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Abstract
Traditional blockchain design gives miners or validators full control over transaction ordering,
i.e., they can freely choose which transactions to include or exclude, as well as in which order. While
not an issue initially, the emergence of decentralized finance has introduced new transaction order
dependencies allowing parties in control of the ordering to make a profit by front-running others’
transactions. In this work, we present the Decentralized Clock Network, a new approach for achieving
fair transaction ordering. Users submit their transactions to the network’s clocks, which run an
agreement protocol that provides each transaction with a timestamp of receipt which is then used
to define the transactions’ order. By separating agreement from ordering, our protocol is efficient
and has a simpler design compared to other available solutions. Moreover, our protocol brings to
the blockchain world the paradigm of asynchronous fallback, where the algorithm operates with
stronger fairness guarantees during periods of synchronous use, switching to an asynchronous mode
only during times of increased network delay.
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1 Introduction

The first blockchain, a decentralized distributed digital ledger that records transactions across
a network of computers, was introduced in 2008 with Bitcoin by Nakamoto [33]. Blockchains
offer a novel way of storing and transferring value in a trustless and secure manner, without
the need for intermediaries. Despite their popularity, blockchain adoption was slow, as
blockchains were, initially, mainly used to facilitate simple transfers of money between two
individuals. However, this changed in 2015 with the introduction of smart contracts on
Ethereum [44], allowing for complex digital agreements to be carried out on-chain. Nowadays,
smart contracts are the backbone of a rapidly-growing complex ecosystem of decentralized
financial applications known as decentralized finance (DeFi). DeFi offers most traditional
financial services, including decentralized exchanges, lending protocols, and stablecoins,
without relying on financial intermediaries.
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The smart contracts that govern DeFi are generally dependent on the transaction order.
That is, the outcome of executing a set of transactions depends on their order. As most
transactions were simple transfers in the early days, the original blockchain design did not
need to pay much attention to transaction ordering. Instead, the power of transaction
ordering is concentrated in miners or validators, which can freely choose which transactions
to include and how to order them inside each block. Nowadays, block proposers (miners)
extract profit from appropriately ordering, including, and excluding transactions during
block production. This profit is known as miner (or maximal) extractable value (MEV).
MEV accounts for a profit of at least US$ 650M [21] so far. In fact, Flashbots and other
transaction relay protocols organized a whole market around ordering transactions.

Front-running Attacks

Most MEV relies on the ability of the attacker to front-run the victim’s transaction tx. To be
specific, the attacker observes a newly generated victim transaction tx in the mempool (the
public waiting area for transactions). The attacker then introduces their own transaction
tx ′. If tx ′ executes before tx (front-running), the attacker profits at the expense of the victim.
So, the attacker may simply bribe the block proposer with a high fee to execute tx ′ first,
even though tx ′ was only created once tx was already publicly known.

Front-running can be broadly categorized into two types [35]: tolerant and destructive.
Tolerant front-running involves the attacker placing their own transaction before the victim’s
transaction in the order of execution. This allows the attacker to gain an advantage, such
as purchasing an asset at a lower price before the victim can. Such attacks are often seen
on decentralized exchanges, where the attacker executes a trade before the victim, reaping
the benefits of price changes. Destructive front-running, on the other hand, has the attacker
taking out the victim’s transaction altogether. Generally, the attacker copies the victim’s
presumably profitable transaction. If the attacker’s transaction executes first, the victim’s
transaction would no longer execute, at least not as intended.

Our Contribution

We propose the Decentralized Clock Network (DCN), a novel solution for achieving fair
transaction ordering. More concretely, our system ensures that, if a transaction tx was sent
to the system long enough before transaction tx ′, then tx ′ cannot be ordered before tx, i.e.,
preventing tolerant front-running. In contrast to most previous solutions relying on the
blockchain consensus algorithm to determine a relative ordering of the transactions, our
approach employs a decentralized network of n nodes, equipped with clocks, resilient to
f < n/3 byzantine failures to agree on a timestamp for each transaction. These timestamps
are subsequently used to determine the order of the transactions inside each block and across
blocks. Decoupling timestamping from ordering enables lower latency bounds whilst reducing
the complexity of the consensus mechanism.

A blockchain system is synchronous if all messages arrive at the receiver within a known
time-bound, and the nodes involved have local clocks that are (almost) perfectly synchronized.
However, in times of turmoil, such as when participants are under attack, messages might
experience longer delays, or clocks may no longer be aligned with real-time. Such failures are
modeled by the asynchronous model. An important novelty in our work is that our protocol
is designed to provide guarantees regardless of the network conditions, without knowing
in advance which setup to expect. It is designed for the asynchronous model, however, if
the network happens to satisfy some synchrony assumptions, which is often the case in
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real-world networks, it provides stronger guarantees reflecting in the order obtained. To
quantify this effect, we propose a new notion of order fairness, called δ-Median Fairness.
Roughly, transactions shall be ordered based on a value that is close to the median of the
points in time when honest nodes in the DCN first learn about the transaction. Here, δ is
an error parameter, determining the closeness of the estimated median to the true median
of the honest timestamps in terms of quantiles. This definition is a stronger version of
Honest-Range Fairness (or fair separability, as defined in [46]). When operating under
asynchronous conditions, our algorithm achieves f -Median Fairness, which coincides with
Honest-Range Fairness in the worst case n = 3f + 1, but is stronger otherwise. On the
other hand, when the network is synchronous for a sufficient amount of time, our algorithm
achieves the superior guarantee of ⌈f/2⌉-Median Fairness. In both cases, these guarantees
are optimal. We add that our protocol sidesteps the attack where relative orders relying on
the median can be manipulated by a single byzantine node presented in [27] by ensuring that
(1) nodes always agree on some honest timestamp, and (2) with the help of cryptographic
primitives, we do not allow nodes, or anyone else, to see the transaction contents before a
timestamp is agreed upon.

Related Work

Fair Ordering. Blockchain front-running prevention techniques have been the subject of
significant research in recent years. We point the reader to Baum et al. [5] and Heimbach
et al. [25] for an overview of these approaches and only discuss the most relevant in the
following.

Flashbots [20] and other private relay services, in which transactions are sent directly to
a trusted third party for ordering and subsequent forwarding to validators for block inclusion,
are widely adopted. While this approach is efficient, it centralizes the transaction ordering
process, i.e., introduces a single point of failure, and is often used to front-run as opposed to
protect against. In contrast, our approach distributes the transaction ordering responsibility.

In the field of fair transaction ordering, committee-based approaches have been widely
studied. Generally, these approaches can be divided into two categories: those that can
operate in asynchrony and those that assume partial synchrony, which is a model weaker
than synchrony and stronger than asynchrony. To tackle fair ordering in partial synchrony,
Pompe is proposed by Zhang et al. [46], Wendy is proposed by Kursawe [28] and Themis
is proposed by Kelkar et al. [26]. As opposed to these protocols, the DCN we propose is
equipped to handle asynchrony. In particular, Pompe and Themis rely on (partial) synchrony
and Wendy assumes the clocks of the nodes are always synchronized.

Kelkar et al. [27] introduce Aequitas, which achieves state-of-the-art fairness properties,
but has a significant communication complexity of O(n4) in asynchrony. Our agreement
protocol achieves in expectation O(n3 log ∆) message complexity in asynchrony, where ∆
denotes the observed network delay. We note that this delay does not have to be known a
priori, as opposed to classical synchronous protocols.

Quick order fairness, introduced by Cachin et al. [14] achieves O(n3) message complexity
in asynchrony. While their protocol allows for a node to gain insider information before an
ordering is agreed upon, our protocol adds further protection to users as the committee only
sees the full transaction after the timestamp is agreed upon. Further, their approach, and
the others, only target agreement amongst the permissioned committee, while our design
extends to implementing the fair ordering on a permissionless blockchain after agreement
has been reached in the permissioned committee.

OPODIS 2023
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Agreement Protocols. Achieving agreement on a value subject to some Validity condition,
i.e., Byzantine Agreement (BA) [29], is an extensively studied problem in Distributed
Computing. In real-world applications, hence also in our setting, it is desirable to expect the
Validity condition to carry some meaning, while the classical BA definition only ensures that
if honest nodes have the same input value v, they all output v. If this pre-agreement condition
is not met, the honest nodes may output an adversarially chosen value. Recent works have
focused on achieving more meaningful guarantees, such as ensuring that the honest output is
close to the honest inputs’ median [39], to the k-th lowest honest input [31], or somewhere in
the range of honest inputs [42]. These works, however, only focus on the synchronous model.
That is, they assume perfectly synchronized clocks and a publicly available upper bound
on the network delay. A more realistic setting is the so-called asynchronous model, which
drops this assumption, but showcases important limitations: in the asynchronous setting,
BA cannot be achieved deterministically [19]. There is still hope, however: randomized
asynchronous BA protocols exist [6, 11, 13, 15, 22, 32, 36, 41]; however, without meaningful
Validity guarantees if the input space contains more than two values. Another relaxed variant
of BA is Approximate Agreement (AA) [3, 18], which offers deterministic protocols that
enable honest nodes to output values within the range of their inputs, with the caveat of
weakening the Agreement guarantees: honest outputs are ε-close for any predefined ε > 0.

To implement our fair-ordering definition, we propose an asynchronous (randomized) BA
protocol with optimal resilience, that achieves Median Validity [31,40] with optimal-error
guarantees, assuming that the inputs are integers. Our lower bound on this error implies
that, when the network is asynchronous, and when aiming for optimal resilience, the best one
can hope for is obtaining outputs within the range of the honest inputs. We circumvent this
problem by designing a protocol whose Validity guarantees scale with the network conditions:
if the synchrony assumptions are satisfied for a sufficient amount of time, our protocol
will enable honest nodes to agree on a value satisfying the synchronous model’s optimal
guarantees on Median Validity. Otherwise, our protocol will at least provide Median Validity
with optimal guarantees for the asynchronous model, hence the output agreed upon will be
within the range of honest values. Designing protocols that achieve simultaneously optimal
guarantees in both synchronous and asynchronous networks, has been a topic that attracted
increased attention in the recent years in the Distributed Computing literature. There has
been a line of works focusing on problems such as Byzantine Agreement [7], Approximate
Agreement [23], State Machine Replication [8], and also Multi-Party Computation [4, 9, 17].

2 The Decentralized Clock Network

In this section, we describe the DCN, which consists of a network of nodes equipped with
synchronized clocks operating with the objective of providing an accurate and decentralized
timestamping service to blockchain transactions. The resulting timestamps are used to
determine the ordering of the transactions inside each block, as well as across blocks. The
intuition behind using a timestamping service is that, instead of relying on consensus to
determine the ordering directly, like in FSS from ChainLink Labs [16], this way the order
of the transactions is naturally induced by the timestamps, allowing the complexity of the
agreement protocol to be reduced.

High-Level Design

To enable DCN support for ordering transactions on an existing blockchain, the blockchain
requires only minor adaptations. In particular, with every submitted transaction, an addi-
tional timestamp computed by the DCN is expected. Validators should check for each block
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whether timestamps are authentic and whether the ordering induced by the timestamps is
respected, rejecting the block otherwise. In order for this check to take place, timestamps
computed by the DCN are accompanied by threshold signatures, cryptographic gadgets used
to prove that each timestamp was agreed upon by at least one honest node. Nodes in the
DCN must not only be trustworthy, but also have good network conditions and be able to
handle a large volume of service requests. To ensure the precision and consistency of the
nodes’ clocks, as well as nodes’ high availability, we implement the DCN as a permissioned
system, where the identity and public keys of the nodes are known to the validators. Nodes
are not intended to change frequently and, by keeping the set of nodes in the system fixed,
we can ensure that the nodes are reliable and that the timestamping service is accurate.

Network Model and Assumptions

The DCN consists of n nodes in a fully-connected network, such that any two nodes in the
network can communicate through authenticated channels. Nodes can moreover receive
external inputs, e.g., transactions from users. Each node comes equipped with a clock. We
assume that node clocks are periodically realigned with real-time, which can be achieved
through the use of a common external reference, such as UTC time or GPS time.

We consider an adaptive adversary that takes control during the protocol’s execution
of at most f < n/3 nodes, causing them to deviate arbitrarily (even maliciously) from the
protocol; i.e., byzantine behavior.

We assume an estimation ∆DCN representing an upper bound on the network delay within
the DCN, i.e., messages sent between the nodes should be delivered within ∆DCN time.
Similarly, we assume an estimation ∆EXT for the upper bound on the external network delay,
i.e., for messages sent between users and the nodes in the DCN. We say that the network is
synchronous if the message delays are always at most ∆DCN and ∆EXT, and the nodes’ clocks
are perfectly synchronized. If any of these conditions fail at any point, then the network is
asynchronous. In our work, we will assume that the network is asynchronous. However, we
take into account that an asynchronous assumption is often too pessimistic to model a real-life
network. Hence, we aim to offer stronger guarantees during timespans when the network
is synchronous, which should be the case most of the time if our estimations ∆DCN and
∆EXT are faithful. We also take into account that real clocks may fail the perfect synchrony
assumption; i.e., they may have a small skew S, or their local rate may vary by a factor
θ = 1 + o(1), as described in [30]. However, we assume perfect synchronization for simplicity
of presentation, and we will briefly describe how our protocols can be modified to achieve
the same synchronous guarantees under the weaker clock synchronization assumptions.

Cryptographic Primitives

As mentioned previously, we employ threshold signatures. In an (ℓ, n)-threshold signature
scheme, a public key is known to the n nodes and also to all users and validators. Moreover,
each node v knows a unique private key that enables the generation of a partial signature
σv(m) for any message m. The defining property of the scheme is that ℓ partial signatures
from distinct nodes for the same message m can be combined into a single signature σ(m)
that can be verified using the public key. Formally, the scheme should satisfy robustness
and non-forgeability (see the full version of [12, Section 2.3.2] for the definitions). For our
purposes, we set the threshold ℓ = f + 1 and choose the BLS scheme [10,38].

OPODIS 2023
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User DCN Blockchain P2P Network

(a)
Compute (tx1, . . . , txn).

Compute (tsig1, . . . , tsign).
Compute h = hash(tx, nonce).

(h, txv, tsigv)

(b) Node v receives (h, txv, tsigv) at τv.

τ := TimestampAgreement(τv).

(c) Node v signs (h, τ) and broadcasts to network.
Compute threshold signature σv.

(d) Node v broadcasts (txv, tsigv).
Recover (tx, nonce) and check hash(tx, nonce) = h.

(e) (tx, τ, σv)

Figure 1 Illustration of the transaction submission (i.e., main) protocol.

Furthermore, we require a secret sharing scheme. In a (k, n)-secret sharing scheme, a
secret, such as a user transaction, is divided into n so-called shares, one known to each node,
such that any k nodes can reconstruct the secret, while any coalition of at most k − 1 nodes
cannot learn anything about it. Formally, the information-theoretic requirement is that any
k shares uniquely determine the secret, while any k − 1 shares must be independent of the
secret. Informally, given k − 1 shares, every possible transaction is equally likely to result in
these shares. In our work, we choose k = f + 1 and use the Shamir scheme [37].

The Transaction Submission Protocol

In this section, we formally present the protocol used when users submit transactions to the
blockchain (cf. Figure 1), which we also refer to as the main protocol. Assume a user wants
to submit transaction tx, then the following steps are to be followed:
(a) The user generates a random nonce nonce. Then, the user splits the pair (tx, nonce)

into n shares (tx1, . . . , txn) using the (f + 1, n)-secret sharing scheme and signs the
shares with their private key to get (tsig1, . . . , tsign). Subsequently, the user hashes the
transaction together with the nonce as h = hash(tx, nonce). Finally, they send to each
node v the tuple (h, txv, tsigv).

(b) Each node v receives (h, txv, tsigv) at some time τv. Together, the nodes run a Timestamp
Agreement protocol to agree on a common timestamp τ for transaction tx. The agreement
protocol is described in detail in Section 4.

(c) Upon reaching agreement, each node signs (h, τ) and broadcasts the signature to the
other nodes. Each node v receives the signatures of (h, τ), verifies them, and uses the at
least f + 1 valid ones to compute a threshold signature σv for the pair (h, τ).

(d) Afterwards, each node v broadcasts their signed share (txv, tsigv) to all other nodes.
Each node receives the signed shares, verifies the signatures, and uses the at least
f + 1 valid shares to recover the pair (tx, nonce). Finally the node checks whether
hash(tx, nonce) = h, aborting the protocol otherwise.

(e) Each node v now knows tx and submits it timestamped to the blockchain’s peer-to-peer
(P2P) network as the tuple (tx, τ, σv).
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The blockchain now operates with tuples of the form (tx, τ, σ) instead of just transactions
tx. For each transaction in a block, validators check the threshold signature σ using the public
keys of the nodes. Moreover, they also check that transactions are ordered in non-decreasing
order by τ inside the block and that the lowest timestamp in the block is no lower than the
highest timestamp in the previous block.

We now provide additional intuition for the submission protocol and reasoning behind
some of the design considerations. Step (a) describes the user-sided part, while steps (b)–(e)
describe the DCN-sided part.

In step (a) the user hashes tx together with a random nonce and sends it to the nodes.
The nonce is required to prevent malicious actors from inferring information about tx based
on past transaction data; e.g. if a user submits similar transactions periodically, they can
be identified by their hash and front-run, e.g., buying ETH every time they receive their
paycheck. Moreover, the transaction-nonce pair is split into n shares which are distributed to
the n nodes. This allows the DCN to recover the pair (tx, nonce) after agreeing on timestamp
τ, check its integrity against the hash h, and submit tx to the blockchain on the user’s behalf,
preventing users from submitting many timestamping requests without submitting matching
transactions to the blockchain, which would be the source of attacks.

In step (b) the DCN agrees on a common timestamp τ for transaction tx using the
agreement protocol described later on in Section 4, which is efficient, robust to at most
f < n/3 byzantine failures in both synchronous and asynchronous settings, and achieves
good fairness guarantees, whose definitions we postpone to the next section.

In step (c) the DCN computes threshold signatures for the pair (h, τ) consisting of the
transaction hash together with timestamp τ. Any valid such signature can be used to prove
that at least f + 1 nodes have agreed on it; i.e., at least one honest node.

In step (d) the nodes circulate their shares to recover the pair (tx, nonce). Note that this
has to be done after agreeing on the timestamp because otherwise a byzantine node could
front-run tx by submitting its own transaction and having agreement happen for it faster
than for tx. Moreover, checking the hash of the pair against h is required to prevent dishonest
users from sending contradicting shares. Note that steps (c) and (d) can be implemented
concurrently, but we chose not to do so for simplicity of exposition.

Finally, in step (e) each node v submits tx together with timestamp τ and threshold
signature σv to the blockchain, which will handle checking the signatures and ensuring
that transactions are ordered by timestamp inside each block and across blocks. Note that
different nodes might compute different threshold signatures σv, even in the presence of
no byzantine nodes, because of the choice of which individual signatures to include in σv,

but any valid such signature is enough to certify the tuple (tx, τ, σv). We further note that
validators will of course check that the transaction tx is only executed once.

We state our protocol’s guarantees in the theorem below, which we prove in Section 5.
We provide a formal definition for the term fair timestamp in Section 3.

▶ Theorem 1. The transaction submission protocol achieves the following properties:
(Honest-User Liveness) If a transaction is sent by an honest user, it gets processed and
submitted to the mempool eventually. Moreover, if the honest user’s messages reach
the nodes within ∆EXT time and the synchrony assumptions hold inside the DCN for
an additional ∆DCN time, the transaction gets submitted within expected O(log ∆EXT)
communication rounds.
(Integrity) If a transaction gets submitted to the mempool, the process was initiated by
some user.

OPODIS 2023
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(Unique Timestamp) If a transaction gets submitted to the mempool by two nodes, with
timestamps τ and τ ′, then τ = τ ′.

(Fair Timestamp) If a transaction gets submitted to the mempool with timestamp τ, then
τ is a fair timestamp.

3 Timestamp Agreement and The Fairness Guarantees

Nodes in the DCN need to agree on a timestamp for each transaction. This problem reduces
to achieving asynchronous Byzantine Agreement (aBA), with a special Validity condition,
which will allow us to argue why transactions are ordered in a fair manner. We recall the
classical definition of aBA, which requires the following properties: (Weak Validity) If all
honest nodes have input τ, no honest node outputs τ ′ ̸= τ ; (Agreement) If two honest nodes
output τ and τ ′, then τ = τ ′; (Termination) Every honest node outputs with probability 1.

While aBA is an essential building block in distributed computing, it comes with many
limitations. We first note the seminal result of [19], which proves that fault-tolerant aBA,

even with binary inputs, cannot be solved deterministically. There is still hope however, as
the distributed computing literature offers plenty of randomized aBA protocols [6, 11,13,15,
22,32,36,41].

Unfortunately, there is another limitation that prevents us from directly applying existing
aBA protocols to our setting, standing in its Weak Validity condition: this only ensures
that honest nodes agree on an honest input if they joined aBA with the same input. This
pre-agreement condition is a very strong requirement in our setting, and hence nodes may
often end up agreeing on timestamps proposed by corrupted nodes. Such timestamps may
be too low or too high, preventing us from ensuring any kind of fair ordering. We add that
achieving a stronger condition that requires the honest nodes to always agree on some honest
node’s input is impossible, as one cannot distinguish between an honest node and a byzantine
node following the protocol correctly, but with a corrupted input.

Meaningful Timestamps. Fortunately, there are still a few Validity variations we can
consider. In the following definitions, we will make use of the timestamps that the nodes
record when receiving messages from the user. We need to consider that, if the user is
dishonest, some honest nodes might not hold such a timestamp. Note that there is at least
one honest node who has received a message from this user (otherwise the user is essentially
not sending a transaction). Then, let τmax denote the latest point in time recorded by an
honest node when receiving this user’s message. In the definitions, we assume that, if an
honest node does not receive such a message, its input is τmax. We stress that this assumption
is strictly for simplicity of presentation and is not used in our protocols or their analysis.

With this convention in mind, we may provide stronger Validity definitions. In our
setting, ensuring that honest nodes’ outputs are in their inputs’ range is already meaningful
(Honest-Range Validity). This enables the order fairness definition below, discussed in [46].

▶ Definition 2 (Honest-Range Fairness). Let tx and tx ′ denote two transactions. If all honest
nodes receive the hash of tx before any honest node receives the hash of tx ′, then tx will be
ordered before tx ′.

Honest-Range Validity has been studied in the synchronous setting [42]. In the asynchronous
setting, however, this condition has only been considered under much weaker Agreement
requirements, which allow the honest outputs to be ε-close for some predefined ε > 0; see [3].
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One could hope that a stronger order-fairness definition is possible. Our first attempt is
as follows: if, at some time τ, most honest nodes have received the hash of some transaction
tx, while most honest nodes are yet to receive the hash of some transaction tx ′, then tx
should be ordered before tx ′. We express this condition with the help of the medians of the
honest nodes’ receipt timestamps:

▶ Definition 3 (Median Fairness). Suppose the hashes of transactions tx and tx ′ are received
by the honest nodes at times τ1 ≤ τ2 ≤ . . . ≤ τn−f and resp. τ ′

1 ≤ τ ′
2 ≤ . . . ≤ τ ′

n−f . Then, if
τµ < τ ′

µ, where µ = ⌈(n − f)/2⌉ denotes the index of the median, tx will be ordered before tx ′.

To achieve this order fairness definition, we need honest nodes to agree on the median of
their timestamps. Consider the (δ-Median Validity) condition below, introduced by Stolz
and Wattenhofer in [39], for n > 3f.

(δ-Median Validity) Assume the honest inputs are arranged in non-decreasing order in an
array T, and Ti is the i-th value in T. If an honest node outputs τ, then τ ∈ [Tµ−δ, Tµ+δ]
(i.e., τ is δ-positions-close to Tµ), where µ = ⌈(n − f)/2⌉.

Then, Median Fairness requires 0-Median Validity. This definition however cannot be
achieved even in a synchronous network, as stated in Lemma 4, following directly from [31,39].

▶ Lemma 4. If n > 3f and δ < ⌈f/2⌉, there is no synchronous protocol achieving Termination
and δ-Median Validity.

We therefore weaken our Median Fairness definition to allow some error.

▶ Definition 5 (δ-Median Fairness). Suppose the hashes of transactions tx and tx ′ are received
by the honest nodes at times τ1 ≤ τ2 ≤ . . . ≤ τn−f and τ ′

1 ≤ τ ′
2 ≤ . . . ≤ τ ′

n−f respectively. Let
µ = ⌈(n − f)/2⌉ denote the index of the median. Then, if τµ+δ < τ ′

µ−δ, transaction tx will
be ordered before transaction tx ′.

We note that δ-Median Validity has only been considered in the synchronous model [31,39],
meaning that even the slightest increased network delay may cause the protocols of [31,39],
which achieve δ-Median Validity, to completely fall apart. This motivates us to study δ-
Median Validity in the asynchronous model. First, we show a lower bound on the δ achievable
for the asynchronous case. Later on, we will further show this bound to be tight.

▶ Lemma 6. If n > 3f and δ < f, there is no asynchronous protocol achieving Termination
and δ-Median Validity.

Proof. We assume that there is a protocol Π achieving δ-Median Validity and Termination.
Let µ = ⌈(n − f)/2⌉, and let v denote an honest node. The input value of node v will be
2f + 1. We define the following scenarios:
(a) The n − f honest nodes have inputs f + 1, f + 2, . . . n, and the corrupted parties do not

participate in the protocol. Then, v must output a value in [f + µ − δ, f + µ + δ].
(b) The n−f honest nodes have inputs 1, 2, . . . , n−f ≥ 2f +1. The f corrupted nodes follow

the protocol correctly with inputs n−f+1, n−f+2, . . . , n, while the messages of the honest
nodes holding the f lowest inputs are delayed. Here, v should output a value in [µ−δ, µ+δ].
However, since from node v’s perspective, this scenario is indistinguishable from Scenario
(a), v must output a value in [µ − δ, µ + δ] ∩ [f + µ − δ, f + µ + δ] = [f + µ − δ, µ + δ].

(c) The n − f honest nodes have inputs 2f + 1, 2f + 2, . . . , n + f. The f corrupted nodes
follow the protocol correctly with inputs f + 1, f + 2, . . . , f, while the messages of the f

honest nodes holding the f highest inputs are delayed. Here, v should output a value in
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[2f + µ − δ, 2f + µ + δ]. Note that, for node v, this scenario is indistinguishable from
Scenario (a) and Scenario (b). Therefore, node v must output a value in [f + µ − δ, µ +
δ] ∩ [2f + µ − δ, 2f + µ + δ] = [2f + µ − δ, µ + δ].

Since δ < f, we obtain that µ+δ < µ+f < 2f+µ−δ, therefore the interval [2f+µ−δ, µ+δ]
containing node v’s output is empty. This contradicts that Π achieves Termination. ◀

Lemma 6 showcases an important limitation, namely, in a purely asynchronous network,
if n = 3f + 1, one can only hope to achieve Honest-Range Validity, as in this case f -Median
Validity degenerates to Honest-Range Validity. We note here that previous work has shown
that a single byzantine node can manipulate the median [27]. However, as timestamps
satisfying f -Median Validity are still in the honest range and as transactions are not visible
during ordering, we do not see it as a threat.

Defining Timestamp Agreement. To mitigate the limitation posed by Lemma 6, we take
into account that real-world networks are not as unreliable as the asynchronous model.
Hence, we aim to provide better guarantees if the network happens to be synchronous. We
investigate whether we can achieve best-of-both-worlds guarantees, in line with many recent
works [4, 7, 9, 17, 23]. That is, we investigate whether there is an asynchronous protocol
ensuring f -Median Validity that can additionally offer the stronger guarantee of ⌈f/2⌉-Median
Validity if the network happens to be synchronous for sufficient time. Therefore, we introduce
the following variant of aBA.

▶ Definition 7 (Timestamp Agreement). An n-nodes protocol, where each node may hold
an integer timestamp as input, achieves Timestamp Agreement (TA) if, even when f of the
nodes are corrupted, it achieves Agreement, f -Median Validity, and the following hold:

if all honest nodes hold inputs, then all honest node obtain outputs with probability 1;
if less than f + 1 honest nodes hold inputs, then no honest node obtains output;
if the synchrony assumptions hold for a sufficient amount of time and all honest parties
receive their inputs accordingly, then ⌈f/2⌉-Median Validity is achieved.

We note that we have proposed this definition taking into account that the user is not
necessarily honest, and hence may not provide all honest nodes with inputs. If this is the
case, our protocol still maintains f -Median Validity and Agreement. For the timestamp
submission protocol, this implies that, if a dishonest user’s transaction gets submitted to the
chain, then the unique timestamp assigned to it still fits our f -Median Fairness definition.
Hence, such adversarial behavior does not bring the dishonest user any real advantage.

We may now also define the term fair timestamp, used in Theorem 1: it is a timestamp
satisfying f -Median Validity, and, if synchrony assumptions hold, ⌈f/2⌉-Median Validity.

4 The Timestamp Agreement Protocol

In this section, we present our protocol achieving Timestamp Agreement secure against
f < n/3 byzantine corruptions. Formally, we obtain the result below. Recall once again
that there is no deterministic protocol achieving asynchronous Timestamp Agreement, a fact
following directly from FLP [19].

▶ Theorem 8. There is an n-nodes randomized protocol ΠTA achieving TA resilient against
f < n/3 byzantine corruptions. ΠTA has expected round complexity O(log(τmax − τmin)),
where τmin and τmax denote the lowest and the highest honest inputs respectively. To achieve
⌈f/2⌉-Median Validity, the synchrony assumptions must to hold for ∆EXT + ∆DCN time.
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Our protocol ΠTA consists of three steps. First, each node obtains a value satisfying
δ-Median Validity. This is the only step where synchrony assumptions are required to achieve
δ = ⌈f/2⌉ instead of δ = f. In the second step, nodes obtain very close values (they agree up
to an error of ε < 0.5) within the range of values that honest nodes obtained in the first step.
Agreement is then achieved in the last step, where each node decides whether to round its
value obtained in the second step up or down. This will be done using aBA on the rounding
option’s parity. In the following, we describe each step of ΠTA in detail.

Step 1: δ-Median Validity. We first design a protocol Πinit that only focuses on achieving
δ-Median Validity (while Agreement is covered by the subsequent steps).

Concretely, nodes send their input value to every party. To obtain a good estimation on
the honest inputs’ median, the nodes aim to receive as many honest inputs as possible. If
the network is asynchronous, one may only expect to receive n − f values. On the other
hand, if the network is synchronous, and the user initiated the transaction at some time τ,

all honest inputs are received by time τ + ∆EXT + ∆DCN. Then, nodes wait until they have
received timestamps from at least n − f nodes, and, until at least ∆EXT + ∆DCN time has
passed since they have received the user’s message. This way, if the synchrony assumptions
hold, every honest timestamp is received.

Hence, each node v collects n − f + k timestamps, where 0 ≤ k ≤ f, and arranges them
in an array R in non-decreasing order. If the network is synchronous, at most k of these
values are corrupted. These may be lower than any honest input, hence shifting the honest
median with at most k positions to the right, or higher than any honest input. Therefore,
the honest median is in the subarray Rµ, Rµ+1, . . . , Rµ+k, where Ri denotes the i-th lowest
value in R and µ = ⌈(n − f)/2⌉. Then, to obtain a value that is ⌈f/2⌉-positions-close to the
median, v outputs τµ := Rµ+⌊k/2⌋, i.e., the median of the subarray Rµ, Rµ+1, . . . , Rµ+k.

If the synchrony assumptions fail, however, the n − f + k values from R might come from
f corrupted nodes, and n − 2f + k honest nodes. The f − k missing honest timestamps
provide the corrupted nodes with more power: shifting the honest median f positions to
the right, or f − k positions to the left. Regardless, the chosen output τµ := Rµ+⌊k/2⌋ still
ensures that f -Median Validity holds.

We formally present the code of Πinit below. We note that this is the only step requiring
synchrony for achieving ⌈f/2⌉-Median Validity. In order to achieve the same guarantee even
if the nodes’ clocks are not perfectly synchronized, we may replace the waiting time by
θ · (∆EXT + ∆DCN), to ensure that the fastest node waits long enough.

Protocol Πinit

Code for node v with input timestamp τin

1: Send your input τin to all nodes.
2: After at least ∆EXT + ∆DCN time, and when n − f + k timestamps (0 ≤ k ≤ f) are received:
3: R := an array containing the timestamps received, ordered non-decreasingly.
4: Output τµ := R⌈(n−f)/2⌉+⌊k/2⌋.

We may now state and prove the properties of Πinit.

The next property enables us to ensure safety guarantees even when the user initiating
the process is dishonest. It follows immediately from line 2 of Πinit.

▶ Lemma 9. If less than f + 1 honest nodes provide inputs τin, then no honest node outputs.
Otherwise, if each honest node provides an input τin, then all honest nodes output τµ.
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The following lemmas show that the nodes indeed obtain values satisfying the desired
Validity guarantees.

▶ Lemma 10. If an honest node outputs a timestamp τµ, then τµ satisfies f -Median Validity.

Proof. If an honest node v has obtained a timestamp τµ, then it has received n − f + k

values, where 0 ≤ k ≤ f. Out of these, at least n − 2f + k values are honest.
Let T denote the array of honest inputs arranged in non-decreasing order. We show that

T⌈(n−f)/2⌉−f ≤ τµ = R⌈(n−f)/2⌉+⌊k/2⌋ ≤ T⌈(n−f)/2⌉+f .

For the upper bound, note that R may miss f − k out of the values in T, hence at most
f − k of the values Ti with i ≤ ⌈(n − f)/2⌉ + ⌊k/2⌋. This implies that R⌈(n−f)/2⌉+⌊k/2⌋ ≤
T⌈(n−f)/2⌉+⌊k/2⌋+(f−k) ≤ T⌈(n−f)/2⌉+f .

For the lower bound, note that R contains at most f corrupted values, hence at most f ad-
ditional values that are lower than T⌈(n−f)/2⌉+⌊k/2⌋. Then, we obtain that R⌈(n−f)/2⌉+⌊k/2⌋ ≥
T⌈(n−f)/2⌉+⌊k/2⌋−f ≥ T⌈(n−f)/2⌉−f . ◀

We now show that Πinit achieves ⌈f/2⌉-Median Validity if the synchrony assumptions
hold, using a similar argument to the proof of Lemma 11. The key difference is that at least
n − f of the values received are honest (as opposed to n − 2f + k).

▶ Lemma 11. If all honest nodes obtain inputs τin and join Πinit between time τstart and time
τstart + ∆EXT, and the synchrony assumptions hold until time τstart + ∆EXT + ∆DCN, then all
honest nodes output timestamps τµ satisfying ⌈f/2⌉-Median Validity.

Proof. We first show that all honest timestamps are received by time τstart + ∆EXT + ∆DCN.

Each honest node sends its input to all other nodes by time τstart + ∆EXT. Since the network
is synchronous, these values are received within ∆ time, hence by time τstart + ∆EXT + ∆DCN.

Then, since all honest nodes start the execution of the protocol at time at least τstart, the
protocol ensures that each honest node waits until time at least τstart + ∆EXT + ∆DCN, and
hence receives all honest timestamps.

Then, for every honest node, R contains all honest values, and 0 ≤ k ≤ f values from
corrupted nodes. If T denotes the array of honest timestamps arranged in non-decreasing
order, we need to show that T⌈(n−f)/2⌉−⌈f/2⌉ ≤ R⌈(n−f)/2⌉+⌊k/2⌋ ≤ T⌈(n−f)/2⌉+⌊f/2⌋.

We first focus on the upper bound: since R contains all values Ti, and k ≤ f, the inequality
R⌈(n−f)/2⌉+⌊k/2⌋ ≤ T⌈(n−f)/2⌉+⌊k/2⌋ ≤ T⌈(n−f)/2⌉+⌊f/2⌋ holds.

For the lower bound, we note that R contains at most k + µ + ⌊k/2⌋ values lower than
T⌈(n−f)/2⌉+⌊k/2⌋. Out of these k + µ + ⌊k/2⌋ values, at most k are corrupted. This means
that R⌈(n−f)/2⌉+⌊k/2⌋ ≥ T⌈(n−f)/2⌉+⌊k/2⌋−k = T⌈(n−f)/2⌉−⌈k/2⌉ ≥ T⌈(n−f)/2⌉−⌈f/2⌉, which
concludes our proof. ◀

Step 2: Agreement up to a small error. Honest nodes have obtained timestamps τµ

satisfying δ-Median Validity via Πinit. We now take a step towards achieving Agreement. We
make use of an asynchronous protocol ΠAA achieving Approximate Agreement [3]. That is,
ΠAA ensures that, for any given ε > 0, honest nodes obtain ε-close values τAA within the
range of their values τµ (maintaining δ-Median Validity). Lemma 12 states the properties of
ΠAA, and follows directly from [3]. In our case, any constant ε < 0.5 suffices.

▶ Lemma 12. If an honest node outputs τAA, then τAA is within the range of timestamps τµ

obtained by honest nodes in Πinit. If two honest nodes output τAA and τ ′
AA, then

∣∣τAA − τ ′
AA

∣∣ <

ε < 0.5. In addition, if less than f + 1 honest nodes hold timestamps τµ, then no honest node
outputs; while if all honest nodes hold timestamps τµ, then all honest nodes output.
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The guarantee on obtaining outputs only when at least f + 1 honest nodes participate
follows from the fact that ΠAA requires nodes to wait for messages from n − f distinct nodes.
In addition, properties on honest nodes’ outputs (if any) are ensured even if not all honest
nodes participate since ΠAA is an asynchronous protocol. Concretely, this is because this
setting is indistinguishable from a scenario where the non-participating honest nodes are
simply delayed.

We add that ΠAA does not make any assumption on the range of honest values τµ to
achieve these guarantees. It runs in iterations allowing the honest values to converge. If all
honest nodes hold inputs τµ and range size of these inputs is ∆µ (≤ the difference between
the times when the transaction hash is delivered to the honest nodes), then ΠAA runs for
O(log(∆µ/ε)) iterations. Each iteration consists of a constant number of communication
rounds, and incurs message complexity O(n3). Therefore, the round complexity of ΠAA is
O(log ∆µ), and the message complexity is O(n3 log ∆µ).

Step 3: Rounding. Honest nodes have obtained ε-close values τAA satisfying δ-Median
Validity. As depicted in Figure 2, since ε < 0.5, the range of honest values τAA either:
(a) contains an even integer α such that

∣∣α − τAA
∣∣ < 0.5 for all honest values τAA;

(b) contains an odd integer α such that
∣∣α − τAA

∣∣ < 0.5 for all honest values τAA;
(c) is between two integers: α ≤ τAA ≤ α + 1 for all honest values τAA.

Figure 2 A few examples of possible outputs obtained in ΠAA. In the top and middle examples,
representing cases (a) and (b) respectively, honest outputs are close to a single integer. In the bottom
example, representing case (c), some honest outputs are closer to 116, while some are closer to 117.

Then, the problem of achieving Agreement comes down to enabling the honest nodes to
choose between rounding down or rounding up their values τAA. Making this decision for cases
(a) and (b) is trivial: honest nodes simply round their value τAA to the closest integer. Case
(c), however, requires solving aBA. We therefore employ the randomized protocol ΠaBA of [32]
that achieves aBA with binary inputs in expected round complexity O(1), with message
complexity O(n2). Note that we do not use aBA to decide on rounding either up or down,
since this would break Agreement in cases (a) and (b). Instead, we use aBA to decide on the
parity of the final rounding option. Once again, we note that if the user is dishonest and not
all honest nodes were able to reach this stage, protocol ΠaBA still offers guarantees. Namely,
if less than f +1 honest nodes have reached this stage, then no honest node obtains an output
(as honest nodes are forced to wait for messages from n − f distinct nodes). Otherwise, if
honest nodes obtain outputs, these outputs still satisfy Weak Validity and Termination. This
is the case even if not all honest nodes participate, since such a setting is indistinguishable
from a scenario where the non-participating honest nodes’ messages are simply delayed, and
the guarantees of ΠaBA hold under asynchrony.
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Each node v that has obtained a timestamp τAA picks two integers α and α + 1 such
that α ≤ τAA < α + 1. Out of these two values, v picks the one that is closer to its τAA as
an initial rounding option, denoted by β. Then, v joins ΠaBA with input b, representing the
parity of β, and may obtain output b′. If b′ = b, it outputs β, and otherwise it outputs its
second rounding option. In cases (a) and (b), honest nodes pick the same value β. They join
ΠaBA with the same input bit b, and Weak Validity ensures they output b′ = b. Therefore, if
sufficiently many honest nodes reached this stage, all participating honest nodes output β,

which still satisfies δ-Median Validity. In case (c), all honest nodes that reach this stage pick
the same value α. In this case, because the input timestamps τin are integers, both α and
α + 1 satisfy δ-Median Validity. Even if honest nodes make a different choice for β, ΠaBA
allows them to decide on the same bit b′, hence they output the same rounding option.

We may now provide the formal code of our Timestamp Agreement protocol ΠTA. We
define the constant ε = 0.49, but any choice of ε < 0.5 suffices.

Protocol ΠTA

Code for node v receiving a transaction at time τin

1: Join Πinit with input τin. Upon obtaining τµ via Πinit:
2: Join Πε

AA with input τµ. Upon obtaining output τAA in Πε
AA:

3: Let α be an integer such that α ≤ τAA < α + 1.

4: If τAA − α < α + 1 − τAA, set β = α and β′ = α + 1.

5: Otherwise, set β = α + 1 and β′ = α.

6: Set b = 0 if β is even, and b = 1 if β is odd.
7: Join ΠaBA with input b. Upon obtaining output b′ via ΠaBA:
8: If b = b′ , set τout = β. Otherwise, set τout = β′. Output τout and terminate.

We now focus on proving Theorem 8. In Lemma 13, we show that ΠTA indeed achieves
Timestamp Agreement. Then, Lemma 14 focuses on the round complexity. The requirement
of synchrony assumptions holding only for ∆EXT + ∆DCN in order to achieve ⌈f/2⌉-Median
Validity is given by Πinit, since the subsequent steps of ΠTA are fully asynchronous.

▶ Lemma 13. If less than f + 1 honest nodes hold inputs τin, then no honest node outputs.
Otherwise, honest nodes that output have obtained the same value τout satisfying δ-Median

Validity, with δ = ⌈f/2⌉ if the synchrony assumptions held for ∆EXT + ∆DCN time at the
beginning of the protocol’s execution, and δ = f otherwise.

In addition, if all honest nodes hold inputs τin, then all honest nodes output.

Proof. Lemma 9 ensures that f + 1 honest nodes holding inputs τin are necessary in order
to obtain outputs. In the following, we assume this was the case.

Lemma 12 ensures that honest nodes obtaining outputs (meaning all honest nodes if
all of them had inputs τin) have obtained ε-close approximations τAA for ε < 0.5. These
approximations are within the range of honest values τin, and hence satisfy δ-Median Validity,
as ensured by Lemma 10 and Lemma 11.

Then, we need to consider two cases: when all obtained honest approximations are
between two consecutive integers, and when some honest approximations are lower than an
integer, while some are higher.

If there is some integer γ such that γ ≤ τAA < γ +1 for all obtained honest approximations
τAA, then honest nodes obtain α = γ and α + 1 = γ + 1. Regardless of the chosen β and bit
b, honest nodes obtain in ΠaBA the same bit b′ which refers to the same value: either γ for
all honest nodes that reached this stage, or γ + 1 for all honest nodes that reached this stage.
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Hence, these honest nodes output the same timestamp. It remains to show that the output
timestamp is in the range of honest inputs. If all honest nodes that reached this stage have
obtained τAA = γ, then they joined ΠaBA with the same input b representing γ’s parity, and
hence they output the same γ in the honest range according to Lemma 12. Otherwise, if at
least one honest node has obtained γ < τAA < γ + 1, we take into account that the honest
inputs are integers. Lemma 12 then implies that both γ and γ + 1 are in the honest inputs’
range.

Otherwise, there is some integer γ such that γ ≤ τAA < γ+1 for some honest approximation
τAA and γ + 1 ≤ τ ′

AA < γ + 2 for some honest approximation τAA. Note that, in this case,
Lemma 12 ensures that γ + 1 is in the range of the honest nodes’ inputs. In addition, since
Lemma 12 ensures τ ′

AA − τAA < 0.5, both γ + 1 − τAA < 0.5 and τ ′
AA − (γ + 1) < 0.5 hold. This

applies to all honest nodes that reached this stage: namely, all these honest nodes choose the
same β = γ + 1 and therefore join ΠaBA with the same bit b. Then, ΠaBA ensures all honest
nodes that reached this stage output b′ = b and output γ + 1.

If all honest nodes had inputs τin, all honest nodes have obtained outputs in ΠaBA, and
therefore all honest nodes output in ΠTA. ◀

The round complexity of ΠTA follows from the fact that ΠAA ensures termination within
O(log(τmax − τmin)) rounds, if honest nodes’ inputs are between τmin and τmax, while ΠaBA
ensures termination within expected constant time.

▶ Lemma 14. If all honest nodes hold inputs τin, then honest nodes output within expected
O(log(τmax − τmin)) rounds, where τmin and τmax denote the lowest and the highest honest
inputs respectively (hence O(log ∆EXT) rounds if the synchrony assumptions are satisfied).

5 Analysis of the Main Protocol

We now formally prove the properties of the transaction submission protocol. In particular,
we prove Theorem 1.

▶ Lemma 15 (Honest-User Liveness). If a transaction tx is sent by an honest user, it gets
processed and submitted to the mempool eventually, and, if the user’s messages reach the
nodes within ∆EXT time and the synchrony assumptions hold inside the DCN for an additional
∆DCN time, the transaction get submitted within expected O(log ∆EXT) communication rounds.

Proof. Since tx was sent by an honest user, all honest nodes receive the necessary messages
to join ΠTA, and hence they obtain a timestamp τ. Then all honest nodes obtain τ and send
their shares to the other nodes. Since f + 1 shares are necessary to reconstruct tx and the
shares are signed by the user (therefore the corrupted nodes cannot send corrupted shares),
the honest nodes are able to reconstruct the transaction and submit it to the mempool. The
round complexity follows from Lemma 14, and from the fact that the main protocol only
adds a constant number of communication rounds over ΠTA. ◀

▶ Lemma 16 (Integrity). If a transaction tx gets submitted to the mempool, the process was
initiated by some user.

Proof. Submitting a transaction to the mempool requires signatures from f + 1 nodes, hence
from at least one honest node. This honest node only signs if it has obtained output in the
invocation of ΠTA corresponding to the hash of tx. This means that honest nodes have joined
this execution of ΠTA, hence they have received input from some user. ◀
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▶ Lemma 17 (Unique Timestamp). If a transaction tx gets submitted to the mempool with
timestamps τ and τ ′, then τ = τ ′.

Proof. Assume that τ ≠ τ ′. First, note that timestamps are obtained via ΠTA, which assigns
tx a unique timestamp by the Agreement property. Therefore, during an invocation of the
main protocol for tx, all honest nodes obtain the same timestamp τ. Since f + 1 signatures
are required for the transaction to be submitted along with its timestamp, the corrupted
parties are unable to submit tx to the mempool on their own. Hence, if τ ̸= τ ′, there must
be an honest party that has signed τ ′, which happened through a different invocation of the
main protocol, hence for a different transaction (ensured by the transaction’s nonce). ◀

▶ Lemma 18 (Fair Timestamp). If a transaction tx gets submitted to the mempool with
timestamp τ, then τ is a fair timestamp.

Proof. Since tx was assigned a timestamp obtained via ΠTA, all honest parties have assigned a
fair timestamp τ to tx, i.e., satisfying f -Median Validity or ⌈f/2⌉-Median Validity, depending
on the network conditions and on the user’s honesty. Then, since f +1 signatures are required
for tx to be submitted, its timestamp was signed by an honest party, hence it is fair. ◀

6 Discussion

Front-running Resistance. The DCN effectively prevents tolerant front-running, i.e., the
attacker’s transaction executing before the victim’s transaction. Transactions are ordered
according to the timestamps returned by the DCN, which fulfill δ-Median Validity. Still,
transactions submitted close to each other in time could receive the same timestamp, in
which case the validator picks an order, or receives timestamps in the opposite order of the
actual submission times. However, this is not an issue, as the transaction contents are hidden
until the timestamp is agreed upon by the nodes. Thus, tolerant front-running, which, to be
effective, requires the attacker to know the contents of the victim’s transaction, is prevented.

The DCN does not address destructive front-running. To be more easily integrateable in
the current blockchain infrastructure, the permissioned DCN only supplies the timestamp but
does not interfere with the blockchain’s consensus. Destructive front-running, thus, remains
possible, as the block proposer (miner) could choose not to include the transaction.

Censorship Resistance. We note that by using timestamps as a decision factor when
including transactions in a block, transactions become in some sense block-bound. Thus,
a transaction can become temporarily censored if the block proposer does not include the
transaction and the transaction’s timestamp is too low to be included in future blocks. Further,
under an asynchronous network, transactions may get lost solely due to messages getting
delayed and the corresponding timestamp becoming obsolete by the time messages reach the
validators. In a real-world implementation of our system, this issue can be circumvented by
allowing users to resubmit their transactions with new nonces if they get lost. Importantly,
the DCN does not decrease the censorship resilience any further than the block-bound model
does in comparison to the classical non-block-bound blockchain model, while having the
advantage of providing guarantees against front-running, which neither the classical nor the
block-bound model can achieve alone. This follows both under synchrony and asynchrony by
the Honest-User Liveness property.
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Permissioned Network. The DCN is designed as a permissioned network consisting of
specialized parties offering efficient and reliable transaction timestamping. Importantly, the
DCN only supplies transactions with timestamps and is therefore designed to be used together
with an existing permissionless blockchain. In particular, the responsibility of adding blocks
to the ledger, validating blocks and storing the blockchain itself remains in the hand of the
permissionless set of miners or validators. Essentially, the permissioned nature of the DCN
does not reduce the robustness and decentralization of the network of validators that verify
the blocks, i.e., proves that they are honest. The permissionless network, thus, retains control
of the most fundamental task.

Similar permissioned setups are already common in practice today. For instance, Chainlink
oracles bringing price data from the real world onto the blockchain usually operate in a similar
fashion [1]. Moreover, since Ethereum’s transition from Proof-of-Work to Proof-of-Stake,
block building has become more concentrated [24,43,45], in that currently more than 90%
of the blocks are built with proposer-builder separation (PBS) [2]. In the first six months
since the merge, a mere 133 builders have built these PBS blocks that were included on the
ledger [24]. With PBS, block building is no longer done by the validators themselves but
is instead handled by highly sophisticated block builders [2], similarly in spirit to how the
DCN is used for timestamping transactions. By shifting tasks requiring a high degree of
complexity away from validators, such as building blocks, or timestamping transactions in
the case of the DCN, the requirements to run a validator node decrease. Consequently, in
the long run, the number of validators is expected to increase, leading to a higher overall
degree of decentralization of the consensus layer [2, 34], i.e., the core of the blockchain. In
our case, parties participating in the DCN are now responsible for the non-trivial task of
ordering transactions, while the complexity for the validators decreases. In particular, the
task of block building becomes easier as validators must simply order transactions according
to their timestamp.

Finally, we note that PBS and the DCN are incompatible. While the former optimizes
for block value and thereby likely includes front-running transactions, the latter is designed
to achieve a fair ordering that prevents front-running. If the DCN were integrated into a
permissionless blockchain instead of PBS, the blockchain would protect users from front-
running as opposed to maximizing block value on their behalf.

7 Conclusion and Future Work

We introduced the DCN, a novel and practical solution for fair transaction ordering in
permissionless blockchains. Our approach differs from previous works by treating fair ordering
as a Byzantine Agreement problem rather than a Byzantine State Machine Replication
problem, leading to a simpler and faster algorithm while achieving good fairness guarantees.
In particular, our new timestamp agreement protocol achieves ⌈f/2⌉-Median Fairness when
the network is synchronous and falls back to a guarantee of f -Median Fairness during periods
of asynchrony. These two bounds are the best that can be obtained in terms of δ-Median
Fairness for the synchronous and asynchronous cases, respectively, as we have shown. The
asynchronous fallback paradigm is a relatively unexplored, yet more robust notion than
partial synchrony, so we find it natural to use it in designing other blockchain network
protocols under realistic conditions.

As a next step, it would be valuable to consider the implementation of a dynamic set of
nodes in the DCN, supporting the addition and removal of nodes in a controlled manner
and the updating of related information. To do so, it will also be important to provide
incentives for the nodes. One possible way to do so is to use rewards coming from transaction
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fees, similar to gas fees in other blockchain systems. Additionally, it would be of interest to
develop a prototype of our proposed method and evaluate its performance on-chain. Finally,
the DeFi scene would benefit from the development of approaches for combating destructive
front-running, which our work does not address.
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