∪ Ii and v /∈ Si ∪ Ii

}
The (remaining) demands for each node v ∈ Vi ∖ (Ii ∪ Si) are defined as follows.
a. If degGi+1(v) < |Li+1(v)| then

di+1(v)← max{0, di(v)− |NGi(v) ∩ Ii| − |NGi(v) ∩ Si|};

b. Otherwise

di+1(v)← max{0, di(v)− |NGi
(v) ∩ Ii|}.

This completes the description of our algorithm.

A.2 The Proof
We first prove that our algorithm does solve k-partial list coloring under the assumption
of the existence of the special color c∗. Next, we will prove that it runs in the prescribed
number of rounds. Thanks to Lemma 6, we merely prove the correctness of the algorithm on
the graph G after the preprocessing stage. We start by a claim on the relation between the
size of the list of each node and its demand over the iterations.

▶ Lemma 19. For any j ≥ i, if dj(v) > 0 then |Lj(v)| − dj(v) ≥ |Li(v)| − di(v).

Proof. We prove the claim by induction on j ≥ i. The base case being j = i is obviously
true. Assume the induction hypothesis for j ≥ i. According to the algorithm

Lj+1(v) := Lj(v) ∖ {δ(u) : u ∈ NGj
(v) ∩ Ij}.

Now, according to the algorithm, if dj+1(v) > 0 then

dj+1(v) ≤ dj(v)− |NGj (v) ∩ Ij |.

The induction claim follows from

|{δ(u) : u ∈ NGj
(v) ∩ Ij}| ≤ |NGj

(v) ∩ Ij |,

and from the induction hypothesis. ◀
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▶ Lemma 20. For every iteration i and every node v ∈ Vi, |Li(v)| ≥ di(v).

Proof. The claim follows from the definition of the input to the algorithm and from Lemma 19.
◀

▶ Lemma 21. For every iteration i and every node v ∈ Vi, degGi
(v) ≥ di(v).

Proof. In each iteration i of the algorithm the degree of a node v is reduced by exactly

|NGi
(v) ∩ Ii|+ |NGi

(v) ∩ Si|,

and its demand is reduced by at most that number. ◀

The following establishes that our algorithm is well defined.

▶ Lemma 22. For every iteration i, we have Si ∩ Ii = ∅.

Proof. if v ∈ Si, then v has a neighbor u ∈ Nγ
Gi

(v) ∩ Ii with γ(u) = γ(v). As a consequence,
if v ∈ Ii too, then both v and u were vertices of Hγ that were adjacent in this graph, a
contradiction with the fact that Ii is an independent set of Hγ . ◀

We now give two lemmas that will allow us to establish the number of bichromatic edges
in Gi, according to the final coloring δ.

▶ Lemma 23. For every iteration i, every node u ∈ Ii, and every node v ∈ NGi
(u), we have{

δ(u) ̸= δ(v) if v ∈ Ii ∪ Si

δ(u) /∈ Li+1(v) otherwise

Proof. First note that it can be the case that u and v are both in Ii and adjacent in Gi,
because Ii is an independent set in Hi and not in Gi.

If v ∈ Ii, then δ(u) = γ(u) ̸= γ(v) = δ(v), as otherwise the edges (u, v) would have been
in Hi (because Hi is obtained from Gi by removing bichromatic edges and nodes), and
therefore it cannot be the case that both u and v are in Ii.
If v ∈ Si then δ(v) = c∗ /∈ L(u) and therefore δ(u) ̸= δ(v). ◀

▶ Lemma 24. For any iteration i and any node u ∈ Si,

|{v : v ∈ NGi
(u), δ(u) ̸= δ(v)}| ≥ di(u) .

Proof. By the definition of Si it follows that for every c ∈ Li(u), there exists a neighbor
v ∈ NGi

(v) ∩ Ii with γ(v) = c. By the algorithm for all nodes x ∈ Ii, δ(x) = γ(x) ̸= c∗, and
δ(u) = c∗. By Lemma 20, |Li(u)| ≥ di(u), and the lemma follows. ◀

We proceed with two definitions. First, we define the notion of slackness.

▶ Definition 25. Let i ≥ 1, and let v ∈ Vi be a vertex. The slackness of v is defined as
slacki(v) := degGi

(v)− di(v).

Second, we introduce the notion of free nodes.

▶ Definition 26. Let i ≥ 1, and let v ∈ Vi be a vertex. We say that v is free whenever
degi(v) < |Li(v)|. We denote by freei the set of free nodes in Gi.

▶ Lemma 27. For v ∈ Vi, if |NGi
(v) ∩ Si| > slacki(v) then, for any j > i,

v ∈ Vj ⇒ v ∈ freej .
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Proof. By the definition of the algorithm

degi+1(v) = degi(v)− |NGi(v) ∩ Ii| − |NGi(v) ∩ Si|.

Using the conditions of the Lemma we then have that

degi+1(v) < degi(v)− |NGi
(v) ∩ Ii| − slacki(v)

= degi(v)− |NGi
(v) ∩ Ii| − (degi(v)− di(v))

= di(v)− |NGi
(v) ∩ Ii|.

Using Lemma 20 we have then

degi+1(v) < |Li(v)| − |NGi(v) ∩ Ii| ≤ |Li+1(v)|.

We therefore have that degi+1(v) < |Li+1(v)|. By Lemma 19 we have that, for all i < j,
degj(v) < |Lj(v)|. By the definition of a free node, for all i < j, if v ∈ Vj then v ∈ freej . ◀

We need one last definition, which adapts the notion of good nodes to the case of lists
with a common color. The new notion of good nodes for v (at iteration i) is intended to
allow us to count the number of nodes adjacent to v in G that are already certain to be
colored differently than v by the final coloring.

▶ Definition 28. For iteration i and node v ∈ Vi we define goodi(v) as follows.

goodi(v) =
{
{u ∈ V ∖ Vi | δ(u) /∈ Li(v)} if v ∈ freei

{u ∈ V ∖ Vi | δ(u) /∈ Li(v) ∪ {c∗}} otherwise.

The following observation directly follows from the definition of goodi(v). It formally states
which of the neighbors of v in Gi−1 are added, at the end of iteration i − 1, to the set of
“good neighbors” of v.

▶ Observation 29. For i > 1, if v ∈ freei, then

NGi−1(v) ∩ (Si−1 ∪ Ii−1) ⊆ goodi(v),

else

NGi−1(v) ∩ Ii−1 ⊆ goodi(v).

▶ Lemma 30. For every iteration i and every node v ∈ V

|goodi(v)|+ di(v) ≥ d(v) .

Proof. We prove the claim by induction on i. The base case being i = 1 holds since
d1(v) = d(v) by the definition of the algorithm. Assume the induction hypothesis for i ≥ 1.
First observe that for all v ∈ V , goodi(v) ⊆ goodi+1(v) (and hence |goodi(v)| ≤ |goodi+1(v)|),
because

V ∖ Vi ⊆ V ∖ Vi+1, Li+1 ⊆ Li, and freei ⊆ freei+1.

However, it could be that di+1(v) < di(v). According to the algorithm there are two cases
for the update of di+1(v).
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– If degGi+1(v) < Li+1(v) then di+1(v) is reduced, compared to di(v), by at most

|NGi(v) ∩ Ii|+ |NGi(v) ∩ Si|.

Moreover, if degGi+1(v) < Li+1(v) then v ∈ freei+1, and by Observation 29,

|goodi+1(v) ∖ goodi(v)| ≥ |NGi(v) ∩ Ii|+ |NGi(v) ∩ Si|.

– If degGi+1(v) ≥ Li+1(v) then di+1(v) is reduced, compared to di(v), by at most
|NGi

(v) ∩ Ii|. Using again Observation 29,

|goodi+1(v) ∖ goodi(v)| ≥ |NGi
(v) ∩ Ii|,

which completes the proof. ◀

We now have all the necessary ingredients to establish the correctness of our algorithm.

▶ Proposition 31. If the algorithm in Section A.1 terminates, then the final coloring δ is a
solution to k-partial list-coloring on G, whenever all lists include a common color c∗.

Proof. Let vertex v terminate at the end of iteration i of the algorithm (i.e., v ∈ Vi but
v /∈ Vi+1).

If v ∈ Ii, then, by Lemma 23, for every u ∈ NGi
(v), either δ(u) ̸= δ(v) or δ(u) /∈ Li+1(v).

Now, observe that goodi(v)∩Vi = ∅. Hence, the number of nodes u /∈ goodi(v), u ∈Gi
(v)

colored differently than v is at least |NGi(v)| ≥ di(v), using Lemma 21.

If v ∈ Si, then, by Lemma 24,

|{u ∈ NGi
(v) : δ(u) ̸= δ(v)}| ≥ di(v).

Similarly to the previous case, because goodi(v) ∩ Vi = ∅, the number of nodes u /∈
goodi(v), u ∈Gi

(v) is at least di(v).

By Lemma 30 we get that the total number of nodes u ∈ NG(v) colored differently than
v is at least d(v). ◀

We finally prove that our algorithm terminates in the prescribed number of rounds.

▶ Proposition 32. The algorithm in Section A.1 terminates in O(logn · log2 k) rounds.

Proof. By the same arguments as in the proof of Proposition 17, excepted from the post-
processing stage, which is absent from the algorithm for lists with a common color. ◀

Theorem 2 directly follows from Propositions 31 and 32.
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