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—— Abstract

Differential obliviousness (DO) is a privacy notion which mandates that the access patterns of
a program satisfy differential privacy. Earlier works have shown that in numerous applications,
differential obliviousness allows us to circumvent fundamental barriers pertaining to fully oblivious
algorithms, resulting in asymptotical (and sometimes even polynomial) performance improvements.
Although DO has been applied to various contexts, including the design of algorithms, data structures,
and protocols, its compositional properties are not explored until the recent work of Zhou et al.
(Eurocrypt’23). Specifically, Zhou et al. showed that the original DO notion is not composable. They
then proposed a refinement of DO called neighbor-preserving differential obliviousness (NPDO), and
proved a basic composition for NPDO.

In Zhou et al’s basic composition theorem for NPDO, the privacy loss is linear in k£ for k-fold
composition. In comparison, for standard differential privacy, we can enjoy roughly vk loss for
k-fold composition by applying the well-known advanced composition theorem given an appropriate
parameter range. Therefore, a natural question left open by their work is whether we can also prove
an analogous advanced composition for NPDO.

In this paper, we answer this question affirmatively. As a key step in proving an advanced
composition theorem for NPDO, we define a more operational notion called symmetric NPDO which
we prove to be equivalent to NPDO. Using symmetric NPDO as a stepping stone, we also show
how to generalize NPDO to more general notions of divergence, resulting in Rényi-NPDO, zero-
concentrated-NPDO, Gassian-NPDO, and g-NPDO notions. We also prove composition theorems
for these generalized notions of NPDO.
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1 Introduction

Oblivious algorithms, first proposed by Goldreich and Ostrovsky [26, 27], are a family
of privacy-preserving algorithms whose memory access patterns are provably obfuscated
and do not leak any information about secret inputs. Oblivious algorithms have a broad
class of applications, e.g., in cloud computing [1,50,64], blockchain applications [9], secure
processors [34,36,47,48|, and multi-party computation [22,28,35]. They have also been
deployed at a large-scale in practice (e.g., see Signal’s deployment [1] of Path ORAM).

Although a line of works [7,46,49,52,60,61] have made oblivious algorithms increasingly
more efficient, oblivious algorithms nonetheless suffer from a couple drawbacks. First, it
is known that for numerous computational tasks, achieving full obliviousness must incur a
logarithmic slow-down in comparison with insecure algorithms [26,27,33]. Second, for scenarios
where the (insecure) program’s runtime depends on the secret input, full obliviousness
demands that we pad the running time over every input to the worst-case over all inputs —
such padding can often incur a polynomial slow-down (e.g., for database joins [13]).

To overcome these drawbacks, Chan, Chung, Maggs, and Shi [10] introduced a relaxed no-
tion of access pattern privacy called differential obliviousness (DO). Unlike full obliviousness
which requires that the access patterns over any two inputs of the same length be indistin-
guishable [26,27], differential obliviousness (DO) requires that the access patterns satisfy the
notion of differential privacy (DP) [16], i.e., the access patterns over two neighboring inputs
should be close in distribution by some mathematical notion. Chan et al. [10] showed that
for various computational tasks, DO allows us to circumvent the logarithmic barrier of full
obliviousness; they and subsequent works [5,13] showed that DO avoids having to pad to
the worst-case running time, and in this way, DO can achieve polynomial speedup over full
oblivious algorithms.

Basic DO is not composable

When we design algorithms, it is customary to compose multiple algorithmic building blocks.
Specifically, we often want to apply algorithm My to the output of another algorithm M.
For example, in SQL databases, we may want to make some Select query and store the
result as a table T'; later on, we may want to make another query over this table T'. Ideally,
if both algorithms M; and Ms satisfy DO, we would like the composed algorithm My o My
to be DO as well; moreover, we want a way to account for the privacy budget during such
composition.

The original DO notion proposed by Chan et al. [10], however, did not lend to such
composition. To understand why, we first review their definition. Consider a randomized
algorithm M : Ay — X} whose access patterns come from the view space V;. Let ~g denote
a suitable neighboring relation on the input domain &j of M. The basic DO notion of Chan
et al. [10] is described below:

» Definition 1 (Basic DO [10]). An algorithm (also called a mechanism) M is (e,d)-DO iff
for any neighboring x ~g ' € Xy, for any S C Vi,

Pr[ViewM(z) € S] < e - Pr[View™ (') € S] + 4. (1)

where ViewM(ac) denotes the access patterns observed by the adversary when we execute M on
the input x.

To understand why basic DO does not lend to composition, observe that the above
definition guarantees closeness in distribution of the views (i.e., access patterns) only when
the algorithm M is executed on neighboring inputs. However, when we execute the first DO
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algorithm M; over two neighboring inputs x and 2, the respective outputs y := M;(z) and
y' := M;(2’) may not be neighboring. Therefore, when we pass the respective outputs y and
1y’ to the second algorithm Ms, the second mechanism My may not provide any meaningful
guarantee even though it satisfies DO. We also refer the reader to the work of Zhou et al. [66]
who gave several examples of natural DO algorithms where neighboring inputs produce
outputs that are far in distance.

For this reason, DO composition is intrinsically different from standard DP composition,
and we cannot use standard DP composition theorems [17,18,56] to reason about DO.
Specifically, in DO, the second mechanism My is applied to some hidden variable (i.e., the
output of the first algorithm M) that is not in the adversary’s view when M is executed, and
the basic DO notion does not provide any meaningful guarantee about this hidden variable.

A composable DO notion: neighbor-preserving DO (NPDO)

Zhou et al. [66] argued that for DO to have broader application, composition is a necessary
feature — for example, one reason why standard DP is successful is due to its compositional
properties. Therefore, Zhou et al. [66] proposed a composable variant of the DO notion
called neighbor-preserving DO. At a high level, they want to refine the basic DO notion to
additionally require that “neighboring inputs produce neighboring outputs”. However, the
technicality is that many natural DO algorithms’ outputs are randomized, and they want to
define a probabilistic notion of output-neighboring that captures a broad class of natural DO
algorithms. We now review their NPDO notion below — any algorithm that satisfies NPDO
also satisfies the basic DO notion of Chan et al. [10].

» Definition 2 (NPDO [66]). An algorithm M : Xy — X with view space V; is (€,5)-NPDO
(w.r.t. input relation ~g and output relation ~1), if for any neighboring x ~g ' € Xy, for
any subset S C V1 x A7,

Pr[Exec”(z) € ] < €€ - Pr[Exec™ (') € N(S)] + 6, (2)

where Exec™ (z) denotes the following experiment: execute M on the input x, and output the
view (i.e., access patterns) observed by the adversary, as well as the outcome M(x); and the
notation N(S), i.e., the neighboring set of S, is defined as follows:

NS ={(v,y) e V1 x X1 | Iw,y) € S s.t. y~1 9}

Zhou et al. [66] showed that indeed, natural DO algorithms either satisfy or can easily
be adapted to satisfy the above NPDO notion. They additionally proved the following
composition theorem for NPDO.

» Theorem 3 (NPDO composition [66]). Suppose My : Xy — Xy is (€1,01)-NPDO and
My : X1 — Xs is (€2,02)-NPDO (w.r.t. each algorithm’s input/output neighboring relations),
and M1 has discrete view and output spaces. Then, the composed algorithm MgaoMy @ Xy — Ao
5 (61 + €2, (;1 + 52)—NPDO

The above composition theorem also suggests a method for privacy budget accounting
when composing multiple NPDO algorithms. In particular, the privacy loss over time is
additive, analogous to the basic composition theorem of DP [17,56]. More specifically, if we
perform the composition £ times and each individual algorithm has the privacy parameter
(e,0), then the k-fold composed algorithm consumes a privacy budget of (ke, k¢).
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Question 1: advanced composition for NPDO?

Recall that for (e,d)-DP, we have an advanced composition theorem [17,18,56] which proves
a tighter bound for k-fold standard DP composition: suppose each individual mechanism

satisfies (e,8)-DP, then k-fold composition results in a (e - y/2k1In 4 + 2ke?, k§ + §')-DP
mechanism for an arbitrary ¢’ € [0,1]. For a typical choice € < 1, the term € - y/2kIn 3

dominates, and thus we can enjoy roughly a factor of vk in the privacy loss using the
advanced composition theorem, as opposed to the original factor k in the basic composition
theorem.

A natural question is whether NPDO can also enjoy such an improved bound for k-
fold composition. As mentioned, since DO composition is intrinsically different from DP
composition, we cannot directly use the advanced composition theorem of DP to reason
about NPDO composition. Further, for technical reasons to be discussed later in Section 1.1,
we cannot extend Zhou et al. [66]’s proof to get advanced composition in any easy way.
Therefore, the following natural question is open:

Can we prove an advanced composition theorem for (e,§)-NPDO?

Question 2: beyond the (¢, §)-closeness notion

While the (e, §)-closeness notion (also called d-max divergence [18]) is natural and intuitive,
the standard DP literature recognized an important limitation of this notion. For most
natural DP mechanisms, one can often tune the parameters to achieve a tradeoff between
the parameters € and §. However, proving that a mechanism satisfies (¢, )-DP proves only
a single point in this tradeoff curve, and fails to provide a knob to the practitioner who
must set the concrete parameters in practice. Therefore, a line of works proposed to replace
the (e, d)-closeness notion in DP with new divergence notions that can capture the entire
tradeoff curve, e.g., Rényi DP [38], zero concentrated DP [8], Gaussian DP [15], and more
recently, f-DP [14,55] which generalizes all of the above notions. The same works also proved
composition theorems for these new notions. In particular, (¢,¢)-DP can be viewed as a
special case of Rényi DP [38], zero concentrated DP [8], and f-DP [14]; and the advanced
composition theorem of (¢, d)-DP can be viewed as a corollary of the composition theorems
for Rényi DP [38], zero concentrated DP [8], and f-DP [14].

This raises another natural question:

Can we also replace the divergence notion in NPDO and have generalized notions of

NPDO that lend to composition?

Applications of advanced composition

A direct motivation of our work is recent endeavors to build a differentially oblivious relational
databases. Notably, the work of Qin et al. [45] designed DO relational database operators
(e.g., compaction, group-by, and join), and they want to use these DO operators to build
a DO relational database. Unfortunately, in their work, they did not address the issue of
composition; as a result, they cannot compose these operators in database queries. Consider
the following example of multi-fold composition in database applications. It is customary
for an analyst to perform some SQL query, save the result in some table, and later perform
more SQL queries on the result table — this process can be repeated multiple times. In these
cases, our advanced composition theorems can allow the DO database engine to have tighter
accounting of the privacy budget consumed so far, and thus achieve better privacy /utility
tradeoff.
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Note that our DO database application is analogous to how advanced composition can be
useful in privacy budget accounting in traditional differentially private databases [32,37,39,
41,59, 63]. Therefore, advanced composition for DO can also be helpful in scenarios where
advanced composition was useful for traditional DP. For example, there is an elegant line of
work that uses formal methods to programmatically track the privacy loss of a differentially
private program [4,57,65]. Therefore, we envision that our advanced composition theorems
for DO will be helpful in a similar manner if we are to extend such formal methods to support
DO reasoning.

1.1 Main Result 1: Advanced Composition Theorem for (€,d)-NPDO

Our first contribution is to prove an advanced composition theorem for (e, §)-NPDO, as
stated below.

» Theorem 4 (Advanced composition theorem for NPDO). Let ¢ > 0, 6,6’ € [0,1] and
k > 2. Suppose fori € [k], the algorithm M; : X;_1 — X; is (¢,)-NPDO with respect to the
netghboring relations for its input and output spaces. Further, suppose that My, ..., My have
finite output and view spaces. Then, the composition MgoMy_q0---0oM;y is (¢/,6'+kd6)-NPDO,

where ¢ = €y/2k1n % + 2ke2.

Challenges and technical highlight

The advanced composition for standard DP [17,18,56] provides the following mathematical

tool for reasoning about the divergence of distributions. Given k pairs of distributions

(W1,U1), (Wa,Us), ..., (Wy,Uy) such that for each i € [k], W; and U; are (e, §)-close (even

when conditioned on Wy, Uy, ..., W;_1,U;_1), then the joint distribution (Wy, Wa, ..., W)

and (Uy,Us,...,Uy) are (€¢/,0" + kd)-close where € and ¢’ are defined as in Theorem 4.
Unfortunately, for NPDO composition, we are unable to directly leverage the existing

mathematical tool, because the NPDO definition (Definition 2) is not formulated as a

statement of divergence over two distributions, due to the interference of the N'(-) operator

on the right-hand-side of Equation (2). To prove the advanced composition theorem for

NPDO, we need the following key insights.

1. A New, Equivalent formulation of NPDO: symmetric NPDO. As a key stepping stone

towards proving advanced composition for NPDO, we first propose an alternative, equi-
valent formulation of NPDO called symmetric NPDO. This step of the proof is techncially
involved and rather non-trivial.
At a very high level, recall that Zhou et al. showed that (¢,0)-NPDO is equivalent to
the existence of an (e, §)-matching in a bipartite graph where each vertex captures the
probability of seeing a particular (view, output) pair in a randomized execution, and
the two sides of the bipartite graph consider random executions over neighboring inputs,
respectively. Zhou et al’s definition of an (e, §)-matching treats the two sides of the
bipartite graph in an asymmetric manner. We first define an alternative notion called
(e, 8)-symmetric-NPDO which can be viewed as a pair of (e, §)-matchings, one from each
direction. To prove that (e, §)-symmetric-NPDO implies (e, §)-NPDO, we need to prove
that as long as the algorithm’s output and view spaces are finite, then 1) (e, §)-symmetric-
NPDO implies (¢, §)-NPDO; and 2) (e,d)-NPDO implies (¢, §)-symmetric-NPDO, The
first direction is the easier one; however, proving the second direction is rather challenging.
At a very high level, we start out with an asymmetric matching, and we then iteratively
modify the matching. We prove that the iterative adjustments will stop in finite number
of steps, and the resulting matching converges to a symmetric one — see Section 3.2 (and
also Appendix B in the full version [67]) for the details of the proof.
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2. Symmetric NPDO expressed as divergence of two distributions. We then suggest an
alternative way to view the new (e, §)-symmetric-NPDO notion. In particular, the sym-
metric (e, 0)-matching on the bipartite graph can be viewed as two different assignments
of weights to the edges of the bipartite graph, such that if we view each assignment as
a probability distribution, then the two distributions are (e, §)-close. This allows us to
express (e,0)-NPDO as a divergence notion on distributions. With this new view, we
can now rely on the aforementioned mathematical tool to reason about the divergence of
distributions, which leads to our NPDO advanced composition theorem.

Regarding our symmetric NPDQO notion

We envision that our symmetric NPDO notion can be of independent interest in future
work, such that the equivalence of NPDO and symmetric NPDO provides a new flexibility
in designing algorithms for differential obliviousness. On the one hand, the original NPDO
notion of Zhou et al. [66] is more intuitive and sometimes easier for algorithm designers to use.
On the other hand, our new symmetric NPDO notion is more operational in theoretical proofs.
In particular, many tools developed in traditional DP rely on reasoning about divergence
notions (e.g. variants of composition frameworks [8,14,38,55], privacy amplification [2,20],
privacy accounting [21,68] and privacy auditing [42,53,54]). By showing the equivalence of
NPDO and symmetric NPDO, we are able to recast NPDO notions in the form of divergence
between two probability distributions — this allows us to reuse the mathematical tools from
classical DP to reason about differential obliviousness. For the same reason, when we have
the symmetric NPDO formulation, it is also easier to generalize to other notions of divergence
— see our subsequent Section 1.2.

1.2 Main Result 2: Composition for Generalized Notions of NPDO

As mentioned, we want to generalize the divergence notion in NPDO to a more general
one, e.g., the tradeoff function notion in f-DP [14,55] which generalizes a line of earlier
works [8,14,15,38,55].

A strawman attempt is to start with the basic (¢, §)-DO notion by Chan et al. [10], which
is formulated as a statement on the divergence of two distributions. While we can easily
replace the divergence notion in basic (¢, 0)-DO with a more general one, the resulting notions
would not be composable for the same reason why (€, d)-DO is not composable.

To get composability, we want to start with the (e, d)-NPDO notion proposed by Zhou
et al. [66]. However, as mentioned, their (¢, §)-NPDO is not formulated as a statement of
divergence over two distributions due to the N (-) operator. Fortunately, recall that as a key
stepping stone in proving the advanced composition theorem for (e, §)-NPDO, we formulated
an equivalent notion, that is, (e, d)-symmetric-NPDO, which is indeed stated in terms of
the divergence over two distributions (defined as two ways to assign weights to a particular
bipartite graph that capture randomized executions on neighboring inputs). This alternative
formulation of NPDO allows us to easily replace the divergence notion with more general
ones, resulting in Rényi-NPDO, zero concentrated-NPDO, Gaussian-NPDO, and g-NPDO,
which are analogous to Rényi-DP [38], zero concentrated-DP [8], Gaussian-DP [15], and
f-DP [15], respectively.

Using the same proof framework we developed for proving the (¢, d)-NPDO composition,
we then prove the corresponding composition theorems for Rényi-NPDO, zero concentrated-
NPDO, Gaussian-NPDO, and g-NPDO.
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1.3 Additional Related Work

Earlier works have shown various applications of DO, and scenarios in which it can asymp-
totically outperform any fully oblivious algorithm. Beimel, Nissim, and Zaheri [5] apply
DO to property testing, and they show that DO achieves an almost linear factor improve-
ment over any fully oblivious algorithm in the dense graph model and at most quadratic
improvement in the bounded degree model. Chu et al. [13] showed that DO algorithms can
achieve an almost linear speedup over any fully oblivious algorithm for performing database
joins. Gordon et al. [29] showed that for the privacy amplification theorem in the shuffle
model [3,11,12,19,23-25], one can replace a fully secure shuffler with a differentially oblivious
shuffler, and retain almost the same privacy amplification guarantees. Gordon et al. [29]’s
proof only works for the randomized response mechanism; more recently, Zhou et al. [66]
showed how to generalize Gordon et al. [29]’s proof to any local DP mechanism, by directly
applying their NPDO composition theorem (Theorem 3).

A line of work [31,43,44,58] focused on differentially oblivious RAM [43,58], differentially
oblivious Turing Machines [31], or differentially oblivious data structures [6,10,44]. In this line
of work, the neighboring relation is defined over the sequence of operations. This line of work
has not considered composition; however, if these techniques need to be composed to design
new algorithms, and the second algorithm’s input operations come from the first algorithm’s
output, the same compositional issue will arise which we address in our work. Wagh et
al. [58] explored differentially private Oblivious RAM (ORAM) as a relaxation of standard
ORAM. With this relaxation, they were able to achieve constant-factor improvements over
known ORAM constructions [51,52]. In an elegant work, Persiano and Yeo [43] proved that
a generic compiler that can compile any program to a “differentially oblivious” counterpart
must suffer from logarithmic slowdown. In a subsequent work, the same authors proved
more general lower bounds for differentially oblivious RAM and differentially oblivious data
structures [44]. Chan et al. [10] showed that for range query data structures, using DO
can achieve asymptotic gains over any fully oblivious algorithm (even when we allow the
fully oblivious algorithm to leak the true length of the answer); and not only so, their DO
algorithm achieves non-interactivity which is not known for any fully oblivious data structures
(with statistical security). Kellaris et al. [6] applied a computational notion of differential
obliviousness to an outsourced database application, and their construction relied on ORAM
as a blackbox. The subsequent work of Chan et al. [10] showed how to achieve the same goals
without having to rely on ORAM, and in a way that asymptotically outperforms applying a
blackbox ORAM scheme. The work of Komargodski and Shi [31] showed upper bounds and
lower bounds for the performance of differentially oblivious Turing Machines.

2 Preliminaries

We will use the following notations:
For any = € R, denote [z]; := max(z,0).
We say that some set is discrete iff it is finite or countably infinite. Following [66],
throughout this work, we assume all random variables are in discrete space.
If a distribution D is defined over some space €2, we often use the notation D : 2.

2.1 Execution Model

Consider an algorithm (also called a mechanism) M : Xy — X, where A} is its input
space and X is its output space. For each data space X; where i € {0,1}, there is some
corresponding binary neighboring relation ~; that indicates that two data points are “close”
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in their respective space &;. Unless otherwise stated, the neighboring relation is required to
be reflexive and symmetric (and usually not transitive). For example, z ~; 2’ may mean
that the two input z and z’ differ in at most ¢ positions; it may also mean that = and z’
have edit distance at most c.

Unlike in the standard DP setting, the adversary cannot directly observe the algorithm’s
output, but can observe some behavioral patterns of the algorithm during the course of
execution, henceforth called the view. We model the view of the adversary as an element in
some view space V.

Just like the work of Zhou et al. [66], our DO formulation is not tied to any particular
execution model. For example,

M can be a RAM or PRAM program whose access patterns are observable by an adversary

— in this case, the access patterns of the program form the view; or

M can be a protocol whose message communication patterns are observable by the

adversary — in this case, the communication patterns of the protocol form the view.

We use the following notation throughout the paper. Given some input z € Xy to M, we
define the following random variables:

The output Out™(z) is a distribution on X;.

The view View™ () is a distribution on V.

The execution Exec™ () outputs the joint distribution (View™(z), Out™(z)) on the execu-

tion space V; x Aj.

Later in our technical sections, it is helpful to have a neighboring relation for the execution
space V1 x Xp. In particular, we say that (v, ) is neighboring to (v, z) iff v = v" and = ~1 2’.
For this reason, without risk of ambiguity, we extend the notation ~; to denote a neighboring
relation for the execution space too.

» Definition 5 (Extension of neighboring relation to execution space.). Given a binary neighbor-
ing relation ~1 on the output space X1, we extend it naturally to the execution space Vi X X
by the rule: (v,z) ~1 (V',2') if v =2" and z ~; 2.

Sequential composition of algorithms

Given k mechanisms denoted My, ..., My, where for ¢ € [k], M : X;_1 — &}, the sequentially
composed algorithm My o Mg_10...0 My : Xy — X} is the one that runs M; first on some
input x € X, then runs My on the output of My, and so on.

We assume that act of passing the output of M;_; to M; does not generate any observable
event for the adversary. For example, as explained by Zhou et al. [66], if we consider
My,..., Mg to be RAM algorithms, we can assume that M;_; writes its output on some
output tape, and then the next algorithm M; will simply treat M;_1’s output tape as its input
tape. In natural DO or NPDO algorithms [66], to hide output and input lengths, M;_; may
actually write some extra filler symbols on its output tape beyond the actual output; and
similarly, M; may make some fake reads from its input tape. The access patterns incurred
by reading or writing input/output tapes are treated as part of the view of each individual
algorithm concerned.

2.2 Divergence Notions

We define some useful divergence notions that measure the closeness of two distributions.
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Max divergence and (€, §)-closeness
First, we review the max-divergence notion that is used by (e, d)-DP and (e, §)-DO.

» Definition 6 (§-max divergence). Suppose 6 € [0,1]. Given distributions A and B on the
same sample space S, the §-max divergence is defined as follows:

Pr[Ae S| -6
DY(A||B) = su log ————| .
(“llB) SQQ:Pr[}:ES]Z(S s Pr[B € S| +

In fact, D°(A||B) < ¢ is equivalent to the following:

VS CO,Pr[Ae S| <e°-Pr[BeS|+04. (4)

» Definition 7 ((¢,d)-close). Given two distributions A and B on the same sample space (2,
we say A and B are (€,0)-close if

max (D’ (A||B),D°(B||A)) < e.

Max divergence w.r.t. some neighboring relation

As mentioned in Section 1.1, the NPDO notion by Zhou et al. [66] cannot be expressed as
a standard divergence notion between two distributions, since the notion is defined with
respect to some neighboring relation ~.

For convenience, we introduce a new max-divergence notion that is defined w.r.t. to some
neighboring relation ~.

» Definition 8 (5-max divergence w.r.t. neighboring relation ~). Given two distributions A
and B defined over some space ) and a neighboring relation ~, for 0 < § <1, the divergence
DS, (A||B) is the infimum over € > 0 such that for every S C Q,

Pr[A e S| <e-Pr[B e N(S)| +5,
where the neighbor set N'(S) is defined as N'(S) :=={b€ Q| Ja € S,a ~ b}.
Using Definition 8, we can restate the NPDO notion (Definition 2) as follows:

» Definition 9 (NPDO: restatement of Definition 2). An algorithm M : Xy — X1 with the view
space V, input neighboring relation ~q, and output neighboring relation ~1 is said (e,6)-NPDO
iff for any for all neighboring inputs x ~q¢ x' from Xy, D‘Ll(ExecNI (:C)HEXGCM (") <e.

2.3 (€,0)-NPDO and (€, §)-Matching

Zhou et al. [66] showed that an algorithm M satisfies (¢, d)-NPDO iff there exists an (e, d)-
matching in a specific bipartite graph that encodes the distribution of two neighboring
executions Exec(z) and Exec(z’) where z and 2’ are neighboring. Consider an algorithm
M: X — Y with the view space V. Recall that a randomized execution Exec(x) over some
input z € X gives a (view, output) pair henceforth denoted (v,y) € ¥V x ). Henceforth
we use ~q to denote input-neighboring, and use and ~; to denote output-neighboring. By
Definition 5, we also use the same notation ~; to denote an extended neighboring relation
on the execution space V X Y.
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Bipartite graph induced by two distributions

Let M : X — Y be an algorithm with the view space V. Consider two randomized executions
ExecM(x) and ExecM (2') on two neighboring inputs « ~ @', and create the following bipartite
graph:
Each vertex on the left corresponds to a pair (v,y) € V x ), and the weight on the vertex
is its probability density measure in Exec (z).

Similarly, each vertex on the right corresponds to a pair (v',y’) € V x ), and the weight
on the vertex is its probability measure in Exec™ (2).

Draw an edge between (v,y) and (v',y") iff (v,y) ~1 (V',y), i.e, iff v/ =v and ¢ ~; y.

In the above, the bipartite graph is induced by the two distributions Exec (z) and
ExecM(a:’ ) and the neighboring relation ~;. More generally, we can also define a bipartite
graph induced by any two distributions and w.r.t. some neighboring relation ~.

(€, 6)-matching

Given the vertex weights (corresponding to probability density) on the aforementioned
bipartite graph, an (e, J)-matching is a weight assignment to the edges, such that the
following properties are satisfied:

For every vertex on the left, the sum of weights on all incident edges is upper bounded
by the vertex’s weight;

For every vertex on the right, the sum of weights on all incident edges is at most e€ times
the vertex’s weight;

The sum of all edge weights is at least 1 — 6.
More intuitively, one can imagine that each left vertex is a factory which has produced
some percentage of the supplies, and the total amount of supplies produced is 1. Each right
vertex is some consumer who is requesting some percentage of the supplies, and the total
amount requested is also 1. Now, the factories want to route their supplies to the consumers,
such that each consumer does not receive more than e times their requested amount; and
moreover, all but § fraction of the supplies must be successfully distributed.

Formally, we define (e, d)-matching for any two distributions A and B defined over the
same space (2, and w.r.t. to some neighboring relation ~.

» Definition 10 ((e, §)-matching). Given two distributions A and B defined over Q , and
a neighboring relation ~, an (€,0)-matching from A to B denoted w : Q x Q — [0,1] is a
mapping that satisfies the following conditions:

1. Foralla € Q and b € Q, w(a,b) >0 only if a ~ b;
2. ForallaeQ, Y w(a,b) <Pr[A=ad];
beQ

3. Forallbe Q, > w(a,b) <e°-Pr[B=10;
acQ)

4. > S w(a,b) >1-0.

ac) beQ

As mentioned, the best way to understand the above definition is to think of the bipartite
graph induced by the distributions A and B, and redistributing weights from left vertices to
incident edges.
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(€,0)-NPDO and (€, §)-matching

Zhou et al. [66] showed the following equivalence between (e, §)-NPDO and the existence of
an (e, d)-matching in the bipartite graph induced by two randomized executions ExecM(x)
and ExecM (') on neighboring inputs x and a’.

» Lemma 11 (Equivalence of D?, < € and existence of an (e, §)-matching). Suppose A and B
are distributions over some discrete sample space ), and let ~ be a neighboring relation on
Q. Under the Axziom of Choice, the following statements are equivalent:

1. DJ(A||B) < e.

2. There exists an (e,6)-matching from A to B w.r.t. ~.

As a direct corollary of Lemma 11, we have the following:

» Corollary 12 (Equivalence of (¢,d)-NPDO and existence of an (e, §)-matching). Let M : X —

Y be an algorithm with the view space V, input relation ~q, and output relation ~1. Suppose

that V and Y are discrete spaces, then, the following statements are equivalent under the

Azxiom of Choice:

1. M satisfies (€,0)-NPDO;

2. For any x ~o 2’ from X, there exists an (e, 0)-matching from Exec™(x) to Exec™(2) w.r.t.
the extended neighboring relation ~1 for the execution space V x ).

3 Symmetric NPDO

Recall that (e,d)-NPDO is expressed in the form of the §-max divergence w.r.t. some
neighboring relation ~ (Definition 8). To prove an advanced composition theorem for NPDO,
we want to leverage mathematical tools for reasoning about the divergence between composed
distributions — however, existing tools work only for standard notions of divergence that is
not defined w.r.t. to some relation ~.

In this section, we introduce an equivalent formulation of (e,d)-NPDO called (e, d)-
symmetric-NPDO. The new notion (¢, d)-symmetric-NPDO is indeed expressed in the form
of standard d-max divergence over two distributions (Definition 6) — the challenge is how to
define these two distributions such that the resulting definition is equivalent to the original
(¢,0)-NPDO.

3.1 Neighbor-Respecting Refined Distribution

In Section 2.3, we introduced the notion of an induced bipartite graph given two distributions
A and B and some neighboring relation ~. We also defined an (¢, §)-matching from A to
B and w.r.t. ~. Our first idea is to interpret the edge weights (henceforth denoted W) in
the (€, §)-matching as a distribution. Unfortunately, W may not form a valid distribution
because the edge weights may not sum to 1 due to the § probability mass remaining.

Neighbor-respecting refined distribution

We will instead consider a distribution of weights from the left vertices to its incident edges
such that all weights must be completely distributed without any remainder. With this

intuition in mind, we can define a notion called a neighbor-respecting refined distribution.

Intuitively, given a distribution A on some space €2 with the neighboring relation ~, imagine
a bipartite graph where the left vertex set {2; and the right vertex set 25 are both equal
to €, and each left vertex has a weight equal to its probability measure in A. Further,
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(a,a’) € Q1 x Qs is an edge in the graph iff a ~ a’. Now, imagine that we want to completely
redistribute the left vertices’ weights onto its incident edges, such that there is no weight
remaining. The resulting assignment of weights on the edges W : (21 x Q) — [0,1] can
be viewed as a distribution, and we call it the neighbor-respecting refined distribution of A
w.r.t. ~.

More formally, we define neighbor-respecting refined distribution as below.

» Definition 13 (Neighbor-respecting refined distribution). Let 1 and Qo be two discrete sets
both equal to Q, and let ~ be a neighboring relation on Q. Let A be a distribution on Q1 and
let W be a distribution on 1 X Qo. We say that the distribution W is a neighbor-respect
refined distribution of A w.r.t. ~ iff

The marginal distribution of W on €y henceforth denoted Wq, is equal to A.

For any (a,a’) in the support of W, it must be that a ~ a’.

Symmetrically, let B be a distribution on Qo and let U be a distribution on Q1 x Qy. We
say that the distribution U is a neighbor-respect refined distribution of B w.r.t. ~ iff

The marginal distribution of U on Qa henceforth denoted W\, is equal to B.

For any (a,a’) in the support of U, it must be that a ~ a’.

Using the terminology of neighbor-respecting refined distribution, the existence of an (e, §)-
matching from A to B w.r.t. ~ is in fact equivalent to the existence of a neighbor-respecting
refined distribution W on the space € x Qs of A w.r.t. ~ such that D%(Wq,||B) < €.

» Lemma 14. Let Qy = Qo = Q denote a discrete set with the neighboring relation ~, and
let A and B be distributions on Q1 and Qq, respectively. Under the Axiom of Choice, the
following statements are equivalent:

There exists an (e,d)-matching from A to B w.r.t. ~.

There exists a neighbor-respecting refined distribution W over Q1 X Qo of A w.r.t. ~,

such that D°(Wq,||B) < e.
The proof can be found in Appendix A.1 in the full version [67].

Just like the (e, §)-matching notion, the distribution W in Lemma 14 can be viewed as
a way to re-distribute the weights on the sources (defined by the distribution A), in a way
that approximately respects the capacities of the destinations (defined by the distribution
B). The difference between an (e, §)-matching and W is the following. An (€, §)-matching
allows § mass to remain at the sources, and requires that each destination receive no more
than e times its capacity (henceforth called the e-relaxed capacity). By contrast, the
neighbor-respecting refined distribution W insists that all mass be routed away from the
sources; however, the condition D°(W)q,||B) < € says that we can tolerate up to § total
excess over all destinations, relative to their e‘-relaxed capacities.

3.2 Symmetric NPDO

Our symmetric NPDO notion is defined in a way similar to Lemma 14. However, Lemma 14
is asymmetric and considers only one neighbor-respecting distributions W that can be viewed
as routing probability mass from left to right. In symmetric NPDO, we make the definition
symmetric by having two neighbor-respecting distributions W and U — one can be viewed as
routing weights from the left to the right, and the other routing weights from the right to
the left. Further, the two distributions W and U must be (e, §)-close.

» Definition 15 ((¢, §)-symmetric NPDO). An algorithm M : X — Y with the view space V
is said to satisfy (e, §)-symmetric NPDO w.r.t. input relation ~q¢ and output relation ~1,
iff for any neighboring inputs x ~¢ ' from X, the following hold for the two distributions
ExecM(as) V1 x Y1 and ExecM(J:’) Vo X Vo where Vi =Vo =YV and Y1 =Y =Y:
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There exist two meighbor-respecting refined distributions W and U, of Exec (z) and
Exec (2') respectively, both defined over Vi x Y1 X Vo X Vo and w.r.t. ~q;
W and U are (e,0)-close.

We prove the following theorem that shows the equivalence of NPDO and symmetric
NPDO - this is the most non-trivial step in proving the NPDO advanced composition
theorem.

» Theorem 16 (Equivalence of NPDO and symmetric NPDO). Suppose that an algorithm
M: X — Y has finite view and output spaces. Then, M satisfies (e,8)-NPDO w.r.t. input
relation ~o and output relation ~1 iff it satisfies (e, 0)-symmetric-NPDO w.r.t. ~q and ~1.

We provide an informal proof roadmap below and the full proof can be seen in Appedix
B of the full version [67].

Proof roadmap

The direction that symmetric NPDO implies NPDO is easy. The other direction, i.e., NPDO
implies symmetric NPDO, is much more involved to prove. We explain the high-level intuition
of our proof below.

Two arbitrary neighbor-respecting refined distributions W and U may not be (e, d)-close.
Instead, the idea is to consider the pair (e, d)-matchings w and u induced by W and U and
gradually adjust the weights of w and w, until for every “edge” a ~ b, the weights are close to
each other, i.e., e “u(a,b) < w(a,b) < e“u(a,b). Then, we convert the final pair of matchings
to a pair of refined distributions W’ and U’ and then W’ and U’ are (e, §)-close.

The adjustment algorithm goes as follows. For each step, we first find all the “violating”
edge in the bipartite graph, such that if w(a,b) > e‘u(a,b), we assign a direction (b — a) to
the edge, and vice versa. The idea is that we start with any violating edge, say b — a. We
try to gradually adjust this edge until it is fixed, or some constraints over the vertices stop
us from adjusting. We show that there must be an adjacent violating edge in this case. We
then proceed to adjust both of them, and prove that we can find another adjacent violating
edge if the constraints over the vertices become tight before we fix those edges. We repeat
this process until we fix one edge or find a loop. In the latter case, we show that there exists
an adjustment mechanism to fix at least one edge on the loop.

For this proof to work, we need the view and output spaces to be finite? We can see that
the adjustment algorithm goes in steps. To ensure the algorithm stops in finite steps, we
require the mechanism’s space to be finite, such that there’s no path consisting of violating
edges of infinite length. Since each step only guarantees to remove one violating edge, we
may need infinite step to remove all the violating edges if there are infinitely many of them.

4  Advanced Composition for (e,)-NPDO

Given Theorem 16, to prove the advanced composition theorem for NPDO (Theorem 4), we
can instead prove it for symmetric NPDO. Since symmetric NPDO is expressed in the form
of max divergence over two distributions, we will be able to rely on standard tools to reason
about the distance between composed distributions. Specifically, we will make use of the
advanced composition theorem for standard DP which we define below.

2 In fact, if we assume the axiom of choice, the bipartite graph can be infinite as long as each connected
component of the bipartite graph is finite. We call this case locally finite.
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4.1 Additional Preliminary

» Theorem 17 (Advanced k-fold adaptive composition theorem for (e,0)-DP [18]). Suppose
mechanisms My, ..., My are (¢,0)-DP and we consider the k-fold adaptive composition M =

MgoMyg_j0---0oMy. Then, for all ' > 0, M is (¢/,kd+6")-DP, where ¢’ = 61/2k1n%+2]€62.

4.2 Proof of Theorem 4

With all the tools prepared, we now present the proof to the advanced composition theorem
for (¢,0)-NPDO. Below, we set up the appropriate random experiments such that we can
eventually leverage the standard advanced composition of DP to complete the proof.

» Theorem 18 (Advanced composition theorem for NPDO: restatement of Theorem 4). Let
€>0,0,0 €[0,1] and k > 2. Suppose for i € [k], the algorithm M; : Y;_1 — YV; with view
space V; is (€,0)-NPDO with respect to the neighboring relations in its input and output
spaces. Suppose that all algorithms have finite output and view spaces. Then, the composition

M=MgoMg_j0---0My is (¢,0’ + kd)-NPDO, where ¢ = 6,/2/4;111% + 2ke2.

Proof. To avoid excessive notation uses, we consider a simpler case where all mechanisms
My, ..., Mg shares the same view space V, same input/output space ) and same input/output
relation ~. The following proof can be easily generalized to the case in the original theorem
statement.

Fix a pair of input yp,y( for the k-fold composition mechanism M. The experiment
Exec™(yo) is described below, and Exec™ (y}) is defined similarly.

Fori=1,...,k, (vi,y;) < ExecMi(yi,l), where v; is the view and y; is the i-th interme-
diate output.
The experiment outputs (v1, ..., v, yx), where vy, ..., v; are the views observed by the

adversary and y; is the final output.

Recall that in the symmetric NPDO definition 15, we need to find two statistically
close refined distributions W and U for Exec™(yo) and Exec™(y},), correspondingly. We now
construct W as follows.

Fori=1,...k:

Given a neighboring pair y;—1 ~ y;_,, there’s a pair of (e, )-close refined distribution,

!’ / ! !’
Yi—1,Y; Yi—1,Y;— Yi—1,Y;_ Yi—1,Y;— . . .
W, U T such that W) and U, 7! are refined distributions for

7
Exec (yi—1) and Exec™ (yi_,), correspondingly.

Sample ((vi, i), (vi,y})) from W, 71¥i=1,
Output ((v1, - ,’Ulmyk), (Ul,...,vk,yz)).

We can construct U similarly, where for each step ¢ € [k], we sample ((vg,y;:), (vi, ¥})) from

Uf”fl’yi’l instead. Notice to make the definitions consistent, given any pair of neighboring
inputs y;_1 ~ y,_;, the pair of refined distributions W, ~"¥~1 U ~""¥"~1 will be a unique
pair of refined distributions.

Now let’s check W’s marginal distribution over the variables (v1,..., vk, yx) is exactly

Exec(yo): for i € [k], W, """"’s marginal distribution over the variables (v;,y;) is exactly
Exec™i (y;_1), which is the same as the original random experiment of Exec"(yq). Similarly,
U’s marginal distribution over the variables (v}, ..., v}, y;) is exactly ExecM(y{)).

The final step is to prove that W and U are (€', 0’ +kd)-close. In fact, W can be considered
as a post-processed distribution of the joint distribution of (leo’y“, Wit W:kfby’“’l).

Here, for i € {2,...,k}, each I/[/iyi_l’y"‘1 is adaptively dependent on the sampling result of
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the previous step Wfﬁ’f’yi’z. Similarly, U can be considered as a post-processed distribution

of the joint distribution of (Uf“’y”, S ngil’yk’l). Now, for each i € [k], we know

I/V;ﬁfl"y”‘1 and Uf/_if’yi"" are (¢, §)-close. Therefore, applying the k-fold composition theorem

from standard (e, )-DP (Theorem 17) and we get that W and U are (¢, + ko)-close for
¢ =¢€,/2kIn 4 + 2ke? and any &' > 0. <

» Remark 19. Since our proof provides a reduction to the standard k-fold composition
theorem of (e, §)-DP, one can have tighter bound on the privacy parameters based on tighter
analyses of k-fold DP composition (e.g. Kairouz et al. [30] and Murtagh et al. [40]).

5 Defining NPDO with a General Divergence Notion

In Section 3, we saw that (e, d)-NPDO can be defined in terms of D? divergence over neighbor-
respecting refined distributions. In the literature, other notions of divergence have been
considered, such as Rényi divergence [8,38], trade-off function [14,55], and others [15].

In this section, we will generalize differential obliviousness to other notions of divergence.

Divergence notion

Suppose G is some divergence notion for comparing two distributions on the same sample
space. Suppose € is some parameter that indicates divergence, where smaller means the two
distributions are closer. Then, we use the notation

G(PQ) <€

to mean two distributions P and @ are e-close under G. In general, G does not have to
be symmetric and it may return either a single value or a function. For example, §-max
divergence D°(P||Q) and Rényi divergence (see Definition 23) return a single value, whereas
the Pow(:||-) function (see Definition 28 and Equation (6)) returns a function. In the case
G(P||Q) and € are functions, then < means that less than or equal to at every point.

For a divergence notion G to be used in a privacy definition, we want it to be well-formed
in the sense that the following data processing inequality should be satisfied.

» Definition 20 (Data processing inequality). A divergence notion G satisfies the data
processing inequality if given any two joint distributions (X,Y) and (X', Y') on the same
space, the corresponding marginal distributions satisfy the monotone property:

GX|X") < G((X, Y)I(X",Y7)).

One way to generalize DO to general divergence notions is to extend the original DO
notion of Chan et al. [10], resulting in the following definition.

» Definition 21 (Generic DO). Let M : X — Y be an algorithm with input relation ~¢ and
output relation ~1, let G be a divergence notion, and let € be some corresponding divergence
parameter. We say that M is e-DO(G) if for all neighboring inputs x ~qg &’ from X, the
distributions ViewM(z) and ViewM(2) are close in the following sense:

G(ViewM (2)||ViewM (2')) < e.
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The above generic DO notion, however, suffers from the same limitation as the original
DO notion [10] — it is not amenable to composition.

Since we care about composition, we will instead generalize the (e, §)-NPDO notion to
more general notions of divergence. Generalizing with the original NPDO definition of Zhou
et al. [66] is unnatural since the NPDO notion is not defined as a standard divergence notion
over two distributions due to the N () operator in Equation (2). Fortunately, to prove the
advanced theorem for NPDO, we defined an equivalent notion called symmetric NPDO, and
symmetric NPDO is indeed defined as the divergence over a pair of neighbor-respecting refined
distributions. Therefore, we can extend the symmetric NPDO notion when generalizing to
other divergence notions. The resulting notion is called generic NPDO as defined below.

» Definition 22 (Generic NPDO). Let M : X — Y be a randomized algorithm with view space
V, input relation ~q¢ and output relation ~1 (which can be extended to the execution space
V x V). Let G be a divergence notion, and € be some corresponding divergence parameter.

Then, we say that M is e-NPDO(G) if for all neighboring inputs x ~o ', there exists
a pair of neighbor-respecting refined distributions W and U of Exec™(z) and Exec™(z'),
respectively, such that the following holds:

GW|U) <e. (5)

Additional notations: neighbor-respecting refinement pairing

Since we always use a pair of neighbor-respecting refines distributions together (e.g., Defini-
tions 15 and 22), it helps to introduce some new notations.

Henceforth, we will use the notation ¢ = (W, U) to denote a pair of neighbor-respecting
refined distributions of ExecM(x) and ExecM(a:’ ), respectively, and we say that ¢ = (W,U) is
a neighbor-respecting refinement pairing between Exec™(z) and Exec™(z/). Given such
a neighbor-respecting refinement pairing, we use the notation ¢(Exec(z)) = W and
o(Exec™(z)) = U.

We also introduce the following notation to denote the divergence of a neighbor-respecting
refinement pairing ¢:

G* (Exec" () | Exec™(2')) = G(io(Exec () o (Exec™ (a'))
Using this notation, we can rephrase Equation (5) as:

G¥ (Exec™ (z)||[Exec™(2")) < e.

6 NPDO Composition for Various Divergence Notions

6.1 Rényi NPDO and Zero Concentrated NPDO
Rényi NPDO

Rényi DP [38] of order « is based on the Rényi divergence of order « defined as:

1 P\ 1
Da(PHQ) = a—1 log (EP (q) ) = o] log/paqlfoé.

A mechanism M is (a,€)-RDP if for all neighboring input pairs z and 2/,
Do (M(2)||M(2")) < e. We can analogously define (a, €)-Rényi NPDO by instantiate the
generic NPDO notion as eNPDO(D,,), i.e., plugging the D, divergence into the generic
NPDO definition in 22:
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» Definition 23 ((«, €)-Rényi NPDO). An algorithm M : X — Y is («, €)-Rényi NPDO w.r.t
input neighboring relation ~g and output neighboring relation ~1 iff for any neighboring
input pair x ~g &' from X, there exists a refinement pair o(x,x') w.r.t. ~1 such that

D#(®%) (Exec™ (2)||(Exec () < .
Rényi divergence has the following composition theorem:

» Lemma 24 ( [38]). Suppose distributions X and X' on sample space X satisfy that
Do(X||X') < €. Also, for any x € X, distributions Y (x) and Y'(x) on sample space Y
satisfy that Do (Y (z)||Y'(x)) < ea. Then,

Do (X, Y(X) (X', Y'(X"))) < @1 + e
Based on this lemma, we can prove the composition theorem for (a, €)-Rényi NPDO.

» Theorem 25 (Composition theorem for («,€)-Rényi NPDO). Suppose My : X — Y is
(o, €1)-Rényi NPDO with respect to the neighboring relations ~q in its input and ~1 in
output spaces. Suppose Ms : Y — Z is («, €3)-Rényi NPDO with respect to the neighboring
relations ~1 in its input and ~o in output spaces. Then, the composition M = My o My is
(o, €1 + €2)-Rényi NPDO w.r.t ~¢ and ~o.

The proof of Theorem 25 if omitted due to the space limitation. We refer the reader to
Section 6.1 of the full version [67] for the full proof.

Zero Concentrated NPDO
Zero concentrated DP (zCDP) [8] is defined based on the following divergence:

D.(PQ) := sup - - Du(P]Q).
a>1 ¢

A mechanism M is e-zCDP if for all neighboring inputs  and 2/, D, (M(z)||M(z")) < e. We
can analogously define e-zNPDO by plugging D, in the generic definition 22 as follows.

» Definition 26 (¢-zNPDO). A mechanism M : X — Y with view space V is ¢-zNPDO w.r.t
input neighboring relation ~y and output neighboring relation ~1 if for any neighboring input
pair x ~o &' from X, there exists a refinement pair p(x,x') w.r.t ~1 such that

D#*) (ExecM (2)||(Exec™ (2')) < .

Based on nearly the same proof as Theorem 25, we can have the following composition
theorem:

» Theorem 27 (Composition theorem for e-zZNPDO). Suppose My : X — Y is €;-zNPDO
with respect to the neighboring relations ~q in its input and ~1 in output spaces. Suppose
Mg : Y — Z is e-zNPDO with respect to the neighboring relations ~1 in its input and ~o in
output spaces. Then, the composition M = Mg o My is (¢ + €2)-2zNPDO w.r.t ~qg and ~s.

6.2 g-NPDO

Dong et al. [15] defined f-DP which uses tradeoff functions to characterize the divergence
between distributions. We will define an analogous notion for differential obliviousness calld
¢-NPDO.

Moreover, Composition of (€,d)-NPDO and Gaussian-NPDO can be view as special cases

of g-NPDO. We refer the reader to Section 6.3 and 6.4 in the full version [67] for more details.
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6.2.1 Background: From Tradeoff Functions to Power Functions

Our ¢g-NPDO notion will use power functions to characterize divergence. To understand the
power function, we first review the notion of a tradeoff function.

Tradeoff function

Given two distributions Hy and Hj, the tradeoff function T(Hy | H;) outputs a function that
captures the tradeoff curve between two types of errors.

Since our divergence measure will be a function, it helps to define a partial order for
two functions. Let f; and fs be two functions, then f; < fy means that for all z € [0, 1],
fi(@) < fo(@).

More formally, tradeoff functions are inspired by hypothesis testing.

» Definition 28 (Tradeoff Function). Suppose Hy and Hy are distributions on the same sample
space, where Hy is interpreted as the null hypothesis and Hy as the alternate hypothesis.
Define the tradeoff function T(Hy||Hy) : [0,1] — [0,1] such that given a value z € [0,1],
the function returns the probability of Type-2 error (accepting Hy) for the most powerful
(randomized) test that has the probability of Type-1 error (rejecting Hy) being exactly x.

A tradeoff function T(Hy||H) measures the similarity between two distributions. A larger
function function means the two distributions are closer. The class of tradeoff functions has a
maximal element x — 1 — z, which corresponds to two identical distributions (corresponding
to the diagonal line in Figure 1a). Dong et al. [15] provide more detailed explanation about
the intuition behind Definition 28.

Example: tradeoff functions for (e, §)-closeness
Figure 1la shows the tradeoff function:
feo(x) :=max{0,e™*- (1 -0 —z),—€ -z +1— 4}

Wasserman and Zhou [62] showed that if two distributions Hy and Hy are (e, §)-close, then
the tradeoff function T(Hy||H1) has to be above fe s, but below y =1 — z.

1 1
N ~ —ff.(\' —_—es
< iﬁtercept:d - = indistinguishable - = indistinguishable
0.8 ~ 0.8 ’
, 7
— 7
206 _06 , ’
© @
= % ’ 4
@ o .
Q
=04 0.4 e ‘
, 7
0.2 0.2 , ’
./
ftlntercept=6
0 . . . 0 . . . .
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Type | error Type | error
(a) fes (b) ge,s

Figure 1 Examples: tradeoff functions and power functions for (¢, §)-closeness. Here e = 1,5 = 0.3.
(a) is the curve for f. s and (b) is the curve for g s.
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From tradeoff functions to power functions

We want to use T(-||-) which outputs a tradeoff function as a divergence notion, but directly
using it is unnatural because a larger tradeoff function means closer in distance. We therefore
flip the sign and define a related notion called a power function denoted Pow(Hy||H;):

POW(H()”Hl) =1- T(H()HHl) (6)

We can use Pow(:||-) as the corresponding the divergence notion which outputs a power
function when given two distributions.

With power functions, a smaller function means closer in distance which is more intuitive.
The identity function is the minimal element over all power functions (see the diagonal line
in Figure 1b).

The power function also has a natural interpretation in the context of hypothesis testing.

Specifically, the power of a test refers to one minus the Type-2 error.
In Figure 1b, we see that the corresponding power function for f s is:

ges(r) :=max{l,1 —e (1 -9 —z),e -+ 0} (7)
Hence, if two distributions Hy and Hy are (e, d)-close, then the power function Pow(Hy||H1)
has to be below g, s, but above the diagonal line y = z.

6.2.2 Properties of Power Functions

Naturally, all natural properties of tradeoff functions [15] can be expressed equivalently in
terms of power functions, albeit with some slight modifications. Unless otherwise stated, we

will mostly work with power functions, and quote counterparts from [15] where appropriate.

» Fact 29 (Valid power functions [15, Proposition 2.2]). Suppose g : [0,1] — [0, 1] is a function.
Then, there exist distributions X andY such that Pow(X||Y) = g iff g is continuous, concave
and g(x) >z for all z € [0,1].

Proof (Sketch). One can take X to be the uniform distribution on [0, 1] and Y to be the
distribution on [0, 1] with g as the CDF. <

Ubiquity of power functions

Intuitively, the ubiquity of the power function comes from the following fact: the power
function summarizes the “difference” between two distributions, and it contains enough
information such that any well-formed divergence between the distributions can be computed
solely based on the power function. Here, well-formed divergence means the divergence
satisfy the data processing inequality in Definition 20, which should be a basic property for
all divergence notions used to define privacy.

» Fact 30 (Ubiquity of power functions [15, Proposition B.1]). Suppose a divergence notion
G(-||-) satisfies the data processing inequality, then there exists a functional lg such that
G(X[]Y) = £e(Pow(X|Y)).

Tensor product and composition

As remarked in [15], the tensor product gives a complete characterization of many known
DP compositions, which eventually allows us to transfer abundant composition result for
normal DP to NPDO.
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» Definition 31 (Tensor product). Given any two power functions g1, gz such that there exist
some distributions X, X" Y,Y" where g1 = Pow(X||X’) and go = Pow(Y||Y’), the tensor
product of g1, g2 is defined as

g1 ® go :=Pow(X x V|| X' x Y"),

where the product distribution X XY means that sampling from X andY independently.
Moreover, the tensor product g1 ® go is well-defined that g1 ® g2 is the same for any such
distributions X, X' Y, Y.

» Theorem 32 (Adaptive composition for power functions [15]). Let g1 and g2 be two power
functions. Suppose distributions X and X' on sample space X satisfy that Pow(X||X") <
g1. Also, for any x € X, distributions Y (x) and Y'(x) on sample space Y satisfy that
Pow(Y (2)||Y'(z)) < g2. Then,

Pow (X, Y (X)) [[(X",Y(X"))) < g1 ® ga-

6.2.3 g-NPDO and Composition

» Definition 33 (¢-NPDO). Given a power function g, an algorithm M : X — Y is said to be
g-NPDO w.r.t. its input and output relations iff it is g-NPDO(Pow) by Definition 22 w.r.t.
its input and output relations.

» Theorem 34 (Composition theorem for g-NPDO). Let My : X — Y and Mg : Y — Z be two
randomized algorithms. Suppose that for i € {1,2}, M; is g;-NPDO w.r.t. its corresponding
input and output neighboring relations. Then, the composed algorithm Moo My : X — Z is
g1 ® g2-NPDO.

We refer the reader to Section 6.2 of the full version [67] for the proof.
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