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Abstract
In this work, we propose the notion of homomorphic indistinguishability obfuscation (HiO) and
present a construction based on subexponentially-secure iO and one-way functions. An HiO scheme
allows us to convert an obfuscation of circuit C to an obfuscation of C′ ◦ C, and this can be
performed obliviously (that is, without knowing the circuit C). A naïve solution would be to
obfuscate C′ ◦ iO(C). However, if we do this for k hops, then the size of the final obfuscation is
exponential in k. HiO ensures that the size of the final obfuscation remains polynomial after repeated
compositions. As an application, we show how to build function-hiding hierarchical multi-input
functional encryption and homomorphic witness encryption using HiO.
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1 Introduction

The goal of code obfuscation [6] is to compile programs such that the compiled version pre-
serves functionality, but is “maximally unintelligible.” Compared to traditional cryptographic
notions like encryption which keep data locked away in a non-functional way, obfuscation
draws its power from allowing the obfuscated code to be executable publicly. However,
obfuscation does take away some functionality that unobfuscated code provides, namely,
the ability to modify the code. In this work, we investigate the notion of homomorphic
obfuscation that seeks to retain some of the functionality of modifying the code, while
providing the protection that obfuscation provides.

A version of this question was first studied by Ananth et al. [5] and Garg and Pandey [19],
who introduced the notions of patchable obfuscation and incremental obfuscation respectively
(and these were further explored in [1]). In these works, one uses a secret key associated with
the obfuscated program to modify it. While this is a remarkable feature, it is not comparable
to the original feature of unobfuscated code whereby anyone can publicly modify the code.

On the other hand, allowing anyone to modify the program in any manner they wish runs
contrary to the very notion of obfuscation. Indeed, by trying to change the (unobfuscated)
code one bit at a time, one would often be able to recover the entire code. As such, the
only reasonable notion of homomorphic obfuscation may appear to be to allow the use of a
private key.
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14:2 Homomorphic Indistinguishability Obfuscation and Its Applications

In this work, we take a different view of homomorphic obfuscation, that prioritizes the
public nature of code modification. But to not contradict the spirit of obfuscation, which
allows only black-box access to the obfuscated code, we require that the nature of modification
should also be black-box. That is, the code modifications we seek will invoke the original code
as a black-box. An immediate solution then, is to first construct a program that implements
the modification by invoking the given obfuscated code rather than the original code (which
is not available), and then obfuscating this new program (since the modification itself needs
to be hidden). While this is perhaps reasonable for a single round of code modification, note
that it involves nesting obfuscations, and the size of the code grows exponentially as multiple
rounds of code modification are applied homomorphically to the original program.

This leaves us with the core technical challenge tackled in this work:

A homomorphic obfuscation scheme should allow one to iteratively apply black-box
modifications to an obfuscated program, retaining the security of the resulting programs
as well as their polynomial efficiency.

The security property we shall focus on is indistinguishability obfuscation (iO) [6, 17], which
is by far the most standard notion of obfuscation in the literature. Hence the security
property we shall be interested in for our primitive – called Homomorphic iO (HiO) – is as
follows: Consider two obfuscated programs O′

1,O′
2 that are obtained after several (but equal

number of) homomorphic transformations applied to two (possibly different) obfuscated
programs O1,O2; if O′

1 and O′
2 happen to be functionally equivalent, then they should be

indistinguishable from each other. Note that the pair of original programs, the intermediate
programs, or the transformations, need not be functionally equivalent.

A Motivating Application

Before proceeding further, we briefly discuss a motivating application of HiO. Suppose Alice
receives an obfuscation (iO) of a program that signs its inputs using a built-in signing key,
under a puncturable signature scheme.1 Now suppose she would like to hand out this signing
key to Bob after puncturing it at a few points. This new program can be implemented as a
black-box transformation of the original (unobfuscated) program. If the obfuscation scheme
is an HiO scheme, Alice can create an obfuscated version of the desired program by acting
homomorphically on the obfuscated program that she received, and hand it over to Bob.
And further, Bob can repeat the same with Carol, and so forth. At any point, someone
receiving this obfuscated program cannot learn anything about the set of punctured points
other than its size and what they can learn from oracle access.

In the sequel, we shall formalize and realize this primitive as a new primitive called
Puncture-Hiding Incrementally Puncturable Signatures (PIPS).

Input-Based Output Transformations

For the ease of exposition, we shall first focus on a restricted form of black-box transformations:
We may transform a function f into a function that maps x to g(x, f(x)), where g is

1 One scenario where iO of such a program is interesting is the following. One may want to delegate the
ability to sign all strings of a certain length, except a few secret strings (e.g., certain sensitive keys).
While these bad strings can be punctured out of the signing key, the punctured signing key will reveal
them. On the other hand, this program is functionally equivalent to another program that only carries
point obfuscations of the bad strings along with the the unpunctured signing key. By obfuscating this
program then, one keeps the bad strings hidden, while also making sure that they cannot be signed.
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an arbitrary function. Note that for the example above of PIPS, input-based output
transformations are already sufficient. In the full version, we generalize this to a circuit
structure, where each node of the circuit is a program.

1.1 Our Contributions
Our contributions are three-fold:

We define the notion of Homomorphic indistinguishability Obfuscation (HiO) which
extends iO with a feature to incrementally modify the obfuscated program publicly (i.e.,
without a secret key). Indistinguishability of two obfuscated programs holds as long as
functional equivalence holds at the end of the two equally long chains of modifications,
even if it does not at intermediate levels (Section 4).
We present a construction for HiO assuming subexponentially-secure iO for all circuits
and subexponentially-secure one-way functions (Section 5).
Finally, we present several applications of HiO:

Function-hiding Hierarchical-MiFE. While both Hierarchical-MiFE [22] and function-
hiding MiFE [3, 11] have been constructed in the literature, for the first time, by
leveraging HiO, we give a single construction that offers both these properties for MiFE
in the full version.
Circuit-hiding Homomorphic Witness Encryption. Combining the features of Fully
Homomorphic Encryption and Witness Encryption, we introduce the notion of Ho-
momorphic Witness Encryption, and provide a construction using HiO in the full
version.
Puncture-hiding Incrementally Puncturable Signatures. We formalize the motivating
example from the Introduction in the form of this primitive and provide a construction
using HiO in the full version.

Extensions

We also generalize HiO so that the blackbox transformations supported is not limited to a
chain of circuits. In particular, we can support blackbox transformations in which a program
can invoke more than one obfuscated program (which may in turn be the result of a similar
transformation), thereby yielding a tree or DAG composition structure. We show that our
construction extends to this setting as well, in the full version.

While we restrict ourselves to circuits in this paper, we note here that our techniques
can be implemented in similar ways to the Turing Machine as well as RAM models of
computation. For example, in order to build HiO for TMs, one would simply need to start
with iO for TMs [25, 7, 14, 13] and use the remanining tools as is done in this paper.

1.2 Related Work
The notion of iO was introduced in [6] and has since been proven to be very powerful, with
several applications in cryptography and complexity theory [17, 22, 27, 8]. [9, 4, 24] gave
constructions of constant-rate iO schemes in which the size of the obfuscated circuit grows
linearly with the size of the input circuit. Either of these can be used in our construction in
Section 5 to get linearly growing size of the obfuscated chain in terms of sum of sizes of each
unobfuscated circuit in the chain. The notion of homomorphisms in cryptography has mainly
been considered with encryption [26, 20] but also for other primitives like zero-knowledge [2],
signatures [23] and secret-sharing schemes [10] among others. Non-compact function-private
FHE schemes have been considered in [16, 21].

ITCS 2024
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A variant of obfuscation called patchable iO was introduced in [5]. The major difference
between our notion and their’s is that in their notion, the original obfuscator needs to provide
“patches”, generated using the randomness used to compute the initial obfuscation, which
can then be applied by anybody to the obfuscated circuit. As a result, the authors of that
work call that notion as semi-private homomorphic obfuscation whereas we are interested in
obtaining public homomorphic obfuscation. Same goes for the notion of incremental iO given
in [19]. Both these works fall under the umbrella of cryptography with updates [1].

In this work, we give applications of HiO to add homomorphisms to the notions of function-
hiding MiFE and witness encryption. The notion of Multi-input Functional Encryption
(MiFE) was introduced in [22]. This paper also mentioned the notion of Hierarchical-MiFE in
a paragraph. In [3], the authors showed a transformation from any secret-key MiFE scheme
to a function-hiding MiFE scheme using ideas from [11]. The authors of [12] showed how to
transform any public-key FE scheme to a hierarchical FE scheme, in the single-input regime.
The notion of witness encryption was introduced in the work of [18].

2 Technical Overview

2.1 Difficulties with Existing Ideas
Before describing our idea for the main construction, we first note that existing ideas
in the literature might not be enough to build HiO. For example, consider the FE to
iO transformation of [3]. The way they achieve this is by building a technique for arity
amplification for a secret-key MiFE scheme and then using the MiFE to iO transformation
of [22] to achieve iO. The key ingredient for doing said arity amplification is the ability to
convert any MiFE scheme to a function-hiding version. If we were to use similar ideas for
building HiO starting from hierarchical FE, we would also need an analogous conversion from
any hierarchical MiFE scheme to a function-hiding hierarchical MiFE. It is not clear how to
do this and in fact we show that this could be seen as an application of HiO.

We also point out another approach, which directly relies on the following feature of
MiFE. Consider a multi-input function U(x1, . . . , xn) (each input being a single bit); given
a function key for U , a ciphertext for each position i ≤ s for zi ∈ {0, 1}, and two ciphertexts
for each position i > s for both 0 and 1, one can evaluate U(z1, . . . , zs, ys+1, . . . , yn) for any
choice of ys+1, . . . , yn. Setting U to be a function which accepts circuits C1, . . . , Ck and a
string x and outputs Ck ◦ · · ·C1(x), one can turn this into a HiO scheme (see the full version).
But this construction, which could be seen as an extension of the iO construction from MiFE
in [22], has two serious limitations: Firstly, there is an a priori limit k on the number of
homomorphic transformations that can be applied that is set at the time of creating the first
obfuscation. Secondly, the size of even the first obfuscation, which encodes only C1, is as
large as the final obfuscation (indeed, as the transformations are applied the size slightly
decreases each time).

The above construction could be termed “levelled HiO.” In the following we focus on the
full-fledged “unlevelled” version of HiO.

2.2 Initial Idea
We start with a rather simplistic idea that avoids nested iO: to increment an obfuscation Ĉ1
of C1 to that of C2 ◦ C1, simply output (Ĉ1, Ĉ2), where Ĉ2 is an independent obfuscation
of C2. This simplistic idea would retain indistinguishability between two chains of circuits
(C0

1 , . . . , C0
k) and (C1

1 , . . . , C1
k) only if for each i, C0

i and C1
i are functionally equivalent. One
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reason why this obfuscation does not meet the security goals of HiO is that the intermediate
results of a computation will be revealed. A natural approach to fix this issue would be to
use encryption to hide intermediate values, as shown in Figure 1. Furthermore, we will need
each obfuscated program (other than the first one) to identify and reject an input unless
it has been generated by the previous one. If we try to use a randomized (authenticated)
encryption scheme, we would need to use probabilistic iO [15] as the underlying circuit is now
randomized; unfortunately, this approach fails due to the seemingly unavoidable technical
limitations of the known constructions of probabilistic iO [15]. An alternative would be to
use a deterministic encoding algorithm that offers hiding and authentication similar to an
encryption scheme, in a manner that facilitates the requisite hybrid arguments in the security
proof.

As it turns out, the primitive Asymmetrically Constrainable Encryption (ACE) introduced
by [14] fits our requirements.

O1 Ok C

O1 EncEKOk DecDK C

Figure 1 Basic idea for extending a chain of obfuscated circuits (O1, . . . , Ok) in our framework.
Dashed boundary represents an obfuscated circuit while solid boundary is for standard circuits.
Curved arrows denote ciphertexts while straight arrows denote plaintext values. Top figure represents
the initial chain with C being the new circuit to be added. Bottom figure represents the final chain
(O1, . . . , Ok−1, Ôk, Ok+1), obtained after sampling an encryption key-pair (EK, DK). Ôk internally
encrypts the output of Ok and Ok+1 first decrypts this ciphertext before applying the circuit C to
the result and then outputs it in the clear.

Asymmetrically Constrainable Encryption

The notion of asymmetrically constrainable encryption (ACE) was proposed by Canetti et
al [14] for a similar problem - succinct garbling of Turing machines. In this primitive, we
have a setup algorithm outputting a master secret key, which can be used for generating
encryption and decryption keys. Given a master secret key and a set S, we can generate
a constrained encryption (resp. decryption) key EK{S} (resp. DK{S}). The set S

specifies the “forbidden” region, where encryption/decryption does not work. The encryption
algorithm is deterministic; it takes as input an encryption key and a message, and outputs a
ciphertext. Similarly, the deterministic decryption algorithm takes as input a decryption key
and a ciphertext, and outputs a message. For correctness, we require that for any two sets
S, S′, if a message m /∈ S ∪ S′, then encryption of m using EK{S}, when decrypted using
DK{S′}, produces m. In addition to the encryption being determinisitc, the ciphertexts
are also “unique” – if a message m is encrypted using two different encryption keys EK{S}
and EK{S′}, then the resuting ciphertexts are identical (provided m /∈ S ∪ S′), and if two
ciphertexts decrypt to the same value, then they must be equal. 2 For security, we require
two properties. First, the punctured decryption keys should hide the constraint set. More

2 This primitive has a few other correctness properties, which are described formally in Section 3.1.

ITCS 2024



14:6 Homomorphic Indistinguishability Obfuscation and Its Applications

formally, an adversary should not be able to distinguish between DK{S0} and DK{S1},
even when it is given various ciphertexts and encryption keys (provided the ciphertexts
are for messages m /∈ S0∆S1 and the encryption key is for a set U such that S0∆S1 ⊆ U).
Second, we require semantic security for the encryption – an adversary should not be able
to distinguish between encryption of m0 and m1, even if it is given various ciphertexts and
encryption/decryption keys (provided the constraint sets for the encryption and decryption
keys contain both m0 and m1).

2.3 Warm-Up: A Weaker HiO
First we shall describe our construction and, as a warm-up, analyze it for a weaker security
gurarantee, where indistinguishability is guaranteed only when functional equivalence holds
at each level of the chain of compositions, instead of just at the end of the two chains. That
is, in the security experiment the adversary is allowed to only send two sequences of circuits(
C0

i

)
i≤k

,
(
C1

i

)
i≤k

such that for all x ∈ {0, 1}n and all i ≤ k,

C0
i

(
C0

i−1
(
. . . C0

1 (x)
)

. . .
)

= C1
i

(
C1

i−1
(
. . . C1

1 (x)
)

. . .
)

It receives the homomorphic obfuscation of either
(
C0

i

)
i≤k

or
(
C1

i

)
i≤k

, and must guess which
one was obfuscated.

Our construction is simple to describe: obfuscation of Ck ◦ · · · ◦ C1 consists of iO
obfuscations of circuits Gi which ACE-decrypt their input using one key, evaluate Ci on
the result, and then ACE-encrypt3 the outcome using another key. The exceptions are the
first and last circuits in the sequence, which omit the decryption and the encryption steps
respectively, say, A1 and Bk respectively. Here, the notation A, B and G is used to denote a
distinction between the kinds of circuits that are present in the final chain. A is a circuit
that takes plaintext inputs but gives out encrypted outputs, G takes encrypted inputs and
gives out encrypted outputs while B only takes encrypted inputs but gives out plaintext
outputs. Hence, the first circuit in the chain is of type A, the last circuit is of type B while
all intermediate circuits are of type G. The construction in fact involves one level of nesting
of iO: since Gi needs to be created without having direct access to the key used by Gi−1, it
is in fact created from the obfuscation of Bi (see Figure 1).

Now, to analyze this construction in the simplified setting, where we assume that functional
equivalence holds at each level in the chain, the “encryption” aspect of ACE is not critical
(since the intermediate results are identical in the two chains, and hence need not be hidden),
but the authentication aspect is.

To argue security, we use a hybrid argument which goes over all input strings (thus
leading to an exponential loss in security). Let the jth hybrid be where each circuit Di

in the chain has two circuits C0
i and C1

i hardwired in it, and uses C0
i for all inputs x ≥ j

and C1
i for all others. In order to move to the next hybrid, we need to make the switch

for input x = j from using C0
i to C1

i , in every circuit in the chain. In order to do this, we
will hardwire the output when x = j in the first circuit D0 as (j, y∗

0 = C0
0 (j) = C1

0 (j)). In
order to do the same for the second circuit D1, we will need to puncture the decryption key
DK0 on the set {(j, ̸= y∗

0)} and then use the fact that such a key can never decrypt to a
tuple belonging to this set. Furthermore, we would first need to puncture the corresponding
encryption key EK0 on some superset (say {(j, ∗)}) for the argument to go through. Once
we have punctured DK0, we could hardwire the corresponding ciphertext output in D1 for
x = j as (j, y∗

1 = C0
1 ◦ C0

0 (j) = C1
1 ◦ C1

0 (j)).

3 We will additionally be propagating the entire initial input throughout the chain for our security proof.
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Proceeding similarly, we would have hardwired the outputs for x = j in each circuit in
the chain. Then starting from the last circuit, we can start switching to using the circuit C1

i

for x = j. Such a switch would be possible due to functional equivalence at that level. This
would have to be followed by unpuncturing the decryption key first and then doing the same
for the corresponding encryption key. In this way, we would have made the desired switch in
O(k) hybrids.

2.4 Full-fledged HiO
Now we consider the actual definition when functional equivalence is only assumed at the
end. While the construction remains the same as outlined above, we need a more careful
proof of security. Thankfully, the ACE scheme provides us with all the desired properties
for us to complete our reasoning for this case too. In particular, note that we never used
ciphertext indistinguishability in the previous situation since there wasn’t any need to hide
the intermediate outputs, but we would need that property in this situation.

Proceeding similarly as before, we can start hardwiring the outputs α0
i = Enc(EKi, (j, y0

i =
C0

i ◦ · · · ◦ C0
0 (j))) for x = j inside each circuit Di, for i ∈ {0, . . . , k − 1}. In order to do

this, we would also have punctured the encryption keys EKi on the set U = {(j, ·)} and the
decryption keys DKi on the set S0

i = {(j, ̸= y0
i )}. One could similarly hardwire the output

(j, y0
k) inside the circuit Dk for x = j. Note that y0

k = y1
k as functional equivalence holds at

the very end. Our goal now is to switch to using C1
k for input x = j inside the circuit Dk.

Here we run into an issue. The decryption key DKk−1 is currently punctured on the set
S0

k−1 = {(j, ̸= y0
k−1)}. However, in order to make the switch to C1

k , we would need to change
the puncturing to the set S1

k−1 = {(j, ̸= y1
k−1 = C1

k−1 ◦ · · · ◦ C1
0 (j))}, and then use safety of

constrained decryption for functional equivalence. We cannot directly switch the puncturing
from S0

k−1 to S1
k−1 since some message of the set difference {(j, y0

k−1), (j, y1
k−1)} is available

as a ciphertext in the system.
To solve this, we try to change the puncturing of DKk−1 from S0

k−1 to U so that we could
switch ciphertexts easily. These two decryption keys only differ on the tuple (j, y0

k−1). We will
have to handle this case outside the decryption process inside circuit Dk. This is possible due
to the uniqueness of ciphertext property of the ACE scheme. In particular, only the ciphertext
α0

k−1 could decrypt to such a tuple4. We can hardwire this ciphertext inside Dk to give the
same output as before and use decryption only for other ciphertexts. This way we can make
the puncturing change to U without affecting functional equivalence. Now we can switch the
hardwired ciphertexts inside Dk−1 and Dk from α0

k−1 to α1
k−1 = Enc(EKk−1, y1

k−1) using
ciphertext indistinguishability. This is followed by changing puncturing of DKk−1 from U to
S1

k−1, removing the hardwired ciphertext α1
k−1 from Dk and then switching to C1

k for x = j.

The rest of the argument goes along the ideas presented earlier.

2.5 Application: Function-Hiding Hierarchical-MiFE
As an illustration of the power of HiO, we use it to give the first construction of a function-
hiding Hierarchical-MiFE scheme. The notion of MiFE, introduced in [22], is a stronger
functional encryption primitive allowing multiple parties to encrypt different messages which

4 While uniqueness of ciphertexts is defined w.r.t. an unpunctured decryption key, we can prove that the
statement still holds in our situation in presence of the punctured key DKk−1{S0

k−1}. This further uses
the equivalence of constrained decryption and safety of constrained decryption properties. In particular,
for messages in the punctured set, the punctured key always outputs ⊥ while for other messages, it
behaves identically to the unpunctured key and hence uniqueness of ciphertexts can be used.

ITCS 2024
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could be decrypted together using a function key to get the output. The authors showed
that secret-key MiFE suffices to construct iO, which in turn is sufficient to construct even
public-key MiFE, thus implying that these two notions are equivalent. Moreover, the authors
mentioned a seemingly stronger notion of Hierarchical-MiFE which allows anyone with access
to a function key skf to further delegate this with any function f ′ to obtain a new key skf ′◦f

which could be used to compute the function f ′ ◦ f. Furthermore, one could delegate any
number of times.

While the authors did not give any construction of the primitive, similar notions for the
weaker primitive of functional encryption have been considered previously. In particular, [12]
showed that any FE scheme could be used to construct a hierarchical FE scheme. Similar
ideas could be used to construct Hierarchical-MiFE from any MiFE scheme. We consider the
even stronger notion of function-hiding Hierarchical-MiFE where the function key hides the
function(s) that are being computed by that key. While function-hiding is not natural for
functional encryption in the public-key setting, it is well-motivated in the secret-key setting.
Indeed, in the non-hierarchical setting, [3] showed that any MiFE can be used to construct a
function-hiding MiFE scheme. But their techniques do not extend to the hierarchical setting,
and no construction has been provided for function-hiding Hierarchical-MiFE yet.

We show that any HiO scheme could be used to amplify a function-hiding MiFE scheme
to a function-hiding Hierarchical-MiFE scheme. The construction is quite simple: instead of
outputting a standard function-key, we output an HiO obfuscation of a circuit D which has
skf hardwired inside it and decrypts the input ciphertexts (ct1, . . . , ctn) using this key to
produce its output. For delegation, we use HiO composition to compose the current function
key (which is an obfuscated circuit) with a new function f ′ (or its circuit representation Cf ′)
to get a new obfuscated circuit. Decryption would evaluate this obfuscated circuit on the
ciphertexts and get the output.

To argue security of this construction, one starts with the real H-MiFEexperiment where
the challenger chooses bit b as 0 and provides outputs to the adversary. In particular, for
function query

(
(f0

0 , . . . , f0
k ), (f1

0 , . . . , f1
k )

)
, the challenger computes sk(k)

f where

sk(0)
f ← HiO.Obfuscate(1λ, Dskf0

0
),

sk(j)
f ← HiO.Compose(sk(j−1)

f , Cf0
j
) for j ∈ {1, . . . , k},

where the circuits D and C have been described previously. Using HiO security, we could
directly switch to

sk(0)
f ← HiO.Obfuscate(1λ, CId),

sk(j)
f ← HiO.Compose(sk(j−1)

f , CId) for j ∈ {1, . . . , k − 1},

sk(k)
f ← HiO.Compose(sk(k−1)

f , Dskf0
k

◦···◦f0
0
),

where Id denotes the identity function, as the two chains are functionally equivalent. Now
the only parameters of interest are the MiFE key skf0

k
◦···◦f0

0
and the MiFE ciphertexts which

could be switched from b = 0 to b = 1 directly while using the function-hiding property of
MiFE. This concludes our overview.

3 Preliminaries

In this section we recall the definitions of cryptographic primitives employed in our construc-
tions.
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3.1 Asymmetrically Constrainable Encryption (ACE)
This primitive was defined and constructed by Canetti et al. [14].

Let M denote the message space. An asymmetrically constrainable encryption scheme
over M consists of five polynomial-time algorithms Setup, GenEK, GenDK, Enc and Dec,
described as follows. Setup, GenEK and GenDK are randomized algorithms, but Enc and Dec
are deterministic.

Setup: Setup(1λ) is a randomized algorithm that takes as input a security parameter λ,
and outputs a secret key SK.

(Constrained) Key Generation: Let S ⊂ M be any set whose membership is de-
cidable by a circuit CS . That is, CS maps M → {0, 1} and CS(m) = 1 if and only if
m ∈ S.

GenEK(SK, CS) takes as input the secret key SK of the scheme and the description
of circuit CS for an admissible set S. It outputs an encryption key EK{S}. We write
EK to denote EK{∅}.
GenDK(SK, CS) also takes as input the secret key SK of the scheme and the description
of circuit CS for an admissible set S. It outputs a decryption key DK{S}. We write
DK to denote DK{∅}.

Unless mentioned otherwise, we will only consider admissible sets S ⊂M.

Encryption: Enc(EK ′, m) is a deterministic algorithm that takes as input an encryption
key EK ′ (that may be constrained) and a message m ∈M and outputs a ciphertext c or
reject symbol ⊥.
Decryption: Dec(DK ′, c) is a deterministic algorithm that takes as input a decryption
key DK ′ (that may be constrained) and a ciphertext c and outputs a message m ∈M or
the reject symbol ⊥.

Correctness

An ACE scheme is correct if the following properties hold:
1. Correctness of Decryption: For all n, all m ∈M, all sets S, S′ such that m /∈ S ∪ S′,

Pr

 m′ = m

SK ← Setup(1λ),
EK ← GenEK(SK, CS′),
DK ← GenDK(SK, CS),

c := Enc(EK, m),
m′ := Dec(DK, c)

 = 1.

Informally, this says that Dec ◦ Enc is the identity on messages which are in neither of
the punctured sets.

2. Equivalence of Constrained Encryption: For any message m ∈M and any sets S, S′ ⊂M
with m not in the symmetric difference S△S′,

Pr

 c = c′

SK ← Setup(1λ),
EK ← GenEK(SK, CS),

EK ′ ← GenEK(SK, CS′),
c := Enc(EK, m),

c′ := Enc(EK ′, m)

 = 1.

Informally, this says that punctured encryption keys are functionally the same except on
the difference of the sets at which they are punctured.
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3. Unique Ciphertexts: For all strings c and c′,

Pr

 c = c′

SK ← Setup(1λ),
DK ← GenDK(SK, ∅),

Dec(DK, c) = Dec(DK, c′) ̸= ⊥

 = 1.

Informally, this says that two different ciphertexts cannot decrypt to the same message.
4. Safety of Constrained Decryption: For all strings c, all sets S ⊂M,

Pr
[

Dec(DK{S}, c) ∈ S
SK ← Setup(1λ),

DK{S} ← GenDK(SK, CS),

]
= 0.

This says that a punctured DK{S} will never decrypt to a message in S. Furthermore,
for all messages m ∈ S,

Pr

 Dec(DK{S}, c) = ⊥

SK ← Setup(1λ),
EK ← GenEK(SK, ∅),

DK{S} ← GenDK(SK, CS),
c := Enc(EK, m)

 = 1.

This says that for ciphertexts encoding messages belonging to the punctured set, the
punctured decryption key always outputs ⊥.

5. Equivalence of Constrained Decryption: For any subsets S and S′ of M, if
Dec(DK{S}, c) = m ̸= ⊥ and m /∈ S′, then Dec(DK{S′}, c) = m. Informally, this
says that punctured decryption keys differ in functionality only when necessary.

Security of Constrained Decryption

Intuitively, this property says that for any two sets S0 and S1, no adversary can distinguish
between the constrained keys DK{S0} and DK{S1}, even given additional auxilliary inform-
ation in the form of a constrained encryption key EK ′ and ciphertexts c1, . . . , ct. To rule
out trivial attacks, EK ′ is constrained at least on S0△S1. Similarly, each ci is an encryption
of a message mi /∈ S0△S1.

Formally, we describe security of constrained decryption as a multi-stage game between
an adversary A and a challenger.

Setup: A choose sets S0, S1, U s.t. S0△S1 ⊆ U ⊆M and sends their circuit descriptions
(CS0 , CS1 , CU ) to the challenger. A also sends arbitrary polynomially many messages
m1, . . . , mt such that mi /∈ S0△S1.

The challenger chooses a bit b ∈ {0, 1} and computes the following:
1. SK ← Setup(1λ)
2. DK{Sb} ← GenDK(SK, CSb

)
3. EK ← GenEK(SK, ∅)
4. ci := Enc(EK, mi), for every i ∈ [t]
5. EK{U} ← GenEK(SK, CU )
Finally, it sends the tuple (EK{U}, DK{Sb}, c1, . . . , ct) to A.
Guess: A outputs a bit b′ ∈ {0, 1}.

The advantage of A in this game is defined as AdvA = Pr[b′ = b]− 1
2 . We require that

AdvA ≤ negl(λ).
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Selective Ciphertext Indistinguishability

Intuitively, this property says that no adversary can distinguish between encryptions of
m0 from encryptions of m1, even given additional auxilliary information. The auxilliary
information corresponds to constrained encryption and decryption keys EK ′, DK ′, as well
as ciphertexts c1, . . . , ct. In order to rule out trivial attacks, EK ′ and DK ′ should both be
punctured on at least {m0, m1}, and none of c1, . . . , ct should be an encryption of m0 or m1.

Formally, we require that for all sets S, U ⊂ M, for all m∗
0, m∗

1 ∈ S ∩ U, and for all
m1, . . . , mt ∈M \ {m∗

0, m∗
1},

(EK{S}, DK{U}, c∗
0, c1, . . . , ct) ≈ (EK{S}, DK{U}, c∗

1, c1, . . . , ct),

when we sample SK ← Setup(1λ), EK ← GenEK(SK, ∅), EK{S} ←
GenEK(SK, CS), DK{U} ← GenDK(SK, CU ), c∗

b ← Enc(EK, m∗
b), and ci ← Enc(EK, mi).

The authors of [14] gave a construction of this primitive assuming iO and one-way
functions, as mentioned in the following theorem.

▶ Theorem 1 ([14]). Assuming subexponentially-secure indistinguishability obfuscation for
all circuits and subexponentially-secure one-way functions, there exists a secure ACE scheme.

The remaining preliminaries are included in the full version.

4 Homomorphic iO

A scheme HiO is said to be a homomorphic indistinguishability obfuscation scheme if it
consists of the following algorithms:

Obfuscate(1λ, C): The algorithm Obfuscate takes as input a security parameter λ and a
circuit C, and outputs an obfuscated circuit Ĉ.
Eval(Ĉ, x): The algorithm Eval takes as input an obfuscated circuit Ĉ and an input string
x, and outputs a string y.
Compose(Ĉ, C ′): The algorithm Compose takes as input an obfuscated circuit Ĉ and a
circuit C ′, and outputs an obfuscated circuit Ĉ ′.

The scheme must satisfy the following properties:

Homomorphic Functionality: For any positive integers λ, k ≥ 0, circuits C0, . . . , Ck,

and input x,

Pr[ Eval(Ĉ, x) = Ck ◦ · · · ◦ C0(x) ] = 1,

where the probability is taken over the randomness used in algorithms Compose and
Obfuscate in the computation of

Ĉ ← Compose(· · ·Compose(Obfuscate(1λ, C0), C1), · · · ), Ck).

Homomorphic Indistinguishability: For any positive integers λ, k ≥ 0, any circuits
C0

0 , . . . , C0
k , C1

0 , . . . , C1
k , such that |C0

i | = |C1
i | for all i ∈ {0, . . . , k} and

C0
k ◦ · · · ◦ C0

0 ≡ C1
k ◦ · · · ◦ C1

0 ,

then it holds that

Compose(· · ·Compose(Obfuscate(1λ, C0
0 ), C0

1 ), · · · ), C0
k)

≈
Compose(· · ·Compose(Obfuscate(1λ, C1

0 ), C1
1 ), · · · , C1

k).
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Homomorphic Efficiency: There exists a polynomial function poly such that for any
positive integers λ, k ≥ 0, and circuits C0, . . . , Ck if

Ĉ ← Compose(· · ·Compose(Obfuscate(1λ, C0), C1), · · · ), Ck),

then it holds that |Ĉ| ≤ poly(|C0|, . . . , |Ck|, λ).

Remark

We note that a stronger definition could have been stated where we demand that a homo-
morphically obfuscated circuit is indistinguishable from a fresh obfuscation of the underlying
final circuit. In other words, for any k ≥ 0, and for any circuits C0, . . . , Ck, it should hold
that

Compose(· · ·Compose(Obfuscate(1λ, C0), C1), · · · ), Ck) ≈ Obfuscate(1λ, Ck ◦ · · · ◦ C0).

This definition is stronger in the sense that it implies the original one stated above. We note
that there is a trivial way to convert any HiO scheme satisfying the original definition to
one satisfying this stronger definition. The way this could be achieved is to define the new
Obfuscate algorithm to break its input circuit into all its individual parts, in case the input
circuit could be written as a chain of multiple circuits, and then use the original obfuscation
algorithm on the first circuit followed by composing obfuscations on the remaining circuits
in order. For this, the algorithm Obfuscate must take the value of k as input and hence, this
would only be possible with levelled-HiO.

5 HiO from iO and ACE

In this section, we show a construction of HiO from subexponentially-secure iO and
subexponentially-secure one-way functions. The way we solve this is by interleaving
encryption-decryption algorithms of an ACE scheme in between the two composed cir-
cuits and separately obfuscating both.

5.1 Our Construction
Our construction uses a standard iO scheme iO = (iO.Obfuscate, iO.Eval) and an ACE scheme
ACE = (Setup, GenEK, GenDK, Enc, Dec).

Obfuscate(1λ, C):

1. Compute D̂ ← iO.Obfuscate(1λ, C) and output D̂.

Eval(D̂, x):

1. Parse D̂ as (D̂0, . . . , D̂k), for some k ≥ 0.

2. Set y0 := x. For j = 0 to k : compute yj+1 := iO.Eval(D̂j , yj).
3. If k = 0, output y1. Otherwise, parse yk+1 as (x, y) and output y.

Compose(D̂, C ′):

1. Parse D̂ as (D̂0, . . . , D̂k), for some k ≥ 0.

2. Sample SK ← Setup(1λ). Further, sample keys EK ← GenEK(SK, ∅) and DK ←
GenDK(SK, ∅).

3. If k = 0, compute D̂′
k ← iO.Obfuscate(1λ, A[D̂k, EK]) where A has been described in

Figure 2. Otherwise, compute D̂′
k ← iO.Obfuscate(1λ, G[D̂k, EK]) where G has been

described in Figure 3.
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4. Compute D̂k+1 ← iO.Obfuscate(1λ, B[C ′, DK]), where B has been described in Fig-
ure 4.

5. Output (D̂0, . . . , D̂k−1, D̂′
k, D̂k+1).

Hardcoded-values: Ĉ, EK.

Input: x.

1. Compute y := iO.Eval(Ĉ, x).
2. Compute α := Enc(EK, (x, y)).
3. Output α.

Figure 2 Circuit A.

Hardcoded-values: Ĉ, EK.

Input: α.

1. If α = ⊥, then output ⊥. Otherwise, proceed as follows.
2. Compute t := iO.Eval(Ĉ, α).
3. If t = ⊥, output ⊥. Otherwise, proceed as follows.
4. Compute α′ := Enc(EK, t).
5. Output α′.

Figure 3 Circuit G.

Hardcoded-values: C, DK.

Input: α.

1. If α = ⊥, then output ⊥. Otherwise, proceed as follows.
2. Compute t := Dec(DK, α).
3. If t = ⊥, then output ⊥. Otherwise, parse t as (x, y) and proceed as follows.
4. Compute y′ := C(y).
5. Output (x, y′).

Figure 4 Circuit B.

Correctness

Correctness of the above scheme follows in a straightforward manner from correctness of iO
and that of ACE .

Efficiency

Our scheme is efficient because we are not using k layers of iO to compose a chain of k

circuits. In fact, we are using 2 layers of iO for the intermediate circuits and only a single
layer for the end-points of an obfuscated chain. Moreover, using the iO scheme of [9, 4, 24],
we can get the size of the composed circuit as O(|C0|+ . . . + |Ck|) + poly(λ).
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5.2 Proof of Security
The following theorem gives our security proof. Note that the proof suffers from an exponential
loss in security and currently it does not seem feasible to have a hybrid argument that does
not iterate over all its inputs.

▶ Theorem 2 (HiO). Assuming a subexponentially-secure indistinguishability obfuscation
scheme for all circuits and a subexponentially-secure ACE scheme, the scheme given in
Section 5 is a secure HiO scheme supporting arbitrary number of hops.

Proof. Let X denote the input space supported by the obfuscation scheme. The notation D̂ is
used to denote an obfuscated version of the circuit D. The proof follows by a hybrid argument.
We will consider the argument for k hops. Hence, given circuits C0

0 , . . . , C0
k , C1

0 , . . . , C1
k , such

that

C0
k ◦ · · · ◦ C0

0 ≡ C1
k ◦ · · · ◦ C1

0

then it should be the case that

Compose(· · ·Compose(Obfuscate(1λ, C0
0 ), C0

1 ), · · · ), C0
k)

≈

Compose(· · ·Compose(Obfuscate(1λ, C1
0 ), C1

1 ), · · · ), C1
k)

Hybrid FIRST. This is the first distribution in the above indistinguishability equation.
First we define k + 1 circuits D0, . . . , Dk

5 as follows:
Let SK ← Setup(1λ). Further, sample EKi ← GenEK(SK, ∅) and DKi ←
GenDK(SK, ∅) for i ∈ [0, k]. D0 is A[Ĉ0

0 , EK0], where Ĉ denotes an obfuscation
of the circuit C.

For i ∈ {1, . . . , k − 1}, Di is the same as G[F̂i, EKi] where Fi is B[C0
i , DKi−1].

Dk is B[C0
k , DKk−1].

The hybrid output consists of k + 1 obfuscated circuits D̂0, . . . , D̂k such that

D̂i ← iO.Obfuscate(1λ, Di),

for all i ∈ {0, . . . , k}.
Hybrid H ′

0. Let this be the hybrid where we change every circuit to a functionally
equivalent but simpler form:

D0 is now A2[C0
0 , EK0] where A2 has been described in Figure 5.

For i ∈ {1, . . . , k − 1}, Di is now G2[C0
i , DKi−1, EKi], where G2 is described in

Figure 6.
Dk is same as B[C0

k , DKk−1].
Roughly, we have opened up the internal obfuscated circuits so that there are standard
circuits inside every obfuscated circuit in the chain. Indistinguishability between FIRST
and H ′

0 follows by using iO correctness and iO indistinguishability.
▶ Lemma 3. Assuming security and correctness of iO, hybrids FIRST and H ′

0 are
computationally indistinguishable.

5 All circuit descriptions are padded appropriately so that the corresponding circuit sizes are same across
all hybrids.
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Hardcoded-values: C, EK.

Input: x.

1. Compute y := C(x).
2. Compute α := Enc(EK, (x, y)).
3. Output α.

Figure 5 Circuit A2.

Hardcoded-values: C, DK , EK′.

Input: α.

1. If α = ⊥, then output ⊥. Otherwise, proceed as follows.
2. Compute t := Dec(DK, α).

3. If t = ⊥, then output ⊥. Otherwise, parse t as (x, y) proceed as follows.

4. Compute y′ := C(y).

5. Compute α′ := Enc(EK′, (x, y′)) .
6. Output α′.

Figure 6 Circuit G2.

Proof. We can prove indistinguishability via a sequence of sub-hybrids where in the ith

sub-hybrid, we change the circuit D̂i in the chain from that in FIRST to that in H0. Let
us focus on the first sub-hybrid which only changes D0 from A[Ĉ0

0 , EK0] to A2[C0
0 , EK0].

Functional equivalence for these 2 circuits follows from iO correctness. Indistinguishability
of the 2 sub-hybrids follows from iO security. One can similarly argue for the remaining
sub-hybrids. ◀

Next, we present |X |+ 1 hybrids Hj for each j ∈ {0, . . . , |X |}.
Hybrid Hj. For every j ∈ {0, . . . , |X |}, we will define the hybrid Hj . It consists of a
chain of k + 1 obfuscated circuits D̂0, . . . , D̂k defined as follows:

D0 is now A3[j, C0
0 , C1

0 , EK0] where A3 has been described in Figure 7.
For i ∈ {1, . . . , k − 1}, Di is now G3[j, C0

i , C1
i , DKi−1, EKi], where G3 is described in

Figure 8.
Dk is same as B2[j, C0

k , C1
k , DKk−1], where B2 has been described in Figure 9.

Hardcoded-values: j, C0, C1 , EK.

Input: x.

1. If x ≥ j, compute y := C0(x). Else, compute y := C1(x).
2. Compute α := Enc(EK, (x, y)).
3. Output α.

Figure 7 Circuit A3.
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Hardcoded-values: j, C0, C1 , DK, EK′.

Input: α.

1. If α = ⊥, output ⊥. Otherwise, proceed as follows.
2. Compute t := Dec(DK, α).
3. If t = ⊥, output ⊥. Otherwise, parse t as (x, y) and proceed as follows.
4. If x ≥ j, compute y′ := C0(y). Else, compute y′ := C1(y).
5. Compute α′ := Enc(EK′, (x, y′)).
6. Output α′.

Figure 8 Circuit G3.

Hardcoded-values: j, C0, C1 , DK.

Input: α.

1. If α = ⊥, output ⊥. Otherwise, proceed as follows.
2. Compute t := Dec(DK, α).
3. If t = ⊥, output ⊥. Otherwise, parse t as (x, y) and proceed as follows.
4. If x ≥ j, compute y′ := C0(y). Else, compute y′ := C1(y).
5. Output (x, y′).

Figure 9 Circuit B2.

▶ Lemma 4. Assuming iO is a secure indistinguishability obfuscator, hybrids H ′
0 and H0

are computationally indistinguishable.

Proof. Note that the only change in these 2 hybrids is that each Di has an extra circuit
C1

i hardwired in it which is never being used. Hence, functional equivalence of the
corresponding circuits would imply indistinguishability by iO security. ◀

▶ Lemma 5. For any j < |X |, hybrids Hj and Hj+1 are computationally indistinguishable.

The proof of this lemma is included in Section 5.2.1.
SECOND. This is the second distribution in the main indistinguishability equation.
First we define k + 1 circuits D0, . . . , Dk as follows:

Let SK ← Setup(1λ). Further, sample EKi ← GenEK(SK, ∅) and DKi ←
GenDK(SK, ∅) for i ∈ [0, k]. D0 is A[Ĉ1

0 , EK0].
For i ∈ {1, . . . , k − 1}, Di is the same as G[F̂i, EKi] where Fi is B[C1

i , DKi−1].
Dk is B[C1

k , DKk−1].
The hybrid output consists of k + 1 obfuscated circuits D̂0, . . . , D̂k such that

D̂i ← iO.Obfuscate(1λ, Di),

for all i ∈ {0, . . . , k}.
▶ Lemma 6. Assuming the correctness and security of iO, the hybrids H|X | and SECOND
are computationally indistinguishable.
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Proof. This proof is similar to the indistinguishability of hybrids FIRST and H ′
0. ◀

This concludes the proof of our main theorem. ◀

5.2.1 Proof of Lemma 5
Proof. We will prove this lemma via a sequence of hybrid experiments.

H0,0
j . This is the same as Hj .

H0,1
j . In this hybrid, we change the circuit D0 so that it has a hardwired ciphertext

for x = j. In other words, D0 is now A4[j, C0
0 , C1

0 , EK0, α0
0], where α0

0 is the hardwired
ciphertext output Enc(EK0, (j, y0

0 = C0
0 (j))), and A4 has been described in Figure 10.

Hardcoded-values: j, C0, C1, EK, α∗

Input: x.

1. If x = j, output α∗. Else,
a. If x > j, compute y := C0(x). For x < j, compute y := C1(x).
b. Compute α := Enc(EK, (x, y)).
c. Output α.

Figure 10 Circuit A4.

▷ Claim 7. Assuming iO is a secure indistinguishability obfuscator, hybrids H0,1
j and

H0,0
j are computationally indistinguishable.

H0,2
j . In this hybrid, we change the underlying encryption key EK0 in D0 to now be

punctured over the set U = {(j, ·)}.

▷ Claim 8. Assuming iO is a secure indistinguishability obfuscator, and ACE satisfies
Equivalence of Constrained Encryption, hybrids H0,1

j and H0,2
j are computationally

indistinguishable.

Proof. Indistinguishability follows by using iO security as the underlying circuits are
functionally equivalent. This is because for x = j, we are not using the encryption key and
are instead using the hardwired ciphertext. For all other x ̸= j, the underlying message
does not belong to the punctured set and hence the punctured key behaves identically to
the unpunctured one. ◁

H0,3
j . In this hybrid, we change the decryption key DK0 inside D1 so that now it is

punctured over the set S0
0 = {(j, ̸= y0

0)}.

▷ Claim 9. Assuming ACE satisfies Security of Constrained Decryption, hybrids H0,2
j

and H0,3
j are computationally indistinguishable.

Proof. We can make this change because
The set U over which the corresponding encryption key EK0 is punctured is a superset
of the set S0

0△∅ = S0
0 .
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The only available ciphertext generated using EK0 does not belong to the set S0
0△∅ =

S0
0 i.e., it is actually of the form (j, y0

0).
Indistinguishability follows from the security of constrained decryption in ACE scheme.

◁

H1,1
j . In this hybrid, we change the circuit D1 so that now it has a hardwired ciphertext

for the case when x = j. In other words, D1 is now G4[j, C0
1 , C1

1 , DK0{S0
0}, EK1, α0

1],
where α0

1 = Enc(EK1, (j, y0
1 = C0

1 ◦ C0
0 (j))), and G4 has been described in Figure 11.

Hardcoded-values: j, C0, C1, DK, EK′, α∗

Input: α.

1. If α = ⊥, output ⊥. Otherwise, proceed as follows.
2. Compute t := Dec(DK, α).
3. If t = ⊥, output ⊥. Otherwise, parse t as (x, y) and proceed as follows.
4. If x = j, then output α∗. Else,

a. If x > j, compute y′ := C0(y). Else, compute y′ := C1(y).
b. Compute α′ := Enc(EK′, (x, y′)).
c. Output α′.

Figure 11 Circuit G4.

▷ Claim 10. Assuming iO is a secure indistinguishability obfuscator and ACE satisfies
Safety of Constrained Decryption property, hybrids H0,3

j and H1,1
j are computationally

indistinguishable.

Proof. We will have to show functional equivalence between the two circuits to argue
indistinguishability via iO security.

Whenever the punctured decryption key decrypts to an input x ̸= j, the two circuits
behave identically.
If the input ciphertext decrypted to a message of the form (j, ·), note that the second
argument must be y0

0 because the punctured decryption key DK0{S0
0} cannot decrypt

to a message belonging to the set S0
0 , by safety of constrained decryption property. In

the case when the input ciphertext decrypts to (j, y0
0), the previous circuit would also

output α0
1. ◁

Hi,l
j . We define hybrids {Hi,l

j }i∈{1,...,k−1},l∈{1,2,3} in a similar fashion as before. l = 1
corresponds to hardwiring a ciphertext α0

i = Enc(EKi, y0
i ) for input x = j inside circuit

Di, where y0
i = C0

i ◦ · · · ◦ C0
0 (j). l = 2 corresponds to puncturing the encryption key

EKi inside circuit Di on the set U = {(j, ·)}. l = 3 corresponds to puncturing the
corresponding decryption key DKi in the circuit Di+1 on the set S0

i = {(j, ̸= y0
i )}.

Hk,1
j . We define this hybrid similar to Hi,1

j as before i.e., we hardwire the output
(j, y0

k = C0
k ◦ · · · ◦ C0

0 (j)) inside Dk for the input x = j. In other words, Dk is now
B3[j, C0

k , C1
k , DKk−1{S0

k−1}, y0
k], where B3 has been described in Figure 12. Indistin-

guishability can be argued similarly as before using safety of constrained decryption.
Furthermore, note that y0

k = y1
k = C1

k ◦ · · · ◦ C1
k(j), as functional equivalence holds at the

last level.
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Hardcoded-values: j, C0, C1, DK, y∗

Input: α.

1. If α = ⊥, output ⊥. Otherwise, proceed as follows.
2. Compute t := Dec(DK, α).
3. If t = ⊥, output ⊥. Otherwise, parse t as (x, y) and proceed as follows.
4. If x = j, output (x, y∗). Else

a. If x > j, compute y′ := C0(y). Else, compute y′ := C1(y).
b. Output (x, y′).

Figure 12 Circuit B3.

Hk+1,1
j In this hybrid, we make multiple changes:
change the hardwired ciphertext α0

k−1 inside Dk−1 to α1
k−1 = Enc(EKk−1, (j, y1

k−1)),
where y1

k−1 = C1
k−1 ◦ · · · ◦ C1

0 (j),
unpuncture the decryption key DKk−1{S0

k−1} inside Dk to DKk−1,

unpuncture the encryption key EKk−1{U} inside Dk−1 to EKk−1,

change Dk so that now it uses the circuit C1
k for input x = j i.e., Dk is now B2[j +

1, C0
k , C1

k , DKk−1].

▷ Claim 11. Assuming iO is a secure indistinguishability obfusctor and ACE is a
secure asymmetrically constrainable encryption scheme, hybrids Hk,1

j and Hk+1,1
j are

computationally indistinguishable.

Proof. Proof of this claim is provided in the full version. ◁

Hi,l
j . In hybrids {Hi,l

j }i∈{1,...,k−1},l∈{4,5,6,7,8,9,10,11}, we do the following. For i = k−1 to
1, consider the sub-hybrids as follows. If l = 4, we hardwire the output α1

i inside circuit Di

when the input ciphertext is α0
i−1. For l = 5, we change puncturing of the decryption key

DKi−1 inside Di from the set S0
i−1 to the full set U. For l = 6, we change the hardwired

ciphertext inside both Di−1 and Di from α0
i−1 to α1

i−1 = Enc(EKi−1, (j, y1
i−1)). For l = 7,

we change puncturing of the decryption key DKi−1 inside Di from the set U to the set
S1

i−1 = {(j, ̸= y1
i−1)}.

For l = 8, we remove the hardwired ciphertext α1
i−1 inside Di. For l = 9, we change Di

so that it uses the circuit C1
i for input x = j. For l = 10, we unpuncture the decryption

key DKi−1 inside Di. For l = 11, we unpuncture the encryption key EKi−1 inside Di−1.

Indistinguishability between all these hybrids follows similarly to before.
H0,4

j . In this hybrid, we change the first circuit D0 so that it uses the circuit C1
0 for the

input x = j. Note that this hybrid is the same as Hj+1. ◀

6 Applications and Extensions

Due to space constraints, applications and extensions of homomorphic indistinguishability
obfuscation are deferred to the full version of the paper.
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