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Abstract
Cache management policies are responsible for selecting the items that should be kept in the cache,
and are therefore a fundamental design choice for obtaining an effective caching solution. Heuristic
approaches have been used to identify access patterns that affect cache management decisions.
However, their behavior is inconsistent, as they can perform well for certain access patterns and
poorly for others. Given machine learning’s (ML) remarkable achievements in predicting diverse
problems, ML techniques can be applied to create a cache management policy. Yet a significant
challenge arises from the memory overhead associated with ML components. These components
retain per item information and must be invoked on each access, contradicting the goal of minimizing
the cache’s resource signature.

In this work, we propose ALPS, a light-weight cache management policy that takes into account
the cost of the ML component. ALPS combines ML with traditional heuristic-based approaches and
facilitates learning by identifying several statistical features derived from space-efficient sketches.
ALPS’s ML process derives its features from these sketches, resulting in a lightweight and highly
effective meta-policy for cache management. We evaluate our approach over real-world workloads
run against five popular heuristic cache management policies as well as a state-of-the-art ML-based
policy. In our experiments, ALPS always obtained the best hit ratio. Specifically, ALPS improves
the hit ratio compared to LRU by up to 20%, Hyperbolic by up to 31%, ARC by up to 9% and
W-TinyLFU by up to 26% on various real-world workloads. Its resource requirements are orders of
magnitude lower than previous ML-based approaches.
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1 Introduction

Caching is a fundamental performance boosting technique, widely used by middleware,
operating systems, databases, data-stores, edge servers, and content delivery networks [10,
14, 15, 21, 23, 34, 19, 17, 35, 12]. A cache improves the system’s average response time by
storing certain items closer to their consumers. This way, future accesses to cached items are
served faster than serving them from their main storage. Caching of responses can also save
communication and computations needed to re-calculate remote invocations.
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Alas, caches usually cannot hold all accessed items, meaning that a cache management
policy is needed to decide which items should be stored in the cache. An access to a cached
item is called a hit; otherwise it is a miss. In particular, the cache management policy must
predict what items are likely to be accessed in the future, in order to maximize the ratio of
hits to all accesses (hit ratio), thereby minimizing the expected access latency of the entire
system.

Traditionally, caching relies on heuristic approaches to identify patterns and statistically
significant signals within the access history. A notable example is LRU [25], which operates
under the assumption that the recency of an item’s last access serves as a reliable indicator
of its future access likelihood. LRU incorporates newly arrived items into the cache while
evicting the least recently accessed item when the cache reaches its capacity limit.

Frequency is another important signal, at least for certain workloads. The respective
LFU policy [2] and its variants [13, 29, 3, 2, 20, 21] prioritize items based on their access
frequency. To accommodate dynamic changes in item popularity over time, some variants
incorporate aging or freshness mechanisms. However, predictions based solely on recency
or frequency may not always yield good cache performance. The inclusion of inter-access
or inter-reference, which captures temporal item access relationships, has shown promise in
improving predictions. Further, it is now a common belief that adaptive combinations of
recency, inter-reference, and frequency yield superior cache performance across a wide range
of workloads [28, 39, 37, 33, 9, 20].

Given the success of machine learning (ML) in prediction tasks, we may apply ML for
cache management. This involves training models to predict which items are likely to have
the lowest hit rate and therefore should be prime candidates for eviction [47, 5]. However, a
drawback of these ML-based approaches is the associated memory overhead. These methods
store information per item and require invoking ML mechanisms for every access, resulting in
substantial memory and computational requirements. Alternatively, CACHEUS [43] utilizes
ML to decide which among a few cache management experts to use at any given moment.
Yet, CACHEUS invokes ML on every access, and its learning and decisions are based directly
on the access history.

Since caches are meant to serve as performance optimizations, one aspires to keep the
cache’s resource signature as low as possible. Also, learning and predicting are based on the
raw access stream, which lengthens the learning process and makes predictions expensive.

Motivation. When analyzing the hit ratio performance of various widely deployed caching
algorithms across a comprehensive set of workloads, we see that there is no silver bullet
across all workloads. The effectiveness of different policies varies depending on workload
characteristics and cache size. Moreover, as the workload evolves over time, the most suitable
heuristic caching algorithm for the same workload may change. To investigate this dynamic
behavior, we partition the access sequence into frames and assess the performance of different
caching techniques within each frame. Figure 1a illustrates this analysis using the Mergep
trace, where each frame consists of 10K accesses. It is shown that the winning heuristic
approach changes as the trace progresses, but no single policy dominates across all frames.
Notably (not shown here due to lack of space), subsequent frames often exhibit the same
winning scheme. In summary, despite numerous attempts to identify an ideal caching policy,
state-of-the-art algorithms demonstrate inconsistent performance across diverse workloads
and even within the same workload, primarily due to their inherent variability.

The application of ML to cache management has been limited, despite its wide application
across several domains. A previous approach, as illustrated in Figure 1b, involved utilizing ML
to derive new caching policies. When the cache reaches full capacity and an item is accessed,
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Figure 1 (a) Hit ratio of different heuristic approaches as a function of the frame number on
sampled frames using the Mergep trace with a cache size of 100K items (b) General architecture of
existing ML based policies. The ML model is invoked on each access to advise which item to evict.

Table 1 The allocated space of the metadata for LRB in different traces (values taken from [47]).

Cache size Wiki A1 A2

128 GB 2.68 GB 0.76 GB 1.79 GB
256 GB 3.5 GB 1.28 GB 3.07 GB
512 GB 5.12 GB 2.04 GB 5.12 GB
1 TB 6 GB 3 GB 7 GB

this approach leverages the ML model to make eviction decisions. However, it faces two
primary issues. First, storing per item past information within a sliding memory window
for training and prediction incurs significant memory overhead. Second, the prediction
overhead associated with each eviction operation further adds to the computational burden.
To quantify the memory overhead, Table 1 presents the metadata requirements for LRB [47].
The memory overhead is contingent upon the cache size and the specific trace, and it increases
as the cache size grows larger.

Our approach. To reduce ML costs, ALPS divides the access stream into frames and applies
ML to predict the most suitable heuristic caching policy for the subsequent frame. By doing so,
we reduce computational overhead by executing ML only once per frame. This is significantly
more efficient than applying ML on every cache access. Further, to maintain per-frame
information memory efficiently, ALPS utilizes memory frugal sketches. These sketches serve
as concise and structured representations of previously identified heuristic caching patterns.
At the end of each frame, the condensed and structured information is fed into ALPS, which
applies the predicted most appropriate policy to the next frame. This approach combines the
benefits of known heuristic approaches with ML in an efficient manner. We highlight that
ALPS learns from sketches’ output rather than the raw access stream, which reduces memory
overhead. The sketches employed in ALPS include HLL [22] for estimating the number of
unique items accessed in a frame, Count-Min sketch [16] for estimating item frequencies and
generating a frequency histogram, and the Space Saving algorithm [38] to identify heavy
hitters. Finally, we developed a novel sketch called ISketch (Inter-Reference Sketch), which
captures the inter-reference data of the most frequently accessed items within each frame
and is fed into ALPS. We compared ALPS with established heuristic- and ML-based cache
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management policies. Our analysis reveals that ALPS outperforms these approaches by
achieving a higher hit ratio while significantly reducing memory overhead compared to
LRB [47] and CACHEUS [43].

Contributions. We make the following contributions: (1) We design ALPS, a generic caching
framework that achieves a high hit ratio while reducing memory overheads compared to
prior ML-based approaches. (2) As a building step, we present ISketch, a novel algorithm
for tracking inter-arrival times, which allows us to track recency during each frame. (3)
We evaluate ALPS against well-known heuristic based cache algorithms and learning based
algorithms. ALPS exceeds most efficient heuristic-based cache policies’ hit rates, improving
LRU by up to 20%, Hyperbolic by up to 31%, ARC by up to 9% and W-TinyLFU by up to
26% depending on workloads. In addition, ALPS decreases the memory overhead by an order
of magnitude compared to the state-of-the-art ML-based approaches while improving the hit
ratio by 6% − 9% compared to LRB and 7.5% − 12% compared to CACHEUS. (4) ALPS
achieves a low training and inference overhead by extracting the most effective features from
highly memory-efficient sketches and applying ML only once per frame.

To summarize our key insights, we argue that: (1) combining existing cache management
policies in a smart way is likely to yield better improvements than inventing another one, (2)
succinct sketches can capture data access patterns and serve as effective features for ML, (3)
operating at time frame granularity rather than single access granularity yields more efficient
ML based solutions.

2 Background and Related Work

2.1 Caching Algorithms
Least Frequently Used (LFU) [11, 44] aims at maintaining the most frequently used items
in the cache. To that end, when the cache is full, LFU removes the item with the lowest
reference frequency from the cache. This is done by tracking how many times each item is
referenced in the cache.

Yet, in most practical workloads, the access frequency radically changes over time. Hence,
there is no point in keeping an item in the cache once its popularity has faded, just because
it was once very popular. As a result, LFU variants include aging algorithms or focus on a
small window of the last W accesses alone, as done, e.g., in Window LFU (WLFU) [29].

Least Recently Used (LRU) [25] always inserts the last accessed item into the cache, and
the Least Recently Used item is evicted when the cache is full. LRU adapts automatically to
variations in data access patterns. Practical systems often only realize an approximation of
LRU, e.g., through sampling [42] or Clock [4, 26] to reduce execution overheads and eliminate
concurrency hot-spots. Segmented LRU (SLRU) [30] distinguishes between items that are
temporarily popular and are accessed twice or more in a short period of time and those that
are accessed just once during that period. LRU-K [39] combines concepts from LRU and
LFU. 2Q [28] is an effective practical approximation of LRU-K.

Hyperbolic [9] is a recent proposal for combining frequency with recency in a holistic manner.
With the same internal data structures, hyperbolic caching can act like a number of different
eviction policies, changing its behavior based on the workload. The main idea is that an
item’s temporal priority is set to its frequency since it was last inserted into the cache,
divided by the time that it spent in the cache, multiplied by a parameterized factor. The
cache victim is the item with the lowest temporal priority.
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Adaptive Replacement Cache (ARC) [37] is an adaptive caching algorithm that takes both
recency and frequency of accesses into account. The cache is divided into two LRU lists, T1
and T2. T1 contains items that have been accessed only once, whereas T2 contains items
that have been accessed multiple times after admission. In addition, ARC maintains ghost
entries for both T1 and T2, which aid in deciding how to dynamically adapt the relative sizes
of T1 and T2. Due to the fact that ARC uses an LRU list for T2, it is not possible to get the
full frequency distribution of the workloads and perform well under LFU-friendly workloads.

Adaptive W-TinyLFU is the management policy of the Caffeine Java 8 cache [36], Go based
Ristretto [18], and Rust based Moka [31]. W-TinyLFU has three parts: the Main cache,
TinyLFU – an approximated LFU based admission filter, and a Window cache. New items
are added to the Window cache; it can be kept using any known policy, but all known
implementations employ LRU. The Main cache can use any cache management strategy,
although known realizations employ SLRU. The filter utilizes a space-efficient sketch [16] to
approximately track the access frequencies of a large number of items, well beyond the cache
size. Whenever an item is evicted from the window cache, it is compared by the TinyLFU
filter to the would be main cache victim; the item with the highest estimated frequency gets
to be in the main cache and the other is deleted.

Least Hit Density (LHD) [5] is based on hit density, a workload-agnostic metric for ranking
objects during eviction. It monitors objects online and uses conditional probability to predict
their likely behavior. LHD predicts the expected number of hits per space unit consumed
by each object (hit density) and eliminates objects that contribute little to the cache’s hit
rate. LHD does not rely on heuristics but rather rigorously models objects’ behavior using
conditional probability to modify its behavior in real time.

Learning Relaxed Belady (LRB) [47] approximates a variant of Belady’s algorithm [7], called
Belady’s MIN (oracle) algorithm, using ML to find objects to evict based on past access
patterns. To reduce the cost of ML, the authors first came up with a relaxed Belady algorithm
that evicts an object whose next request is above a certain threshold but not necessarily the
farthest in the future. For this, LRB keeps information about an object within a defined
sliding memory window. The information within the sliding memory window is used for
training and prediction. Thus, LRB invokes ML on each access, and the predictions are
invoked once the full cache has to evict an object.

CACHEUS [43] identifies several cache management experts (ARC, LIRS, LFU, SR-LRU,
and CR-LFU) and uses ML to predict which one to use at any given time based on work-
load primitive types. This is based on classifying workload primitives into: LRU-friendly,
LFU-friendly, scan, and churn. CACHEUS uses online reinforcement learning with regret
minimization to provide a caching method that aims to optimize for dynamically manifest-
ing workload primitive types. CACHEUS invokes ML on each access and bases its learning
and prediction decisions directly on the access history.

MiniSim [51] is a generic framework that uses multiple scaled-down simulations to explore
candidate cache configurations simultaneously. It consists of multiple shadow caches, each
activating a different management policy for a sample of the workload. Periodically, MiniSim
checks which shadow cache works best, and switches the real cache to the policy that
performed best among the shadow caches during the last such period. Additionally, MiniSim
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Table 2 Comparison of the sketches that appear in the paper. ϵ is the estimation accuracy
parameter.

Algorithm Space Update Time Randomization Comments
SS [38] O(ϵ−1) O(1) Deterministic implemented according to [8]

HLL [22] O((log log D)/ϵ2) O(1) Randomized D is distinct elements number
Count-Min [16] O(ϵ−1 log δ−1) O(log δ−1) Randomized δ is the probability of failure

ISketch O(k) O(1) Deterministic k is the number of entries

performs a Talus-like [6] performance cliff removal transparently for complex policies. The
main shortcoming of MiniSim is that to be memory and computationally viable, the sampling
probability needs to be very small, which misses out on certain phenomena, resulting in
sub-optimal behavior [21].

2.2 Sketches
A sketch is a space efficient data structure that provides a fast data synopsis of the dataset,
often sacrificing accuracy for space frugality. The tradeoffs one has to consider in designing
sketches are accuracy error, space consumption, and processing time complexity. Table 2
lists the analytical performance summary of several algorithms mentioned below.

Space Saving (SS) [38] finds the most frequently occurring elements in a data stream, a.k.a.,
heavy hitters. SS processes a stream of identifiers in order to determine their frequency. It
keeps track of a collection of 1

ϵ integer counters, each with its own unique item ID. When
a new item is received, SS increments its counter, if it has one. Otherwise, SS gives the
item a minimal-valued counter before incrementing it (disassociating the previous ID). As
an example, suppose the smallest counter is associated with ID x and has a value of 4; if
y comes and does not have a counter, it will take over x’s counter and increment it to 5
(thereby leaving x without a counter). When an item’s frequency is queried, SS returns the
value of its counter if it has one, or the value of the minimal counter otherwise. Suppose the
total number of insertions handled by SS is Z, then the sum of counters equals Z and hence
the minimal counter is at most Zϵ. Hence, SS frequency estimates have a maximum error of
Zϵ.

Count-Min Sketch [16] can be used to estimate items’ frequencies over a stream without
explicitly remembering any identifiers. It consists of a set of d independent hash functions
{hj()|j ∈ [1, . . . , d]} and a two-dimensional array of counters of width w and depth d. To add
an item x with a value of vx, we increment the counters at CM [j, hj(x)] by vx for 1 ≤ j ≤ d.

A query on an item is returns the minimum of the respective counters. For a stream
of size N , CM sketch guarantees that its frequency estimation is correct up to an additive
N · ϵ-error with a probability of at least 1 − δ where d = log δ−1.

HyperLogLog (HLL) [22] is a probabilistic data structure that counts the number of distinct
elements in a multiset. HLL applies a hash function h() to the identifier of each element,
and remembers the maximal number of leading zeros in all hash values. The more leading
zeros there are, the higher the cardinality is. If the bit pattern 0L−1 is at the beginning of
the remembered value, a good estimate for the size of the multiset is 2L. HLL guarantees a
relative accuracy of 1.04/

√
m given a memory budget of m units.
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3 ALPS DESIGN

This section presents the design of Adaptable Learned Policy Selection (ALPS), a framework
that utilizes machine learning (ML) to dynamically switch between a number of cache
management algorithms. The core objective of ALPS is to address the cache replacement
problem by predicting the optimal heuristic-based algorithm and configuring the cache
management policy for the subsequent time frame.

Formally, the prediction problem can be defined as follows: given the latest W accesses,
the task is to predict the cache management policy that maximizes the hit ratio in the next
W arrivals, where W represents the frame size. This prediction-based approach offers several
advantages. Firstly, it consistently outperforms heuristic-based methods in cache hit ratio.
Secondly, since the prediction algorithm is executed once every W accesses, the inference
time is short, and the associated cost is amortized over W accesses.

ALPS structure. Figure 2 illustrates ALPS’s workflow. It comprises two independent
data structures: the Sketches component (Section 3.1) and the ML submodel (Section 3.3).
Unlike previous ML-based caching approaches, ALPS divides the access sequence into fixed-
sized intervals called frames to facilitate its operation. The Sketches component consists of
four sketches, namely SS, HLL, CM, and ISketch (a novel sketch introduced in this work
to track inter-arrival times), as discussed in Section 3.1. With each item’s access, these
sketches capture relevant statistical indicators related to recency and frequency bias within
the workload during the last frame, as depicted in Figure 2. At the end of each frame,
the statistical indicators extracted from the sketches are used as input features for the ML
mechanism. Following that, the sketches are flushed, and all their counters are reset.

To train the ML submodel, we perform supervised learning offline using real-world traces.
Ground truths are derived using an established caching simulator [36]. To minimize system
overhead, effective features are extracted from the data and utilized as input for the trained
model.

A straightforward implementation involves maintaining only the metadata required by
all policies and only maintaining a single copy of the data itself for the winning policy. This
approach is feasible as metadata is typically much smaller than the actual data, often requiring
only a counter or pointer per item. Hyperbolic, for instance, necessitates two counters, but
they can be repurposed from LFU’s frequency counter and a recency timestamp from LRU.
Switching policies at the end of a frame simply involves changing the metadata version
and employing a different replacement algorithm for eviction decisions. More sophisticated
optimizations are left for future work.

ALPS Update Workflow. Each access to the cache triggers updates to all sketches within
the Sketches component. According to Table 2, the update operation for HLL has a constant
time complexity of O(1). SpaceSaving (and ISketch (Section 3.2)) can be implemented with
a linked list data structure by keeping items with equal counts in a group, resulting in an
O(1) update time. The O(1) time complexity means the algorithm consistently executes
a small number of operations, rather than requiring thousands. On the other hand, the
update operation for CM has a time complexity of O(log δ−1), where δ, which is a tunable
parameter, represents the configuration parameter for CM. By performing these updates,
ALPS effectively maintains per frame information in the form of statistical indicators
(Section 3.1). This approach differs from previous learning-based approaches that stored per
item information.
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Figure 2 Detailed architecture overview of ALPS.

3.1 Features and Sketches Component
Recency and frequency are two prominent signals utilized for designing cache management
policies. Recency denotes the time that has elapsed since an item’s last access. It provides
insight into the likelihood of future accesses based on locality principles. Empirically, there is
often a strong correlation between item access frequency and the probability of future access.
Additionally, the number of unique items within a single frame offers a valuable indication of
access distribution skew. Our objective is to identify the most informative features while
maintaining high accuracy and imposing minimal space overhead. To assess the recency
versus frequency bias within a workload frame, we define a set of statistical indicators as
features for the ML submodel. In the context of ALPS, the following indicators are identified:
Number of most accessed items: refers to the count of heavy-hitters in the workload frame.
Maximum frquency: the maximal frequency count.
Average frequency: the average frequency among the most accessed items.
Unique count: the number of distinct items in the frame.
Frequency distribution: this vector captures the distribution of frequencies, with each entry

i representing the count of occurrences for frequencies with a value of i.
Minimum inter-arrival time: denotes the shortest inter-arrival time observed.
Average inter-arrival time: calculates the average inter-arrival time among items with the

lowest inter-arrival time.

We classify the above into two categories based on their relation to recency or frequency.
The set of recency indicators comprises the minimum and average inter-arrival times, whereas
the set of frequency indicators includes the rest (unique count, number of most accessed
items, maximum frequency, average frequency, and frequency distribution).

Sketches Component. We utilize several sketch data structures, namely Space Saving
(SS) [38], Count-Min Sketch [16], HyperLogLog [22], and our novel ISketch. Each sketch is
configured with identical values of ϵ and θ, resulting in a total space overhead of O(ϵ−1 log δ−1),
as depicted in Table 2 (all constants in the table are small). We maintain all sketches upon
arrival and feed all of their information into the learning model. Consequently, the estimation
error associated with each indicator is ϵW , where W denotes the frame size. Our experiments,
as discussed in Section 4, demonstrate that this estimation error has minimal impact on
prediction accuracy.
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Deriving Statistical Indicators from Sketches. For SS, item frequency is determined by
maintaining a collection of counters, as described in Section 2.2. The number of most accessed
items indicator is obtained by counting the items in the collection with a count exceeding
θW , where W represents the frame size and θ ∈ [0, 1] is a frequency threshold. Further,
SS maintains two variables: the maximum and average counter values, which provide the
maximum frequency and average frequency indicators, respectively. Using the HyperLogLog
algorithm from [22], we can estimate the unique count. At the end of each frame, we generate
the frequency vector from the CMS sketch array to obtain the frequency distribution indicator.
Each entry i represents the count of frequency i occurrences. Section 3.2 below elaborates
on the retrieval of the minimum and average inter-arrival times indicators using our ISketch
sketch.

3.2 ISketch: Interarrival Sketch
To our knowledge, we are the first to use sketches to approximate recency in a workflow.
To this end, we present the Interarrival Sketch (ISketch) algorithm, specifically designed
for tracking inter-arrival times. The inter-arrival time of an item x refers to the time
elapsed between its last two occurrences within the system. This measurement has been
widely recognized as one of the preferred methods for quantifying workload recency [27, 40].
However, maintaining precise inter-arrival times for each item consumes a significant amount
of storage. Therefore, ISketch focuses on tracking inter-arrival times only for items with
low inter-arrival values, as these items have the greatest impact on estimating workload
recency. To accomplish this without knowing these items’ identities, ISketch employs a Space
Saving-inspired table structure with k entries. Each entry consists of an item ID, inter-arrival
time, and last arrival timestamp.

Upon the arrival of an item x, if x has no allocated entry, we replace the item whose
inter-arrival value is maximal in the table with x and reset its associated fields. Alternatively,
if x already has an allocated entry, ISketch calculates its last inter-arrival time by subtracting
the last arrival timestamp from the current timestamp. If the result is lower than the
inter-arrival field, we update the inter-arrival value. The QuerySTAT() function retrieves
the average and minimum inter-arrival times of all items in the trace whose inter-arrival
times are shortest. We maintain the average inter-arrival time and minimum value with each
arrival and satisfy QuerySTAT() by returning these pre-computed values.

ISketch includes the exact inter-arrival times of items that exhibit frequent arrivals and
possess short recency periods. Specifically, when an item arrives at least twice and its
inter-arrival time does not exceed the maximum time stored in ISketch, it is allocated an
entry within the data structure. Once an item is inserted, it remains inside ISketch as long
as its inter-arrival time remains less than the maximum value. This condition holds for
items that consistently have a short inter-arrival time. On the other hand, ISketch replaces
items with infrequent arrivals, resulting in their inter-arrival time no longer being tracked.
Consequently, ISketch does not provide an error bound on inter-arrival times for unmonitored
items. Moreover, low-frequency items encountered towards the end of the workload have a
higher probability of being monitored by ISketch. This is because items that were frequently
accessed in the past but have not been accessed for an extended period are likely to be
evicted from ISketch to make room for items with shorter recent inter-arrival times. For a
detailed understanding of the ISketch algorithm, refer to Algorithm 1 in the appendix.

▶ Lemma 1. An item with an inter-arrival time < interArrmax, must exist in the SS table.
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▶ Theorem 2. IS requires k(2 log W + log W
k + 2ω)(1 + o(1)) space where k the number of

entries, ω is the number of bits required to represent an item in R, and W is the frame size.
ISketch performs updates and answers queries as well as computes QuerySTAT() in O(1)
time.

The proof of Theorem 3.2 is in the appendix.

3.3 ML submodel
We use a neural network (NN) as the ML submodel. In particular, we use a 4-layer fully-
connected NN [24] with two hidden layers and ReLU activation that implements multi-class
regression. Formally, denote the output of a 4-layer fully connected neural network as:
Ni,j(x) = A(A(x · w1 + b1) × w2 + b2) × w3 + b3, where x is the input (statistical indicators),
w1, b1 are the weight and bias vectors for layer 1 (first hidden layer), w2, b2 are the weight
and bias vectors for layer 2 (second hidden layer), and w3, b3 are the weight and bias vectors
for the output layer. The ReLU function A applies a function a on each element of an
input vector: a(x) =

{
x, x ≥ 0
0, x < 0

}
. The submodel output, denoted Mi, j(x), is defined

as: Mi,j(x) = H(Ni,j(x)), where H is the softmax function, which generates a probability
distribution for our policy classes given their respective prediction scores. The result of H is
a vector with elements in [0, 1] that all sum up to 1.

The training process of ALPS is depicted in Figure 2. To train the NN submodel
(modelml), we utilize traces from real-world workloads and employ supervised learning with a
cross-entropy loss function. For feature generation and label creation, we partition each trace
into frames and retain the four sketches, namely SStrain, HLLtrain, CMtrain, and ISketchtrain .
We also utilize a caching simulator [36] to simulate various heuristic caching algorithms. At
the end of a frame, we take the statistical indicators from the sketches and use them as
features. Ground-truth hit ratios for each caching algorithm are obtained from the simulator.
Users of ALPS can either directly use our pre-trained model, utilize our model as a starting
point for further training, or perform training from scratch using their own traces.

3.4 Frame Size Selection
Determining the optimal frame size is a critical component of the current challenge. In order
to perform the task, the user must have a preliminary understanding of the temporal and
scalar alterations within the data stream. Several research works have delved into the domain
of detecting alterations within data streams, as discussed in [1, 32, 49]. These methodologies
fundamentally depend on an understanding of the inherent probability distribution, which
forms the basis of the incoming data stream. However, due to the inherently unpredictable
dynamics of data streams, acquiring preliminary information is rarely straightforward.

Intuitively, when the frame size is small, the sketch counters are relatively small, lacking
statistical significance. In such a scenario, the sketch counters are so close together that it
becomes difficult to distinguish real differences between them. Such a situation results in an
inaccurate approximation of the relevant statistical indicators. Conversely, exceedingly large
frames may hide dynamic transformations occurring within a singular frame. In general,
if a user assigns a frame size that either exceeds or falls short of the necessary scale, the
frame fails to effectively reflect the latest workload changes. The notion of frame size can
be discussed in two contexts: as a hyperparameter or as a model parameter. According to
the first perspective, the frame size is adjusted to a value proportionate to the cache size.
Alternatively, in the second perspective, the frame size is viewed as a parameter, and its
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determination is subject to the model’s learning capabilities. For our experimental setup,
the default frame size is set to ten times the cache size; we analyze the effect of the frame
size on the hit ratio in Section 4.

3.5 Putting All Together

We summarize all the steps of ALPS:
Training: (1) Divide the trace into frames and maintain the sketches for each frame. (2) Run

the cache simulator with the various caching algorithms. (3) Train on each frame.
Cache selection (inference): (1) Query the NN submodel at the end of the frame. (2)

Configure the cache policy according to the returned policy when it differs from the
current cache policy.

ALPS pseudocode appears in Algorithm 2 in the appendix.

4 Evaluation

In this section, we compare ALPS with five heuristic caching algorithms: LFU, LRU, Hyper-
bolic, ARC, and W-TinyLFU, and with the state-of-the-art learning algorithms LRB [47]
and CACHEUS [43].

4.1 Implementation

We have implemented ALPS in C++ and employed Caffeine’s simulator [36] to derive cache hit
ratios for various management policies. Our simulations encompassed five cache management
algorithms, namely LFU [44], LRU [25], Hyperbolic [9], ARC [37], and W-TinyLFU [20].
The implementations of these algorithms were sourced from the Caffeine project’s repository.

Regarding the SS, HLL, and CM sketches, we integrated the original author’s implement-
ation and realized ISketch’s implementation ourselves. As previously mentioned, we utilized
a fully connected MLP neural network (NN) consisting of two hidden layers with ReLU
activation. The input features were constructed using statistical indicators introduced in
Section 3.1, combined with a frequency distribution vector of length 32. The hidden layers
comprised 512 neurons each, and the output size corresponded to the number of policies.
The output layer consisted of 64 neurons. The total number of trainable parameters in this
NN was computed as 38 × 512 + 512 × 512 + 512 × 64 + 512 + 512 + 64 = 315, 456.

For training the NN submodel, we employed PyTorch [41] and trained it on various
real-world workloads using supervised learning with cross-entropy error loss function. The
labels for the training phase were obtained from the Caffeine simulator [36]. To be more
specific, we partitioned each workload into frames based on the customizable frame size
option. Subsequently, we executed the Caffeine simulator to calculate the per-frame hit ratio
for each policy, identify the optimal policy within each frame, and assign the corresponding
label to the frame.

4.2 Experimental Setup

The experiments were run on a DGX-A100 cluster using Slurm to schedule work. Each job
was limited to a single A100 card with 40GB memory. It is important to note that ALPS
can also be run on CPUs due to its low computational and memory overheads.
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Figure 3 (a) LRB, CACHEUS and ALPS memory overhead using various traces (b) LRB,
CACHEUS and ALPS hit ratio using previously stated traces separately with two cache sizes
(1000, 10000). ALPS’s frame size is 10000 items.

Traces. Our evaluation is based on real-world workloads from a variety of different domains:
databases, analytic systems, transaction processing, search engines, and Windows servers
are just a few examples. These workloads exhibit a wide range of underlying characteristics:
some display a strong bias towards recency, others exhibit a bias towards frequency, and
some present a combination of both. It is important to note that we meticulously partitioned
the traces into separate subsets for training, validation, and testing purposes. To prevent
overfitting, we trained our model on the interleaved prefixes of all traces. Subsequently, we
conducted independent testing on each suffix of every trace. The workloads reported below
include:

P1–P14, Mergep: 14 traces obtained from Windows NT workstations using Vtrace,
which captures disk operations with the use of device filters. The traces were collected
over a period of several months [37], containing about 491 million accesses.

Gradle: A trace from a distributed build cache, the Gradle project, that holds the compiled
output so that subsequent builds on different machines can fetch the results instead
of building anew. Since machines leverage local build caches, the distributed cache is
recency-biased as only the latest changes are requested. It includes ≈ 2M accesses.

Scarab: A one-hour trace from Scarab Research of product recommendation lookups for
several e-commerce sites of varying sizes worldwide. This trace includes ≈ 28M accesses.

Wikipedia: Wikipedia trace containing 10% of the traffic to Wikipedia during September–
October 2007 [50]. This trace size is about 12 million accesses.

Cache configurations. Cache hit rate is the prime metric when evaluating caching al-
gorithms. We compare our algorithm’s performance across a range of cache and frame sizes
when handling the above traces.

Sketches overhead. The memory overhead for ALPS is dominated by four sketches. We
configure each sketch with the same ϵ and δ (if needed) values. We set the number of entries
(k) for ISketch to ϵ−1. As shown in Table 2, the overall space overhead of all sketches is
O(ϵ−1 log δ−1).

Comparison to LRB and CACHEUS. We compare ALPS to LRB and CACHEUS, con-
sidering different cache sizes of 1000 and 10000. We examined the hit ratio and memory
overhead of these algorithms. The implementation code for LRB was obtained from [46],
while the code for CACHEUS was sourced from [48].
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Figure 4 Detailed comparison of ALPS against LFU, LRU, Hyperbolic, ARC and W-TinyLFU
in 3 cache sizes when each frame contains 10 ∗ cache size accesses when ALPS is trained on (LFU,
LRU, Hyperbolic), and on all the five policies (LFU, LRU, Hyperbolic, ARC, W-TinyLFU). The
plots show the hit ratio as a function of the trace length. The used trace in this experiment is
mergep, which is a merge of 14 traces obtained from Windows NT workstations. The first column
has a cache size of 1K items, the second column has a cache size of 10K items, and the third column
has a cache size of 100K items.

Figure 3a illustrates the memory overhead of the LRB, CACHEUS, and ALPS policies
across four distinct traces. In this experiment, the cache size was set to 100000 items, and the
frame size for ALPS was also 100000 items. It is evident that ALPS demonstrated superior
memory efficiency than the other algorithms. LRB maintains item-specific information within
a sliding memory window, resulting in memory overhead that varies depending on the cache
size and average item size in a trace. On the other hand, CACHEUS consumes approximately
twice the cache size in memory for metadata, which tracks cache-resident items and historical
items. Therefore, CACHEUS memory overhead primarily depends on cache size. In contrast,
ALPS utilizes frame-specific information derived from compact sketches, making it insensitive
to cache size and average item size in a trace. Consequently, ALPS’s memory overhead
remains constant across all traces, while LRB’s memory overhead varies significantly, reaching
magnitudes higher than ALPS.

Additionally, Figure 3b presents a comparison of the hit ratios achieved by LRB, CACH-
EUS, and ALPS using cache sizes of 1000 and 10000 using previously stated traces separately.
In this comparison, ALPS was trained using the five heuristic-based algorithms, and its
frame size set to 10000 items. It is notable that ALPS consistently outperformed both LRB
and CACHEUS in terms of hit ratio, particularly when the cache size was small.

Hit ratio. We conducted experiments to measure the hit ratio as a function of trace length
using the Mergep trace (P1-P14). The page size for these traces was set to 512 bytes, while
the frame size was defined as 10 times the cache size. The hit ratios for different cache sizes
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Figure 5 (a) Sketches update and query performance of the four sketches (SS, ISketch, CM
and HLL) using the previously stated traces and with frame size of 10K items.(b) Sketches space
comparison as a function of ϵ when the frame size to 10000 items.
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Figure 6 (a) Hit ratio of ALPS, LFU, LRU, Hyperbolic, ARC and W-TinyLFU per sampled
frames when ALPS is trained on the five policies with cache of size 100K using mergep trace (b) Hit
ratio of ALPS using scarab trace with different cache sizes (1K,10K,100K items) and different frame
sizes.

are presented in Figure 4, where ALPS was trained on (LFU, LRU, Hyperbolic) as well as
on all five policies (LFU, LRU, Hyperbolic, ARC, W-TinyLFU). The first column represents
a cache size of 1K items, the second column corresponds to a cache size of 10K items, while
the third represents a cache size of 100K items.

Our findings indicate that ALPS achieves the highest hit ratio when trained on all five
policies with a cache size of 100K items. LFU has the lowest hit ratio. As expected, the hit
rate for all algorithms increases with cache size. Notably, Figure 4 demonstrates that training
ALPS on all five policies yields a more substantial improvement in the hit ratio than training
it solely on (LFU, LRU, Hyperbolic). This is because ALPS benefits from a wider range
of caching algorithms adapted to the frames’ features. This observation is evident when
comparing Figure 4a with Figure 4d, for example. Furthermore, the improvements in the hit
ratio are more pronounced for small caches, as illustrated by the comparison of the columns
in Figure 4. These enhancements arise from smaller caches, resulting in smaller frames and
more frequent evictions. To that end, ALPS dynamically adjusts the cache management
strategy, benefiting from the varying choices of evicted items by the heuristic-based policies.

In Table 3, we present the percentage increase in the hit ratio achieved by ALPS over LRU,
Hyperbolic, ARC, and W-TinyLFU. The evaluations were performed using the aforementioned
traces and a frame size of 10 times the cache size for three cache sizes: 1K items, 10K items,
and 100K items. The results demonstrate that ALPS outperforms the other algorithms
across all cache sizes. The most significant improvements were observed in the smallest
cache size of 1K items. As mentioned earlier, ALPS enhances the hit ratio by predicting
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Table 3 Hit ratio increase by ALPS in three cache sizes (1K, 10K, and 100K items) against LRU,
Hyperbolic, ARC and WTinyLFU when trained on (LFU, LRU,Hyperbolic), (ARC, W-TinyLFU),
and with all the five policies using the previously stated traces with frame size of 10 ∗ |cache| items.

Training Set Cache Size LRU Hyperbolic ARC WTinyLFU
LFU, LRU, HB 1000 18.9% 22.4% – –
LFU, LRU, HB 10000 10.6% 6.7% – –
LFU, LRU, HB 100000 5% 1% – –
ARC, WTinyLFU 1000 – – 10.4% 18.8%
ARC, WTinyLFU 10000 – – 3.4% 4%
ARC, WTinyLFU 100000 – – 2.6% 5%
All 1000 20% 31% 9% 26%
All 10000 19.3% 8.4% 2.17% 4.84%
All 100000 19.1% 14.5% 9.8% 11.5%

the best-performing cache policy for the next frame and dynamically configuring cache
management accordingly. This behavior is particularly impactful in smaller caches due to
smaller frames and increased evictions. This results in larger differences in heuristic-based
policy choices. Specifically, the hit ratio percentage increase of ALPS compared to LRU is
20%, Hyperbolic is 31%, ARC is 9%, and W-TinyLFU is 26%.

Figure 6a depicts the hit ratios on the Mergep trace for ALPS, LFU, LRU, Hyperbolic,
ARC, and W-TinyLFU when ALPS is trained on the five policies, using a cache size of
100K items, as a function of frame number. To enhance clarity, only samples of frames are
displayed. The hit ratio obtained by ALPS in the sampled frames closely aligns with the
highest hit ratio.

Effect of frame size. Figure 6b illustrates the impact of frame size on the hit ratio of ALPS
with varying cache sizes (1K, 10K, 100K items) using the Scarab trace. As expected, both
cache and frame sizes positively influence the hit ratio. Comparing the frame sizes with a
100K cache, we observe that smaller frames (relative to the cache size) lead to a reduced hit
ratio. This is due to statistical indicators exhibiting minimal variations between two small
frames. Conversely, extremely large frames may compromise the efficiency of the “winning”
heuristic caching algorithm at the beginning of the frame. This indicates that it is advisable
to avoid excessively long frames, as demonstrated in the case of 1K cache items.

Inference time of the NN submodel. Regarding the inference time of the NN submodel in
ALPS, it is worthwhile to note that inference is executed only once per frame. The inference
time represents the forward propagation duration. To ensure synchronized execution, we
implement synchronization between the host (CPU) and the device (GPU) to record time
only after GPU-based activity. This is achieved by performing a “GPU warm-up” by running
dummy examples, which initializes the GPU and prevents it from entering power-saving
mode during time measurement. As a result, we employ tr.cuda.event to measure GPU time.
Table 4 in the appendix presents the inference time of the model for various training policies:
(LFU, LRU), (LFU, LRU, Hyperbolic), (ARC, W-TinyLFU), and all five policies (LFU, LRU,
Hyperbolic, ARC, W-TinyLFU). The values represent the mean of 300 iterations used to
compute the inference time. It is observed that the inference time increases as the number of
training policies expands. For instance, when ALPS is trained on five policies with a frame
size of 104, the inference is performed once every 104 access and takes 0.309 milliseconds.

Note that while these measurements were obtained using a GPU, the inference in ALPS
can also be executed on CPUs, due to its moderate computational and memory overheads.
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Sketches overhead. Figure 5b presents the space occupied by the sketches for a given ϵ,
using the previously mentioned traces. The number of entries (k) for ISketch was set to
ϵ−1. It is evident that as ϵ decreases, all sketches require more space. In comparison to the
SS sketch, ALPS consumes additional space because ISketch maintains the exact item IDs
instead of their fingerprints. This is necessary to accurately report inter-arrival times for
items with low inter-arrival times.

The performance overhead of the update and query operations for the four sketches (SS,
ISketch, CM, and HLL) is depicted in Figure 5a. The update performance is exceptionally
efficient and remains unaffected by changes in ϵ values, as the update complexity is reported
to be O(1), as shown in Table 2. However, query performance in certain sketches depends
on ϵ. As ϵ decreases, more entries are included in the SS sketch, leading to slower query
performance. Yet a query is executed only once per frame.

5 Conclusions

We have introduced ALPS, a lightweight cache management meta-policy that effectively
combines ML with traditional heuristic-based approaches while addressing memory overhead
challenges associated with ML components. The key idea behind ALPS is to divide the access
sequence into frames and employ ML to predict the most effective cache management policy for
each frame. Unlike existing ML caching algorithms that store item-specific information within
a sliding window, ALPS utilizes space-efficient sketches to maintain per-frame information,
making it a highly resource efficient algorithm. The features derived from these sketches are
fed into the ML process, which is invoked only once per frame.

We have also introduced ISketch, an efficient algorithm for tracking inter-arrival times,
enabling us to efficiently monitor frame recency. Subsequently, we presented the design,
implementation, and evaluation of ALPS. Our experiments clearly demonstrate that ALPS
significantly improves the hit ratio across various cache sizes when compared to traditional
heuristic-based approaches, as well as state-of-the-art learning algorithms such as LRB and
CACHEUS. Furthermore, the memory overhead of ALPS is orders of magnitude smaller
than that of LRB and CACHEUS. As part of our future work, we plan to expand ALPS
training to incorporate additional heuristic-based caching algorithms. This will enable the
ML process to predict the optimal cache size and support weighted items. This will enhance
ALPS’s capabilities in optimizing cache performance. All code is available online [45].
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A ISketch and ALPS Algorithms

A.1 ISketch Pseudocode

Algorithm 1 ISketch.
Init: ts← 0, interArrmin ← 0, interArrmax ← 0, avrg ← 0

1: function Insert(x, ℓ)
2: ts← ts + 1
3: if x is monitored then
4: x.interArr ← ts− x.lastArr
5: x.lastArr ← ts
6: update interArrmin, avrg
7: else
8: if Less than k items are monitored then
9: x.lastArr ← ts

10: x.interArr ←∞
11: update interArrmin, avrg
12: else
13: Let x′ be the element with largest inter-arrival
14: Start monitoring x instead of x′;
15: x′.lastArr ← ts
16: x′.interArr ← x.interArr
17: update interArrmin, avrg
18: end if
19: end if
20: end function

21: function queryStat()
22: return (interArrmin, avrg)
23: end function

24: function query(x)
25: if x is monitored then
26: return x.interArr
27: else
28: return interArrmax

29: end if
30: end function

A.2 Proof of Theorem 3.2
The ISketch implementation is built on the CSS implementation [8] with k entries. It
maintains k entries with three values: item ID counters, latest arrival timestamps, and
inter-arrival times. In this implementation, we substitute the frequency counter with inter-
arrival time and add the last arrival timestamp to each allocated entry in the ID-Index
data structure, which adds k log W to the space overhead compared to CSS. We have
k(2 log W + log W

k + 2ω)(1 + o(1)) space in total. The implementation in [8] allows item
additions and point queries in O(1) time (w.h.p.). The ISketch implementation is symmetric
to CSS, with the exception that we replace the maximal counter rather than the minimal
counter and keep the average and minimal inter-arrival time updated on each arrival, which
also takes O(1) time. QuerySTAT() simply returns the average and minimum inter arrival
times that have been kept. In total, the three operations take O(1) time.
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A.3 ALPS Pseudocode and Inference Time

Algorithm 2 ALPS.
Initialization: fs← 0, initialize modelml, SS , HLL, ISketch, CM ,

1: SStrain , HLLtrain , ISketchtrain , CMtrain .
2: function Train()
3: for trace ∈ traces do
4: break trace into frames
5: for req ∈ frame do
6: UpdateSketches(SStrain , HLLtrain , ISketchtrain , CMtrain)
7: end for
8: Run caching simulator
9: if frame ends then

10: features = Extract from SStrain , HLLtrain , ISketchtrain , CMtrain
11: labels = Get labels from the caching simulator
12: train modelml with (features, labels)
13: end if
14: end for
15: end function

16: function Update(Reqi)
17: fs← (fs + 1) mod W
18: SS .Add(Reqi)
19: HLL.Add(Reqi)
20: ISketch.Add(Reqi)
21: CM .Add(Reqi)
22: if fs mod W = 0 then
23: ConfigureCache()
24: flush sketches
25: end if
26: end function

27: function ConfigureCache()
28: features = GetF eatures(SS , HLL, ISketch, CM )
29: policynew = modelml(features)
30: if Cache.GetP olicy()! = policynew then
31: Cache.SetP olicy(policynew)
32: end if
33: end function

Table 4 Mean inference time of ALPS when trained on (LFU, LRU), (LFU, LRU, Hyperbolic),
(ARC, W-TinyLFU), and finally with all five policies (LFU, LRU, Hyperbolic, ARC, W-TinyLFU)
with frame size of 10000 items. Inference is executed only once per frame.

Trained Policies Mean Inference Time
LFU, LRU 0.304 milliseconds
LFU, LRU, Hyperbolic 0.308 milliseconds
ARC, WTinyLFU 0.3026 milliseconds
All 0.309 milliseconds
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