
O(log n)-Time Uniform Circle Formation for
Asynchronous Opaque Luminous Robots
Caterina Feletti #

Dipartimento di Informatica, Università degli Studi di Milano, Italy

Carlo Mereghetti #

Dipartimento di Informatica, Università degli Studi di Milano, Italy

Beatrice Palano #

Dipartimento di Informatica, Università degli Studi di Milano, Italy

Abstract
We study the Uniform Circle Formation (UCF) problem for a distributed system of n robots which
are required to displace on the vertices of a regular n-gon. We consider a well-studied model of
autonomous, anonymous, mobile robots that act on the plane through Look-Compute-Move cycles.
Moreover, robots are unaware of the cardinality of the system, they are punctiform, completely
disoriented, opaque, and luminous. Collisions among robots are not tolerated.

In the literature, the UCF problem has been solved for such a model by a deterministic algorithm
in the asynchronous mode, using a constant amount of light colors and O(n) epochs in the worst
case. In this paper, we provide an improved algorithm for solving the UCF problem for asynchronous
robots, which uses O(log n) epochs still maintaining a constant amount of colors.

2012 ACM Subject Classification Theory of computation → Distributed algorithms; Computing
methodologies → Mobile agents; Computing methodologies → Robotic planning

Keywords and phrases Autonomous mobile robots, Opaque robots, Luminous robots, Pattern
formation

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2023.5

1 Introduction

One of the most studied classes of agent models examines systems (swarms) of autonomous
and computational entities, called robots, which have to collaborate to solve a given problem
without any central control [18, 19]. They operate through an infinite sequence of look-
compute-move cycles, following one of the three activation and synchronization modes: the
fully synchronous mode (fsynch), where time is divided in atomic rounds and all the robots
execute a cycle synchronously in each round, the semi-synchronous mode (ssynch), which
differs from the fsynch just for the fact that, in each round, a subset of robots executes the
cycle synchronously whereas the others remain idle, and the asynchronous mode (asynch),
where there is no global clock and each robot acts asynchronously. For the ssynch and
asynch modes, time complexity is computed considering the number of epochs (rather than
the number of rounds), where an epoch is a minimal time frame within which each robot is
activated at least once.

For the sake of generality, most of the works in this field consider systems of robots with
very limited features: they are anonymous and indistinguishable, they are oblivious (i.e. they
do not have any persistent memory), they are silent (i.e. they cannot send messages), and
they are disoriented (i.e. can have different local coordinate systems). In the ssynch and
asynch modes, robots do not have any information about the activation scheduling (e.g.
which robots are activated or idle, or when an epoch starts). Another common feature is the
robot unawareness of the cardinality of the system: whilst it can restrict the computational
power of the system, such an unawareness condition makes the system scalable and open to

© Caterina Feletti, Carlo Mereghetti, and Beatrice Palano;
licensed under Creative Commons License CC-BY 4.0

27th International Conference on Principles of Distributed Systems (OPODIS 2023).
Editors: Alysson Bessani, Xavier Défago, Junya Nakamura, Koichi Wada, and Yukiko Yamauchi; Article No. 5;
pp. 5:1–5:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:caterina.feletti@unimi.it
https://orcid.org/0009-0004-1813-8056
mailto:carlo.mereghetti@unimi.it
https://orcid.org/0000-0002-7778-7257
mailto:beatrice.palano@unimi.it
https://orcid.org/0000-0003-3948-4658
https://doi.org/10.4230/LIPIcs.OPODIS.2023.5
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

5:2 O(log n)-Time Uniform Circle Formation for Asynch. Opaque Luminous Robots

robot insertions or removals. Such minimalistic and unnatural models have been introduced
in order to investigate the minimal sets of robot abilities required to solve a specific problem.
At the same time, other feature assumptions are considered for exploring more realistic
models: instead of the classic punctiform model, where robots are treated as points in
space, fat models [2, 9, 5, 22] regard robots as solid discs. Also, instead of “more naive”
models of transparent robots (enabling complete visibility of the system), and/or incorporeal
robots (so that robots can occupy the same position without colliding), more recent models
assume robots to be opaque [1, 3, 17] and acting within environments where collisions are not
tolerated [15, 17, 23]. Mostly, models assume robots move in discrete spaces (grids or graphs)
or in continuous spaces (typically in the Euclidean plane). Communication among agents has
proven to be essential to solve some problems [4, 8, 11], especially in the asynch mode where
the robot motions typically must be “traffic lights coordinated”. For this reason, literature
has considered models of luminous robots, which are equipped with a light, and which can
communicate and/or store some information through the colors the light can assume.

Pattern formation problems [3, 30, 31, 33] are of great importance and interest for
autonomous swarms of robots; such problems require mobile entities to move on the given
space and form a target pattern. The Circle Formation problem (requiring the swarm
to achieve a circle configuration, i.e. a configuration where all robots lay on the same
circle1) has been broadly investigated in the last two decades for various models [1, 9, 10, 14].
Thereafter, several algorithms have been designed to solve the “uniform” variant. The
Uniform Circle Formation (UCF) problem [10, 12, 15, 17, 20, 26, 32] requires robots to
arrange on the vertices of a regular n-gon, n being the cardinality of the swarm. The
well-known geometric properties of a regular polygon (e.g. agreement on both origin and
unit distance, equally-spaced distribution) make the UCF solution a fundamental algorithmic
primitive for a distributed mobile system. Generally, an algorithm for UCF is decomposed
into two steps [10, 15, 16, 17]: firstly, a Circle Formation solution is provided, then the
algorithm solves the Uniform Transformation sub-problem [10] which asks robots from a
circle configuration to equally distribute on the circle.

The UCF problem has been investigated and solved under different combinations of system
features in order to point out the minimal sets of assumptions for its solution. The algorithms
presented in [10] make oblivious and disoriented robots form a circle configuration and then
converge toward an even distribution. The same robot model is investigated in [12] where
an exact algorithm solves UCF for n robots, n being prime. In [25] and [26], the authors
solve the problem in a swarm of fat robots, but (partially) oriented. In [20], the authors
provide a solution for disoriented, and non-rigid robots, in the asynch mode, avoiding
collisions. In [15, 16, 17] the UCF problem is solved for disoriented, and opaque robots without
collisions. With such strong constraints, the introduction of lights as means of communication
and persistent memory turns out to be crucial. In particular, in [17] the authors provide
three algorithms using O(1) light colors and solving the UCF problem in the three different
synchronization modes: the asynch algorithm requires O(n) epochs, while the synchronous
algorithms solve the problem in constant time. Their fsynch solution improves the algorithm
presented in [15] for the same model and synchronization mode. We emphasize that solving
the UCF problem for such an opaque model but without lights is still an open question.

Related works and contributions. We consider the same model and the same problem as
in [17]. Namely, we want to solve the UCF problem by opaque and luminous robots, avoiding
collisions. In [17], the authors use two preliminary steps to displace the robots on the same

1 We will always consider non-degenerate circles.

C. Feletti, C. Mereghetti, and B. Palano 5:3

circle, upon which the regular n-gon will be formed. In particular, (i) they first use the
algorithms in [28] (for the fsynch and ssynch modes) and [27] (for the asynch mode)
to displace the robots on the vertices of a convex hull, providing complete visibility to the
swarm. Then, (ii) robots are easily made to move radially to reach their smallest enclosing
circle (SEC). After these preliminary steps, (iii) authors provide original strategies to solve
the Uniform Transformation sub-problem. Table 1 depicts the configurations obtained by
executing steps (i-iii) in order to attain the regular polygon.

Table 1 Preliminary steps of the algorithm before reaching the Uniform Circle Configuration.

Initial Configuration Convex Configuration Circle Configuration Uniform Circle Configuration

Regarding time complexity, steps (i-ii) need a constant number of colors and running
time (rounds and epochs), in all the three synchronization modes. Concerning the original
algorithms in [17] for step (iii), they solve the Uniform Transformation sub-problem with
O(1) colors and O(1) time in the fsynch and ssynch modes. On the other hand, the
algorithm for step (iii) in the asynch mode needs linearly many epochs in the worst case.

In this work, we present an improved solution for the Uniform Transformation sub-
problem (i.e. step (iii)) in the asynch mode, using a number of epochs which is logarithmic
in the number of robots. As a corollary, this provides a O(log n)-time algorithm for solving
the UCF problem from an arbitrary configuration. For the sake of conciseness, the details of
steps (i-ii) are not repeated here: this choice allows us to focus on the novel results, without
affecting the integrity and the relevance of the whole work.
Moreover, a key tool in our constructions and analysis is represented by the formalization of
some geometric properties through circular strings [7, 21, 24, 29]. Similar approaches have
been used in the realm of robot swarms [6, 12, 13]: as a matter of fact, such a formalization
represents a natural and convenient tool to analyze the system configurations reached by
robots. Specifically, circular strings have been used to provide robots with orientation and
sorting, and to solve the Leader Election primitive. Moreover, specific patterns of strings
have been defined to formalize particular geometric patterns: in [12], the authors solve UCF
for asymmetric configurations by using the Lyndon words to elect a leader robot among the
swarm. In [13], the authors introduced the Swing words to formalize specific configurations
and solve the UCF problem. In this paper, we present a general discussion, providing an
exhaustive and rigorous formalization of any arbitrary circle configuration through circular
strings and an appropriate formal method to check the correctness of the results. As a matter
of fact, several theorems and lemmas are presented (see Appendix B.2) in order to prove our
strategies and outline the significant properties of robot configurations.

2 Model

We consider a system of n autonomous computational mobile robots which are punctiform,
anonymous, indistinguishable, homogeneous, and completely disoriented (no agreement on the
local coordinate system, unit distance, and chirality), operating in the Euclidean plane. They

OPODIS 2023

5:4 O(log n)-Time Uniform Circle Formation for Asynch. Opaque Luminous Robots

do not know how many they are. They are opaque, so in the case of collinearity between three
robots, the endpoint robots cannot see each other. However, they are luminous, i.e. they are
equipped with a persistent light that can assume one among a constant number of colors. We
say that two robots r and s mutually see each other if (i) r = s or (ii) there is no other robot
on the segment r̄s. If r sees s, r senses only the position (in its own local coordinate system)
and the color of s. Robots are given no other means to store or communicate information to
the swarm. They form a distributed system where each robot executes the same deterministic
algorithm through a sequence of look-compute-move cycles, in which each activated robot
r takes the instantaneous snapshot (positions and lights) of the visible part of the system
(look), executes the algorithm and computes the next position τ and light color c (compute),
updates its light with the color c and moves straight towards τ (move2). Light color is
maintained until the robot updates it in subsequent cycles. We assume that the model is
rigid, i.e. no adversary can stop robot movement. Our robots operate in the asynch mode:
robots are activated independently of each other, and each look-compute-move cycle lasts
an unpredictable but finite amount of time. Robots do not know which other robots are
active at any given time. We assume the fairness condition: for any time t and for any robot
r, there exists a time t′ > t such that r is activated. Our model does not tolerate either
multiplicity (i.e. no robot can occupy the same location of another robot at the same time)
or overlapping trajectories (robots r and s have overlapping trajectories if (i) r is moving
from a to a′, (ii) s is moving from b to b′, and (iii) the segments āa′ and b̄b′ have points in
common). We refer to both multiplicity and overlapping trajectories as collisions: hence, we
aim to design algorithms that avoid collisions among robots.

3 Some notions

Given a regular n-gon, its base angle is the angle 2π
n . Let r0, . . . , rm−1 be m distinct robots

laying ordered on the SEC according to a fixed orientation. We say that they are consecutive
if they appear in sequence by traveling along the SEC only once. We say they are adjacent
if, for every 0 ≤ i < m − 1, no other robot lays on the arc ⌢

riri+1.
Given a listing r0, . . . , rn−1 of n adjacent robots on the SEC, centered in O, we define the
sequence α0 · · · αn−1 as the corresponding angle-string, where αi = r̂iOr(i+1) mod n. A group
of robots on an arc is oriented if it agrees on a common clockwise direction. Unless otherwise
stated, given two points a and b on the SEC, not laying on the two different endpoints of the
same diameter, we refer to the arc

⌢

ab as the minor arc joining a and b on the SEC.

4 Parallelism with circular strings

Once all the robots are on their SEC, we can study the geometric properties of such a
disposition by considering the circular strings formed by the angle-strings in that configuration.
From this viewpoint, spotting special geometric properties amounts to analyzing some
properties on the circular strings.

Circular strings. Let x = x0 · · · xn−1 be a linear string on an alphabet Σ (from now on,
we simply call it string). We denote by |x| the length of x, by ϵ the empty string, and by
xR = xn−1 · · · x0 the reverse string of x. A factor of x is ϵ or any string xixi+1 · · · xj such
that 0 ≤ i ≤ j ≤ n − 1. We define the k-shift of x the string σk(x) = xk · · · xn−1x0 · · · xk−1,

2 If τ is the current position of r, we say that r executes a null movement.

C. Feletti, C. Mereghetti, and B. Palano 5:5

where 0 ≤ k ≤ n − 1. A string x is a palindrome if x = xR. A mirrored string is a palindrome
with an even length. A string x is a power string whenever there exists a factor y of x, such
that y ̸= ϵ, y ̸= x and x = yk for an integer k. On the contrary, x is a base string if it is not
a power string.

Given a linear string x = x0 · · · xn−1, the corresponding circular string is the multiset
σ(x) = {σ0(x), . . . , σn−1(x)}. A circular string is minimal if it contains only base strings.
Given a string x on the alphabet Σ, we say that it is symmetric if (i) x is a palindrome, or
(ii) x = aybyR where y ∈ Σ∗, a, b ∈ Σ. A circular string is said to be symmetric if it contains
a symmetric string.

Symmetries and circular strings. Given a configuration C where all the robots are on
the SEC and given a fixed orientation (w.l.o.g. clockwise), let us consider the listing of
adjacent robots r0, . . . , rn−1 on the SEC with the corresponding angle-string α = α0 · · · αn−1.
From each robot ri, two angle-strings start: σi(α) (clockwise) and its reverse σn−i(αR)
(counterclockwise). We denote these relations with the following notation: ri ↷ σi(α)
and ri ↶ σn−i(αR). We call configuration strings of C the circular string σC = σ(α)
and σR

C = σ(αR). According to the properties of σC (clearly the same holds for σR
C), the

configuration C comes in three different cases of geometric symmetry:
in case of asymmetry, σC is minimal and not symmetric;
in case of symmetry with one axis, σC is symmetric. In particular, three sub-cases
exist according to the number of axis robots (i.e. robots laying on the endpoints of the
symmetry axis):

one axis robot (odd n), σC contains a palindrome in the form xaxR;
two axis robots (even n), σC contains two mirrored strings in the form xxR and xRx;
zero axis robots (even n), σC contains two symmetric strings in the form axbxR and
bxRax.

In all the above three sub-cases, no other symmetric strings are contained in σC ;
in case of rotational symmetry, all the strings in σC are power strings in the form xk

where x is a base string.

5 The algorithm

Let us consider a configuration C where all the n robots are on the same smallest enclosing
circle (SEC). We explain the algorithm for the Uniform Trasformation sub-problem, by
displacing robots on a regular n-gon inscribed on the SEC, in the asynch mode. Throughout
the explanation of the algorithm, we will always be using the terminology “the SEC” by
meaning the original SEC in the configuration C.

Regular tuple. Let P be the target regular n-gon, which is uniquely determined by C
according to our algorithm. Our algorithm consists of two initial tasks where triples or
4-tuples of robots will move to some vertices of P and set their lights with special colors3

(pivot and angle) to communicate “we are the reference robots”. In particular, we call regular
tuple the tuple of consecutive robots in the form (angle, pivot, angle) or (angle, pivot, pivot,
angle), laying on adjacent vertices of P . Accordingly, it holds that, if (r1, . . . , rk) is a regular
tuple on the SEC centered in O (with k ∈ {3, 4}), then ̂riOri+1 = 2π

n for 1 ≤ i < k.

3 We use the italic notation to denote the exact color of a robot (e.g. guard, guard_c, pivot . . .), whereas
we indicate the role of a robot by the normal text (e.g. guard, pivot . . .). Multiple colors can be used
for the same role (e.g. a guard robot can assume the color guard, guard_c, moving_guard . . .).

OPODIS 2023

5:6 O(log n)-Time Uniform Circle Formation for Asynch. Opaque Luminous Robots

Splitting chord. Let τ, τ ′ be two regular tuples such that a, a′ (resp. b, b′) are the points
where the angle robots of τ (resp. τ ′) lay on, such that a, a′, b, b′ are consecutive. Let us
consider the two disjoint arcs

⌢

ab′ and
⌢

ba′. If in at least one of the two arcs, no regular tuple
is formed (or must be formed), we say that τ and τ ′ are adjacent. Given two adjacent regular
tuples τ, τ ′ defined as above, let ma (resp. mb) be the middle point on the minor arc aa′

(resp. bb′). We call the chord ¯mamb as splitting chord of τ, τ ′. Given a splitting chord ρ

on the SEC, we call performance arc of ρ, denoted as
⌢
ρ , the minor arc cut by ρ. We call

performance area of ρ the region of the plane φρ such that (i) it contains the performance arc
⌢
ρ and (ii) it is delimited by ρ and the two distinct straight lines, perpendicular to ρ, each
one passing through one of the two endpoints of ρ. Figure 1 shows the explained elements.
Note that, if ρ is a diameter, it defines two opposite performance arcs/areas.

ρ⌢
ρφρ

ma

mb

mc

a

a′

b

b′

c

c′

Figure 1 A splitting chord ρ, its performance arc
⌢
ρ , and its performance area φρ. The configura-

tion has three splitting chords, defined by three regular triples in the form (angle, pivot, angle).

Summary of the algorithm. We list the main steps and strategies used in our algorithm.
At first, we split the SEC into performance arcs of equal length and robot cardinality,
such that all the robots on each arc (or on each half-arc) are oriented. In this part, we
use circular strings to formalize the geometric properties of the configurations.
To fix the performance arcs, some robots per arc are elected and made to move in specific
positions on the SEC, around each arc endpoint. These reference robots will form the
regular tuples which will be used by a robot r to (i) reconstruct the original SEC where
the regular n-gon P must be formed, (ii) recompute its base angle and so the global
number of robots in the system, (iii) determine the performance area where r has to
move, and (iv) detect the group of robots (on the same performance area of r) with which
r has to collaborate.
Performance areas partition the swarm into groups of robots. Each group will act
independently of the others, in its own original performance area. This allows the next
steps to be executed in parallel by each group.
Within each performance area, robots equally distribute themselves on the performance
arc by executing the same routine. This routine includes a loop that iterates a sequence
of nine tasks, where each task is fulfilled within a constant number of epochs. Since the
sequence of tasks is iterated an amount of time which is logarithmic in the number of
robots acting in the performance area, we obtain an exponential decrease in the running
time, when compared to the existing algorithms for UCF. Such a routine can be adapted
into a stand-alone algorithm that uniformly arranges robots along a given arc.

C. Feletti, C. Mereghetti, and B. Palano 5:7

The time-complexity improvement from O(n) (see [17]) to O(log n) is given by the “pairing
technique” used in the task loop: robots pair themselves and use their mutual distance
to encode all the needed information to reach their target destinations.

Asynchronism. The main issue with the asynch mode with opaque and collision-intolerant
robots is the management of moving robots which can (i) hide or (ii) be hidden by other
robots. To cope with the issue (i), our algorithm makes a robot color itself as moving_x
before starting moving, where x will be the color it has to set once stopped and reactivated.
A task of our algorithm is said to be fully parallelized if robots can safely execute their move
phase (update their color or position) even if they see other moving robots. Instead, given a
region ω on R2, we say that a task for a subset of robots S is ω -synchronized if it requires
any robot r ∈ S to skip its move phase if r sees a moving_ colored robot in ω, different from
itself. The region of synchronization of a robot can be the whole R2 plane or its performance
area, according to the task to be executed. For the issue (ii), our algorithm guarantees no
collinearity with moving robots creating ambiguous snapshots. Let us show the algorithm
task by task. For the sake of brevity, our explanation will omit the detail of the moving_
colors, assuming their need and logic as understood.

5.1 SEC splitting

In the first task, some robots have to set their lights to fix the splitting chords. Moreover,
at most one robot is required to travel, in a particular configuration. Starting from the
configuration C, our strategy is to select the splitting chords which split the SEC into
performance arcs with the same length and with the same number of robots (possibly with
just one robot of difference). The method to select such arcs depends on the geometric
symmetry degree of C.

Asymmetry. In this case, every robot can elect the lexicographically smallest string y over
σC ∪ σR

C and so the robot p from which y starts (i.e. either p ↷ y or p ↶ y), such that the
diameter passing through p splits the SEC into two halves with the same robot cardinality
(except for just one exceeding robot at most). Note that such a diameter always exists (see
Theorem 1 in [17]). In this case, the selection of y is always taken unambiguously (see Lemma
5 in Appendix B.2). The diameter passing through p is elected as the splitting chord for C.

In this task, p sets its light as pivot and fixes the splitting chord. If n is even, on the
other endpoint e of the splitting chord, a robot is elected to move to e where it will assume
the color pivot_a once reactivated. For this purpose, we elect the robot already on e, if it
exists, otherwise we elect the closest robot to e belonging to the most populated half-SEC.

Symmetry with just one axis. In this case, robots elect the diameter on the axis of symmetry
as the splitting chord. The elected splitting chord, say d, can pass through 0, 1, or 2 opposite
robots. In this task, the robots laying on d begin pivots and set their light as pivot. If no
robot lays on d, we have to color just two robots, symmetric to d, with the color placeholder,
to univocally fix the splitting chord (in fact, given two distinct points on a circle, there
exists a unique axis of symmetry for the two points which does not pass through them).
To establish an unambiguous method to elect the symmetric placeholders, we can elect the
farthest robots to d (in case of equal distance, we choose according to the lexicographic order
of the half-SEC angle-string).

OPODIS 2023

5:8 O(log n)-Time Uniform Circle Formation for Asynch. Opaque Luminous Robots

Rotational symmetry. In this case, all strings in σ(C) are power strings. Let α = α0 · · · αn−1
be an angle-string in σ(C), and let β be the base string such that βk = α (the configuration
C can be divided into k > 1 identical sectors, each being the 2π

k -rotation of the previous one).
We call σ(β) and σ(βR) the sector circular strings of the configuration. We note that they
are minimal. Consider the ordered list of the adjacent robots on the SEC r0, . . . , rn−1 which
forms α. Let Pi = {rj | j ≡ i mod n

k } be the class of symmetry which contains k robots
sharing the same position in the k different sectors. We can observe that, for each robot
r ∈ Pi, r ↷ σi(α) and r ↶ σi(α)R hold true. Our strategy now selects one or two classes
of symmetry among P0, . . . , P n

k −1 according to a particular property of their associated
angle-strings. Observe that

▶ Observation 1. Since each angle-string σi(α) (resp. σi(α)R) is the k-power of σi(β) (resp.
σi(β)R), we can analyze the properties of the angle-strings just taking into account their
factors σi(β) and σi(β)R.

We say that Pi reads σi(β) and σi(β)R (formally Pi ↷ σi(β) and Pi ↶ σi(β)R) since the
robots in Pi are the starting points for these strings (in opposite directions).

According to this, our algorithm unambiguously chooses just one string, say γ̃, within
σ(β) ∪ σ(βR), which is read exactly from one or two classes of symmetry. In particular, let
Γ1 and Γ2 be the sets of strings in σ(β) ∪ σ(βR), such that Γ1 (resp. Γ2) contains the strings
read by just one class (resp. 2 classes) of symmetry. In particular, we can have two scenarios,
according to the size of Γ1:

if Γ1 ≠ ∅, we unambiguously select a string γ̃ from Γ1 (e.g. the lexicographically smallest
one) and the class of symmetry, say Pi, which reads γ̃;
if Γ1 = ∅, we properly4 select a string γ̃ from Γ2 and the two classes of symmetry, say Pi

and Pj , which read γ̃.
We call Pi and, if it exists, Pj eligible classes of symmetry. Note that we cannot have more
than two classes of symmetry reading the same string in σ(β) and σ(βR), otherwise the
sectors would contain sub-sectors in turn, i.e. β would not be a base string (see Lemma 6 in
Appendix B for the proof). Other properties about robot classes of symmetry (in particular
about Γ1, Γ2, and so the presence of one or two eligible classes of symmetry) are explained in
Appendix B.2. For example, note that, if |β| is odd or σ(β) contains a mirrored string, then
Γ1 contains at least a string, i.e. we can elect a unique eligible class (see Theorem 7 and
Theorem 9 in Appendix B.2 for the proofs). Let us now show how the SEC is split in both
scenarios (see Figures 2a and 2b).
One eligible class of symmetry: Each robot computes σ(β) and σ(βR), and selects γ̃ and

Pi as explained above. The k robots in Pi form the pivots (which won’t move for the
whole algorithm) by setting their color as pivot. The chords joining pivots belonging to
adjacent sectors will be the splitting chords.

Two eligible classes of symmetry: Each robot computes σ(β) and σ(βR) and selects prop-
erly γ̃, Pi, and Pj . The 2k robots in Pi ∪ Pj play the role of placeholders and set
their color as placeholder. At the end of this task, there will be 2k placeholders, two
for each sector. Moreover, each placeholder forms two different angle-strings with its
adjacent5 placeholders. Hence, it is important to share a common method to pair adjacent
placeholders in k disjoint pairs; such pairs will be used in the next task to define the
splitting chords and so delimit the k performance areas. In fact, the chords passing

4 In order to guarantee complete visibility during regular tuple setting.
5 Two placeholders p and r are adjacent if no other placeholder lay on the arc ⌢

pr.

C. Feletti, C. Mereghetti, and B. Palano 5:9

r0

x

r1

x

r2

x
r3

y
r4

y

r5
z

r′
0

x

r′
1

x

r′
2

x
r′

3

y
r′

4

y

r′
5

z

(a) Pivot coloring in a 2-rotation configuration
with 6 classes of symmetry Pi, i ∈ {0, . . . , 5}.
Here, γ̃ = x3y2z starts from just one eligible
class P0 = {r0, r′

0}. The splitting chord is the
diameter joining the two pivots.

r0

y

r1

xr2
x

r3 x

r4
x

r5

x

r6

x

r7

x

r′
0

y

r′
1

x r′
2

x
r′

3x

r′
4

x

r′
5

x

r′
6

x

r′
7

x

(b) Placeholder coloring in a 2-rotation con-
figuration with 8 classes of symmetry Pi, i ∈
{0, . . . , 7}. Here, γ̃ = x7y starts from two eligi-
ble classes P0 = {r0, r′

0} and P7 = {r7, r′
7}. The

dotted diameter is elected as the splitting chord.

Figure 2 SEC splitting in the rotation case.

through the middle points of the selected pairs of placeholders will be the splitting chords.
Between the two different ways to pair adjacent placeholders, robots can always choose
a proper and unambiguous method to form the pairs (and so the splitting chords) so
that, in the next task, the regular tuples can be formed safely. Note that for each pair
of adjacent placeholders, an axis of symmetry passes between them (see Theorem 10 in
Appendix B.2). Moreover, no robot lays on the endpoint of these axes of symmetry (see
Theorem 11 in Appendix B.2).

5.2 Regular tuple setting

This task requires some robots to change color and move for completing the regular tuples.
The positions of these tuples are fixed by the presence of the pivots or the placeholders which
have been set in the previous task. In particular, assume the current configuration presents
k splitting chords ρ1, . . . , ρk defined by pivots and placeholders. From now on, no robot will
cross the splitting chords: each robot remains in its original performance area.
Consider a splitting chord ρ, its two endpoints e0, e1, and its performance area φρ. In this
task, one or two robots per each endpoint ei are elected on

⌢
ρ , and move to complete the

regular tuple around ei in the form (angle, pivot, angle) or (angle, pivot, pivot, angle). The
first case arises when the pivot already lays on ei, so one robot on

⌢
ρ elects itself as an angle

robot, moves in a position a on
⌢
ρ where it will set its light as angle for forming the base

angle 2π
n with the pivot. Note that a second angle robot will do the same in the adjacent

performance area, completing the regular triple centered on ei. The second case arises when
no robot lays on ei, and ρ is held by (i) the pairs of placeholders or (ii) the pivot on the
opposite endpoint e1−i (cases of asymmetry and symmetry with odd n). In this case, two
robots on

⌢
ρ elect themselves as pivot and angle, must set their light properly, and move to

complete the 4-tuple centered on ei. Figure 3 shows the regular tuple setting for different
configuration types.
This task is φρ -synchronized, i.e. a robot r in φρ skips its move phase only if r (i) is not
moving_ colored and (ii) sees a moving_ robot belonging to φρ. In fact, other moving
robots do not prevent r from executing its move phase. Note that there always exists an
unambiguous strategy used by the swarm to (i) elect the robots which will become angle

OPODIS 2023

5:10 O(log n)-Time Uniform Circle Formation for Asynch. Opaque Luminous Robots

robots and, possibly, pivots, (ii) make them move without colliding and always guaranteeing
complete visibility to the swarm, and (ii) completing the k regular tuples in a constant
number of epochs, potentially in parallel (see Theorem 2 in Appendix B). Eventually, the
pivot_a robot (asymmetry case) turns its light into pivot aligning its color with all other
pivots. Once all the regular tuples have been set, all pivots and angle robots will do nothing.
Placeholders can turn off their lights since their role is no longer needed.

2π
n 2π

n

2π
n

2π
n

2π
n

(a) Regular tuple setting in
case of symmetry with one
axis. The splitting chord lays
on the axis of symmetry.

2π
n

2π
n

(b) Regular tuple setting in case
of 3-rotation (with one eligible
class). The splitting chords join
the three pivots.

2π
n

2π
n

2π
n

(c) Regular tuple setting in
case of 2-rotation (with two
eligible classes), around the
pairs of placeholders.

Figure 3 Regular tuple setting with pivots (here red), angles (cyan), and, possibly, placeholders
(blue).

5.3 Task loop

Let φρ be a performance area cut by the splitting chord ρ. Let
⌢
ρ be its performance arc on

the SEC, and let βρ be the angle-string related to the robots on
⌢
ρ . If βρ is not a palindrome,

we can establish an “upper” endpoint of
⌢
ρ according to the lexicographical orientation given

by βρ. Otherwise, each half-arc of
⌢
ρ defines its nearest endpoint of ρ as its upper part.

Let m be the number of robots on
⌢
ρ which are not pivots or angle robots. We now show

the sequence of tasks that has to be iterated until all the m robots have been moved to two
particular lines external to the SEC, and parallel to ρ. As we will see, at each iteration half
of the robots on

⌢
ρ leave the arc and move towards these lines, thus leading to logarithmic

behavior for the whole algorithm. Note that no robot invades another performance area and
the target polygon vertex of each robot is located on its performance arc.

Let k be the number of performance areas on the SEC. The k groups of robots perform
the same sequence of tasks independently and possibly in parallel. However, some critical
tasks of the loop are φρ-synchronized. Now, let us explain in detail each task of the loop
(see Algorithm 1 in Appendix A for the pseudo-code of the whole task loop).

TBLG setting. In this φρ -synchronized task6, just 1 or 2 robots have to move on
⌢
ρ . Let g

be the middle point on
⌢
ρ . We have to set 3 (if m is odd) or 2 (if m is even) guard robots

around g, on the SEC, in this way:

6 The task name derives from the robot roles: top, bottom, loner, and guard.

C. Feletti, C. Mereghetti, and B. Palano 5:11

if m is odd, the robot closest to g (in case of two equally distant robots, the robot in the
upper part of the arc is elected) moves to g and sets its color as guard_c7. We call this
guard the central guard;
the two robots closest to g (besides the one which has to head to g when m is odd) must
set themselves with the guard color. If both are located in the same half-arc, the farthest
from g must travel in the opposite half-arc, at a distance d from g which is a fraction of
the minimum distance between any two robots on

⌢
ρ (this measure assures no collisions

can occur). These two guards are called outer guards.
Note that no robots lay between two guards (except the central guard if m is odd). All the
other robots in

⌢
ρ , except for the pivots, the angles, and the guards, will color themselves

according to the following roles. For each half-arc split by g, the robots pair themselves
starting from the upper part of the half-arc (where the regular tuple lays): each pair is
composed of the top robot and the bottom robot (in each top-bottom pair, the top robot is
the closest robot to the related pivot). Each top-bottom pair must not have other robots
between them. If, for example, there is an odd number of robots between the pivot and the
related angle robot, the robot closest to the angle robot remains unpaired. The unpaired
robots color themselves as loner. The final configuration is shown in Figure 4.

g
g2

g1

i = 1

i = 1

i = 2

(a) TBLG setting with three guards. Index-
ing of the top-bottom pairs.

g2

g1

(b) TBLG disposition with two guards, and
loner pairing.

Figure 4 Setting of top (here violet), bottom (here orange), loner (here lightgray), and guard
robots. Top-bottom pairs are highlighted through arcs.

Loner pairing. In the previous task, at most three loners per half-arc of
⌢
ρ are created: one

between the endpoint of
⌢
ρ and the pivot of the half-arc (if the pivot does not lay on ρ), one

between the pivot and the angle robot, and the last one between the angle robot and its
closest guard. In this task, if a half-arc presents more than one loner, the two uppermost
loners (according to the upper part of each half-arc) pair themselves: the uppermost loner
stays still and lights itself as top, while the second-uppermost one moves towards a position
on the SEC in order be down with respect to the new top robot, at a relative distance from
it (e.g. a fraction of the minimum distance between two robots on

⌢
ρ). If just two loners

remain (one per half-arc) and there is an unambiguous method to elect one of them, the
elected loner will become a top robot while the second loner will approach it (using the same
strategy as before) and become its bottom (see Figure 4b). This task aims to reduce the
number of loners, maximizing the number of top-bottom pairs.

7 If βρ is a mirrored string, then the guard is already on g.

OPODIS 2023

5:12 O(log n)-Time Uniform Circle Formation for Asynch. Opaque Luminous Robots

Note that this task is φρ-synchronized. At the end of this task, at most two loner robots
(one per each half-arc of

⌢
ρ) can exist.

∆ setting. In this φρ -synchronized task, the outer guards g1, g2 have to approach sym-
metrically around g (the middle point of

⌢
ρ). Let η be the minimum distance between two

robots on
⌢
ρ . If χ is the tangent line to the SEC passing through g, let µ be the length of

the shortest projection of a segment ¯ggi on χ, for i ∈ {1, 2}. Let t be the position of the
vertex of the target polygon P which is closest to g, but not laying on g. Let ζ be the length
of the projection of the segment ḡt on χ. Then, each outer guard gi moves to a position g′

i

on the SEC such that g′
1 is symmetric to g′

2 with respect to g, and such that the distance
between g′

1 and g′
2 is ∆ = min{η, 2µ, 2ζ}. This measure assures (i) no guards turn away

from g and risk colliding with other robots on the arc, and (ii) no guards will collide against
other robots that will be moved out of the SEC in the next tasks. The measure ∆ will be
used as a shared value by the other robots on φρ.

Pair approaching. In this fully parallelized task, every top robot r approaches its bottom
robot s by traveling straight towards a point on the SEC so that the distance between r and s

is δ, defined as

δ = ∆
⟨n, m′, d′, i, t, c, z⟩

where
∆ is fixed by the outer guards,
n is the total number of robots (fixed by the base angle in the regular tuple),
m′ is the original number of robots on the arc (pivots, angles, and guards excluded),
d′ is the index of the current iteration of the loop (so, d′ = 1, . . . , ⌈log2 m′⌉),
i is the incremental index of the top-bottom pair starting from each endpoint of

⌢
ρ (see

Figure 4a), such that the pairs closest to each endpoint have index 1 (so, i = 1, . . . , ⌈ m′

4 ⌉),
t is the number of top robots in the performance area,
c is a flag in {0, 1} such that if c = 0 then the target robot vertex is on the current
half-arc where r already sits, otherwise the target vertex of r is on the other half-arc of

⌢
ρ ,

z is a flag in {0, 1, 2} such that, if ⌢
ρ1/2 is the half-arc of

⌢
ρ where the target vertex for r

is located, then
z = 0 if the endpoints of ρ are either both covered by pivots or no pivot lays on the
endpoints;
otherwise, z = 1 if the external endpoint of ⌢

ρ1/2 is covered by a pivot8;
otherwise, z = 2 (i.e. if no pivot lays on the external endpoint of ⌢

ρ1/2).
⟨ ⟩ : N7 → N is the Cantor tuple function9.

Note that each robot on the SEC has complete visibility of all the robots on or inside the
SEC since top robots do not create collinearity with them during their movements. Note
also that the setting of ∆ guarantees that all top robots have to approach (and not turn
away) the related bottoms to form the distance δ, avoiding collisions with other robots on

8 The external endpoint of ⌢
ρ1/2 is the endpoint farthest from the guards.

9 ⟨ ⟩ can be any isomorphism between N7 and N.

C. Feletti, C. Mereghetti, and B. Palano 5:13

the arc. Moreover, at the end of this task, the distance between each top and bottom robot
of the same pair is always smaller than the distance between the top and the bottom robot
belonging to different pairs.

Let us show how to compute d′. At each loop iteration, all the top robots are moved out
of the SEC, along a specific line; namely half of the robots on the SEC leave the circle at
each iteration. So each robot r on

⌢
ρ must compute the “degree of splitting” d in this way:

it obtains n (from the base angle), the number k of performance areas (from the number
of regular tuples), and so the number m′ (where m′ < m < n

k) of the original robots in its
performance arc which are not pivots, angle robots or guards. Then, r counts the current
q robots (pivot, angle, and guard robots excluded) in its performance arc, and computes
d = ⌈log2 m′⌉ − ⌈log2 q⌉, which corresponds to the index of the last iteration of the loop.
Now, r knows it is starting the d′-th iteration of the loop, where d′ = d + 1.

Top robots departure to h. Let R be the length of the radius of the SEC. Let h be the
straight line parallel to the splitting chord ρ, external to the SEC, and at distance R from g

(the middle point on
⌢
ρ between the outer guards). The woken top robots on

⌢
ρ can compute

h, and move to this line perpendicularly, in a fully parallelized schema. Note in fact that
moving robots do not obstruct other top robots from computing the next action: in fact, all
the needed information to act properly is located on their performance arc.

Guard green light on. The guards can check if all the top robots have moved on h. If
this is the case, the outer (resp. central) guards color themselves as guard_green (resp.
guard_c_green) to tell robots on h they can proceed with the next step.

Top robots on l. Let r be a woken top robot on h. It can recompute the SEC (it can see
at least two guards and at least a bottom robot), its original position on the SEC, and so
the distance δ from its related bottom robot. Then, r decodes δ and recomputes the values
of n, m′, t, c, z, the current loop index d′, and its pair index i.
Let l be the straight line parallel to h, external to the SEC, at distance R (resp. 2R) from h

(resp. the SEC). Let P be the target regular n-gon to be built on the SEC. Suppose m is even
and let v1 . . . v m

2
v′

m
2

. . . v′
1 be the list of adjacent vertices of P on

⌢
ρ which are not already

occupied by pivots and angle robots, such that they are equally distributed on the two distinct
performance half-arcs. Note that the odd case is equivalent, with v1 . . . v⌊ m

2 ⌋wv′
⌊ m

2 ⌋ . . . v′
1 as

list of the vertices10, where w = v⌈ m
2 ⌉ = v′

⌈ m
2 ⌉. Let us show how r can compute its vertex

index. Thanks to the flag c, r can understand if its target vertex on P is on its original
half-arc or on the other half-arc. This information is essential since two robots with the same
index i can lay on the same half-arc: to avoid collisions, they have to know which half-arc
the index refers to. Also the flag z is needed to compute the right position of the target
vertex of r. Let v1v2 . . . v m

2
be the ordered list of the missing vertices on the target half-arc

and let u1u2 . . . u m
2

be their projections on l. So, r chooses the vertex vk where

k =
⌊m

2

⌋
−

d′∑
j=2

⌊ m

2j

⌋
−

⌈
t

2

⌉
+ i − 1

10 As we will explain later, the vertex w is intended for the central guard.

OPODIS 2023

5:14 O(log n)-Time Uniform Circle Formation for Asynch. Opaque Luminous Robots

and travels to the vertex projection uk setting its light as projection. Note that this task is
fully parallelized: in fact, r can compute l and δ even though all other top robots are moving
toward l, since all the needed information is located “behind” r (i.e. on the SEC).

By following this schema, at each loop iteration, top robots dispose themselves on l

symmetrically with respect to the central positions u m
2

and u′
m
2

, by covering the most internal
free-robot projections and by leaving the two or three central positions which will be intended
for the guards (see Figures 5a and 5b).

g

g2

g1

hl

u1

u′
1

u2

u′
2

u3

u′
3

u4

u′
4

u5

u′
5

w

RR

(a) Top robots travel from the SEC, to h, and
then to l (after the guards have set the green light).
Iteration d′ = 1.

g

g2

g1

hl

u1

u′
1

u2

u′
2

u3

u′
3

u4

u′
4

u5

u′
5

w

RR

(b) Top robots departure from the SEC to h,
and from h to l. Iteration d′ = 2.

Figure 5 Top robots travelling from the SEC to h, and from h to l. The central positions u5, w, u′
5

will be covered by the guards.

Gap fix. This task is executed just when on
⌢
ρ there is an odd number of bottom robots.

In this case, after the previous task, there exists a projection, e.g., uk on l where a robot
lays, whereas its symmetric position u′

k is empty. From this configuration, a bottom robot
can be easily elected11 to cover the gap on l. Thus, it heads straight to u′

k and sets its color
as projection. Note that in no other cases there exists a symmetry gap on l.

Guard green light off. The guard robots can check if no top robots still lay on h, and if,
possibly, the symmetry gap on l has been covered. If so, the outer (resp. central) guard
robots set their light as guard_end (resp. guard_c_end).

Loop. At this point, the algorithm re-executes the previous sequence of tasks O(log2 m)
times, until all the robots on

⌢
ρ (which are not pivots, angle, or guard robots) displace

themselves on the line l. Note that, in the TBLG setting, the guards do not change their
positions after the first iteration, and the fixed ∆ still remains the minimum distance between
two robots on the same half-arc, before the pair approaching task.

5.4 Guards departure

At this point, the guards are the only robots on
⌢
ρ together with pivots and angle robots.

Let R be the length of the radius of the SEC. Of course, the guards can compute it. In this
task, each guard moves perpendicularly to l, and reaches a straight line f parallel to l and

11 In fact, we can elect the closest robot to the guards that belongs to the half-arc with more bottom
robots.

C. Feletti, C. Mereghetti, and B. Palano 5:15

at distance R (resp. 3R) from l (resp. from the SEC). They maintain their original colors
guard and guard_c once on f . Note that their trajectories do not cross any projection robots
on l thanks to how ∆ has been chosen.

l

u1

u′
1

u2

u′
2

u3

u′
3

u4

u′
4

u5

u′
5

w

f

R

Figure 6 Robots migration from l to their target vertex on the SEC.

5.5 Back to the SEC
When all the projection robots on l see no more robots on the SEC (pivots and angle robots
excluded), they can go back to the SEC traveling perpendicularly with respect to the line l

they are placed on. Once on the SEC, they change their color in sec (see Figure 6).
Note that this task is fully parallelized since it is always possible for a robot r on l to

reconstruct the original SEC since:
r can see at least 3 robots on it, or
if moving robots hide the SEC, r looks at the guards: it reconstructs f and l, and so the
radius length R of the SEC and the position of its center.

5.6 Guards back to the SEC
Lastly, the guards reach the missing vertices in

⌢
ρ , completing the section of the regular

polygon. This task is φρ -synchronized since moving guards can prevent the other guards on
f to compute the needed information to act properly.

6 Conclusions

We have considered a system of n autonomous robots sharing the same features as [17]:
punctiform, disoriented, indistinguishable, anonymous, opaque, and luminous. We have
presented an algorithm for the UCF problem in the asynch mode, which uses a constant
number of colors and O(log n) number of epochs. This work improves the previous solution
in [17], which uses a linear number of epochs in the worst case. Note that the asynch
algorithm in [17] derives from an adaptation of a O(1)-time algorithm for synchronized
robots. Passing from synchronism to asynchronism, in fact, can require a fully-parallelizable
algorithm to be executed within a one-by-one scheme, where each robot must wait until no
other robot is moving before traveling. In this paper, we have designed an ad-hoc solution
for asynchronous robots, where we have achieved a partial, but remarkable, parallelization
degree. The natural investigation to pursue now concerns a possible fully-parallelizable
algorithm (which uses a constant number of epochs) in the asynch mode.

OPODIS 2023

5:16 O(log n)-Time Uniform Circle Formation for Asynch. Opaque Luminous Robots

References
1 Ranendu Adhikary, Manash Kumar Kundu, and Buddhadeb Sau. Circle formation by asyn-

chronous opaque robots on infinite grid. Comput. Sci., 22(1), 2021. doi:10.7494/CSCI.2021.
22.1.3840.

2 Kálmán Bolla, Tamás Kovács, and Gábor Fazekas. Gathering of fat robots with limited visibility
and without global navigation. In International Symposium on Swarm and Evolutionary
Computation, SIDE 2012, pages 30–38. Springer, 2012. doi:10.1007/978-3-642-29353-5_4.

3 Kaustav Bose, Manash Kumar Kundu, Ranendu Adhikary, and Buddhadeb Sau. Arbitrary
pattern formation by asynchronous opaque robots with lights. Theor. Comput. Sci., 849:138–
158, 2021. doi:10.1016/J.TCS.2020.10.015.

4 Kevin Buchin, Paola Flocchini, Irina Kostitsyna, Tom Peters, Nicola Santoro, and Koichi Wada.
Autonomous mobile robots: Refining the computational landscape. In 35th International
Parallel and Distributed Processing Symposium Workshops, IPDPS Workshops 2021, pages
576–585. IEEE, 2021. doi:10.1109/IPDPSW52791.2021.00091.

5 Sruti Gan Chaudhuri and Krishnendu Mukhopadhyaya. Leader election and gathering for
asynchronous fat robots without common chirality. J. Discrete Algorithms, 33:171–192, 2015.
doi:10.1016/J.JDA.2015.04.001.

6 Mark Cieliebak and Giuseppe Prencipe. Gathering autonomous mobile robots. In 9th Inter-
national Colloquium on Structural Information and Communication Complexity, SIROCCO
2002, pages 57–72. Carleton Scientific, 2002.

7 James D. Currie and D. Sean Fitzpatrick. Circular words avoiding patterns. In 6th International
Conference on Developments in Language Theory, DLT 2002, pages 319–325. Springer, 2002.
doi:10.1007/3-540-45005-X_28.

8 Shantanu Das, Paola Flocchini, Giuseppe Prencipe, Nicola Santoro, and Masafumi Yamashita.
Autonomous mobile robots with lights. Theor. Comput. Sci., 609:171–184, 2016. doi:
10.1016/J.TCS.2015.09.018.

9 Suparno Datta, Ayan Dutta, Sruti Gan Chaudhuri, and Krishnendu Mukhopadhyaya. Circle
formation by asynchronous transparent fat robots. In 9th International Conference on Dis-
tributed Computing and Internet Technology, ICDCIT 2013, pages 195–207. Springer, 2013.
doi:10.1007/978-3-642-36071-8_15.

10 Xavier Défago and Akihiko Konagaya. Circle formation for oblivious anonymous mobile robots
with no common sense of orientation. In Workshop on Principles of Mobile Computing, POMC
2002, pages 97–104. ACM, 2002. doi:10.1145/584490.584509.

11 Mattia D’Emidio, Daniele Frigioni, and Alfredo Navarra. Characterizing the computational
power of anonymous mobile robots. In 36th International Conference on Distributed Computing
Systems, ICDCS 2016, pages 293–302. IEEE Computer Society, 2016. doi:10.1109/ICDCS.
2016.58.

12 Yoann Dieudonné and Franck Petit. Circle formation of weak robots and lyndon words. Inf.
Process. Lett., 101(4):156–162, 2007. doi:10.1016/J.IPL.2006.09.008.

13 Yoann Dieudonné and Franck Petit. Swing words to make circle formation quiescent. In
14th International Colloquium on Structural Information and Communication Complexity,
SIROCCO 2007, pages 166–179. Springer, 2007. doi:10.1007/978-3-540-72951-8_14.

14 Yoann Dieudonné and Franck Petit. Squaring the circle with weak mobile robots. In 19th
International Symposium on Algorithms and Computation, ISAAC 2008, pages 354–365.
Springer, 2008. doi:10.1007/978-3-540-92182-0_33.

15 Caterina Feletti, Carlo Mereghetti, and Beatrice Palano. Uniform circle formation for swarms
of opaque robots with lights. In 20th International Symposium on Stabilization, Safety, and
Security of Distributed Systems, SSS 2018, pages 317–332. Springer, 2018. doi:10.1007/
978-3-030-03232-6_21.

16 Caterina Feletti, Carlo Mereghetti, and Beatrice Palano. Uniform circle formation for fully,
semi-, and asynchronous opaque robots with lights. Applied Sciences, 13(13), 2023. doi:
10.3390/app13137991.

https://doi.org/10.7494/CSCI.2021.22.1.3840
https://doi.org/10.7494/CSCI.2021.22.1.3840
https://doi.org/10.1007/978-3-642-29353-5_4
https://doi.org/10.1016/J.TCS.2020.10.015
https://doi.org/10.1109/IPDPSW52791.2021.00091
https://doi.org/10.1016/J.JDA.2015.04.001
https://doi.org/10.1007/3-540-45005-X_28
https://doi.org/10.1016/J.TCS.2015.09.018
https://doi.org/10.1016/J.TCS.2015.09.018
https://doi.org/10.1007/978-3-642-36071-8_15
https://doi.org/10.1145/584490.584509
https://doi.org/10.1109/ICDCS.2016.58
https://doi.org/10.1109/ICDCS.2016.58
https://doi.org/10.1016/J.IPL.2006.09.008
https://doi.org/10.1007/978-3-540-72951-8_14
https://doi.org/10.1007/978-3-540-92182-0_33
https://doi.org/10.1007/978-3-030-03232-6_21
https://doi.org/10.1007/978-3-030-03232-6_21
https://doi.org/10.3390/app13137991
https://doi.org/10.3390/app13137991

C. Feletti, C. Mereghetti, and B. Palano 5:17

17 Caterina Feletti, Carlo Mereghetti, Beatrice Palano, and Priscilla Raucci. Uniform circle
formation for fully semi-, and asynchronous opaque robots with lights. In 23rd Italian
Conference on Theoretical Computer Science, ICTCS 2022, pages 207–221. CEUR-WS.org,
2022. URL: https://ceur-ws.org/Vol-3284/8511.pdf.

18 Paola Flocchini, Giuseppe Prencipe, and Nicola Santoro. Distributed Computing by Oblivious
Mobile Robots. Synthesis Lectures on Distributed Computing Theory. Morgan & Claypool
Publishers, 2012. doi:10.2200/S00440ED1V01Y201208DCT010.

19 Paola Flocchini, Giuseppe Prencipe, and Nicola Santoro, editors. Distributed Computing by
Mobile Entities, Current Research in Moving and Computing, volume 11340 of Lecture Notes
in Computer Science. Springer, 2019. doi:10.1007/978-3-030-11072-7.

20 Paola Flocchini, Giuseppe Prencipe, Nicola Santoro, and Giovanni Viglietta. Distributed
computing by mobile robots: uniform circle formation. Distributed Comput., 30(6):413–457,
2017. doi:10.1007/S00446-016-0291-X.

21 László Hegedüs and Benedek Nagy. Representations of circular words. In 14th International
Conference on Automata and Formal Languages, AFL 2014, pages 261–270, 2014. doi:
10.4204/EPTCS.151.18.

22 Manash Kumar Kundu, Pritam Goswami, Satakshi Ghosh, and Buddhadeb Sau. Arbitrary
pattern formation by opaque fat robots on infinite grid. Int. J. Parallel Emergent Distributed
Syst., 37(5):542–570, 2022. doi:10.1080/17445760.2022.2088750.

23 Giuseppe Antonio Di Luna, Paola Flocchini, Sruti Gan Chaudhuri, Nicola Santoro, and
Giovanni Viglietta. Robots with lights: Overcoming obstructed visibility without colliding. In
16th International Symposium on Stabilization, Safety, and Security of Distributed Systems,
SSS 2014, pages 150–164. Springer, 2014. doi:10.1007/978-3-319-11764-5_11.

24 R.C. Lyndon and M.P. Schützenberger. The equation aM = bN cP in a free group. Michigan
Math. J., 9:289–298, 1962. doi:10.1307/mmj/1028998766.

25 Moumita Mondal and Sruti Gan Chaudhuri. Uniform circle formation by mobile robots. In
19th International Conference on Distributed Computing and Networking, ICDCN 2018, pages
20:1–20:2. ACM, 2018. doi:10.1145/3170521.3170541.

26 Moumita Mondal and Sruti Gan Chaudhuri. Uniform circle formation by swarm robots
under limited visibility. In 16th International Conference Distributed Computing and Internet
Technology, ICDCIT 2020, pages 420–428. Springer, 2020. doi:10.1007/978-3-030-36987-3_
28.

27 Gokarna Sharma, Ramachandran Vaidyanathan, and Jerry L. Trahan. Constant-time complete
visibility for asynchronous robots with lights. In 19th International Symposium on Stabilization,
Safety, and Security of Distributed Systems, SSS 2017, pages 265–281. Springer, 2017. doi:
10.1007/978-3-319-69084-1_18.

28 Gokarna Sharma, Ramachandran Vaidyanathan, Jerry L. Trahan, Costas Busch, and Suresh
Rai. Complete visibility for robots with lights in O(1) time. In 18th International Symposium
on Stabilization, Safety, and Security of Distributed Systems, SSS 2016, pages 327–345, 2016.
doi:10.1007/978-3-319-49259-9_26.

29 Yossi Shiloach. Fast canonization of circular strings. J. Algorithms, 2(2):107–121, 1981.
doi:10.1016/0196-6774(81)90013-4.

30 Kazuo Sugihara and Ichiro Suzuki. Distributed algorithms for formation of geometric patterns
with many mobile robots. J. Field Robotics, 13(3):127–139, 1996. doi:10.1002/(SICI)
1097-4563(199603)13:3\%3C127::AID-ROB1\%3E3.0.CO;2-U.

31 Ichiro Suzuki and Masafumi Yamashita. Distributed anonymous mobile robots: Forma-
tion of geometric patterns. SIAM J. Comput., 28(4):1347–1363, 1999. doi:10.1137/
S009753979628292X.

32 Giovanni Viglietta. Uniform circle formation. In Distributed Computing by Mobile Entities,
Current Research in Moving and Computing, pages 83–108. Springer, 2019. doi:10.1007/
978-3-030-11072-7_5.

OPODIS 2023

https://ceur-ws.org/Vol-3284/8511.pdf
https://doi.org/10.2200/S00440ED1V01Y201208DCT010
https://doi.org/10.1007/978-3-030-11072-7
https://doi.org/10.1007/S00446-016-0291-X
https://doi.org/10.4204/EPTCS.151.18
https://doi.org/10.4204/EPTCS.151.18
https://doi.org/10.1080/17445760.2022.2088750
https://doi.org/10.1007/978-3-319-11764-5_11
https://doi.org/10.1307/mmj/1028998766
https://doi.org/10.1145/3170521.3170541
https://doi.org/10.1007/978-3-030-36987-3_28
https://doi.org/10.1007/978-3-030-36987-3_28
https://doi.org/10.1007/978-3-319-69084-1_18
https://doi.org/10.1007/978-3-319-69084-1_18
https://doi.org/10.1007/978-3-319-49259-9_26
https://doi.org/10.1016/0196-6774(81)90013-4
https://doi.org/10.1002/(SICI)1097-4563(199603)13:3%3C127::AID-ROB1%3E3.0.CO;2-U
https://doi.org/10.1002/(SICI)1097-4563(199603)13:3%3C127::AID-ROB1%3E3.0.CO;2-U
https://doi.org/10.1137/S009753979628292X
https://doi.org/10.1137/S009753979628292X
https://doi.org/10.1007/978-3-030-11072-7_5
https://doi.org/10.1007/978-3-030-11072-7_5

5:18 O(log n)-Time Uniform Circle Formation for Asynch. Opaque Luminous Robots

33 Masafumi Yamashita and Ichiro Suzuki. Characterizing geometric patterns formable by
oblivious anonymous mobile robots. Theor. Comput. Sci., 411(26-28):2433–2453, 2010. doi:
10.1016/J.TCS.2010.01.037.

A Algorithm

Algorithm 1 Pseudo-code of the Task Loop on the performance area φρ.

Input: A performance arc
⌢
ρ where robots lay on.

1: m← robots on
⌢
ρ which are not pivot or angle;

2: while m ≥ 4 do
3: TBLG setting:
4: The m robots color themselves as top, bottom, loner, guard, and guard_c in case;
5: Guards arrange themselves as in Figure 4a and Figure 4b;
6: Loner pairing:
7: The uppermost loners move to pair themselves (see Figure 4b);
8: ∆ setting:
9: if guards do not see any projection robot in φρ then

10: Outer guards approach each other to fix the distance ∆;
11: end if
12: Pair approaching:
13: Each top robot approaches its bottom robot to form a distance δ;
14: Top robots departure:
15: Each top robot travels towards line h, perpendicularly;
16: Guard green light on:
17: Guards color themselves as guard_green or guard_c_green;
18: Top robots on l:
19: Top robots on h recompute the SEC and their target position on it;
20: Top robots move to the projection of their target position on line l, setting their color
21: as projection;
22: Gap fix:
23: if the number of bottom robots is odd then
24: A bottom robot colors as projection and travels to l on the missing projection;
25: end if
26: Guard green light off:
27: Guards set their color as guard_end or guard_c_end;
28: end while
29: The remaining robots on

⌢
ρ , which are not pivots, angles or guards, reach l;

Output: Performance area φρ where all robots lay on l (projection robots) or on
⌢
ρ (pivots, angles,

guards).

B Lemmas and Theorems

In this section, all the lemmas and theorems used in the current paper are stated and proved.

B.1 Collision-free trajectories
▶ Theorem 2. Let us assume a circle configuration where all robots lay on the SEC. Let
⌢
a be an arc of the SEC, and let T = {t1, . . . , th} be h distinct robot-free (target) points of
⌢
a , no one lying on the middle point of ⌢

a . Assume at least h robots lay on distinct points
of ⌢

a \T . Then, there exists an unambiguous way to elect h robots on ⌢
a and make them

reach the h targets without colliding, and always guaranteeing complete visibility on the whole
configuration.

https://doi.org/10.1016/J.TCS.2010.01.037
https://doi.org/10.1016/J.TCS.2010.01.037

C. Feletti, C. Mereghetti, and B. Palano 5:19

Proof. Firstly, we need an unambiguous way to elect h robots which will reach the target
points. For this purpose, we select the h robots which are closer to the target points. In
case of two robots equidistant from the same target point, we can use the geometry of the
configuration (the distance from the closest endpoint of ⌢

a) to elect one of them.
Let w = w1 . . . w2h be the boolean string that represents the ordered displacement of the
elected robots and the target points on ⌢

a such that: wi = 0 symbolizes a target point, whereas
wi = 1 symbolizes a robot (e.g. w = 11100010 in Figure 7, following the clockwise direction).
Let us factorize w in the shortest factors such that each factor has the same number of 0
and 1. Indeed, this factorization is unique and each factor cannot be a palindrome. Let w′

be a factor of w according to the above factorization. We indicate with 1i (resp. 0i) the i-th
1 (resp. 0) in such a factor, where 1 ≤ i ≤ | w′

2 |. So, robots in that factor move following the
following sequential schema:

for i = | w′

2 | . . . 1 do
if no robot in ⌢

a is moving then
robot symbolized by 1i heads to the target point symbolized by 0i

end if
end for

This schema assures no moving robot creates collinearity with other robots in the swarm,
thus guaranteeing complete visibility. This is easily provable by induction on | w′

2 |. Moreover,
if h is constant, this strategy accomplishes the task in O(1) epochs. ◀

r1

r2

r3 r4

t1 t2
t3

t4

Figure 7 Trajectories of four robots assuring complete visibility to all the swarm. If a robot is
moving, no other robot on the same arc moves.

B.2 Circular strings
In this section, we present some results about circular string properties which are used to
study and analyze some geometric configurations of the robots on the SEC, especially in the
rotational symmetry case. Specifically, given a configuration C, we aim to figure out some
properties on Γ1, Γ2 (i.e. on the presence of one or two eligible classes) thanks to the string
properties of the sectors circular string σ(β), σ(βR) of C.

▶ Lemma 3 (Lyndon and Schützenberger, [24]). Let x and y be two non-empty strings. If
xy = yx, then there exist a string z and two integers n and m, such that x = zn and y = zm.

Proof. Let us proceed by induction on |y| − |x|, assuming w.l.o.g. that |x| ≤ |y|.
If |x| = |y| then the fact holds: in fact x = y, thus z = x = y and m = n = 1. Otherwise,
since yx = xy, y starts with a prefix that is equal to x. So y = xu ⇒ xux = xxu ⇒ ux = xu.
By induction hypothesis, there exist z, m, n such that u = zm, x = zn, then y = zn+m. ◀

OPODIS 2023

5:20 O(log n)-Time Uniform Circle Formation for Asynch. Opaque Luminous Robots

▶ Lemma 4. Let x and y be two non-empty strings. If xxRyyR is a palindrome, then there
exist a string z and two integers n and m, such that x = zn and y = zm.

Proof. Let us proceed by induction on |y| − |x|, assuming w.l.o.g. that |x| ≤ |y|.
If |x| = |y| then the fact holds: in fact x = y, thus z = x = y and m = n = 1.
Let us assume that |x| < |y|. Hence, since xxRyyR is a palindrome, yR ends with a suffix
which is equal to xR. So

yR = uRxR ⇒ xxRxuuRxR is a palindrome

By simplifying, we have that xRxuuR is a palindrome as well. By induction hypothesis, there
exist z, m, n such that u = zm, x = zn, then y = zn+m. ◀

▶ Lemma 5. Let σ(w) be a minimal circular string, where w = w0 . . . wn−1. Then σi(w) ̸=
σj(w) for each i ̸= j.

Proof. The proof follows directly from Lemma 3. In fact, let us assume that there exist two
different indexes such that σi(w) = σj(w). Let us call them w′ = σi(w) and w′′ = σj(w), and
w.l.o.g. let us assume i < j. Let z be the factor wi . . . wj−1, let x be the factor wj . . . wn−1,
and let y be the factor w0 . . . wi−1, so that w′ = zxy, and w′′ = xyz. By Lemma 3, we can
conclude that σ(w) contains a power string, contradicting the hypothesis. ◀

▶ Lemma 6. Given the two sector circular strings σ(β), σ(βR) of a configuration C, there
exist at most two classes of robots that read the same string γ. In particular, in case of two
classes Pa and Pb, they reads γ in opposite directions (clockwise or counter-clockwise).

Proof. Let us proceed by contradiction and let us suppose there is a third class Pc which
reads the same string γ as Pa in the same direction. Let a ∈ Pa, b ∈ Pb, and c ∈ Pc three
robots belonging to the same sector. Let w′ = xyz be the string read by a and let w′′ = yzx

be the string read by c (x is the string between a and c). Since w′ = w′′, then we can
conclude that xyz = yzx (for sake of simplicity, xs = sx). By Lemma 3, this means that w′

and w′′ are the power of the same factor v, which is in contrast with the initial hypothesis (a
sector circular string must be minimal). ◀

▶ Theorem 7. Let σ(β), σ(βR) be the two sector circular strings of a configuration C. If
|β| = q is odd, then Γ1 contains at least one string. So, there exists always a unique eligible
class of symmetry.

Proof. The proof follows by the fact that (i) the same string in σ(β) ∪ σ(βR) can be read
by at most 2 classes (by Lemma 6) and (ii), in the worst case, q − 1 (even) classes read the
same string two by two. So, at least one class reads a unique string. ◀

▶ Lemma 8. Let σ(β), σ(βR) be the two sector circular strings of a configuration C, where
|β| = q is even. If σ(β) contains a mirrored string, then it contains exactly two different
mirrored strings, whose rotation distance is q

2 .

Proof. By hypothesis, σ(β) is minimal (by definition of sector circular string) and contains
a string w′ = xxR (and its related xRx). Obviously, xRx = σ q

2
(xxR). Note that xxR ̸= xRx.

In fact, if xxR = xRx, for Lemma 3 it follows that xxR is a power string, contradicting our
hypothesis (σ(β) is minimal). Let us suppose that σ(β) contains another pair of palindromes,
say w′′ = yyR (and yRy), at a rotation distance k < q/2 from the first pair. Let us assume
that x = zs where |z| = k. Thus we have that w′ = zssRzR and w′′ = ssRzRz. By Lemma
4, we can conclude that w′′ = vn (for some not trivial v and n), again contradicting our
hypothesis about σ(β). ◀

C. Feletti, C. Mereghetti, and B. Palano 5:21

▶ Theorem 9. Let σ(β), σ(βR) be the two sector circular strings of a configuration C, where
|β| = q is even. If σ(β) contains a mirrored string, then Γ1 contains at least one string. So,
there exists always a unique eligible class of symmetry.

Proof. According to Lemma 8, there exist just 2 different palindromes in σ(β), say xxR and
xRx, which are read by two different classes of symmetry, say Pi and Pj . In particular, Pi

reads xxR in both directions, and Pj reads xRx in both directions. The fact that a third
class Pk reads xxR is excluded by Lemma 4. In fact, if the same palindrome string is read
from two different classes, whose distance is less than q

2 , then xxR is in the form zzRyyR,
contradicting the hypothesis. Since x ̸= xR (otherwise σ(β) would not be minimal), Pi (resp.
Pj) is the unique class reading xxR (resp. xRx). So, Γ1 contains at least xxR and xRx. ◀

▶ Theorem 10. Let σ(β), σ(βR) be the two sector circular strings of a configuration C, where
Pi and Pj are the two classes of placeholders. For each pair of adjacent placeholders ri ∈ Pi

and rj ∈ Pj (no other placeholder lays on the arc ⌢
pipj), an axis of symmetry passes between

them.

Proof. By hypothesis, ri and rj read the same angle string in opposite directions. Let us
suppose that the string distance between ri and rj is k < |β|. Thus, ri reads w′ = x1 . . . xky

and rj reads w′′ = xk . . . x1yR. Since w′ = w′′, we can conclude that xk . . . x1 = x1 . . . xk

and yR = y (i.e. x1 . . . xk and y are palindrome). Thus, between the arc delimited by ri and
rj (in both directions), there is an axis of symmetry. ◀

▶ Theorem 11. Let σ(β), σ(βR) be the two sector circular strings of a configuration C, where
Pi and Pj are the two eligible classes of placeholders. Then the axis of symmetry passing
through two adjacent placeholders ri, rj does not pass across any robot on the arc ⌢

rirj.

Proof. Since ri and rj are placeholders, they read the same angle-string w. Let us assume
by contradiction that the axis passes through a robot and let xxR be the prefix of w which is
common in ri and rj (which is a mirrored string, since it can be read in opposite directions
and its length is even). So, ri reads the angle-string xxRy, whereas rj reads xxRyR. Since
|β| and |xxR| are both even (otherwise we would have just one eligible class, by Theorem 7),
then |y| is even too. Since xxRy = xxRyR, we have that y is a mirrored string too. Let vvR

a factorization for y. Thus, σ(β) turns out to contain a rotation of w which is a mirrored
string (xRvvRx). By Theorem 9, since σ(β) contains a mirrored string, then there is a unique
eligible class of symmetry. The assumption that the axis passes through a robot must be
wrong with these hypotheses. ◀

OPODIS 2023

	1 Introduction
	2 Model
	3 Some notions
	4 Parallelism with circular strings
	5 The algorithm
	5.1 SEC splitting
	5.2 Regular tuple setting
	5.3 Task loop
	5.4 Guards departure
	5.5 Back to the SEC
	5.6 Guards back to the SEC

	6 Conclusions
	A Algorithm
	B Lemmas and Theorems
	B.1 Collision-free trajectories
	B.2 Circular strings

