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Abstract
We study the worst-case time complexity of solving two agreement problems, consensus and broadcast,
in systems with n processes subject to no more than t process failures. In both problems, correct
processes must decide on a common value; in the consensus problem, each process has an input and
if the inputs of correct processes are all the same, then that must be the common decision, whereas
in the broadcast problem, only one process (the sender) has an input and if the sender is correct,
then its input must be the common decision. We focus on systems where there is an upper bound
∆ on the message delivery time but it is expected that typically, messages arrive much faster, say
within some time d. While ∆ may or may not be known in advance, d is inherently unknown and
specific to each execution. The goal is to design deterministic algorithms whose running times have
minimal to no dependence on ∆, a property called responsiveness.

We present a generic algorithm transformation that, when applied to appropriate eventually-
synchronous consensus (or broadcast) algorithms, results in consensus (or broadcast) algorithms for
send omission failures, authenticated Byzantine failures, and unauthenticated Byzantine failures
whose running times have no dependence on ∆; their worst-case time complexities are all O(td),
which is asymptotically optimal. The algorithm for send omission failures requires n > 2t, while those
for Byzantine failures, both authenticated and unauthenticated, require n > 3t. The failure-resilience
of the unauthenticated Byzantine algorithm is optimal.

For authenticated Byzantine failures, existing agreement algorithms provide worst-case time
complexity O(t∆) when n is at most 3t. (When n ≤ 2t, broadcast is solvable while consensus is not.)
We prove a lower bound on the worst-case time complexity of ⌊(3t − n)/2⌋ d + ∆ when n is at most
3t. Although lower bounds of ∆ and (t + 1)d were already known, our new lower bound indicates
that, at least when n ≤ 2t, it is impossible for an algorithm to pay these bounds in parallel.
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1 Introduction

Reaching agreement in the presence of faulty processes is a fundamental problem in distributed
computing, with applications ranging from control systems and databases to cloud storage
and blockchains. We consider two variations of reaching agreement. In the consensus problem,
every process begins with an input and every correct process must reach the same decision;
if all the correct processes have the same input, then that must be the common decision, a
condition called strong unanimity. In the broadcast problem, there is a distinguished “sender”
process that begins with an input and every correct process must reach the same decision; if
the sender is correct, then the sender’s input must be the common decision. The consensus
and broadcast problems are closely related to each other, and in fact can be transformed to
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32:2 Bounds on Worst-Case Responsiveness for Agreement Algorithms

each other in most situations very simply: Broadcast can be solved by having the sender
send its input to all the processes and then having the processes run a consensus algorithm
with each process’ input being the value received from the sender. Consensus can be solved
by using one copy of a broadcast algorithm for each process to disseminate its input and
then having each process apply a common function to the vector of broadcast decisions to
obtain the consensus decision.

We consider send omission failures, in which faulty processes fail to send some messages,
and Byzantine (i.e., malicious) failures, in which faulty processes can change state arbitrarily
and send messages with arbitrary content. Cryptographic developments allow the assumption
that processes have access to authentication primitives to mitigate the effects of Byzantine
failures. Note that if half or more of the processes are Byzantine, then the consensus problem,
as stated above, is not solvable, and we only consider the broadcast problem. In this case,
the transformations between consensus and broadcast discussed above work if we consider a
weaker version of consensus in which the decision must be the common input only if all the
processes are correct, a validity condition called weak unanimity. We assume a permissioned
model, in which there is a known fixed set of n processes, up to t of which can be faulty.

Agreement problems have been studied under a variety of assumptions about the timing
behavior of the system. Initially, the lock-step rounds model was considered (e.g., [25]), and
then extended to more realistic synchronous models, with a known upper bound on message
delay ∆. Relaxations of this model include when ∆ is not known and when ∆ only starts
holding after some unknown global stabilization time (GST) [13]. In the asynchronous model,
there is no upper bound on the message delays (cf. [16]).

We consider a bounded-delay system model, where message delay is at most ∆. Motivated
by real-world networks in which the message delays in an execution are typically much smaller
than the maximum possible delay ∆, researchers looked for algorithms whose performance is
adaptive with respect to the maximum message delay actually experienced in each execution,
call it d. Herzberg and Kutten [19] proposed this style of analysis and gave an algorithm to
detect message forwarding faults with good performance under it. This behavior is dubbed
responsiveness by Pass and Shi [23].

When ∆ is known, classic agreement algorithms for the lock-step rounds model, with
optimal t + 1 rounds (e.g., [12]), can be adapted by using ∆ time to simulate each round,
but this leads to algorithms with Θ(t∆) worst-case running times. In the other direction,
the t + 1 round lower bound of [12] for agreement implies a lower bound of Ω(td) on the
worst-case running time.

This paper investigates the possibility of avoiding or minimizing dependence on ∆ in the
worst-case running time for consensus and broadcast algorithms. In situations where d is
much smaller than ∆, this would provide a significant speedup, allowing faster agreement on
various decisions and actions.

Our first result (Theorem 2) is an algorithm transformation that takes any consensus or
broadcast algorithm designed for a specific timing model called the basic round model [13]
and produces an algorithm for the bounded-delay model with responsiveness that depends
only on d. In the basic round model, processes take steps in lock-step rounds, messages are
only received in the round in which they are sent, and after some unknown round number,
called GST, no messages are lost. The transformed algorithm solves the same problem as the
input algorithm, tolerates the same number and type of process failures, and has running
time O(Td), where T is the number of rounds after GST required for the original algorithm
to decide. The transformed algorithm does not require that ∆ be known, or that it even
exist; that is, it could be that there is a bound d on the message delay in each particular
execution, but no global bound over all executions.
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Table 1 Time complexity lower bounds for several values of n and t, ignoring floors.

n = t + 2 n = 4
3 t n = 3

2 t n = 2t n = 2t + 1 n = 3t − 1 n = 3t

Thm. 9 (t − 1)d + ∆ 5t
6 d + ∆ 3t

4 d + ∆ t
2 d + ∆ t−1

2 d + ∆ 1
2 d + ∆ ∆

[4] t
2 ∆ 3∆ 2∆ ∆ N/A N/A N/A

The transformation is inspired by an algorithm of Dwork and Stockmeyer [14] for crash
failures. We have generalized the approach so that it works for send omission and Byzantine
failures, both with and without authentication. The main algorithmic idea is to run the
simulated algorithm, periodically doubling an estimate of the message delay, until we
eventually reach the actual message delay bound d, at which point the GST round is reached
for the simulation.

By applying our transformation to relevant algorithms of Dwork, Lynch and Stock-
meyer [13] for the basic round model, we obtain consensus (and broadcast) algorithms for
send omission failures and Byzantine failures, both with and without authentication, that
have asymptotically optimal worst-case running time of O(td). To the best of our knowledge,
these are the first algorithms for these types of failures with asymptotically optimal worst-case
responsiveness.

The resulting algorithm for send omission failures requires n > 2t, while the other two
require n > 3t. The n > 3t resilience requirement is optimal for unauthenticated Byzantine
failures [25]. For authenticated Byzantine failures, the resilience of n > 3t needed for our
algorithm is not optimal, as there are existing algorithms for consensus and broadcast that
work with a larger fraction of faulty processes. In fact, the broadcast problem is solvable even
when n = t + 1, as demonstrated by the algorithm of Dolev and Strong [12]. As mentioned
earlier, consensus can be solved by using one copy of a broadcast algorithm for each process;
however, if processes can be Byzantine when using this scheme, the strong unanimity validity
condition requires a majority of correct processes, i.e., n > 2t. This requirement is inherent,
as a simple partitioning argument (see [1]) shows that n > 2t is a necessary condition for
solving consensus with strong unanimity in the presence of Byzantine failures, even with
authentication.

In an attempt to address the time complexity gap when n ≤ 3t in the case of authenticated
Byzantine failures, we prove a lower bound (Theorem 9) when n is in the range t + 2 to
3t that the worst-case time complexity of consensus, even with weak unanimity must be at
least ⌊(3t − n)/2⌋ d + ∆. Abraham, Nayak, Ren, and Xiang [4] showed a lower bound of
(⌊n/(n − t)⌋ − 1)∆ on the running time of broadcast for n ≤ 2t. These two lower bounds
are incomparable, depending on the relative values of t, d, and ∆; see Table 1. These lower
bounds hint that the smaller n is compared to 3t, the larger the reliance on the timeout
must be. Ignoring constants, and looking at the key breakpoints, they indicate that when
n = t + 2, the time complexity is Ω(t∆), which is asymptotically tight, and when n = 2t + 1,
it is Ω(td + ∆) compared with Θ(td) when n = 3t + 1.

Our focus on the worst-case responsiveness of broadcast and consensus algorithms,
complements recent results for optimistic responsiveness, when the sender and a majority of
the processes are correct, discussed in detail in the next section.

2 Related Work

Analyzing the running time of an algorithm for the bounded-delay model in terms of both
d, the actual delay of messages, and ∆, the upper bound to time out message delivery, was
proposed by Herzberg and Kutten [18,19] in the context of message communication protocols.
Subsequently, the idea was applied to consensus algorithms.

OPODIS 2023
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Table 2 Worst-case time complexity bounds for n processes with t crash failures.

t + 1 < n ≤ 2t 2t < n

upper bound O(td + ∆) [5, 6, 21] O(td) [14]
lower bound (2t − n)d + ∆ [14] (t + 1)d

Table 3 Worst-case time complexity bounds for n processes with t send omission failures.

t + 1 < n ≤ 2t 2t < n

upper bound O(min{t/(n − t),
√

∆/d}td + ∆) [26] O(td) (Cor. 3)
lower bound (2t − n)d + ∆ (cf. Table 2) (t + 1)d

Attiya, Dwork, Lynch and Stockmeyer [6, 7] presented a crash-tolerant algorithm for
consensus in the bounded-delay model with worst-case running time of O(td + ∆), for n > t.
Constant-factor improvements were made in [5,21]. Dwork and Stockmeyer [14] improved on
this running time when n > 2t with an algorithm whose worst-case time complexity is O(td),
which is asymptotically optimal; they also showed that when n ≤ 2t no algorithm can have
worst-case time better than (2t − n)d + ∆. Thus dependence on ∆, that is, requiring at least
one time-out, is necessary if and only if n ≤ 2t. See Table 2.1

Ponzio [26] extended the results of [6, 7] to send omission failures in the bounded-delay
model, presenting a consensus algorithm for n > t with worst-case time complexity Ω(td+∆).
Bharali and Berman [9] further extended [26] to general omission failures as long as n > 2t,
with the same asymptotic running time. Similar results are derived in a more structured
manner by Attiya, Borran, Hutle, Milosevic and Schiper [5]. To the best of our knowledge, all
previous algorithms for (send) omission failures in the bounded-delay model have worst-case
running times that depend on ∆. In contrast, our algorithmic transformation, when applied
to an appropriate base algorithm, yields an algorithm for send omission failures, where
n > 2t, with worst-case time complexity O(td), that is, with no dependence on ∆, which is
asymptotically optimal. See Table 3.

For authenticated Byzantine failures, there is an algorithm for n > 3t with worst-case
running time of O(d2 + t2) [13]. It was designed for the partially synchronous model when
∆ is unknown and thus it uses estimates of the observed actual message delays instead
of ∆ timeouts. It works in the bounded-delay model as well with no dependence on ∆,
although the resilience is no longer optimal.2 A recent paper of Civit et al. [11] presents
a communication-optimal algorithm for the partially synchronous model in which ∆ holds
eventually (i.e., the eventually-synchronous model). It requires n > 3t and has worst-case
running time of O(t∆) after ∆ starts holding. This algorithm also works in the bounded-delay
model and has worst-case running time of O(t∆) and optimal communication complexity,
although the resilience is no longer optimal. Our results on worst-case running time together
with the upper and lower bounds that follow from the classical round-based results are
summarized in Table 4.

1 The lower bounds in all the tables implicitly include the maximum of the expression given and (t + 1)d,
which is due to the (t + 1)-round lower bound when n > t + 1 [12].

2 Algorithm 22 in [13, Section 4.2]. The discussion after Theorem 4.2 states O(N2 + ∆2), but N (number
of processes) can be reduced to t by allowing multiple messages to be sent in each round, and ∆
corresponds to our d as their algorithm is for the unknown-∆ model.



H. Attiya and J. L. Welch 32:5

Table 4 Worst-case time complexity bounds for n processes with t authenticated Byzantine
failures (only broadcast in the range t + 1 < n ≤ 2t).

t + 1 < n ≤ 2t 2t < n ≤ 3t 3t < n

upper bound (t + 1)∆ (t + 1)∆ O(td) (Cor. 4)

lower bound
max{⌊(3t − n)/2⌋d + ∆,

(⌊n/(n − t)⌋ − 1)∆} (Thm. 9 and [4])
⌊(3t − n)/2⌋d + ∆

(Thm. 9)
(t + 1)d

Table 5 Worst-case time complexity bounds for n processes with t (unauthenticated) Byzantine
failures.

n ≤ 3t 3t < n

upper bound impossible [15, 25] O(td) (Cor. 5)
lower bound impossible [15, 25] (t + 1)d

For Byzantine failures without authentication, n > 3t is a necessary condition even in lock-
step synchronous systems [15, 25]. To handle such failures, we can apply our transformation
to the algorithm in Section 3.2.3 of Dwork, Lynch and Stockmeyer [13] to obtain a consensus
algorithm with O(t · d) worst-case time complexity, which is asymptotically optimal. See
Table 5.

Recently, the broadcast problem in the presence of authenticated Byzantine failures
has captured attention, motivated by state machine replication3 and blockchains. In a
complementary direction to the results in this paper which are for worst-case running time,
the primary focus is on good-case behavior, where “good-case” means the sender is correct,
as well as behavior in even more optimistic situations where, in addition to the sender, a
large majority or even all the processes are correct. Typically, the worst-case running times
of these algorithms, including when the sender is faulty, are either not considered or shown
to be Ω(t∆).

Broadcast algorithms with good-case time complexity of O(d) have been proposed by
Castro and Liskov (PBFT) [10], Pass and Shi (Hybrid consensus) [23], Yin, Malkhi, Reiter,
Gueta and Abraham (HotStuff) [30], and Abraham, Nayak, Ren, and Xiang [4]. All these
algorithms assume n > 3t. However, there is a fundamental barrier to achieving such good
performance if the fraction of faulty processes is larger: Abraham, Malkhi, Nayak, Ren
and Yin [2] prove that if n ≤ 3t, then the good-case running time, i.e., when the sender is
correct, must be at least ∆; their proof can be viewed as a quantitative version of the proof
of Theorem 4.4 in [13] that consensus is impossible with n < 3t for authenticated Byzantine
failures when the upper bound on message delay is either unknown or only holds eventually.
Pass and Shi [23] have an analogous result for the permissionless model.

When n is between 2t + 1 and 3t, several algorithms have been proposed that have O(d)
running time under some optimistic conditions, but by necessity they pay a price of at least
∆ in the running times in other good-case executions. Pass and Shi’s Thunderella [24] has
O(d) time when a super-majority of the processes are correct but otherwise has time O(t∆).
Follow-up work has provided algorithms that have O(d) running time under certain optimistic
conditions and O(∆)+O(d) running time under other optimistic conditions (e.g., [2–4,22,27]).
Tradeoff lower bounds on the running times achievable under different optimistic conditions
have been proved [22,27].

3 State machine replication can be viewed as a collection of repeated instances of broadcast by various
senders, where processes must agree on the values sent by the senders as well as an ordering for the
broadcasts.

OPODIS 2023
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If n is between t + 1 and 2t, an algorithm with good-case complexity of O( n
n−t∆) has

been proposed by Abraham, Nayak, Ren and Xiang [4] based on an algorithm of Wan, Xiao,
Shi and Devadas [29]. As discussed in the introduction, there is an asymptotically matching
lower bound of

(⌊
n

n−t

⌋
− 1

)
∆ in [4], which was inspired by a proof in [17].

We are not considering randomized algorithms for asynchronous systems, since their
worst-case running times would be infinite, due to the impossibility of solving fault-tolerant
consensus and broadcast deterministically in asynchronous systems [16]. It should be
noted, however, that they have responsive running times, depending on d and not on ∆, in
expectation, since they are inherently asynchronous.

3 Preliminaries

3.1 The Bounded-Delay System Model
Fix positive integers n, t, and ∆. We present a model of an algorithm for n processes, t of
which may be faulty, that communicate by sending messages over reliable, point-to-point
channels with delay at most ∆.

There is a set M of messages. Each message is a triple (s, m, r), where s indicates the
sending process, m is the message contents, and r indicates the receiving process.

There is a set of n processes, p1, p2, . . . , pn, where each process pi is a state machine with a
(possibly infinite) set of states Qi and two transition functions. The set of states Qi includes a
subset of initial states. The two transition functions of pi are δm

i : Qi → 2M (which produces
the next set of messages to send depending on the current state) and δs

i : Qi × 2M → Qi

(which produces the next state depending on the old state and set of messages received).
A history of process pi is an infinite sequence (MR

0 , q0, MS
0 , MR

1 , q1, MS
1 , . . .), where

qt ∈ Qi, MR
t ⊆ M , and MS

t ⊆ M for all t ≥ 0. The triple (MR
t , qt, MS

t ) is the step of pi

occurring at time t, in which pi receives the set MR
t of messages, changes its local state

to qt, and sends the set MS
t of messages. A history is correct if q0 is an initial state of pi,

qt = δs
i (qt−1, MR

t ) for all t ≥ 1, and MS
t = δm

i (qt) for all t ≥ 1. In other words, the next
state and the messages sent are determined by pi’s transition functions.

An execution α is a set of n histories, one for each process, satisfying the following
properties.

At least n − t of the histories are correct; the corresponding processes are the correct
processes while the rest are faulty.
Every message in an MS

t (resp., MR
t ) component of pi’s history has i as its sender (resp.,

recipient). That is, neither the sender nor the channel can lie about the sender, and the
channel does not misdeliver messages.
There exists a bijection from the set of messages appearing in the MS

t components of
the histories to the set of messages appearing in the MR

t components of the histories
such that every message sent is received exactly once and every message received is sent.
A message contained in the MR

b -th component of a process history (the recipient) and
contained in the MS

a -th component of a process history (the sender) is defined to have
delay b − a.
There exists d(α) ≤ ∆ such that the delay of every message is at least 1 and at most
d(α); the lower bound of 1 implies that MR

0 is the empty set in every history. When α is
understood from context, we denote the bound simply as d.

Since every process takes a step at every nonnegative integer time in its history, in an
execution all processes take steps together at every nonnegative integer time.
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To model send omission failures, we restrict the faulty processes to behave the same as
the correct processes, except that in each step, MS

t can be a subset of δm
i (qt), reflecting the

fact that some prescribed messages are not sent. For Byzantine failures, the faulty processes
need not follow their transition functions when changing state or sending messages. When
an authentication mechanism is available, the possible behaviors of the faulty processes
are limited: each message sent by a process is signed by the process and no signature can
be forged by another process. Thus if process pi sends a message to process pj claiming
that process pk sent message m, then pk did indeed send m. Such a mechanism can be
implemented, for instance, using public-key cryptography.

3.2 Definition of Agreement Problems
Every execution of an algorithm solving the consensus problem must satisfy the following
conditions. Every process pi starts with an input value from some finite domain of values V .
This is modeled by having |V | initial states in the state set Qi of pi, one for each possible
input v ∈ V .
Termination: Every correct process must eventually make an irrevocable decision on a value

from V . We model this by requiring |V | nonintersecting nonempty subsets of Qi, one for
each decision v ∈ V , and requiring the transition function δs

i to stay inside each subset.
(Processes continue running even after they have decided.)

Agreement: The decision values of all correct processes must be the same.

We also require one of the following validity conditions, which relates the common decision
value to the input values.
Strong Unanimity: If the input values of all the processes are the same, say v, then every

correct process decides v.
Weak Unanimity: If the input values of all the processes are the same, say v, and there are

no failures, then every process decides v.
For both validity conditions, if the inputs are different, then the common decision can be
any input value.

In the broadcast problem, a single process ps is identified as a sender. In every execution
of an algorithm solving the broadcast problem, the sender starts with an input m from
some finite domain of values V (modeled as for the consensus problem), and the following
conditions must be satisfied:

Termination: Every correct process must eventually make an irrevocable decision on a value
from V (modeled as for the consensus problem).

Agreement: All correct processes must decide on the same input m′.
Validity: If the sender ps is correct then m′ = m.

As mentioned in the introduction, the broadcast problem can be solved by having the
sender send its input to all the processes and then having the processes run a consensus
algorithm with each process’ input being the value received from the sender. Thus consensus
with weak unanimity is equivalent to broadcast and is not subject to the n > 2t requirement
for strong unanimity when faulty processes are Byzantine.

We are interested in the worst-case running time of agreement algorithms, defined as
follows. For execution α, the running time is the smallest time t such that every correct
process has decided by time t. The worst-case running time of an algorithm is the maximum,
over all executions α, of the running time of α.

OPODIS 2023
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4 Upper Bounds on Worst-Case Running Times

In this section, we present algorithms for consensus in the bounded-delay model for send
omission, authenticated and unauthenticated Byzantine failures that have asymptotically
optimal worst-case running time of O(fd). These consensus algorithms can be converted
into algorithms for broadcast with no increase in the (asymptotic) running time using the
method mentioned in Section 3. As mentioned before, if ∆ is known, then any consensus
algorithm A for the lock-step rounds model can be adapted to work in the bounded-delay
model by simulating each round of A using ∆ time. The resulting algorithm inherits the same
fault-tolerance (type of failures and relationship between n and t) and the same unanimity
condition as A. However, the running time becomes T · ∆, where T is the round complexity
of A after GST, which must be at least t + 1 (e.g., [12, 20]).

The main result of this section shows how to significantly improve on the running time
of (t + 1) · ∆ when n > 3t, by replacing the dependence on ∆ with dependence on the
per-execution delay bound d, without relying on any knowledge of ∆. The algorithms
result from applying a new transformation to appropriate base algorithms. In Section 4.1,
we present the transformation. In Sections 4.2, 4.3, and 4.4, we explain how to use the
transformation to achieve asymptotically time-optimal algorithms for send omission failures,
authenticated Byzantine failures, and unauthenticated Byzantine failures, respectively.

4.1 Transformation from Basic Round Model to Bounded-Delay Model
We present a generic transformation inspired by an algorithm for crash failures in [14]. The
transformation operates on algorithms designed for a more abstract model, called the basic
round model [13].

▶ Definition 1 (Basic Round Model). In the basic round model, processes operate in lock-step
rounds. In each round, every correct process sends a set of messages to the other processes,
then receives a subset of the messages sent at that round destined for it, and then performs
some local computation. Starting at some unknown round, called GST, every message sent
by a correct process to a correct process in a round is received in that round.

Suppose A is an algorithm for the basic round model that solves consensus for n processes
in the presence of up to t process failures, and decides by T rounds after GST. We show how
to transform A into algorithm Tr(A) that solves consensus for the same n and t and the
same type of process failure in the bounded-delay model. The key feature of the transformed
algorithm is that its running time in any execution is O(T ·d), where d is the actual maximum
message delay in the execution. The transformed algorithm does not rely on knowledge of ∆.

In the transformation, each process partitions its steps into groups so that the g-th group
contains 2g · T steps, for g = 1, 2, 3 . . .. Group g simulates T rounds of A using 2g as an
estimate of ∆ in this group; thus each simulated round in the group takes 2g steps.4 In more
detail, group g consists of rounds g · T + 1 through (g + 1) · T . In the first step of round r,
which is part of group g, a process sends the messages it is supposed to send in round r of
A, tagged with the round number. It then waits 2g steps and collects all messages received
that are tagged with round number r; any other messages are discarded. It then uses the
messages received and its current simulated local state to simulate its round r state transition
according to A, producing the new local state and set of messages to send at the beginning
of the next simulated round. Pseudocode for the transformation is presented in Algorithm 1.

4 To avoid the corner case when a round is simulated by a single step, we start with g = 1 instead of
g = 0.
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Algorithm 1 Transformation of algorithm A for the basic round model that decides by T rounds
after GST into algorithm T r(A) for the bounded-delay model; code for process pi.

initially:
1: g := 1 ▷ group number: 1, 2, 3, . . .

2: r := 1 ▷ round number: 1, 2, 3, . . .

3: s := 1 ▷ counts steps in current round: 1, 2, . . . , 2g, 1, 2, . . .

4: sim_state := initial state of pi in A

5: MR := ∅ ▷ set of messages received during current round of A

6: MS := set of messages to send at beginning of round 1 of A

7: while true do ▷ execute a step
8: add to MR all messages received at this step with tag r ▷ part of round r receive
9: if s = 1 then ▷ first step of round r

10: send MS (each message is tagged with r) ▷ round r send
11: else if s = 2g then ▷ last step of round r

12: (MS , state) := δA
i (sim_state, MR) ▷ round r computation

13: sim_state := state ▷ update simulated state; MS will be sent in next step
14: if r = (g + 1) ∗ T then ▷ end of group g

15: g := g + 1 ▷ start next group
16: r := r + 1 ▷ start next round of A

17: MR := ∅ ▷ clear set of received messages for new round
18: s := 1 ▷ reset step counter for new round
19: else ▷ neither first nor last step of round r

20: s := s + 1

▶ Theorem 2. Let A be a consensus algorithm for n processes in the basic round model that
tolerates up to t process failures and decides by T rounds after GST. Then Tr(A), the result
of applying Algorithm 1 to A, is a consensus algorithm with the same unanimity condition
for n processes in the bounded delay model that tolerates up to t process failures of the same
type and has running time O(T · d) in every execution with maximum message delay d.

Proof. Consider any execution τ of Tr(A) with upper bound d on the message delays. We
can extract from it an execution α of A in the basic round model as follows. For every r ≥ 1
and every process pi, the send of round r by pi in α corresponds to the execution by pi

in τ of Line 10 when pi’s local variable ri equals r. The receive of round r by pi in α is
distributed over all the executions by pi in τ of Line 8 when pi’s local variable ri equals r.
The compute of round r in α corresponds to the execution in τ of Line 12 when pi’s local
variable ri equals r. Once 2g ≥ d, that group (g) of steps will consist of a simulation of T

rounds of A after GST in the basic round model, since every message sent in a simulated
round that is part of group g (or later) is received in the same simulated round. Since A is
correct, α satisfies termination, agreement, and its designated unanimity condition. Thus
the same is true of τ and Tr(A) is correct.

We now calculate the time complexity in execution τ of the transformed algorithm. By
the assumption that A decides by T rounds after GST in the basic round model and the
correspondence between τ and α just presented, correct processes in τ decide by the end of
group g, where g is the smallest integer such that 2g ≥ d. The time until group g ends is at
most

T ·
⌈log d⌉∑

g=0
2g = T · (2⌈log d⌉ − 1) = Θ(T · d). ◀
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4.2 Transformed Algorithm for Send Omission Failures

For the base algorithm of our transformation for send omission failures, we start with the
algorithm in [13, Section 3.2.1] for consensus in the basic round model. We modify the
algorithm to include the optimizations discussed in Remark 1 (p. 302) of [13] that reduce
the running time in the basic round model to be O(t) rounds after GST. Call the modified
algorithm Aom. The algorithm works for n processes, t of which can experience send omission
failures, and achieves strong unanimity assuming n ≥ 2t + 1. For completeness, we present
a brief overview of Aom, followed by detailed pseudocode5, and key ideas for correctness
(see [13] for detailed correctness proof and worst-case time complexity analysis).

Aom is structured as a series of phases, each consisting of four rounds; process pk mod n

is the leader of phase k. Once a correct process is the leader after GST, processes quickly
decide. Each process keeps track of the set of values that it has learned are inputs (cf. Proper
variable); this information is propagated on all messages sent. It also keeps track of the set
of values that are candidates for decision (cf. Locked variable); each value is associated with
the phase number in which it is chosen.

In the first round of a phase, each process sends to the leader a list message with all
values in its Proper set that have no competing value in its Locked set. In the second round,
the leader chooses any one of the values received in the first round (if any) as its preference,
and sends a lock message with that value to all the processes. In the third round, if a
process receives the lock message from the leader, then it updates its Locked set and sends
an acknowledgment (ack message) back to the leader. If the leader receives at least n − t

acknowledgements, then it decides on its preference. In the fourth round, the leader sends
its Locked set and its decision (in a lock_rel_dec message) to all the processes. Each
recipient removes from its own Locked set any value that has a smaller associated phase than
any locked value received from the leader. If the recipient has not yet decided, then it adopts
the decision in the leader’s message.

The pseudocode for Aom appears in Algorithm 2; it assumes n > 2f . In the pseudocode,
leader(k) is pk mod n and “update (v, k) in Locked” means to add (v, k) to the local set variable
Locked and delete any (v, k′) in Locked where k′ < k.

We now sketch the key arguments for correctness. First, it is straightforward to argue
that only input values of some (nonfaulty) processes are added to the Proper set. Since only
values in this set are ever proposed or locked, it follows that if the initial value of every
process is v, then no value v′ ̸= v is ever proposed or locked. This implies validity.

The key property that is proved is lock continuation, namely, if a process decides on v at
the end of phase k, then for every for every phase k′ ≥ k, at least f + 1 processes hold a lock
(v, k′). The lock continuation property implies that no value v′ ̸= v is proposed or decided in
later phases, which ensures agreement.

Finally, it is also straightforward to prove that at most one value v is proposed in the
second round of each phase k, and hence, there is a lock only on (v, k). Then, consider what
happens at the first phase k after GST such that the leader pk mod n is nonfaulty. At phase
k, the leader pk mod n proposes a single value and since the communication is reliable after
GST, it will get acknowledgements for its proposed value and decide. Furthermore, all other
processes will receive the decision value in the last round of the phase, and they will decide
as well. This implies termination within t phases, and hence, O(t) rounds, after GST.

5 This algorithm, like those used in the next two subsections, is only presented in prose in [13]; we believe
we have correctly captured the intent.



H. Attiya and J. L. Welch 32:11

Algorithm 2 Consensus in the basic round model, for send omission failures; code for process pi,
0 ≤ i < n.

initially:
1: Proper := {input} ▷ set of values known to be inputs; input is pi’s input
2: Locked := ∅ ▷ set of locked values with phase numbers
3: decision := ⊥ ▷ pi’s decision
4: M := ∅ ▷ set of messages received most recently

5: procedure calc_proper(M):
6: add Proper set in m to (local variable) Proper for each m ∈ M

7: first round of phase k (k = 1, 2, . . .): ▷ all-to-leader
8: PA := {v | v ∈ Proper and no (u, ∗) is in Locked with u ̸= v} ▷ proper and acceptable
9: send ⟨list, k, PA, Proper⟩ to leader(k)

10: receive set M of messages; call calc_proper(M)

11: second round of phase k: ▷ leader-to-all
12: if pi = leader(k) then ▷ choose value to propose
13: W := union of PA set in m for each m ∈ M ▷ list messages from previous round
14: if |W | > 0 then
15: pref := arbitrary element of W

16: send ⟨lock, k, pref, Proper⟩ to all
17: receive set M of messages; call calc_proper(M)

18: third round of phase k: ▷ all-to-leader
19: if M = {m} for some message m then ▷ M is either empty or one lock message
20: update (v, k) in Locked where v is pref in m

21: send ⟨ack, k, Proper⟩ to leader(k)
22: receive set M of messages; call calc_proper(M) ▷ only leader(k) has |M | > t

23: if (|M | ≥ n − t) and (decision = ⊥) then ▷ got n − t ack’s and undecided
24: decision := pref ▷ pi decides when it is leader(k)

25: fourth round of phase k: ▷ leader-to-all
26: if pi = leader(k) then
27: send ⟨lock_rel_dec, k, Locked, decision, Proper⟩ to all
28: receive set M of messages; call calc_proper(M)
29: for each ⟨lock_rel_dec,k, L, d, ∗⟩ message in M do
30: for each (w, h′) ∈ L do ▷ release old locks
31: delete all (v, h) in Locked with (w ̸= v) and (h′ ≥ h)
32: if (d ̸= ⊥) and (decision = ⊥) then
33: decision := d ▷ pi decides, might not be leader(k)

After applying our transformation to Aom (Algorithm 2), we obtain an asymptotically
time-optimal algorithm for the bounded-delay model:

▶ Corollary 3. There exists a consensus algorithm (with strong unanimity) for n processes
that tolerates up to t send omission failures, n ≥ 2t + 1, and has running time O(t · d) in
every execution with maximum message delay d.
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4.3 Transformed Algorithm for Authenticated Byzantine Failures

For the base algorithm of our transformation for authenticated Byzantine failures, we use the
algorithm in [13, Section 3.2.2] with modifications to decide within O(t) rounds after GST
in the basic round model. Let Aau be the modified algorithm. The algorithm works for n

processes, t of which can be Byzantine, and uses authentication to achieve strong unanimity,
as long as n ≥ 3t + 1. For completeness, we present a brief overview of Aau, followed by
detailed pseudocode, and key ideas for correctness (see [13] for detailed correctness proof
and worst-case time complexity analysis).

Aau is structured similarly to Aom, with four rounds per phase. We next mention the key
differences. (1) Messages are signed before being sent. (2) Keeping track of the input values
of correct processes is more involved due to the possibility that faulty process lie, requiring
that processes tag every message sent with its input as well as its Proper set. If no input
occurs at least t + 1 times once 2t + 1 inputs have been reported, then all values in V are
possible decisions and are added to Proper ; otherwise if a value appears in t + 1 Proper sets
reported by other processes, then w is added Proper. See procedure calc_proper. (3) The
preference chosen by the leader in the second round must have a “proof”, meaning that it is
contained in the values of at least n − t list messages received in the first round. This proof
(set of n − t signed messages) is included in the leader’s lock message. (4) In the third
round, the leader decides on its preference if it receives at least 2t + 1 acknowledgements.
(5) In the fourth round, locks are sent all-to-all, not just from the leader. (6) In order for a
process to decide in the fourth round when it is not the leader, it must receive at least t + 1
identical decision values from other processes, not just one.

The pseudocode for Aau appears in Algorithm 3; it assumes n > 3f . Whenever a process
receives a signed message, it handles the message only after validating the signature, and
similarly for signed messages forwarded inside other messages. For clarity, we omit these
checks from the code, and implicitly assume they are carried out. In the pseudocode, leader(k)
is pk mod n and “update Ei(v, k, proof) in Locked” means to add Ei(v, k, proof) to the local
set variable Locked and delete any Ei(v, k′, proof ′) in Locked where k′ < k.

Much of the correctness proof for Aau is similar to that for Aom. A key difference is that
the impossibility of two different values acquiring a valid lock in the same phase is now due
to the fact that processes send proofs in their lock messages. Termination is also argued
differently and holds because of the more involved management of proper values.

After applying our transformation to Aau (Algorithm 3), we obtain an asymptotically
time-optimal algorithm:

▶ Corollary 4. There exists a consensus algorithm (with strong unanimity) for n processes
that tolerates up to t authenticated Byzantine failures, n ≥ 3t + 1, and has running time
O(t · d) in every execution with maximum message delay d.

4.4 Transformed Algorithm for Unauthenticated Byzantine Failures

For the base algorithm of our transformation for unauthenticated Byzantine failures, we use
the algorithm in [13, Section 3.2.3] with modifications to decide within O(t) rounds after GST
in the basic round model. Let AB be the modified algorithm. The algorithm works for n

processes, t of which can be Byzantine, and achieves strong unanimity, as long as n ≥ 3t + 1.
For completeness, we present a brief overview of AB , followed by detailed pseudocode, and key
ideas for correctness (see [13] for detailed correctness proof and worst-case time complexity
analysis).
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Algorithm 3 Consensus in the basic round model, for authenticated Byzantine failures; code for
process pi, 0 ≤ i < n.

initially:
1: Proper := {input} ▷ set of values known to be inputs; input is pi’s input
2: Input_vals := ∅ ▷ keep track of input values reported
3: Other_proper[] := array of sets of values, one per process; initially all ∅

▷ keep track of Proper sets reported
4: Locked := ∅ ▷ set of locked values with phase numbers and proofs
5: decision := ⊥ ▷ pi’s decision
6: Other_decisions := ∅ ▷ keep track of decisions reported
7: M := ∅ ▷ set of messages received most recently

8: first round of phase k (k = 1, 2, . . .): ▷ all-to-leader
9: PA := {v | v ∈ Proper and no (u, ∗, ∗) is in Locked with u ̸= v} ▷ proper and acceptable

10: send Ei⟨list, k, PA, Proper, input⟩ to leader(k) ▷ Ei is pi’s authentication function
11: receive set M of messages; call calc_proper(M) ▷ calc_proper definition appears below

12: second round of phase k: ▷ leader-to-all
13: if pi = leader(k) then
14: W := ∅ ▷ choose value to propose
15: Proof[v] := ∅ for each v ∈ V

16: for each m = Ej⟨list, k, S, ∗, ∗⟩ message in M do ▷ from previous round
17: for each v ∈ S do
18: add m to Proof[v]
19: add v to W for each v ∈ V such that |Proof[v]| ≥ n − t

20: if |W | > 0 then
21: pref := arbitrary element of W

22: send Ei⟨lock, k, pref, Proof[pref], Proper, inpu⟩ to all
23: receive set M of messages; call calc_proper(M)

24: third round of phase k: ▷ all-to-leader
25: if M = {m} for some message m then ▷ M is either empty or one lock message
26: let v be the pref in m

27: if |proof in m| ≥ n − t then
▷ at least n − t processes find v proper and acceptable in this phase

28: update Ei(v, k,proof) in Locked
29: send ⟨ack, k, Proper, input⟩ to leader(k)
30: receive set M of messages; call calc_proper(M) ▷ only leader(k) has |M | > t

31: if (|M | ≥ 2t + 1) and (decision = ⊥) then ▷ got 2t + 1 acks and undecided
32: decision := pref ▷ pi decides when it is leader(k)

▷ continued.........................................
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▷ ............................Continuation of Algorithm 3
33: fourth round of phase k: ▷ all-to-all
34: send ⟨lock_rel_dec, k, Locked, decision, Proper, input⟩ to all
35: receive set M of messages; call calc_proper(M)
36: for each ⟨lock_rel_dec, k, L, d, ∗, ∗⟩ message in M do
37: for each (w, h′,proof′) in L do ▷ release old locks
38: delete all Ei(v, h,proof) in Locked with (w ̸= v) and (h′ ≥ h)
39: if there is no element in Other_decisions for j, where pj is the sender of m then
40: add (j, d) to Other_decisions
41: if (there exist t + 1 elements in Other_decisions with the same value, v) and (decision

= ⊥) then
42: decision := v ▷ pi decides, might not be leader(k)

43: procedure calc_proper(M):
44: for each m ∈ M do
45: let pj be the sender of m, v be the input value in m, and pr be the Proper set in m

46: if there is no element in Input_vals for j then
47: add (j, v) to Input_vals
48: Other_proper[j] := pr ▷ over-write any previously reported Proper set from j

49: if (|Input_vals| = 2t + 1) and (no value occurs at least t + 1 times in Input_vals) then
50: Proper := V ▷ all possible inputs are valid
51: else
52: for each w ∈ V do ▷ check if w is considered proper by t + 1 processes
53: if w appears in (at least) t + 1 entries of Other_proper[] then
54: add w to Proper

To handle Byzantine failures, this algorithm replaces the authentication mechanism of
Aau by having processes communicate using a reliable broadcast primitive. The high-level
structure is similar to Aom and Aau except that each round of a phase is replaced with
two rounds, that implement the reliable broadcast primitive. These pairs of rounds are
called superrounds. The procedure of releasing locks, which was accomplished during the
fourth round in each phase in the previous two algorithms, no longer requires additional
communication and thus the lock release is done at the end of the third superround instead
of during a fourth superround. As a result, each phase takes three superrounds, which is six
rounds. The reliable broadcast primitive ensures three properties:
Correctness: If a correct process p broadcasts message m in a superround that starts after

GST, then m is delivered from p at every correct process in the same superround.
Unforgeability: If a correct process p does not broadcast message m, then m is never delivered

from p at any correct process.
Relay: If message m is delivered from p at any correct process in superround r, then m is

delivered from p at every correct process by superround r + 1 or GST, whichever is later.

Pseudocode for an implementation of the reliable broadcast primitive with a cost of two
rounds for broadcast-deliver is given in [13], based on [28]. In the first round, the message to
be broadcast is sent to all. In the second round, messages are echoed (sent again to all) and
if at least n − t distinct echoes of a message are received, that message is delivered. The
complication is that, in order to handle the possible loss of messages before GST, messages
continue to be echoed in all later rounds: if a process receives at least n − 2t distinct echoes
of the same message, then it sends send an echo to all, and once it has received at least n − t

distinct echoes for a message it is delivered.
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The pseudocode for AB appears in Algorithm 4; it assumes n > 3f . We assume some
mechanism for dropping messages that are ill-formed, duplicated, etc. from faulty processes.

After applying our transformation to AB (Algorithm 4), we obtain an asymptotically
time-optimal algorithm:

▶ Corollary 5. There exists a consensus algorithm (with strong unanimity) for n processes
that tolerates up to t Byzantine failures, n ≥ 3t + 1, and has running time O(t · d) in every
execution with maximum message delay d.

5 Lower Bound on Worst-Case Running Time

In this section, we present a lower bound on the worst-case running time of any consensus or
broadcast algorithm for n processes that tolerates t Byzantine failures and has access to an
authentication mechanism. The lower bound is shown for consensus with weak unanimity,
and thus it also holds for consensus with strong unanimity (when n > 2t) and for broadcast.
Recall that ∆ is the global upper bound on message delays across all executions and d(α) is
the upper bound on message delays in a specific execution α. Our lower bound assumes that
∆ is known, meaning that the algorithm can explicitly use ∆, e.g., to time out waiting for
messages. On the other hand d is not known, as it can vary from execution to execution.

Recall that, as mentioned in [6], a simple adaptation of the (t + 1)-round lower bound for
crash failures in the synchronous model provides a lower bound of (t + 1)d(α) time for every
execution α. (Below, we use d instead of d(α), when α is clear from the context.) This lower
bound shows that the algorithm of Corollary 4 has asymptotically optimal running time.

Our lower bound states that when n ≤ 3t, the worst-case running time must be at
least ⌊(3t − n)/2⌋ · d + ∆. Table 1 displays our lower bound as well as the lower bound of
⌊n/(n − f) − 1⌋ · ∆ when n is between t + 2 and 2t [4].

Our result is inspired by one in [14] for crash failures, which showed a lower bound of
(2t − n)d + ∆ when n ≤ 2t. Of course this bound also holds for authenticated Byzantine
failures, but by exploiting the worse behavior of the faulty processes, we are able to increase
the factor of (2t − n) to ⌊(3t − n)/2⌋ and to increase the range to n ≤ 3t. The main technical
novelties are (1) finding the right partitioning of the processes so that the faulty processes
can be substituted for (temporarily) disconnected correct processes, and (2) identifying
the desired behavior of the faulty processes, and showing it is possible despite the use of
authentication, which requires an involved argument.

The proof considers executions that mimic the behavior of the synchronous rounds model
with crash failures. We call such executions “synchronized” and define them next.

Given a positive integer d and a history of process pi, the subsequence (MS
t , MR

t+1, qt+1, . . . ,

MS
t+d−1, MR

t+d, qt+d), where t = (r − 1)d, is called round r of pi, for r ≥ 1. Given an exe-
cution, the collection of round r subsequences of all the processes is called round r (of the
execution). Note that round r starts with the sending of messages at time (r − 1)d and
ends with the receiving of messages and subsequent state changes at time rd, but does not
including the sending of messages at time rd.

An execution is synchronized if
1. every message sent in round r is received in round r, r ≥ 1, implying that d(α) ≤ d;
2. the behavior of a faulty process pi only deviates from that of a correct process by sending

a proper subset of the specified messages at some time t, i.e., MS
t ⊊ δm

i (qt), and no
messages subsequently; we say the process fails in round r if t is in round r; and

3. at most one process fails in each round.
An s-round synchronized execution prefix is the result of taking a synchronized execution
and truncating each process history after the end of round s.
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Algorithm 4 Consensus in the basic round model, for unauthenticated Byzantine failures; code
for process pi, 0 ≤ i < n.

initially:
1: Proper := {input} ▷ set of values known to be inputs; input is pi’s input
2: Input_vals := ∅ ▷ keep track of input values reported
3: Other_proper[] := array of sets of values, one per process; initially all ∅

▷ keep track of Proper sets reported
4: Locked := ∅ ▷ set of locked values with phase numbers and proofs
5: decision := ⊥ ▷ pi’s decision
6: M := ∅ ▷ set of messages delivered most recently
7: H := ∅ ▷ set of messages delivered so far

8: procedure check_dec(H): ▷ to speed up decision
9: if H contains at least t + 1 messages with different senders and the same non-⊥ decision

value, say v) and (decision = ⊥) then
10: decision := v

11: first superround of phase k (k = 1, 2, . . .):
12: PA := {v | v ∈ Proper and no (u, ∗) is in Locked with u ̸= v} ▷ proper and acceptable
13: broadcast ⟨list, k, PA, Proper, input, decision⟩
14: deliver set M of messages; call calc_proper(M) ▷ same calc_proper as in Alg. 3
15: add M to H; call check_dec(H)

▷ check_dec called frequently on H due to possible lag in delivery of broadcast messages

16: second superround of phase k:
17: if pi = leader(k) then
18: W := {v ∈ V | there exist n − t ⟨list,k, S, ∗, ∗, ∗⟩ messages in M with v ∈ S}
19: if |W | > 0 then
20: pref := arbitrary element of W

21: broadcast ⟨lock, k, v, Proper, input, decision⟩
22: deliver set M of messages; call calc_proper(M)
23: add M to H; check_dec(H)

24: third superround of phase k:
25: S := {v ∈ V | H contains a ⟨lock, v, k⟩ message from leader(k) and n − t

⟨list, k, T, ∗, ∗, ∗⟩ messages from different senders with v ∈ T}
26: for each v ∈ S do
27: update (v, k) in Locked
28: if |S| > 0 then
29: broadcast ⟨ack, k, S, Proper, input, decision⟩ to leader(k)
30: ▷ other recipients are to ignore this message
31: deliver set M of messages; call calc_proper(M) ▷ only leader(k) has |M | > t

32: add M to H; call check_dec(H)
33: if (at least 2t + 1 ack messages for the same value, v, are in M) and (decision= ⊥) then
34: decision := v

35: delete from Locked every entry with phase smaller than the largest phase number of any
entry in Locked ▷ lock release without any communication
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The classic proofs of the (t+1)-round lower bound for consensus in the synchronous model
with crash failures (e.g., [12, 20], see [8, Theorem 5.7]) construct a sequence of executions in
which adjacent executions are indistinguishable to at least n − 1 of the processes (meaning
that each of the processes has the same history in the two executions), starting with an
execution that decides 0 and ending with an execution that decides 1. Essentially the same
construction can be applied to synchronized executions, resulting in the following:

▶ Lemma 6. Consider any consensus algorithm that ensures weak unanimity for n processes
that tolerates t Byzantine failures (possibly using authentication) where n > t + 1. Let s ≤ t.
There exists a chain α1, α2, . . . , αm of s-round synchronized execution prefixes, for some m,
such that:
(a) No process fails in α1 (resp., αm) and all the input values are 0 (resp., 1).
(b) For all i, 1 ≤ i < m, the number of processes that fail in either αi or αi+1 (or both) is

at most s.
(c) For all i, 1 ≤ i < m, there exists a process q such that αi and αi+1 are indistinguishable

to all processes except possibly q and one of the following holds:
(1) the same processes are faulty in αi and αi+1, or
(2) the only difference between the faulty processes in αi and αi+1 is that q fails in αi+1

but not in αi, or
(3) the only difference between the faulty processes in αi and αi+1 is that q fails in αi

but not in αi+1.

▶ Lemma 7. Assume n = 3t − 2s, for some s < t. Any consensus algorithm for n processes
that tolerates t Byzantine failures (possibly using authentication) and ensures weak unanimity
has an execution in which every message has delay at most d but at least one correct process
does not decide before time s · d + ∆.

Proof. Let A be any consensus algorithm for n processes and t authenticated Byzantine
failures. Let α be an s-round synchronized execution prefix of A. A partition for α is a
partition (X, Y, F1, F2) of the processes such that |X| = |Y | = |F2| = t − s, |F1| = s, and F1
contains all the processes that fail in α; since t > s, X and Y are nonempty. Such a partition
is possible since 3(t − s) + s = 3t − 2s = n. Note that |F1| + |F2| = |F1| + |X| = |F1| + |Y | = t.

The X-extension of α is the execution that extends α in which
processes in X ∪ F2 remain correct,
every process in Y ∪F1 (that has not already failed) fails at the beginning of the extension
(giving t − s + s = t failures),
failed processes behave by sending no messages, and
every message sent after the end of α has delay d.

By the correctness of A, the correct processes must eventually decide in the extension; denote
the decision value by decX(α).

Define the Y -extension of α and decY (α) analogously, by swapping the roles of X and Y .

▷ Claim 8. For every s-round synchronized execution prefix α and every partition
(X, Y, F1, F2) for α, decX(α) = decY (α).

Proof. Suppose in contradiction there exist α and (X, Y, F1, F2) such that decX(α) ̸= decY (α).
Let αX (resp., αY ) be the X-extension (resp., Y -extension) of α. By construction all message
delays in αX and αY are at most d. Let tdec be the latest time at which some process in X

decides in αX or some process in Y decides in αY .
Assume in contradiction to the claim of the lemma that tdec < s · d + ∆, so the decision

is before ∆ time has elapsed in the extension after the end of α. Now consider the extension
β of α in which
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any process in F1 that hasn’t failed in α fails just after α, by sending no more messages;
all processes in F2 fail at the end of α by behaving in a “two-faced” manner until time
s ·d+∆: toward X as they did in αX and toward Y as they did in αY ; after time s ·d+∆,
processes in F2 send no messages;
all processes in X ∪ Y remain correct,
every message sent after α within X or within Y has delay d, and
every message sent after α between X and Y has delay ∆.

The next subclaim, which is the heart of the argument, shows that this behavior is allowed
even if an authentication scheme is available.
Subclaim: For all t, (s − 1)d ≤ t < (s − 1)d + ∆,
1. Every process pi in X (resp., Y ) sends the same set of messages in step t of β as it does

in step t of αX (resp., αY ).
2. Every process pi in F2 sends the same set of messages to processes in X (resp., Y ) in

step t of β as it does in step t of αX (resp., αY ).
3. Every process pi in X (resp., Y ) receives the same set of messages in step t + 1 of β as it

does in step t + 1 of αX (resp., αY ).
4. Every process pi in F2 receives the same set of messages from processes in X (resp., Y )

as it does in step t + 1 of αY (resp., αY ).
5. Every process pi in X (resp., Y ) has the same state in step t + 1 of β as it does in step

t + 1 of αX (resp., αY ).
Proof of Subclaim: By induction on t.

Suppose t = (s − 1)d. Consider pi ∈ X ∪ Y ∪ F2. The set of messages that pi sends in
step t of β is determined by pi’s state at the end of α, which is the immediately preceding
prefix of β, αX , and αY . Thus Properties (1) and (2) hold.

Property (3) holds since the set of messages S to a process in X (resp., Y ) that are
in transit just before step t + 1 of β is a superset of that S′ in αX (resp., αY ), thanks to
Properties (1) and (2). The potential messages in S that are not in S′ are those from Y

to X (resp., X to Y ), since all processes in Y (resp., X) are faulty in αX (resp., αY ) and
send no more messages. However, the same set of messages are delivered because of how the
message delays are specified and the fact that t + 1 ≤ (s − 1)d + ∆.

Property (4) holds since the same set of messages to a process in F2 from a process in X

(resp., Y ) are in transit just before step t + 1 of β as in αX (resp., αY ), thanks to Properties
(1) and (2), and since the delays are specified to be the same.

Property (5) holds since a process in X (resp., Y ) receives the same set of messages in
step t + 1 of β as in αX (resp., αY ) by Property (3) and its state in step t of β is the same as
in step t of αX (resp., αY ) by the fact that both executions have α as a prefix, which ends
with the state at time t.

Suppose t ≥ (s − 1)d + 1. Essentially the same argument as for t = (s − 1)d holds, with
the following differences. Properties (1) and (5) rely on the inductive hypothesis for Property
(5) (states being the same) instead of the fact that the executions have the same prefix.
Finally, the crucial part of the proof is showing Property (2). This relies on the fact that, by
the inductive hypothesis, each process in F2 has received the same set of messages so far in
β from processes in X ∪ Y as it does in αX and in αY , so the authentication mechanism
cannot prevent the faulty processes in β from sending the same set of messages to X (resp.,
Y ) as in αX (resp., αY ).
End of proof of Subclaim.
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The total number of failures in β is |F1| + |F2| = s + (t − s) = t. Up to time tdec,
processes in X cannot distinguish β and αX and decide decX(α), while processes in Y cannot
distinguish β and αY and decide decY (α), contradicting agreement. ◁

Thanks to Claim 8, we can simply refer to the common value of decX(α) and decY (α) as
the “decision of the partition for an execution” when the partition is clear from the context.

Let α1, α2, . . . , αm be the chain of s-round synchronized execution prefixes from Lemma 6.
Since all the inputs in α1 are 0 and there are no failures, the weak unanimity condition
implies that every partition for α1 has decision 0. Similarly, every partition for αm has
decision 1. So there must be some i, 1 ≤ i < m, such that all partitions for αi have decision
0 while at least one partition for αi+1 has decision 1, call it (X, Y, F1, F2).

Let q be a process such that αi and αi+1 are indistinguishable to all processes except
possibly q (q exists by Lemma 6). We consider the three cases of how αi, αi+1 and q are
related from Lemma 6, and show a contradiction for each one, implying that tdec must be at
least s · d + ∆.

Case 1: The same processes are faulty in αi and in αi+1. If q is not in X, then αi

and αi+1 are indistinguishable to all processes in X. Since the partition (X, Y, F1, F2) has
decision 1 for αi+1, it also has decision 1 for αi, which is a contradiction. If q is in X, then
it is not in Y and the analogous argument holds.

Case 2: The only difference between the faulty processes in αi and αi+1 is that q fails in
αi+1 but not in αi. Then q is in F1 so αi and αi+1 are indistinguishable to all processes in
X ∪ Y . So (X, Y, F1, F2) has decision 1 for αi, a contradiction.

Case 3: The only difference between the faulty processes in αi and αi+1 is that q fails in
αi but not in αi+1.

If q is in F1 ∪ F2, then the same argument as in Case 2 holds.
Suppose q is not in F1 ∪ F2; without loss of generality, q is in Y . There must be some

process p such that p is in F1 but not faulty in αi. The reason is that |F1| = s, at most s

processes are faulty in αi (by part (b) of Lemma 6), and there is a faulty process in αi not
in F1 (namely, q).

Thus q is in Y but not in F1, p is in F1 but not in Y , p is not faulty in αi, and αi and αi+1
are indistinguishable to all processes in X. Thus (X, (Y − {q}) ∪ {p}, (F1 − {p}) ∪ {q}, F2)
is a partition for αi with decision 1, which is a contradiction. ◀

Note that Lemma 7 applies for any n ≤ 3t. When n = 3t, then s = 0 and the bound is
∆; when n = 3t − 2, then s = 1 and the bound is d + ∆; when n = 2t (and t is even), then
s = t/2 and the bound is (t/2)d + ∆; finally, when n = t + 2, then s = t − 1 and the bound
is (t − 1)d + ∆. In general, we have:

▶ Theorem 9. Assume n ≤ 3t. Any consensus algorithm for n processes that tolerates
t Byzantine failures (possibly using authentication) and ensures weak unanimity has an
execution in which every message has delay at most d but at least one correct process does
not decide before time ⌊(3t − n)/2⌋d + ∆.

6 Discussion

This paper studies whether the cost of timeout can be avoided when solving agreement
problems in the bounded-delay model. On the positive side, we prove that the consensus
problem can be solved with asymptotically optimal time of O(t·d), in the presence of t failures,
for send omission, authenticated and unauthenticated Byzantine failures. For send omission
failures, our algorithm requires n to be greater than 2t, while the Byzantine algorithms
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require n to be greater than 3t. On the negative side, we show that dependence on ∆ cannot
be avoided if n ≤ 3t for authenticated Byzantine failures. Specifically, when n ≤ 3t, the time
complexity for consensus with weak unanimity is at least ⌊3t − n)/2⌋ · d + ∆. The results
show that the cost of timeouts can be avoided for these agreement problems if and only if the
resilience is the same as that needed for solving consensus in eventually-synchronous systems.

An immediate open question is to find the optimal time complexity when n ≤ 3t for
authenticated Byzantine failures. In this direction, note that if 3t − n faulty processes are
taken out, then the remaining faulty processes constitute less than a third of the remaining
system. This might indicate a path to finding an upper bound that matches our lower
bound. There are analogous open questions for the case of crash and (send) omission failures
when n ≤ 2t. Interestingly, the crash lower bound when n ≤ 2t has a 2t − n term, which
corresponds to the number of failed processes that should be taken out in order to have a
majority of correct processes.

A challenging research direction is to study the time complexity of consensus algorithms
in the eventually-synchronous model [13], where the upper bound of ∆ on message delay
only holds after GST. Numerous consensus algorithms have been proposed for this model,
e.g., [10,30], but to the best of our knowledge, their time complexity is in Ω(t · ∆) after GST.
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