
Multi-Valued Connected Consensus: A New
Perspective on Crusader Agreement and
Adopt-Commit
Hagit Attiya #

Department of Computer Science, Technion, Haifa, Israel

Jennifer L. Welch #

Department of Computer Science and Engineering, Texas A&M University,
College Station, TX, USA

Abstract
Algorithms to solve fault-tolerant consensus in asynchronous systems often rely on primitives such
as crusader agreement, adopt-commit, and graded broadcast, which provide weaker agreement
properties than consensus. Although these primitives have a similar flavor, they have been defined
and implemented separately in ad hoc ways. We propose a new problem called connected consensus
that has as special cases crusader agreement, adopt-commit, and graded broadcast, and generalizes
them to handle multi-valued inputs. The generalization is accomplished by relating the problem to
approximate agreement on graphs.

We present three algorithms for multi-valued connected consensus in asynchronous message-
passing systems, one tolerating crash failures and two tolerating malicious (unauthenticated Byzan-
tine) failures. We extend the definition of binding, a desirable property recently identified as
supporting binary consensus algorithms that are correct against adaptive adversaries, to the multi-
valued input case and show that all our algorithms satisfy the property. Our crash-resilient algorithm
has failure-resilience and time complexity that we show are optimal. When restricted to the case
of binary inputs, the algorithm has improved time complexity over prior algorithms. Our two
algorithms for malicious failures trade off failure resilience and time complexity. The first algorithm
has time complexity that we prove is optimal but worse failure-resilience, while the second has
failure-resilience that we prove is optimal but worse time complexity. When restricted to the case of
binary inputs, the time complexity (as well as resilience) of the second algorithm matches that of
prior algorithms.

The contributions of the paper are first, a deeper insight into the connections between prim-
itives commonly used to solve the fundamental problem of fault-tolerant consensus, and second,
implementations of these primitives that can contribute to improved consensus algorithms.

2012 ACM Subject Classification Theory of computation → Distributed algorithms

Keywords and phrases graded broadcast, gradecast, binding, approximate agreement

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2023.6

Related Version Full Version: https://arxiv.org/abs/2308.04646

Funding Hagit Attiya: partially supported by the Israel Science Foundation (grant 22/1425).

1 Introduction

Solving consensus in the presence of faults is a fundamental problem in distributed computing,
yet it is impossible to solve deterministically in purely asynchronous systems [25]. One way to
address this impossibility is to augment the system model with unreliable failure detectors [14].
Several algorithms in this class (e.g., [11,27]) combine a failure detector with a mechanism
for detecting whether processes have reached unanimity, in the form of an adopt-commit
protocol [37]. In such a protocol, each process starts with a binary input value and returns a

© Hagit Attiya and Jennifer L. Welch;
licensed under Creative Commons License CC-BY 4.0

27th International Conference on Principles of Distributed Systems (OPODIS 2023).
Editors: Alysson Bessani, Xavier Défago, Junya Nakamura, Koichi Wada, and Yukiko Yamauchi; Article No. 6;
pp. 6:1–6:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:hagit@cs.technion.ac.il
https://orcid.org/0000-0002-8017-6457
mailto:welch@cse.tamu.edu
https://orcid.org/0000-0003-2725-9875
https://doi.org/10.4230/LIPIcs.OPODIS.2023.6
https://arxiv.org/abs/2308.04646
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

6:2 Multi-Valued Connected Consensus

pair (v, g) where v is one of the input values and g is either 1 or 2. The process is said to
pick v as its output value; furthermore, if g = 2, then it commits to v, and if g = 1, then it
adopts v. In addition to the standard validity property that the output value is the input of
some correct process, an adopt-commit protocol ensures that processes commit to at most
one value, and if any process commits to a value, then no process adopts the other value.

Another way to address the impossibility of consensus is to use randomization and provide
only probabilistic termination. Some algorithms in this class (e.g., [36]) rely on a mechanism
called crusader agreement [19]: Roughly, if all processes start with the same value v, they
must decide on this value, and otherwise, they may pick an undecided value, denoted ⊥.
Other algorithms in this class (e.g., [17]) rely on graded broadcast [23], also called graded
crusader agreement, graded consensus, or just gradecast. Graded broadcast can be viewed as a
combination of adopt-commit with crusader agreement: the decisions are either (v, g), where
v is a binary value and g is either 1 or 2, or ⊥ (also denoted (⊥, 0)). As in adopt-commit, the
requirement is that processes commit to at most one value, but in addition, if any process
adopts a value, then no process adopts the other value. In a sense, the ⊥ value allows a
separation between adopting one value and adopting a different value.

Crusader agreement, adopt-commit and graded broadcast have a very similar flavor, yet
it is hard to tell them apart or to pinpoint how they relate to each other. (For example, some
agreement protocols, e.g., [10,30], state that they use graded broadcast while, in fact, they
rely on an adopt-commit protocol, without a ⊥ value.) The relation between these primitives
becomes apparent when they are pictorially represented, as in Figure 1, with the possible
decisions represented by vertices on a chain. The different “convergence” requirements are
all special cases of the requirement that processes should decide on the same or adjacent
vertices in the relevant chain.

With binary inputs, this description of the problems resembles approximate agreement on
the [0, 1] real interval with parameter ϵ [20]: processes start at the two extreme points of the
interval, 0 or 1, and must decide on values that are at most ϵ apart from each other. Decisions
must also be valid, i.e., contained in the interval of the inputs. Approximate agreement is a
way to sidestep the impossibility of solving consensus in asynchronous systems and there are
many algorithms for approximate agreement (e.g., [2, 20–22]).

Indeed, crusader agreement reduces to approximate agreement with ϵ = 1
2 : Run approx-

imate agreement with your input (0 or 1) to get some output y, then choose the value in
{0, 1

2 , 1} that is closest to y (taking the smaller one if there are two such values, e.g., for
y = 1

4). Finally, return ⊥ if 1
2 is chosen. (A similar observation is noted in [21,29].) Likewise,

adopt-commit reduces to approximate agreement with ϵ = 1
3 , and graded consensus to

taking ϵ = 1
4 . This connection makes it clear why binary crusader agreement, adopt-commit

and graded broadcast can be solved in an asynchronous message-passing system, in the
presence of crash and malicious (unauthenticated Byzantine) failures, within a small number
of communication rounds.

In some situations, agreement must be reached on a non-binary value, e.g., the identity
of a leader [9], or the next message to deliver in totally-ordered atomic broadcast [16]. This
requires handling multi-valued inputs, where processes can start with an input from a set V

with |V | ≥ 2. We take inspiration from approximate agreement on graphs [13], in which each

Figure 1 Left: crusader agreement. Center: adopt-commit. Right: graded broadcast.

H. Attiya and J. L. Welch 6:3

process starts with a vertex of a graph as its input and must decide on a vertex such that
all decisions are within distance one of each other and inside the convex hull of the inputs.
When all processes start with the same vertex, this implies they must decide on this vertex.

This paper defines a new problem, which we call connected consensus. Connected
consensus elegantly unifies seemingly-diverse problems, including crusader agreement, graded
broadcast, and adopt-commit, and generalizes them to accept multi-valued inputs. It can
be viewed as approximate agreement on a restricted class of graphs. We primarily focus on
spider graphs [28] consisting of a central vertex attached to which are |V | paths (“branches”)
of length R, where R is the refinement parameter. We also consider a variation in which the
central vertex is replaced with a clique of size |V | and each branch is attached to a different
vertex in the clique. (See Figures 2 and 3 in Section 3.)

Recently, the definition of binary (graded) crusader agreement was extended to include a
binding property [3]: once the first correct process terminates, there exists a value v ∈ {0, 1}
such that no nonfaulty process can output v in any extension. That paper demonstrates
that this property facilitates the modular design of randomized consensus algorithms that
tolerate an adaptive adversary. We refer to [3] for an excellent description of the usage,
and its pitfalls, of (graded) crusader agreement, together with a shared random coin, in
randomized consensus; they show how faster (graded) crusader agreement algorithms lead
to faster randomized consensus algorithms. We generalize the binding property to hold for
multi-valued inputs: once the first process decides, one value is “locked”, so that in all possible
extensions, the decisions are on the same branch of the graph. Although the generalization
is natural, we point out (in Section 3) that simply applying the original definition unchanged
when inputs are multi-valued does not accomplish the desired goal when connected consensus
is composed with a multi-valued shared random coin [15].

With these definitions at hand, we turn to designing algorithms for multi-valued connected
consensus in asynchronous message-passing systems that tolerate crash or malicious failures
and satisfy binding. There is an algorithm for approximate agreement on general graphs in
the presence of malicious failures [35]. However, it requires exponential local computation and
does not satisfy the binding property. We are interested in special-case graphs as described
above; furthermore, we focus on the cases when the refinement parameter R equals either 1 or
2, which captures the applications of interest. Thus we exploit opportunities for optimizations
to obtain better algorithms.

For crash failures, we present an algorithm for R = 1 and R = 2 with the binding property;
it requires n > 2f , where n is the total number of processes and f is the maximum number
of faulty processes, which we show is optimal. Its time complexity is R and its total message
complexity is O(n2). We show that the time complexity is also optimal for reasonable
resiliencies. The best previous algorithms, in [3], have slightly worse time complexity: 2 for
R = 1 (crusader agreement) and 3 for R = 2 (graded crusader agreement). Moreover, both
of these previous algorithms are for the binary case (|V | = 2) only, and cannot easily handle
larger input sets.

For malicious failures, we first present a simple algorithm with binding for R = 1 and
R = 2, which assumes n > 5f . Like the crash-tolerant algorithm, its time complexity is R

and its total message complexity is O(n2). We show that the time complexity is optimal
for reasonable resiliencies. Both this algorithm and our crash-tolerant algorithm derive the
binding property from the inputs of the processes. That is, the assignment of input values to
the processes uniquely determines which non-⊥ value, if any, can be decided in any execution
with that input assignment. The fact that the locked value for binding is determined solely
by the inputs is conducive to the development of simple and efficient algorithms. However,

OPODIS 2023

6:4 Multi-Valued Connected Consensus

Table 1 Summary of connected consensus algorithms for R = 1 (crusader agreement) and R = 2
(graded broadcast) with input set V ; n is the total number of processes, f is the maximum number
of faulty processes. All algorithms satisfy Binding.

failure type crash malicious
algorithm Alg. 1 [3] (|V | = 2) Alg. 2 Alg. 3 Alg. 3 + [34] [3] (|V | = 2)
resilience n > 2f n > 2f n > 5f n > 3f n > 3f n > 3f

messages O(n2) O(n2) O(n2) O(|V | · n2) O(n2) O(n2)
time (R = 1) 1 2 1 5 7 5
time (R = 2) 2 3 2 7 9 7

we show that in the presence of malicious failures, the locked value cannot be determined
solely by the inputs when n < 5f , even if faulty processes do not equivocate and the input
set is binary (see Appendix A).

Our main algorithmic contribution is a connected consensus algorithm for R = 1 and
R = 2 with binding that tolerates malicious failures. Its failure resilience is n > 3f ; a simple
proof shows that this is the optimal resilience. Its time complexity is 5 for R = 1 and 7 for
R = 2, and its total message complexity is O(|V | ·n2), where V is the set of input values. The
message complexity can be reduced to O(n2), at the cost of increasing the time complexity
by 2, using a reduction from [34].

Table 1 compares our algorithms with prior work. The best previous algorithms with
optimal resilience are in [3] and are for the binary case only. In [3], the algorithms are
evaluated in terms of communication “rounds”, giving smaller numbers than our time
complexity measure; we discuss the relationship between the two measures at the end of
Section 5.

To summarize, our contributions are the following:

We define the connected consensus problem for inputs from a set V , with a numeric
refinement parameter R. The problem can be reduced to real-valued approximate
agreement in the binary case (|V | = {0, 1}), and is equal to approximate agreement on a
specific class of graphs in the multi-valued case.

We define the binding property for the multi-valued case, which previously was only
defined for the binary case.

These insights lead us to design efficient message-passing algorithms for connected
consensus with R = 1 or 2, in the presence of crash and malicious failures, for arbitrarily
large input sets. The algorithms are modular in that the R = 2 case is obtained by
appending more communication exchanges to the R = 1 case.

For crash failures, our simple algorithm is optimal in resilience, time complexity (for
reasonable resiliencies), and message complexity. Its time complexity improves on the
best previously known algorithms, which only handle binary inputs.

For malicious failures, we provide two algorithms that trade off resilience and time and
message complexity. One algorithm has time complexity 1 or 2 (for R = 1 or R = 2),
which is optimal for reasonable resiliencies, and sends O(n2) messages, but requires
n > 5f . The other algorithm only requires n > 3f , but has time complexity 5 or 7 (for
R = 1 or R = 2) and sends O(|V | · n2) messages. This is the same performance as the
algorithms in [3] which are only for the case when |V | = 2.

H. Attiya and J. L. Welch 6:5

2 Model of Computation

We assume the standard asynchronous model for n processes, up to f of which can be
faulty, in which processes communicate via reliable point-to-point messages. We consider two
possible types of failures: crash failures, when a faulty process simply ceases taking steps,
and malicious failures, when a faulty process can change state arbitrarily and send messages
with arbitrary content.

In more detail, we assume a set of n processes, each modeled as a state machine. Each
process has a subset of initial states, with one state corresponding to each element of V ,
denoting its input. The transitions of the state machine are triggered by events. There are
two kinds of events: spontaneous wakeup of a process and receipt of a message by a process.
Note that every event is a step by some process. A transition takes the current state of the
process and incoming message and produces a new state of the process and a set of messages
to be sent to any subset of the processes. The state set of a process contains a collection of
disjoint subsets, each one modeling the fact that a particular decision has been taken; once a
process enters the subset of states for a specific decision, the transition function ensures that
it never leaves that subset.

A configuration of the system is a vector of process states, one for each process, and a set
of in-transit messages. In an initial configuration, each process is in an initial state and no
messages are in transit. Given a subset of at most f processes that are “faulty” with the
rest being “correct”, we define an execution as a sequence of alternating configurations and
events C0, e1, C1, . . . such that:

C0 is an initial configuration.
The first event for each process is wakeup. A correct process experiences exactly one
wakeup, a crash-faulty process experiences at most one wakeup, and a malicious-faulty
process can experience any number of wakeups.
Suppose ei is a step by (correct)1 process p and let s and M be the state and set of
messages resulting from p’s transition function applied to p’s state in Ci and m, if ei is
the receipt of message m (or nothing if ei is a wakeup event). Then the only differences
between Ci and Ci+1 are that m is no longer in transit, M is in transit, and p’s state in
Ci+1 is s. If p is malicious, then s and M can be anything.
Every message sent by a process to a correct process is eventually received and the receipt
occurs after the recipient wakes up.

Since we consider all executions that satisfy the above properties, we are capturing an
“adaptive adversary”, which can control the inputs, choice of faulty processes, ordering of
process steps, behavior of malicious processes, and the message delays, depending on anything
that has happened so far in the execution.

We study worst-case complexity measures. For communication complexity, we count the
maximum, over all executions, of the number of messages sent by all the (correct) processes.

We adopt the definition in [8] for time complexity in an asynchronous message-passing
system. We start by defining a timed execution as an execution in which nondecreasing
nonnegative integers (“times”) are assigned to the events, with no two events by the same
process having the same time. For each timed execution, we consider the prefix ending when
the last correct process decides, and then scale the times so that the maximum time that
elapses between the sending and receipt of any message between correct processes is 1. We

1 Here and throughout, the restriction to correct processes is only for the case of malicious failures.

OPODIS 2023

6:6 Multi-Valued Connected Consensus

Figure 2 Spider graphs: R = 1 (left) and R = 2 (right).

define the time complexity as the maximum, over all such scaled timed execution prefixes, of
the time assigned to the last event minus the latest time when any (correct) process wakes
up. For simplicity, we assume that the first wakeup event of each process occurs at time 0.
This definition of time complexity is analogous to that in [31, 34], which measures the length
of the longest sequence of causally related messages.

The definition of time complexity just given applies to an algorithm with any communica-
tion structure. However, many algorithms, including several of ours, have a specific style of
communication, in which each process repeatedly sends a message to all the processes, waits
to receive a certain number of messages, and then sends another message. For algorithms
with this structure, the sending of a message and waiting for the receipt of the specified
number of messages, forms a round.

3 Definitions of Connected Consensus and Related Problems

Connected Consensus. Let V be a finite, totally-ordered set of values; assume ⊥ /∈ V .
Given a positive integer R, let GS(V, R) be the spider graph consisting of a central vertex
labeled (⊥, 0) that has |V | paths extending from it, with one path (“branch”) associated
with each v ∈ V . The path for each v has R vertices on it, not counting (⊥, 0), labeled
(v, 1) through (v, R), with (v, R) being the leaf. (See Figure 2.) Given a subset V ′ of V ,
we denote by T (V, R, V ′) the minimal subtree of GS(V, R) that connects the set of leaves
{(v, R)|v ∈ V ′}; note that when V ′ is a singleton set {v} then T (V, R, {v}) is the single (leaf)
vertex (v, R).

In the connected consensus problem for V and R, each process has an input from V . The
requirements are:

Termination: Each correct process must decide on a vertex of GS(V, R), namely, an element
of {(v, r)|v ∈ V, 1 ≤ r ≤ R} ∪ {(⊥, 0)}.

Validity: Let I = {(v, R)|v is the input of a (correct) process}. The output of each (correct)
process must be a vertex in T (V, R, I). In particular, if all (correct) processes start with
the same input v, then (v, R) must be decided.

Agreement: The distance between the vertices labeled by the decisions of all (correct)
processes is at most one.

If we set R = 1, we get crusader agreement [19], originally considered in the synchronous
model. If we set R = 2 we get graded broadcast [24], originally considered in the synchronous
model. In asynchronous shared-memory systems, graded broadcast is also called adopt-
commit-abort [18, 32].

H. Attiya and J. L. Welch 6:7

Defining the Binding Property. An additional condition of interest for the connected
consensus problem is called binding [3]. It was originally proposed for the case of binary
inputs, and defined as follows: “before the first non-faulty party terminates, there is a value
v ∈ {0, 1} such that no non-faulty party can output the value v in any continuation of the
execution.” Here we generalize this property for multi-valued inputs.

Binding: In every execution prefix that ends with the first (correct) process deciding, one
value is “locked”, meaning that in every extension of the execution prefix, the decision of
every (correct) process must be on the same branch of the spider graph.

If the first decision is not (⊥, 0), then this condition follows from Agreement. More
interestingly, if the first decision is (⊥, 0), then there are many choices as to which branch is
locked but the choice must be the same in every extension. Note that when |V | = 2, our
definition is equivalent to the original from [3], but for larger V , our definition is stronger –
the original definition only excludes one value, leaving |V | − 1 possible decision values, while
ours excludes |V | − 1 values, leaving only one possible decision value.

The original definition of binding is not strong enough to handle multi-valued inputs
in some cases. For example, consider the framework for solving asynchronous Byzantine
Agreement by alternating calls to a (black box) connected consensus with R = 1 (crusader
agreement) subroutine with calls to a shared random coin subroutine (cf. [3, Section 3]
and [7, Section 2]). Suppose there are three processes with inputs 0, 1 and 2, and the
first process, say p, to return from connected consensus gets (⊥, 0) (corresponding to ⊥ in
crusader agreement). According to the original definition, some value v ∈ {0, 1, 2} is no
longer a possible output of the connected consensus subroutine. Since p obtains (⊥, 0) from
crusader agreement, it calls the shared coin; let v′ ∈ {0, 1, 2} be the value p gets from the
shared coin. However, the original binding property still allows the adversary to make the
other processes return (v′′, 1), with v′′ ̸= v′. This would mean that processes start the next
iteration in disagreement.

When R = 1, there are only two vertices on any given branch of the spider graph, (v, 1)
and (⊥, 0). This implies:

▶ Proposition 1. If R = 1, then the Binding property implies the Agreement property.

If R = 2, though, the Binding property only restricts the branch of the spider graph on
which decisions can be made; both (⊥, 0) and (v, 2) are on the same branch, but Agreement
does not permit them to both be decided.

Centerless Variants. Recall that in the adopt-commit problem [27,37], processes return a
pair (v, g) where v is one of the input values and g is either 1 (adopt) or 2 (commit). Thus,
there is no analog of the “center” vertex. We model this with a centerless variant of a spider
graph (see left side of Figure 3). Here, GS(V, R) is the graph consisting of a clique on the
vertices (v, 1) for all v ∈ V , each with a path extending from it, with R − 1 vertices on it,
not counting (⊥, 0), labeled (v, 2) through (v, R), with (v, R) being the leaf. Decisions must
satisfy termination, validity and agreement as specified for the variant with a center. Since
the graph has no center, binding cannot be defined; indeed, when a process returns (v, 1),
other processes might return (v′, 1), for v ̸= v′.

Instead of developing algorithms directly for the centerless problem, we note that it can
be reduced to the centered problem with the same refinement parameter: Call the algorithm
for the centered problem with your input u. If the return value is (v, g) with g > 0, then
decide this value for the centerless problem; when the return value is (⊥, 0) (i.e, the center),
decide (u, 1) for the centerless problem. (See right side of Figure 3). This reduction implies
the following proposition:

OPODIS 2023

6:8 Multi-Valued Connected Consensus

Figure 3 Centerless graph with R = 2 (left) and its reduction to a (centered) spider graph with
R = 2 (right).

▶ Proposition 2. If A is an algorithm that solves the (centered) connected consensus problem
for R, then there is an algorithm A′ that solves the centerless connected consensus problem
for R.

In the vacillate-adopt-commit (VAC) problem [4], the possible output values are (v,commit),
(v,adopt), and (v,vacillate), where v is any value. If any output is (v,commit), then every
other output is either (v,commit) or (v,adopt), for the same v. Furthermore, if there is no
commit output and there is at least one (v,adopt) output, then every other output is either
(v,adopt), with the same value v, or (w,vacillate), where w can be any value. At first glance,
VAC seems to correspond to a centerless graph with refinement parameter R = 3. However,
a closer look at the usage of VAC suggests that the return value of vacillate is irrelevant, in
which case the problem could be represented as a centered spider graph with R = 2, like
adopt-commit-abort and graded crusader agreement.

4 Tolerating Crash Failures

4.1 Lower Bounds
Resiliency. We first note that a standard partitioning argument shows that n > 2f is
required to solve connected consensus with crash failures for any R ≥ 1, even without binding.
Assume in contradiction that there is an algorithm for n = 2f where V = {0, 1} and consider
execution α0 in which all processes have input 0 and half of the processes crash initially; by
Validity, the other half must decide (0, R) by some time t0. Consider execution α1 in which
all processes have input 1 and the other half of the processes crash initially; by Validity,
the first half must decide (1, R) by some time t1. Finally consider execution α which is the
“merger” of α0 and α1, in which the first half of the processes have input 0, the other half
have input 1, and messages between the halves are delayed until after max{t0, t1}. Since
processes in the first half decide (1, R) as they do in α1 and processes in the second half
decide (0, R) as they do in α0, Agreement is violated.

Round Complexity. First we note that processes cannot solve connected consensus without
communicating, and thus at least one round is necessary.

For R = 2, we use a reduction from approximate agreement and a result in [22] to show
that, as long as n ≤ 4f , at least two rounds of message exchange are necessary to solve
connected consensus.

Suppose we want to solve ϵ-approximate agreement on the interval [0, 1]. We show how
to do so using any connected consensus algorithm ACC with V = {0, 1} and R =

⌈ 1
2ϵ

⌉
that

tolerates crash failures. Letting v be the approximate agreement input for process p, call ACC

H. Attiya and J. L. Welch 6:9

with input v. To obtain the approximate agreement output from the connected consensus
output, map the 2R + 1 vertices of the connected consensus graph, which is a chain, in order
to points in the real interval [0, 1] that are equally spaced, with vertex (0, R) corresponding
to point 0 and vertex (1, R) corresponding to point 1. Since adjacent points in [0, 1] are
distance 1

2R apart, they are within ϵ of each other.
For example, when ϵ = 1

4 , we use connected consensus with R = 2.
This transformation uses no rounds other than those used by ACC . Thus any lower bound

on the number of rounds for approximate agreement is also a lower bound on the number of
rounds for connected consensus.

For any round-based approximate agreement algorithm, the convergence ratio is the
fraction by which the size of the interval of values reduces after one round. The number
of rounds needed to achieve outputs that are at most ϵ apart is

⌈
log 1

r

U
ϵ

⌉
, where r is the

convergence ratio per round and U is the size of the interval of inputs. In our case, U = 1
and ϵ = 1/4. Fekete proved in [22] that the best r can be is

⌈
n−f

f

⌉−1
. Thus, as long as

n ≤ 4f , the number of rounds is at least 2.
In the full version we show that, if the resilience is higher than 4f , a simple one-round

connected consensus algorithm with Binding is possible for R = 2.

4.2 Algorithm
We next present an algorithm for connected consensus with binding for n processes that
tolerates f < n/2 crash failures. (See Algorithm 1.) The algorithm is extremely simple
and efficient, using one round of message exchanges for R = 1 and two rounds of message
exchanges for R = 2, and thus using only O(n2) messages. Due to the simple communication
structure, the number of rounds of message exchanges is equal to the time complexity. The
lower bounds discussed in the previous subsection show that the time complexity is optimal
for R = 1, and that for R = 2, it is optimal as long n ≤ 4f .

In the first round of the algorithm, processes exchange their inputs. After hearing from
n − f processes, each process chooses branch v of the spider graph, if all the received values
equal v, or the center vertex otherwise. If R = 1, then the process decides on the branch.
Otherwise, processes exchange branch values (v or ⊥) in a second round in order to decide
on a vertex on the v branch. After waiting for n − f messages in the second round, if a
process’ branch is ⊥, then it decides (v, 1) if at least one second-round message is for v and
(⊥, 0) otherwise. If the process’ branch is v, then it decides (v, 2) if all the second-round
messages are for v and (v, 1) otherwise.

▶ Theorem 3. If n > 2f , then Algorithm 1 solves binding connected consensus for R = 1
and R = 2 with n processes, up to f of which can crash. It takes 1 time unit and sends O(n2)
messages for R = 1 and takes 2 time units and sends O(n2) messages for R = 2.

The proof of this theorem appears in the full version. Here, we only outline why the
algorithm is binding. In fact, we show a stronger property, that the branch along which
decisions are made is determined solely by the inputs.

For any assignment of inputs to the processes, since n > 2f , there is at most one input
value v ∈ V that occurs at least n − f times. Note that if p sets its branch variable to v,
then all n − f input messages it receives are for v, and since processes fail only by crashing,
the n − f senders of these messages all have input v. Therefore, no process can set its branch
variable to any value in V other than v. For R = 1, processes decide on their branch variables,
implying that in any future extension, every process that sets its branch variable sets it to v

OPODIS 2023

6:10 Multi-Valued Connected Consensus

Algorithm 1 Connected Consensus algorithm with Binding for R = 1, 2 with n processes, f < n/2
of which may crash; code for process p.

1: send ⟨input,input⟩ to all ▷ round 1
2: wait for n − f input messages
3: let W be set of values received in input messages
4: if ∃v ∈ V s.t. W = {v} then
5: branch := v

6: else
7: branch := ⊥
8: if R = 1 then
9: if branch = ⊥ then

10: decide (⊥, 0) ▷ center vertex
11: else
12: decide (branch,1) ▷ leaf vertex for chosen branch
13: else ▷ R = 2; round 2
14: send ⟨branch,branch⟩ to all
15: wait for n − f branch messages
16: if branch = ⊥ then
17: if ∃v ∈ V s.t. at least one branch message has value v then
18: decide (v, 1) ▷ middle vertex on branch for v

19: else
20: decide (⊥, 0) ▷ center vertex
21: else ▷ branch ̸= ⊥
22: if ∃v ∈ V s.t. all branch messages have value v then
23: decide (v, 2) ▷ leaf vertex for v

24: else
25: decide (branch,1) ▷ middle vertex on branch chosen in round 1

or ⊥. For R = 2, processes exchange their branch variables in the second round. The only
possible non-⊥ value that can be exchanged is v, so the only possible decisions are (⊥, 0),
(v, 1) and (v, 2), which proves binding for R = 2.

5 Tolerating Malicious Failures

5.1 Lower Bounds
Resiliency. We first note that n > 3f is required to solve connected consensus for any
R ≥ 1 with malicious failures, even without binding. This simple lower bound can be derived
from [35]; we provide a complete proof in the full version.

Round Complexity. To show a lower bound on the round complexity, we use the same
reduction from approximate agreement as for crash failures in Section 4.1, except that ACC

tolerates malicious failures. We then appeal to a result in [20] to show that, as long as
n ≤ 9f , at least two rounds of message exchange are necessary to solve connected consensus
when R = 2, in the presence of malicious failures.

The relevant result in [20] is that the best the convergence ratio r can be in the presence
of malicious failures is

⌈
n−3f

2f

⌉−1
. Plugging this value of r into the formula

⌈
log 1

r

U
ϵ

⌉
, with

U = 1 and ϵ = 1/4, results in a number of rounds that is at least 2 as long as n ≤ 9f .

H. Attiya and J. L. Welch 6:11

If the resilience is sufficiently large, n > 12f , a simple one-round connected consensus
algorithm is possible for R = 2. Furthermore, if n > 13f , then the algorithm also satisfies
Binding. These algorithms are presented in the full version.

5.2 Algorithms
We next present two algorithms for connected consensus, tolerating malicious failures. We
start with a simple algorithm for n > 5f using ideas from [20]. Then we present a more
complex algorithm for n > 3f , which is a modular extension of algorithms in [3] incorporating
new ideas inspired by [34] to deal with multi-valued inputs. Although the n > 3f algorithm
has better resilience than the n > 5f algorithm, it has worse time complexity. The round
lower bounds discussed above show that it is optimal for R = 1 and for R = 2, it is optimal
as long as n ≤ 9f .

5.3 Algorithm for n > 5f

We now present an algorithm for connected consensus with binding for n processes that
tolerates f < n/5 malicious failures. The algorithm is extremely simple and efficient, using
one round of message exchanges for R = 1 and two rounds of message exchanges for R = 2,
and thus using only O(n2) messages.

The pseudocode, which is similar to Algorithm 1, appears in Algorithm 2. In the first
round of the algorithm, processes exchange their inputs and, after hearing from n − f

processes, each process drops the f smallest and f largest values received, an idea inspired
by approximate agreement algorithms (e.g., [20]). Then each process chooses branch v of the
spider graph, if all the remaining values equal v, or the center vertex otherwise. If R = 1,
then the process decides on the branch. Otherwise, processes exchange branch values (v
or ⊥) in a second round in order to decide on a vertex on the v branch. This is done in a
manner that is similar to the second round in our crash-resilient algorithm, Algorithm 1.
After waiting for n − f messages in the second round, if a process’ branch is ⊥, then it
decides (v, 1) if at least f + 1 second-round messages are for v and (⊥, 0) otherwise. If the
process’ branch is v, then it decides (v, 2) if at least n − 2f second-round messages are for v

and (v, 1) otherwise.

▶ Theorem 4. If n > 5f , then Algorithm 2 solves binding connected consensus for R = 1
and R = 2 with n processes, up to f of which can be malicious. It takes 1 time unit and sends
O(n2) messages for R = 1 and takes 2 time units and sends O(n2) messages for R = 2.

The proof of this theorem appears in the full version. Here, we only outline why the
algorithm is binding, which similarly to Algorithm 1 follows from a stronger property, that
the branch along which decisions are made is determined solely by the inputs.

Given an assignment of inputs to the processes, suppose there is one execution in which
a correct process decides u ∈ V and another execution in which a correct process decides
v ∈ V with u < v. It can be shown that at least n − 3f correct processes have input at most
u, and at least n − 3f correct processes have inputs at least v. Thus the total number of
processes n is at least 2(n − 3f) plus the f faulty processes. That is, n ≥ 2(n − 3f) + f ,
which implies n ≤ 5f , a contradiction. This implies binding for R = 1. For R = 2, this
argument shows that there is only one possible v ∈ V that can appear in correct processes’
branch variables at the end of round 1 in any execution. Thus no correct process can get
more than f branch messages for any u ∈ V other than v and thus it cannot decide (u, 1)
or (u, 2) in any execution.

OPODIS 2023

6:12 Multi-Valued Connected Consensus

Algorithm 2 Connected Consensus algorithm with Binding for R = 1, 2 with n processes, f < n/5
of which may be malicious; code for process p.

1: send ⟨input,input⟩ to all ▷ round 1
2: wait for n − f input messages
3: let W be multiset of values received in input messages, dropping f smallest and f largest
4: if ∃v ∈ V s.t. every element in W is v then
5: branch := v

6: else
7: branch := ⊥
8: if R = 1 then
9: if branch = ⊥ then

10: decide (⊥, 0) ▷ center vertex
11: else
12: decide (branch,1) ▷ leaf vertex for chosen branch
13: else ▷ R = 2; round 2
14: send ⟨branch,branch⟩ to all
15: wait for n − f branch messages
16: if branch = ⊥ then
17: if ∃v ∈ V s.t. at least f + 1 branch messages have value v then
18: decide (v, 1) ▷ middle vertex on branch for v

19: else
20: decide (⊥, 0) ▷ center vertex
21: else ▷ branch ̸= ⊥
22: if ∃v ∈ V s.t. at least n − 2f branch messages have value v then
23: decide (v, 2) ▷ leaf vertex for v

24: else
25: decide (branch,1) ▷ middle vertex on branch chosen in round 1

5.4 Algorithm for n > 3f

We now present an algorithm for connected consensus with binding for n processes that
tolerates f < n/3 malicious failures. The time complexity for R = 1 is 5 and for R = 2 is 7,
while the message complexity is O(|V | · n2) in both cases. The failure-resiliency is optimal,
per the discussion at the beginning of this section. The |V | factor in the message complexity
can be reduced to a constant, resulting in O(n2) message complexity, by first employing the
RD-broadcast primitive in [34], which reduces the number of values under consideration to 6,
at the cost of O(n2) additional messages and two additional time units.

The algorithm is a modular combination of Algorithms 4 (for R = 1) and 6 (for R = 2)
in [3], which work when |V | = 2, with the addition of a mechanism from the MV-broadcast
in [34] to handle |V | > 2. MV-broadcast is a primitive to reduce the number of input values
under consideration to two in the context of solving consensus.

Processes exchange input values in increasing “levels” of echo messages. Initially,
processes exchange their inputs via echo messages and also use echo messages to amplify
values that have been received at least f + 1 times; this threshold ensures that at least one
correct process has that value as its input. To handle the situation when |V | > 2 and there
may not be any message that is sent in at least f + 1 echo messages, an echo message
for ⊥ is initiated if a process receives at least f + 1 echo messages in addition to those
for the most commonly received value; this condition only holds if there are at least two
different input values at the correct processes. This early appearance of ⊥ requires some
later modifications, mentioned below, to the original algorithm.

H. Attiya and J. L. Welch 6:13

Whenever a process receives n − f echo messages for some value v, it stores v in its
local set variable “approved”; the first time this happens, it sends the value in an echo2
message. The n − f threshold ensures some level of uniformity in processes’ “approved” sets.
Each process sends one echo3 message, either for ⊥ if it collects more than one approved
value, or for value v if it receives n − f echo2 messages for v. The echo3 messages have
the desirable property that only one non-⊥ value is sent in them by the correct processes.
When R = 1, processes decide once at least n − f echo3 messages have been received: if
there are at least n − f for the same value v, then (v, 1) is decided, otherwise if there are
at least two approved values or if ⊥ is approved, then (⊥, 0) is decided. (Checking if ⊥ has
been approved here and later are modifications needed because of the possibility that ⊥ is
sent in echo messages.)

When R = 2, processes continue for two more levels in order to refine the values obtained
so far on the chosen branch. The value chosen as the decision in the R = 1 case is sent in an
echo4 message; these message inherit the property that at most one non-⊥ appears in those
sent by correct processes. Each process waits for echo4 messages. If eventually it collects
n − f for a common value, then it sends an echo5 message for that value; if eventually it
has more than one approved value or if ⊥ is approved, it sends an echo5 message for ⊥.
echo5 messages also inherit the property that at most one non-⊥ appears in those sent by
correct processes.

The decision is based on echo4 and echo5 messages received. If a process receives at
least n − f echo5 messages for the same non-⊥ value, then it decides (v, 2). If it receives
at least n − f echo5 messages for ⊥, then it decides (⊥, 0). Otherwise, if it has approved
either ⊥ or at least two values, receives at least one echo5 message for some non-⊥ value w,
and has at least f + 1 echo4 messages for w, it decides (w, 1).

The pseudocode is in Algorithm 3. The presentation differs from that of our Algorithms 1
and 2 and of the algorithms in [3]. Instead of using syntactic constructs such as “wait until”
and “upon” receiving certain messages, our code is purely interrupt-driven in order to clarify
the interactions between the receipts of different messages and the conditions triggering
various actions. The technique inspired by [34] appears in Lines 14 through 15. We denote
by sum(A), where A is an array of integers, the sum of all the entries in A. A correct
process sends at most one echo message for any v ∈ V ∪ {⊥}, and at most one echo2,
echo3, echo4, and echo5 message. This allows us to assume there is some mechanism for
eliminating duplicate messages that arrive from the same (faulty) sender.

▶ Theorem 5. If n > 3f , then Algorithm 3 solves binding connected consensus for R = 1
and R = 2 with n processes, up to f of which can be malicious. It takes 5 time units and
sends O(|V | · n2) messages for R = 1 and takes 7 time units and sends O(|V | · n2) messages
for R = 2.

The complete proof of Theorem 5 appears in the full version and is sketched below.

Proof (Sketch). First, we argue that the values sent in echo messages by correct processes
are “valid”: if the value is in V , then some correct process has input v, whereas if the value
is ⊥, then not all the correct processes have the same input. The latter property is ensured
by lines 14 through 15 for the following reason. The first correct process to send echo for
⊥ does so because it receives at least f + 1 echo messages for values other than the most
frequently occurring value m of the echo messages it has received so far. Letting x be the
number of echo messages received for m, it follows that at least x + 1 of the echo messages
for values other than m are from correct processes. But they cannot all be for the same value
since no value occurs more frequently than m.

OPODIS 2023

6:14 Multi-Valued Connected Consensus

Algorithm 3 Connected Consensus algorithm with Binding for R = 1, 2 with n processes, f < n/3
of which may be malicious; code for process p.

1: initially:
2: approved := ∅ (subset of V ∪ {⊥}) ▷ set of approved values
3: num_echo[v] := 0 for v ∈ V ∪ {⊥} ▷ # received echo messages for v

4: num_echoi[v] := 0 for 2 ≤ i ≤ 5, v ∈ V ∪ {⊥} ▷ # received echo-i messages for v

5: sent_echo[v] := false for v ∈ V ∪ {⊥} ▷ has p sent an echo message for v yet?
6: sent_echoi := false for 2 ≤ i ≤ 5 ▷ has p sent an echo-i message yet?
7: decided := false ▷ has p decided yet?

8: wakeup:
9: send ⟨echo,input⟩ to all; sent_echo[input] := true ▷ initiate echo for p’s input

10: receive ⟨echo, v⟩:
11: num_echo[v] + +
12: if (num_echo[v] = f + 1) and (!sent_echo[v]) then
13: send ⟨echo, v⟩ to all; sent_echo[v] := true ▷ echo v if enough support but only once
14: else if (sum(num_echo) − num_echo[m] ≥ f + 1) and (!sent_echo[⊥]),

where m is s.t. num_echo[m] ≥ num_echo[u] for all u ∈ V ∪ {⊥}) then
▷ if evidence for multiple correct inputs then initiate echo for ⊥

15: send ⟨echo, ⊥⟩ to all; sent_echo[⊥] := true
16: else if num_echo[v] = n − f then
17: if !sent_echo2 then ▷ send only one echo2
18: send ⟨echo2, v⟩ to all; sent_echo2 := true
19: add v to approved
20: if (|approved| > 1) and (!sent_echo3) then ▷ send only one echo3
21: send ⟨echo3, ⊥⟩ to all; sent_echo3 := true

22: receive ⟨echo2, v⟩:
23: num_echo2[v] + +
24: if (num_echo2[v] = n − f) and (!sent_echo3) then ▷ send only one echo3
25: send ⟨echo3, v⟩ to all; sent_echo3 := true

26: receive ⟨echo3, v⟩:
27: num_echo3[v] + +
28: if (sum(num_echo3) ≥ n − f) and ((|approved| > 1) or (⊥ ∈ approved)) then
29: if (R = 1) and (!decided) then ▷ decide only once
30: decide (⊥, 0); decided := true ▷ center vertex
31: else if (R = 2) and (!sent_echo4) then ▷ send only one echo4
32: send ⟨echo4, ⊥⟩ to all; sent_echo4 := true
33: else if num_echo3[v] ≥ n − f then
34: if (R = 1) and (!decided) then ▷ decide only once
35: decide (v, 1); decided := true ▷ leaf vertex for v

36: else if (R = 2) and (!sent_echo4) then ▷ send only one echo4
37: send ⟨echo4,v⟩ to all; sent_echo4 := true

▷ continued...................................

H. Attiya and J. L. Welch 6:15

▷Continuation of Algorithm 3
38: receive ⟨echo4, v⟩:
39: num_echo4[v] + +
40: if (num_echo4[v] = n − f) and (!sent_echo5) then ▷ send only one echo5
41: send ⟨echo5, v⟩ to all; sent_echo5 := true
42: else if (sum(num_echo4) ≥ n − f) and ((|approved| > 1) or (⊥ ∈ approved)) and

(!sent_echo5) then
43: send ⟨echo5, ⊥⟩ to all; sent_echo5 := true

44: receive ⟨echo5, v⟩:
45: num_echo5[v] + +
46: if !decided then ▷ decide only once
47: if (v ∈ V) and (num_echo5[v] ≥ n − f) then
48: decide (v, 2); decided := true ▷ leaf vertex for v

49: else if (sum(num_echo5) ≥ n − f) and ((|approved| > 1) or (⊥ ∈ approved)) and
there exists w ∈ V s.t. (num_echo5[w] ≥ 1) and (num_echo4[w] ≥ f + 1) then

50: decide (w, 1); decided := true ▷ middle vertex on branch for w

51: else if num_echo5[⊥] ≥ n − f then
52: decide (⊥, 0) ▷ center vertex

Since a correct process approves a value when it gets n − f echo messages for it, the
validity of the echo messages implies validity of the approved values. In addition, the
approved sets of all the correct processes are eventually the same. The echo2 messages
preserve the validity properties of the echo messages and also ensure that the values sent in
them end up being approved. The echo3 messages add a “uniqueness” property, ensuring at
most one non-⊥ value is sent by correct processes. They also satisfy a modified approval
property: if v is sent by a correct process and v is not ⊥, then eventually every correct
process approves v, otherwise (if v = ⊥) eventually every correct process either approves ⊥
or approves at least two values.

We can now prove correctness and complexity when R = 1. Validity is immediate from
the validity properties ensured by the echo* messages. Agreement follows from Binding (cf.
Proposition 1), which we discuss next. The first correct process to decide receives n − f

echo3 messages, at least n − 2f of which are from correct processes. If any of these messages
are for a value in V , then by uniqueness of echo3 messages, no correct process can send
an echo3 message for a different non-⊥ value, and thus no such value can be decided
subsequently. If all of these messages are for ⊥, then other processes can receive at most 2f

echo3 messages for any v ∈ V (f from the correct processes that did not send echo3 for ⊥
and f from the faulty processes), which is not enough support for deciding v subsequently.

We next address Termination and time complexity. In the full correctness proof, we first
show that the algorithm terminates, before we scale all the message delays by the duration
of the longest one. We first show that every correct process sends an echo2 message by
time 2. If at least f + 1 correct inputs are the same, say v, then by time 1, every correct
process receives the initial echo messages for v, and sends an echo message for v if it has
not already done so. Thus every correct process receives at least n − f echo messages by
time 2, and sends echo2.

The more interesting case, which only arises when |V | > 2, is when no value occurs at
least f + 1 times among the inputs of the correct processes. Let xi (resp., yi) be the number
of echo messages for vi received by a correct process p from correct (resp., faulty) processes

OPODIS 2023

6:16 Multi-Valued Connected Consensus

by time 1, 1 ≤ i ≤ |V |. Note that xi ≤ f and that x1 + . . . + x|V | ≥ n − f since p has
received all the echo messages sent by the correct processes initially. Let vm be the value
that occurs most frequently among all the echo messages received by time 1 (breaking ties
arbitrarily). Then the total number of echo messages minus the number of those for vm is |V |∑

i=1
(xi + yi)

 − (xm + ym) =
|V |∑
i=1

xi +
|V |∑
i=1
i ̸=m

yi − xm ≥ (n − f) − f ≥ f + 1,

since n > 3f . Thus p sends an echo message for ⊥ by time 1 if it hasn’t already done so,
and so by time 2, every correct process receives n − f echo messages for ⊥ and sends echo2
for ⊥ if it has not already sent an echo2 message.

We next show that every correct process p sends an echo3 message by time 4. We rely
on the fact that if v is in a correct process’ approved set at time t, then every correct process
approved set by time t + 2, which implies that if v is sent by a correct process in an echo2
message, then every correct process approves v by time 4. Since echo2 messages are sent by
correct processes by time 2, at least n − f arrive at p by time 3. If they are all for a common
value v, then p sends echo3 for v by time 3. Otherwise, p waits until it has at least two
approved values. Process p must have received an echo2 for value v1 from a correct process
and an echo2 for a different value v2 from a different correct process. Thus p approves v1
and v2 by time 4 and sends echo3 by time 4.

We use a similar argument to the previous paragraph to show that every correct process
p decides by time 5. It relies on the key fact that the approval of values sent in echo3
messages by the correct processes takes place by time 5. Thus p either receives at least n − f

echo3 messages for a common value by time 5 or has approved either ⊥ or at least two
values by time 5, and thus decides by time 5.

The message complexity is O(|V | · n2) since each correct process sends to all the processes
at most one echo message for each v ∈ V , one echo2 message, and one echo3 message.

We continue to prove correctness and complexity when R = 2. First note that when
R = 2, a process sends an echo4 message for v under exactly the same circumstances that
it decides (v, 1) (if v ∈ V) or (v, 0) (if v = ⊥) when R = 1. Thus we have the analogous
properties for echo4 messages that we had for echo3 messages (validity, uniqueness, and
approval). These properties also carry over to echo5 messages.

For Agreement, we first recall that all the non-⊥ values sent in echo4 and echo5 messages
are the same, call it v. It remains to show that if a correct process p decides (v, 2) then no
correct process can decide (⊥, 0). Since p decides (v, 2), it receives n − f echo5 message for
v. But since n > 3f , it’s not possible for another process to receive n − f echo5 messages
for ⊥, which is required for a decision of (⊥, 0).

Validity follows from the validity properties of echo4 and echo5 messages.
Binding holds since the binding property for R = 1 implies that there is only one possible

non-⊥ value that can be decided in any extension after the first correct process sends its
echo4 message.

For Termination and time complexity, we prove every correct process decides by time 7.
Since echo4 messages are sent for R = 2 exactly when decisions are made for R = 1, we

know that correct processes send echo4 by time 5. Fortunately, the approval time of 5 for
values in echo3 messages carries over to echo4 messages. Thus p either receives at least
n − f echo4 messages for a common value by time 6 or has approved either ⊥ or at least
two values by time 5, and thus sends echo5 by time 6.

H. Attiya and J. L. Welch 6:17

Figure 4 Diagram illustrating scenario in which decision is delayed until almost time 5.

Similarly, the approval time of 5 also holds for values in echo5 messages. Thus p either
receives at least n − f echo5 messages for a common value by time 7 and decides, or has
approved either ⊥ or at least two values by time 5. In the latter case, since p receives less than
n − f echo5 messages for ⊥, it receives an echo5 message for some w ∈ V from a correct
process q. In turn, q received at least n − f echo4 messages for w, at least n − 2f ≥ f + 1
of which are from correct processes. Since these correct processes send their echo4 messages
for w by time 5, p receives them by time 6. Thus p decides by time 7.

The message complexity is still O(|V | · n2) since in addition to the messages sent when
R = 1, each process sends to all processes one echo4 message and one echo5 message. ◀

Time complexity versus round complexity. The upper bounds of 5 and 7 on the time
complexities for Algorithm 3 are tight, as shown by an execution described below; see more
details in the full version. The execution uses V = {0, 1} and thus it is also an execution of
Algorithm 4 in [3], implying that the tight time complexity of the latter algorithm is also 5,
and that of Algorithm 6 in [3] is 7. This is in contrast to the round complexities of 4 and 6
calculated in [3] for their Algorithms 4 and 6.

The discrepancy between round complexity and time complexity is caused by the waiting
conditions imposed before performing the next broadcast. If the condition is simply to
receive enough messages from the previous broadcast, then at most one time unit elapses per
broadcast. But if there is an additional condition, for instance, waiting to approve at least
two values, then the condition may take more than one time unit to become true. We next
sketch the execution to illustrate this point; see Figure 4.

Assume n = 3f + 1, where f ≥ 2, and partition the correct processes into sets A, B, {p},
and {q}, where |A| = f − 1, |B| = f , and let F be the set of f faulty processes. Initially
all correct processes have input 0 except q has input 1. At time 0, processes send echo
messages with their inputs which arrive at time 1. At time 1, q sends an echo message for 0,
which arrives at time 2. Just before time 2, every process in B receives f echo messages for
1 from the processes in F , which causes it to send echo for 1. Those messages take 1 time
unit to arrive at all processes except p, which receives them immediately. This then causes p

to send an echo message for 1. Immediately thereafter, p receives f echo messages for 1

OPODIS 2023

6:18 Multi-Valued Connected Consensus

from the processes in F , which causes it to send its echo2 message, for 1. These messages
from p take 1 time unit to arrive. Then at time 2, all the correct processes send echo2
message for 0, except for p, which has already sent its echo2 message (for 1). The difficulty
is that by time 3, no process has n − f echo2 messages for a common value, due to the
echo2 message for 1 from p. The processes in B ∪ {p} are not blocked from sending echo3
because they have approved both 0 and 1, but the processes in A ∪ {q} have only approved
0; they are unable to approve 1 until they get the echo messages for 1 sent by the processes
in A ∪ {q}, which does not happen until just before time 4. Letting all the echo3 messages
have delay 1 means that processes cannot decide until shortly before time 5.

6 Discussion

We have proposed a new problem called connected consensus which generalizes a number
of primitives used to solve consensus, including crusader agreement, graded broadcast, and
adopt-commit, using a numeric parameter R. The problem can be reduced to real-valued
approximate agreement when the input set is binary and and to approximate agreement on
graphs for multi-valued input sets (two or more inputs). We extended the definition of the
binding property for such primitives to the multi-valued case.

We presented efficient message-passing algorithms for connected consensus when R is 1
(corresponding to crusader agreement) or 2 (corresponding to graded broadcast), in the
presence of crash and malicious failures, for multi-valued input sets.

Our algorithm for crash failures has optimal resilience and message complexity; its time
complexity is optimal for reasonable resiliencies and improves on the best previously known
algorithms, which only handled binary inputs.

For malicious failures, we provide two algorithms that trade off resilience against time
and message complexity. One algorithm has time complexity 1 or 2 (for R = 1 or R = 2)
and sends O(n2) messages, but requires n > 5f . The other algorithm only requires n > 3f ,
but has time complexity 5 or 7 (for R = 1 or R = 2) and sends O(|V | · n2) messages. This is
the same performance as the algorithms in [3] which are only for the case when |V | = 2.

The techniques used in our (simple) algorithms for crash failures and for malicious failures
with n > 5f are familiar from prior work. For example, algorithms in [12, 26, 33] rely on
similar mechanisms to solve (standard) consensus using various kinds of oracles. The novelty
in our work is the focus on the binding property for a key subproblem of consensus, extracted
as connected consensus.

There is a message-passing algorithm for adopt-commit with multi-valued inputs that
works in the presence of malicious failures as long as n > 3f [11]. However, the number
of possible inputs must be smaller than ⌊ n−(f+1)

f ⌋, while our algorithm works for any size
input set. The message complexity is O(n3) as compared to our O(|V | · n2). Furthermore,
this algorithm avoids the challenge of ensuring the binding property (which anyway is not
well-defined for adopt-commit) as it is combined with an oracle in order to solve consensus.

Concurrent work by Abraham, Ben-David, Stern and Yandamuri appearing in these
proceedings [1] studies the round complexity of binary (graded) crusader agreement both
with and without binding. A key difference is in the definition of the adversary: In [1] it
is assumed that the adversary can adaptively choose the inputs of the processes after the
start of the execution when the processes take their first steps. In contrast, in our model,
the adversary does not have that power, and the inputs are fixed at the beginning of each
execution. As a result, some of the lower bounds in [1] are larger than some of our upper
bounds. It is argued in [1] that tolerating such a strong adversary can be advantageous for
developing simple and efficient randomized consensus algorithms.

H. Attiya and J. L. Welch 6:19

An intriguing open question is whether there is an inherent cost for satisfying the binding
property: is there some measure, perhaps time, in which solving connected consensus without
binding is more efficient than solving it with binding?

Adopt-commit and related primitives have been implemented also in shared-memory
systems, e.g., [6, 18, 27, 32]. The connection we have made between connected consensus and
approximate agreement (on graphs) may contribute to finding improved algorithms for these
primitives in shared memory.

This connection might also be a fruitful direction for future work on connected consensus
in other timing models. For instance, [5] uses adopt-commit (and variants) to solve consensus
in eventually synchronous systems. Another interesting direction is to study connected
consensus in other fault models, such as the authenticated setting; authenticated algorithms
appear in [3] but they are for binary inputs.

References
1 I. Abraham, N. Ben-David, G. Stern, and S. Yandamuri. On the round complexity of

asynchronous crusader agreement. In OPODIS, 2023.
2 Ittai Abraham, Yonatan Amit, and Danny Dolev. Optimal resilience asynchronous approximate

agreement. In OPODIS, pages 229–239. Springer, 2004. doi:10.1007/11516798_17.
3 Ittai Abraham, Naama Ben-David, and Sravya Yandamuri. Efficient and adaptively secure

asynchronous binary agreement via binding crusader agreement. In 41st ACM Symposium on
Principles of Distributed Computing, pages 381–391, 2022. doi:10.1145/3519270.3538426.

4 Yehuda Afek, James Aspnes, Edo Cohen, and Danny Vainstein. Brief announcement: Object
oriented consensus. In 36th ACM Symposium on Principles of Distributed Computing, pages 367–
369, 2017. Full version in https://www.cs.yale.edu/homes/aspnes/papers/vac-abstract.
html. doi:10.1145/3087801.3087867.

5 Karolos Antoniadis, Julien Benhaim, Antoine Desjardins, Elias Poroma, Vincent Gramoli,
Rachid Guerraoui, Gauthier Voron, and Igor Zablotchi. Leaderless consensus. Journal of
Parallel and Distributed Computing, 176:95–113, 2023. doi:10.1016/J.JPDC.2023.01.009.

6 James Aspnes. Faster randomized consensus with an oblivious adversary. In 31st ACM
Symposium on Principles of Distributed Computing, pages 1–8, 2012. doi:10.1145/2332432.
2332434.

7 Hagit Attiya, Constantin Enea, and Shafik Nassar. Faithful simulation of randomized BFT
protocols on block DAGs. In Concur, 2023. URL: https://eprint.iacr.org/2023/192.

8 Hagit Attiya and Jennifer Welch. Distributed Computing: Fundamentals, Simulations, and
Advanced Topics. McGraw-Hill Publishing Company, 1st edition, 1998.

9 Michael Ben-Or and Ran El-Yaniv. Resilient-optimal interactive consistency in constant time.
Distributed Computing, 16:249–262, 2003. doi:10.1007/S00446-002-0083-3.

10 Erica Blum, Jonathan Katz, Chen-Da Liu-Zhang, and Julian Loss. Asynchronous Byzantine
agreement with subquadratic communication. In Theory of Cryptography: 18th International
Conference, TCC 2020, Durham, NC, USA, November 16–19, 2020, Proceedings, Part I 18,
pages 353–380. Springer, 2020. doi:10.1007/978-3-030-64375-1_13.

11 Zohir Bouzid, Achour Mostefaoui, and Michel Raynal. Minimal synchrony for Byzantine
consensus. In 34th ACM Symposium on Principles of Distributed Computing, pages 461–470,
2015. doi:10.1145/2767386.2767418.

12 Francisco Brasileiro, Fabíola Greve, Achour Mostéfaoui, and Michel Raynal. Consensus in one
communication step. In 6th International Conference on Parallel Computing Technologies,
volume 2127, pages 42–50, 2001. doi:10.1007/3-540-44743-1_4.

13 Armando Castañeda, Sergio Rajsbaum, and Matthieu Roy. Convergence and covering on
graphs for wait-free robots. Journal of the Brazilian Computer Society, 24:1–15, 2018. doi:
10.1186/S13173-017-0065-8.

14 Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors for reliable distributed
systems. J. ACM, 43(2):225–267, 1996. doi:10.1145/226643.226647.

OPODIS 2023

https://doi.org/10.1007/11516798_17
https://doi.org/10.1145/3519270.3538426
https://www.cs.yale.edu/homes/aspnes/papers/vac-abstract.html
https://www.cs.yale.edu/homes/aspnes/papers/vac-abstract.html
https://doi.org/10.1145/3087801.3087867
https://doi.org/10.1016/J.JPDC.2023.01.009
https://doi.org/10.1145/2332432.2332434
https://doi.org/10.1145/2332432.2332434
https://eprint.iacr.org/2023/192
https://doi.org/10.1007/S00446-002-0083-3
https://doi.org/10.1007/978-3-030-64375-1_13
https://doi.org/10.1145/2767386.2767418
https://doi.org/10.1007/3-540-44743-1_4
https://doi.org/10.1186/S13173-017-0065-8
https://doi.org/10.1186/S13173-017-0065-8
https://doi.org/10.1145/226643.226647

6:20 Multi-Valued Connected Consensus

15 Ran Cohen, Pouyan Forghani, Juan Garay, Rutvik Patel, and Vassilis Zikas. Concurrent
asynchronous Byzantine agreement in expected-constant rounds, revisited. Cryptology ePrint
Archive, Paper 2023/1003, 2023. URL: https://eprint.iacr.org/2023/1003.

16 Miguel Correia, Nuno Ferreira Neves, and Paulo Veríssimo. From consensus to atomic
broadcast: Time-free Byzantine-resistant protocols without signatures. The Computer Journal,
49(1):82–96, 2006. doi:10.1093/COMJNL/BXH145.

17 Giovanni Deligios, Martin Hirt, and Chen-Da Liu-Zhang. Round-efficient Byzantine agreement
and multi-party computation with asynchronous fallback. In 19th International Conference on
Theory of Cryptography, TCC, pages 623–653, 2021. doi:10.1007/978-3-030-90459-3_21.

18 Carole Delporte-Gallet, Hugues Fauconnier, and Michel Raynal. On the weakest information
on failures to solve mutual exclusion and consensus in asynchronous crash-prone read/write
systems. Journal of Parallel and Distributed Computing, 153:110–118, 2021. doi:10.1016/J.
JPDC.2021.03.015.

19 Danny Dolev. The Byzantine generals strike again. Journal of Algorithms, 3(1):14–30, 1982.
doi:10.1016/0196-6774(82)90004-9.

20 Danny Dolev, Nancy A. Lynch, Shlomit S. Pinter, Eugene W. Stark, and William E. Weihl.
Reaching approximate agreement in the presence of faults. J. ACM, 33(3):499–516, 1986.
doi:10.1145/5925.5931.

21 Alan David Fekete. Asymptotically optimal algorithms for approximate agreement. Distributed
Computing, 4:9–29, 1990. doi:10.1007/BF01783662.

22 Alan David Fekete. Asynchronous approximate agreement. Information and Computation,
115(1):95–124, 1994. doi:10.1006/INCO.1994.1094.

23 Paul Feldman and Silvio Micali. Optimal algorithms for Byzantine agreement. In 12th Annual
ACM Symposium on Theory of Computing, pages 148–161, 1988. doi:10.1145/62212.62225.

24 Pesech Feldman and Silvio Micali. An optimal probabilistic protocol for synchronous Byzantine
agreement. SIAM J. Comput., 26(4):873–933, 1997. doi:10.1137/S0097539790187084.

25 Michael J. Fischer, Nancy A. Lynch, and Mike Paterson. Impossibility of distributed consensus
with one faulty process. J. ACM, 32(2):374–382, 1985. doi:10.1145/3149.214121.

26 Roy Friedman, Achour Mostéfaoui, and Michel Raynal. Simple and efficient oracle-based
consensus protocols for asynchronous Byzantine systems. IEEE Trans. Dependable Secur.
Comput., 2(1):46–56, 2005. doi:10.1109/TDSC.2005.13.

27 Eli Gafni. Round-by-round fault detectors: unifying synchrony and asynchrony. In 17th
ACM Symposium on Principles of Distributed Computing, pages 143–152, 1998. doi:10.1145/
277697.277724.

28 Manfred Koebe. On a new class of intersection graphs. In Annals of Discrete Mathematics,
volume 51, pages 141–143. Elsevier, 1992. doi:10.1016/S0167-5060(08)70618-6.

29 Stephen R Mahaney and Fred B Schneider. Inexact agreement: Accuracy, precision, and
graceful degradation. In 4th ACM Symposium on Principles of Distributed Computing, pages
237–249, 1985. doi:10.1145/323596.323618.

30 Atsuki Momose and Ling Ren. Constant latency in sleepy consensus. In Proceedings of the
2022 ACM SIGSAC Conference on Computer and Communications Security, pages 2295–2308,
2022. doi:10.1145/3548606.3559347.

31 Achour Mostéfaoui, Hamouma Moumen, and Michel Raynal. Signature-free asynchronous
binary Byzantine consensus with t < n/3, O(n2) messages, and O(1) expected time. J. ACM,
62(4):31:1–31:21, 2015. doi:10.1145/2785953.

32 Achour Mostefaoui, Sergio Rajsbaum, Michel Raynal, and Corentin Travers. The combined
power of conditions and information on failures to solve asynchronous set agreement. SIAM J.
on Computing, 38(4):1574–1601, 2008. doi:10.1137/050645580.

33 Achour Mostéfaoui and Michel Raynal. Leader-based consensus. Parallel Process. Lett.,
11(1):95–107, 2001. doi:10.1142/S0129626401000452.

34 Achour Mostéfaoui and Michel Raynal. Signature-free asynchronous Byzantine systems: from
multivalued to binary consensus with t < n/3, O(n2) messages, and constant time. Acta
Informatica, 54(5):501–520, 2017. doi:10.1007/s00236-016-0269-y.

https://eprint.iacr.org/2023/1003
https://doi.org/10.1093/COMJNL/BXH145
https://doi.org/10.1007/978-3-030-90459-3_21
https://doi.org/10.1016/J.JPDC.2021.03.015
https://doi.org/10.1016/J.JPDC.2021.03.015
https://doi.org/10.1016/0196-6774(82)90004-9
https://doi.org/10.1145/5925.5931
https://doi.org/10.1007/BF01783662
https://doi.org/10.1006/INCO.1994.1094
https://doi.org/10.1145/62212.62225
https://doi.org/10.1137/S0097539790187084
https://doi.org/10.1145/3149.214121
https://doi.org/10.1109/TDSC.2005.13
https://doi.org/10.1145/277697.277724
https://doi.org/10.1145/277697.277724
https://doi.org/10.1016/S0167-5060(08)70618-6
https://doi.org/10.1145/323596.323618
https://doi.org/10.1145/3548606.3559347
https://doi.org/10.1145/2785953
https://doi.org/10.1137/050645580
https://doi.org/10.1142/S0129626401000452
https://doi.org/10.1007/s00236-016-0269-y

H. Attiya and J. L. Welch 6:21

35 Thomas Nowak and Joel Rybicki. Byzantine approximate agreement on graphs. In 33rd
International Symposium on Distributed Computing, pages 29:1–29:17, 2019. doi:10.4230/
LIPICS.DISC.2019.29.

36 Sam Toueg. Randomized Byzantine agreements. In 3rd ACM Symposium on Principles of
Distributed Computing, pages 163–178, 1984. doi:10.1145/800222.806744.

37 Jiong Yang, Gil Neiger, and Eli Gafni. Structured derivations of consensus algorithms for
failure detectors. In 17th ACM Symposium on Principles of Distributed Computing, pages
297–306, 1998. doi:10.1145/277697.277755.

A No Built-in Binding, for n < 5f

In this section we show that the locked value for the Binding property cannot be predetermined
from the correct processes’ inputs if n ≤ 5f , even if faulty processes cannot equivocate and
the input set is binary. Our approach is to consider any algorithm that works by having
processes obtain n − f values, at most one from each process, such that if two processes
p and q both get values corresponding to process r, then the values are the same and if r

is correct then that value is r’s input. Then the algorithm must decide based only on the
multiset of values it has received. We call such an algorithm uniform.

Consider a uniform algorithm with n ≤ 5f . We show that if a process receives all but f

0’s, then it must decide 0 and if it receives all but f 1’s, then it must decide 1. Then we
show that if a process receives about half 0’s and half 1’s, then it must decide (⊥, 0) (this
relies on the fact that two configurations with different non-⊥ values must have more than f

values that are different). Finally we rely on the fact that the number of values a process
receives is at most 4f to show that if the first process to decide gets about half 0’s and half
1’s and decides (⊥, 0), then in one extension we can replace f of the 0’s with 1’s to get a
configuration that requires a decision of (1, 1), and in another extension we can replace f

of the 1’s with 0’s to get a configuration that requires a decision of (0, 1), which violates
Binding.

▶ Theorem 6. If a uniform connected consensus algorithm for R = 1 with n processes, up
to f of which can be malicious, satifies the Binding property, then n > 5f .

Proof. Consider for contradiction such an algorithm with n ≤ 5f . Without loss of generality,
assume V = {0, 1}. For simplicity, we refer to the possible decisions as 0, 1, and ⊥, instead
of (0, 1), (1, 1), and (⊥, 0). Let D(z) ∈ {0, 1, ⊥} denote the decision made when the multiset
of n − f values received has z 0’s.

We first show that if there is an “overwhelming” number of 0’s received, then the decision
must be 0, and similarly for 1. The threshold is n − 2f , which is at least f + 1 since the
resilience lower bound discussed in Section 5.1 shows that n must be at least 3f + 1.

▶ Lemma 7. Let z be any integer in {0, . . . , n − 2f}.
(a) If z ≥ n − 2f , then D(z) = 0.
(b) If z ≤ f , then D(z) = 1.

Proof.
(a) Consider any execution in which correct process p receives z ≥ n−2f 0’s and n−f −z 1’s.

This execution is indistinguishable from one in which all n − f of the correct processes
have input 0, and p receives z ≥ n − 2f messages for 0 from the correct processes and
n − f − z ≤ f messages for 1 from faulty processes. By the Validity condition, p must
decide 0 in the second execution. Thus D(z) = 0.

OPODIS 2023

https://doi.org/10.4230/LIPICS.DISC.2019.29
https://doi.org/10.4230/LIPICS.DISC.2019.29
https://doi.org/10.1145/800222.806744
https://doi.org/10.1145/277697.277755

6:22 Multi-Valued Connected Consensus

(b) Consider any execution in which correct process p receives z ≤ f 0’s and n − f − z 1’s.
This execution is indistinguishable from one in which all n − f of the correct processes
have input 1, and p receives n − f − z messages for 1 from the correct processes and
z ≤ f messages for 0 from faulty processes. By the Validity condition, p must decide 1
in the second execution. Thus D(z) = 1. ◀

▶ Lemma 8. The number of processes n must be at least 3f + 2.

Proof. Suppose in contradiction that n = 3f + 1 and consider any correct process p. If the
majority of the n − f = 2f + 1 values received by p is 0, then z ≥ f + 1. Since n = 3f + 1,
f + 1 = n − 2f , and thus Lemma 7(a) implies that p must decide 0. If the majority value
is not 0, then the majority value must be 1, and Lemma 7(b) implies that p must decide 1.
Thus there is no possibility of a process deciding ⊥, and hence the algorithm actually solves
consensus, which is impossible [25]. ◀

The next lemma shows that the range of input values requiring a decision of 0 and the
range of input values requiring a decision of 1 must be sufficiently separated from each other.

▶ Lemma 9. Let x and y be integers in {0, . . . , n − 2f}. If D(x) = 0 and D(y) = 1, then
|x − y| > f .

Proof. Suppose in contradiction there exist x and y in {0, . . . , n − 2f} such that D(x) = 0,
D(y) = 1, and |x − y| ≤ f .

Without loss of generality, suppose x > y. Consider the execution in which the correct
inputs are x 0’s and n − f − x 1’s. Suppose that correct process p hears from all the correct
processes, so it gets x 0’s and n − f − x 1’s, and decides 0. Suppose that another correct
process q hears from only y of the correct processes with input 0, all n − f − x of the correct
processes with input 1, and x − y ≤ f faulty processes, who pretend to have input 1. Thus q

gets y 0’s and (n − f − x) + (x − y) = n − f − y 1’s, and decides 1. This is possible because
of the asynchrony of the message deliveries. But this violates the Agreement property. ◀

The next claim states that when the received values are about half 0’s and half 1’s, the
decision must be ⊥. It also shows that this situation is not that far from a situation requiring
a decision of 0 and also not that far from a situation requiring a decision of 1.

▷ Claim 10. Let m =
⌈

n−f
2

⌉
.

(a) m + f ≥ n − 2f ,
(b) m − f ≤ f , and
(c) D(m) = ⊥.

We show that Binding is not guaranteed.
Consider an execution α in which m =

⌈
n−f

2

⌉
of the correct processes have input 0 and

the remaining n − f − m correct processes have input 1. Let correct process p be the first
to receive n − f messages, which are all from the correct processes. So p gets m 0’s and
n − f − m 1’s. By Claim 10(c), it decides ⊥.

Also suppose that all messages to another correct process q are delayed until after p

decides and that the faulty processes do nothing until after p decides.
Let α0 be an extension of α in which q receives m 0’s from correct processes, n − 2f − m

1’s from correct processes, and f 0’s from faulty processes. So q receives m + f 0’s and
n − 2f − m 1’s. Since m + f ≥ n − 2f by Claim 10(a), Lemma 7(a) implies that q decides 0.

H. Attiya and J. L. Welch 6:23

Let α1 be an extension of α in which q receives m−f 0’s from correct processes, n−f −m

1’s from correct processes, and f 1’s from faulty processes. So q receives m − f 0’s and n − m

1’s. Since m − f ≤ f by Claim 10(b), Lemma 7(b) implies that q decides 1.
The existence of extensions α1 and α0 violates the Binding property. ◀

OPODIS 2023

	1 Introduction
	2 Model of Computation
	3 Definitions of Connected Consensus and Related Problems
	4 Tolerating Crash Failures
	4.1 Lower Bounds
	4.2 Algorithm

	5 Tolerating Malicious Failures
	5.1 Lower Bounds
	5.2 Algorithms
	5.3 Algorithm for n > 5f
	5.4 Algorithm for n > 3f

	6 Discussion
	A No Built-in Binding, for n < 5f

