
A Tight Bound on Multiple Spending in
Decentralized Cryptocurrencies
João Paulo Bezerra #

Télécom Paris, Institut Polytechnique de Paris, France

Petr Kuznetsov #

Télécom Paris, Institut Polytechnique de Paris, France

Abstract
The last decade has seen a variety of Asset-Transfer systems designed for decentralized environments.
The major problem these systems address is double-spending, and solving it inherently imposes
strong trust assumptions on the system participants. In this paper, we take a non-orthodox approach
to the double-spending problem that might suit better realistic environments in which these systems
are to be deployed. We consider the decentralized trust setting, where each user may independently
choose who to trust by forming their local quorums. In this setting, we define k-Spending Asset
Transfer, a relaxed version of asset transfer which bounds the number of times a system participant
may spend an asset it received. We establish a precise relationship between the decentralized trust
assumptions and k, the optimal spending number of the system.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases Quorum systems, decentralized trust, consistency measure, asset transfer,
accountability

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2023.31

Related Version The full version of the paper is available as a technical report.
Full Version: https://arxiv.org/abs/2205.14076

Acknowledgements This work was supported by TrustShare Innovation Chair.

1 Introduction

Fault models and quorum systems. Distributed protocols, such as consensus and broadcast,
are generally built to be resilient against arbitrary (Byzantine) faults of system members.
To maintain consistency and progress, these protocols typically have to assume that only
a certain fraction of system members are allowed to be Byzantine. In the special case of
a uniform fault model, where faults of system members are identically and independently
distributed, bounds on the number f of Byzantine members that can be tolerated are well
known: less than half of system members (f < n/2) in synchronous networks (using digital
signatures) [27], and less than one third (f < n/3) in asynchronous or partially synchronous
networks [7].

More general fault models can be captured via quorum systems [33, 40], collections of
subsets of system participants, called quorums, that meet two conditions: in every system
run, every two quorums should have at least one correct participant in common and some
quorum should only contain correct participants. Intuitively, quorums encapsulate trust the
system members express to each other. Every quorum can act on behalf of the whole system:
an update or a query on the data is considered safe if it involves a trusted set of replicas.

Decentralized quorums. Conventionally, quorum assumptions are centralized: all parti-
cipants share the same quorum system. In some large-scale distributed systems, it might
be, however, difficult to expect that all participants come to the same trust assumptions.

© João Paulo Bezerra and Petr Kuznetsov;
licensed under Creative Commons License CC-BY 4.0

27th International Conference on Principles of Distributed Systems (OPODIS 2023).
Editors: Alysson Bessani, Xavier Défago, Junya Nakamura, Koichi Wada, and Yukiko Yamauchi; Article No. 31;
pp. 31:1–31:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:joaopaulo.bezerra@telecom-paris.fr
https://orcid.org/0000-0003-3620-899X
mailto:petr.kuznetsov@telecom-paris.fr
https://orcid.org/0000-0003-1148-1228
https://doi.org/10.4230/LIPIcs.OPODIS.2023.31
https://arxiv.org/abs/2205.14076
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

31:2 A Tight Bound on Multiple Spending in Decentralized Cryptocurrencies

Recently, the quorum-based approach to system design has been explored in a completely
new way. It started with system implementations [37, 34] that allowed their users to not
necessarily hold the same assumptions of who to trust, i.e., to maintain local quorum systems.
Based on its local knowledge, a system member might have its own idea about which subsets
of other participants are trustworthy and which are not. We come, therefore, to the model of
decentralized quorums: each system member maintains its own quorum system.

Great effort has been invested into improving protocols designed for uniform fault
models [12, 28, 21, 42], or in understanding which conditions on individual quorum systems
are necessary and sufficient, so that some well-defined subset of participants can solve a
problem [19, 8, 32]. However, little is understood about the “damage” that Byzantine
processes might cause if these conditions do not hold, e.g., in the decentralized quorum
system model. Intuitively, the more Byzantine processes there are or more strategically they
are located in decentralized quorums, the more important is the impact they have on the
system’s consistency. But what exactly does “more important” mean here?

Asynchronous cryptocurrencies. In this paper, we study this question on the example of
asset-transfer systems (or cryptocurrencies). Conventionally, the major challenge addressed
by a cryptocurrency is to prevent double spending, when a malicious or misconfigured user
manages to spend the same coin more than once. As was originally claimed by Nakamoto [36],
preventing double spending in systems with mutual distrust requires honest users to agree
on the order in which the transactions must be executed, i.e., to solve the fundamental
problem of consensus [18]. Bitcoin achieves probabilistic permissionless consensus assuming
a synchronous system and using the proof-of-work mechanism. The protocol is notoriously
energy-consuming and slow. Since then, a long line of systems used consensus for implementing
cryptocurrencies in both permissionless and permissioned contexts.

It has been later observed that cryptocurrencies do not always require consensus in
general [23, 22]. It turns out that it is not always necessary to maintain a totally ordered
set of transactions, a specific partial order may suffice. Intuitively, if we assume that each
account has a single dedicated owner, it is sufficient to agree on the order of outgoing
transactions per account. Transactions operating on different accounts can be ordered
arbitrarily without affecting correctness. Double spending is excluded, as no user can publish
“conflicting” transactions on its account (spending more money than its account holds).
Recently proposed asynchronous (consensus-free) cryptocurrencies [4, 15] exhibit significant
advantages over consensus-based protocols in terms of scalability, performance and robustness.
However, as they still rely on classical quorum systems, they are challenging to apply at a
large scale.

Contributions. In this paper, we explore the potential of decentralized quorums in imple-
menting asynchronous cryptocurrencies. Naturally, this model allows us to formally capture
the double spending phenomenon. In a way, we mimic the principle followed by real-world
financial systems, where double spending is a routine phenomenon.

We introduce k-Spending Asset Transfer, a relaxed cryptocurrency abstraction suitable for
decentralized trust models. Notice that in this model, quorums chosen by correct processes
might not be globally consistent, i.e., some quorums might not overlap on a correct process.
Byzantine processes can exploit this lack of consistency by enforcing correct processes to
accept conflicting transactions with the same input, resulting in multiple spending.

Intuitively, a k-spending asset-transfer system guarantees that once a participant receives
an asset, it spend it at most k times. It ensures, however, that any instance of multiple-
spending that affects correct participants should be eventually detected and a proof of
misbehaviour against the Byzantine process should be published.

J. P. Bezerra and P. Kuznetsov 31:3

As a bold analogy, one can think of a global financial trading system, where every national
economy benefits from mutual trust, while cross-border interactions are less reliable. But if
the lack of trust is exploited by a cheating trader, correct participants should eventually be
able to detect and punish the cheater by, e.g., excluding it from the system.

We show how the parameter k in k-spending asset transfer relates to the structure of the
underlying quorum assumptions. We visualize these assumptions via a family GQ,F of graphs,
one for each possible faulty set F ∈ F and each quorum map S, mapping each process p to
an element in its local quorum system Q(p). It turns out that the optimal number of times a
coin can be spent in this system is precisely the maximum independence number over graphs
in GQ,F .

Thus, our contributions are three-fold. We introduce the abstraction of k-spending asset
transfer that defines a precise bound k on the number of times a given asset can be spent,
once it is received by a system participant. We represent decentralized trust assumption
in the form of a family of trust graphs and show that its maximum independence number
gives a lower bound on k. We present a k-asset transfer implementation that shows that the
bound is tight. In addition, the algorithm maintains an accountability mechanism that keeps
track of multiple spending and publishes evidences of misbehavior.

Road map. The rest of the paper is organized as follows. In Section 2 we present our
system model. Section 3 introduces a graph representation of trust, used later in the paper
to prove lower bounds on “the amount of inconsistency” in cryptocurrency implementations.
In Section 4 we give the specification of k-Spending Asset Transfer (k-AT) and present a
protocol for implementing it. We show that our k-AT algorithm is optimal in Section 5, by
relating it to a relaxed broadcast abstraction: k-Consistent Broadcast (k-CB). We overview
related work in Section 6. Finally, we discuss the results and future work in Section 7.

2 System Model

Processes. A system is composed of a set of processes Π = {p1, ..., pn}. Every process is
assigned an algorithm (we also say protocol), an automaton defined as a set of possible states
(including the initial state), a set of events it can produce and a transition function that
maps each state to a corresponding new state. An event is either an input (a call operation
from the application or a message received from another process) or an output (a response
to an application call or a message sent to another process); send and receive denote events
involving communication between processes.

Executions and failures. A configuration C is a collection of states of all processes. In
addition, C0 is used to denote a special configuration where processes are in their initial
states. An execution (or a run) Σ is a sequence of events, where every event is associated
with a distinct process and every receive(m) event has a preceding matching send(m) event.
A process misbehaves in a run (we also call it Byzantine) if it produces an event that is not
prescribed by the assigned protocol, given the preceding sequence of events, starting from
the initial configuration C0. If a process does not misbehave, we call it benign. In an infinite
run, a process crashes if it prematurely stops producing events required by the protocol; if a
process is benign and never crashes we call it correct, and it is faulty otherwise. Let part(Σ)
denote the set of processes that produce events in an execution Σ.

OPODIS 2023

31:4 A Tight Bound on Multiple Spending in Decentralized Cryptocurrencies

Channels. Every pair of processes communicate over a reliable channel: in every infinite
run, if a correct process p sends a message m to a correct process q, m eventually arrives,
and q receives a message from p only if p sent it. We impose no synchrony assumptions. In
particular, we assume no bounds on the time required to convey a message from one correct
process to another.

Digital signatures. We use asymmetric cryptographic tools: a pair public-key/private-key
is associated with every process in Π [9]. The private key remains secret to its owner and can
be used to produce a signature for a statement, while the public key is known by all processes
and is used to verify that a signature is valid. Every process have access to operations sign
and verify: sign takes the process’ identifier and a bit string as parameters and returns a
signature, while verify takes the process’ identifier, a bit string and a signature as parameters
and return b ∈ {TRUE, FALSE}. We assume a computationally bound adversary: no
process can forge the signature for a statement of a benign process.

Trust assumptions. We now define our decentralized trust model. A quorum system map
Q : Π → 22Π provides every process with a set of process subsets: for every process p,
Q(p) is the set of quorums of p. We assume that p includes itself in each of its quorums:
∀Q ∈ Q(p) : p ∈ Q. Intuitively, Q(p) consists of sets of processes p expects to appear correct in
system runs. From p’s perspective, for every quorum Q ∈ Q(p), there must be an execution in
which Q is precisely the set of correct processes. However, these expectations may be violated
by the environment. We therefore introduce a fault model F ⊆ 2Π (sometimes also called an
adversary structure) stipulating which process subsets can be faulty. We assume inclusion-
closed fault models that, intuitively, do not force processes to fail: ∀F ∈ F , F ′ ⊆ F : F ′ ∈ F .
From now on, we consider only executions Σ that complies with F , i.e., the set of faulty
processes in Σ is in F .

Given a faulty set F ∈ F , a process p is called live under F if it has a live quorum, i.e.,
∃Q ∈ Q(p) : Q ∩ F = ∅. For example, let the uniform f-resilient fault model: F = {F ⊆
Π : |F | ≤ f}. If Q(p) includes all sets of n − f processes, then p is guaranteed to have at
least one live quorum in every execution. On the other hand, if Q(p) expects that a selected
process q ̸= p is always correct (q ∈ ∩Q∈Q(p)Q), then p is not live in any execution with a
faulty set such that q ∈ F .

In the rest of the paper, we consider a trust model (Q, F), where Q is a quorum map and
F is a fault model.

3 Graph Representation of Trust

We use undirected graphs to depict possible scenarios of executions with trust assumptions
(Q, F). Intuitively, each graph represents a situation where a correct process hears from a
quorum before accepting a statement in a protocol. Let S : Π → 2Π, S(p) ∈ Q(p), be a map
providing each process with one of its quorums, and S be the family of all possible such
maps. For a fixed faulty set F ∈ F and S ∈ S, the graph GF,S is a tuple (ΠF , EF,S) where:

ΠF = Π − F , i.e., the set of correct processes;
Nodes p and q are connected with an edge iff their quorums S(p) and S(q) intersect in a
correct process, i.e., (p, q) ∈ EF,S ⇔ S(p) ∩ S(q) ̸⊆ F .

▶ Example 1. Consider a system of four processes, where Π = {p1, p2, p3, p4}, F = {{p3}},
and the individual quorum systems are:

Q(p1) = {{p1, p2, p3}} Q(p2) = {{p1, p2}, {p2, p4}}

Q(p3) = {{p1, p2, p4}} Q(p4) = {{p2, p4}, {p3, p4}}

J. P. Bezerra and P. Kuznetsov 31:5

Figure 1 Graph structures of Example 1: GF,S1 and GF,S2 respectively.

Consider an execution with F = {p3}, the set of correct processes ΠF is {p1, p2, p4}.
Let S1 ∈ S be a quorum map for Q such that S1(p1) = {p1, p2, p3}, S1(p2) = {p1, p2} and
S1(p4) = {p2, p4}. Every pair of nodes in the resulting graph GF,S1 have quorums intersecting
in p2 ∈ ΠF , resulting in a fully connected graph. Now let S2 ∈ S be a quorum map such that
S2(p1) = {p1, p2, p3}, S2(p2) = {p2, p4} and S2(p4) = {p3, p4}. Since S2(p1) ∩ S2(p4) ⊆ F ,
the resulting graph GF,S2 has a missing edge. Figure 1 depicts GF,S1 and GF,S2 .

Inconsistency number. We recall two useful definitions from graph theory: Independent
Set and Independence Number.

▶ Definition 2 (Independent Set). A set C ⊆ V is an independent set of G = (V, E) iff
no pair of nodes in C is adjacent, i.e., ∀p, q ∈ C : (p, q) /∈ E. C is maximum iff for every
independent set C’ of G: |C ′| ≤ |C|.

▶ Definition 3 (Independence Number). The independence number of G is the size of its
maximum independent set(s).

Given the pair (Q, F), we note GQ,F the family of graphs including all possible GF,S ,
where F ∈ F and S ∈ S.

▶ Definition 4 (Inconsistency Number). The inconsistency number of (Q, F) is the highest
independence number among all GF,S ∈ GQ,F . Formally, Let µ : GQ,F → N map each GF,S ∈
GQ,F to its independence number λ(GQ,F), then λ(GQ,F) = max({µ(GF,S)|GF,S ∈ GQ,F }).

▶ Example 5. Coming back to Example 1, the graph GF,S1 is fully connected, thus it has
independence number 1. On the other hand, the maximum independent set in GF,S2 is
{p1, p4}, as a result, GF,S2 has independence number 2. Now consider a pair (Q, F) where Q
and F are the same as in Example 1 (with this assumption only p3 may fail in any execution).
Since ∀S ∈ S, ∀F ∈ F : S(p1) ∩ S(p2) ̸⊆ F , it is easy to see that no graph has independence
number higher than 2 in GQ,F , thus the inconsistency number of (Q, F) is 2.

Computing inconsistency parameters. A straightforward approach to find the inconsistency
number of (Q, F) consists in computing the independence number of all graphs GF,S ∈ GQ,F .
The problem of finding the maximum independent set of a graph, and consequently its
independence number, is the maximum independent set problem [39], known to be NP-
complete [35]. Also, the number of graphs in GQ,F may exponentially grow with the number
of processes. However, as the graphs might have similar structures (for example, the same
quorums for some processes may appear in multiple graphs), in many practical scenarios, we
should be able to avoid redundant calculations and reduce the overall computational costs,
as we show for the uniform model.

OPODIS 2023

31:6 A Tight Bound on Multiple Spending in Decentralized Cryptocurrencies

Table 1 Inconsistency numbers for classical BQS with 100 processes.

Faulty processes 0–33 34–50 51–55 56–58 59–60 61 62 63 64 65 66

Inconsistency Number 1 2 3 4 5 6 7 9 12 17 34

Inconsistency in the uniform model. Centralized quorum systems generate graphs that are
similar in structure and are therefore easier to analyse. Given a uniform quorum system Qu,
we show how to calculate the inconsistency number of (Qu, Fu), where Qu and Fu include
every subset of processes with sizes q and ≤ f respectively, in which f < q.

▶ Theorem 6. Let (Qu, Fu) be a uniform quorum system with n processes, quorums of size
q and where at most f processes might fail. The inconsistency number of (Qu, Fu) is ⌊ n−f

q−f ⌋.

Proof. Fix any F ∈ Fu of size f . Let GF,S ∈ GQu,Fu
be a graph whose independence number

is the highest, and let Cmax = {p1, ..., pm} be a maximum independent set in GF,S . Let
cor(Q) denote the number of correct processes in a quorum Q and let Qi = S(pi). It follows
that cor(Q1) + ... + cor(Qm) ≤ n − f , since the quorums Q1, ..., Qm have no correct processes
in common. We can then build a graph GF,S′ with an independent set C ′ = {p1, ..., pm},
where ∀pi ∈ C ′ : F ⊆ S′(pi), that is, the quorum for every pi ∈ C ′ includes all faulty
processes. Indeed, it suffices to choose S′(pi) as any q − f correct processes from S(pi), in
addition to the f faulty processes. As there can be at most kmax = ⌊ n−f

q−f ⌋ disjoint sets of
q − f correct processes, we conclude that the maximum value m can reach is kmax. ◀

▶ Example 7. A classical Byzantine quorum system (BQS) uses quorums of size q = 2n/3+1.
It is typically assumed that f < n/3 processes. As Theorem 6 implies, the inconsistency
number of this range is 1, and it grows with f . Table 1 illustrates how the inconsistency
number varies with the number of faulty processes in a system with 100 processes.

4 Asset Transfer System

In this section, we define the problem of k-spending asset transfer (k-AT) and describe a
protocol that solves k-AT in a given trust model (Q, F), where k is the inconsistency number
of (Q, F).

4.1 Preliminaries
Transactions. A transaction tx ∈ T is a tuple (s, τ, I, data), where s is the process identifier
of the issuer, τ : Π → Z+

0 is the output map and I ⊆ T is the set of input transactions, tx is
called outgoing from s and incoming to every p such that tx.τ(p) > 0. Also, every transaction
in tx.I must be incoming to tx.s. Finally, data is a bit-string attached to the transaction
which contains some arbitrary information.

We use the function inValue: T → Z+
0 to denote the sum of the amount sent to s by the

transaction inputs, i.e., inValue(tx) =
∑

tx′∈tx.I tx′.τ(s). The function outValue: T → Z+
0

denotes the total amount spent in a transaction, i.e., outValue(tx) =
∑

p∈Π tx.τ(p). A
transaction tx is valid iff outValue(tx) > 0 and outValue(tx) = inValue(tx). Since the issuer
of tx might not send the entire value of its inputs to other processes, we allow the remaining
amount to be transferred back to the issuer in its output map. We assume from this point
on that each transaction in a history is signed by its issuer.

J. P. Bezerra and P. Kuznetsov 31:7

We assume that the total stake is initially distributed in a special transaction txinit = (⊥
, τinit, ∅). The total stake of the system is therefore

∑
p∈Π τinit(p).

Two distinct transactions tx and tx′ conflict if they are issued by the same process and
share some input, i.e., (tx.s = tx′.s) ∧ (tx.I ∩ tx′.I ̸= ∅).

Transaction histories. A set of transactions T ⊆ T is called a transaction history. T

generates a directed graph, where each tx ∈ T is a node and directed edges are drawn to tx

from its inputs. Let tx, tx′ ∈ T , if tx is reachable from tx′ in this graph (i.e., there is a path
from tx′ to tx), we say tx depends on tx′. A transaction history T is well-formed iff :

(T-Validity) txinit ∈ T ∧ ∀tx ∈ T, tx ̸= txinit : tx is valid;
(Completeness) ∀tx ∈ T, ∀tx′ ∈ tx.I : tx′ ∈ T ;
(No-Conflict) ∀tx, tx′ ∈ T : tx and tx′ do not conflict;
(Cycle-Freedom) ∀tx, tx′ ∈ T : tx depends on tx′ ⇒ tx ̸∈ tx′.I.

We only consider well-formed histories from this point on. The function balance
T

: Π → Z
applied to a transaction history T determines the balance of each process w according to
T : balance

T
(w) is the difference between the sum of transfers to w and the sum of transfers

issued by w, i.e.,

balance
T

(w) =
∑

tx∈T tx.τ(w) −
∑

tx∈T,tx.s=woutValue(tx)

▶ Proposition 8. Given a well-formed history T , for every process w, balance
T

(w) ≥ 0.

Proof. Let
∑

tx∈T tx.τ(w) be the incoming stake to w and let
∑

tx∈T outValue(tx), with
tx.s = w, be the outgoing stake from w. Assume that balance

T
(w) < 0, then the outgoing

stake is greater than the incoming stake. The initial transaction txinit may only send funds
to w, and since every other transaction tx ∈ T is valid, tx must include inputs with enough
funds to cover outValue(tx). From Completeness, for every transaction tx appearing in the
sum of the outgoing stake, its inputs tx′ ∈ tx.I also appear in the sum of the incoming stake.
Therefore, the only remaining way w can spend more stake than it received is to use an input
more than once, which is prevented by No-Conflict. ◀

Although a well-formed history has no conflicting transactions, there may exist conflicts
among distinct well-formed histories. Consider a collection of well-formed transaction histories
Γ, a process r, and tx an incoming transaction to r. Let Ir

tx ⊆ T be the set of outgoing
transactions from r, each tx′ ∈ Ir

tx including tx in its input and appearing in some Ti ∈ Γ,

Ir
tx = {tx′ | ∃Ti ∈ Γ : (tx′ ∈ Ti) ∧ (tx ∈ tx′.I) ∧ (tx′.s = r)}.

Let |Ir
tx| = k, we say that process r k-spends tx in Γ. In other words, a process k-spends

if it issued k distinct transactions appearing in Γ using the same input.

▶ Definition 9 (Spending Number). Let Γ be a collection of well-formed histories. The
spending number of Γ, noted γ(Γ), is the highest amount of times an input is spent by the
same process in Γ. Formally,

γ(Γ) = max({|Ir
tx| | ∀r ∈ Π, ∀tx incoming to r}).

Note that, by definition, the spending number of Γ cannot exceed |Γ|.

OPODIS 2023

31:8 A Tight Bound on Multiple Spending in Decentralized Cryptocurrencies

4.2 Problem Statement
Every process p ∈ Π maintains a local history Tp, where p accepts tx when it adds tx to Tp.

Ideally, we want local histories of correct processes to eventually converge. But this may
not always be possible, as our specification allows for multiple spending: correct process may
accept conflicting transactions. Therefore, we also introduce an accountability mechanism,
expressed in the form of accusation histories.

Formally, an accusation is a tuple (AC, P) consisting of a set of processes AC ⊆ Π and a
proof of misbehavior P for every process in AC. (AC, P) can be independently verified by a
third party through the function verify-acc: (2Π × P) → {true, false}. Technically, for each
process p ∈ AC, the proof P must contain a set of conflicting transactions tx1, ..., txℓ signed
by p. We say that the accusation (AC, P) refers to tx1, ..., txℓ.

Every process p is also expected to maintain a local accusation history Ap, where each
element in Ap is an accusation tuple. The k-spending asset transfer abstraction receives
inputs of the form transfer(tx) and produces updates to the local histories Tp and Ap.

Consider a run of a k-spending asset transfer protocol (k-AT) in a trust model (Q, F) with
a fixed faulty set F ∈ F . Let Tp(t) and Ap(t) denote the transaction history and accusation
history of process p at time t, respectively. Let Γ(t) denote the collection of local histories of
correct processes at time t. Then the run must satisfy:
Validity If a correct process issues a transaction tx, then every live correct process p eventually

adds tx to Tp, or adds an accusation to Ap referring to some transaction on which tx

depends.
k-Spending For all t ≥ 0, the spending number of Γ(t) is bounded by k, i.e., γ(Γ(t)) ≤ k.
Eventual Conviction If correct processes p and q add conflicting transactions tx to Tp and

tx′ to Tq respectively, then they eventually add an accusation referring to tx and an
accusation referring to tx′ to Ap and Aq.

Accuracy For all t ≥ 0 and (AC, P) in Ap(t): verify-acc(AC, P) = true. Moreover,
verify-acc(AC, P) returns true if and only if AC ⊆ F .

Agreement If a correct process p adds an accusation (AC, P) to Ap, then every correct
process eventually adds (AC, P) to its accusation history.

Integrity If tx.s is correct, a correct process p adds tx to Tp only if tx.s previously issued tx.
Monotonicity The accusation history of correct processes grows monotonically, i.e., for all p

correct and t ≤ t′, Ap(t) ⊆ Ap(t′);
Termination If a correct process p adds a transaction tx to Tp, then every live correct process

q eventually adds tx to Tq or an accusation referring to tx (or some transaction on which
tx depends) to Aq.

4.3 k-Spending Asset Transfer Protocol
The pseudo-code of our k-spending asset transfer protocol is presented in Algorithms 1 and 2.
In the protocol, a process accepts a transaction only after hearing from a (local) quorum,
and after all of the transaction’s inputs have already been accepted.

Local Variables. Variables echoes, usedInp and pending are used in a broadcast stage of
the algorithm. The array echoes stores received transactions echoed by other processes. In
usedInp, pi stores all transactions it has witnessed to be used as inputs, while in pending it
stores transactions with signatures from at least a quorum that have not yet been added
to the history. The remaining variables are: pi’s transaction history trHist, pi’s accusation
history acHist, and signedReq, an array with sets of tuples (tx, σ), where σ is a signature for
tx from tx.s.

J. P. Bezerra and P. Kuznetsov 31:9

The complete algorithm consists of three main blocks: the broadcast block, the acceptance
block and the accountability block. In the following, we give a detailed description on how
each block operates.

Broadcasting transactions. In order to issue a transaction, pi specifies a transaction tx and
invokes the operation transfer(tx) (we assume that transactions issued by correct processes are
always valid). Process pi then creates a signature σ for tx and sends them in a REQ message
to every process in the system. Upon receiving REQ with tx , pi stores the signed transaction
in signedReq. If none of tx ’s inputs are in usedInp[tx.s], pi echoes the original signed request
with the issuer’s signature and adds the inputs of the transaction to usedInp[tx.s]. A message
whose signature does not match its sender is ignored.

Each time a new ECHO is received from pj for a transaction tx, pi stores the echoed
transaction in echoes[pj] and follows the same steps as when receiving a REQ message. When
“enough” echoes are collected for the same transaction tx , and if tx is neither in pending nor
trHist, it is added to pending.

Accepting transactions. After going through the broadcast phase and adding tx to pending,
the function ready(tx) is used to verify whether the addition of tx to trHist results in a
well-formed history. If T-Validity, Completeness, and No-Conflict still hold, pi adds tx
to trHist and removes it from pending (as later shown in Lemma 10, Cycle-Freedom is
guaranteed by construction since a single transaction is added at a time).

Treating accusations. Since pi keeps track of every received request (tx, σ) in signedReq
(either coming directly from a REQ message or from an ECHO), it can construct a proof
of misbehavior after receiving signed conflicting transactions. The proof here consists of
a pair (tx, σj) and (tx ′, σ′

j) containing distinct transactions from pj whose inputs have a
non-empty intersection. An accusation (AC, P) is created using pj ’s identifier and the proof.
If it is a new accusation, pi adds (AC, P) to acHist and sends it to every process in an ACC
message. The same steps are followed once an ACC is received with a verifiable accusation
tuple (AC, P).

Correctness. Consider executions of Algorithms 1 and 2 assuming trust model (Q, F) with
inconsistency number kmax. Let F ∈ F be a corresponding faulty set.

▶ Lemma 10. The history Tp of a correct process p is well-formed, i.e., satisfies the properties
of T-Validity, Completeness, No-Conflict and Cycle-Freedom.

Proof. The default value of trHist is {txinit}, which is well-formed by definition. Now
assume that at some point trHist is well-formed. Before adding a new transaction tx at
line 21, p invokes ready(tx) to check whether tx is valid and that the resulting history
satisfies No-Conflict and Completeness (lines 34 to 38). By construction, trHist is also
Cycle-Free: suppose {tx} ∪ trHist creates a cycle, that is, ∃tx ′ ∈ {tx} ∪ trHist on which tx
depends and tx ∈ tx ′.I. This is clearly not possible: since trHist satisfies Completeness:
∀tx ′′ ∈ tx ′.I : tx ′′ ∈ trHist, but tx ̸∈ trHist, a contradiction. ◀

▶ Lemma 11 (k-Spending). At any time t, the spending number of Γ(t) is bounded by kmax.

Proof. Let r ∈ F and tx be an incoming transaction to r. Suppose r spends tx k times
in Γ(t), with k > kmax. We assume, without loss of generality, that r is the process that
multiple spent the maximal number of times in Γ(t), that is, γ(Γ(t)) = k. We make the
following observations about the algorithm:

OPODIS 2023

31:10 A Tight Bound on Multiple Spending in Decentralized Cryptocurrencies

Algorithm 1 k-Spending Asset Transfer System: code for process pi part 1.

Local Variables:
echoes ← [∅]N ; /* Array containing sets of received echoes */
usedInp ← [∅]N ; /* Array of inputs used by each process */
pending ← ∅; /* Set of transactions waiting to be accepted */
trHist ← {tx init}; /* Transaction History of pi */
signedReq ← [∅]N ; /* An array of set of pairs transaction-signature */
acHist ← ∅; /* Accusation history of pi */

behavior:
Ignore messages with invalid signatures;

1 operation transfer(tx):
2 σ ← sign(self , tx);
3 send ⟨REQ, tx, σ⟩ to all p ∈ Π;

4 upon receiving ⟨REQ, tx, σj⟩ from pj:
5 signedReq[tx.s]← signedReq[tx.s] ∪ {(tx, σj)};
6 if tx.I ∩ usedInp[tx.s] = ∅ then:
7 usedInp[tx.s]← usedInp[tx.s] ∪ tx.I; /* Stores used inputs */
8 σ ← sign(self , tx);
9 send message ⟨ECHO, (tx, σj), σ⟩ to all p ∈ Π;

10 upon receiving ⟨ECHO, (tx, σs), σj⟩ from pj:
11 echoes[pj]← echoes[pj] ∪ {tx};
12 signedReq[tx.s]← signedReq[tx.s] ∪ {(tx, σs)};
13 if tx.I ∩ usedInp[tx.s] = ∅ then:
14 usedInp[tx.s]← usedInp[tx.s] ∪ tx.I;
15 σ ← sign(self , tx);
16 send message ⟨ECHO, (tx, σs), σ⟩ to all p ∈ Π;

17 upon receiving echoes for tx from a quorum Qi ∈ Q(pi):
18 if tx ̸∈ trHist ∧ tx ̸∈ pending then:
19 pending ← pending ∪ {tx}; /* Collected enough signatures for tx */

Algorithm 2 k-Spending Asset Transfer System: code for process pi part 2.

20 upon existing tx ∈ pending such that ready(tx) = true :
21 trHist ← trHist ∪ {tx}; /* Adds transaction to history */
22 pending ← pending/{tx};

23 upon existing distinct tx and tx ′ in signedReq[pj] such that tx.I ∩ tx ′.I ̸= ∅:
24 ev1 ← (tx, σj); /* Evidences of misbehavior */
25 ev2 ← (tx ′, σ′

j);
26 accusation ← ({pj}, {ev1, ev2}); /* AC = {pj}, P = {ev1, ev2} */
27 if accusation ̸∈ acHist then:
28 acHist ← acHist ∪ {accusation}; /* Adds accusation to history */
29 send ⟨ACC , accusation⟩ to all p ∈ Π;

30 upon receiving ⟨ACC , accusation⟩ from pj:
31 if accusation ̸∈ acHist ∧ verify-acc(accusation) then:
32 acHist ← acHist ∪ {accusation};
33 send ⟨ACC , accusation⟩ to all p ∈ Π;

34 operation ready(tx):
35 c1 ← ∀tx ′ ∈ tx.I : tx ′ ∈ trHist; /* Completeness */
36 c2 ← true iff tx is valid; /* T-Validity */
37 c3 ← ∀tx ′ ∈ trHist : (tx ′.s = tx.s)⇒ (tx ′.I ∩ tx.I = ∅); /* No-Conflict */
38 return c1 ∧ c2 ∧ c3;

J. P. Bezerra and P. Kuznetsov 31:11

1. A correct process p adds a transaction tx ′ to its history only if it received ECHO messages
for tx′ from every process in a quorum Q ∈ Q(p) (guard in line 17).

2. p checks if any input of a received transaction is already in usedInp before echoing it
(lines 6 and 13), and if it sends ECHO for a transaction, p adds all of its inputs to usedInp
(lines 7 and 14). Therefore, p can only send ECHO for a single transaction from r that
has tx as an input.

Let correct processes pi and pj accept conflicting transactions txi and txj from r after
receiving echoes from Qi ∈ Q(pi) and Qj ∈ Q(pj), respectively. From (2) above, we conclude
that Qi ∩ Qj ⊆ F , otherwise a correct process in the intersection would have echoed two
different transactions sharing some input(s) from r.

Since r k-spends tx in Γ(t), there exists p1, ..., pk correct that accepted, respectively,
conflicting tx ′

1, ..., tx ′
k from r using tx as input. Now let Q1 ∈ Q(p1), ..., Qk ∈ Q(pk) be

the quorums each process received echoes from before accepting the transactions. We can
build a quorum map S satisfying S(pi) = Qi for i = 1, ..., k, and a graph GF,S ∈ GQ,F
of which C = {p1, ..., pk} is an independent set, since from (1) and (2) above: ∀pi, pj ∈
C, i ≠ j : S(pi) ∩ S(pj) ⊆ F . However, kmax is the inconsistency number of (Q, F), which
means there cannot be a graph GF,S ∈ GQ,F with an independent set of size k > kmax, a
contradiction. ◀

▶ Lemma 12 (Eventual Conviction). If correct processes p and q add conflicting transactions
tx to Tp and tx ′ to Tq, respectively, then they eventually add an accusation referring to tx
and an accusation referring to tx ′ to Ap and Aq respectively.

Proof. Before accepting tx and tx ′, p and q received echoes for tx (in p’s case) and tx ′ (in q’s
case), storing the original signed requests in their local signedReq (line 12). There are two
possible scenarios for each process (for simplicity, we only describe them for p): p echoed tx
before adding it to Tp, or p did not echo tx . If p echoed tx , then q will eventually receive the
echo with a signed request for tx from p, which allows q to construct and relay an accusation
for tx.s (in lines 23 to 29) using this request together with the one for tx ′ already stored in
q’s signedReq (e.g. assigning the request for tx to ev1 at line 24 and the request for tx ′ to
ev2 at line 25). Eventually p will receive an ACC message from q containing this accusation
and will add it to its accusation history.

Now if p did not echo tx , then it must have echoed for another conflicting transaction tx ′′,
which means p can construct an accusation using the respective signed requests for tx and
tx ′′ as described above. This accusation is sent to every process and is eventually received by
q, which then adds it to acHist. Ultimately, both p and q add accusations referring to tx
and tx ′ to their accusation histories. ◀

▶ Lemma 13 (Termination). If a correct process p adds a transaction tx to Tp, then every
live correct process q eventually adds tx to Tq or an accusation referring to tx (or some
transaction on which tx depends) to Aq.

Proof. Recall that a process is live if it has a quorum composed of only correct processes.
We first show the following: If a correct process adds a transaction tx to pending, then

every live correct process eventually does so or adds an accusation referring to tx to acHist.
Let p be a correct process that adds tx to its pending after receiving echoes for tx from a

quorum. There are two cases to consider, depending on whether p previously echoed tx or
not.

If p did not echo tx , then it echoed a conflicting tx ′ and built an accusation (AC, P) with
the original requests for tx and tx ′ (lines 23 to 26). Then, p adds the accusation to its acHist
and sends (AC, P) to all processes. Every correct process eventually receives the accusation
and also adds it to acHist.

OPODIS 2023

31:12 A Tight Bound on Multiple Spending in Decentralized Cryptocurrencies

Suppose now that p echoed tx. If no process sent ECHO or REQ for a conflicting
transaction, then every correct process eventually receives and echoes tx . If a correct process
q is live, it will eventually receive enough echoes and add tx to pending. On the other hand, if
a process in q’s live quorum had echoed a conflicting transaction, q will receive the conflicting
requests, build an accusation (AC, P) referring to tx and tx ′ and send it to all processes.
Then, as described previously, every correct process will eventually add (AC, P) to acHist.

Now suppose p also adds tx to its trHist. We make the following observations about
the algorithm: before being added trHist, any transaction tx ′ is first added to pending
(guard in line 20). Also, from Lemma 10 every transaction on which tx ′ depends must have
been previously added to trHist. Let deps(tx) include tx and every transaction on which tx
depends. It follows that p previously added every tx ′ ∈ deps(tx) to pending. The following
three cases are then possible for a live correct process q:
1. q eventually adds every tx ′ ∈ deps(tx) to its pending. If no transaction in trHist conflicts

with them, q adds every such tx ′ to trHist.
2. q has already added a transaction to trHist that conflicts with some tx ′ ∈ deps(tx). In this

case, it received conflicting requests. q will then build and send everybody an accusation
including the signed requests for the respective transactions.

3. q never adds one (or more) tx ′ ∈ deps(tx) to pending, in which case, as previously shown,
q eventually adds an accusation referring to tx ′ to acHist.

Therefore, if a correct process p adds a transaction tx to trHist and a live correct process
q is never able to do so, then q eventually adds an accusation to acHist referring to tx or
some transaction on which tx depends. ◀

▶ Lemma 14 (Validity). If a correct process issues a transaction tx, then every live correct
process p eventually adds tx to Tp, or adds an accusation to Ap referring to some transaction
on which tx depends.

Proof. If correct process p sends a request for tx, eventually every correct process echoes
tx and every live correct process adds tx to its pending. Since p is correct, it will not send
conflicting requests, thus no accusation referring to tx can be produced. Also, p must have
previously added every transaction on which tx depends to trHist, which from Lemma 13,
if a live correct process q does not add said transactions to trHist (and consequently tx), q

eventually adds an accusation to acHist referring to some transaction on which tx depends. ◀

▶ Theorem 15. Consider the trust model (Q, F) with inconsistency number kmax. Al-
gorithms 1 and 2 implement kmax-spending asset transfer abstraction.

Proof. Lemma 10 shows that correct processes always maintains well-formed local transaction
histories. The kmax-Spending, Eventual Conviction, Termination and Validity properties are
shown in Lemmas 11 to 14.

Accuracy, Monotonicity, Agreement and Integrity are immediate. A correct process adds
an accusation (AC, P) to acHist only if it can verify that messages for conflicting transactions
in P were indeed signed by the processes in AC (Accuracy). The set acHist may only grow
with time (Monotonicity). Moreover, once a correct process adds an accusation to its acHist,
it sends the accusation to every other process. This accusation is eventually received by every
correct process, which verifies and adds it to acHist (Agreement). Finally, the signature of a
correct process for a transaction request cannot be forged (Integrity). ◀

J. P. Bezerra and P. Kuznetsov 31:13

5 Relaxed Broadcast Abstraction and Lower Bounds

In this section, we show that the inconsistency number of (Q, F) is optimal for k-AT, by
relating the problem to the fundamental broadcast abstraction. The abstraction exports
one operation broadcast(m) and enables a callback deliver(m), for m in a value set M. We
assume that each broadcast instance has a dedicated source, i.e., the process invoking the
broadcast operation.

We now describe k-Consistent Broadcast, first introduced in [5]. Given a trust model
(Q, F), in every execution with a fixed F ∈ F , a k-Consistent Broadcast protocol ensures
the following properties:

(Validity) If the source is correct and broadcasts m, then every live correct process
eventually delivers m.
(k-Consistency) Let M be the set of values delivered by correct processes, then |M | ≤ k.
(Integrity) A correct process delivers at most one value and, if the source p is correct,
only if p previously broadcast it.

This protocol is a generalized version of an abstraction known as Consistent Broadcast [9].
Validity in Consistent Broadcast guarantees that a broadcast value is delivered by every
correct process. Also, correct processes cannot deliver different values. Note that if every
correct process is live and k = 1, then k-CB implements Consistent Broadcast.

5.1 Lower bound for k-Consistent Broadcast

We restrict our attention to quorum-based protocols, initially introduced in the context of
consensus algorithms [32]. Intuitively, in a quorum-based protocol, a process p should be
able to make progress if the members in one of its quorums Q ∈ Q appear correct to p. This
should hold even if the actual set of correct processes in this execution is different from Q.
Formally, we make the following assumption about algorithms implementing k-CB:

(Local Progress) For all p ∈ Π and Q ∈ Q(p), there is an execution in which only the
source and processes in Q take steps, p is correct, and p delivers a value.

Consider a trust model (Q, F) and let kmax be its inconsistency number, then:

▶ Theorem 16. No algorithm can implement k-CB such that k < kmax.

Proof. Let GF,S be the graph generated over fixed F ∈ F and S ∈ S and C = {p1, ..., pk′}
an independent set in GF,S of size k′. We proceed to show that there exists an execution
where k′ different values are delivered by processes in C. Let r be the source, by the definition
of Local Progress, there exists an execution Σi for each pi ∈ C where part(Σi) = {r} ∪ S(pi),
in which pi delivers a value mi. Now assume that r is faulty, we can build an execution Σ
such that all the correct processes in part(Σi) take the same steps in Σ as in Σi, and all the
faulty processes behave to them (send the same messages) the same as in execution Σi. For
a correct process in part(Σi), Σ is then indistinguishable from Σi, and thus pi, ..., pk′ must
deliver m1, ..., mk′ respectively.

Now let G′
F,S ∈ GQ,F be a graph whose independence number is kmax, there exists an

independent set Cmax of size kmax in G′
F,S . As shown above, it is possible to build an

execution where kmax processes (kmax ≥ k′) deliver kmax distinct values before any correct
process is able to identify the misbehavior. ◀

OPODIS 2023

31:14 A Tight Bound on Multiple Spending in Decentralized Cryptocurrencies

Intuitively, if two correct processes have quorums that do not have a correct process in
the intersection, they might deliver distinct values before noticing any misbehavior in the
execution. Within an independent set, the quorums of every pair of nodes do not intersect in
a correct process, and kmax represents the highest possible independent set in GQ,F , thus
establishing the lower bound for k-CB.

5.2 Relating k-Spending Asset Transfer and k-Consistent Broadcast
We show now that having a protocol implementing k-AT, one implement k-CB, which implies
that the lower bound established in Theorem 16 also holds for k-AT.

▶ Theorem 17. k-AT can be used to implement k-CB.

Proof. Suppose that we have a protocol implementing k-AT. First, we let tx init assign some
funds to the source p, and assume that p broadcasts a message to other processes by means
of encoding it in a transaction’s data.

Therefore, to broadcast a message m, p issues a transaction tx = (p, τ, {tx init}, m).
Whenever a correct process q adds tx to Tq, it issues deliver(m).

If p is correct, every live correct process eventually delivers it, that is k-AT Validity
implies k-CB Validity. Moreover, since processes do not have knowledge of F , an algorithm
implementing k-AT must guarantee Validity for an arbitrary fault scenario F ∈ F . As such,
for particular source p, process pi and quorum Qi ∈ Q(pi), if F is such that every process
other than p ∪ Qi is faulty, then there must be an execution in which only these processes
take step and pi accepts the transaction from p, implying the Local Progress assumed in
k-CB protocols.

From the k-Spending property, up to k conflicting transactions issued by p with tx init
as input can be accepted by correct processes. Thus, at most k distinct messages might be
“delivered”, which implies k-Consistency. Trivially, k-AT Integrity implies k-CB Integrity. ◀

Theorems 16 and 17 imply that Algorithms 1 and 2 implement k-AT with optimal k.

6 Related Work

Damgård et al. [16] appear to be the first to consider the decentralized trust setting. They
introduced the notion of aggregate adversary structure A: each node is assigned with a
collection of subsets of nodes that the adversary might corrupt at once. In this model,
assuming synchronous communication, they discuss solutions for broadcast, verifiable secret
sharing and multiparty computation.

Ripple [37] and Stellar [34], conceived as open payment systems, use decentralized trust
as an alternative to proof-of-work-based protocols [36, 41]. In the Ripple protocol, each
participant expresses its trust assumptions in the form of a unique node list (UNL), a subset
of system members. To accept a transaction, a node needs acknowledgement from a set of at
least 80% of its UNL (which can be seen as a quorum). The Ripple white paper [37] assumes
that up to 20% of members in a UNL are Byzantine, stating that an overlap of at least 20%
between every pair of UNLs in enough to prevent forks. Later analyses suggest this overlap
to be more than 40% [3] without Byzantine faults, and more than 90% with the same original
assumptions [13] (up to 20% Byzantine members in a UNL). Chase and MacBrough [13] also
provide an example in which liveness of the protocol is violated even with 99% of overlap.

Stellar consensus protocol [34] uses a Federated Byzantine Quorum System (FBQS). A
quorum Q in the FQBS is a set that includes a quorum slice (a trusted subset of members)
for every member in Q. Correctness of Stellar depends on the individual trust assumptions,

J. P. Bezerra and P. Kuznetsov 31:15

and stronger properties are guaranteed for nodes trusting the “right guys”, which are in
so called intact sets. García-Pérez and Gotsman [19] treated Stellar consensus formally, by
relating it to Bracha’s Broadcast Protocol [6], build on top of a FBQS. Their analysis has
been later extended [20] to a variant of state-machine replication protocol that allows forks,
where disjoint intact sets may maintain different copies of the system state.

Losa et al. [32], Sheff et al. [38], and Cachin [8] investigate more general formalizations of
decentralized trust. Cachin and Tackmann [11] model trust assumptions via an asymmetric
fail-prone system, an array [F1, ..., Fn] of adversary structures (or fault models), where
each Fi is chosen by pi as its local fault model. For this model, they devise an asymmetric
Byzantine quorum system (ABQS), an array of quorum systems [Q1, ..., Qn] satisfying specific
intersection and availability properties, so that certain problems, such as broadcast and
storage, can be solved. Recently, Losa et al. [10] extended this formalism to permissionless
settings where the processes may make assumptions about each others’ trust models.

Losa et al. [32] introduced the notion of a Personal Byzantine Quorum System (PBQS),
where every process chooses its quorums with the restriction that if Q is a quorum for
a process p, then Q includes a quorum for every process q′ ∈ Q. The PBQS model is
then discussed in relations to Stellar consensus [34]. More precisely, they characterize the
conditions on PBQS under which a quorum-based protocol (captured by our Local Progress
condition) ensures that a well-defined subset of processes (a consensus cluster) can maintain
safety and liveness of consensus.

In contrast, we allow the processes to directly choose their quorums, and we address the
question of what is the “best” consistency a cryptocurrency can achieve within this trust
model. The measure of consistency is quantified here as the spending number. In a way,
unlike this prior work on decentralized trust, instead of searching for the weakest trust model
that enables solutions to a given problem, we determine the “strongest” problem (in a specific
class) that is possible to solve in a given model.

In the context of distributed systems, accountability has been proposed as a mechanism
to detect “observable” deviations of system nodes from the algorithms they are assigned
with [25, 24, 26]. Recent proposals [14, 17] focus on application-specific accountability that
only heads for detecting misbehavior that affects correctness of the problem to be solved, e.g.,
consensus [14] or lattice agreement [17]. Our k-AT algorithm generally follows this approach,
except that it implements a relaxed form of asset transfer system, but detects violations that
affect correctness of the stronger, conventional asset transfer abstraction [22].

7 Discussion and Future Work

Generalizing the inconsistency measure. Our notion of the inconsistency number of a trust
model (Q, F) serves to quantify the amount of times a process can spend the same input in
our cryptocurrency implementation (or the number of distinct values that can be delivered
by correct processes in our broadcast abstraction). A natural variation of this question is
to explore the conditions on a trust model that are necessary and sufficient to implement a
cryptocurrency which bounds the number of copies the same asset can maintain in a system.
Note that our notion of k-spending is more relaxed, as it only bounds the number of times
the same input transaction can be used by a process.

It is very interesting to apply “inconsistency metrics” for solving other, more general
problems in the decentralized trust setting. Consider for example State Machine Replication
(SMR) protocols [31, 12]. In these protocols, correct processes agree on a global history of
concurrently applied operations, and thus witness the same evolution of the system state.

OPODIS 2023

31:16 A Tight Bound on Multiple Spending in Decentralized Cryptocurrencies

One way to relax consistency guarantees of SMR protocols in decentralized trust settings
is to bound the number k of diverging histories (the maximum degree of the fork). The
question is then how to relate k to the trust model (Q, F).

Reconfiguration of inconsistent states. Our k-AT abstraction provides the application
with the history of valid transactions and a record of misbehaving parties. An important
question is left open: once correct processes accept conflicting transactions and accusations
against Byzantine processes are raised, what is next? Is there a way to render the system
back to a consistent state? Although there is no general answer to these questions – it comes
down to what better suits the application – we point out some of the suitable strategies.

A natural response to this is to reconfigure both the trust model and the states of the
processes, in order to achieve some desired level of consistency. The immediate use of an
accusation (AC, P) is to rearrange the trust assumptions by evicting the misbehaving parties
AC from the system. For example, the application might use the accusation history to
suggest new (improved) quorum systems to system members. One may hope to deploy
recently developed asynchronous reconfiguration schemes [1, 29, 30].

When it comes to reconfiguration of the system states, we face a more challenging task.
Indeed, some correct processes may have already used “compromised” (multiply spent) assets
in their transactions. “Merging” conflicting histories into a consistent global state might
affect the stake distribution, which can be hard to resolve without changing the application
semantics. We present two strategies that make use of the transactions identified in accusation
proofs. The first approach, alluding to real financial systems, is to let them keep (and use
as input) accepted conflicting transactions after the misbehaving parties are excluded from
the system. This can have implications on the total stake of the system: depending on
how much stake was spent, the total system stake may grow. Once multi-spending party
may get negative balance in its accounts, and could be “frozen”, i.e., forbidden to issue
new transactions until the balance turns positive again (due to incoming transactions). The
advantage of this approach is that the system remains live despite conflicting transactions.
As a downside, a malicious party might be able to spend its entire balance k times. This
problem appears inevitable in asynchronous networks, and additional assumptions might be
necessary if we want to have a better “ overspending bound.”

The second, and probably the most straightforward approach, is to rollback any transaction
tx appearing in a proof, i.e., removing tx and every transaction depending on tx from
transaction histories. Surely, this comes with the downside of invalidating a previously
accepted transaction, which might affect correct system members in real life. As an alternative
way of compensating correct processes in this case, the application might opt to redistribute
the stake from the misbehaving parties among the harmed members.

Given a strategy for the reconfiguration of system members and states, an interesting
course to follow would be in self-reconfigurable systems [17]: the protocol automatically
rearrange trust assumptions and merge conflicting histories to keep the system live.

Composition of trust. Alpos et al. [2] show how to compose trust models of different (pos-
sibly disjoint) systems. Given two asymmetric fail-prone systems [F1, ..., Fn] and [F ′

1, ..., F ′
m]

and matching decentralized quorum systems, a composed trust model can be constructed. In
the context of our relaxed cryptocurrency protocols, it is appealing to understand how the
spending number of a composition of two independent systems may depend on the spending
number of its components.

J. P. Bezerra and P. Kuznetsov 31:17

References
1 Marcos Kawazoe Aguilera, Idit Keidar, Dahlia Malkhi, and Alexander Shraer. Dynamic atomic

storage without consensus. J. ACM, 58(2):7:1–7:32, 2011. doi:10.1145/1944345.1944348.
2 Orestis Alpos, Christian Cachin, and Luca Zanolini. How to trust strangers: Composition of

byzantine quorum systems. In 2021 40th International Symposium on Reliable Distributed
Systems (SRDS), pages 120–131. IEEE, 2021. doi:10.1109/SRDS53918.2021.00021.

3 Frederik Armknecht, Ghassan O Karame, Avikarsha Mandal, Franck Youssef, and Erik
Zenner. Ripple: Overview and outlook. In International Conference on Trust and Trustworthy
Computing, pages 163–180. Springer, 2015. doi:10.1007/978-3-319-22846-4_10.

4 Mathieu Baudet, George Danezis, and Alberto Sonnino. Fastpay: High-performance byzantine
fault tolerant settlement. In Proceedings of the 2nd ACM Conference on Advances in Financial
Technologies, pages 163–177, 2020. doi:10.1145/3419614.3423249.

5 João Paulo Bezerra, Petr Kuznetsov, and Alice Koroleva. Relaxed reliable broadcast for
decentralized trust. In International Conference on Networked Systems, 2022.

6 Gabriel Bracha. Asynchronous byzantine agreement protocols. Information and Computation,
75(2):130–143, 1987. doi:10.1016/0890-5401(87)90054-X.

7 Gabriel Bracha and Sam Toueg. Resilient consensus protocols. In Proceedings of the second
annual ACM symposium on Principles of distributed computing, pages 12–26, 1983. doi:
10.1145/800221.806706.

8 Christian Cachin. Asymmetric distributed trust. In International Conference on Distributed
Computing and Networking 2021, pages 3–3, 2021. doi:10.1145/3427796.3433933.

9 Christian Cachin, Rachid Guerraoui, and Luís Rodrigues. Introduction to reliable and se-
cure distributed programming. Springer Science & Business Media, 2011. doi:10.1007/
978-3-642-15260-3.

10 Christian Cachin, Giuliano Losa, and Luca Zanolini. Quorum systems in permissionless
networks. In OPODIS, 2022. doi:10.4230/LIPICS.OPODIS.2022.17.

11 Christian Cachin and Björn Tackmann. Asymmetric distributed trust. In OPODIS, volume
153, pages 7:1–7:16, 2019. doi:10.4230/LIPICS.OPODIS.2019.7.

12 Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance. In OSDI: Symposium
on Operating Systems Design and Implementation. USENIX Association, Co-sponsored by
IEEE TCOS and ACM SIGOPS, feb 1999.

13 Brad Chase and Ethan MacBrough. Analysis of the xrp ledger consensus protocol. arXiv
preprint, 2018. arXiv:1802.07242.

14 Pierre Civit, Seth Gilbert, and Vincent Gramoli. Polygraph: Accountable byzantine agreement.
IACR Cryptol. ePrint Arch., 2019:587, 2019. URL: https://eprint.iacr.org/2019/587.

15 Daniel Collins, Rachid Guerraoui, Jovan Komatovic, Petr Kuznetsov, Matteo Monti, Matej
Pavlovic, Yvonne Anne Pignolet, Dragos-Adrian Seredinschi, Andrei Tonkikh, and Athanasios
Xygkis. Online payments by merely broadcasting messages. In 50th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks, DSN 2020, Valencia, Spain,
June 29 - July 2, 2020, pages 26–38. IEEE, 2020. doi:10.1109/DSN48063.2020.00023.

16 Ivan Damgård, Yvo Desmedt, Matthias Fitzi, and Jesper Buus Nielsen. Secure protocols with
asymmetric trust. In International Conference on the Theory and Application of Cryptology and
Information Security, pages 357–375. Springer, 2007. doi:10.1007/978-3-540-76900-2_22.

17 Luciano Freitas de Souza, Petr Kuznetsov, Thibault Rieutord, and Sara Tucci Piergiovanni.
Accountability and reconfiguration: Self-healing lattice agreement. CoRR, abs/2105.04909,
2021. arXiv:2105.04909.

18 Michael J Fischer, Nancy A Lynch, and Michael S Paterson. Impossibility of distributed
consensus with one faulty process. Journal of the ACM (JACM), 32(2):374–382, 1985. doi:
10.1145/3149.214121.

19 Álvaro García-Pérez and Alexey Gotsman. Federated byzantine quorum systems (extended
version). arXiv preprint, 2018. arXiv:1811.03642.

OPODIS 2023

https://doi.org/10.1145/1944345.1944348
https://doi.org/10.1109/SRDS53918.2021.00021
https://doi.org/10.1007/978-3-319-22846-4_10
https://doi.org/10.1145/3419614.3423249
https://doi.org/10.1016/0890-5401(87)90054-X
https://doi.org/10.1145/800221.806706
https://doi.org/10.1145/800221.806706
https://doi.org/10.1145/3427796.3433933
https://doi.org/10.1007/978-3-642-15260-3
https://doi.org/10.1007/978-3-642-15260-3
https://doi.org/10.4230/LIPICS.OPODIS.2022.17
https://doi.org/10.4230/LIPICS.OPODIS.2019.7
https://arxiv.org/abs/1802.07242
https://eprint.iacr.org/2019/587
https://doi.org/10.1109/DSN48063.2020.00023
https://doi.org/10.1007/978-3-540-76900-2_22
https://arxiv.org/abs/2105.04909
https://doi.org/10.1145/3149.214121
https://doi.org/10.1145/3149.214121
https://arxiv.org/abs/1811.03642

31:18 A Tight Bound on Multiple Spending in Decentralized Cryptocurrencies

20 Álvaro García-Pérez and Maria A Schett. Deconstructing stellar consensus (extended version).
arXiv preprint, 2019. arXiv:1911.05145.

21 Guy Golan-Gueta, Ittai Abraham, Shelly Grossman, Dahlia Malkhi, Benny Pinkas, Michael K.
Reiter, Dragos-Adrian Seredinschi, Orr Tamir, and Alin Tomescu. SBFT: A scalable and
decentralized trust infrastructure. In DSN, pages 568–580. IEEE, 2019. doi:10.1109/DSN.
2019.00063.

22 Rachid Guerraoui, Petr Kuznetsov, Matteo Monti, Matej Pavlovic, and Dragos-Adrian Sered-
inschi. The consensus number of a cryptocurrency. In Peter Robinson and Faith Ellen, editors,
PODC, pages 307–316. ACM, 2019. doi:10.1145/3293611.3331589.

23 Saurabh Gupta. A non-consensus based decentralized financial transaction processing model
with support for efficient auditing. Arizona State University, 2016.

24 Andreas Haeberlen and Petr Kuznetsov. The Fault Detection Problem. In Proceedings of the
13th International Conference on Principles of Distributed Systems (OPODIS’09), dec 2009.
doi:10.1007/978-3-642-10877-8_10.

25 Andreas Haeberlen, Petr Kuznetsov, and Peter Druschel. The case for byzantine fault
detection. In Proceedings of the Second Workshop on Hot Topics in System Depend-
ability (HotDep’06), nov 2006. URL: https://www.usenix.org/conference/hotdep-06/
case-byzantine-fault-detection.

26 Andreas Haeberlen, Petr Kuznetsov, and Peter Druschel. PeerReview: Practical accountability
for distributed systems. In Proceedings of the 21st ACM Symposium on Operating Systems
Principles (SOSP’07), oct 2007. doi:10.1145/1294261.1294279.

27 Jonathan Katz and Chiu-Yuen Koo. On expected constant-round protocols for byzantine
agreement. In Annual International Cryptology Conference, pages 445–462. Springer, 2006.
doi:10.1007/11818175_27.

28 Ramakrishna Kotla, Lorenzo Alvisi, Michael Dahlin, Allen Clement, and Edmund L. Wong.
Zyzzyva: Speculative byzantine fault tolerance. ACM Trans. Comput. Syst., 27(4):7:1–7:39,
2009. doi:10.1145/1658357.1658358.

29 Petr Kuznetsov, Thibault Rieutord, and Sara Tucci Piergiovanni. Reconfigurable lattice
agreement and applications. In OPODIS, volume 153 of LIPIcs, pages 31:1–31:17, 2019.
doi:10.4230/LIPICS.OPODIS.2019.31.

30 Petr Kuznetsov and Andrei Tonkikh. Asynchronous reconfiguration with byzantine failures.
In Hagit Attiya, editor, DISC, volume 179 of LIPIcs, pages 27:1–27:17. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPICS.DISC.2020.27.

31 Leslie Lamport. Time, clocks, and the ordering of events in a distributed system. Communic-
ations of the ACM, 21(7):558–565, jul 1978. doi:10.1145/359545.359563.

32 Giuliano Losa, Eli Gafni, and David Mazières. Stellar consensus by instantiation. In 33rd
International Symposium on Distributed Computing (DISC 2019). Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, 2019. doi:10.4230/LIPICS.DISC.2019.27.

33 Dahlia Malkhi and Michael Reiter. Byzantine quorum systems. Distributed computing,
11(4):203–213, 1998. doi:10.1007/S004460050050.

34 David Mazieres. The stellar consensus protocol: A federated model for internet-level consensus.
Stellar Development Foundation, 32, 2015.

35 R Miller. Complexity of Computer Computations: Proceedings of a symposium on the Complex-
ity of Computer Computations, held March 20 22, 1972, at the IBM Thomas J. Watson Research
Center, Yorktown Heights, New York, and sponsored by the Office of Naval Research, Mathem-
atics Program, IBM World Trade Corporation, and the IBM Research Mathematical Sciences
Department. Springer Science & Business Media, 2013. doi:10.1007/978-1-4684-2001-2.

36 Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Decentralized Business
Review, page 21260, 2008.

37 David Schwartz, Noah Youngs, Arthur Britto, et al. The ripple protocol consensus algorithm.
Ripple Labs Inc White Paper, 5(8):151, 2014.

https://arxiv.org/abs/1911.05145
https://doi.org/10.1109/DSN.2019.00063
https://doi.org/10.1109/DSN.2019.00063
https://doi.org/10.1145/3293611.3331589
https://doi.org/10.1007/978-3-642-10877-8_10
https://www.usenix.org/conference/hotdep-06/case-byzantine-fault-detection
https://www.usenix.org/conference/hotdep-06/case-byzantine-fault-detection
https://doi.org/10.1145/1294261.1294279
https://doi.org/10.1007/11818175_27
https://doi.org/10.1145/1658357.1658358
https://doi.org/10.4230/LIPICS.OPODIS.2019.31
https://doi.org/10.4230/LIPICS.DISC.2020.27
https://doi.org/10.1145/359545.359563
https://doi.org/10.4230/LIPICS.DISC.2019.27
https://doi.org/10.1007/S004460050050
https://doi.org/10.1007/978-1-4684-2001-2

J. P. Bezerra and P. Kuznetsov 31:19

38 Isaac C. Sheff, Xinwen Wang, Robbert van Renesse, and Andrew C. Myers. Heterogeneous
paxos: Technical report. In OPODIS, 2020. doi:10.4230/LIPIcs.OPODIS.2020.5.

39 Robert Endre Tarjan and Anthony E Trojanowski. Finding a maximum independent set.
SIAM Journal on Computing, 6(3):537–546, 1977. doi:10.1137/0206038.

40 Marko Vukolić et al. The origin of quorum systems. Bulletin of EATCS, 2(101), 2013. URL:
http://eatcs.org/beatcs/index.php/beatcs/article/view/183.

41 Gavin Wood. Ethereum: A secure decentralized generalized transaction ledger. White paper,
2015.

42 Maofan Yin, Dahlia Malkhi, Michael K. Reiter, Guy Golan-Gueta, and Ittai Abraham. Hotstuff:
BFT consensus with linearity and responsiveness. In PODC, pages 347–356. ACM, 2019.
doi:10.1145/3293611.3331591.

OPODIS 2023

https://doi.org/10.4230/LIPIcs.OPODIS.2020.5
https://doi.org/10.1137/0206038
http://eatcs.org/beatcs/index.php/beatcs/article/view/183
https://doi.org/10.1145/3293611.3331591

	1 Introduction
	2 System Model
	3 Graph Representation of Trust
	4 Asset Transfer System
	4.1 Preliminaries
	4.2 Problem Statement
	4.3 k-Spending Asset Transfer Protocol

	5 Relaxed Broadcast Abstraction and Lower Bounds
	5.1 Lower bound for k-Consistent Broadcast
	5.2 Relating k-Spending Asset Transfer and k-Consistent Broadcast

	6 Related Work
	7 Discussion and Future Work

