
The Synchronization Power of Auditable Registers
Hagit Attiya #

Technion, Haifa, Israel

Antonella Del Pozzo #

Université Paris-Saclay, CEA, List, F-91120, Palaiseau, France

Alessia Milani #

Laboratoire d’Informatique et Systèmes, Aix-Marseille Université and CNRS, Marseille, France

Ulysse Pavloff #

Université Paris-Saclay, CEA, List, F-91120, Palaiseau, France

Alexandre Rapetti #

Aix-Marseille Université, Université Paris-Saclay, CEA, List, F-91120, Palaiseau, France

Abstract
Auditability allows to track all the read operations performed on a register. It abstracts the need
of data owners to control access to their data, tracking who read which information. This work
considers possible formalizations of auditing and their ramification for the possibility of providing it.

The natural definition is to require a linearization of all write, read and audit operations together
(atomic auditing). The paper shows that atomic auditing is a powerful tool, as it can be used to
solve consensus. The number of processes that can solve consensus using atomic audit depends on
the number of processes that can read or audit the register. If there is a single reader or a single
auditor (the writer), then consensus can be solved among two processes. If multiple readers and
auditors are possible, then consensus can be solved among the same number of processes. This
means that strong synchronization primitives are needed to support atomic auditing.

We give implementations of atomic audit when there are either multiple readers or multiple
auditors (but not both) using primitives with consensus number 2 (swap and fetch&add). When
there are multiple readers and multiple auditors, the implementation uses compare&swap.

These findings motivate a weaker definition, in which audit operations are not linearized together
with read and write operations (regular auditing). We prove that regular auditing can be implemented
from ordinary reads and writes on atomic registers.

2012 ACM Subject Classification Computing methodologies→ Concurrent computing methodologies

Keywords and phrases Auditability, atomic register, fault tolerance, consensus number

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2023.4

Related Version Full Version: https://arxiv.org/abs/2308.04646

Funding Hagit Attiya: Partially supported by the Israel Science Foundation (grant 22/1425).
Alessia Milani: Partially supported by CNRS-INS2I, Project PRIDE 2023.
Alexandre Rapetti: Partially supported by CNRS-INS2I, Project PRIDE 2023.

1 Introduction

Outsourcing storage capabilities to third-party distributed storage is a common practice
for both private and professional users. It helps to circumvent local space constraints,
dependability, and accessibility limitations. Unfortunately, this means having to trust the
distributed storage provider on data integrity, retrievability, and confidentiality. Those
issues are underscored by relentless attacks on data storage servers [2], which increased the
awareness to data confidentiality and sovereignty and lead to a recent worldwide deployment

© Hagit Attiya, Antonella Del Pozzo, Alessia Milani, Ulysse Pavloff, and Alexandre Rapetti;
licensed under Creative Commons License CC-BY 4.0

27th International Conference on Principles of Distributed Systems (OPODIS 2023).
Editors: Alysson Bessani, Xavier Défago, Junya Nakamura, Koichi Wada, and Yukiko Yamauchi; Article No. 4;
pp. 4:1–4:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:hagit@cs.technion.ac.il
https://orcid.org/0000-0002-8017-6457
mailto:antonella.delpozzo@cea.fr
mailto:alessia.milani@lis.fr
mailto:ulysse.pavloff@cea.fr
https://orcid.org/0000-0003-4125-3306
mailto:alexandre.rapetti@cea.fr
https://orcid.org/0009-0008-3151-6495
https://doi.org/10.4230/LIPIcs.OPODIS.2023.4
https://arxiv.org/abs/2308.04646
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

4:2 The Synchronization Power of Auditable Registers

of data protection regulations [1, 10,19]. Even in secure storage systems where access control
policies regulate who can access the data, an unauthorized user can access data either due to
a misconfiguration of the access control system or in the occurrence of a data breach [17, 24].

As a result, data owners are increasingly concerned about who accesses their data. This
makes auditability – the systematic tracking of who has read data in storage systems and the
information it has observed – an important feature.

A register is an abstraction for distributed storage that provides read and write operations
to the clients. An auditable register, introduced by Cogo and Bessani [5], is a register enriched
with an audit operation. An audit operation indicates who performed read operations on
it, and which values they have read. Auditability is defined in terms of two properties:
completeness ensures that readers that access data are detected, while accuracy ensures that
readers who do not access data are not incriminated.

In this work, we formalize the correctness of auditable registers in terms of their high-level
operations (read, write and audit). We first formalize a natural extension of an atomic
register, called atomic register with atomic audit where all the operations (including audit)
appear to happen in a sequential order that respects their real-time order.

We show that an atomic register with atomic audit is a powerful abstraction, because it
has a greater consensus number than an ordinary atomic register. Recall that the consensus
number [12] of object type X is m if m is the largest integer such that there exists an
asynchronous consensus algorithm for m processes, up to m − 1 may crash, using only shared
objects of type X and read/write registers.

We present a wait-free algorithm that solves consensus among two processes, using an
atomic register with atomic audit where only one process (the writer) can perform audit
operations. This stands in contrast to the well-known result [12] that atomic read/write
registers cannot be used to solve wait-free consensus among two processes. We then show
that when m processes can read and audit the register, it is possible to solve consensus
among m processes.

These results indicate that base objects stronger than read/write registers are needed to
implement atomic audit, motivating our implementations of an atomic register with atomic
audit. When there is either a single auditor or a single reader, we use base objects with
consensus number 2 (swap and fetch&add).

Specifically, we first present a simple algorithm for a single-reader atomic auditable
register with atomic audit, where the writer is the only process that can execute the audit
operations. The writer needs to atomically retrieve who read the previously written value
while writing a new value. With a single reader, this can be easily ensured by using swap
primitives: to read a value, the reader atomically swaps it with a special value. If the writer
retrieves this special value when writing a new value, then it is aware of the value read.

Extending this idea to multi-readers is challenging, since readers might be swapping each
other’s values. We propose a solution that uses a single shared object accessed with swap
and fetch&add primitives. The n low-order bits of the value stored in this object, where n is
the number of readers, are used to indicate which readers have accessed the value stored
in the high-order bits. Each reader is assigned a unique bit, which is set to 1 when the
reader accesses the value. Then, when the writer writes a new value it can learn who read
its previous value by checking the values of the low-order bits it retrieved from the value
atomically read while writing the new value. A similar algorithm allows to support multiple
auditors, but only a single reader, also using swap and fetch&add.

When there are multiple readers and auditors, we use compare&swap, which has consensus
number ∞, in addition to fetch&add.

Taken together, our results mean that atomic audit cannot be implemented using only
reads and writes, and stronger primitives (with consensus number > 1) should be used.

H. Attiya, A. Del Pozzo, A. Milani, U. Pavloff, and A. Rapetti 4:3

We then investigate the possibility to extend an atomic register with a useful audit
operation without relying on strong synchronization primitives. This weaker abstraction is
called a regular audit, and roughly speaking, differs from the previous one in not having the
audit operations linearized together with read and write operations. In particular, a regular
audit operation aop may not detect a read operation that is concurrent with it, even though
the read has to be linearized before a write that completes before the invocation of aop. Our
final result is a single-writer multi-reader atomic register with multi-auditor regular audit,
using only atomic read and write operations, whose consensus number is 1.

Related Work. To the best of our knowledge, only two papers [5, 6] formally study au-
ditability of read operations. Cogo and Bessani [5] were the first to formalize the notion
of auditable register. Their definition is tailored for auditable register implementations on
top of a shared memory model where some base objects can be faulty, i.e., they can omit to
record readers or they can record nonexistent read operations. They present an algorithm to
implement an auditable register, here read and write operations provide regular semantics
using n ≥ 4f + 1 atomic read/write shared objects, f of which may be faulty. Because of
their failure model, their high-level register implementation relies on information dispersal
schemes, where the input of a high-level write is split into several pieces each written in a
different low-level shared object. It implies that a process can read a written value only if it
collects enough pieces of information, making its read operation detectable. Their definition
of completeness and accuracy for the auditable register relies on the notion of effectively
read, which they formalize to capture the fact that the process executing the high-level read
operation could have collected enough pieces of information and be able to retrieve the value,
even if the read operation does not return.

In asynchronous message-passing systems where f processes can be Byzantine, Del Pozzo
et al. [6] study the possibility of implementing an atomic auditable register with the accuracy
and completeness properties, as defined by Cogo and Bessani, with fewer than 4f + 1 servers.
They prove that without communication between servers, auditability requires at least 4f + 1
servers, f of which may be Byzantine. They also show that allowing servers to communicate
with each other admits an auditable atomic register with optimal resilience of 3f + 1. Their
implementation also uses information dispersal scheme to deal with Byzantine processes.
In contrast, we consider a classical shared memory model where processes fail by crashing.
Also, our definition of auditable register is not tailored for a specific class of implementations,
since it is stated in terms of high-level operations.

Most of the other works on auditing protocols for distributed storage focus on data
integrity [7, 8, 13, 15, 16, 21–23], while our work focuses on auditing who has read which data.

When faulty processes are malicious, accountability [3, 4, 11, 20] aims to produce proofs of
misbehavior in instances where processes deviate, in an observable way, from the prescribed
protocol. This allows the identification and removal of malicious processes from the system as
a way to clean the system after a safety violation. In contrast, auditability logs the processes
actions and let the auditor derive conclusions on the processes behavior.

Frey, Gestin and Raynal [9] investigate the synchronization power of AllowList and
DenyList: intricate append-only lists where AllowList contains resources that processes can
access, while DenyList includes resources that processes cannot access. They prove the
consensus number of AllowList is 1, while the consensus number of DenyList is equal to
the number of processes that can access resources not listed in the DenyList. AllowList
and DenyList control accesses, while an auditable register tracks (read) accesses; further
discussion of the relation between an auditable register and DenyList appears in Section 8.

OPODIS 2023

4:4 The Synchronization Power of Auditable Registers

2 Model

We consider a standard shared-memory model where crash-prone asynchronous processes
communicate through registers, using a given set of primitive operations. The primitive
operations (sometimes called just primitives) include ordinary read and write, as well as
swap, fetch&add and compare&swap.

A swap(v) primitive atomically writes v to the register and returns its previous value. A
fetch&add(a) primitive atomically writes the sum of a and the current value of the register
into the register and returns its previous value. A compare&swap(old, new) primitive is an
atomic conditional write: the write of new is executed if and only if the value of the register
is old; a Boolean value is returned that indicates if the write was successful or not.

The auditable atomic register is an extension of an ordinary atomic read/write register [14].
It is formally defined in the next section. We only consider single-writer registers, where
each register can be written by a single process.

An auditable register implementation specifies the state representation of the register
and the algorithms processes follow when they perform the read, write and audit operations.
Each operation has an invocation and a response event.

An execution is a sequence of steps performed by processes as they follow their algorithms,
in each of which a process applies at most a single primitive to the shared memory (possibly
in addition to some local computation).

A history H is a sequence of invocation and response events; no two events occur at the
same time. An operation is complete in history H, if H contains both the invocation and the
matching response for this operation. If the matching response is missing, the operation is
pending. An operation op precedes another operation op′ in H if the response of op appears
before the invocation of op′ in H; we also say that op′ follows op.

A history is sequential if each operation invocation is immediately followed by the matching
response, by the same process on the same object. For a given history H, complete(H) is
the set of histories obtained from H by appending zero or more responses to some pending
invocations and discarding the remaining pending invocations.

We consider wait-free implementations which ensures that a non faulty process completes
an operation within a finite number of its own steps.

3 Definitions of Auditable Register

An auditable register supports three operations: R.write(v) which assigns value v to the
register R, R.read() which returns the value of the register, and R.audit() which reports the
set of all values read in the register and by whom. Specifically, an audit operation returns a
set of pairs (p, v), each corresponding to a read invoked by process p that returned v. In the
following, we define two specifications for audit operations, exploring different semantics of
their interaction with concurrent read and write operations.

Intuitively, atomic audit provides the illusion that all the read, write, and audit operations
appear as if they have been executed sequentially.

▶ Definition 1 (Atomic audit). A history H is atomic with atomic audit if there is a history
H ′ in complete(H) and a sequential history π that contains all operations in H ′ such that:
1. If operation op1 precedes operation op2 in H, then op1 appears before op2 in π. Informally,

π respects the real-time order of non-overlapping operations.
2. Every read in π returns the value of the most recent preceding write, if there is one, and

the initial value, otherwise. Informally, the history π respects the semantics of an atomic
read / write register.

H. Attiya, A. Del Pozzo, A. Milani, U. Pavloff, and A. Rapetti 4:5

Figure 1 A scenario where a regular audit can return either ∅ or (p1, 1), while an atomic audit
must return (p1, 1).

3. Every audit op in π returns a set of pairs P such that
(π-Completeness): For each read operation op′ by process p that precedes op in π, (p, v) ∈
P, where v is the value returned by op′.
(π-Accuracy): For any pair (p, v) ∈ P, there is a read operation op′ by process p that
returned v, and op′ precedes op in π.

Roughly speaking, π-Completeness formalizes that any read of a value from the register
must be detected by the audit operation, while π-Accuracy ensures that a read is reported
by an audit operation only if it has occurred. Note that taken together, π-Completeness and
π-Accuracy say that a pair (p, v) is returned by the audit operation if and only if a read
operation by process p, returning v, is linearized in π before the audit. That is, an atomic
audit operation detects all the read operations linearized before it and does not detect any
read operation linearized after it.

A regular audit operation detects all read operations that complete before the audit starts
and does not detect any read operation that starts after it completes. An audit operation
may detect some subset of the read operations that overlap it.

▶ Definition 2 (Regular audit). A history H is atomic with regular audit if there is a history
H ′ in complete(H), and a sequential history π that contains all read and writes operations
in H ′ that satisfies the first two conditions of Definition 1, and in addition:
3. Every audit op ∈ H ′ returns a set of pairs P such that

(H ′-Completeness): For each read operation op′ in H ′ by process p, that completes in H ′

before the invocation of op in H ′, (p, v) ∈ P, where v is the value returned by op′.
(H ′-Accuracy): For any pair (p, v) ∈ P, there is a read operation op′ ∈ H ′ by process p

that returned v, and the invocation of op′ in H ′ precedes the response of op in H ′.

Note that while the condition on atomic audit operations (Definition 1) is stated relative
to the linearization (sequential execution) π, the condition on regular audit is stated relative
to the completion H ′ of the original history H. As we shall see, this seemingly-minor change
leads to an important difference in the synchronization power of audit operations.

Figure 1 depicts a scenario where the responses of atomic audit and regular audit may
differ.

In the rest of the paper, we consider that only one process can invoke write operations
on the register, called the writer, which is also allowed to invoke audit operations. Thus,
the writer is also an auditor of the register. When several processes are allowed to read the
register, we call it multi reader ; otherwise, it is single reader. Similarly, if several processes
other than the writer can audit the register, we call it multi auditor ; otherwise, it is single
auditor.

For the correctness proof of the algorithms implementing the auditable registers, we
assume that the values written to the register are unique.

OPODIS 2023

4:6 The Synchronization Power of Auditable Registers

Algorithm 1 Two-process consensus using swsr atomic registers with single-auditor atomic
audit.

Shared Variables:
Ri, i ∈ [0, 1], swsr atomic register with writer / auditor pi and reader p1−i, initially ⊥

Local Variables:
val, initially ⊥ ▷ value read from R1−i

audit_response, initially ∅ ▷ response of audit on Ri

1: propose(vi) ▷ Pseudo code for process pi, i ∈ [0, 1]
2: Ri.write(vi)
3: val ← R1−i.read()
4: audit_response ← Ri.audit()
5: if val =⊥
6: return vi

7: if audit_response = (p1−i,⊥)
8: return val
9: return max(vi, val)

4 Using atomic audit to solve consensus

In this section, we investigate how atomic audit allows to solve consensus. An algorithm
solving consensus satisfies the following properties:
Termination: A process decides within a finite number of its own steps.
Agreement: All processes decide on the same value.
Validity: The decision value has been proposed by some process.

4.1 Single-reader register with single-auditor atomic audit solves
two-process consensus

Algorithm 1 solves consensus between two processes using two single-writer single-reader
(swsr) atomic registers with a single-auditor atomic audit: Ri, for each i ∈ {0, 1}, is a swsr
register written and audited by process pi and read by p1−i.

Each process first writes the value it proposes in its own register. Then it reads the other
process’s register and audits its own register. Finally, it returns its own value or the other
process’s value, accordingly to the values returned from the read and audit operations. In
particular, pi returns its own value (Line 6) if it read the initial value from R1−i (Line 5).
In that case, p1−i reads vi from Ri (Line 3). The condition in Line 5 would not hold, and
since the audit operation on R1−i detects that pi read ⊥ from R1−i (Line 4), p1−i returns
the value of val (Line 8), which is vi. Finally, if pi and p1−i both read the input of the other
process and they know this fact thanks to the result of the audit operation, they apply a
deterministic rule to break the tie and choose the same value.

The pseudocode appears in Algorithm 1. In in the full version, we prove:

▶ Theorem 3. Algorithm 1 solves consensus for two processes.

H. Attiya, A. Del Pozzo, A. Milani, U. Pavloff, and A. Rapetti 4:7

4.2 Multi-reader register with multi-auditor atomic audit solves
n-process consensus

We now generalize Algorithm 1 to solve consensus among n processes using single-writer
multi-reader (swmr) atomic registers with multi-auditor atomic audit. Like the algorithm
for two-process consensus, processes leverage the audit to reconstruct at which point of the
execution the other processes are, and base their decision on it.

Algorithm 2 uses n swmr atomic registers with multi-auditor atomic audit R0, . . . , Rn−1,
all initially ⊥. Process pi is the single writer of Ri, and all processes can read and audit Ri.

Each process pi proposes its input, by writing it in Ri. Then, pi reads and audits all the
other registers. A simple situation is when one process, say pi, writes and reads before all
other processes, the audit detects that pi read vi in Ri and ⊥ in all other registers. This
implies that all later processes will read pi’s value in Ri and, thanks to the audit, detect
that pi is not aware of the other processes’ propositions. In this case, vi is the only value
known to all processes, so it is safe to decide on vi. In general, we can consider the set P

of processes that write before any process reads. No process reads ⊥ from the registers of
processes in P , and this can be detected by auditing these registers. This means that all
processes consider the input values of processes in P as safe to decide upon, and agreement
can be reached by deterministically picking one of these values, e.g., the maximal one.

Each process keeps the following local data structures: values[] is an array of length n

to hold the values read from R0, . . . , Rn−1, initially ⊥; safe_values is a set that stores the
proposed values that no process missed, initially ∅; and audit_response holds the results of
audits on R0, . . . , Rn−1, initially ∅.

When proposing a value vi, each process pi first writes vi in Ri (Line 2). Next, pi reads
R0, . . . , Rn−1 and stores the responses in values[] (Line 4). Finally, pi audits R0, . . . , Rn−1
and stores the returned pairs in a set audit_response (Line 6). For each Rj , when a value is
added to audit_response, pi checks if there is a process that read ⊥ from Rj (Line 7). If this
is not the case, then the value in Rj is considered safe, and is added to safe_values (Line 8).
Finally, it returns the maximum value in safe_values (Line 9). (We assume, for simplicity,
that the input values are from a totally-ordered set.)

▶ Lemma 4. A process pi adds a value v to safe_values, only if v was proposed by some
process.

Proof. Process pi adds values it reads from R0, . . . , Rn−1, the registers of other processes,
to safe_values in Line 8. The value read from a register Rj , in Line 4, is either ⊥ (the initial
value of the register) or the value proposed by pj , written to Rj in Line 2.

We next argue that pi does not add ⊥ to safe_values. If pi read ⊥ from some Rj , then
since its audit on Rj follows its read from Rj , the π-Completeness of its audit operation
(Definition 1(3)) implies that (pi, ⊥) is contained in the response of Rj .audit(). By the
condition of Line 7, ⊥ is not added to safe_values. ◀

▶ Lemma 5. Algorithm 2 satisfies validity.

Proof. A process decides on a value in safe_values (Line 9), and by Lemma 4, this set
contains only values proposed by some process. We complete the proof by showing that
safe_values is not empty.

Let pk be the first process to apply its write of vk to Rk. Since all processes read the
registers of the other processes after applying the write, it follows that all the processes read
vk ̸= ⊥ from Rk. By π-Accuracy (Definition 1(3)), the audit of Rk does not contain a pair
(pj , ⊥), for any pj . Therefore, the condition in Line 7 holds and pi adds vk to safe_values in
Line 8, as needed. ◀

OPODIS 2023

4:8 The Synchronization Power of Auditable Registers

Algorithm 2 n-process consensus using swmr atomic registers with multi-auditor atomic
audit.

Shared Variables:
Ri, i ∈ [0, n− 1], swmr atomic registers with multi-auditor atomic audit; Ri is written by
process pi, initially ⊥

Local Variables: ▷ Pseudo code for process pi, i ∈ [0, n− 1]
values[] an array of length n, initially ⊥
safe_values a set, initially ∅
audit_response a set, initially ∅

1: propose(vi)
2: Ri.write(vi)
3: for 0 ≤ j < n

4: values[j]← Rj .read()
5: for 0 ≤ j < n

6: audit_response ← Rj .audit()
7: if ̸ ∃(∗,⊥) ∈ audit_response ▷ no process read ⊥ from Rj

8: safe_values.add(values[j])
9: return max(safe_values)

▶ Lemma 6. Algorithm 2 satisfies agreement.

Proof. We prove that all processes have the same set safe_values when deciding, which
immediately implies agreement. Suppose that process pi is the first to add a value vk to its
safe_values set. This means that pi reads vk from register Rk (Line 4).

Let aopi be the audit by pi on Rk (Line 7). Since pi adds vk to safe_values, it follows
that no pair (pj , ⊥), for some process pj , is included in the response to aopi. This implies
that all read operations from Rk that are linearized before aopi do not return ⊥.

Consider a read operation by process pj from Rk that is linearized after aopi. This follows
the read of processes pi from Rk, which returns vk ̸= ⊥, and hence, this read will also read
vk ̸= ⊥. (Since only pk writes to Rk, once, changing its value from ⊥ to vk.)

Thus, no read from Rk returns ⊥. This means that any process p′
i consider vk ≠ ⊥ in

Line 7. Moreover, by the π-Accuracy property of the audit operation (Definition 1(3)), it
follows that no pair (pj , ⊥) is contained in the result of the audit operation by p′

i on Rk.
This implies that vk is in safe_values of p′

i.
Then, the safe_values sets of all processes are identical, and they all decide on the same

value. ◀

Therefore, the algorithm satisfies validity (Lemma 5) and agreement (Lemma 6). Fur-
thermore, all the loops in the propose are iterated at most n times. Since the operations
invoked in the propose are wait-free, we get that Algorithm 2 is wait-free. This implies:

▶ Theorem 7. Algorithm 2 solves consensus for n processes.

5 Atomic audit implementations

We now turn to present several implementations of an atomic single-writer register with
atomic audit. The results of the previous section indicate which synchronization primitives
must be used in the implementations. Since two-process consensus can be solved with a
single auditor and single reader, we cannot avoid synchronization primitives with consensus

H. Attiya, A. Del Pozzo, A. Milani, U. Pavloff, and A. Rapetti 4:9

number at least two; we use swap and fetch&add (Sections 5.1, 5.2 and 5.3). When there
are multiple auditors and multiple readers, we use a universal synchronization primitive,
compare&swap (Section 5.4), whose consensus number is ∞, in addition to fetch&add.

5.1 Implementing single-reader atomic register with single-auditor
atomic audit using swap

We implement a swsr atomic register with single-auditor atomic audit using a swap primitive.
We use a shared register R with initial value v0, which holds the last written value, if the
last operation was a write, or a special value (⊥) if the last operation was a read; the audit
operations do not affect the value of R. In a write(v) operation, the (single) writer applies
swap to R, atomically writing v into R and retrieving the overwritten value to check if the
reader read the previously written value. In the latter case, the swap returns a special
value ⊥.

The pseudocode appears in Algorithm 3. The reader keeps the following local data
structures: val that holds the value read from R, initially ⊥; and read_result that holds
the value returned by the last read operation, initially ⊥. The writer and auditor keeps the
following local data structures: curr_val that holds the last value written in R, initially
v0; prev_val that holds the previous value written into R, initially ⊥; and a set, called
audit_result, which stores the pairs (process,value) of the detected read operations, initially ∅.

In a read, the reader atomically reads the last value written into R and swaps it with ⊥ to
notify the writer that it read the last value written. If the response is not ⊥, then this is the
response of the read, which the reader stores in read_result for future read operations, before
returning. Otherwise, no write has occurred since its previous read, so the read returns the
value in read_result (without changing its value).

In a write, the writer stores in prev_val the value of the previous write, from curr_val
(Line 7), and stores in curr_val the value v it is going to write (Line 8). In this way, if the
next write operation detects that the reader has read the previous value written, the writer
knows what this value is. Then, the writer swaps curr_val into R: atomically writing it into
R and retrieving the overwritten value. If the writer gets ⊥ from the swap, then the reader
has read the last value it wrote (stored in prev_val), and it adds the pair (reader, prev_val)
to audit_result (Line 10).

In an audit, the auditor (who is also the writer) returns all the (process,value) pairs
collected during the previous write operations. By reading R, the auditor checks whether
the reader read the value of the last write operation, in which case R is ⊥. In this case, it
adds the pair (reader, curr_val) to audit_result. Finally, the audit returns audit_result.

Fix a history H. It has at most two pending operations: one, either an audit or a write,
by process pw, and another by process pr, which must be read. We never complete a pending
audit. We complete a pending read in H if and only if some audit contains (pr, v) in its
response and no preceding read in H (which must be complete) returns v. We complete
a pending write in H if and only if some read (including those completed) returns the
corresponding value.

A pending operation that is completed has accessed R with a swap: A read is completed
if it is the only read that returns a value detected by an audit, thus, the read has executed
the swap in Line 2. A write is completed if some read has read its value, namely, the write
has executed the swap in Line 9. We totally order all the completed operations by the order
they apply their unique primitive on R. Call this total order π and note that it respects the
real-time order of the high-level operations on the register, since the swaps and reads are
inside the operations’ intervals.

OPODIS 2023

4:10 The Synchronization Power of Auditable Registers

Algorithm 3 Implementing a single-reader atomic register with single-auditor atomic audit
using swap.

Shared Variables:
R, accessed with read and swap, initially v0

Local Variables: ▷ Pseudo code for reader pr

val, initially ⊥ ▷ result of the swap
read_result, initially ⊥ ▷ value returned by the read

1: Read()
2: val ← R.swap(⊥)
3: if val ̸=⊥
4: read_result ← val
5: return read_result

Local Variables: ▷ Pseudo code for writer and auditor pw

curr_val, initially v0 ▷ last value written
prev_val, initially ⊥ ▷ previous value written
audit_result, initially ∅ ▷ set of tuples (p, v), with p the reader and v a value

6: Write(v)
7: prev_val ← curr_val
8: curr_val ← v

9: if R.swap(v) =⊥
10: audit_result.add← (pr, prev_val)
11: return

12: Audit()
13: if R.read() =⊥
14: audit_result.add(pr, curr_val)
15: return audit_result

▶ Lemma 8. Every read in π returns the value of the most recent preceding write, if there is
one, and the initial value, otherwise.

Proof. Consider a read opr that returns a value v, and let opr
′ be the first read that returns

this value. Since read_result is updated only if the value returned by the swap in Line 2 is
not ⊥, then the swap of opr

′ returns v. Thus, there is a preceding swap that sets R to v,
and it must be by some write opw of value v. Since reads and writes are linearized by the
order of their swaps, opw precedes opr

′, and therefore, also opr in π.
We next argue that no other write is linearized between opw and opr in π. Assume

otherwise, and let opw
′ be the last write that is linearized before opr in π.

If the swap of opr in Line 2 returns a value different from ⊥, then this value was written
by opw

′ because this is the last preceding swap that writes a non-⊥ value before the swap by
opr . This contradicts the assumption that opr returns the value written by opw.

If the swap of opr in Line 2 returns ⊥, this means that an earlier read that executed
Line 2 after opw

′ executed its swap. The first such read swaps from R the value written by
opw

′ with ⊥. By Line 4, the value of read_result is not v when opr returns in Line 5, which
is a contradiction. ◀

H. Attiya, A. Del Pozzo, A. Milani, U. Pavloff, and A. Rapetti 4:11

▶ Lemma 9. The set of pairs P returned by an audit in π satisfies the π-Completeness
property.

Proof. Consider an audit opa that returns a set P, and let opr be a read returning v that
precedes opa in π. By Lemma 8, every read returns the value of the most recent preceding
write in π. Let opr

′ be the first read that returns v. Then opr
′ sets R to ⊥, and the value in

curr_val is v.
If there is no write between opr and opa, the audit reads ⊥ from R (Line 13), while

curr_val is still v in Line 14, implying that the audit adds (pr, v) to P. Otherwise, there is
a write between opr and opa. Let opw be the first such write, and notice that opw completes,
since there is a following audit (by the same process). Moreover, since it is the first write
after opr , the value of R is ⊥ when pw executes Line 9 and curr_val is v immediately before
it executes Line 7. Thus, the pair (pr, v) is added to audit_result. ◀

▶ Lemma 10. The set of pairs P returned by an audit in π satisfies the π-Accuracy property.

Proof. Consider an audit opa that returns a set P, and let (pr, v) be a pair in P. The first
operation op that adds (pr, v) to P is either opa itself or a write / audit that precedes opa
in π. This is because the variable read_result holding set P is updated immediately after
the swap by pw in the corresponding operation.

If (pr, v) is added to P by an audit op, then curr_val is v when this happens. Since the
condition in Line 13 holds, there is a reads that swaps ⊥ into R after v was written to R.
This read is between the write of v and op and by Lemma 8, it returns v, proving the lemma.

If (pr, v) is added to P by a write op, then by Line 7 and Line 10, v is the value written
by the write that immediately precedes op in π. Then v is the value returned by the read
that swaps v with ⊥, which allows the condition in Line 9 to hold. This read precedes op
and therefore, it also precedes opa. ◀

Lemma 8, Lemma 9 and Lemma 10 imply:

▶ Theorem 11. Algorithm 3 implements a single-writer single-reader atomic register with
single-auditor atomic audit.

5.2 Implementing multi-reader atomic register with single-auditor
atomic audit using swap and fetch&add

The algorithm for a multi-reader atomic register with single-auditor atomic audit follows a
similar idea as Algorithm 3 for a single reader, by having each reader leave a trace of each
of its reads. However, there is an additional difficulty of allowing the writer to atomically
retrieve the traces of all readers when writing a new value or doing an audit.

We address this difficulty by using fetch&add, in addition to swap. A fetch&add allows to
accurately change the value of a shared variable R so that its binary representation captures
multiple pieces of information: The high-order bits hold the value written by the writer,
while the n low-order bits indicate whether the readers have read the value. Specifically, the
bit in position i, denoted biti, is associated with reader pi, 0 ≤ i < n, and holds either 0 or 1.
biti is set to 1 by pi to indicate that it has read the value stored in the high-order bits of
R; it is 0, otherwise. We use two functions to extract information from R. If R holds val,
then GetValue(val) retrieves the value stored in the high-order bits of val and GetsBits(val)
retrieves an array of n low-order bits of val.

In more detail (see Algorithm 4), when a reader pi reads a value written in R, it sets biti

to 1 by adding 2i to the value stored in R. Since a reader can read the same value several
times, pi checks that biti is not already set to 1, before adding 2i to R (Line 4). This ensures
that pi changes only its bit.

OPODIS 2023

4:12 The Synchronization Power of Auditable Registers

Algorithm 4 Implementation of multi-reader atomic register with single-auditor atomic audit
using fetch&add and swap, for n readers.

Shared Variables:
R accessed with read, swap and fetch&add primitives, initially v0 ∗ 2n

Local Variables: ▷ Pseudo code for reader pi, i ∈ [0, n− 1]
val, initially ⊥ ▷ content of the register
read_result, initially ⊥ ▷ last value read

1: Read()
2: val ← R.read()
3: if (GetBits(val)[i] = 0)
4: read_result← GetV alue(R.fetch&add(2i))
5: return read_result

Local Variables: ▷ Pseudo code for writer and auditor pw

audit_result, initially ∅ ▷ set of tuples (p, v), with p the reader and v a value
curr_val, initially v0 ▷ last value written
prev_val, initially ⊥ ▷ previous value written
val with initial value ⊥ ▷ content of the register

6: Write(v)
7: prev_val ← curr_val
8: curr_val ← v

9: val ← R.swap(v, 0n) ▷ write v in the high order bits
10: for 0 ≤ j < n
11: if (GetBits(val)[j] = 1) ▷ check if pj read the previous value
12: audit_result.add(pj , prev_val)
13: return

14: Audit()
15: val ← R.read()
16: for 0 ≤ j < n
17: if (GetBits(val)[j] = 1) ▷ check if pj read the last value
18: audit_result.add(pj , curr_val)
19: return audit_result

When writing a new value v, the writer swaps the value v and resets the n low-order bits
to 0 into R and obtains the previous value of R, into a local variable val. Then for each
reader pi, the writer retrieves biti from val (Lines 10 and 11). If biti is equal to 1, the writer
knows that reader pi has read the previous value and the pair (pi, prev_val) is added to the
set to be returned by an audit, called audit_result. audit_result is a local variable, which
can be accessed both by the writer and the auditor because they are the same process.

In a similar manner, an audit operation also reads R to detect high-level read operations
that may have read the last value written.Since audit_result is a set, the pair will not be
added if it was already in the set. (An efficient implementation of a sequential set can be
used for this local variable.)

Fix a history H. Note that there are at most n + 1 pending operations in H: one (either
an audit or a write) by the writer, and possibly one read operation for each reader. We never
complete a pending audit. We complete a pending read invoked by process pi in H if and

H. Attiya, A. Del Pozzo, A. Milani, U. Pavloff, and A. Rapetti 4:13

only if some audit contains (pi, v) in its response and no earlier read in H (which must be
complete) returns v to pi. We complete a pending write in H if and only if some read in
H returns the corresponding value. Note that if a pending operation is completed, then it
applied a primitive to R: a write is completed if some read has read its value, namely, the
write has executed the swap in Line 9; a read is completed if it is the only read that returns
a value detected by an audit, thus, the read has executed the fetch&add in Line 4.

We totally order all the completed operations by the order they apply their last primitive
(swap, read or fetch&add) to R. A write or an audit applies only one primitive. For a read,
the last primitive is the fetch&add, if this is the first time that the process reads a given
value, and otherwise, it is the read. Let π denote this total order, and note that it respects
the real-time order of the high-level operations on the auditable register because each such
step is in the execution interval of the corresponding operation. In the full version, we prove:

▶ Theorem 12. Algorithm 4 implements a single-writer multi-reader atomic register with
single-auditor atomic audit.

5.3 Implementing single-reader atomic register with multi-auditor
atomic audit using swap and fetch&add

The algorithm for a single-reader atomic register with multi-auditor atomic audit follows
a similar idea as the algorithm for a multi reader in the previous section, using a shared
register accessed with the read, swap and fetch&add primitives to support the detection of
read operations by the writer and the auditors.

Since an audit operation can overlap read, write and other audit operations, we need
an additional mechanism to ensure that the return value of the audit is linearizable. The
reader and the auditors share information in an unbounded array of read/write registers
called pairs, where pairs[k] indicates whether the reader read the k-th value written by the
writer (if there was such write). If pairs[k] contains the initial value ⊥ then the reader has
not read the k-th value written, otherwise pairs[k] contains that value. Each value written
has a unique sequence number that is incremented when the writer performs a new write.
When performing a write of a value v, the writer applies a swap to R to atomically write v

together with its sequence number and set the lowest order bit of the register to 0 to indicate
a new write (not yet read).

Algorithm 5 presents the pseudocode. As in Algorithm 4, in a read operation, the reader
reads the value of R and sets the low-order bit to 1 if it was equal to 0 (indicating that this is
the first time pr read this value). Additionally, it writes the value read in the corresponding
entry of pairs. When a process performs an audit operation, it retrieves from R the sequence
number sn of the last write operation, and also checks whether the reader has read the last
value written v. In the latter case, it writes v into pairs[sn]. Then, it reads all the entries of
pairs, from index sn down to the first, to obtain its return set.

Because the value v and the sequence number are unbounded, we interleave them bit by
bit in R, as done in [18]. Three functions are used to extract information from R. If R holds
val = (v, sn, bit), then GetBit(val) retrieves its lowest-order bit, GetValue(val) retrieves the
value v, and GetSn(val) retrieves sn.

Note that there are at most n pending operations in H: one (either an audit or a write)
by the writer, one (either an audit or a read) by the reader, and possibly one (an audit)
for all the other processes. We construct a history H ′ by completing some operations in H.
We never complete a pending audit. We complete a pending read in H if and only if some
audit contains (pr, v) in its response and no preceding read in H (which must be complete)
returns v. After completing the reads, we complete a pending write if and only if some

OPODIS 2023

4:14 The Synchronization Power of Auditable Registers

Algorithm 5 Implementation of a single-reader atomic register with multi-auditor atomic
audit using swap and fetch&add.

Shared Variables:
R accessed with read, fetch&add and swap. Its initial value is (v0, 0, 0).
pairs An unbounded array of read/write registers, shared by all processes. Initially all registers
contains the special value ⊥.

Local Variables: ▷ Pseudo code for reader pr

val, initially ⊥ ▷ content of the register
sn, initially 0 ▷ the sequence number of the value store in the register
read_result, initially ⊥ ▷ value read from the register

1: Read()
2: val ← R.read()
3: if (GetBit(val) = 0)
4: val ← GetV alue(R.fetch&add(1))
5: read_result ← GetV alue(val)
6: pairs[GetSn(val)].write(read_result)
7: return read_result

Local Variables: ▷ Pseudo code for writer pw

prev_val, initially ⊥ ▷ content of the register
sn, initially 0 ▷ the sequence number of the write

8: Write(v)
9: sn← sn + 1

10: prev_val ← R.swap((v, sn, 0))
11: if (GetBit(prev_val) = 1)
12: pairs[GetSn(prev_val)].write(GetV alue(prev_val)) ▷ detect the read of the previous write
13: return

Local Variables: ▷ Pseudo code for auditor pi

audit_result, initially ∅ ▷ set of couples (process, value)
audit_index, initially 0 ▷ index of the last updated value in pairs[]
val, initially ⊥ ▷ content of the register

14: Audit()
15: val← R.read()
16: audit_index← GetSn(val)
17: if (GetBit(val) = 1)
18: pairs[audit_index].write(GetV alue(val))
19: for j from audit_index to 0
20: if(pairs[j].read() ̸=⊥)
21: audit_result.add(pr, pairs[j].read())
22: return audit_result

(completed) read returns the corresponding value. We remove from H ′ all other pending
operations in H. Note that if a pending operation is completed, then it applied a primitive
to R: a write is completed if some read has read its value, namely, the write has executed
the swap in Line 10; a read is completed if it is the only read that returns a value detected
by an audit, thus, the read has executed the fetch&add in Line 4. Thus, all operations in
H ′ applied a primitive to R, and we can associate a sequence number sn to each operation,
which corresponds to the sequence number they read (for a read or audit operation) or write
(for a write operation) from the shared register R during this primitive.

We construct a total order π of the operations in H ′. First, we put in π all the write
operations according to the order they occur in H ′; because write operations are executed
sequentially by the unique writer, this sequence is well-defined and the order is consistent
with the sequence number associated with the values written.

H. Attiya, A. Del Pozzo, A. Milani, U. Pavloff, and A. Rapetti 4:15

Next, we add the read operations in π. Since there is a unique reader the read operations
are executed sequentially. The sub-sequence of read operations that returns a value with
sequence number sn is placed immediately after the write operation that generates the
sequence number sn, while preserving their order in H ′.

The construction of π immediately implies that a read operation returns the value written
by the write preceding it in π.

▶ Lemma 13. Every read operation in π returns the value of the most recent preceding write
in π, if there is one, and the initial value otherwise.

Finally, we consider the audit operations one by one, in reverse order of their response in
H. Consider an audit operation opa and let sn be the sequence number it read at Line 15.
There are three cases.

Case 1: If opa reads a value v in pairs[sn], we place opa in π immediately after the last
read with sequence number sn that starts before opa terminates.
Case 2: If opa read a value v in pairs[sn − 1] and the initial value ⊥ in pairs[sn], we
place opa in π immediately after the write operation with sequence number sn (at the
start if no such write exists).
Case 3: If opa read the initial value ⊥ both in pairs[sn] and in pairs[sn − 1], then
we place opa in π immediately after the write operation with sequence number sn if it
terminates before opa is invoked in H ′. Otherwise, opa is placed immediately after the
write operation with sequence number sn − 1 (at the start if there is no such operation).

Case 3 handles the situation where an audit operation opa reads a sequence number
sn but misses a read operation opr that returns the value with sequence number sn − 1.
This happens only if opa is concurrent with opr and with the write opw that generates the
sequence number sn; in particular, opr and opw write into pairs[sn − 1] after opa read it.

In the full version, we prove that this linearization preserves the real-time order of
non-overlapping operations. We next argue completeness and accuracy.

▶ Lemma 14. The set of pairs P returned by an audit in π satisfies the π-Completeness
property.

Proof. Consider an audit operation opa that returns a set P , and let opr be a read operation
by process pr that returns a value v and precedes opa in π. We prove that (pr, v) ∈ P.

Let sn be the sequence number read by opa, and let sn′ be the sequence number of the
value read by opr . Since opa follows opr in π, according to our linearization rules sn ≥ sn′.
Thus, audit_index ≥ sn′ and opa reads pairs[sn′] (Lines 19). If the read returns v, then
(pr, v) is added to P (Line 21), and the lemma follows. It remains to prove, by way of
contradiction, that opa does not read ⊥ from pairs[sn′]. We consider the possible cases:
1. sn = sn′, since opa read ⊥ from pairs[sn′], Case 2 or Case 3 apply. Thus, opa is placed in

π before the write that generates sequence number sn′ (at the latest). Since opr follows
this write, opa is placed before opr in π.

2. sn = sn′ + 1: Case 2 does not hold because opa read ⊥ from pairs[sn′] with sn′ = sn − 1.
Since opr precedes opa in π, by Case 3, opa follows the write with sequence number sn

in π. We are left with two cases.
If opa read a value ̸= ⊥ from pairs[sn] (Case 1), then we reach a contradiction by showing
opa cannot read ⊥ from pairs[sn − 1]. Since pairs[sn] = v′, there is a read operation opr′

that reads v′, and since there is a single reader, opr′ follows opr in H. Thus, the value of
pairs[sn − 1] is set to v before pairs[sn] is set to v′. By Line 19, opa first reads pairs[sn]
and then reads pairs[sn − 1], and therefore, it does not read ⊥ from pairs[sn − 1].

OPODIS 2023

4:16 The Synchronization Power of Auditable Registers

Otherwise, opa read ⊥ from pairs[sn] but the write opw that generates sn precedes
opa (Case 3). Since opr returns v, there is a read operation (possibly opr) that set the
corresponding low-order bit to 1 (Line 4). Then, when opw writes the new value with
sequence number sn, it reads 1 from this bit and sets pairs[sn − 1] = v, so opa does not
read ⊥ from pairs[sn − 1].

3. sn ≥ sn′ + 2. Then the write operation with sequence number sn′ + 1 completes before
opa reads R, and we can apply the same reasoning as in case b(Case 3). ◀

▶ Lemma 15. The set of pairs P returned by an audit in π satisfies the π-Accuracy property.

Proof. Consider an audit operation opa that returns a set P, and let (pr, v) be a pair in P.
We prove that a read operation opr by process pr that returns v is placed before opa in π.

Since (pr, v) is in P, opa adds (pr, v) to audit_result because it read pairs[sn] = v for
some sn. If v was written by the reader (Line 6), then the reader returned the value v

associated with sn, in Line 4. Otherwise, v was written to pairs[sn] either by the writer
(Line 12) or by the auditor (Line 18). This means that the writer or the auditor read the bit
set to 1 when, respectively, checking the condition in Line 11 or in Line 17. This bit is set to
1 only by the reader when reading the corresponding value in Line 4.

Thus, there is a read operation opr that read the value v with sequence number sn that
does not follow opa in H. We now show that it precedes opa in π.

Let sn′ be the sequence number of opa. Since opa reads pairs[sn], sn′ ≥ sn. If sn′ = sn,
then since opa read v in pairs[sn], opa is placed after opr in π and the claim holds. If
sn′ = sn + 1, then since opa reads v from pairs[sn], by Cases 1 and 2, it is placed after the
write that generates sequence number sn+1, and therefore, after opr . Finally, if sn′ > sn+1,
then opa is placed in π after a write with a sequence number greater than sn, and hence,
after opr . ◀

▶ Theorem 16. Algorithm 5 implements a single-writer single-reader atomic register with
multi-auditor atomic audit.

5.4 Implementing multi-reader atomic register with multi-auditor
atomic audit using compare&swap

To deal with multiple readers, as in Algorithm 4, each reader sets a dedicated bit in the
n lower-order bits of a shared register R and the writer writes the value together with a
sequence number in the higher-order bits of R. To deal with multiple auditors, we use an
array pairs, as in Algorithm 5. To accommodate multiple readers, the array is bi-dimensional,
with an unbounded number of columns (corresponding to each written value) and n rows,
one for each reader. Specifically, pairs[i][sn] = ⊥ indicates that process pi has not read the
value v written by the sn-th write operation (if any); otherwise, pairs[i][sn] = v.

We do not need readers to write into pairs because the writer applies a compare&swap
to write the new value in R, using the previously-read state of R. So, if in the meanwhile,
some reader read the current value stored in R and set its bit to 1, the compare&swap fails.
Thus, the writer detects and write into pairs all the read operations of the last value written
before succeeding the next write. Thus, either the auditor can detect the read operations by
reading R because the bits were not reset by the new write, or this information is in pairs.

Because the sequence numbers and the corresponding values are unbounded, we cannot a
priori divide the high-order bits between them. Instead, we interleave them bit-by-bit, as
done in the previous algorithm (following [18]).

H. Attiya, A. Del Pozzo, A. Milani, U. Pavloff, and A. Rapetti 4:17

Algorithm 6 shows the pseudocode. Each process stores the value read from R in a local
variable val, in order to select the information it needs. A read operation by a process pi

checks if low order bit associated with pi is equal to 1 or 0, meaning pi has already read
the current value or not, respectively. We use the following functions on val: GetValue(val)
returns the value stored in the high-order bits of val, GetSn(val) returns the sequence number
stored in the high-order bits of val, and GetBits(val) returns the n low-order bits of val.

A reader has a local variable called read_result to store the value that has to be returned,
initially ⊥. This is used to ensure that if a new value was not written, consecutive read
operations by the same process can return the correct value without setting the corresponding
bit to 1 more than once.

An auditor has a local variable called audit_result that holds a set of pairs (process,value),
one for each detected read operation; it is initially ∅. The local variable audit_index holds
the sequence number read from R, indicating the last column of the matrix pairs written by
the writer that the auditor has to read; it is initially 0.

In a read, the reader first reads R to check whether it has already read its last value. If
this is the case, it simply returns the value. Otherwise, it applies a fetch&add to set its bit
to 1 (indicating that it read the value) and returns the value represented by the high-order
bits of the value returned by the fetch&add.

In an audit, the auditor first reads R to get the sequence of bits indicating the read
operations performed since the last write operation and to atomically get the sequence
number of the last write operation. It then reads all the pairs stored in entries of pairs until
this index, and adds them to the set that the audit will return; this set is persistent. Finally,
it adds to the set additional pairs corresponding to the low-order bits of R that are set. For
simplicity, all the audit reads all entries of pairs starting from 0 up to the read sequence
number. It is simple to ensure that the same auditor reads each column of pairs at most
once, by using a persistent local variable to store the last column read.

To write a new value v, the writer increments the sequence number sn, and applies
compare&swap to R to store sn together with v and reset the n low-order bits to 0. If this
is successful, the operation completes; otherwise, the writer reads R, and for each of the n

low-order bits that is set to 1, it writes v into the corresponding entry of pairs[][sn − 1] to
announce the read operation that set the bit. The writer then retries the compare&swap.

We first show that all operations (by a correct process) complete within a finite number
of steps. This is immediate for read operations. For an audit operation, the number of the
iterations of the first for loop is bounded by the value of n and of audit_index read from R,
while the second for loop has n iterations. The next lemma (see the full version) bounds the
number of iterations in a write operation.

▶ Lemma 17. The compare&swap (Line 19) of a write operation fails at most n times.

To prove the linearizability of the algorithm, fix a history H. Note that there are at most
n pending operations in H, one for each process. We construct a history H ′ by completing
some pending read and write operations in H; we never complete a pending audit. We first
complete a pending read invoked by process pi in H if and only if some audit contains (pi, v)
in its response and no read in H (which must be complete) returns v to pi. After completing
the reads, we complete a pending write if and only if some (completed) read returns the
corresponding value. We remove from H ′ all other pending operations in H.

Note that if a pending operation is completed, then it applied a primitive to R: A read is
completed if it is the only read that returns a value detected by an audit, thus, the read has
executed fetch&add in Line 4. A write is completed if some read has read its value, namely,
the write has executed the compare&swap in Line 19.

OPODIS 2023

4:18 The Synchronization Power of Auditable Registers

Algorithm 6 Implementation of a multi-reader atomic register with multi-auditor atomic
audit using compare&swap and fetch&add for n processes.

Shared Variables:
R: a register shared by all processes, accessed with read, compare&swap, and fetch&add.
It contains a sequence number, the corresponding value, and n bits. Initially (0, v0, 0n).
pairs[n, . . .]: a matrix of read/write registers, where pairs[j][k] indicates if process pj has read
the k-th written value. Initially, ⊥.

Local Variables: ▷ Pseudo code for reader and auditors pi (i ∈ [0, n− 1])
temp initially ⊥ ▷ the content of the register R

read_result initially ⊥ ▷ the last value read
audit_result initially ∅ ▷ set of (process, value) pairs
audit_index initially 0 ▷ index of the last updated value in pairs[]

1: Read()
2: temp← R.read()
3: if (GetBits(temp)[i] = 0)
4: read_result ← GetValue(R.fetch&add(2i))
5: return read_result

6: Audit()
7: temp ← R.read()
8: audit_index ← GetSn(temp)
9: for 0 ≤ j < n

10: for 0 ≤ k < audit_index
11: if(pairs[j][k].read() ̸=⊥)
12: audit_result.add(pj , pairs[j][k].read())
13: for 0 ≤ j < n

14: if (GetBits(temp)[j] = 1) ▷ checks if pj read the last value written in R
15: audit_result.add(pj , GetValue(temp))
16: return audit_result

Local Variables: ▷ Pseudo code for writer p0

temp initially ⊥ ▷ the value read from R

sn initially 0 ▷ sequence number of the high-level writes
val initially v0 ▷ input value of the last high-level write
bits[] initially 0n ▷ n lowest-order bits of R to detect high-level reads

17: Write(v)
18: sn← sn + 1
19: while(R.compare&swap((sn − 1 , val, bits), (sn, v, 0n)) ̸= True)
20: temp ← R.read()
21: bits← GetBits(temp)
22: for 0 ≤ j < n

23: if (bits[j] = 1) ▷ check if pj read the last value
24: pairs[sn − 1][j].write(val)
25: bits← 0n

26: val← v

27: return

H. Attiya, A. Del Pozzo, A. Milani, U. Pavloff, and A. Rapetti 4:19

We construct a sequential history π that contains all the operations in H ′, while preserving
their real-time order. We (totally) order all the read, audit and write operations in H ′

according to the order they apply their last primitive on R: this is either a read or a fetch&add
for read operations, it is a read for an audit, and the compare&swap for write operations.
Note that these are atomic primitives and their order is well-defined. Clearly, operations are
linearized inside their execution intervals, implying that π preserves the real-time order of all
the operations in H. In the full version, we prove that this order satisfies completeness and
accuracy.

▶ Theorem 18. Algorithm 6 implements a single-writer multi-reader atomic register with
multi-auditor atomic audit.

Note that all (process,value) pairs must be stored somewhere in order to allow the audit
to return all the read values. When there is a single auditor, as in Section 5.1 and Section 5.2,
the pairs are stored locally at the auditor. This space can be reduced if the π-Completeness
property is weakened to require that the audit operation returns only the last k ≥ 1 values
read by each reader. This weaker form of completeness does not affect the consensus number.

6 The consensus number of atomic audit

The consensus number [12] of a concurrent object type X is the largest positive integer m

such that consensus can be wait-free implemented from any number of read/write registers,
and any number of objects of type X, in an asynchronous system with m processes. If there
is no largest m, the consensus number is infinite.

Algorithm 1 solves consensus among two processes, using only swsr atomic registers
with single-auditor atomic audit. This implies that the consensus number of a swsr atomic
register with single-auditor atomic audit is at least 2. Clearly, the same holds if the register
is multi-reader or multi-auditor. To prove that the consensus number of this object type is
2, it remains to prove that it is not possible to solve consensus for more than 2 processes.
To this aim, we provide algorithms that implement it with a single auditor (with single or
multiple readers), using a single register that supports a combination of read, swap and
fetch&add. In particular, Algorithm 3 implements a single-reader atomic register with a
single-auditor atomic audit by applying swap and read primitive operations on a single
register. Algorithm 4 implements a multi-reader atomic register with a single-auditor atomic
audit by applying swap, fetch&add, and read primitives on a single register.

Herlihy [12] proves that there is no wait-free consensus algorithm for three processes using
registers that support any combination of read, write, swap and fetch&add. It follows that
an atomic register with a single-auditor atomic audit cannot be used to solve consensus
among three or more processes, which implies:

▶ Proposition 19. A single-reader or multi-reader atomic register with a single-auditor
atomic audit has consensus number two.

Similarly, Algorithm 5 implements a single-reader atomic register with multi-auditor
atomic audit. It only uses a register accessed by read, swap and fetch& add primitives, in
addition to read / write registers. Herlihy’s impossibility together with Theorem 3, imply:

▶ Proposition 20. A single-writer single-reader atomic register with multi-auditor atomic
audit has consensus number two.

OPODIS 2023

4:20 The Synchronization Power of Auditable Registers

Table 1 Consensus number of atomic register with atomic audit.

Number of
writers

Number of
readers

Number of
auditors

Consensus
number

1 1 1 2
1 n 1 2
1 1 n 2
1 n n ≥ n

We also show that a multi-reader atomic register with multi-auditor atomic audit has
consensus number larger than 2 if each reader is also an auditor of the register. In particular,
according to Algorithm 2, we can solve consensus among n processes using n-reader atomic
registers with n-auditors atomic audit. Thus, the consensus number of this object type is at
least n. See Table 1.

We finally provide an implementation of the swmr atomic register with multi-auditor
atomic audit using read/write registers and a register accessed via read, fetch&add and
compare&swap primitives. Even though an object type that supports these three primitives
is not traditionally used, current architectures support this combination of primitives. Since
compare&swap has infinite consensus number, it is an open question whether the consensus
number of an n-reader n-auditor atomic register with atomic audit is n or more.

7 Regular Audit

A multi-reader atomic register with multi-auditor regular audit can be implemented using
only single-writer multi-reader atomic registers, with a straightforward approach: during a
read operation each reader leaves a trace in a register of all the values they read.

The algorithm uses several atomic registers. A swmr atomic register Rv is shared between
the writer and the readers. This register is used by the writer to write a new value and by
the readers to access it. In addition to Rv, each reader pi shares a swmr atomic register
Ra[i] with the auditors. This register is used by pi to communicate to the auditor all the
values it read from the register.

In a read, a reader pi reads a value from Rv and stores it in read_result. Then, it adds v

together with its identifier in read_log, and writes read_log in the register Ra[i] it shares
with the auditors. Finally, it returns read_result. In a write, the writer simply writes v

in Rv. In an audit, the auditor simply reads from all the swmr register Ra of each reader,
combines it with the result in audit_result, and returns.

The pseudocode appears in Algorithm 7. In the full version, we prove:

▶ Theorem 21. Algorithm 7 implements a single-writer multi-reader atomic register with
multi-auditor regular audit.

We remark that this algorithm can be specialized to get single-writer single-reader
registers, and extended to get multi-writer multi-reader atomic registers. In both cases, the
algorithm can provide regular audit for one or many auditors.

8 Discussion

This paper studies the synchronization power of auditing an atomic read / write register, in
a shared memory system. We consider two alternative definitions of the audit operation, one
that is atomic relative to the read and write operations, and another that is regular. The first

H. Attiya, A. Del Pozzo, A. Milani, U. Pavloff, and A. Rapetti 4:21

Algorithm 7 Implementation of a single-writer multi-reader atomic register with multi-auditor
regular audit using only read and write.

Shared Variables:
Rv, swmr atomic register, initially v0

∀i ∈ [0, n − 1] Ra[i] swmr atomic register with writer pi. Initially ⊥

Local Variables: ▷ Pseudo code for reader pi

read_log, initially ∅ ▷ tuples (pj , v), for each value v read by pj

read_result, initially ⊥ ▷ value the reader read
1: Read()
2: read_result ← Rv.read()
3: read_log.add(pi, read_result)
4: Ra[i].write(read_log)
5: return read_result

6: Write(v) ▷ Pseudo code for the writer p0

7: Rv.write(v)

Local Variables: ▷ Pseudo code for auditor pk

audit_result, initially ∅ ▷ tuples (p, v), with p the reader and v the value.
8: Audit()
9: for 1 ≤ j < n

10: audit_result.add(Ra[j].read())
11: return audit_result

definition is shown to have a strong synchronization power, allowing to solve consensus; the
number of processes that can solve consensus corresponds to the number of processes that
can read and audit the register. We also implement an atomic audit operation, using swap
and fetch&add for a single auditor (and multiple readers) or a single reader (and multiple
auditors), and compare&swap when there are multiple readers and multiple auditors. On the
other hand, the weaker, regular audit can be implemented from ordinary reads and writes.

We studied single-writer registers and leave the interesting question of registers with
multiple writers to future work.

It is also interesting to investigate the precise relationship between auditable registers
and DenyList objects [9], which record which processes accessed a resource and how many
times. We conjecture that there are reductions between DenyList and and registers with
atomic audit. The precise reductions would also explain why some variants of an auditable
register with atomic audit has consensus number 2, a phenomenon that does not happen
with DenyList. A reduction to DenyList, and more specifically, to the Proof-List object of [9],
might also yield an implementation of an auditable register with atomic audit, and n readers
and auditors, from n-consensus objects.

From a practical point of view, our results indicate that determining the precise require-
ments from auditable registers in real systems can be subtle, since a too-strong definition
would incur high synchronization cost.

References
1 California Consumer Privacy Act. State of California Department of Justice https://oag.ca.

gov/privacy/ccpa.
2 Identity Theft Resource Center. At mid-year, U.S. data breaches increase at record pace. In

ITRC, 2018.

OPODIS 2023

https://oag.ca.gov/privacy/ccpa
https://oag.ca.gov/privacy/ccpa

4:22 The Synchronization Power of Auditable Registers

3 Pierre Civit, Seth Gilbert, Vincent Gramoli, Rachid Guerraoui, and Jovan Komatovic. As easy
as ABC: optimal (a)ccountable (b)yzantine (c)onsensus is easy! In 2022 IEEE International
Parallel and Distributed Processing Symposium, IPDPS 2022, Lyon, France, May 30 – June 3,
2022, pages 560–570. IEEE, 2022. doi:10.1109/IPDPS53621.2022.00061.

4 Pierre Civit, Seth Gilbert, Vincent Gramoli, Rachid Guerraoui, Jovan Komatovic, Zarko
Milosevic, and Adi Seredinschi. Crime and punishment in distributed byzantine decision tasks.
In 42nd IEEE International Conference on Distributed Computing Systems, ICDCS 2022,
Bologna, Italy, July 10-13, 2022, pages 34–44. IEEE, 2022. doi:10.1109/ICDCS54860.2022.
00013.

5 Vinicius Vielmo Cogo and Alysson Bessani. Brief Announcement: Auditable Register Em-
ulations. In Seth Gilbert, editor, 35th International Symposium on Distributed Computing
(DISC 2021), volume 209 of Leibniz International Proceedings in Informatics (LIPIcs), pages
53:1–53:4, Dagstuhl, Germany, 2021. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.
doi:10.4230/LIPICS.DISC.2021.53.

6 Antonella Del Pozzo, Alessia Milani, and Alexandre Rapetti. Byzantine auditable atomic
register with optimal resilience. In 2022 41st International Symposium on Reliable Distributed
Systems (SRDS), pages 121–132. IEEE Computer Society, 2022. doi:10.1109/SRDS55811.
2022.00020.

7 Denise Demirel, Stephan Krenn, Thomas Lorünser, and Giulia Traverso. Efficient and
privacy preserving third party auditing for a distributed storage system. In 2016 11th
International Conference on Availability, Reliability and Security (ARES), pages 88–97. IEEE,
2016. doi:10.1109/ARES.2016.88.

8 Dipa Dharamadhikari and Sharvaree Tamne. Public auditing schemes (pas) for dynamic
data in cloud: A review. In International Conference on Smart Trends for Information
Technology and Computer Communications, pages 186–191. Springer, 2017. doi:10.1007/
978-981-13-1423-0_21.

9 Davide Frey, Mathieu Gestin, and Michel Raynal. The synchronization power (consensus
number) of access-control objects: The case of allowlist and denylist. In to appear in 37th
International Symposium on Distributed Computing, DISC 2023, 2023. doi:10.4230/LIPICS.
DISC.2023.21.

10 General Data Protection Regulation. Regulation (EU) 2016/679 https://gdpr-info.eu/.
11 Andreas Haeberlen, Petr Kouznetsov, and Peter Druschel. Peerreview: Practical accountability

for distributed systems. ACM SIGOPS operating systems review, 41(6):175–188, 2007. doi:
10.1145/1294261.1294279.

12 Maurice Herlihy. Wait-free synchronization. ACM Transactions on Programming Languages
and Systems (TOPLAS), 13(1):124–149, 1991. doi:10.1145/114005.102808.

13 V Kavya, R Sumathi, and AN Shwetha. A survey on data auditing approaches to preserve
privacy and data integrity in cloud computing. In International conference on sustainable
communication networks and application, pages 108–118. Springer, 2019. doi:10.1007/
978-3-030-34515-0_12.

14 Leslie Lamport. On interprocess communication. Distributed computing, 1(2):86–101, 1986.
doi:10.1007/BF01786228.

15 Anh Le, Athina Markopoulou, and Alexandros G Dimakis. Auditing for distributed storage
systems. IEEE/ACM Transactions on Networking, 24(4):2182–2195, 2015. doi:10.1109/TNET.
2015.2450761.

16 Bo Li, Qiang He, Feifei Chen, Hai Jin, Yang Xiang, and Yun Yang. Auditing cache data
integrity in the edge computing environment. IEEE Transactions on Parallel and Distributed
Systems, 32(5):1210–1223, 2020. doi:10.1109/TPDS.2020.3043755.

17 Jin Li, Kui Ren, and Kwangjo Kim. A2be: Accountable attribute-based encryption for abuse
free access control. Cryptology ePrint Archive, 2009. URL: http://eprint.iacr.org/2009/
118.

https://doi.org/10.1109/IPDPS53621.2022.00061
https://doi.org/10.1109/ICDCS54860.2022.00013
https://doi.org/10.1109/ICDCS54860.2022.00013
https://doi.org/10.4230/LIPICS.DISC.2021.53
https://doi.org/10.1109/SRDS55811.2022.00020
https://doi.org/10.1109/SRDS55811.2022.00020
https://doi.org/10.1109/ARES.2016.88
https://doi.org/10.1007/978-981-13-1423-0_21
https://doi.org/10.1007/978-981-13-1423-0_21
https://doi.org/10.4230/LIPICS.DISC.2023.21
https://doi.org/10.4230/LIPICS.DISC.2023.21
https://gdpr-info.eu/
https://doi.org/10.1145/1294261.1294279
https://doi.org/10.1145/1294261.1294279
https://doi.org/10.1145/114005.102808
https://doi.org/10.1007/978-3-030-34515-0_12
https://doi.org/10.1007/978-3-030-34515-0_12
https://doi.org/10.1007/BF01786228
https://doi.org/10.1109/TNET.2015.2450761
https://doi.org/10.1109/TNET.2015.2450761
https://doi.org/10.1109/TPDS.2020.3043755
http://eprint.iacr.org/2009/118
http://eprint.iacr.org/2009/118

H. Attiya, A. Del Pozzo, A. Milani, U. Pavloff, and A. Rapetti 4:23

18 Liad Nahum, Hagit Attiya, Ohad Ben-Baruch, and Danny Hendler. Recoverable and detectable
Fetch&Add. In 25th International Conference on Principles of Distributed Systems (OPODIS
2021). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPICS.OPODIS.
2021.29.

19 Personal Information Protection Law of the People’s Republic of China. 30th meeting of the
Standing Committee of the 13th National People’s Congress of the People’s Republic of China
on August 20.

20 Antonella Del Pozzo and Thibault Rieutord. Fork accountability in tenderbake. In Sara Tucci
Piergiovanni and Natacha Crooks, editors, 5th International Symposium on Foundations
and Applications of Blockchain 2022, FAB 2022, June 3, 2022, Berkeley, CA, USA, volume
101 of OASIcs, pages 5:1–5:22. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022.
doi:10.4230/OASICS.FAB.2022.5.

21 Hui Tian, Yuxiang Chen, Chin-Chen Chang, Hong Jiang, Yongfeng Huang, Yonghong Chen,
and Jin Liu. Dynamic-hash-table based public auditing for secure cloud storage. IEEE
Transactions on Services Computing, 10(05):701–714, 2017. doi:10.1109/TSC.2015.2512589.

22 Boyang Wang, Baochun Li, and Hui Li. Oruta: Privacy-preserving public auditing for
shared data in the cloud. IEEE transactions on cloud computing, 2(1):43–56, 2014. doi:
10.1109/TCC.2014.2299807.

23 Jiaojiao Wu, Yanping Li, Fang Ren, and Bo Yang. Robust and auditable distributed data
storage with scalability in edge computing. Ad Hoc Networks, 117:102494, 2021. doi:
10.1016/J.ADHOC.2021.102494.

24 Yinghui Zhang, Robert H Deng, Shengmin Xu, Jianfei Sun, Qi Li, and Dong Zheng. Attribute-
based encryption for cloud computing access control: A survey. ACM Computing Surveys
(CSUR), 53(4):1–41, 2020. doi:10.1145/3398036.

OPODIS 2023

https://doi.org/10.4230/LIPICS.OPODIS.2021.29
https://doi.org/10.4230/LIPICS.OPODIS.2021.29
https://doi.org/10.4230/OASICS.FAB.2022.5
https://doi.org/10.1109/TSC.2015.2512589
https://doi.org/10.1109/TCC.2014.2299807
https://doi.org/10.1109/TCC.2014.2299807
https://doi.org/10.1016/J.ADHOC.2021.102494
https://doi.org/10.1016/J.ADHOC.2021.102494
https://doi.org/10.1145/3398036

	1 Introduction
	2 Model
	3 Definitions of Auditable Register
	4 Using atomic audit to solve consensus
	4.1 Single-reader register with single-auditor atomic audit solves two-process consensus
	4.2 Multi-reader register with multi-auditor atomic audit solves n-process consensus

	5 Atomic audit implementations
	5.1 Implementing single-reader atomic register with single-auditor atomic audit using swap
	5.2 Implementing multi-reader atomic register with single-auditor atomic audit using swap and fetch&add
	5.3 Implementing single-reader atomic register with multi-auditor atomic audit using swap and fetch&add
	5.4 Implementing multi-reader atomic register with multi-auditor atomic audit using compare&swap

	6 The consensus number of atomic audit
	7 Regular Audit
	8 Discussion

