
Energy-Constrained Programmable Matter
Under Unfair Adversaries
Jamison W. Weber #

School of Computing and Augmented Intelligence, Arizona State University, Tempe, AZ, USA

Tishya Chhabra #

School of Computing and Augmented Intelligence, Arizona State University, Tempe, AZ, USA

Andréa W. Richa #

School of Computing and Augmented Intelligence & Biodesign Center for Biocomputing,
Security and Society, Arizona State University, Tempe, AZ, USA

Joshua J. Daymude #

School of Computing and Augmented Intelligence & Biodesign Center for Biocomputing,
Security and Society, Arizona State University, Tempe, AZ, USA

Abstract
Individual modules of programmable matter participate in their system’s collective behavior by
expending energy to perform actions. However, not all modules may have access to the external energy
source powering the system, necessitating a local and distributed strategy for supplying energy to
modules. In this work, we present a general energy distribution framework for the canonical amoebot
model of programmable matter that transforms energy-agnostic algorithms into energy-constrained
ones with equivalent behavior and an O(n2)-round runtime overhead – even under an unfair adversary
– provided the original algorithms satisfy certain conventions. We then prove that existing amoebot
algorithms for leader election (ICDCN 2023) and shape formation (Distributed Computing, 2023)
are compatible with this framework and show simulations of their energy-constrained counterparts,
demonstrating how other unfair algorithms can be generalized to the energy-constrained setting with
relatively little effort. Finally, we show that our energy distribution framework can be composed
with the concurrency control framework for amoebot algorithms (Distributed Computing, 2023),
allowing algorithm designers to focus on the simpler energy-agnostic, sequential setting but gain the
general applicability of energy-constrained, asynchronous correctness.

2012 ACM Subject Classification Theory of computation → Distributed algorithms; Theory of
computation → Self-organization

Keywords and phrases Programmable matter, amoebot model, energy distribution, concurrency

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2023.7

Related Version All proofs omitted from this paper due to space constraints can be found in:
Full Version: https://arxiv.org/abs/2309.04898

Supplementary Material Software (AmoebotSim): https://github.com/SOPSLab/AmoebotSim
archived at swh:1:dir:af373f8c717556382caba4a3abccc6ad749f03c3

Funding This work is supported in part by National Science Foundation award CCF-2312537 and
by Army Research Office MURI award #W911NF-19-1-0233.

1 Introduction

Programmable matter [34] is often envisioned as a material composed of simple, homogeneous
modules that collectively change the system’s physical properties based on environmental
stimuli or user input. These modules participate in the system’s overall collective behavior
by expending energy to perform internal computation, communicate with their neighbors,
and move. But as the number of modules per collective increases and individual modules

© Jamison W. Weber, Tishya Chhabra, Andréa W. Richa, and Joshua J. Daymude;
licensed under Creative Commons License CC-BY 4.0

27th International Conference on Principles of Distributed Systems (OPODIS 2023).
Editors: Alysson Bessani, Xavier Défago, Junya Nakamura, Koichi Wada, and Yukiko Yamauchi; Article No. 7;
pp. 7:1–7:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jwweber@asu.edu
https://orcid.org/0000-0002-9573-1783
mailto:tchhabr2@asu.edu
https://orcid.org/0000-0002-3555-1078
mailto:aricha@asu.edu
https://orcid.org/0000-0003-3592-3756
mailto:jdaymude@asu.edu
https://orcid.org/0000-0001-7294-5626
https://doi.org/10.4230/LIPIcs.OPODIS.2023.7
https://arxiv.org/abs/2309.04898
https://github.com/SOPSLab/AmoebotSim
https://archive.softwareheritage.org/swh:1:dir:af373f8c717556382caba4a3abccc6ad749f03c3;origin=https://github.com/SOPSLab/AmoebotSim;visit=swh:1:snp:67cc9b7fd237b40e972eaf64a8446f3d0c1585d9;anchor=swh:1:rev:eca876cc14577c5488abf34cb705ba445971225f
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

7:2 Energy-Constrained Programmable Matter Under Unfair Adversaries

are miniaturized from the centimeter/millimeter-scale [20, 22, 32] to the micro- and nano-
scale [4, 16, 26], traditional methods of robotic power supply such as internal battery storage
and tethering become infeasible. Many programmable matter systems instead make use of
an external energy source accessible by at least one module and rely on module-to-module
power transfer to supply the system with energy [6, 20,23, 32]. This external energy can be
supplied directly to modules in the form of electricity [20] or may be ambiently available as
light, heat, sound, or chemical energy in the environment [27,30]. Since energy may not be
uniformly accessible to all modules in the system, a strategy for energy distribution – sharing
energy among modules such that the system can achieve its desired function – is imperative.

Algorithmic theory for programmable matter – including population protocols [1], the
nubot model [36], mobile robots [17], hybrid programmable matter [21], and the amoebot
model [10,12] – has largely ignored energy constraints, focusing instead on characterizing
individual modules’ necessary and sufficient capabilities for goal collective behaviors. Besides
a few notable exceptions [16,32], this literature only references energy to justify assumptions
(e.g., why a system should remain connected [28]) and ignores the impact of energy usage and
distribution on an algorithm’s efficiency. In contrast, both programmable matter practitioners
and the modular and swarm robotics literature incorporate energy constraints as influential
aspects of algorithm design [2, 24,29,31,35].

This gap motivated the prior Energy-Sharing algorithm for energy distribution [11] under
the amoebot model of programmable matter [12]. When amoebots do not move and are
activated sequentially and fairly, Energy-Sharing distributes any necessary energy to all n

amoebots within at most O(n) rounds. Combined with the Forest-Prune-Repair algorithm
introduced in the same work to repair energy distribution networks as amoebots move, it was
suggested that any amoebot algorithm could be composed with these two to handle energy
constraints, though this was only shown for one algorithm in simulation.

In this work, we introduce a general energy distribution framework that provably con-
verts any energy-agnostic amoebot algorithm satisfying certain conventions into an energy-
constrained version that exhibits the same system behavior while also distributing the energy
amoebots need to meet the demands of their actions. In particular, we use the message
passing-based canonical amoebot model [10] to address the challenges of unfair adversarial
schedulers – the most general of all fairness assumptions – that can activate any amoebot
that is able to perform an action regardless of how long others have been waiting to do the
same. Under an unfair adversary, the prior Forest-Prune-Repair algorithm may not terminate,
rendering it unusable for maintaining energy distribution networks. In contrast, energy-
constrained algorithms produced by our framework not only terminate despite unfairness,
but do so within an O(n2)-round overhead, where n is the number of amoebots in the system.

Our Contributions. We summarize our contributions as follows. We introduce the energy
distribution framework that transforms any energy-agnostic amoebot algorithm A satisfying
some basic conventions and a demand function δ specifying its energy costs into an energy-
constrained algorithm Aδ that provably exhibits equivalent behavior to A, even under an
unfair adversary, while incurring at most an O(n2)-round runtime overhead (Section 3). We
then prove that both the Leader-Election-by-Erosion algorithm from [5] and the Hexagon-
Formation algorithm from [10] satisfy the framework’s conventions and show simulations of
their energy-constrained counterparts produced by the framework (Section 4).

Finally, we prove that a particular class of “expansion-corresponding” algorithms that are
compatible with the established concurrency control framework for amoebot algorithms [10] –
including Leader-Election-by-Erosion and Hexagon-Formation– remain so after transformation

J. W. Weber, T. Chhabra, A. W. Richa, and J. J. Daymude 7:3

(a) (b)

ebat

(c)

Figure 1 The Amoebot Model. (a) A section of the triangular lattice G∆ used in the geometric
space variant; nodes of V are shown as black circles and edges of E are shown as black lines. (b)
Expanded and contracted amoebots; G∆ is shown in gray and amoebots are shown as black circles.
Amoebots with a black line between their nodes are expanded. (c) When modeling energy, each
amoebot A has a battery A.ebat storing energy for its own use and for sharing with its neighbors.

by our energy distribution framework, establishing a general pipeline for lifting energy-
agnostic, non-concurrent amoebot algorithms (which are easier to design and analyze) to the
more realistic energy-constrained, asynchronous setting (Section 5).

2 Preliminaries

We begin with necessary background on the (canonical) amoebot model in Section 2.1 and
our extensions for energy constraints in Section 2.2.

2.1 The Amoebot Model
In the canonical amoebot model [10], programmable matter consists of individual, homo-
geneous computational elements called amoebots. The structure of an amoebot system is
represented as a subgraph of an infinite, undirected graph G = (V, E) where V represents all
relative positions an amoebot can occupy and E represents all atomic movements an amoebot
can make. Each node in V can be occupied by at most one amoebot at a time. Here, we
adopt the geometric space variant in which G = G∆, the triangular lattice (Figure 1a).

An amoebot has two shapes: contracted, meaning it occupies a single node in V , and
expanded, meaning it occupies a pair of adjacent nodes in V (Figure 1b). Each amoebot
keeps a collection of ports – one for each edge incident to the node(s) it occupies – that
are labeled consecutively according to its own local, persistent orientation. All results in
this work allow for assorted orientations, meaning amoebots may disagree on both direction
(which incident edge points “north”) and chirality (clockwise vs. counter-clockwise rotation).
Two amoebots occupying adjacent nodes are said to be neighbors. Although each amoebot is
anonymous, lacking a unique identifier, an amoebot can locally identify its neighbors using
their port labels. In particular, amoebots A and B connected via ports pA and pB know
each other’s orientations and labels for pA and pB .

Each amoebot has memory whose size is a model variant; all results in this work assume
constant-size memories. An amoebot’s memory consists of two parts: a persistent public
memory that is only accessible to an amoebot algorithm via communication operations
(defined next) and a volatile private memory that is directly accessible by amoebot algorithms
for temporary variables, computation, etc. Operations define the programming interface for
amoebot algorithms to communicate and move (see [10] for details):

OPODIS 2023

7:4 Energy-Constrained Programmable Matter Under Unfair Adversaries

The Connected operation tests the presence of neighbors. Connected(p) returns
true if and only if there is a neighbor connected via port p.

The Read and Write operations exchange information in public memory. Read(p, x)
issues a request to read the value of a variable x in the public memory of the neighbor
connected via port p while Write(p, x, xval) issues a request to update its value to xval.
If p = ⊥, an amoebot’s own public memory is accessed instead of a neighbor’s.

An expanded amoebot can Contract into either node it occupies; a contracted amoebot
can Expand into an unoccupied adjacent node. Neighboring amoebots can coordinate
their movements in a handover, which occurs in one of two ways. A contracted amoebot
A can Push an expanded neighbor B by expanding into a node occupied by B, forcing it
to contract. Alternatively, an expanded amoebot B can Pull a contracted neighbor A

by contracting, forcing A to expand into the node it is vacating.

Amoebot algorithms are sets of actions, each of the form ⟨label⟩ : ⟨guard⟩ → ⟨operations⟩.
An action’s label specifies its name. Its guard is a Boolean predicate determining whether
an amoebot A can execute it based on the ports A has connections on – i.e., which nodes
adjacent to A are (un)occupied – and information from the public memories of A and its
neighbors. An action is enabled for an amoebot A if its guard is true for A, and an amoebot is
enabled if it has at least one enabled action. An action’s operations specify the finite sequence
of operations and computation in private memory to perform if this action is executed.

An amoebot is active while executing an action and is inactive otherwise. An adversary
controls the timing of amoebot activations and the resulting action executions, whose
concurrency and fairness are assumption variants. In this work, we consider two concurrency
variants: sequential, in which at most one amoebot can be active at a time; and asynchronous,
in which any set of amoebots can be simultaneously active. We consider the most general
fairness variant: unfair, in which the adversary may activate any enabled amoebot.

An amoebot algorithm’s time complexity is evaluated in terms of rounds representing the
time for the slowest continuously enabled amoebot to execute a single action. Let ti denote
the time at which round i ∈ {0, 1, 2, . . .} starts, where t0 = 0, and let Ei denote the set of
amoebots that are enabled or already executing an action at time ti. Round i completes at
the earliest time ti+1 > ti by which every amoebot in Ei either completed an action execution
or became disabled at some time in (ti, ti+1].

2.2 Extensions for Energy Modeling

In addition to the standard model, we introduce new assumptions and terminology specific to
modeling energy in amoebot systems. We consider amoebot systems that are finite, initially
connected, and contain at least one source amoebot with access to an external energy source.
Although system connectivity is not generally required by the (canonical) amoebot model, it
is necessary for sharing energy from a single source amoebot to the rest of the system via
module-to-module power transfer. Each amoebot A has an energy battery denoted A.ebat

with capacity κ > 0 representing energy that A can use to perform actions or share with its
neighbors (Figure 1c). In this paper, we assume κ = Θ(1) is a fixed integer constant that
does not scale with the number of amoebots n, but all results in this paper would hold even
if κ = O(n). Source amoebots can harvest energy directly into their batteries while those
without access depend on their neighbors to share with them. In either case, we assume an

J. W. Weber, T. Chhabra, A. W. Richa, and J. J. Daymude 7:5

amoebot transfers at most a single unit of energy per activation.1 For modeling purposes,
we treat A.ebat as a variable stored in the public memory of A. An amoebot A harvesting
energy from an external source can be expressed as Write(⊥, ebat, Read(⊥, ebat) + 1) and
likewise an amoebot A transferring energy to a neighbor B connected via a port p is a pair
of operations Write(⊥, ebat, Read(⊥, ebat) − 1) and Write(p, ebat, Read(p, ebat) + 1).

The energy costs for an amoebot algorithm A = {[αi : gi → opsi] : i ∈ {1, . . . , m}} are
given by a demand function δ : A → {1, 2, . . . , κ}; i.e., an amoebot must use δ(αi) energy to
execute action αi. Energy is incorporated into actions αi ∈ A by (1) including A.ebat ≥ δ(αi)
in each guard gi and (2) setting Write(⊥, ebat, Read(⊥, ebat) − δ(αi)) as the first operation
of opsi to spend the corresponding amount of energy. An amoebot A is deficient w.r.t. an
action αi ∈ A if A.ebat < δ(αi). An amoebot algorithm A is energy-agnostic if it is not
associated with a demand function δ and is energy-constrained (w.r.t. δ) otherwise.

The remainder of this paper is dedicated to transforming amoebot algorithms that were
designed for the energy-agnostic setting into algorithms with equivalent behavior in the
energy-constrained setting w.r.t. any valid demand function under an unfair adversary.

3 A General Framework for Energy-Constrained Algorithms

Amoebot algorithm designers prove the correctness of their algorithms with respect to a safety
condition (related to the desired system behavior) and a liveness condition (ensuring that
until this behavior is achieved, some amoebot can make progress towards it). Moving from
energy-agnosticism to respecting energy constraints does not affect safety, but may threaten
liveness. Some amoebot that was critical to achieving progress in the energy-agnostic setting
may now be deficient under the constraints of actions’ energy costs, deadlocking the system
until it is provided with sufficient energy. Since not all amoebots have access to an external
energy source, simply waiting to recharge is not an option. There must be an active strategy
for energy distribution embedded in any energy-constrained algorithm.

Instead of placing the burden on algorithm designers to create bespoke implementations of
energy distribution for each algorithm, we introduce a general energy distribution framework.
This framework transforms energy-agnostic algorithms A that terminate under an unfair
adversary and satisfy certain conventions into algorithms Aδ that are energy-constrained
w.r.t. any valid demand function δ and retain their unfair correctness. We give a narrative
description and pseudocode for our framework in Section 3.1 and analyze it in Section 3.2.

3.1 The Energy Distribution Framework

Our energy distribution framework (Algorithm 1) takes as input any energy-agnostic amoebot
algorithm A = {[αi : gi → opsi] : i ∈ {1, . . . , m}} and demand function δ : A → {1, 2, . . . , κ}
and outputs an energy-constrained algorithm Aδ = {[αδ

i : gδ
i → opsδ

i] : i ∈ {1, . . . , m}} ∪
{αEnergyDistribution}, where actions αδ

i are energy-constrained versions of the original actions
and αEnergyDistribution is a new action that handles energy distribution. Algorithm Aδ will
achieve the same system behavior as algorithm A so long as A satisfies certain conventions:

1 One could assume that the battery capacity κ > 0 is any positive real number and that the energy
demands are δ : A → (0, κ]. However, this generality complicates our analysis without meaningfully
extending our results, so we make the simplifying assumption that there exists a fundamental unit of
energy that divides all action demands δ(αi) and the battery capacity κ.

OPODIS 2023

7:6 Energy-Constrained Programmable Matter Under Unfair Adversaries

Table 1 Variables used in the Energy Distribution Framework.

Variable Notation Domain Initialization

Forest State state
{source, idle, active,

asking, growing, pruning}

{
source if source amoebot;
idle otherwise.

Parent Pointer parent {null, 0, . . . , 9}2 null
Battery Energy ebat {0, 1, 2, . . . , κ} 0

▶ Definition 1. An energy-agnostic amoebot algorithm A is energy-compatible – i.e., it is
compatible with the energy distribution framework – if every (unfair) sequential execution of
A terminates and A satisfies Conventions 1–3 (defined below).

Our first two conventions are taken directly from the analogous concurrency control
framework for amoebot algorithms [10]. The first convention requires an algorithm’s actions
to execute successfully in isolation, allowing the framework to ignore invalid actions like
attempting to Read on a disconnected port or Expand when already expanded. Formally,
we define a system configuration as the mapping of amoebots to the node(s) they occupy
and the contents of each amoebot’s public memory. Throughout the remainder of this paper,
we assume configurations are legal; i.e., they meet the requirements of the amoebot model.

▶ Convention 1 (Validity). All actions α of an amoebot algorithm A should be valid, i.e.,
for all (legal) system configurations in which α is enabled for some amoebot A, the execution
of α by A should be successful whenever all other amoebots are inactive.

The second convention defines a common structure for an algorithm’s actions by controlling
the order and number of their operations, similar to the “look-compute-move” paradigm in
the mobile robots literature [17].

▶ Convention 2 (Phase Structure). Each action of an amoebot algorithm A should structure
its operations as: (1) a compute phase, during which an amoebot performs a finite amount of
computation and a finite sequence of Connected, Read, and Write operations, and (2)
a move phase, during which an amoebot performs at most one movement operation decided
upon in the compute phase. In particular, no action should use the canonical amoebot model’s
concurrency control operations, Lock and Unlock.

Our third and final convention is specific to the energy distribution framework. Recall
from Section 2.2 that we consider amoebot systems that are initially connected. This last
convention requires an algorithm to maintain system connectivity throughout its execution,
ensuring that every amoebot has a path to a source amoebot with access to external energy.

▶ Convention 3 (Connectivity). All system configurations reachable by any sequential execu-
tion of an amoebot algorithm A starting in a connected configuration must also be connected.

Framework Overview. With the conventions defined, we now describe how the energy
distribution framework (Algorithm 1) transforms an energy-compatible algorithm A and
a demand function δ : A → {1, 2, . . . , κ} into an energy-constrained algorithm Aδ with

2 Amoebots maintain one port per incident lattice edge (see Section 2.1), so an expanded amoebot has
ten ports despite having a maximum of eight neighbors.

J. W. Weber, T. Chhabra, A. W. Richa, and J. J. Daymude 7:7

Algorithm 1 Energy Distribution Framework for Amoebot A.

Input: An energy-compatible algorithm A = {[αi : gi → opsi] : i ∈ {1, . . . , m}} and a demand
function δ : A → {1, 2, . . . , κ}.

1: for each action [αi : gi → opsi] ∈ A do construct action αδ
i : gδ

i → opsδ
i as:

2: Set gδ
i ←

(
gi ∧ (A.ebat ≥ δ(αi)) ∧ (∀B ∈ N(A) ∪ {A} : B.state ̸∈ {idle, pruning})

)
.

3: Set opsδ
i ← “Do:

4: Write(⊥, ebat, Read(⊥, ebat)− δ(αi)).
5: Execute the compute phase of opsi.
6: if the movement phase of opsi contains a movement operation Mi then
7: if Mi is Contract() or Pull(p) then
8: Write(⊥, parent, null) and Prune().
9: else if Mi is Push(p) then

10: Write(⊥, parent, null) and Write(p, parent, null).
11: Write(⊥, state, pruning) and Write(p, state, pruning).
12: Execute Mi.”
13: Construct αEnergyDistribution : gEnergyDistribution → opsEnergyDistribution as:
14: Set gEnergyDistribution ←

∨
g∈G(g), where G = {

15:

gGetPruned = (A.state = pruning),
gAskGrowth = (A.state = active) ∧ (A has an idle neighbor or asking child),
gGrowForest = (A.state = growing) ∨(

(A.state = source) ∧ (A has an idle neighbor or asking child)
)
,

gHarvestEnergy= (A.state = source) ∧ (A.ebat < κ),
gShareEnergy = (A.state ̸∈ {idle, pruning}) ∧

(A.ebat ≥ 1) ∧ (A has a child B : B.ebat < κ)}
16: Set opsEnergyDistribution ← “Do:
17: if gGetPruned then Prune(). ▷ GetPruned
18: if gAskGrowth then Write(⊥, state, asking). ▷ AskGrowth
19: if gGrowForest then ▷ GrowForest
20: for each port p for which Connected(p) = true and Read(p, state) = idle do
21: Write(p, parent, p′), where p′ is any port of the neighbor on port p facing A.
22: Write(p, state, active).
23: for each port p ∈ Children() : (Read(p, state) = asking) do
24: Write(p, state, growing).
25: if Read(⊥, state) = growing then Write(⊥, state, active).
26: if gHarvestEnergy then Write(⊥, ebat, Read(⊥, ebat) + 1). ▷ HarvestEnergy
27: if gShareEnergy then ▷ ShareEnergy
28: Let port p ∈ Children() be one for which Read(p, ebat) < κ.
29: Write(⊥, ebat, Read(⊥, ebat)− 1).
30: Write(p, ebat, Read(p, ebat) + 1).”
31: return Aδ = {[αδ

i : gδ
i → opsδ

i] : i ∈ {1, . . . , m}} ∪ {αEnergyDistribution}.

32: function Children()
33: return {ports p : Connected(p) ∧ (Read(p, parent) points to A)}.
34: function Prune()
35: for each port p ∈ Children() do
36: Write(p, state, pruning).
37: Write(p, parent, null).
38: if Read(⊥, state) ̸= source then Write(⊥, state, idle).

OPODIS 2023

7:8 Energy-Constrained Programmable Matter Under Unfair Adversaries

“equivalent” behavior (defined formally in Section 3.2). At a high level, Aδ works as follows.
The amoebot system first self-organizes as a spanning forest F rooted at source amoebots with
access to external energy sources. Energy is harvested by source amoebots and transferred
from parents to children in F as there is need. Amoebots spend energy on enabled actions of
algorithm A until they become deficient, when they will once again need to wait to recharge.
This process repeats until termination, which must occur since A is energy-compatible.

Algorithm Aδ comprises two types of actions. First, every action αi ∈ A is transformed
into an energy-constrained version αδ

i ∈ Aδ (Algorithm 1, Lines 1–12). By including
A.ebat ≥ δ(αi) in its guard gδ

i and spending δ(αi) energy at the start of its operations opsδ
i ,

the transformed action αδ
i is only executed if there is sufficient energy to do so and any

such execution spends the corresponding energy. The guard gδ
i also ensures any amoebot

executing an αδ
i action and all of its neighbors are part of the forest structure F .

Second, there is a singular αEnergyDistribution action that defines how amoebots self-
organize as a spanning forest and distribute energy throughout the system (Algorithm 1,
Lines 13–30). Its operations are organized into five blocks – GetPruned, AskGrowth,
GrowForest, HarvestEnergy, and ShareEnergy– each of which has a corresponding
logical predicate in the set G. These predicates appear in the guard

∨
g∈G(g), which ensures

that αEnergyDistribution is only enabled when its execution would progress towards distributing
energy to deficient amoebots. The latter is critical for proving that Aδ achieves energy
distribution even under an unfair adversary, which we show in Section 3.2. The remainder of
this section details the five blocks; their local variables are summarized in Table 1.

Forming and Maintaining a Spanning Forest. Recall from Section 2.2 that we consider
amoebot systems that are initially connected and contain at least one source amoebot with
access to an external energy source. The GetPruned, AskGrowth, and GrowForest
blocks (Algorithm 1, Lines 17–25) continuously organize the amoebot system as a spanning
forest F of trees rooted at the source amoebot(s). These trees act as an acyclic resource
distribution network for energy transfers, which is important for avoiding non-termination
under an unfair adversary.

The well-established spanning forest primitive [9] and the recent feather tree formation
algorithm [25] are both guaranteed to organize an amoebot system as a spanning forest F
under an unfair sequential adversary, assuming no parent–child relationship in F is ever
disrupted after it is formed. However, many amoebot algorithms A – and by extension, the
actions αδ

i of algorithms Aδ – cause amoebots to move, partitioning F into “unstable” trees
whose connections to source amoebots have been disrupted and “stable” trees that remain
rooted at sources. This necessitates a protocol for dynamically repairing F as amoebots move.
To this end, the earlier Forest-Prune-Repair algorithm [11] was designed to “prune” unstable
trees, allowing their amoebots to rejoin stable trees. Unfortunately, Forest-Prune-Repair
requires fairness for termination, which we do not have here. In the following, we describe a
new algorithm that dynamically maintains F under an unfair sequential adversary.

Each amoebot has a state variable that is initialized to source for source amoebots
and idle for all others. Additionally, each amoebot has a parent pointer indicating the port
incident to their parent in the forest F ; these pointers are initially set to null. A source
amoebot adopts its idle neighbors into its tree by making them active and setting their
parent pointers to itself (GrowForest, Algorithm 1, Lines 19–22). active amoebots,
however, must ask the source amoebot at the root of their tree for permission before adopting
their idle neighbors (AskGrowth, Algorithm 1, Line 18). Although indirect, this ensures
that idle amoebots only join trees that are (or were recently) stable, stopping the unfair

J. W. Weber, T. Chhabra, A. W. Richa, and J. J. Daymude 7:9

adversary from creating non-terminating executions (see Lemma 4). Specifically, an active
amoebot with an idle neighbor becomes asking. Any active amoebot with an asking child
also becomes asking, propagating this “asking signal” towards the tree’s source amoebot.
When the source amoebot receives this asking signal, it updates all its asking children to
growing, granting them permission to grow the tree. A growing amoebot adopts its idle
neighbors as active children, updates its asking children to growing, and resets its state
to active. This process repeats until no idle amoebots remain.

If an amoebot’s movement during an αδ
i execution would disrupt F , it initiates a pruning

process to dissolve disrupted subtrees. Amoebots performing Contract or Pull movements
must prune immediately since their movement may disconnect them from their neighbors;
Push movements instead make the two involved amoebots pruning, which will cause them
to prune during their next action. When an amoebot prunes, it makes its children pruning
and resets both its own and its children’s parent pointers, severing them from their tree
(Algorithm 1, Lines 8 and 35–37). If it is not a source, it also becomes idle (Algorithm 1,
Line 38). The GetPruned block ensures that any pruning amoebot does the same,
dissolving the unstable tree (Algorithm 1, Line 17). These newly idle amoebots are then
collected into stable trees by the AskGrowth and GrowForest blocks as described above.

Sharing Energy. The HarvestEnergy and ShareEnergy blocks (Algorithm 1, Lines 26–
30) define how source amoebots harvest energy from external energy sources and how all
non-idle, non-pruning amoebots transfer energy to their neighbors, respectively. If its
battery is not already full, a source amoebot harvests a unit of energy from its external
energy source into its own battery. Any non-idle, non-pruning amoebot with at least one
unit of energy to share and a child whose battery is not full will then transfer a unit of energy
from its own battery to that of its child.

3.2 Analysis
In this section, we sketch the results building to the following theorem. Informally, it states
that an energy-constrained algorithm Aδ produced by the energy distribution framework (1)
only yields system outcomes that could have been achieved by the original energy-agnostic
algorithm A, provided A is energy-compatible, and (2) incurs an O(n2) runtime overhead.

▶ Theorem 2. Consider any energy-compatible amoebot algorithm A and demand function
δ : A → {1, 2, . . . , κ}, and let Aδ be the algorithm produced from A and δ by the energy
distribution framework (Algorithm 1). Let C0 be any (legal) connected initial configuration for
A and let Cδ

0 be its extension for Aδ that designates at least one source amoebot and adds the
energy distribution variables with their initial values (Table 1) to all amoebots. Then for any
configuration Cδ in which an unfair sequential execution of Aδ starting in Cδ

0 terminates, there
exists an unfair sequential execution of A starting in C0 that terminates in a configuration
C that is identical to Cδ modulo the energy distribution variables. Moreover, if all unfair
sequential executions of A on n amoebots terminate after at most TA(n) action executions,
then any unfair sequential execution of Aδ on n amoebots terminates in O(n2TA(n)) rounds.

Due to space constraints, we highlight only the most important supporting results of this
analysis. All omitted lemmas, invariants, and proofs can be found in the full version of this
paper (see link in title page).

▶ Lemma 3. Consider any sequential execution Sδ of Aδ starting in initial configuration Cδ
0

and let Sδ
α denote its subsequence of αδ

i action executions. Then the corresponding sequence
Sα of αi executions is a valid sequential execution of A starting in initial configuration C0.

OPODIS 2023

7:10 Energy-Constrained Programmable Matter Under Unfair Adversaries

This lemma implies that any sequential execution Sδ of Aδ contains a finite number of
αδ

i executions, since the corresponding sequence of αi executions forms a possible sequential
execution of A, which must terminate because A is energy-compatible. It remains to analyze
the energy runs in Sδ, i.e., the maximal sequences of consecutive αEnergyDistribution executions
delineated by αδ

i executions. Formally, an execution of αEnergyDistribution by an amoebot A is
g-supported if predicate g ∈ G is satisfied when A is activated and executes αEnergyDistribution.
We argue that any predicate g ∈ G can support at most a finite number of executions per
energy run, implying that all energy runs, and thus all sequential executions of Aδ, are finite:

▶ Lemma 4. Any energy run of Sδ contains at most a finite number of g-supported
αEnergyDistribution executions, for any g ∈ G.

Let Cδ be the terminating configuration of Sδ. We must show that there exists a sequential
execution of A starting in C0 that terminates in the configuration C obtained from Cδ by
removing the energy distribution variables. An obvious candidate is the sequence Sα of
αi executions corresponding to the αδ

i executions in Sδ. Lemma 3 already implies that Sα

reaches C, and a careful argument involving the guard of αEnergyDistribution shows that it
must also terminate there. The remainder of the analysis characterizes the time required for
an uninterrupted energy run – i.e., one that is not ended early by an αδ

i execution, which
only helps the overall progress argument – to collect all amoebots into stable trees rooted at
source amoebots and, once this is achieved, to fully recharge all amoebots’ batteries.

▶ Lemma 5. After at most O(n2) rounds of any uninterrupted energy run of Sδ, all n

amoebots belong to stable trees.

▶ Lemma 6. After at most O(n) rounds of any uninterrupted, stabilized energy run of Sδ,
all n amoebots have full batteries.

These lemmas imply that every energy run terminates in at most O(n2) rounds. The
theorem supposes that any sequential execution of A terminates in TA(n) action executions,
so we know by Lemma 3 that any sequential execution of Aδ contains at most TA(n) + 1
energy runs. Combining these facts yields the O(n2TA(n)) runtime bound for Aδ.

4 Energy-Constrained Leader Election and Shape Formation

With the energy distribution framework defined and its properties analyzed, we now apply
it to existing energy-agnostic algorithms for leader election and shape formation and show
simulations of their energy-constrained counterparts. We first make a straightforward
observation about stationary amoebot algorithms, i.e., those in which amoebots do not move.
These include simple primitives like spanning forest formation [9] and binary counters [7, 33]
as well as the majority of existing algorithms for leader election [3,5,8, 14,15,18,19]. It is
easily seen that an algorithm that never moves cannot disconnect an initially connected
system, and its actions never involve a “move phase”. Thus,

▶ Observation 7. All stationary amoebot algorithms satisfy Convention 3, and those that do
not use Lock or Unlock operations also satisfy Convention 2.

Observation 7 immediately implies the following about stationary algorithms’ compatibility
with the energy distribution framework.

▶ Corollary 8. Any stationary amoebot algorithm that terminates under every (unfair)
sequential execution, comprises only valid actions (i.e., those whose executions always succeed
in isolation), and does not use Lock or Unlock operations is energy-compatible.

J. W. Weber, T. Chhabra, A. W. Richa, and J. J. Daymude 7:11

(a) t = 0 rounds. (b) t = 100. (c) t = 250. (d) t = 350.

Figure 2 Simulating Leader-Election-by-Erosionδ. A simulation of Leader-Election-by-Erosionδ on
n = 91 amoebots with one source amoebot, capacity κ = 10, and demand δ(α) = 5 for all actions α.
Both rows show the same simulation. Top: For Leader-Election-by-Erosion, amoebots are initially
“null candidates” (no color) and eventually declare candidacy (blue); candidates then either erode
(dark gray) or become the unique leader (red). Bottom: For energy distribution, color opacity
indicates energy levels. All amoebots are initially idle (no color) except the source (gray/black);
amoebots eventually join the forest F (green) and distribute energy.

One such algorithm is Leader-Election-by-Erosion, a deterministic leader election algorithm
for hole-free, connected amoebot systems introduced by Di Luna et al. [15] and extended to
the canonical amoebot model and three-dimensional space by Briones et al. [5]. All amoebots
first become leader candidates. When activated, a candidate uses certain rules regarding
the number and relative positions of its neighbors to decide whether to “erode”, revoking its
candidacy without disconnecting or introducing a hole into the remaining set of candidates.
The last remaining candidate is necessarily unique and thus declares itself the leader.

▶ Lemma 9. Leader-Election-by-Erosion is energy-compatible.

Proof. Leader-Election-by-Erosion is clearly stationary – no movement is involved in checking
neighbors’ positions or revoking candidacy – so it suffices to check the conditions of Corollary 8.
Briones et al. [5] have already shown that any unfair sequential execution of this algorithm
elects a leader – and thus terminates – in O(n) rounds. This correctness analysis also confirms
that no actions of Leader-Election-by-Erosion are invalid; otherwise, some action executions
would fail. Finally, it is easy to verify from the algorithm’s pseudocode in [5] that Lock and
Unlock are not used, so we are done. ◀

Combining this lemma, the energy distribution framework’s guarantees (Theorem 2),
and Leader-Election-by-Erosion’s correctness and runtime guarantees (Theorem 6.3 of [5])
immediately implies the following theorem.

▶ Theorem 10. For any demand function δ : Leader-Election-by-Erosion → {1, 2, . . . , κ}, the
algorithm Leader-Election-by-Erosionδ produced by the energy distribution framework deter-
ministically solves the leader election problem for hole-free, connected systems of n amoebots
in O(n3) rounds assuming geometric space, assorted orientations, constant-size memory, and
an unfair sequential adversary.

A simulation of Leader-Election-by-Erosionδ successfully electing a unique leader under
energy constraints is shown in Figure 2. As the proof of Lemma 9 shows, Corollary 8 sets a
very low bar for proving stationary algorithms are energy-compatible. Almost all existing

OPODIS 2023

7:12 Energy-Constrained Programmable Matter Under Unfair Adversaries

amoebot algorithms are designed to terminate after achieving a desired system behavior,
and this property is typically proven as part of their correctness analyses. Invalid actions
are avoided, as their executions would always fail.3 Finally, no existing algorithms use the
concurrency control operations Lock and Unlock directly; these are typically reserved
for use by the “concurrency control framework” [10] discussed in the next section. The
only remaining obstacle is that many existing stationary algorithms predate the canonical
amoebot model and have not yet been reformulated in guarded action semantics or analyzed
under an unfair adversary. Supposing this obstacle can be overcome without significantly
affecting the algorithms’ previously proven guarantees, the above discussion shows it is likely
that most – if not all – existing stationary amoebot algorithms are energy-compatible.

What about non-stationary amoebot algorithms whose movements make satisfying the
phase structure and connectivity conventions (Conventions 2 and 3) non-trivial? Here our
example is the Hexagon-Formation algorithm for basic shape formation, originally introduced
by Derakhshandeh et al. [13] and carefully reformulated and analyzed under the canonical
amoebot model by Daymude et al. [10]. The basic idea of this algorithm is to form a hexagon
– or as close to one as is possible with the number of amoebots in the system – by extending a
spiral that begins at a (pre-defined or elected) seed amoebot. Thanks to the analysis in [10],
it is easy to show Hexagon-Formation is compatible with the energy distribution framework.

▶ Lemma 11. Hexagon-Formation is energy-compatible.

Proof. Every sequential execution of Hexagon-Formation must terminate since Lemma 7
of [10] guarantees that any execution of this algorithm – sequential or concurrent – terminates
with the amoebot system forming a hexagon. Theorem 10 of [10] guarantees that Hexagon-
Formation satisfies the validity and phase structure conventions (Conventions 1 and 2), as
these were the two conventions borrowed directly from that paper’s concurrency control
framework. Finally, Hexagon-Formation is guaranteed to maintain the connectivity of an
initially connected system configuration by Lemma 3 of [10], satisfying Convention 3. ◀

Combining this lemma, the energy distribution framework’s guarantees (Theorem 2),
Hexagon-Formation’s correctness guarantees (Theorem 8 of [10]), and Hexagon-Formation’s
Θ(n2) worst-case work bound [13], we have:

▶ Theorem 12. For any demand function δ : Hexagon-Formation → {1, 2, . . . , κ}, the
algorithm Hexagon-Formationδ produced by the energy distribution framework deterministically
solves the hexagon formation problem for connected systems of n amoebots in O(n4) rounds
assuming geometric space, assorted orientations, constant-size memory, and an unfair
sequential adversary.

Figure 3 depicts a simulation of Hexagon-Formationδ forming a hexagon under energy
constraints. We emphasize that Leader-Election-by-Erosion and Hexagon-Formation are not
cherry-picked examples with particularly straightforward proofs of energy-compatibility. On
the contrary, we expect that like our two examples, many algorithms already have the
ingredients of energy-compatibility proven in their existing correctness analyses.

3 The canonical amoebot model introduced error handling for amoebot algorithm design to deal with
operation executions that fail due to concurrency (see Section 2.2 of [10]). Although error handling
could be used to deal with failed executions of invalid actions, no existing amoebot algorithms have
taken such a convoluted approach to designing functional algorithms.

J. W. Weber, T. Chhabra, A. W. Richa, and J. J. Daymude 7:13

(a) t = 0 rounds. (b) t = 400. (c) t = 900. (d) t = 1200.

Figure 3 Simulating Hexagon-Formationδ. A simulation of Hexagon-Formationδ on n = 91 amoe-
bots with one source amoebot, capacity κ = 10, and demand δ(α) = 5 for all actions α. States from
Hexagon-Formation are not visualized. For energy distribution, color opacity indicates energy levels.
All amoebots are initially idle (no color) except the source (gray/black); amoebots eventually join
the forest F (green) and distribute energy.

(a) Leader-Election-by-Erosion. (b) Hexagon-Formation.

Figure 4 Runtime Comparisons. The energy-constrained (a) Leader-Election-by-Erosionδ and (b)
Hexagon-Formationδ algorithms’ runtimes (yellow) and their energy-agnostic counterparts (blue) in
terms of sequential rounds. Each algorithm was simulated in 25 independent trials per system size
n ∈ {5, 10, . . . , 250}; average runtimes are shown as solid lines and one standard deviation is shown
as an error tube. Relevant asymptotic runtime bounds are shown as dotted lines: the energy-agnostic
algorithms both terminate in linear rounds (blue) and the energy-constrained algorithms’ bounds
are given by Theorems 10 and 12 (yellow).

We validate the runtime bounds for Leader-Election-by-Erosionδ and Hexagon-Formationδ

given in Theorems 10 and 12, respectively, by simulating these algorithms and their energy-
agnostic counterparts for a range of system sizes n. Figure 4 reports their empirical run-
times. Both energy-constrained algorithms well outperform their theoretical bounds, with
Leader-Election-by-Erosionδ achieving a near-linear runtime and Hexagon-Formationδ remain-
ing sub-quadratic. This suggests that our overhead bound can be optimized further or
describes only some pessimistic worst-case scenarios.

5 Asynchronous Energy-Constrained Algorithms

Our energy distribution results thus far consider sequential concurrency, in which at most one
amoebot can be active at a time (Section 2.1). This section details a useful extension of these
results to asynchronous concurrency, in which arbitrary amoebots can be simultaneously
active and their action executions can overlap arbitrarily in time.

OPODIS 2023

7:14 Energy-Constrained Programmable Matter Under Unfair Adversaries

There are many hazards of asynchrony that complicate amoebot algorithm design, with
concurrent movements and memory updates potentially causing operations to fail or action
executions to exhibit unintended behaviors. To reduce this complexity, one can use the
concurrency control framework for amoebot algorithms that – analogous to our own energy
distribution framework for energy-agnostic/constrained algorithms – transforms any algorithm
A that terminates under every (unfair) sequential execution and satisfies certain conventions
into an algorithm A′ that achieves equivalent behavior under any asynchronous execution [10].
Formally, an amoebot algorithm A is concurrency-compatible if every (unfair) sequential
execution of A terminates and it satisfies the validity, phase structure, and expansion-
robustness conventions. The first two conventions are identical to Conventions 1 and 2 of the
energy distribution framework. The third convention, expansion-robustness, requires actions
to be resilient to concurrent expansions into their neighborhood.

We originally aimed to prove that the energy distribution framework preserves any input al-
gorithm’s concurrency-compatibility – i.e., if an algorithm A is concurrency-compatible, then
so is Aδ – and thus the two frameworks can be composed to obtain energy-constrained, asyn-
chronous versions of all energy-compatible, concurrency-compatible algorithms. But as will
become clearer after we formally define expansion-robustness (Definition 13), knowing that A
is expansion-robust is seemingly insufficient for proving that Aδ is also expansion-robust: the
former only describes terminating configurations for A while the latter requires analyzing pos-
sible amoebot movements in all intermediate configurations reached by Aδ. Instead, we focus
on a special case of expansion-robustness called expansion-correspondence (Definition 14) that
we can prove is preserved by the energy distribution framework (Lemma 15). Although this re-
striction may appear limiting, the only algorithm known to be non-trivially expansion-robust
(Hexagon-Formation of [10]) was proven to be expansion-robust via expansion-correspondence.
Thus, until an algorithm is discovered to be expansion-robust but not expansion-corresponding,
our present focus covers all known concurrency-compatible algorithms.

Formally, let A be any amoebot algorithm satisfying Conventions 1 and 2 and consider its
expansion-robust variant AE defined as follows. Each amoebot A executing AE additionally
stores in public memory an expand flag A.flagp for each of its ports p that is initially
false, becomes true whenever A expands to reveal a new port p, and is reset to false
whenever A or one of its neighbors executes a later action. These expand flags communicate
when an amoebot has newly expanded into another amoebot’s neighborhood. Each action
αi : gi → opsi in A becomes an action αE

i : gE
i → opsE

i in AE (see Algorithm 2 in
Appendix A for details). The main difference is that while an amoebot A executes actions
with respect to its full neighborhood N(A) in A, it does so only with respect to its established
neighborhood NE(A) = {B ∈ N(A) : ∃ port p of B connected to A s.t. B.flagp = false}
in AE , effectively ignoring its newly expanded neighbors until its next action execution.

▶ Definition 13. An amoebot algorithm A is expansion-robust if for any (legal) initial system
configuration C0 of A, the following conditions hold:
1. If all sequential executions of A starting in C0 terminate, all sequential executions of AE

starting in CE
0 (i.e., C0 with all false expand flags) also terminate.

2. If a sequential execution of AE starting in CE
0 terminates in a configuration CE, some

sequential execution of A starting in C0 terminates in C (i.e., CE without expand flags).

As alluded to earlier, expansion-robustness only guarantees that sequential executions of
AE terminate and do so in a configuration that is reachable by a sequential execution of A.
This appears to be insufficient to prove Aδ is expansion-robust. We instead focus on the
following special case of expansion-robustness.

J. W. Weber, T. Chhabra, A. W. Richa, and J. J. Daymude 7:15

▶ Definition 14. An amoebot algorithm A is expansion-corresponding if for any (legal) initial
system configuration C0 of A, the following conditions hold:
1. If an action αE

i̸=0 ∈ AE is enabled for some amoebot A w.r.t. NE(A), then action αi ∈ A
is enabled for A w.r.t. N(A).

2. The executions of αE
i ̸=0 w.r.t. NE(A) and αi w.r.t. N(A) by an amoebot A are identical,

except the handling of expand flags.

The main lemma of this section proves that the energy distribution framework preserves
expansion-correspondence. Its proof and supporting results can be found in Appendix A.

▶ Lemma 15. For any energy-compatible, expansion-corresponding algorithm A and demand
function δ : A → {1, 2, . . . , κ}, the algorithm Aδ produced from A and δ by the energy
distribution framework is concurrency-compatible.

Lemma 15 shows that the energy distribution and concurrency control frameworks can
be composed to obtain the benefits of both. Specifically, an amoebot algorithm designer
should first design their algorithm without energy constraints and perform the usual safety
and liveness analyses with respect to an unfair sequential adversary. If the algorithm always
terminates, then they need only prove their algorithm satisfies the validity, phase structure,
and connectivity conventions and argue that their algorithm is expansion-corresponding to
automatically obtain an energy-constrained, asynchronous version of their algorithm with
equivalent behavior, courtesy of the two frameworks. The following theorem states this result
formally by combining the energy distribution framework’s guarantees (Theorem 2), the
concurrency control framework’s guarantees (Theorem 11 of [10]), and Lemma 15. Note
that because the runtime overhead of the concurrency control framework is not known, this
theorem does not give any overhead bounds.

▶ Theorem 16. Consider any energy-compatible, expansion-corresponding amoebot algorithm
A and demand function δ : A → {1, 2, . . . , κ}. Let Aδ be the algorithm produced from A and
δ by the energy distribution framework (Algorithm 1) and let (Aδ)′ be the algorithm produced
from Aδ by the concurrency control framework (Algorithm 4 of [10]). Let C0 be any (legal)
connected initial configuration for A and let (Cδ

0)′ be its extension for (Aδ)′ that designates at
least one source amoebot and adds the energy distribution and concurrency control variables
with their initial values (Table 1 and act and awaken of [10]) to all amoebots. Then every
asynchronous execution of (Aδ)′ starting in (Cδ

0)′ terminates. Moreover, if (Cδ)′ is the final
configuration of some asynchronous execution of (Aδ)′ starting in (Cδ

0)′, then there exists a
sequential execution of A starting in C0 that terminates in a configuration C that is identical
to (Cδ)′ modulo the energy distribution and concurrency control variables.

We conclude this section by applying Theorem 16 to the Leader-Election-by-Erosion and
Hexagon-Formation algorithms from Section 4. Those algorithms were shown to be energy-
compatible in Lemmas 9 and 11 and expansion-corresponding in Lemma 7.1 of [5] and
Theorem 10 of [10], respectively. Therefore,

▶ Corollary 17. There exist energy-constrained amoebot algorithms that deterministically
solve the leader election problem (for hole-free, connected systems) and the hexagon formation
problem (for connected systems) assuming geometric space, assorted orientations, constant-
size memory, and an unfair asynchronous adversary – the most general of all adversaries.

OPODIS 2023

7:16 Energy-Constrained Programmable Matter Under Unfair Adversaries

6 Conclusion

In this work, we introduced the energy distribution framework for amoebot algorithms which
transforms any energy-agnostic algorithm into an energy-constrained one with equivalent
behavior, provided the original algorithm terminates under an unfair sequential adversary,
maintains system connectivity, and follows some basic structural conventions (Theorem 2).
We then proved that both the Leader-Election-by-Erosion and Hexagon-Formation algorithms
are energy-compatible (Theorems 10 and 12). Perhaps surprisingly, these proofs were not
difficult. The algorithms’ existing correctness and runtime analyses under an unfair sequential
adversary provided nearly all that was needed for energy-compatibility, and we expect this
would be true for other algorithms as well. Finally, we proved that if an energy-compatible
algorithm is also expansion-corresponding, then its energy-constrained counterpart produced
by our framework can be extended to asynchronous concurrency using the concurrency
control framework for amoebot algorithms (Theorem 16).

The energy-constrained algorithms produced by our framework have an O(n2) round run-
time overhead, though our simulations of Leader-Election-by-Erosionδ and Hexagon-Formationδ

suggest that the overhead is much lower in practice. Comparing Lemmas 5 and 6 reveals
the spanning forest maintenance algorithm as the performance bottleneck, which uses O(n2)
rounds in the worst case to prune and rebuild a forest of stable trees. In particular, amoebots
getting permission from their (source) root before adopting children is critical for avoiding
non-termination under an unfair adversary (Lemma 4), but requires a number of rounds
that is linear in the depth of the tree. Improving this bound either requires a new approach
to acyclic resource distribution or an optimization of stable tree membership detection. A
shortest-path tree – i.e., one that maintains equality between the in-tree and in-system
distances from any amoebot to its root – would bound the depth of any tree by the diameter
D of the system. This would reduce the overall overhead to O(nD) rounds, which is still
O(n2) in the worst case (e.g., a line) but could achieve up to O(n3/2) in the best case (e.g.,
a regular hexagon). However, the recent feather tree algorithm [25] for forming shortest-path
forests in amoebot systems only works in stationary systems. Achieving an algorithm for
shortest-path forest maintenance – not just formation – would both improve our present
overhead bound and be an interesting contribution in its own right.

References
1 Dana Angluin, James Aspnes, Zoë Diamadi, Michael J. Fischer, and René Peralta. Computation

in Networks of Passively Mobile Finite-State Sensors. Distributed Computing, 18(4):235–253,
2006. doi:10.1007/S00446-005-0138-3.

2 Palina Bartashevich, Doreen Koerte, and Sanaz Mostaghim. Energy-Saving Decision Making
for Aerial Swarms: PSO-Based Navigation in Vector Fields. In 2017 IEEE Symposium Series
on Computational Intelligence (SSCI), pages 1–8, 2017. doi:10.1109/SSCI.2017.8285178.

3 Rida A. Bazzi and Joseph L. Briones. Stationary and Deterministic Leader Election in
Self-Organizing Particle Systems. In Stabilization, Safety, and Security of Distributed Systems,
volume 11914 of Lecture Notes in Computer Science, pages 22–37, 2019. doi:10.1007/
978-3-030-34992-9_3.

4 Douglas Blackiston, Emma Lederer, Sam Kriegman, Simon Garnier, Joshua Bongard, and
Michael Levin. A Cellular Platform for the Development of Synthetic Living Machines. Science
Robotics, 6(52):eabf1571, 2021. doi:10.1126/scirobotics.abf1571.

5 Joseph L. Briones, Tishya Chhabra, Joshua J. Daymude, and Andréa W. Richa. Invited Paper:
Asynchronous Deterministic Leader Election in Three-Dimensional Programmable Matter. In
Proceedings of the 24th International Conference on Distributed Computing and Networking,
pages 38–47, 2023. doi:10.1145/3571306.3571389.

https://doi.org/10.1007/S00446-005-0138-3
https://doi.org/10.1109/SSCI.2017.8285178
https://doi.org/10.1007/978-3-030-34992-9_3
https://doi.org/10.1007/978-3-030-34992-9_3
https://doi.org/10.1126/scirobotics.abf1571
https://doi.org/10.1145/3571306.3571389

J. W. Weber, T. Chhabra, A. W. Richa, and J. J. Daymude 7:17

6 Jason D. Campbell, Padmanabhan Pillai, and Seth Copen Goldstein. The Robot Is the Tether:
Active, Adaptive Power Routing for Modular Robots with Unary Inter-Robot Connectors. In
2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 4108–4115,
2005. doi:10.1109/IROS.2005.1545426.

7 Joshua J. Daymude, Robert Gmyr, Kristian Hinnenthal, Irina Kostitsyna, Christian Scheideler,
and Andréa W. Richa. Convex Hull Formation for Programmable Matter. In Proceedings of
the 21st International Conference on Distributed Computing and Networking, pages 2:1–2:10,
2020. doi:10.1145/3369740.3372916.

8 Joshua J. Daymude, Robert Gmyr, Andréa W. Richa, Christian Scheideler, and Thim Stroth-
mann. Improved Leader Election for Self-Organizing Programmable Matter. In Algorithms
for Sensor Systems, volume 10718 of Lecture Notes in Computer Science, pages 127–140, 2017.
doi:10.1007/978-3-319-72751-6_10.

9 Joshua J. Daymude, Kristian Hinnenthal, Andréa W. Richa, and Christian Scheideler. Com-
puting by Programmable Particles. In Paola Flocchini, Giuseppe Prencipe, and Nicola Santoro,
editors, Distributed Computing by Mobile Entities, volume 11340 of Lecture Notes in Computer
Science, pages 615–681. Springer, Cham, 2019. doi:10.1007/978-3-030-11072-7_22.

10 Joshua J. Daymude, Andréa W. Richa, and Christian Scheideler. The Canonical Amoebot
Model: Algorithms and Concurrency Control. Distributed Computing, 2023. doi:10.1007/
s00446-023-00443-3.

11 Joshua J. Daymude, Andréa W. Richa, and Jamison W. Weber. Bio-Inspired Energy Distribu-
tion for Programmable Matter. In International Conference on Distributed Computing and
Networking 2021, pages 86–95, 2021. doi:10.1145/3427796.3427835.

12 Zahra Derakhshandeh, Shlomi Dolev, Robert Gmyr, Andréa W. Richa, Christian Scheideler,
and Thim Strothmann. Amoebot – A New Model for Programmable Matter. In Proceedings
of the 26th ACM Symposium on Parallelism in Algorithms and Architectures, pages 220–222,
2014. doi:10.1145/2612669.2612712.

13 Zahra Derakhshandeh, Robert Gmyr, Andréa W. Richa, Christian Scheideler, and Thim
Strothmann. An Algorithmic Framework for Shape Formation Problems in Self-Organizing
Particle Systems. In Proceedings of the Second Annual International Conference on Nanoscale
Computing and Communication, pages 21:1–21:2, 2015. doi:10.1145/2800795.2800829.

14 Zahra Derakhshandeh, Robert Gmyr, Thim Strothmann, Rida Bazzi, Andréa W. Richa,
and Christian Scheideler. Leader Election and Shape Formation with Self-Organizing Pro-
grammable Matter. In Andrew Phillips and Peng Yin, editors, DNA Computing and Molecular
Programming, volume 9211 of Lecture Notes in Computer Science, pages 117–132, 2015.
doi:10.1007/978-3-319-21999-8_8.

15 Giuseppe A. Di Luna, Paola Flocchini, Nicola Santoro, Giovanni Viglietta, and Yukiko
Yamauchi. Shape Formation by Programmable Particles. Distributed Computing, 33(1):69–101,
2020. doi:10.1007/S00446-019-00350-6.

16 Shlomi Dolev, Sergey Frenkel, Michael Rosenblit, Ram Prasadh Narayanan, and K. Muni
Venkateswarlu. In-Vivo Energy Harvesting Nano Robots. In 2016 IEEE International
Conference on the Science of Electrical Engineering (ICSEE), pages 1–5, 2016. doi:10.1109/
ICSEE.2016.7806107.

17 Paola Flocchini, Giuseppe Prencipe, and Nicola Santoro, editors. Distributed Computing by
Mobile Entities: Current Research in Moving and Computing, volume 11340 of Lecture Notes
in Computer Science. Springer, Cham, 2019. doi:10.1007/978-3-030-11072-7.

18 Nicolas Gastineau, Wahabou Abdou, Nader Mbarek, and Olivier Togni. Distributed
Leader Election and Computation of Local Identifiers for Programmable Matter. In
Seth Gilbert, Danny Hughes, and Bhaskar Krishnamachari, editors, Algorithms for Sen-
sor Systems, volume 11410 of Lecture Notes in Computer Science, pages 159–179, 2019.
doi:10.1007/978-3-030-14094-6_11.

OPODIS 2023

https://doi.org/10.1109/IROS.2005.1545426
https://doi.org/10.1145/3369740.3372916
https://doi.org/10.1007/978-3-319-72751-6_10
https://doi.org/10.1007/978-3-030-11072-7_22
https://doi.org/10.1007/s00446-023-00443-3
https://doi.org/10.1007/s00446-023-00443-3
https://doi.org/10.1145/3427796.3427835
https://doi.org/10.1145/2612669.2612712
https://doi.org/10.1145/2800795.2800829
https://doi.org/10.1007/978-3-319-21999-8_8
https://doi.org/10.1007/S00446-019-00350-6
https://doi.org/10.1109/ICSEE.2016.7806107
https://doi.org/10.1109/ICSEE.2016.7806107
https://doi.org/10.1007/978-3-030-11072-7
https://doi.org/10.1007/978-3-030-14094-6_11

7:18 Energy-Constrained Programmable Matter Under Unfair Adversaries

19 Nicolas Gastineau, Wahabou Abdou, Nader Mbarek, and Olivier Togni. Leader Election and
Local Identifiers for Three-dimensional Programmable Matter. Concurrency and Computation:
Practice and Experience, 34(7):e6067, 2022. doi:10.1002/CPE.6067.

20 Kyle Gilpin, Ara Knaian, and Daniela Rus. Robot Pebbles: One Centimeter Modules for
Programmable Matter through Self-Disassembly. In 2010 IEEE International Conference on
Robotics and Automation, pages 2485–2492, 2010. doi:10.1109/ROBOT.2010.5509817.

21 Robert Gmyr, Kristian Hinnenthal, Irina Kostitsyna, Fabian Kuhn, Dorian Rudolph, Christian
Scheideler, and Thim Strothmann. Forming Tile Shapes with Simple Robots. Natural
Computing, 19(2):375–390, 2020. doi:10.1007/S11047-019-09774-2.

22 Seth Copen Goldstein, Jason D. Campbell, and Todd C. Mowry. Programmable Matter.
Computer, 38(6):99–101, 2005. doi:10.1109/MC.2005.198.

23 Seth Copen Goldstein, Todd C. Mowry, Jason D. Campbell, Michael P. Ashley-Rollman,
Michael De Rosa, Stanislav Funiak, James F. Hoburg, Mustafa E. Karagozler, Brian Kirby,
Peter Lee, Padmanabhan Pillai, J. Robert Reid, Daniel D. Stancil, and Michael P. Weller.
Beyond Audio and Video: Using Claytronics to Enable Pario. AI Magazine, 30(2):29–45, 2009.
doi:10.1609/AIMAG.V30I2.2241.

24 Serge Kernbach, editor. Handbook of Collective Robotics: Fundamentals and Challenges. Jenny
Stanford Publishing, New York, NY, USA, 2013. doi:10.1201/b14908.

25 Irina Kostitsyna, Tom Peters, and Bettina Speckmann. Brief Announcement: An Effective
Geometric Communication Structure for Programmable Matter. In 36th International Sympo-
sium on Distributed Computing (DISC 2022), volume 246 of Leibniz International Proceedings
in Informatics (LIPIcs), pages 47:1–47:3, 2022. doi:10.4230/LIPICS.DISC.2022.47.

26 Sam Kriegman, Douglas Blackiston, Michael Levin, and Josh Bongard. A Scalable Pipeline
for Designing Reconfigurable Organisms. Proceedings of the National Academy of Sciences,
117(4):1853–1859, 2020. doi:10.1073/PNAS.1910837117.

27 Bruce J. MacLennan. The Morphogenetic Path to Programmable Matter. Proceedings of the
IEEE, 103(7):1226–1232, 2015. doi:10.1109/JPROC.2015.2425394.

28 Othon Michail, George Skretas, and Paul G. Spirakis. On the Transformation Capability of
Feasible Mechanisms for Programmable Matter. Journal of Computer and System Sciences,
102:18–39, 2019. doi:10.1016/J.JCSS.2018.12.001.

29 Sanaz Mostaghim, Christoph Steup, and Fabian Witt. Energy Aware Particle Swarm Opti-
mization as Search Mechanism for Aerial Micro-Robots. In 2016 IEEE Symposium Series on
Computational Intelligence (SSCI), pages 1–7, 2016. doi:10.1109/SSCI.2016.7850263.

30 Nils Napp, Samuel Burden, and Eric Klavins. Setpoint Regulation for Stochastically Interacting
Robots. Autonomous Robots, 30(1):57–71, 2011. doi:10.1007/S10514-010-9203-2.

31 Daniel Pickem, Paul Glotfelter, Li Wang, Mark Mote, Aaron Ames, Eric Feron, and Magnus
Egerstedt. The Robotarium: A Remotely Accessible Swarm Robotics Research Testbed. In
2017 IEEE International Conference on Robotics and Automation (ICRA), pages 1699–1706,
2017. doi:10.1109/ICRA.2017.7989200.

32 Benoit Piranda and Julien Bourgeois. Designing a Quasi-Spherical Module for a Huge
Modular Robot to Create Programmable Matter. Autonomous Robots, 42:1619–1633, 2018.
doi:10.1007/S10514-018-9710-0.

33 Alexandra Porter and Andréa W. Richa. Collaborative Computation in Self-Organizing Particle
Systems. In Unconventional Computation and Natural Computation, volume 10867 of Lecture
Notes in Computer Science, pages 188–203, 2018. doi:10.1007/978-3-319-92435-9_14.

34 Tommaso Toffoli and Norman Margolus. Programmable Matter: Concepts and Realiza-
tion. Physica D: Nonlinear Phenomena, 47(1-2):263–272, 1991. doi:10.1016/0167-2789(91)
90296-L.

35 Hongxing Wei, Bin Wang, Yi Wang, Zili Shao, and Keith C.C. Chan. Staying-Alive Path
Planning with Energy Optimization for Mobile Robots. Expert Systems with Applications,
39(3):3559–3571, 2012. doi:10.1016/J.ESWA.2011.09.046.

https://doi.org/10.1002/CPE.6067
https://doi.org/10.1109/ROBOT.2010.5509817
https://doi.org/10.1007/S11047-019-09774-2
https://doi.org/10.1109/MC.2005.198
https://doi.org/10.1609/AIMAG.V30I2.2241
https://doi.org/10.1201/b14908
https://doi.org/10.4230/LIPICS.DISC.2022.47
https://doi.org/10.1073/PNAS.1910837117
https://doi.org/10.1109/JPROC.2015.2425394
https://doi.org/10.1016/J.JCSS.2018.12.001
https://doi.org/10.1109/SSCI.2016.7850263
https://doi.org/10.1007/S10514-010-9203-2
https://doi.org/10.1109/ICRA.2017.7989200
https://doi.org/10.1007/S10514-018-9710-0
https://doi.org/10.1007/978-3-319-92435-9_14
https://doi.org/10.1016/0167-2789(91)90296-L
https://doi.org/10.1016/0167-2789(91)90296-L
https://doi.org/10.1016/J.ESWA.2011.09.046

J. W. Weber, T. Chhabra, A. W. Richa, and J. J. Daymude 7:19

36 Damien Woods, Ho-Lin Chen, Scott Goodfriend, Nadine Dabby, Erik Winfree, and Peng
Yin. Active Self-Assembly of Algorithmic Shapes and Patterns in Polylogarithmic Time. In
Proceedings of the 4th Conference on Innovations in Theoretical Computer Science, pages
353–354, 2013. doi:10.1145/2422436.2422476.

A Omitted Analysis of Concurrency-Compatibility

This appendix contains the technical material omitted from Section 5 due to space constraints.

Algorithm 2 Expansion-Robust Variant AE of Algorithm A for Amoebot A.

Input: Algorithm A = {[αi : gi → opsi] : i ∈ {1, . . . , m}} satisfying Conventions 1 and 2.
1: Set αE

0 : (∃ port p of A : A.flagp = true)→ Write(⊥, flagp, false).
2: for each action [αi : gi → opsi] ∈ A do
3: Set gE

i ← gi with N(A) replaced by NE(A) and connections defined w.r.t. NE(A).
4: Set opsE

i ← “Do:
5: for each port p of A do Write(⊥, flagp, false). ▷ Reset own expand flags.
6: for each unique neighbor B ∈ Connected() do
7: for each port p of B do Write(B, flagp, false). ▷ Reset neighbors’ expand flags.
8: Execute each operation of opsi with connections defined w.r.t. NE(A).
9: if a Pull or Push operation was executed with neighbor B then

10: for each new port p of A not connected to B do Write(⊥, flagp, true).
11: for each new port p of B not connected to A do Write(B, flagp, true).
12: else if an Expand operation was successfully executed then
13: for each new port p of A do Write(⊥, flagp, true).
14: else if an Expand operation failed in its execution then undo opsi.”
15: return AE = {[αE

i : gE
i → opsE

i] : i ∈ {0, . . . , m}}.

▶ Lemma 18. If amoebot algorithm A is expansion-corresponding, it is also expansion-robust.

Proof. To prove termination, suppose to the contrary that all sequential executions of A
starting in C0 terminate, but there exists some infinite sequential execution SE of AE starting
in CE

0 . Algorithm A is expansion-corresponding, so there is a sequential execution S that is
identical to SE , modulo executions of αE

0 . Execution S terminates by supposition, so SE

must contain an infinite number of αE
0 executions after its final αE

i ̸=0 execution. But αE
0

executions only reset expand flags, and there are only a finite number of amoebots and a
constant number of expand flags per amoebot to reset, a contradiction.

Correctness follows from the same observation. Only αE
i̸=0 executions move amoebots and

modify variables of A. Since every sequential execution SE of AE starting in CE
0 represents

an identical sequential execution S of A starting in C0 (after removing the αE
0 executions),

and since SE terminates whenever S terminates by the above argument, we conclude that
they must terminate in configurations that are identical, modulo expand flags. ◀

Before proving that the energy distribution framework preserves expansion-correspondence,
we need one helper lemma characterizing established neighbors in Aδ.

▶ Lemma 19. During an execution of (Aδ)E, if an amoebot A has a neighbor B ∈ N(A)
that is idle, pruning, or a child of A, then B ∈ NE(A).

Proof. Any neighbor B ∈ N(A) \ NE(A) expanded into N(A) during an Expand operation
by B, a Push operation by B, or a Pull operation by some other amoebot pulling B.
Any movement in (Aδ)E occurs in an (αδ

i)E execution, whose guard requires that both

OPODIS 2023

https://doi.org/10.1145/2422436.2422476

7:20 Energy-Constrained Programmable Matter Under Unfair Adversaries

the executing amoebot and all its established neighbors are not idle or pruning. Thus,
regardless of whether B is initiating the movement (an Expand or Push) or is participating
in it (a Pull), B cannot be idle or pruning when it enters N(A). Any subsequent action
execution that could make B idle or pruning must also reset its expand flags (Algorithm 2,
Line 7). So there are never idle or pruning neighbors in N(A) \ NE(A).

Next consider any child B of A. Amoebot B became a child of A when A adopted it
during a gGrowForest-supported execution of αE

EnergyDistribution. During this execution, A

reset all expand flags of B (Algorithm 2, Line 7). As long as B is a child of A, its expand
flags facing A remain reset. Thus, B ∈ NE(A). ◀

We can now prove the main lemma of this section.

▶ Lemma 20. For any energy-compatible, expansion-corresponding algorithm A and demand
function δ : A → {1, 2, . . . , κ}, the algorithm Aδ produced from A and δ by the energy
distribution framework is concurrency-compatible.

Proof. By Theorem 2, we know that every sequential execution of Aδ terminates. It remains
to show that Aδ satisfies the validity, phase structure, and expansion-robustness conventions.

By supposition, every action αi ∈ A in the original algorithm is valid, i.e., its execution
is successful whenever it is enabled and all other amoebots are inactive. Since the guard
gi of αi is a necessary condition for the energy-constrained version αδ

i to be enabled, we
know this validity carries over to the compute and movement phases of αi. The only new
operations added by the energy distribution framework in the αδ

i and αEnergyDistribution
actions are Connected operations (which never fail) and Read and Write operations
involving existing neighbors. All of these must succeed, so every action of Aδ is valid.

It is easy to see that Aδ satisfies the phase structure convention. Its only movements are
in the αδ

i actions, each of which has at most one movement operation that it executes last.
Moreover, the energy distribution framework does not add any Lock or Unlock operations.

It remains to show Aδ is expansion-robust, and by Lemma 18, it suffices to show Aδ

is expansion-corresponding. We first show that if some action of (Aδ)E is enabled for an
amoebot A w.r.t. NE(A), then the corresponding action of Aδ is enabled for A w.r.t. N(A).
We may safely consider only the guard conditions that depend on an amoebot’s neighborhood;
all others evaluate identically regardless of neighborhood.

If (αδ
i)E is enabled for an amoebot A, then A must satisfy gE

i – i.e., A satisfies the guard
gi of αi ∈ A w.r.t. NE(A) – and neither A nor its established neighbors can be idle or
pruning. Algorithm A is expansion-corresponding by supposition, so this implies that A

must satisfy gi w.r.t. N(A) as well. Moreover, Lemma 19 ensures that if there are no
idle or pruning neighbors in NE(A), there are none in N(A) either.
Suppose αE

EnergyDistribution is enabled for an amoebot A because A has an idle neighbor
or an asking child B ∈ NE(A), a condition in both gAskGrowth and gGrowForest. We
know NE(A) ⊆ N(A), so αEnergyDistribution must be enabled for A w.r.t. N(A) as well.
Suppose αE

EnergyDistribution is enabled for an amoebot A because A has a child B ∈ NE(A)
whose battery is not full, a condition in gShareEnergy. By the same argument as above, we
have NE(A) ⊆ N(A), so αEnergyDistribution must be enabled for A w.r.t. N(A) as well.

Finally, we show that the executions of any action of (Aδ)E w.r.t. NE(A) and the
corresponding action of Aδ w.r.t. N(A) by the same amoebot A are identical. We may safely
focus only on the parts of action executions that depend on or interact with an amoebot’s
neighbors; all others execute identically regardless of neighborhood.

J. W. Weber, T. Chhabra, A. W. Richa, and J. J. Daymude 7:21

If A executes an (αδ
i)E action, it emulates the operations of αi ∈ A w.r.t. NE(A). But

algorithm A is expansion-corresponding by supposition, which immediately implies that
an execution of αi w.r.t. N(A) is identical.
If A executes an (αδ

i)E action or the GetPruned block of αE
EnergyDistribution, it may

update its children’s state and parent variables during Prune(). By Lemma 19, any
child of A in N(A) is also in NE(A), so the same children are pruned.
If A executes the GrowForest block of αE

EnergyDistribution, it adopts all its idle neighbors
as an active children. Any idle neighbor B ∈ NE(A) that A adopts must also be
adopted when A executes αEnergyDistribution since NE(A) ⊆ N(A). But if there are
no idle neighbors in NE(A) for A to adopt, there cannot be any in N(A) either by
Lemma 19. Thus, either the same idle neighbors or no neighbors are adopted.
If A executes the GrowForest block of αE

EnergyDistribution, it updates any asking
children to growing. By Lemma 19, any child of A in N(A) is also in NE(A), so the
same children are updated in αEnergyDistribution.
If A executes the ShareEnergy block of αE

EnergyDistribution, it transfers an energy unit
to one of its children B ∈ NE(A) whose battery is not full. We know NE(A) ⊆ N(A), so
B is also a possible recipient of this energy in αEnergyDistribution. ◀

OPODIS 2023

	1 Introduction
	2 Preliminaries
	2.1 The Amoebot Model
	2.2 Extensions for Energy Modeling

	3 A General Framework for Energy-Constrained Algorithms
	3.1 The Energy Distribution Framework
	3.2 Analysis

	4 Energy-Constrained Leader Election and Shape Formation
	5 Asynchronous Energy-Constrained Algorithms
	6 Conclusion
	A Omitted Analysis of Concurrency-Compatibility

