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Abstract
We study the problems of testing and learning high-dimensional discrete convex sets. The simplest
high-dimensional discrete domain where convexity is a non-trivial property is the ternary hypercube,
{−1, 0, 1}n. The goal of this work is to understand structural combinatorial properties of convex sets
in this domain and to determine the complexity of the testing and learning problems. We obtain
the following results.

Structural: We prove nearly tight bounds on the edge boundary of convex sets in {0, ±1}n,
showing that the maximum edge boundary of a convex set is Θ̃(n3/4) · 3n, or equivalently that every
convex set has influence Õ(n3/4) and a convex set exists with influence Ω(n3/4).

Learning and sample-based testing: We prove upper and lower bounds of 3Õ(n3/4) and 3Ω(
√

n) for
the task of learning convex sets under the uniform distribution from random examples. The analysis
of the learning algorithm relies on our upper bound on the influence. Both the upper and lower
bound also hold for the problem of sample-based testing with two-sided error. For sample-based
testing with one-sided error we show that the sample-complexity is 3Θ(n).

Testing with queries: We prove nearly matching upper and lower bounds of 3Θ̃(
√

n) for one-sided
error testing of convex sets with non-adaptive queries.
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1 Introduction

A subset S ⊆ [m]n of the hypergrid is discrete convex if it is the intersection of a convex set
C ⊆ Rn with the grid, S = C ∩ [m]n, or equivalently if S = [m]n ∩ Conv(S) where Conv(S)
is the convex hull of S. Discrete convex sets may not even be connected (see Figure 1),
which, along with some of their other unpleasant features, makes them difficult to handle
algorithmically and analytically, the most famous example being the difference between linear
programming and integer linear programming.
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15:2 Testing and Learning Convex Sets in the Ternary Hypercube

We are interested in testing and learning discrete convex sets. A learning algorithm
should output an approximation of an unknown convex set S by using membership queries
to S, while a testing algorithm should decide whether an unknown set S is either convex or
ϵ-far from convex, meaning that dist(S, T ) > ϵ for all convex sets T , where dist(S, T ) is the
measure of the symmetric difference.

Convexity is particularly interesting for property testing because it can be defined by a
local condition: a set S ⊆ Rn is convex if and only if for every 3 colinear points x, y, z, if
x, z ∈ S then y ∈ S. This means that, to certify the non-convexity of a (continuous) set, it
suffices to provide 3 colinear points that violate this condition. Speaking informally, property
testing results, especially testing with one-sided error, are statements about the difficulty
of finding such a certificate of non-membership to the property, when the object S is ϵ-far
from satisfying the property. But, the fact that convexity is defined by a local condition does
not make it easy to find violations of the condition when a set is far from convex. This is
particularly evident for discrete convex sets where, unlike continuous sets, there may not be
any lines which witness non-convexity, and one must instead look for up to n + 1 points that
violate Carathéodory’s theorem.

We are aware of no non-trivial algorithms for testing or learning discrete convex sets in
high dimensional grids [m]d when m is small. Prior works on testing and learning convex
sets include:
1. The analysis of convexity testers, such as the line tester and more general convex hull

testers, which are designed to simply “spot-check” for violations of the local conditions
that define convexity in Rn [23, 7]. These works show that these spot-checkers are not
very efficient, requiring 2Ω(n) queries to detect sets that are Ω(1)-far from convex.

2. Testing or learning convex sets in two dimensions, including the continuous square [0, 1]2
[25, 4] or the discrete grid [m]2 [24, 5, 6].

3. Testing convexity in high dimensions with samples, either in the continuous setting [10, 15]
or discrete setting [15], and learning convex sets from random examples of the set [22] or
from Gaussian samples [17].

When m ≫ poly(d), a “downsampling” or “gridding” approach can reduce to the case
m = poly(d) [10, 15], but once m is small the only known algorithm for testing or learning is
brute-force. So let us see what happens when we make m as small as possible. When m = 2,
testing and learning convex sets in [m]n ≡ {0, 1}n is trivial, because every subset of {0, 1}d

is convex and therefore testing is as easy as possible (the tester may simply accept on every
input) and learning is as hard as possible (requiring Ω(2n) queries).

The story changes significantly when m = 3, so that [m]n is equivalent to the ternary
hypercube {0,±1}n, where the difficulties of handling high-dimensional discrete convex sets
suddenly become evident. Although this is the simplest domain where where high-dimensional
discrete convex sets are non-trivial, little is known about the structure of discrete convex sets
on the ternary hypercube that would help in designing testing and learning algorithms. In
this paper we will give the first results towards understanding testing and learning discrete
sets in high dimensions by focusing on the ternary hypercube.

1.1 Results
For two sets S, T ⊆ {0,±1}n, we define dist(S, T ) := |S∆T |

3n , where S∆T denotes the
symmetric difference. A set S ⊆ {0,±1}n is ε-far from convex if for every (discrete) convex
set T ⊆ {0,±1}n, dist(S, T ) ≥ ε. Given ε > 0, a convexity tester is a randomized algorithm
which is given membership oracle access to an input S ⊆ {0,±1}n and must satisfy
1. If S is convex then the algorithm accepts with probability at least 2/3.
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Figure 1 Example of a convex set in {0, ±1}3. The black dots are the set and the convex red
ellipsoid contains them. Note that the set may not be “connected” on the hypergrid.

2. If S is ε-far from convex then the algorithm rejects with probability at least 2/3.
The tester is one-sided if it must accept convex sets S with probability 1 instead of 2/3. A
tester is non-adaptive if it chooses its set of queries before receiving the answers to any of
the queries and it is sample-based if its queries are independently and uniformly random.

A learning algorithm is given membership oracle access to a convex set S ⊆ {0,±1}n

and must output (with probability at least 2/3) a set T ⊆ {0,±1}n with dist(S, T ) < ε; it is
proper if its output T must be convex.

1.1.1 The Edge Boundary and Influence of Convex Sets
One of the most important things to know about a set is its edge boundary. The edge set of
the ternary hypercube is defined as

E =
{

(x, y) ∈ ({0,±1}n)2 :
n∑

i=1
|xi − yi| = 1

}
. (1)

Observe that |E| = 2n · 3n−1. We will identify a set S ⊆ {0,±1}n with its characteristic
function and write S(x) = 1 if x ∈ S and S(x) = 0 otherwise. An edge (x, y) is on the
boundary of S if S(x) ̸= S(y). The influence of a set S ⊆ {0,±1}n is its normalized boundary
size:

I(S) := 1
3n
· |{(u, v) ∈ E : S(u) ̸= S(v)}| = 2n

3 · P(u,v)∼E [S(u) ̸= S(v)]. (2)

Before we state our results, consider some examples. Two important classes of convex sets
in {0,±1}n are halfspaces and balls, which often have minimal “boundary size” in various
settings.

▶ Example 1 (Halfspaces). A halfspace is a set H = {x ∈ {0,±1}n : ⟨v, x⟩ < τ} where
v ∈ Rn and τ ∈ R. To maximize the influence, we want τ to be small, say τ = 0, and we
want v ≈ 1⃗. The probability that a random edge (x, y) is on the boundary is at most the
probability that a uniformly random x ∼ {0,±1}n satisfies |⟨⃗1, x⟩| ≤ 1, and it is not difficult
to show that this is at most O

(
1√
n

)
, giving an estimate of O(

√
n) for the maximum influence

of a halfspace.

▶ Example 2 (Balls). A ball is a set Br = {x ∈ {0,±1}n : ∥x∥2
2 < r} where r ∈ R is the

radius. The average (squared) norm E
[
∥x∥2

2
]

for x ∼ {0,±1}n is the same as the expected
number of nonzero coordinates of x, which is 2

3 n, so to maximize the edge boundary we

ITCS 2024



15:4 Testing and Learning Convex Sets in the Ternary Hypercube

think of r ≈ 2
3 n. Similar to above, the probability that x ∼ {0,±1}n is close enough to this

threshold to find a boundary edge is O
(

1√
n

)
, again giving an estimate of O(

√
n) for the

maximum influence.

Our first result shows that there are convex sets with significantly larger influence, which
can be obtained by taking S to be the intersection of roughly 3Θ(

√
n) random halfspaces with

thresholds τ = Θ(n3/4); we think of these sets as interpolating between the halfspaces and the
ball. Our construction is inspired by [16], who showed bounds on the influence of intersections
random halfspaces on the hypercube {0, 1}n, and we note that similar constructions also
achieve maximal surface area under the Gaussian distribution on Rn [20].

▶ Theorem 3. There exists a convex set S ⊆ {0,±1}n with influence I(S) = Ω(n3/4).

Our main result on the influence of convex sets is that this construction is essentially
optimal: we show a matching upper bound (up to log factors) for any convex set in {0,±1}n.
Due to the discrete nature of the domain, our proof of this theorem is significantly different
from the previous techniques that have been used to bound the surface area of convex sets
in continuous domains.

▶ Theorem 4. If S ⊆ {0,±1}n is convex, then I(S) = O(n3/4 log1/4 n).

1.1.2 Sample-Based Learning and Testing
As an application of our bounds on the influence, we show using standard Fourier analysis
that any set S ⊆ {0,±1}n can be approximated with error ε by a polynomial of degree I(S)/ε.
Using Theorem 4 and the “Low-Degree Algorithm” of Linial, Mansour, and Nisan [18] then
gives us the following upper bound for learning.

▶ Theorem 5. There is a uniform-distribution learning algorithm for convex sets in {0,±1}n

which achieves error at most ε with time and sample complexity 3Õ(n3/4/ε). The Õ(·) hides a
factor of log1/4 n.

A corollary of Theorem 5 is that the same upper bound on the sample complexity holds for
sample-based testing, due to the testing-by-learning reduction (which is slightly non-standard
because the learner is not proper, see the full version of our paper for details).

▶ Corollary 6. There is a sample-based convexity tester for sets in {0,±1}n with sample
complexity 3Õ(n3/4/ε) where the Õ(·) hides a factor of log1/4 n.

To complement our upper bounds, we prove also a lower bound for sample-based testing.
Here we remark that one of our motivations for studying convex sets in {0,±1}n is their
similarity (in an informal sense) to monotone functions on {0, 1}n; an analogy between
monotone functions on {0, 1}n and convex sets in Gaussian space was proposed in [12] and
we are interested in this analogy for discrete convex sets. Our lower bound for sample-based
testing discrete convex sets uses a version of Talagrand’s random DNFs, which were used
previously to prove lower bounds for testing monotonicity on {0, 1}n [2, 11].

▶ Theorem 7. For sufficiently small constant ε > 0, every sample-based convexity tester for
sets in {0,±1}n has sample complexity 3Ω(

√
n).

Again, the testing-by-learning reduction implies that this lower bound also holds for
learning.

▶ Corollary 8. For sufficiently small constant ε > 0, sample-based learning convex sets in
{0,±1}n requires at least 3Ω(

√
n) samples.
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1.1.3 Non-Adaptive One-Sided Testing
A convexity tester with one-sided error is one that finds a witness of non-convexity with
probability at least 2/3 when the tested set is ε-far from convex. A convexity tester is
non-adaptive if it must choose its set of membership queries before receiving any of the
query results. Bounds on non-adaptive one-sided error testing therefore have a natural
combinatorial interpretation as bounds on the likelihood of blindly finding a witness of
non-convexity in a random substructure of the domain.

Our first result shows that there is a non-adaptive one-sided error tester with sub-
exponential query complexity 3o(n). In contrast, a similar bound for the Gaussian setting is
not yet known to exist.

▶ Theorem 9. For every ε > 0, there is a non-adaptive convexity tester with one-sided error
for sets in {0,±1}n that has query complexity 3Õ

(√
n ln 1/ε

)
where the Õ(·) notation is hiding

an extra ln n term.

Next, we show that Theorem 9 is essentially tight, in that the exponential dependence on√
n in its bound is unavoidable.

▶ Theorem 10. For sufficiently small constant ε > 0, every non-adaptive convexity tester
with one-sided error for sets in {0,±1}n has query complexity at least 3Ω(

√
n).

Our Theorem 7 above showed that 3Ω(
√

n) is required for sample-based testing. For
one-sided error testers, we can improve this lower bound to show that non-adaptive testers
are significantly more powerful than sample-based testers for one-sided testing.

▶ Theorem 11. For sufficiently small constant ε > 0, sample-based convexity testing in
{0,±1}n with one-sided error requires 3Θ(n) samples.

This theorem also includes a matching upper bound. The upper bound in Theorem 11 is
trivial because a coupon-collector argument shows that one can learn any set S ⊆ {0,±1}n

exactly using O(n3n) samples. A slightly improved bound of O
(
3n · 1

ε log(1/ε)
)

also holds
by a general upper bound on one-sided error testing via the VC dimension [8].

1.2 Techniques
The discrete nature of the ternary hypercube, in contrast to the continuity of the domains
Rn or [0, 1]n, provides a new angle in the study of convexity which leads to the development
of a new set of combinatorial techniques and tools. In this section we give a brief overview of
the techniques we use to prove each of our theorems.

1.2.1 The Edge Boundary and Influence of Convex Sets
Influence Upper Bound

Our proof of Theorem 4, which gives an upper bound on the edge boundary of a convex
set, is accomplished by relating the number of boundary edges to the expected number of
sign-changes of one-dimensional random processes. This is done by constructing a distribution
D over the edge-set E of the ternary hypercube, such that (a) D is “close” to the uniform
distribution over E and (b) the probability that a random edge drawn from D is influential
for our convex set S ⊆ {0,±1}n is equal to the expected number of sign-changes of a certain
random process. This process is defined by considering a random walk X(0), . . . , X(m) of
length m ≈ n1/2 where X(0) is a random point from the middle layers of {0,±1}n and
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15:6 Testing and Learning Convex Sets in the Ternary Hypercube

each X(s) is obtained by flipping a random 0-valued bit of X(s−1) to a uniform random
{±1}-value; the process finally draws s ∼ [m] uniformly at random and outputs the edge
(X(s−1), X(s)).

The crux of the argument is to bound the expected number of times this random walk
enters and leaves the set S. Since S is convex, it can be written as an intersection of halfspaces
S = H1 ∩ H2 ∩ · · · ∩ Hk of the form Hi = {x ∈ {0,±1}n : ⟨x, v(i)⟩ < τi} where v(i) ∈ Rn

and τi ∈ R. For each halfspace Hi, we define a corresponding one-dimensional random walk
Wi(s) = ⟨X(s), v(i)⟩ − τi and observe that the original random walk crosses the boundary of
Hi at step s if and only if Wi changes sign at step s. Then the number of times the walk
X(0), X(1), . . . crosses the boundary of S =

⋂
i Hi is the number of times the maximum of

the processes M = maxi Wi changes sign. Therefore, our goal is to bound the expected
number of sign-changes for M , which we accomplish by using Sparre Andersen’s fluctuation
theorem [26] (as stated in [3]) to relate this quantity to the number of sign-changes of a
uniform random walk.

High-Influence Set Construction

Our proof of Theorem 3 is inspired by the proof of [16, Theorem 2] which constructs a set in
the Boolean hypercube {±1}n with influence Ω(

√
n log k) by considering an intersection of

k random halfspaces each of which is at distance ≈
√

n log k from the origin. In particular,
when k ≈ 2

√
n the construction has influence ≈ n3/4 and when k ≈ 2n the set has influence

≈ n. On the ternary hypercube {0,±1}n, the behaviour is different: here, halfspaces exhibit a
“density increment” behaviour as their threshold moves away from the origin, which prevents
the influence from increasing as k grows past 2

√
n, when Ω(

√
n log k) matches our upper

bound of Õ(n3/4).
We can summarize this “density increment” phenomenon as follows. Most of the edges of

{0,±1}n occur in the middle layer {x ∈ {0,±1}n : ∥x∥1 = 2
3 n±O(

√
n)} =

⋃O(
√

n)
ℓ=−O(

√
n){x :

∥x∥1 = 2
3 n + ℓ}. A convex set is an intersection of halfspaces, but for convenience we consider

its complement which is a union of halfspaces, and has the same influence. Consider the
“density” or measure of the halfspace with normal vector 1⃗ at distance τ from the origin on
the points {x : ∥x∥1 = 2n

3 + ℓ}:

ρ(ℓ, τ) := Px∈{0,±1}n : ∥x∥1= 2n
3 +ℓ

[∑
i

xi > τ

]
.

Suppose that there is a fixed value ρ such that ρ(ℓ, τ) ≈ ρ up to constant factors for all
ℓ = ±O(

√
n) simultaneously. Then we can take k ≈ 1

ρ random halfspaces with threshold τ

and combine their boundary edges, since they will be essentially disjoint on the whole middle
layer, and it is not hard to show that the influence of the resulting union is roughly τ . It
happens that the condition of ρ(ℓ, τ) being approximately equal for all values ℓ = ±O(

√
n)

holds for τ up to τ ≈ n3/4 but for τ ≫ n3/4 the intersection of the halfspace with the set
{x : ∥x∥1 = 2n

3 + ℓ} grows extremely fast with ℓ making ρ(−
√

n, τ) ≪ ρ(
√

n, τ), and the
intersection of halfspaces with threshold τ quickly approaches the ball with influence O(

√
n)

(see Example 2).

1.2.2 Sample-Based Learning and Testing
Learning Upper Bound

Our proof of Theorem 5 follows by combining our upper bound on the influence from
Theorem 4 with the Low-Degree Algorithm of Linial, Mansour, and Nisan [18]. In particular,
using Fourier analysis over {0,±1}n in combination with Theorem 4 we can show that for
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convex sets, a (1− ε)-fraction of the Fourier mass is on the coefficients with degree at most
Õ(n3/4)/ε. Then we may use the Low-Degree Algorithm for learning the convex sets; see
the full version for details. Since the ternary hypercube is a non-standard domain, we state
the necessary Fourier analysis for functions over {0,±1}n in the full version of our paper,
which follows [21, Chapter 8]. One technical difference between Fourier analysis over the
Boolean and ternary hypercubes is that the standard Fourier basis over {±1}n is given by
the parity functions which are bounded in [0, 1], whereas any Fourier basis over {0,±1}n

will have functions taking value 2O(n) on some elements x ∈ {0,±1}n. Nevertheless, with
some care, we show that the Low-Degree Algorithm still works.

Sample-Based Testing Lower Bound

Our proof of Theorem 7 uses a family of functions known as Talagrand’s random DNFs
adapted to the ternary hypercube. As we mentioned, this family of functions has been used
to prove lower bounds for monotonicity testing [2, 11]. Our adapted version is described as
follows. Each “term” of the DNF is chosen to be a random point t ∈ {0,±1}n with ∥t∥1 =

√
n.

We then say that a point x ∈ {0,±1}n “satisfies” t if xi = ti for all i ∈ [n] where ti ∈ {±1}.
After choosing N random terms t(1), . . . , t(N) we define the disjoint regions of {0,±1}n given
by U1, . . . , UN where Ui is the set of points x ∈ {0,±1}n with ∥x∥1 ∈ [2n/3 ±

√
n] which

satisfy a unique term. Choosing N = 3
√

n results in
⋃N

i=1 Ui covering a constant fraction of
the domain. We then define two distributions Dyes and Dno as follows. Recall that Br is the
radius-r ball in the ternary cube (Example 2) and let D denote the set of points x ∈ {0,±1}n

with ∥x∥1 ∈ [2n/3±
√

n] that don’t satisfy any term.

S ∼ Dyes is drawn by setting S = B 2n
3 −

√
n ∪D∪

(⋃
i∈T Ui

)
where T includes each i ∈ [N ]

independently with probability 1/2. Such a set is always convex.
S ∼ Dno is drawn by setting S = B 2n

3 −
√

n ∪D ∪ C where C includes each x ∈
⋃N

i=1 Ui

independently with probability 1/2. Informally, this set will be Ω(1)-far from convex with
constant probability since its intersection with the middle layers is random.

For both distributions, each point x ∈
⋃N

i=1 Ui satisfies PS [x ∈ S] = 1/2 and if x ∈ Ui and
y ∈ Uj where i ̸= j, then the events x ∈ S and y ∈ S are independent. Thus, to distinguish
Dyes and Dno one has to see at least two points from the same Ui and this gives our sample
complexity lower bound.

1.2.3 Non-Adaptive One-Sided Testing
The proofs of Theorems 9–11 all rely on a partial order ⪯ defined on {0,±1}n, which we call
the outward-oriented poset, that has the origin 0n as the minimum element and the corners
of the cube {±1}n as the maximum elements. (See Section 2.1 for the formal definition of
this poset and a discussion of its properties and history.) For any y ∈ {0,±1}n, we define
Up(y) := {x ∈ {0,±1}n : y ⪯ x} to represent the set of points above y in this poset.

Non-Adaptive One-Sided Upper Bound

An important property of the outward-oriented poset in the context of testing convexity is
that any point y in the convex hull of a set of points X ⊆ {0,±1}n is also in the convex
hull of X ∩ Up(y). Conversely, if a set S ⊆ {0,±1}n is not convex, then there is a certificate
of non-convexity of the form (X, y) where y /∈ S is in the convex hull of X ⊆ S, and
X ⊆ Up(y). This property implies that a convexity tester can search for certificates of
non-convexity by repeatedly choosing a random point y and querying all points in Up(y). A
naïve implementation of this idea leads to a query complexity that is significantly larger than
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15:8 Testing and Learning Convex Sets in the Ternary Hypercube

the bound in the theorem. However, the ternary hypercube satisfies a strong concentration
of measure property: almost all of the points in the ternary hypercube have 2

3 n ± O(
√

n)
non-zero coordinates. As a result, we can refine the convexity tester to only query the points
in Up(y) whose number of non-zero coordinates is at most 2

3 n + O(
√

n) to obtain the desired
query complexity. The details of the proof of Theorem 9 are presented in the full version.

Non-Adaptive One-Sided Lower Bound

The lower bound in Theorem 10 is obtained by considering the class of anti-slabs, which are
defined by choosing a vector v ∈ {0,±1}n with n/2 non-zero coordinates and taking the set
of points {x ∈ {0,±1}n : |⟨v, x⟩| > τ}. It is quite easy to find certificates of non-convexity for
anti-slabs – the three points −x, 0n, and x obtained by choosing x uniformly at random in
the ternary hypercube forms such a certificate with reasonably large probability whenever τ

is small enough. However, we can eliminate these certificates of non-convexity if we “truncate”
the anti-slabs by including the set of points whose number of non-zero coordinates is below
2
3 n − O(

√
n), and excluding the points whose number of non-zero coordinates is above

2
3 n + O(

√
n). We show that any certificate of non-convexity for these truncated anti-slabs

must have two points x, z with a large difference between ⟨v, x⟩ and ⟨v, z⟩, but on the other
hand, any small set of queries has a low probability of including such a pair when v is chosen
at random.

Sample-Based One-Sided Lower Bound

Finally, the proof of the lower bound Theorem 11 again uses the outward-oriented poset and
the connection between convex hulls and the upwards sets Up(y) to show that any set of
3o(n) samples is unlikely to draw any point y that is contained in the convex hull of the other
sampled points and thus to have any possibility of identifying a certificate of non-convexity
of any set.

1.3 Discussion and Open Problems
As far as we know, we are the first to study convex sets and their associated algorithmic
problems on the ternary hypercube. Thus there are many possible questions one could ask.
In this section we discuss a few such questions which we find most interesting.

Learning and sample-based testing

The most obvious question which our work leaves open is that of determining the true sample
complexity of learning and sample-based testing of convex sets in the ternary hypercube,
where our results leave a gap of 3Ω(

√
n) vs. 3Õ(n3/4). By Theorem 3, our upper bound of

Õ(n3/4) on the influence of convex sets is tight up to a factor of log1/4 n, and therefore to
improve our learning upper bound would require another method.

▶ Question 12. Can we close the gap of 3Ω(
√

n) vs. 3Õ(n3/4) for learning convex sets and for
sample-based convexity testing in {0,±1}n?

Testing with two-sided error

Our results for testing with queries apply only to case of one-sided error. Earlier work on
testing convex sets under the Gaussian distribution on Rn with samples showed that, in that
setting, two-sided error was more efficient than one-sided [10].

▶ Question 13. Is there a two-sided error non-adaptive tester for domain {0,±1}n with
better query complexity than our one-sided error tester?
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Our lower bound technique does not suffice for two-sided error. This is because the class
of anti-slabs, which we proved are hard to distinguish from convex sets using a one-sided
tester, can be distinguished from convex sets with two-sided error using only O(n) samples.
To do so, one may use the standard testing-by-learning reduction of [14], together with an
O(n) bound on the VC dimension of the anti-slabs (which are essentially the union of two
halfspaces).

Testing convexity in other domains

Our results show that queries can be more effective than samples for testing certain discrete
convex sets in some high dimensional domains. Is it true for all discrete high-dimensional
domains?

▶ Question 14. What are the sample and query complexities for testing discrete convexity
over the general hypergrids [m]n?

Note that our techniques do not immediately generalize to larger hypergrids, so answering
the last question even for the hypergrid {0,±1,±2}n requires some new ideas.

It would also be interesting to see if the gap between sample and query complexity also
holds for continuous sets.

▶ Question 15. Can queries improve upon the bounds of [10, 15] for testing convex sets with
samples in Rn under the Gaussian distribution?

It is not clear if there is a formal connection between testing convex sets on the domain
{0,±1}n and on the domain Rn under the standard Gaussian distribution. One might expect
a connection here because the uniform distribution on {0,±1}n acts similarly to the Gaussian
in certain ways when n→∞. But we do not see how to construct direct reductions between
these two settings for the problem of convexity testing. Also, there is an intriguing analogy
between monotone subsets of {±1}n and convex subsets of Rn in the Gaussian space [12].
How do convex subsets of {0,±1}n fit into this analogy?

1.4 Organization.
We introduce some preliminaries, including some important structure and concentration of
measure results for the ternary hypercube, in Section 2. Section 3 presents the proof of our
upper bound on the total influence of convex sets. Due to space constraints, the remainder
of our proofs can be found in the full version of the paper.

2 Convexity on the Ternary Hypercube

The main object of study in this paper is the ternary hypercube, an analogue of the Boolean
hypercube over the ternary set {0,±1}n. This set can be viewed as a discrete subset of
Rn, as a (hyper)grid graph in which two points x, y ∈ {0,±1}n are connected by an edge
if and only if

∑n
i=1 |xi − yi| = 1, and as a poset that we will describe in more detail in the

subsection below.
The study of the ternary hypercube and more general grid graphs goes back at least to

Bollobás and Leader [9]. As a poset, its study goes back at least to Metropolis and Rota [19].
The ternary hypercube appears to have some particularly elegant structure that is not
necessarily shared by larger hypergrids. We describe some of these fundamental properties
in the following subsections.
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2.1 The Outward-Oriented Poset
We define a partial order over {0,±1}n, which puts the origin 0n as the minimum element
and the corners {±1}n as the maximum elements.

▶ Definition 16 (Outward-Oriented Poset). We denote by ({0,±1}n,⪯) the n-wise product
of the partial order defined by 0 ≺ 1 and 0 ≺ −1. Equivalently, we write y ⪯ x when
∀i ∈ [n] : (yi ̸= 0 =⇒ xi = yi).

The outward-oriented poset can easily be extended to a lattice (by adding a global
maximum point), though since we do not need this extension we do not pursue it here. The
outward-oriented poset appears naturally in many different contexts and, as a result, has
received different names. For instance, it arises in the study of the faces of the Boolean
hypercube [19], where it is sometimes called the “cubic lattice”, and in the study of partial
Boolean functions (see, e.g., [13]). We use the name “outward-oriented poset” to emphasize
the fact that this poset is distinct from the partial order inherited from Rn.

▶ Definition 17 (Upper Shadow). For any point y ∈ {0,±1}n, the upper shadow of y is the
set

Up(y) := {x ∈ {0,±1}n : y ⪯ x} .

2.2 Convexity and Witnesses of Non-Convexity
Given a set of points X ⊆ {0,±1}n, we denote the convex hull of X by

Conv(X) :=
{∑

x∈X

λxx :
∑
x∈X

λx = 1 and λx ≥ 0, ∀x ∈ X

}
.

▶ Definition 18 (Discrete Convexity). A set S ⊆ {0,±1} is convex if S = Conv(S)∩{0,±1}n.

Let ∆(S, T ) denote the cardinality of the symmetric difference between S and T . Given
S ⊆ {0,±1}n, we define dist(S, convex) as the minimum, over all convex sets T ⊆ {0,±1}n,
of ∆(S, T ) · 3−n. For brevity, we also sometimes use the notation ε(S) := dist(S, convex). If
ε(S) ≥ ε for some ε ∈ (0, 1), then we say that S is ε-far from convex.

▶ Definition 19 (Violating Pairs). Consider S ⊆ {0,±1}n. If X ⊆ S and y ∈ Conv(X) ∩
{0,±1}n, but y /∈ S, then we call (X, y) a violating pair for S. The pair is called minimal if
y /∈ Conv(X ′) for any strict subset X ′ ⊂ X.

All of our results exploit the following key property of the outward-oriented poset. This
fact captures the structure of {0,±1}n which we use throughout the paper.

▶ Fact 20. If a violating pair (X, y) is minimal, then X ⊆ Up(y).

Proof. We have y =
∑

x∈X λxx where
∑

x∈X λx = 1. Moreover, the minimality of (X, y)
implies that λx > 0 for all x ∈ X. Now, let i ∈ [n] be some coordinate where yi ≠ 0. We
need to show that xi = yi for all x ∈ X. Without loss of generality, suppose yi = 1. Thus,
we have 1 =

∑
x∈X λxxi. If xi < 1 for some x ∈ X, then we would have

∑
x∈X λxxi < 1,

which is a contradiction. ◀
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Figure 2 An illustration of {0, ±1}2. Arrows indicate the direction of the partial order. The
red triangle shows the convex hull of X := {(−1, 1), (1, 0), (0, 1)}, which contains the origin. I.e.
(X, (0, 0)) is a minimal violating pair for X.

▶ Fact 21. Let S ⊆ {0,±1}n. The following two statements are equivalent.
S is not convex.
There exists a minimal violating pair (X, y) for S.

Proof. Suppose there exists a minimal violating pair (X, y) for S. Since X ⊆ S, we have
Conv(X) ⊆ Conv(S) and so y ∈ Conv(S). Thus, y /∈ S implies S is not convex. Now suppose
S is not convex. Then there exists y ∈ (Conv(S) ∩ {0,±1}n) \ S. Let X ⊆ S be a minimal
set of points such that y ∈ Conv(X). The pair (X, y) is a minimal violating pair for S. ◀

▶ Fact 22. Consider S, Q ⊆ {0,±1}n. If Q does not contain any X ∪ {y} such that (X, y)
is a violating pair for S, then there exists a convex set S′ such that S′ ∩Q = S ∩Q.

Proof. Let S′ = Conv(S ∩Q) and consider an arbitrary y ∈ Q. We need to show that y ∈ S

if and only if y ∈ S′. Clearly, y ∈ S implies y ∈ S′. Now suppose y ∈ S′ and note this implies
y ∈ Conv(S ∩ Q) ⊆ Conv(S). Thus, if y /∈ S, then (S ∩ Q, y) is a violating pair for S and
this contradicts our assumption about Q. ◀

The following corollary is crucial for proving our lower bounds for testing convexity.

▶ Corollary 23. Let T be a convexity tester for sets S ⊆ {0,±1}n with 1-sided error. Suppose
T rejects a set S after querying a set Q. Then Q contains some X ∪ {y} such that (X, y) is
a minimal violating pair for S.

2.3 Concentration of Mass in the Ternary Hypercube
For x ∈ {0,±1}n, observe that ∥x∥1 = ∥x∥2

2 is precisely the number of non-zero coordinates
of x. Moreover, each coordinate of a uniformly random x is non-zero with probability 2/3,
and so E

x∈{0,±1}n
[∥x∥1] = 2n

3 . Standard concentration inequalities yield the following bound

on the number of points x ∈ {0,±1}n where ∥x∥1 is far from this expectation.

▶ Fact 24. For every τ ≥ 0,

P
x∈{0,±1}n

[∣∣∣∣∥x∥1 −
2n

3

∣∣∣∣ > τ

]
≤ 2 exp(−τ2/2n).

Proof. We have ∥x∥1 =
∑n

i=1 Xi where Xi = 1 with probability 2/3 and Xi = 0 with
probability 1/3. Thus, the bound follows immediately from Hoeffding’s inequality. ◀
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0n
{±1}n

𝖬𝗂𝖽(τ)

𝖨𝗇𝗇(τ)

𝖮𝗎𝗍(τ)

y
X

2τ

2n
3 n0

Figure 3 This figure shows a pictorial representation of {0, ±1}n as a poset. Any vertical slice
represents the set of all points with some fixed number of non-zero coordinates, and this number is
increasing from left to right. The left-most point is the origin and the right-most points are the
vertices of the hypercube {±1}n. The outward-oriented poset goes from left to right. The shaded
blue region emanating from y is the set Up(y) of points above y in the partial order. The set X

represents some minimal set of points for which y ∈ Conv(X) and thus y ≺ x for all x ∈ X, by
Fact 20.

Given τ ≥ 0, we use the following notation to denote the inner, middle, and outer layers
of {0,±1}n with respect to distance τ :

Inn(τ) :=
{

x : ∥x∥1 −
2n

3 < −τ

}
,

Mid(τ) :=
{

x :
∣∣∣∣∥x∥1 −

2n

3

∣∣∣∣ ≤ τ

}
,

Out(τ) :=
{

x : ∥x∥1 −
2n

3 > τ

}
. (3)

3 The Influence of Convex Sets

In this section we prove that the maximum edge boundary of convex sets in {0,±1}n is
Θ̃(n3/4) · 3n, or equivalently that the influence is Θ̃(n3/4).

3.1 Upper Bound
We prove that convex sets in the ternary hypercube have influence Õ(n3/4). The main idea
in the proof is to relate the influence of a convex set S to the number of sign-changes in the
maximum of a set of one-dimensional random walks. The proof will consider a random walk
X(0), X(1), . . . , X(m) starting from a random position in the middle layer of the ternary
hypercube and moving randomly “outward” for m = O

(√
n

log n

)
steps, and count the number

of influential edges crossed near the “middle layers” by relating them to one-dimensional
random walks. We begin in Section 3.1.1 with definitions regarding the one-dimensional
random walks that we require and then in Section 3.1.2 show how they relate to the number
of influential edges of S; finally, in Section 3.1.3 we prove the necessary bound on the number
of sign-changes of the one-dimensional random walks.
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Notation. In this section it will be convenient to use bold letters like X for random
variables, with the non-bold letter X being reserved for a fixed instantiation of X.

3.1.1 One-Dimensional Random Walks and the Max-Walk
Let us define the types of one-dimensional random walks that will be necessary for our proof.

▶ Definition 25 (Random Walks). Let x = (x1, . . . , xm) ∈ Rm. Fix any permutation
σ : [m] → [m] and sign vector ε = (ε1, . . . , εm) ∈ {±1}m. For any a ∈ R, we define the
function W +a

x (t; σ, ε) for t ∈ {0} ∪ [m] as

W +a
x (t; σ, ε) :=

{
a if t = 0
a +

∑t
i=1 εixσ(i) if t > 0 .

The random walk W +a
x is defined by choosing a uniformly random permutation σ and vector

ε ∼ {±1}m and setting W +a
x (t) = W +a

x (t; σ, ε) for every t. If a = 0 we drop the superscript.

The main quantity of interest to us is the number of sign-changes of a random walk,
defined as follows.

▶ Definition 26 (Crossing Number). Let W : {0} ∪ [m]→ R be any sequence. We define the
crossing number C(W ) as the number of sign-changes of W , defined as the number of times
t ∈ [m] such that either W (t) ≥ 0 > W (t− 1) or W (t) < 0 ≤W (t− 1).

An important feature of our random walks will be that they have the Distinct Subset-Sum
(DSS).

▶ Definition 27 (DSS Random Walk). We say a sequence x ∈ Rm has the Distinct Subset-Sum
(DSS) property if for every two disjoint subsets A, B ⊆ [m], it holds that

∑
a∈A xa ̸=

∑
b∈B xb.

In particular, the random walk Wx satisfies

∀t ∈ [m] , P
σ,ε

[Wx(t; σ, ε) = 0] = 0 .

Note that, if x has the DSS property, then so does any subsequence of x.

We will require an upper bound on the crossing number of max-walks, which are random
walks defined as the maximum of a set of constituent walks of the type defined above.

▶ Definition 28 (Max-Walk). Let X be a set of sequences x ∈ Rm, and let a : X → R. For a
fixed permutation σ and vector ε ∈ {±1}m, define

M+a
X (t; σ, ε) := max

x∈X
W +a(x)

x (t; σ, ε) ,

and let the random walk M+a
X be defined as

M+a
X (t) := M+a

X (t; σ, ε)

where σ, ε are chosen uniformly at random.

The main fact about max-walks that we require is the following, which we prove in
Section 3.1.3.

▶ Lemma 29 (Max-Walk Crossing Number). Let X be a set of sequences x ∈ Rm, each having
the DSS property, and let a : X → R. Then

E
[
C(M+a

X )
]

= O(
√

m) .
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3.1.2 Upper Bound on the Number of Influential Edges of a Convex Set
We now prove the following upper bound on the influence of any convex set in the ternary
hypercube, restated below for convenience.

▶ Theorem 4. If S ⊆ {0,±1}n is convex, then I(S) = O(n3/4 log1/4 n).

We require the following basic property of discrete convex sets.

▶ Proposition 30. Let S ⊆ {0,±1}n be any discrete convex set. Then there is a finite
set of vectors V ⊆ Rn and thresholds τ : V → R, where each v ∈ V defines a halfspace
Hv := {x ∈ {0,±1}n : ⟨v, x⟩ < τ(v)}, such that S =

⋂
v∈V Hv. One may also assume that

V satisfies the property that, for every v ∈ V and every two disjoint subsets A, B ⊆ [n],∑
i∈A vi ̸=

∑
j∈B vj.

Proof. Since S is the intersection of its convex hull Conv(S) with {0,±1}n, it may be written
as the intersection of {0,±1}n with a finite set of halfspaces with normal vectors V and
thresholds τ : V → R, and one may assume that none of the points in {0,±1}n lie on the
hyperplane boundary of any of the halfspaces. Then there is some δ > 0 such that the
minimum distance between a hyperplane and a point of {0,±1}n is at least δ · n. For each
v ∈ V , apply independent random perturbations to each coordinate to obtain v′

i = vi + ri

where ri is drawn from [−δ, δ] uniformly at random. With probability 1, the resulting set
V ′ = {v′ : v ∈ V } satisfies the required conditions. ◀

Proof of Theorem 4. Recall the definition of the edge-set E of the ternary cube from
Equation (1) and the set Mid(ℓ) from Equation (3). Given ℓ > 0, let

Eℓ = {(u, v) ∈ E : u, v ∈ Mid(ℓ)}

denote the set of edges lying in the middle ℓ layers of {0,±1}n. We consider the following
process which samples a random edge in {0,±1}n. Define ℓ :=

√
2n log n and m :=

√
n

log n .
Let D denote the distribution over edges defined by the following procedure.
1. Sample X(0) ∼ Mid(ℓ).
2. Choose a random subset T ⊆ {i : X

(0)
i = 0} with |T | = m of coordinates where X(0) has

a 0.
3. Let ε = (ε1, . . . , εm) ∈ {±1}m be independent Rademacher random variables and let

σ : [m]→ T be a random bijection.
4. For each s ∈ [m], let X(s) = X(s−1) + εseσ(s) = X(0) +

∑s
i=1 εieσ(i) where ej is the unit

vector with a 1 in coordinate j.
5. Choose s ∼ [m] and return the edge (X, Y ) = (X(s−1), X(s)).
Note that the above process can be equivalently defined as obtaining X(s) by selecting a
uniform random coordinate i where X

(s−1)
i = 0 and flipping that bit to a random value in

{±1}, with equal probability. This results in a random walk X(0), X(1), . . . , X(m) of length
m where each (X(s−1), X(s)) is a random out-going edge from X(s−1). We use two main
claims regarding this random walk to complete the proof of the theorem. The first is that
choosing an edge (X, Y ) ∼ D is approximately the same as choosing a uniformly random
edge from the middle layers.

▷ Claim 31. Fix any z ∈ Mid(ℓ) and s ∈ [m]. Then P[X(s) = z] = Θ(3−n). I.e., each step
of the random walk is approximately uniformly distributed over Mid(ℓ). As a corollary, for
any fixed edge (u, v) ∈ Eℓ, we have

P(X,Y )∼D[(X, Y ) = (u, v)] = Θ
(

1
n · 3n

)
.
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The second claim is that the probability of (X, Y ) ∼ D being an influential edge is small.

▷ Claim 32. P(X,Y )∼D[S(X) ̸= S(Y )] ≤ O
(

1√
m

)
.

We defer the proof of both claims to the end of the section. We now prove Theorem 4
using Claim 31 and Claim 32 as follows. Let E denote the edges of the ternary hypercube
and let Eℓ = {(u, v) ∈ E : u, v ∈ Mid(ℓ)}. By definition,

I(S) = 1
3n
·
(
|{(u, v) ∈ E \ Eℓ : S(u) ̸= S(v)}|+ |{(u, v) ∈ Eℓ : S(u) ̸= S(v)}|

)
.

The first term is bounded using Fact 24 as

|{(u, v) ∈ E \ Eℓ : S(u) ̸= S(v)}|
3n

≤ |E \ Eℓ|
3n

≤ 2n · |Mid(ℓ)|
3n

≤ 2n · 2 exp(−ℓ2/2n) = O(1)

since every vertex has degree at most 2n. The second term is bounded as
|{(u, v) ∈ Eℓ : S(u) ̸= S(v)}|

3n
= |Eℓ|

3n
· P(u,v)∼Eℓ

[S(u) ̸= S(v)] ≤ 2n

3 · P(u,v)∼Eℓ
[S(u) ̸= S(v)]

≤ Ln · P(X,Y )∼D[S(X) ̸= S(Y )]

≤ L′n · m−1/2 = L′ · n3/4 log1/4 n ,

where L, L′ are absolute constants. The first inequality follows simply from Eℓ ⊂ E and
|E| = 2n · 3n−1. The second inequality follows from Claim 31 and the third inequality follows
from Claim 32. This completes the proof of Theorem 4. ◀

Let us now complete the deferred proofs of Claim 31 and Claim 32.

Proof of Claim 31. Let ∥z∥1 = 2n
3 + r where |r| = O(

√
n log n). In order for X(s) = z to

occur we must have
∥∥X(0)

∥∥
1 = 2n

3 + r − s. Thus, the probability is

P[X(s) = z] = 1
3n

((
n

2n
3 + r − s

)
· 2 2n

3 +r−s

)
·
((

n
2n
3 + r

)
· 2 2n

3 +r

)−1

= 1
3n
· 1

2s
·
(

n
2n
3 + r − s

)(
n

2n
3 + r

)−1
= Θ(3−n)

where the last step is due to the following fact:
If |r| ≤ O(

√
n log n) and s = O(

√
n

log n ), then
(

n
2n
3 +r−s

)(
n

2n
3 +r

)−1 = Θ(2s). As a corollary,
the number of points in the ternary cube with hamming weight 2n

3 + r − s and 2n
3 + r differ

by at most a constant factor.
This is proved as follows.(

n
2n
3 +r−s

)(
n

2n
3 +r

) =
( 2n

3 + r
)
!
(

n
3 − r

)
!( 2n

3 + r − s
)
!
(

n
3 − r + s

)
!

=
s−1∏
p=0

2n
3 + r − p

n
3 − r + s− p

= 2s ·
s−1∏
p=0

n
3 + r

2 −
p
2

n
3 − r + s− p

= 2s ·
s−1∏
p=0

n
3 − r + s− p + ( 3r

2 + p
2 − s)

n
3 − r + s− p

= 2s ·
s−1∏
p=0

(
1 +

3r
2 + p

2 − s
n
3 − r + s− p

)
Observe that the numerator inside the product is ±O(

√
n log n) since r is the dominating

term and the denominator is Ω(n) since n/3 is the dominating term. Therefore, we have(
n

2n
3 +r−s

)(
n

2n
3 +r

) = 2s ·

(
1±O

(√
log n

n

))s

= Θ(1) · 2s

since s = O(
√

n
log n ). ◁
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Proof of Claim 32. Let S be an intersection of halfspaces S =
⋂

v∈V Hv, with thresholds
τ : V → R, in the form promised by Proposition 30. In particular, each vector v ∈ V has the
DSS property (Definition 27). Fix any value of X(0) = X(0) and fix any permutation σ and
sign-vector ε = (ε1, . . . , εm) ∈ {±1}m in the definition of D, and consider the resulting fixed
values of X(0), X(1), . . . , X(m). Define a : V → R as a(v) = ⟨v, X(0)⟩ − τ(v).

For each v ∈ V , consider the sequences W
+a(v)
v := W

+a(v)
v (· ; σ, ε). For each X(s), observe

that X(s) ∈ Hv if and only if ⟨v, X(s)⟩ < τ(v), which is equivalent to the condition Wv(s) < 0,
since

W +a(v)
v (s) = a(v) +

s∑
j=1

εj · vσ(j) =

 ∑
i:X(0)

i
̸=0

viX
(0)
i

− t(v) +
s∑

j=1
X

(s)
σ(j)vσ(j)

=

 ∑
j:X(s)

j
̸=0

X
(s)
j vj

− t(v) = ⟨X(s), v⟩ − t(v) .

Therefore X(s) ∈ S if and only if W
+a(v)
v (s) < 0 for all v ∈ V , which is equivalent to

M+a
V (s) < 0 where M+a

V is the max-walk (recall Definition 28). Then for fixed sequence
X(0), . . . , X(m) and uniformly random s ∼ [m], the probability that (X(s−1), X(s)) is an
influential edge is equal to C(M+a

V
)

m . Therefore, taking σ and ε to be random, we have

P
(X,Y )∼D

[S(X) ̸= S(Y )] = 1
m
· E
[
C(M+a

V )
]

= O(
√

m) ,

where the final bound is due to Lemma 29, since each vector in V was assumed to have the
DSS property. This concludes the proof of the claim. ◁

3.1.3 Crossing Bound for the Max-Walk: Proof of Lemma 29
We prove an upper bound on the number of times the maximum of a set of one-dimensional
random walks can change sign. Let us define certain special events in a random walk.

Fix any walk time m and let W : {0} ∪ [m]→ R. We define:
A downcrossing of W is a time t ∈ [m] such that W (t) < 0 ≤ W (t − 1). C↓(W ) is the
number of downcrossings of W .
An upcrossing of W is a time t ∈ [m] such that W (t) ≥ 0 > W (t). C↑(W ) is the number
of upcrossings of W .
A downwards level return of W is any time t such that either:

If W (0) ≥ 0 then the smallest time t ∈ [m] such that W (t) < W (0) is a downwards
level return.
For any upcrossing s of W , the first time t > s such that W (t) < W (s) is a downwards
level return.

We write L↓(W ) for the number of downwards level returns of W .
The downwards level decrease times of W is the unique sequence s1 < s2 < · · · defined
inductively as follows.

If W (0) ≥ 0 then s1 is the first time such that W (s1) < W (0). Otherwise let t be the
first upcrossing of W . Then s1 is the first time such that W (s1) < W (t).
For i > 1, if W (si−1) ≥ 0 then si ∈ [m] is the smallest time such that W (si) < W (si−1).
Otherwise, if W (si−1) < 0, then let t be the first upcrossing t > si−1 and define si as
the first time si > t such that W (si) < W (t).

We write S↓(W ) for the number of downwards level decreases of W .
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The upwards level increase times of W is the unique sequence t1 < t2 < · · · defined
inductively as follows.

If W (0) < 0 then t1 is the first time such that W (t1) > W (0). Otherwise let s be the
first downcrossing of W . Then t1 is the first time such that W (t1) > W (t).
For i > 1, if W (ti−1) < 0 then ti is the first time such that W (ti) > W (ti−1). Otherwise
if W (ti−1) ≥ 0, then let s be the first downcrossing s > ti−1 and define ti as the first
time ti > s such that W (ti) > W (s).

We write S↑(W ) for the number of upwards level increases of W .

The main technical tool in our analysis is the following version of Sparre Andersen’s
fluctuation theorem [26], as found in [3, Prop. 4.1]. Recall the definition of Wx from
Definition 25 and the DSS property from Definition 27.

▶ Theorem 33 (Sparre Anderson; see [3], Proposition 4.1). For every m ∈ N, if x ∈ Rm has
the DSS property, then the random walk Wx satisfies

P [∀t ∈ [m] : Wx(t) > 0] = g(m) := 1
4m

(
2m

m

)
.

We define a random variable R on the positive integers with

∀t ∈ N , P [R = t] := g(t− 1)− g(t) = 1
4t−1

(
2(t− 1)

t− 1

)
− 1

4t

(
2t

t

)
,

where we define g(0) := 1. For each m ∈ N, we also define a random variable Q(m) by the
following process. Set q = 0 and X = 0; while X < m, increment q and set X ← X + R

where R is a new independent copy of the random variable defined above. Then set Q(m) = q

once this process terminates; note that Q(0) = 0. Observe that for every k ∈ N,

P
[
Q(m) ≥ k

]
= P [R1 + R2 + · · ·+ Rk ≤ m]

where each Ri is an independent copy of R, and

E
[
Q(m)

]
=

m∑
t=1

P [R = t] ·
(

1 + E
[
Q(m−t)

])
.

The following holds due to Theorem 33.

▶ Proposition 34. Let x ∈ Rm have the DSS property, let a ∈ R, and let s1, t1 denote the
first downwards level decrease time and upwards level increase times of W +a

x , respectively.
Then for all z ∈ [m],
1. If a ≥ 0 then P [s1 = z] = P [R = z]; and,
2. If a < 0 then P [t1 = z] = P [R = z].

▶ Proposition 35. Let x ∈ Rm have the DSS property and let a ∈ R. Then

E
[
Q(m)

]
= E

[
S↓(W +a

x ) + S↑(W +a
x )

]
.

Proof. By induction on m. For m = 1 we have E
[
Q(1)] = P [R = 1] = 1/2 and

E
[
S↓(W +a

x ) + S↑(W +a
x )

]
= 1/2

since the random walk has probability 1/2 of increasing or decreasing in the first step; if
a ≥ 0 then the walk must decrease to create a downwards level decrease, while if a > 0 then
the walk must increase to create an upwards level increase.
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Now let m > 1. Suppose a ≥ 0 without loss of generality. Then the first level increase or
decrease is a downwards level decrease. Let s1 be the first downwards level decrease and
let y denote the random subsequence of x that remains after removing the first s1 elements
according to the random permutation σ. Then by induction and Proposition 34,

E
[
S↓(W +a

x ) + S↑(W +a
x )

]
=

m∑
t=1

P [s1 = t] ·
(

1 + E
[

S↓

(
W +Wx(s1)

y

)
+ S↑

(
W +Wx(s1)

y

) ∣∣∣ s1 = t
])

=
m∑

t=1
P [R = t] ·

(
1 + E

[
Q(m−t)

])
= E

[
Q(m)

]
. ◀

For a sequence W : {0} ∪ [m]→ R, write Z(W ) =
∑m

t=1 1 [W (t) ∈ {0,±1}].

▶ Lemma 36. For any m, E
[
Z(W1⃗)

]
= O(

√
m).

Proof. We first bound the number of times t such that W1⃗(t) = 0. If t is odd then
P
[
W1⃗(t) = 0

]
= 0. If t is even then there is a universal constant C such that

P
[
W1⃗(t) = 0

]
= 1

2t

(
t

t/2

)
≤ C · 1√

t
.

Therefore the expected number of times t with W1⃗(t) = 0 is at most

∑
t even

P
[
W1⃗(t) = 0

]
≤ C ·

m∑
t=1

1√
t

= O(
√

m) .

Now observe that the expected number of times t where W1⃗(t) = 1 is the average of the
expected number of times where the shifted walks W +a

1⃗ is 0 on domain [m − 1], where
a = ±1, and the same holds for the number of times t where W1⃗(t) = −1. ◀

▶ Proposition 37. There exists x ∈ Rm with the DSS property such that
E [S↓(Wx) + S↑(Wx)] ≤ E

[
Z(W1⃗)

]
. As a consequence,

E
[
Q(m)

]
= O(

√
m) .

Proof. Let δ := 1
3m . Let x := 1⃗ + z where z ∼ [−δ, δ]m uniformly at random. Note that

x has the DSS property with probability 1. For any fixed z ∈ [−δ, δ]m, any permutation σ,
and any r ∈ {±1}n, write Wx(t) := Wx(t; σ, ε) for x = 1⃗ + z. Then we have Wx(t; σ, ε) ∈
[W1⃗(t; σ, ε)− 1/3, W1⃗(t; σ, ε) + 1/3]. Now fix any z ∈ [−δ, δ]m such that x = 1⃗ + z has the
DSS property; we show that it satisfies the required condition.

Let s1 < s2 < · · · < sk be the downwards level decreasing or upwards level increasing
points for Wx, let s0 = 0, and observe that a point cannot be both downwards level decreasing
and upwards level increasing. We show by induction on i that |Wx(si)| ≤ 1+1/3 and therefore
that W1⃗(si) ∈ {0,±1}. Since Wx(0) = 0 it must be that s1 is downwards level decreasing and
Wx(s1) < 0 = Wx(0) ≤Wx(s1 − 1) and therefore Wx(s1) ≥Wx(s1 − 1)− 1− 1/3 ≥ −4/3 so
it must be that W1⃗(s1) ∈ {−1, 0}. For i > 1, suppose that si is a downwards level decreasing
point. If there exists an upcrossing point a > si−1 such that Wx(si) < Wx(a), then we
observe that Wx(a − 1) < 0 ≤ Wx(a) and therefore Wx(a) < 1 + 1/3 so W1⃗(a) ∈ {0, 1}.
Now Wx(si) < Wx(a) ≤ Wx(si − 1) so it must be that −1 − 1/3 ≤ Wx(si) < 1 + 1/3 so
W1⃗(si) ∈ {0,±1}. On the other hand, if Wx(si−1) ≥ 0 and Wx(si) < Wx(si−1) then by



H. Black, E. Blais, and N. Harms 15:19

induction we have W1⃗(si−1) ∈ {0, 1}, and also Wx(si − 1) > Wx(si−1), so again we have
−1− 1/3 ≤Wx(si) < 1 + 1/3 and therefore W1⃗(si) ∈ {0,±1}. A similar argument holds for
the upwards level increasing points.

The conclusion now follows from Proposition 35 and Lemma 36, since for the x ∈ Rm

defined in the current proof,

E
[
Q(m)

]
= E [S↓(Wx) + S↑(Wx)] ≤ E

[
Z(W1⃗)

]
= O(

√
m) . ◀

▶ Proposition 38. Let X be a set of sequences x ∈ Rm each having the DSS property, and
let a : X → R be arbitrary. Then

E
[
L↓(M+a

X )
]
≤ E

[
Q(m)

]
.

Proof. By induction on m. For m = 1, the probability that M+a
X has a downwards level

return is at most 1/2, because if M+a
X (0) ≥ 0, all of the maximizing constituent walks x ∈ X

satisfying Wx(0)+a(x) = M+a
X (0) must decrease. If M+a

X (0) < 0 then there is no downwards
level return for m = 1.

Let m > 1 and consider two cases. First assume that M+a
X (0) ≥ 0 and let x ∈ X be an

arbitrary constituent walk satisfying W
+a(x)
x (0) = M+a

X (0). For fixed permutation σ and
sign vector ε, let s1 be the first downwards level return point of M+a

X (· ; σ, ε) and let s′
1 be

the first downwards level return point of W
+a(x)
x (· ; σ, ε). Note that s′

1 ≤ s1 since M+a
X is

the maximum of its constituents.
Now we may write

E
[
L↓(M+a

X )
]

=
m∑

s=1
P [s1 = s]

(
1 + E

[
L↓
(
M+b

Y

) ∣∣ s1 = s
])

,

where Y denotes the set of vectors X after removing the first t coordinates according to the
random permutation σ and b : Y → R is the starting point b(y) = W

+a(x)
x (t) of each walk

y ∈ Y obtained from the original vector x ∈ X by removing the first t coordinates according
to σ. By induction, this is

E
[
L↓
(
M+b

Y

) ∣∣ s1 = s
]
≤ E

[
Q(m−s)

]
.

Now we write s1 = s′
1 + (s1 − s′

1) where the second term is non-negative. Then

E
[
L↓(M+a

X )
]
≤

m∑
s=1

P [s′
1 + (s1 − s′

1) = s] ·
(

1 + E
[
Q(m−s)

])
=

m∑
t=1

P [s′
1 = t]

m−t∑
s=0

P [s1 − s′
1 = s | s′

1 = t]
(

1 + E
[
Q(m−(s+t))

])
.

The inner sum is a convex sum of terms 1 + E
[
Q(m−(s+t))] which are each bounded by

1+E
[
Q(m−t)] because E

[
Q(k)] ≥ E

[
Q(k′)

]
when k ≥ k′. We also have P [s′

1 = t] = P [R = t]
due to Proposition 34. Therefore,

E
[
L↓(M+a

X )
]
≤

m∑
t=1

P [R = t]
(

1 + E
[
Q(m−t)

])
= E

[
Q(m)

]
.

We must now handle the case where M+a
X (0) < 0. Let t be the smallest time where

M+a
X (t) ≥ 0. Then

E
[
L↓(M+a

X )
]

=
m∑

t=1
P [t = t]E

[
L↓
(
M+b

Y

) ∣∣ t = t
]

,
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where Y and b are defined similarly as before, as the sequences X after removing the first t

coordinates according to the random permutation σ and b(y) = W
+a(x)
x (t) is where the x

walk ended up at time t. This new walk starts above 0 so the above argument applies and
the conclusion holds. ◀

We can now prove Lemma 29.

Proof of Lemma 29. First observe that C(M+a
X ) ≤ 2 C↓(M+a

X ) + 1 so it suffices to bound
C↓(M+a

X ). By definition it holds that C↓(M+a
X ) ≤ L↓(M+a

X ), so by Proposition 38 and
Proposition 37, we have

E
[
C↓(M+a

X )
]
≤ E

[
Q(m)

]
= O(

√
m) . ◀

3.2 Lower Bound
Recall the definition of the influence of a set in the ternary hypercube given in Equation (2).
In this section, we show that there exists a convex set whose influence is Ω(n3/4), nearly
matching the upper bound given in Theorem 4.

The construction of the high-influence set is obtained by considering the intersection
of 2

√
n random halfspaces whose distance from the origin is Θ(n3/4). This approach is

inspired by [16, Theorem 2], who showed that in the Boolean hypercube, an intersection of k

random halfspaces with an appropriately chosen distance from the origin will have expected
influence Ω(

√
n log k). In the ternary hypercube, this type of argument still works as long as

k ≤ 2O(
√

n). This type of construction was also used by Nazarov [20] to show the existence of
convex sets in Rn whose Gaussian surface area is Ω(n1/4), which matches the O(n1/4) upper
bound proven by Ball [1].

We prove the following theorem in the full version of the paper.

▶ Theorem 3. There exists a convex set S ⊆ {0,±1}n with influence I(S) = Ω(n3/4).
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