LIPIcs – Leibniz International Proceedings in Informatics

LIPIcs is a series of high-quality conference proceedings across all fields in informatics. LIPIcs volumes are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board

- Luca Aceto (Reykjavik University, IS and Gran Sasso Science Institute, IT)
- Christel Baier (TU Dresden, DE)
- Roberto Di Cosmo (Inria and Université de Paris, FR)
- Faith Ellen (University of Toronto, CA)
- Javier Esparza (TU München, DE)
- Daniel Král’ (Masaryk University, Brno, CZ)
- Meena Mahajan (Chair, Institute of Mathematical Sciences, Chennai, IN)
- Anca Muscholl (University of Bordeaux, FR)
- Chih-Hao Luke Ong (University of Oxford, GB)
- Phillip Rogaway (University of California, Davis, US)
- Eva Rotenberg (Technical University of Denmark, Lyngby, DK)
- Raimund Seidel (Universität des Saarlandes, Saarbrücken, DE and Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Wadern, DE)
- Pierre Senellart (ENS, Université PSL, Paris, FR)

ISSN 1868-8969

https://www.dagstuhl.de/lipics
Contents

Preface

Venkatesan Guruswami .. 0:xiii–0:xiv

List of Authors

.. 0:xv–0:xxiii

Papers

A Qubit, a Coin, and an Advice String Walk into a Relational Problem

Scott Aaronson, Harry Buhrman, and William Kretschmer 1:1–1:24

Quantum Pseudoentanglement

Scott Aaronson, Adam Bouland, Bill Fefferman, Soumik Ghosh, Umesh Vazirani, Chenyi Zhang, and Zixin Zhou ... 2:1–2:21

Differentially Private Medians and Interior Points for Non-Pathological Data

Maryam Aliakbarpour, Rose Silver, Thomas Steinke, and Jonathan Ullman 3:1–3:21

Tensor Ranks and the Fine-Grained Complexity of Dynamic Programming

Josh Alman, Ethan Turok, Hantao Yu, and Hengzhi Zhang 4:1–4:23

On the Complexity of Computing Sparse Equilibria and Lower Bounds for No-Regret Learning in Games

Pseudorandom Strings from Pseudorandom Quantum States

Prabhanjan Ananth, Yao-Ting Lin, and Henry Yuen 6:1–6:22

Geometric Covering via Extraction Theorem

Sayan Bandyapadhyay, Anil Maheshwari, Sasanka Roy, Michiel Smid, and Kasturi Varadarajan ... 7:1–7:20

Sublinear Approximation Algorithm for Nash Social Welfare with XOS Valuations

Quantum Merlin-Arthur and Proofs Without Relative Phase

Roozbeh Bassirian, Bill Fefferman, and Kunal Marwaha 9:1–9:19

Towards Stronger Depth Lower Bounds

Gabriel Bathie and R. Ryan Williams .. 10:1–10:24

Property Testing with Online Adversaries

Omri Ben-Eliezer, Esty Kelman, Uri Meir, and Sofya Raskhodnikova 11:1–11:25

Are There Graphs Whose Shortest Path Structure Requires Large Edge Weights?

Aaron Bernstein, Greg Bodwin, and Nicole Wein .. 12:1–12:22

Universal Matrix Sparsifiers and Fast Deterministic Algorithms for Linear Algebra

15th Innovations in Theoretical Computer Science Conference (ITCS 2024).

Editor: Venkatesan Guruswami

Leibniz International Proceedings in Informatics

Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany
Contents

Homomorphic Indistinguishability Obfuscation and Its Applications
Kaartik Bhushan, Venkata Koppula, and Manoj Prabhakaran 14:1–14:21

Testing and Learning Convex Sets in the Ternary Hypercube
Hadley Black, Eric Blais, and Nathaniel Harms .. 15:1–15:21

A Characterization of Optimal-Rate Linear Homomorphic Secret Sharing
Schemes, and Applications
Keller Blackwell and Mary Wootters ... 16:1–16:20

Loss Minimization Yields Multicalibration for Large Neural Networks
Jarosław Błasiok, Parikshit Gopalan, Lunjia Hu, Adam Tauman Kalai, and
Preetum Nakkiran ... 17:1–17:21

Winning Without Observing Payoffs: Exploiting Behavioral Biases to Win Nearly
Every Round
Avrim Blum and Melissa Dutz .. 18:1–18:18

Spanning Adjacency Oracles in Sublinear Time
Greg Bodwin and Henry Fleischmann ... 19:1–19:21

Discreteness of Asymptotic Tensor Ranks
Jop Briët, Matthias Christandl, Itai Leigh, Amir Shpilka, and Jeroen Zuiddam ... 20:1–20:14

Noisy Decoding by Shallow Circuits with Parities: Classical and Quantum
(Extended Abstract)

The NFA Acceptance Hypothesis: Non-Combinatorial and Dynamic Lower Bounds

Private Distribution Testing with Heterogeneous Constraints: Your Epsilon
Might Not Be Mine
Clément L. Canonne and Yucheng Sun ... 23:1–23:24

Classical Verification of Quantum Learning
Matthias C. Caro, Marcel Hinsche, Marios Ioannou, Alexander Nietner, and
Ryan Sweke .. 24:1–24:23

Learning Arithmetic Formulas in the Presence of Noise: A General Framework
and Applications to Unsupervised Learning

The Distributed Complexity of Locally Checkable Labeling Problems Beyond
Paths and Trees
Yi-Jun Chang ... 26:1–26:25

Determinants vs. Algebraic Branching Programs
Abhranil Chatterjee, Mrinal Kumar, and Ben Lee Volk 27:1–27:13

Extractors for Polynomial Sources over F_2

Recursive Error Reduction for Regular Branching Programs
Eshan Chattopadhyay and Jyun-Jie Liao .. 29:1–29:20
Contents

Influence Maximization in Ising Models
Zongchen Chen and Elchanan Mossel .. 30:1–30:14

On the Complexity of Isomorphism Problems for Tensors, Groups, and Polynomials III: Actions by Classical Groups

Space-Optimal Profile Estimation in Data Streams with Applications to Symmetric Functions
Justin Y. Chen, Piotr Indyk, and David P. Woodruff 32:1–32:22

Testing Intersecting and Union-Closed Families
Xi Chen, Anindya De, Yuhao Li, Shivam Nadimpalli, and Rocco A. Servedio 33:1–33:23

On Parallel Repetition of PCPs
Alessandro Chiesa, Ziyi Guan, and Burcu Yıldız 34:1–34:14

Collective Tree Exploration via Potential Function Method
Romain Cosson and Laurent Massoulïé .. 35:1–35:22

Fraud Detection for Random Walks
Varsha Dani, Thomas P. Hayes, Seth Pettie, and Jared Saia 36:1–36:22

Smooth Nash Equilibria: Algorithms and Complexity
Constantinos Daskalakis, Noah Golowich, Nika Haghtalab, and Abhishek Shetty 37:1–37:22

Graph Threading
Erik D. Demaine, Yael Kirkpatrick, and Rebecca Lin 38:1–38:18

Simple and Optimal Online Contention Resolution Schemes for k-Uniform Matroids

On the Black-Box Complexity of Correlation Intractability
Nico Döttling and Tamer Mour .. 40:1–40:24

The Message Complexity of Distributed Graph Optimization
Fabien Dufoulon, Shregas Pai, Gopal Pandurangan, Sriram V. Pemmaraju, and Peter Robinson ... 41:1–41:26

Time- and Communication-Efficient Overlay Network Construction via Gossip

Homogeneous Algebraic Complexity Theory and Algebraic Formulas

On the (In)approximability of Combinatorial Contracts
Tomer Ezra, Michal Feldman, and Maya Schlesinger 44:1–44:22

Two-State Spin Systems with Negative Interactions
Yumou Fei, Leslie Ann Goldberg, and Pinyan Lu 45:1–45:13

Scalable Distributed Agreement from LWE: Byzantine Agreement, Broadcast, and Leader Election
Rex Fernando, Yuval Gelles, and Ilan Komargodski....................... 46:1–46:23
Distribution Testing with a Confused Collector
Renato Ferreira Pinto Jr. and Nathaniel Harms 47:1–47:14

Proving Unsatisfiability with Hitting Formulas

Deterministic 3SUM-Hardness
Nick Fischer, Piotr Kaliciak, and Adam Polak 49:1–49:24

One-Way Functions vs. TFNP: Simpler and Improved
Lukáš Folwarczný, Mika Göös, Pavel Hubáček, Gilbert Maystre, and Weiqiang Yuan 50:1–50:14

An Axiomatic Characterization of CFMMs and Equivalence to Prediction Markets
Rafael Frongillo, Maneesha Papireddygari, and Bo Waggoner 51:1–51:21

Rethinking Fairness for Human-AI Collaboration
Haosen Ge, Hamsa Bastani, and Osbert Bastani 52:1–52:21

New Lower Bounds in Merlin-Arthur Communication and Graph Streaming Verification
Prantar Ghosh and Vihan Shah 53:1–53:22

NLTS Hamiltonians and Strongly-Explicit SoS Lower Bounds from Low-Rate Quantum LDPC Codes
Louis Golowich and Tali Kaufman 54:1–54:23

Electrical Flows for Polylogarithmic Competitive Oblivious Routing

An Algorithm for Bichromatic Sorting with Polylog Competitive Ratio
Mayank Goswami and Riko Jacob 56:1–56:17

Communicating with Anecdotes
Nika Haghtalab, Nicole Immorlica, Brendan Lucier, Markus Mobius, and Dieyarthi Mohan 57:1–57:2

An Improved Protocol for ExactlyN with More Than 3 Players
Lianna Hambardzumyan, Toniann Pitassi, Suhail Sherif, Morgan Shirley, and Adi Shraibman 58:1–58:23

Equivocal Blends: Prior Independent Lower Bounds
Jason Hartline and Alec Johnsen 59:1–59:21

The Chromatic Number of Kneser Hypergraphs via Consensus Division
Ishay Haviv 60:1–60:17

Quickly Determining Who Won an Election
Lisa Hellerstein, Naifeng Liu, and Kevin Schewior 61:1–61:14

On the Complexity of Algorithms with Predictions for Dynamic Graph Problems

TFNP Intersections Through the Lens of Feasible Disjunction
Pavel Hubáček, Erfan Khaniki, and Neil Thapen 63:1–63:24
Contents

<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exponential-Time Approximation Schemes via Compression</td>
<td>Tanmay Inamdar, Madhumita Kundu, Pekka Parviainen, M. S. Ramanujan, and Saket Saurabh</td>
<td>64:1–64:22</td>
</tr>
<tr>
<td>FPT Approximation for Capacitated Sum of Radii</td>
<td>Ragesh Jaiswal, Amit Kumar, and Jatin Yadav</td>
<td>65:1–65:21</td>
</tr>
<tr>
<td>A VLSI Circuit Model Accounting for Wire Delay</td>
<td>Ce Jin, R. Ryan Williams, and Nathaniel Young</td>
<td>66:1–66:22</td>
</tr>
<tr>
<td>Distributional PAC-Learning from Nisan’s Natural Proofs</td>
<td>Ari Karchmer</td>
<td>68:1–68:23</td>
</tr>
<tr>
<td>Quantum and Classical Low-Degree Learning via a Dimension-Free Remez Inequality</td>
<td>Ohad Klein, Joseph Slote, Alexander Volberg, and Haonan Zhang</td>
<td>69:1–69:22</td>
</tr>
<tr>
<td>A Combinatorial Approach to Robust PCA</td>
<td>Weihtao Kong, Mingda Qiao, and Rajat Sen</td>
<td>70:1–70:22</td>
</tr>
<tr>
<td>Hardness of Approximating Bounded-Degree Max 2-CSP and Independent Set on k-Claw-Free Graphs</td>
<td>Euiwoong Lee and Pasin Manurangsi</td>
<td>71:1–71:17</td>
</tr>
<tr>
<td>Classical vs Quantum Advice and Proofs Under Classically-Accessible Oracle</td>
<td>Xingjian Li, Qipeng Liu, Angelos Pelecanos, and Takashi Yamakawa</td>
<td>72:1–72:19</td>
</tr>
<tr>
<td>Dynamic Maximal Matching in Clique Networks</td>
<td>Minming Li, Peter Robinson, and Xianbin Zhu</td>
<td>73:1–73:21</td>
</tr>
<tr>
<td>Total NP Search Problems with Abundant Solutions</td>
<td>Jiawei Li</td>
<td>75:1–75:23</td>
</tr>
<tr>
<td>Making Progress Based on False Discoveries</td>
<td>Roi Livni</td>
<td>76:1–76:18</td>
</tr>
<tr>
<td>Modularity and Graph Expansion</td>
<td>Baptiste Louf, Colin McDiarmid, and Fiona Skerman</td>
<td>78:1–78:21</td>
</tr>
</tbody>
</table>
A Myersonian Framework for Optimal Liquidity Provision in Automated Market Makers

Jason Milionis, Ciamac C. Moallemi, and Tim Roughgarden 81:1–81:19

A Computational Separation Between Quantum No-Cloning and No-Telegraphing

Barak Nehoran and Mark Zhandry .. 82:1–82:23

On the Size Overhead of Pairwise Spanners

Ofer Neiman and Idan Shabat ... 83:1–83:22

Budget-Feasible Mechanism Design: Simpler, Better Mechanisms and General Payment Constraints

Rian Neogi, Kanstantsin Pashkovich, and Chaitanya Swamy 84:1–84:22

General Gaussian Noise Mechanisms and Their Optimality for Unbiased Mean Estimation

Aleksandar Nikolov and Haohua Tang ... 85:1–85:23

Rumors with Changing Credibility

Charlotte Out, Nicolás Rivera, Thomas Sauerwald, and John Sylvester 86:1–86:23

Tensor Reconstruction Beyond Constant Rank

Shir Peleg, Amir Shpilka, and Ben Lee Volk .. 87:1–87:20

Color Fault-Tolerant Spanners

Asaf Petruschka, Shay Sapir, and Elad Tzalik ... 88:1–88:17

On Generalized Corners and Matrix Multiplication

Kevin Pratt ... 89:1–89:17

Pseudorandom Linear Codes Are List-Decodable to Capacity

Aaron (Louie) Putterman and Edward Pyne ... 90:1–90:21

Lower Bounds for Planar Arithmetic Circuits

C. Ramya and Pratik Shastri ... 91:1–91:22

Parity vs. AC0 with Simple Quantum Preprocessing

Joseph Slote ... 92:1–92:21

Training Multi-Layer Over-Parametrized Neural Network in Subquadratic Time

Zhao Song, Lichen Zhang, and Ruizhe Zhang .. 93:1–93:15

Differentially Private Approximate Pattern Matching

Teresa Anna Steiner .. 94:1–94:18

Stretching Demi-Bits and Nondeterministic-Secure Pseudorandomness

Iddo Tzameret and Lu-Ming Zhang .. 95:1–95:22

Gregory Valiant ... 96:1–96:13

Quantum Event Learning and Gentle Random Measurements

Adam Bene Watts and John Bostanci ... 97:1–97:22

Maximizing Miner Revenue in Transaction Fee Mechanism Design

Ke Wu, Elaine Shi, and Hao Chung .. 98:1–98:23
Randomized vs. Deterministic Separation in Time-Space Tradeoffs of Multi-Output Functions
 Huacheng Yu and Wei Zhan ... 99:1–99:15

Sampling, Flowers and Communication
 Huacheng Yu and Wei Zhan ...100:1–100:11

Quantum Money from Abelian Group Actions
 Mark Zhandry ...101:1–101:23

The Space-Time Cost of Purifying Quantum Computations
 Mark Zhandry ...102:1–102:22

Advanced Composition Theorems for Differential Obliviousness
 Mingxun Zhou, Mengshi Zhao, T-H. Hubert Chan, and Elaine Shi103:1–103:24
The papers in this volume were presented at the 15th Innovations in Theoretical Computer Science (ITCS 2024) conference. The conference was held from January 30 to February 2, 2024 at the Simons Institute for the Theory of Computing on the campus of University of California, Berkeley.

ITCS seeks to promote research with innovative or bold agendas, which could be conceptual, technical, or methodological, and whose message will advance and inspire the greater theory community. Some examples of the kind of papers that the conference aims to feature are those introducing a new concept, model or understanding; opening a new line of inquiry within traditional or interdisciplinary areas; introducing new mathematical techniques and methodologies, or new applications of known techniques; putting forth a bold, even if preliminary, vision or line of attack; making interesting progress on traditional research directions; or unearthing novel or surprising connections between different topics.

The conference received 272 submissions of which the program committee accepted 103 papers (two of which were presented at the conference in a single merged time slot). The submission pool was strong, which explains the high acceptance rate. The conference format was single-session with the goal of promoting a sense of community, and promoting the exchange of ideas between different areas of theoretical computer science. Given this and the sizable number of accepted papers, each talk at the conference was only about 10 minutes long. The authors of each paper were thus requested to submit a 20-25 minute video, which are posted on the Simons Institute Youtube channel and linked from the conference website.

The program committee (PC) consisted of 42 fantastic members (excluding the chair): Maryam Aliakbarpour (Rice University), Benny Applebaum (Tel Aviv University), Arnab Bhattacharyya (National University of Singapore), Kshipra Bhawalkar (Google Research), Avrim Blum (Toyota Technological Institute at Chicago), Moses Charikar (Stanford University), Vincent Cohen-Addad (Google Research), Andrea Coladangelo (University of Washington), Jelena Diakonikolas (University of Wisconsin-Madison), Ran Duan (Tsinghua University), Alina Ene (Boston University), Bill Fefferman (University of Chicago), Shuichi Hirahara (National Institute of Informatics, Tokyo), Sivakanth Gopi (Microsoft Research), Fernando Granha Jeromino (Simons Institute, UC Berkeley), William Hoza (University of Chicago), Elias Koutsoupias (University of Oxford), Michael P. Kim (UC Berkeley/Cornell University), Bundit Laekhanukit (Shanghai University of Finance and Economics), Jerry Li (Microsoft Research), Ray Li (Santa Clara University), Guillermo Malavolta (Bocconi University/Max Planck Institute for Security and Privacy), Daniele Micciancio (University of California, San Diego), Dor Minzer (Massachusetts Institute of Technology), Jonathan Mosheiff (Ben Gurion University), Partha Mukhopadhyay (Chennai Mathematical Institute), Rasmus Pagh (University of Copenhagen), Aditya Potukuchi (York University), Eric Price (University of Texas at Austin), Dana Randall (Georgia Institute of Technology), Robert Robere (McGill University), Nicolas Resch (University of Amsterdam), Sushant Sachdeva (University of Toronto), Michael Saks (Rutgers University), Hadas Shachnai (Technion - Israel Institute of Technology), Rocco Servedio (Columbia University), Piyush Srivastava (Tata Institute of Fundamental Research, Mumbai), Xiaorui Sun (University of Illinois at Chicago), Magnus Wahlstrom (Royal Holloway, University of London), Matt Weinberg (Princeton University), Manolis Zampetakis (Yale University), and Goran Zuzic (Google Research).
I am extremely grateful to all members of the PC, who worked really hard under very tight time constraints to produce a fantastic program as well as provide useful feedback to the authors, of accepted and rejected papers alike. The review process was double-blind, and throughout the review process the PC members did not have access to the identities of the authors on the hotcrp conference review software. The rationale behind the double-blind process was to help PC members and external reviewers come to a judgment about the paper without unconscious bias, but it was not intended to make it impossible for them to discover who the authors are. As such, the authors were free to post their papers or otherwise make them publicly available.

The program schedule was divided into sessions, each consisting of 6-7 papers. Following ITCS tradition, the chair of each session was tasked with “ranting” about the papers in the session, emphasizing their contributions and the ways in which they are innovative, and when possible tying all the papers in the session together. The program also continued with the wonderful ITCS tradition of “graduating bits,” where students and postdocs looking for academic jobs or postdoc opportunities give a very short (few minutes) presentation.

I would like to thank the Simons Institute for the Theory of Computing for offering its awesome space and auditorium for the conference, as well as hosting the event with its characteristic excellence and unique style. I am very grateful to the Simons Institute staff including William Humnicky who worked hard to plan and execute all the logistics flawlessly, and to Drew Mason for his help with handling and posting the video submissions from the authors. Many thanks to Joanne Talbot Hanley for help with the registration page and other logistics on behalf of the conference steering committee.

Let me end this preface with a personal thanks to Sandy Irani who was effectively the local arrangements chair at the Simons Institute and oversaw the event and budget planning with her characteristic thoroughness and good cheer, and to the ITCS Steering Committee chair Ronitt Rubinfeld for answering my numerous questions and wisely guiding me throughout the process. Working with both of you was a lot of fun, and I am glad that the conference was a big success!

Venkatesan Guruswami
ITCS 2024 Program Chair
University of California, Berkeley and the Simons Institute for the Theory of Computing
List of Authors

Scott Aaronson (1, 2)
University of Texas at Austin, TX, USA; OpenAI, San Francisco, CA, USA

Maryam Aliakbarpour (3)
Department of Computer Science, Rice University, Houston, TX, USA

Josh Alman (4)
Columbia University, New York, NY, USA

Ioannis Anagnostides (5)
Department of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA

Prabhanjan Ananth (6)
Department of Computer Science, University of California Santa Barbara, CA, USA

Sayan Bandyapadhyay (7)
Department of Computer Science, Portland State University, OR, USA

Siddharth Barman (8)
Indian Institute of Science, Bangalore, India

Hamsa Bastani (52)
Department of Operations, Information and Decisions, Wharton School, University of Pennsylvania, Philadelphia, PA, USA

Osbert Bastani (52)
Department of Computer and Information Science, University of Pennsylvania, Philadelphia, PA, USA

Gabriel Bathie (10)
LaBRI, Université de Bordeaux, France; DIENS, PSL Research University, Paris, France

Omri Ben-Eliezer (11)
Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA, USA

Aaron Bernstein (12)
Rutgers University, New Brunswick, NJ, USA

Rajarshi Bhattacharjee (13)
University of Massachusetts Amherst, MA, USA

Kaartik Bhushan (14)
IIT Bombay, India

Hadley Black (15)
University of California, Los Angeles, CA, USA

Keller Blackwell (16)
Department of Computer Science, Stanford University, CA, USA

Eric Blais (15)
University of Waterloo, Canada

Avrim Blum (18)
Toyota Technological Institute at Chicago, IL, USA

Greg Bodwin (12, 19)
University of Michigan, Ann Arbor, MI, USA

John Bostanci (97)
Computer Science Department, Columbia University, New York, NY, USA

Adam Bouland (2)
Department of Computer Science, Stanford University, CA, USA

Karl Bringmann (22)
Saarland University, Saarland Informatics Campus, Saarbrücken, Germany; Max Planck Institute for Informatics, Saarland Informatics Campus, Saarbrücken, Germany

Jop Briët (20, 21)
Centrum Wiskunde & Informatica, Amsterdam, The Netherlands

Harry Buhrman (1, 21)
QuSoft, Amsterdam, The Netherlands; Centrum Wiskunde & Informatica, Amsterdam, The Netherlands; University of Amsterdam, The Netherlands

Jaroslaw Blasiok (17)
ETH Zürich, Switzerland

Clément L. Canonne (23)
University of Sydney, School of Computer Science, Australia

Matthias C. Caro (24)
Dahlem Center for Complex Quantum Systems, Freie Universität Berlin, Germany; Institute for Quantum Information and Matter, Caltech, Pasadena, CA, USA

Davi Castro-Silva (21)
Centrum Wiskunde & Informatica, Amsterdam, The Netherlands
Authors

T-H. Hubert Chan (103)
The University of Hong Kong, Hong Kong SAR, China

Pritam Chandra (25)
Microsoft Research, Bangalore, India

Yi-Jun Chang (26)
National University of Singapore, Singapore

Abhranil Chatterjee (27)
Indian Statistical Institute, Kolkata, India

Eshan Chattopadhyay (28, 29)
Cornell University, Ithaca, NY, USA

Justin Y. Chen (32)
Massachusetts Institute of Technology, Cambridge, MA, USA

Xi Chen (33)
Columbia University, New York, NY, USA

Zhili Chen (31)
Center for Quantum Software and Information, University of Technology Sydney, Australia

Zongchen Chen (30)
Department of Computer Science and Engineering, University at Buffalo, NY, USA

Alessandro Chiesa (34)
EPFL, Lausanne, Switzerland

Matthias Christandl (20)
University of Copenhagen, Denmark

Hao Chung (98)
ECE Department, Carnegie Mellon University, Pittsburgh, PA, USA

Romain Cosson (35)
Inria, Paris, France

Varsha Dani (36)
Rochester Institute of Technology, Rochester, NY, USA

Constantinos Daskalakis (37)
MIT, Cambridge, MA, USA

Anindya De (33)
University of Pennsylvania, Philadelphia, PA, USA

Erik D. Demaine (38)
Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, Cambridge, MA, USA

Gregory Dexter (13)
Purdue University, West Lafayette, IN, USA

Atanas Dinev (39)
Massachusetts Institute of Technology, Cambridge, MA, USA

Fabien Dufoulon (41, 42)
Lancaster University, UK

Pranjal Dutta (43)
School of Computing, National University of Singapore (NUS), Singapore

Melissa Dutz (18)
Toyota Technological Institute at Chicago, IL, USA

Nico Döttling (40)
CISPA Helmholtz Center for Information Security, Saarbrücken, Germany

Tomer Ezra (44)
Simons Laufer Mathematical Sciences Institute, Berkeley, CA, USA

Bill Fefferman (2, 9)
Department of Computer Science, University of Chicago, IL, USA

Yumou Fei (45)
School of Mathematical Sciences, Peking University, China

Michal Feldman (44)
Tel Aviv University, Israel

Rex Fernando (46)
Aptos Labs, Palo Alto, CA, USA

Renato Ferreira Pinto Jr. (47)
University of Waterloo, Canada

Yuval Filmus (48)
Technion - Israel Institute of Technology, Haifa, Israel

Nick Fischer (49)
Weizmann Institute of Science, Rehovot, Israel

Henry Fleischmann (19)
Department of Pure Mathematics and Mathematical Statistics, University of Cambridge, UK

Lukáš Folwarczný (50)
Institute of Mathematics, Czech Academy of Sciences, Prague, Czech Republic; Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic

Rafael Frongillo (51)
University of Colorado, Boulder, CO, USA
Ankit Garg (25)
Microsoft Research, Bangalore, India

Haosen Ge (52)
Wharton School, University of Pennsylvania, Philadelphia, PA, USA

Yuval Gelles (46)
The Hebrew University of Jerusalem, Israel

Fulvio Gesmundo (43)
Institut de Mathématiques de Toulouse, Université Paul Sabatier, Toulouse, France

Prantar Ghosh (53)
Department of Computer Science, Georgetown University, Washington, D.C., USA

Soumik Ghosh (2)
Department of Computer Science, University of Chicago, IL, USA

Leslie Ann Goldberg (45)
Department of Computer Science, University of Oxford, UK

Louis Golowich (54)
Department of Computer Science, University of California at Berkeley, CA, USA

Noah Golowich (37)
MIT, Cambridge, MA, USA

Jesse Goodman (28)
Cornell University, Ithaca, NY, USA

Parikshit Gopalan (17)
Apple, Palo Alto, CA, USA

Gramoz Goranci (55)
Faculty of Computer Science, University of Vienna, Austria

Mayank Goswami (56)
Queens College CUNY, Flushing, New York, NY, USA

Joshua A. Grochow (31)
Departments of Computer Science and Mathematics, University of Colorado Boulder, CO, USA

Allan Grønlund (22)
Aarhus University, Denmark; Kvantify, Aarhus, Denmark

Ziyi Guan (34)
EPFL, Lausanne, Switzerland

Mohit Gurumukhani (28)
Cornell University, Ithaca, NY, USA

Mika Göös (50)
EPFL, Lausanne, Switzerland

Nika Haghtalab (37, 57)
University of California at Berkeley, CA, USA

Lianna Hambardzumyan (58)
The Hebrew University of Jerusalem, Israel

Nathaniel Harms (15, 47)
EPFL, Lausanne, Switzerland

Jason Hartline (59)
Northwestern University, Evanston, IL, USA

Ishay Haviv (60)
School of Computer Science, The Academic College of Tel Aviv-Yaffo, Israel

Thomas P. Hayes (36)
University at Buffalo, Buffalo, NY, USA

Lisa Hellerstein (61)
Department of Computer Science and Engineering, New York University Tandon School of Engineering, NY, USA

Monika Henzinger (55, 62)
Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria

Marcel Hinsche (24)
Dahlem Center for Complex Quantum Systems, Freie Universität Berlin, Germany

Edward A. Hirsch (48)
Department of Computer Science, Ariel University, Israel

Lunjia Hu (17)
Stanford University, CA, USA

Pavel Hubáček (50, 63)
Institute of Mathematics, Czech Academy of Sciences, Prague, Czech Republic; Charles University, Faculty of Mathematics and Physics, Czech Republic

Christian Ikenmeyer (43)
University of Warwick, UK

Nicole Immorlica (57)
Microsoft Research, Cambridge, MA, USA

Tanmay Inamdar (64)
Indian Institute of Technology, Jodhpur, India

Piotr Indyk (32)
Massachusetts Institute of Technology, Cambridge, MA, USA
Rebecca Lin (38)
Computer Science and Artificial Intelligence Lab,
Massachusetts Institute of Technology,
Cambridge, MA, USA

Yao-Ting Lin (6)
Department of Computer Science, University of California Santa Barbara, CA, USA

Naifeng Liu (61)
Department of Computer Science, CUNY
Graduate Center, New York, NY, USA;
Department of Economics, University of Mannheim, Germany

Qipeng Liu (72)
University of California at San Diego, La Jolla, CA, USA

Roi Livni (76)
Department of Electrical Engineering, Tel Aviv University, Israel

Daniel Lokshtanov (77)
University of California Santa Barbara, CA, USA

Baptiste Louf (78)
CNRS and Institut de Mathématiques de Bordeaux, France

Pinyan Lu (45)
Laboratory of Interdisciplinary Research of Computation and Economics (SUFE), Ministry of Education, Shanghai University of Finance and Economics, China

Brendan Lucier (57)
Microsoft Research, Cambridge, MA, USA

Vladimir Lysikov (43)
Ruhr-Universität Bochum, Germany

Arvind V. Mahankali (79)
Stanford University, CA, USA

Anil Maheshwari (7)
School of Computer Science, Carleton University, Ottawa, Canada

Pasin Manurangsi (71)
Google Research, Bangkok, Thailand

Kunal Marwaha (9)
University of Chicago, IL, USA

Laurent Massoulié (35)
Inria, Paris, France

Gilbert Maystre (50)
EPFL, Lausanne, Switzerland

Noam Mazor (80)
Cornell Tech, New York, NY, USA

Colin McDiarmid (78)
Department of Statistics, University of Oxford, UK

Uri Meir (11)
Blavatnik School of Computer Science, Tel Aviv University, Israel

Jason Milionis (81)
Department of Computer Science, Columbia University, New York, NY, USA

Pranabendu Misra (77)
Chennai Mathematical Institute, Chennai, India

Kunal Mittal (25)
Princeton University, NJ, USA

Ciamac C. Moallemi (81)
Graduate School of Business, Columbia University, New York, NY, USA

Markus Mobius (57)
Microsoft Research, Cambridge, MA, USA

Divyarthi Mohan (57)
Tel Aviv University, Israel

Michael Moorman (42)
Department of Computer Science, University of Houston, TX, USA

William K. Moses Jr. (42)
Department of Computer Science, Durham University, UK

Elchanan Mossel (30)
Department of Mathematics, MIT, Cambridge, MA, USA

Tamer Mour (40)
Bocconi University, Milan, Italy

Cameron Musco (13)
University of Massachusetts Amherst, MA, USA

Shivam Nadimpalli (33)
Columbia University, New York, NY, USA

Preetum Nakkiran (17)
Apple, Palo Alto, CA, USA

Shivika Narang (8)
Simons Laufer Mathematical Sciences Institute, Berkeley, CA, USA

Barak Nehoran (82)
Princeton University, NJ, USA
Ofer Neiman (83)
Ben-Gurion University of the Negev, Beer-Sheva, Israel

Rian Neogi (84)
Dept. of Combinatorics and Optimization, University of Waterloo, Canada

Niels M. P. Neumann (21)
Centrum Wiskunde & Informatica, Amsterdam, The Netherlands; The Netherlands Organisation for Applied Scientific Research (TNO), Den Haag, The Netherlands

Alexander Nietner (24)
Dahlem Center for Complex Quantum Systems, Freie Universität Berlin, Germany

Aleksandar Nikolov (85)
University of Toronto, Canada

Charlotte Out (86)
Department of Computer Science & Technology, University of Cambridge, UK

Shreyas Pai (41)
Aalto University, Finland

Gopal Pandurangan (41, 42)
University of Houston, TX, USA

Maneesh Papireddygari (51)
University of Colorado, Boulder, CO, USA

Pekka Parvinen (64)
University of Bergen, Norway

Kanstantsin Pashkovich (84)
Dept. of Combinatorics and Optimization, University of Waterloo, Canada

Rafael Pass (80)
Tel Aviv University, Israel; Cornell Tech, New York, NY, USA

Angelos Pelecanos (72)
University of California at Berkeley, CA, USA

Shir Peleg (87)
Blavatnik School of Computer Science, Tel Aviv University, Israel

Sriram V. Pemmaraju (41)
University of Iowa, IA, USA

Asaf Petruschka (88)
Weizmann Institute of Science, Rehovot, Israel

Seth Pettie (36)
University of Michigan, Ann Arbor, MI, USA

William Pires (74)
Columbia University, New York, NY, USA

Toniann Pitassi (58)
Columbia University, New York, NY, USA

Adam Polak (49)
Max Planck Institute for Informatics, Saarbrücken, Germany; Jagiellonian University in Kraków, Poland

Manoj Prabhakaran (14)
IIT Bombay, India

Kevin Pratt (89)
Department of Computer Science, Courant Institute of Mathematical Sciences, New York University, NY, USA

Aaron (Louie) Putterman (90)
Harvard University, Cambridge, MA, USA

Edward Pyne (90)
Massachusetts Institute of Technology, Cambridge, MA, USA

Mingda Qiao (70)
University of California, Berkeley, CA, USA

Youning Qiao (31)
Center for Quantum Software and Information, University of Technology Sydney, Australia

M. S. Ramanujan (64)
University of Warwick, UK

C. Ramya (91)
The Institute of Mathematical Sciences (a CI of Homi Bhabha National Institute), Chennai, India

Sofya Raskhodnikova (11)
Department of Computer Science, Boston University, MA, USA

Archan Ray (13)
University of Massachusetts Amherst, MA, USA

Artur Riazanov (48)
EPFL, Lausanne, Switzerland

Nicolás Rivera (86)
Facultad de Ciencias, Universidad de Valparaíso, Chile

Robert Robere (74)
Columbia University, New York, NY, USA

Peter Robinson (41, 73)
Augusta University, GA, USA

Tim Roughgarden (81)
Department of Computer Science, Columbia University, New York, NY, USA; a16z Crypto, New York NY 10010, USA
Sasanka Roy (7)
ACMU, Indian Statistical Institute, Kolkata, India

Harald Räcke (55)
Technical University Munich, Germany

Sushant Sachdeva (13, 55)
University of Toronto, Canada

Barna Saha (62)
University of California San Diego, La Jolla, CA, USA

Jared Saia (36)
University of New Mexico, Albuquerque, NM, USA

Tuomas Sandholm (5)
Department of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA

Shay Sapir (88)
Weizmann Institute of Science, Rehovot, Israel

Thomas Sauerwald (86)
Department of Computer Science & Technology, University of Cambridge, UK

Saket Saurabh (64, 77)
Institute of Mathematical Sciences, Chennai, India; University of Bergen, Norway

Kevin Schewior (61)
Department of Computer Science and Mathematics, University of Southern Denmark, Odense, Denmark

Maya Schlesinger (44)
Tel Aviv University, Israel

Rajat Sen (70)
Google Research, Mountain View, CA, USA

Rocco A. Servedio (33)
Columbia University, New York, NY, USA

Martin P. Seybold (62)
University of Vienna, Austria

Idan Shabat (83)
Ben-Gurion University of the Negev, Beer-Sheva, Israel

Vihan Shah (53)
Department of Computer Science, University of Waterloo, Canada

Pratik Shastri (91)
The Institute of Mathematical Sciences (a CI of Homi Bhabha National Institute), Chennai, India

Suhail Sherif (58)
LASIGE, Faculdade de Ciências, Universidade de Lisboa, Portugal

Abhishek Shetty (37)
University of California at Berkeley, CA, USA

Elaine Shi (98, 103)
ECE and CSD Department, Carnegie Mellon University, Pittsburgh, PA, USA

Morgan Shirley (58)
University of Toronto, Canada

Amir Shpilka (20, 87)
Tel Aviv University, Israel

Adi Shraibman (58)
The Academic College of Tel Aviv-Yafo, Israel

Rose Silver (3)
Khoury College of Computer Sciences, Northeastern University, Boston, MA, USA

Tanmay Sinha (25)
Microsoft Research, Bangalore, India

Fiona Skerman (78)
Department of Mathematics, Uppsala University, Sweden

Joseph Slote (69, 92)
Department of Computing and Mathematical Sciences, California Institute of Technology, Pasadena, CA, USA

Alexander Smal (48)
Technion - Israel Institute of Technology, Haifa, Israel

Michiel Smid (7)
School of Computer Science, Carleton University, Ottawa, Canada

Zhao Song (93)
Adobe Research, San Jose, CA, USA

A. R. Sricharan (55)
Faculty of Computer Science, UniVie Doctoral School Computer Science DoCS, University of Vienna, Austria

Teresa Anna Steiner (94)
DTU Compute, Technical University of Denmark, Kongens Lyngby, Denmark

Thomas Steinke (3)
Google DeepMind, Mountain View, CA, USA

Yucheng Sun (23)
ETH Zürich, Switzerland
Chaitanya Swamy (84)
Dept. of Combinatorics and Optimization,
University of Waterloo, Canada

Ryan Sweke (24)
IBM Quantum, Almaden Research Center, San
Jose, CA, USA; Dahlem Center for Complex
Quantum Systems, Freie Universität Berlin,
Germany

John Sylvester (86)
Department of Computer Science, University of
Liverpool, UK

Gang Tang (31)
Center for Quantum Software and Information,
University of Technology Sydney, Australia

Haohua Tang (85)
University of Toronto, Canada

Neil Thapen (63)
Institute of Mathematics, Czech Academy of
Sciences, Prague, Czech Republic

Ethan Turok (4)
Columbia University, New York, NY, USA

Elad Tzalik (88)
Weizmann Institute of Science, Rehovot, Israel

Iddo Tzameret (95)
Department of Computing, Imperial College
London, UK

Jonathan Ullman (3)
Khoury College of Computer Sciences,
Northeastern University, Boston, MA, USA

Gregory Valiant (96)
Department of Computer Science, Stanford
University, CA, USA

Kasturi Varadarajan (7)
Department of Computer Science, University of
Iowa, IA, USA

Umesh Vazirani (2)
Department of Electrical Engineering and
Computer Sciences, University of California,
Berkeley, CA, USA

Marc Vinyals (48)
University of Auckland, New Zealand

Alexander Volberg (69)
Department of Mathematics, Michigan State
University, Ann Arbor, MI, USA; Hausdorff
Center for Mathematics, University of Bonn,
Germany

Ben Lee Volk (27, 87)
Eli Arazai School of Computer Science, Reichman
University, Herzliya, Israel

Bo Waggoner (51)
University of Colorado, Boulder, CO, USA

Adam Bene Watts (97)
Institute for Quantum Computing, University of
Waterloo, Canada

Nicole Wein (12)
Simons Institute, Berkeley, CA, USA

S. Matthew Weinberg (39)
Princeton University, NJ, USA

R. Ryan Williams (10, 66)
CSAIL, Massachusetts Institute of Technology,
Cambridge, MA, USA

David P. Woodruff (13, 32, 79)
Carnegie Mellon University, Pittsburgh, PA,
USA

Mary Wootters (16)
Department of Computer Science, Stanford
University, CA, USA

Ke Wu (98)
CSD Department, Carnegie Mellon University,
Pittsburgh, PA, USA

Jatin Yadav (65)
CSE, IIT Delhi, India

Takashi Yamakawa (72)
NTT Social Informatics Laboratories, Tokyo,
Japan

Christopher Ye (62)
University of California San Diego, La Jolla, CA,
USA

Nathaniel Young (66)
Unaffiliated, San Jose, CA, USA

Hantao Yu (4)
Columbia University, New York, NY, USA

Huacheng Yu (99, 100)
Princeton University, NJ, USA

Weiqiang Yuan (50)
EPFL, Lausanne, Switzerland

Henry Yuen (6)
Department of Computer Science, Columbia
University, New York, NY, USA

Burcu Yıldız (34)
EPFL, Lausanne, Switzerland