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Abstract
Multicalibration is a notion of fairness for predictors that requires them to provide calibrated
predictions across a large set of protected groups. Multicalibration is known to be a distinct goal
than loss minimization, even for simple predictors such as linear functions.

In this work, we consider the setting where the protected groups can be represented by neural
networks of size k, and the predictors are neural networks of size n > k. We show that minimizing
the squared loss over all neural nets of size n implies multicalibration for all but a bounded number
of unlucky values of n. We also give evidence that our bound on the number of unlucky values
is tight, given our proof technique. Previously, results of the flavor that loss minimization yields
multicalibration were known only for predictors that were near the ground truth, hence were rather
limited in applicability. Unlike these, our results rely on the expressivity of neural nets and utilize
the representation of the predictor.
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1 Introduction

In supervised binary prediction, we are given examples (x, y) ∈ X ×{0, 1} drawn independently
from an unknown distribution D, where the labels y ∈ {0, 1} are binary. We wish to learn a
predictor f : X → [0, 1] which assigns to each point x ∈ X a prediction f(x) ∈ [0, 1] as the
estimated probability that the label is 1. The performance of a prediction model is commonly
measured using a loss function; popular losses include the squared loss and the cross-entropy
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17:2 Loss Minimization Yields Multicalibration for Large Neural Networks

loss. Machine learning algorithms learn a predictor f by iteratively optimizing the expected
loss (e.g. via stochastic gradient descent). This simple paradigm has proved remarkably
powerful, and modern machine learning has a powerful arsenal of theoretical and empirical
tools for loss minimization.

Yet despite its considerable success, loss minimization alone typically does not guarantee
everything we might want from our prediction models. It is not obvious if important
desiderata such as fairness, privacy and interpretability can be guaranteed just from loss
minimization. There has been considerable research effort dedicated to understanding how to
modify the loss minimization template to ensure these desiderata, and into possible tradeoffs
between these goals and loss minimization.

A desirable fairness guarantee that has been studied intensively in recent years is multic-
alibration, introduced in the work of Hébert-Johnson et el. [23] (see also [31, 35]). Informally,
it asks that the predictions be calibrated conditioned on each subgroup of the population X
for a family of subgroups.

▶ Definition 1 (Multicalibration [33, 23]). Let γ > 0 and C be a class of auditor functions
c : X × [0, 1] → [−1, 1]. The predictor f : X → [0, 1] is (C, γ)-multicalibrated or (C, γ)-MC if
for all c ∈ C,∣∣∣E(x,y)∼D

[
c
(
x, f(x)

)
·
(
y − f(x)

)] ∣∣∣ ≤ γ. (1)

When C is clear from context, we say that f is γ-MC for brevity. 1

When c maps to {0, 1} values, it can be viewed as defining a group which is a subset
of the domain X and MC means that E[y] ≈ E[f(x)] conditioned on membership in this
group, where the degree of closeness depends on the size of the group. Good calibration is
guaranteed for any group of sufficient likelihood that can be identified by the auditor family
C. The connection to calibration comes from observing that taking c(x, f(x)) = 1[f(x) = v]
yields a contribution of at most γ to the standard notion of expected calibration error (ECE)
from the individuals x with f(x) = v, and taking c(x, f(x)) = η(f(x)) for all choices of
η : [0, 1] → [−1, 1] yields having ECE ≤ γ.

1.1 Loss Minimization and Multicalibration
Exploring the relation between multicalibration and loss minimization has led to a rich body
of research work [23, 19, 17, 20, 27, 15]. Let us describe the main findings from this body of
work and how it relates to the question that we address.

The original paper of [23] showed that multicalibration can be achieved via a post-
processing procedure: we can take an arbitrary predictor f and boost it to a C-multicalibrated
predictor f ′ such that the squared loss (or any proper loss) only decreases. This suggests
that multicalibration need not come at the cost of increased expected loss, provided we are
willing to consider models of greater complexity (than f and C). Indeed, during the boosting,
the [23] algorithm repeatedly refines the predictor by augmenting it with functions from the
base class C, thus increasing its accuracy and its complexity. The connection to boosting
is made even more explicit in [19, 16]. Given this, a natural question which motivates our
work is:

1 The MC definition above is version due to Appendix 1 in [33], which was also used by [9, 13]. The
original definition [23, 21] considers only those c that can be factored as c(x, f(x)) = g(x)w(f(x)) where
g : X → [−1, 1] and w : [0, 1] → [−1, 1]. For the setting where C is a family of neural nets, the general
definition is more natural, since it amounts to both x and f(x) being inputs to an auditor neural net.
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▶ Question 1. Can we learn a C-multicalibrated predictor by performing standard
loss minimization over a family C′ with greater complexity than C?

By standard loss minimization, we mean a procedure that aims to minimize a loss ℓ in
expectation over a fixed class C′ of predictors. The works of [23, 19, 16] point us to classes
C′ that do indeed contain C-multicalibrated predictors, and they tell us how to find one such
predictor using boosting iterations that also decrease the expected loss. However, they do
not tell us that directly minimizing any particular loss will lead us to one such predictor:
the loss minimizer might prefer other predictors within C′ with lower expected loss, but
which are not multicalibrated. Indeed we know examples where this tradeoff between loss
minimization and multicalibration happens for some classes C′ [22, 4]. Thus Question 1 asks
if there is a more direct connection between loss minimization and multicalibration than
what was previously known.

If we increase the power of C′ to the extent that the family is expressive enough to
contain the ground-truth predictor f∗(x) := ED[y|x] (the realizable case), for the squared
loss and the cross-entropy loss, it is not hard to see that loss minimization over the family
will bring our predictor f close to the ground truth f∗, and we will get multicalibration as a
consequence (see Chapter 3 in [1] as well as [36]). However, this is not particularly insightful,
since we do not expect this strong realizability assumption to hold in practice for predictor
families used in common loss minimization algorithms.

For more reasonable choices of C′ that do not guarantee realizability of the ground
truth predictor, previous results reveal potential challenges to giving a positive answer to
Question 1. For some simple choices of C′, it is known that Question 1 has a negative answer
since there is a tradeoff between loss minimization and multicalibration. Indeed, for the
predictor family considered in logistic regression comprising sigmoids of linear functions,
the predictor with minimum expected loss need not be even calibrated (see [4]). Even if C′

contains predictor f1 that is C-multicalibrated, it might contain another predictor f2 that is
better at loss minimization.2

Another potential challenge comes from the work of [19], which showed that a multic-
alibrated predictor is an omnipredictor, i.e., it can be used to minimize any convex and
Lipschitz loss function compared to a benchmark class of models defined based on C. The
omniprediction results seem to suggest that a positive answer to Question 1 without realizab-
ility is perhaps unlikely: a standard loss minimization procedure will find the best predictor
f ∈ C′ tailored to a particular loss ℓ, whereas in order to be C-multicalibrated, f needs to be
competitive with C for every Lipschitz, convex loss. It is tempting to believe that algorithms
for achieving multicalibration might have to go beyond the usual framework of minimizing a
single loss function over a family of predictors. Indeed, all previously known algorithms for
multicalibration require boosting updates similar to the algorithm of [23].

To summarize, prior work tells us the following:
There are examples of C′ where loss minimization does not yield (multi)calibration. In
these examples, C′ is not too much more powerful than C.
Any positive answer to Question 1 requires C′ to be sufficiently powerful relative to C, so
that optimizing over C′ gives a C-omnipredictor for all convex, Lipschitz losses.
The answer to Question 1 is yes when C′ is extremely (perhaps unreasonably) powerful,
so that it contains the ground truth predictor.

This leaves open the possibility that a positive answer holds for C′, C pairs where C′ is more
expressive than C, but loss minimization over C′ is still tractable.

2 Running the [23] boosting on f2 will result in f3 which is better at loss minimization than f2 and is
multicalibrated, but it may no longer belong to C′.

ITCS 2024
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1.2 Our Contribution: Multicalibration from Standard Loss Minimization

We show that multicalibration with respect to neural networks of size k can be achieved
solely by minimizing the squared loss over the family of neural networks of size n, for all
but a few choices of n. This result provides a positive answer to Question 1 without
making any realizability assumptions. While we focus on the squared loss, our results extend
to any proper loss such as the cross-entropy loss (see Appendix B).

Specifically, we take the auditor class C in Definition 1 to be NN∗
k which consists of all

functions c : X × [0, 1] → [−1, 1] computable by some k-node neural network, where we
assume the domain X is a subset of a Euclidean space Rd. For concreteness, we use the
ReLU activation function, which is a popular choice in practice (see Section 2 for formal
definitions). Multicalibration w.r.t. C = NN∗

k guarantees good calibration on all large enough
groups identifiable by a size-k neural network. This is a strong guarantee when k is large
enough to express interesting groups. We consider minimizing the squared loss over the
family NNn of all predictors f : X → [0, 1] computable by some n-node neural network. For
a distribution D over X × {0, 1}, we say a predictor f ∈ NNn is ε-loss-optimal if

E(x,y)∼D[(f(x) − y)2] ≤ inf
f ′∈NNn

E(x,y)∼D[(f ′(x) − y)2] + ε.

We prove the following theorem showing that loss optimality implies multicalibration for all
but a few choices of n:

▶ Theorem 2. Let D be a distribution over X × {0, 1}. For every k ∈ Z>0 and every α > 0,
for all but at most (k + 2)/α choices of n ∈ Z≥0, for any ε ∈ (0, 1), every ε-loss-optimal
predictor f ∈ NNn is (NN∗

k,
√
α+ ε)-MC.

Note that the above theorem does not make any realizability assumptions. In particular,
an ε-loss-optimal predictor f ∈ NNn may have a significantly larger expected squared loss
compared to f∗, and the theorem still guarantees that f is multicalibrated. Theorem 2
implies that if a neural network f ∈ NNn violates multicalibration beyond a small threshold,
its expected squared loss must be sub-optimal within the family NNn, except for a few
unlucky choices of n. Outside of these choices, a multicalibration violation indicates potential
for further improvement of the expected loss within the family NNn.

Our result can be viewed as a demonstration of the representation ability of neural
networks, complementary to the universal representation theorems (e.g. [25]). While neural
networks of a certain size n cannot express all functions (in particular, the ground truth f∗

may be far from such neural networks), except for a few choices of n they can always express
a multicalibrated predictor, and such a predictor can be found by minimizing the squared
loss.

Our results are more about representational aspects of neural networks, and do not
address algorithmic or sample complexity considerations. They currently do not apply to
specific algorithms for optimizing neural networks, such as SGD, and they should not be
interpreted as “fairness comes for free from optimizing neural networks”. The question of
whether loss minimization over neural networks can be performed efficiently does not have a
simple answer, SGD is found to do well in practice. The question of whether it results (for
most n) in networks that are multicalibrated for smaller size neural networks is an interesting
question from the theoretical and experimental viewpoint. See Section 5 for an extended
discussion.
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A Generalization

In our proof of Theorem 2, a key property we use about neural networks provides an
explanation for their representation ability demonstrated by the theorem. The property is
the simple fact that the composition of two neural networks can be implemented by another
neural network with size roughly equal to the sum of the sizes of the two initial networks.
Indeed, we generalize Theorem 2 to any sequence of families of predictors closed under
composition:

▶ Theorem 3. Let C be a class of auditing functions c : X × [0, 1] → [−1, 1]. Let F0,F1, . . .

be families of predictors f : X → [0, 1] satisfying ∅ ̸= F0 ⊆ F1 ⊆ · · · . For some positive
integer k, assume that for every nonnegative integer n, every f ∈ Fn, every c ∈ C, and every
β ∈ [−1, 1], the composed predictor f ′ defined below satisfies f ′ ∈ Fn+k:

f ′(x) = clip(f(x) + βc(x, f(x))) for every x ∈ X , (2)

where clip(z) = max(0,min(1, z)) ∈ [0, 1] for every z ∈ R. Then for every α > 0, for all but at
most k/α choices of n ∈ Z≥0, for any ε > 0, every ε-loss-optimal f ∈ Fn is (C,

√
α+ ε)-MC.

By definition, neural networks satisfy closeness under composition as required in The-
orem 3, allowing us to prove Theorem 2 as a consequence of Theorem 3 (see Section 3 for
details). In addition, Theorem 3 implies variants of Theorem 2 where we enforce various
network architectures, though for simplicity we focus on a general feed-forward architecture
in this paper.

Besides neural networks, we can apply Theorem 3 to other predictor families. For example,
a well-studied family in computational learning theory is the family of juntas, which is also
the family we consider in our lower bound results (see Section 1.3 below). Here, the domain
X is the Boolean cube {−1, 1}m, and a function f over X is called a k-junta if f(x) only
depends on a fixed set of k coordinates of x for every x ∈ X (see Section 4 for formal
definition). We use Jk to denote the class of all k-juntas f : X → [0, 1], and use J ∗

k to
denote the class of all k-juntas f : X → [−1, 1]. We consider multiaccuracy (MA) (defined
formally in Definition 12) which is a weaker notion than multicalibration where functions
c ∈ C only takes x as input, instead of taking x and f(x) as input as in Definition 1. Like
neural networks, juntas also satisfy closeness under composition, so we get the following
theorem as a corollary of Theorem 3 (see Section 4 for proof):

▶ Theorem 4. Let D be a distribution over X × {0, 1}, where X = {−1, 1}m for a positive
integer m. Let k ∈ Z>0 and α ∈ (0, 1] be parameters. Then for all but at most k/α
nonnegative integers n, for any ε > 0, every ε-loss-optimal f ∈ Jn is (J ∗

k ,
√
α+ ε)-MA.

A Smoothed Analysis Perspective

Since there are a few unlucky neural network sizes n for which Theorem 2 does not provide
multicalibration guarantees, one may be worried that the size used in a task in practice might
be among the unlucky ones. However, it is often reasonable to assume that there is sufficient
randomness involved in a specific choice of n in practice, especially when n is large as in
modern neural networks. If n is chosen, say, uniformly at random from a large range, the
probability of n being among the few unlucky choices is small. This is the perspective taken
in smoothed analysis [46]: by assuming that the instances arising in practice contain some
intrinsic randomness, we can often show stronger guarantees for them than for the worst-case
instance. We also show how to completely avoid unlucky sizes by adding a regularization
term to the loss minimization problem (see Section 1.4).

ITCS 2024
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Proof Sketch

Our proof of Theorem 3 is simple in hindsight, which we view as a plus. It combines the
existing analysis of the boosting style updates of [23] with some new ideas, and exploits the
structure of the updates.

For γ =
√
α+ ε, consider a predictor f : X → [0, 1] that is not γ-multicalibrated w.r.t.

C, i.e., there exists c ∈ C such that (1) is violated. A key step in previous boosting style
algorithms is to use c to decrease the expected squared loss of f , by considering the predictor
f ′ defined by (2). It can be shown that when β ∈ [−1, 1] is chosen properly, updating f to f ′

decreases the expected loss by more than γ2 = α+ ε. In Theorem 3, if f belongs to some Fn,
then the updated predictor f ′ belongs to Fn+k. Therefore, if f ∈ Fn is not γ-multicalibrated,
f is not (α+ ε)-loss-optimal w.r.t. the larger class Fn+k. To prove Theorem 3, we need to
show that f is not ε-loss-optimal w.r.t. the current class Fn.

Let OPTn denote the minimum expected loss achievable by predictors from Fn. If
OPTn ≤ OPTn+k + α, then f ∈ Fn being not (α+ ε)-loss-optimal w.r.t. Fn+k implies that
it is not ε-loss-optimal w.r.t. Fn, as desired. Thus we only need to worry about cases where
OPTn is larger than OPTn+k + α. We observe that OPTn is non-increasing in n and it is
bounded in [0, 1], so there can only be a few choices of n for which OPTn is larger than
OPTn+k by a significant amount α. Excluding these bad choices of n allows us to prove
Theorem 3. A detailed proof is presented in Section 3.

1.3 Lower Bound

A natural question is whether the bound on the number of unlucky choices of n can be
improved. While we are not able to show that the bound in Theorem 2 is optimal, we show
tightness of the bound in Theorem 4 for juntas. We prove the following lower bound showing
tightness up to constant: there are indeed Ω(k/α) integers n for which the loss-optimal
junta is not

√
α-multiaccurate. The right quantitative bound uses the noise stability of the

majority function (see [41]). Thus, a stronger result for neural networks than Theorem 2, if
it exists, would use properties of neural networks beyond what our analysis currently uses.

▶ Theorem 5 (Informal statement of Theorem 13). For every k and small enough α, there
exist m ∈ Z>0, a distribution D over X × {0, 1} = {±1}m × {0, 1}, and at least Ω(k/α)
distinct non-negative integers n such that any model fn ∈ Jn is not (J ∗

k ,
√
α)-MA.

1.4 Multicalibration from Structural Risk Minimization

There are a few unlucky choices of n for which Theorems 2 and 3 do not guarantee multical-
ibration from loss minimization. We show that by adding an appropriate regularization term
to the loss minimization problem, we can avoid such unlucky choices of n. This regularized
approach can be viewed as a form of structural risk minimization, and it can be motivated
economically as follows.

Deploying large predictors is expensive. To deploy a finite predictor, one may consider
a cost, say, a linear cost of for deploying a NN of n nodes. Once amortized over queries,
this is equivalent to using regularization and choosing a predictor that minimizes loss plus
a constant, say 1/N , times size. Since the squared loss is bounded in [0, 1], the optimal
solution is always an NN with at most N nodes. Our theorem below shows that large NNs
optimized for loss, with sufficiently small regularization, achieve MC.
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▶ Theorem 6 (Informal version of Theorem 11). Let k ∈ N be an integer and α ∈ (0, 1]. Then,
for some N0 = O(k/α) and any N ≥ N0, selecting a loss-optimal NN with size regularization
coefficient 1/N will lead to a NN of size ≤ N that is

√
α-MC with respect to NNs of size k.

1.5 Related Work
The notion of multicalibration for multigroup fairness was introduced in [23], see also [31, 35].
This notion has proved to be unexpectedly rich, with connections to several other areas. The
work of [12] relates it to indistinguishability, while [33] connects it to domain adaptation.
A line of work on omniprediction [19, 17, 27, 34, 15] has shown that multicalibration for
a class C implies strong loss minimization guarantees when compared against benchmarks
from C. This is the opposite direction to the one we study here: it shows settings where
loss minimization results from multicalibration. A more recent work [20] in fact shows an
equivalence between multicalibration and certain swap loss minimization problems. Without
getting into details, the model of loss minimization is inspired by internal regret in online
learning, and is different from the standard notion that we study here.

The relation between loss minimization and multicalibration has been investigated ex-
tensively in the literature over the last few years. In addition to what we have discussed
earlier in the introduction, it is known that minimizing any proper loss for linear models over
a base hypothesis class yields multiaccuracy w.r.t. the base class [17], but not multicalibra-
tion [22]. [32] showed that retraining the last layer of a DNN with cross-entropy guarantees
multiaccuracy with respect to the features in the penultimate layer; this can be seen as a
consequence of the result of [17] for linear models.

There is a long history studying calibration (not MC) which can be viewed as a special
case of MC where the groups are defined by f(x) only, i.e., c(f(x)), ignoring the features
x itself. In particular, a set of practical studies that have found that large NNs are often
calibrated “out of the box” despite being optimized solely for loss [37, 24, 30, 10, 8]. The
work of [4] attempts to explain this phenomenon by proving that there is a tight connection
between the smooth calibration error [29, 3] and the loss reduction that is obtainable by using
Lipshcitz post-processing of the predicitons. The upshot is that models whose predictions
cannot be improved by such post-processing have small calibration error. They speculate
that this explains why some large NNs are calibrated out of the box.

The work of [32] showed that the performance of image classifiers on demographic
subgroups can be improved by ensuring multiaccuracy. We are not aware of experimental
work measuring the degree of multicalibration for large neural networks on massive training
sets. There are numerous works on the representation ability of NNs (e.g. [26]) and about
their accuracy and generalization (e.g. [48, 39]), too large to survey here.

1.6 Paper Organization
Section 2 defines the setting and mathematical preliminaries. Section 3 gives our main results,
with the regularization analysis covered in Section 3.1. In Section 4 we show a matching
lower bound for families of juntas. Finally, Section 5 discusses risks and limitations of the
present work.

2 Preliminaries

We assume X ⊆ Rd is a Euclidean space in some dimension d, and focus on binary outcomes
(labels) in Y = {0, 1}. We can also allow for Y = [0, 1], in which case the multicalibration
guarantee we achieve is called mean multicalibration [28], or the multiclass setting with

ITCS 2024



17:8 Loss Minimization Yields Multicalibration for Large Neural Networks

l > 2 distinct labels. We focus on the binary outcome setting for simplicity. We assume an
arbitrary, unknown joint distribution D on X × Y. For simplicity we focus on the expected
squared loss of predictors f : X → [0, 1] defined as follows:

L(f) := E(x,y)∼D

[(
y − f(x)

)2
]
.

Since only one distribution D is used throughout the analysis, we assume it is fixed and
omit it from our notation, e.g., writing L(f) rather than LD(f) and omitting it from the
expectation when clear from context.

We let NNn denote the family of fully-connected Neural Networks with the standard
ReLU activations and exactly n nodes, which map inputs from X to output values in [0, 1].
The ReLU activation computes ReLU(z) := max(0, z) on input z. Thus NNn is defined by
a Directed Acyclic Graph (DAG) with n nodes, where the activation of a node with din
inputs is a = ReLU(w · ain + b) where ain ∈ Rdin is the vector of activations of its inputs,
w ∈ Rdin is a vector of equal dimension, and b ∈ R is a bias term. We also define NN0 = {0},
i.e., the constant 0 function is defined to be computed by a 0-node NN. The set NNn is
monotonically non-decreasing with n since we can trivially add identity nodes to compute
the same function.

Enforcing an output in [0, 1] is added to the definition for convenience and can easily be
achieved by wrapping the output z in two ReLUs:

∀z ∈ R, clip(z) := ReLU(z − ReLU(z − 1)) = max(0,min(1, z)) ∈ [0, 1]. (3)

Similarly to the definition of NNn, we use NN∗
k to denote the family of fully-connected

Neural Networks with the standard ReLU activations and exactly k nodes, which map inputs
from X × [0, 1] to output values in [−1, 1]. To get negative output values, we allow the output
node to drop the ReLU transformation.

The results in this paper can be extended by enforcing various architectures, such as a NN
with a given number of hidden layers, but we present the results for a general feed-forward
architecture for simplicity.

3 Multicalibration from Loss Minimization

In this section, we prove Theorems 2 and 3 showing that for the family of neural networks of a
given size as well as other families that satisfy closeness under composition, loss minimization
over the family implies multicalibration.

We start with a key observation used in essentially all previous boosting-style algorithms
for multicalibration:

▶ Lemma 7 (Loss reduction from MC violation (see e.g. [23, 16, 4])). Let f : X → [0, 1] be
a predictor and c : X × [0, 1] → [−1, 1] be an auditor function. For a distribution D over
X × {0, 1}, define β ∈ [−1, 1] by

β := E(x,y)∼D
[
c
(
x, f(x)

)
·
(
y − f(x)

)]
.

Define a new predictor h : X → [0, 1] such that h(x) := clip
(
f(x) + βc(x, f(x))

)
for every

x ∈ X . Then L(h) ≤ L(f) − β2.
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Proof. Define g(x) := f(x) + βc(x, f(x)), so h(x) = clip(g(x)). Then,

L(g) = E
[
(y − f(x) − βc(x, f(x)))2]

= E
[
(y − f(x))2 − 2βc(x, f(x))(y − f(x)) + β2c2(x, f(x))

]
= L(f) − 2β E [c(x, f(x))(y − f(x))] + β2 E

[
c2(x, f(x))

]
= L(f) − 2β2 + β2 E

[
c2(x, f(x))

]
.

Since c2(x, f(x)) ≤ 1, this implies that L(g) ≤ L(f) − β2. Finally, note that for any (x, y),
(y − h(x))2 ≤ (y − g(x))2 since y ∈ {0, 1} and h(x) is the projection of g(x) onto the closest
point in [0, 1], thus L(h) ≤ L(g). ◀

We prove Theorem 3 using Lemma 7:

Proof of Theorem 3. For each n, define OPTn to be the infimum of L(f) over f ∈ Fn. We
first show that for all but at most k/α choices of n,

OPTn ≤ OPTn+k + α. (4)

By our assumption, we have F0 ⊆ F1 ⊆ · · · , so OPTn is non-increasing in n. It is also clear
that OPTn ∈ [0, 1]. For j ∈ {1, . . . , k}, suppose we can find m different nonnegative integers
n1 < · · · < nm such that each ni violates (4) (i.e., OPTni > OPTni+k + α) and satisfies
ni ≡ j mod k. It is clear that ni + k ≤ ni+1, and thus OPTni+k ≥ OPTni+1 . Therefore,

1 ≥ OPTn1 − OPTnm+k ≥
m∑
i=1

(OPTni
− OPTni+k) ≥ mα,

which implies m ≤ 1/α. That is, there are at most 1/α choices of n that violate (4) and
satisfy n ≡ j mod k. Summing up over j, we know that there are at most k/α choices of n
that violate (4).

It remains to show that for every n satisfying (4), for every ε ∈ (0, 1), every ε-loss-optimal
f ∈ Fn is O(

√
α+ ε)-MC w.r.t. C. For c ∈ C, define β :=

[
c
(
x, f(x)

)
·
(
y − f(x)

)]
and

h(x) := clip
(
f(x) + βc(x, f(x))

)
as in Lemma 7. By our assumption, h ∈ Fn+k. Therefore,

by Lemma 7,

β2 ≤ L(f) − L(h) ≤ L(f) − OPTn+k ≤ L(f) − OPTn + α ≤ ε+ α.

This implies |β| ≤
√
α+ ε. Since this holds for any c ∈ C, the predictor f must be

(C,
√
α+ ε)-MC. ◀

We prove Theorem 2 using Theorem 3 and the following basic property of neural networks:

▶ Lemma 8 (Neural networks are closed under composition). Let f ∈ NNn and c ∈ NN∗
k.

Define predictor h : X → [0, 1] such that h(x) := clip
(
f(x) + βc(x, f(x))

)
for every x ∈ X .

Then h ∈ NNn+k+2.

Proof. Observe that h(x) = clip
(
f(x) + βc(x, f(x))

)
is computed by

h(x) = ReLU
(
f(x) + βc(x, f(x)) − ReLU(f(x) + βc(x, f(x)) − 1)

)
. (5)

as can be seen through Eq. (3). Then observe that Eq. (5) is indeed a representation of
a (n+ k + 2)-node NN: n nodes to compute f(x), k nodes to compute c(x, f(x)) and then
the 2 additional ReLU nodes as described (note that f(x) and c(x, f(x)) are both re-used
without recomputing them).3 Thus h ∈ NNn+k+2 as claimed. ◀

Proof of Theorem 2. The theorem follows immediately by combining Theorem 3 and
Lemma 8. ◀

3 We allow the output node of the k-node network computing c(x, f(x)) to drop the ReLU transformation

ITCS 2024
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3.1 Regularization
We show that the regularized approach discussed in Section 1.4 allows us to avoid the unlucky
sizes n. Specifically, we prove the following theorem about general predictor families in the
setting of Theorem 3 and then specialize it to neural networks in Theorem 11.

▶ Theorem 9. In the setting of Theorem 3, fix α > 0 and consider n ∈ Z≥0 and f ∈ Fn that
minimize L(f) + αn/k up to error ε, where αn/k is a regularization term that depends on n.
That is,

L(f) + αn/k ≤ inf
n′∈Z≥0,f ′∈Fn′

L(f ′) + αn′/k + ε. (6)

Then f is (C,
√
α+ ε)-MC.

▶ Remark 10. We can always choose n ≤ k/α in (6). If n > k/α, we can replace n by ñ = 0
and replace f by an arbitrary f̃ ∈ F0, and get an improvement: L(f̃) + αñ/k ≤ 1 < αn/k ≤
L(f) + αn/k.

Proof of Theorem 9. Fixing n′ = n+ k in (6), we have

L(f) + αn/k ≤ inf
f ′∈Fn+k

L(f ′) + α(n+ k)/k + ε = OPTn+k + α(n+ k)/k + ε.

This implies that L(f) ≤ OPTn+k + α + ε. The rest of the proof is identical to the
proof of Theorem 3. Specifically, for c ∈ C, defining β and h as in Lemma 7, we get
β2 ≤ L(f) − L(h) ≤ L(f) − OPTn+k ≤ α+ ε, which implies |β| ≤

√
α+ ε, as desired. ◀

Combining Theorem 9 and Lemma 8, we get the following theorem about neural networks:

▶ Theorem 11 (Size-regularized NNs). Let D be a distribution over X × {0, 1}. For every
k ∈ Z>0 and every α > 0, consider n ∈ Z≥0 and f ∈ NNn that minimize L(f) + αn/(k + 2)
up to error ε. That is,

L(f) + αn/(k + 2) ≤ inf
n′∈Z≥0,f ′∈NNn′

L(f ′) + αn′/(k + 2) + ε.

Then f is (NN∗
k,

√
α+ ε)-MC.

By Remark 10, the theorem above gives a way of finding an n ≤ (k + 2)/α-node NN that
is

√
α+ ε-MC with respect to k-node NNs.

Finite training sets

If one has a training set consisting of m examples drawn i.i.d. from D, a natural approach is
to minimize training loss. If m is sufficiently large compared to the number of NN parameters,
which is polynomial in n, generalization bounds guarantee every f ∈ NNn will have training
loss close to its true loss L(f), and thus any f̂n which minimizes training error (still ignoring

because c(x, f(x)) ∈ [−1, 1] could be a negative value which cannot be the output of a ReLU transform-
ation. Thus the (n + k + 2)-node network we construct to compute h may contain an internal node p
that does not apply the ReLU transformation. This can be easily fixed by noting that node p computes
its output a by a = w · ain + b where ain is a vector consisting of outputs of previous nodes. We can
remove node p from the (n + k + 2)-node network without changing the final output because any node
taking a as input can alternatively take ain as input and reconstruct a using the affine transformation
w · ain + b.
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computation time) will have, say, L(f̂n) ≤ minNNn L(f) + ε for ε = O(α). This can, in turn,
be used with the above theorems to show that, outside a set of O(k/α) NN sizes, all NNs that
are optimal on the training set will be O(

√
α)-MC with respect to k-node NNs. While such

an analysis would be straightforward, we find it unsatisfactory given the fact that current
generalization bounds, though correct, seem to be too loose to capture the performance of
many NN learning algorithms in practice (e.g. [48, 39]). However, our results above may
be relevant in settings where generalization is guaranteed – for example, when models are
trained using Stochastic Gradient Descent (SGD) for only one-epoch (one pass through the
training data). In this case, the learning algorithm can be thought of as optimizing via SGD
directly on the population loss, without considering a finite train set. If we heuristically
believe that, when run for long enough, the optimization reaches close to a population loss
minima within the architecture family, then our results imply most resulting minima will
also be multicalibrated. Moreover, the one-epoch setting may not be far from reality, since
most modern large language models are indeed trained for only one epoch [6, 2], and there is
evidence that generalization in the multi-epoch setting can be understood via the one-epoch
setting [40].

4 A Lower Bound

We would like to understand the tightness of the analysis we have presented. Unfortunately,
this is challenging due to the complex structure of NNs. Instead, this section provides some
evidence of the tightness of our analysis at least using our current methods. To do this, we
consider another natural class of functions namely k-juntas and a weaker notion of multigroup
fairness called multiaccuracy (MA), to which our analysis applies. In this setting, we show a
sharp result, proving that our bounds are tight up to constant factors.

The class of juntas, functions that depend on a small subset of inputs, has been well
studied in computational learning theory [38, 14]. In this section, we show that juntas satisfy
a similar property to NNs in that, for most sizes, minimizing loss for juntas also implies MA
with respect to smaller juntas. We also prove a lower bound for showing that our bounds are
tight up to constant factors.

For our results in this section, we choose the domain X to be the Boolean cube {−1, 1}m
for a dimension m ∈ Z>0. That is, every x ∈ X can be written as x = (x1, . . . , xm) where
xi ∈ {−1, 1} for every i = 1, . . . ,m. For a positive integer k and a function f : X → R,
we say f is a k-junta if there exist i1, . . . , ik ∈ {1, . . . ,m} and g : {−1, 1}k → R such that
f(x) = g(xi1 , . . . , xik ) for every x ∈ X . We say a function f : X → R is a 0-junta if f is a
constant function. We use Jk (resp. J ∗

k ) to denote the family of k-juntas that map inputs in
X = {−1, 1}m to output values in [0, 1] (resp. [−1, 1]).

We consider multiaccuracy, which is a weaker notion than multicalibration, where the
auditor functions c do not have access to the predictions f(x):

▶ Definition 12 (Multiaccuracy [23]). Let γ > 0 and C be a class of auditor functions
c : X → [−1, 1]. The predictor f : X → [0, 1] is (C, γ)-multiaccurate or (C, γ)-MA if for all
c ∈ C,∣∣∣E(x,y)∼D

[
c(x) ·

(
y − f(x)

)] ∣∣∣ ≤ γ.

We prove the following theorem for juntas which is similar to our result about neural
networks in Theorem 2 (restating the theorem from the introduction):
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▶ Theorem 4. Let D be a distribution over X × {0, 1}, where X = {−1, 1}m for a positive
integer m. Let k ∈ Z>0 and α ∈ (0, 1] be parameters. Then for all but at most k/α
nonnegative integers n, for any ε > 0, every ε-loss-optimal f ∈ Jn is (J ∗

k ,
√
α+ ε)-MA.

The proof works exactly like the proof of Theorem 2 using the following observation. For
f ∈ Jn, c ∈ J ∗

k , and β ∈ R, define function h : X → [0, 1] as

h(x) = clip(f(x) + βc(x)),

then h ∈ Jn+k. The following theorem gives a lower bound that matches Theorem 4 up to a
constant factor.

▶ Theorem 13. For every k ∈ Z>0 and every α ∈ (0, 1/(4π2)], there exist m ∈ Z>0, a
distribution D over X × Y with X = {−1, 1}m and Y = {0, 1}, and at least k/(6π2α) distinct
nonnegative integers n such that any model fn ∈ Jn is not (J ∗

k ,
√
α)-MA.

Key to our proof of Theorem 13 is the majority function. For an odd positive integer k,
we define the majority function MAJ : {−1, 1}k → {−1, 1} such that for every (x1, . . . , xk) ∈
{−1, 1}k, MAJ(x1, . . . , xk) = 1 if x1 + · · · + xk > 0, and MAJ(x1, . . . , xk) = −1 otherwise.
The following lemma about majority functions follows from standard noise sensitivity bounds
(see [41]). We provide a proof in Appendix A for completeness.

▶ Lemma 14. For any odd positive integers m and k satisfying k ≤ m,

E[MAJ(x1, . . . , xk)MAJ(x1, . . . , xm)] > 2
π

·
√
k

m
,

where the expectation is over (x1, . . . , xm) drawn uniformly at random from {−1, 1}m.4

Using the majority function, we define a distribution D over {−1, 1}m × {0, 1} for any
odd positive integer m as follows. We first draw x ∈ {−1, 1}m uniformly at random and then
set

y = 1
2(1 + MAJ(x)) ∈ {0, 1}.

We define D to be the distribution of (x, y). Lemma 14 allows us to prove the following
lemma about the distribution D, which we then use to prove Theorem 13.

▶ Lemma 15. Let k,m be odd positive integers satisfying k ≤ m. Define X := {−1, 1}m and
define distribution D as above. Let α > 0 be a parameter satisfying

α ≤ k

π2m
. (7)

Then any function f ∈ Jm−k is not (C,
√
α)-MA with respect to C = J ∗

k .

Proof. It suffices to show that for any function f ∈ Jm−k, there exist i1, . . . , ik ∈ {1, . . . ,m}
such that

E(x,y)∼D[(y − f(x))MAJ(xi1 , . . . , xik )] > 1
π

·
√
k

m
. (8)

4 The constant 2/π cannot be improved because in the limit where k, m → ∞,
√

k/m → ρ ∈ (0, 1),
using the central limit theorem one can show that E[MAJ(x1, . . . , xk)MAJ(x1, . . . , xm)] → (2/π) arcsin ρ.
Also, it is easy to show that E[f(x1, . . . , xk)MAJ(x1, . . . , xm)] is maximized when f = MAJ among all
f : {−1, 1}k → [−1, 1] (see e.g. Lemma 13 in [18]).



J. Błasiok, P. Gopalan, L. Hu, A. T. Kalai, and P. Nakkiran 17:13

By the definition of f ∈ Jm−k(X ), there exist j1, . . . , jm−k ∈ {1, . . . ,m} and g : {−1, 1}m−k

such that

f(x) = g(xj1 , . . . , gjm−k
) for every x ∈ X .

Now we choose distinct i1, . . . , ik ∈ {1, . . . ,m} \ {j1, . . . , jm−k}. We have

E(x,y)∼D[f(x)MAJ(xi1 , . . . , xik )] = E[g(xj1 , . . . , gjm−k
)MAJ(xi1 , . . . , xik )] = 0, (9)

where the last equation holds because (xi1 , . . . , xik ) is independent from (xj1 , . . . , xjm−k
). By

Lemma 14 and our choice of distribution D,

E(x,y)∼D[yMAJ(xi1 , . . . , xik )] > 1
π

·
√
k

m
. (10)

Combining (9) and (10) proves (8). ◀

We are now ready to prove our lower bound Theorem 13.

Proof of Theorem 13. For any positive integer k, define k1 to be the largest odd integer that
does not exceed k. It is easy to verify that k1 ≥ k/2 > 0. For any α ∈ (0, 1/(4π2)], choose
m to be the largest odd integer smaller than k1/(π2α). Our assumption that α ≤ 1/(4π2)
ensures that k1/(π2α) ≥ 4k1, and thus m ≥ 3k1 and m ≥ k1/(2π2α). Moreover, our choice
of m ensures that

α ≤ k1

π2m
.

By Lemma 15, for X = {−1, 1}m and Y = {0, 1} there exists a distribution D over X ×Y such
that for every nonnegative integer n = 0, . . . ,m− k1, any model fn ∈ Jn is not (C,

√
α)-MA

with respect to C = J ∗
k1

. Since J ∗
k1

⊆ J ∗
k , any fn ∈ Jn is also not (C,

√
α)-MA with respect

to C = J ∗
k . The number of such integers n is

m− k1 + 1 ≥ 2m/3 ≥ (2/3)(k1/(2π2α)) = k1/(3π2α) ≥ k/(6π2α). ◀

5 Discussion

We start by discussing some limitations of our work. We do not provide any guidance on
selecting k, which is an important theoretical and practical issue. Second, there is a blowup
in the NN size n required to achieve MC with respect to NNs of size k. Also, the model we
study is highly unrealistic in that we assume that we have unbounded training data and
computational resources at training time to achieve near-minimum expected loss over neural
networks of a given size. Although current pre-training efforts do involve massive amounts of
data and compute, it is not clear that they are or will ever approach what could be done in
this limit.

Nonetheless, we feel that it still may be useful to understand the nature of different
predictor representations and the tensions that they face. First of all, one conclusion of
this work is that one can achieve MC with NNs–as a representation they are not limited
in the same way as some other models. In particular, simpler models (which may enjoy
other benefits such as interpretability) may face an inherent tension between accuracy and
calibration overall and among different groups.
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If one leads a group of practitioners training NNs and one is concerned about multicalibra-
tion, our work suggests that incentivizing them to simply minimize loss may, to some extent,
be aligned with MC. This is formal in the sense of Lemma 7: if one can identify a group for
which the current predictor is miscalibrated, then one can further reduce the loss, escaping a
local minimum if the predictor was trained with a local optimization algorithm. But this may
naturally happen if they were incentivized to minimize loss. If it is not happening naturally,
such a “check” could be suggested and it would be entirely compatible with the group’s loss
incentives.

Future work

It would be interesting to empirically measure whether NNs used in practice are multic-
alibrated. If so, this might be viewed as one additional benefit of their use over simpler
models. If not, it would be interesting to understand the reasons– the gaps between theory
and practice.

Another direction would be to prove a similar result for other classes of hypotheses.
The key property of neural nets that we use is that the post-processing required to update
the predictor can be incorporated into a predictor of larger size. It is not hard to see
that other classes such as decision trees and branching programs (parametrized by size) do
have this property. But they are not known to have provable algorithms for squared loss
minimization. In contrast linear models do admit efficient loss minimization. But they are
not powerful enough to be closed under the kinds of post-processing that multicalibration
requires. Moreover, they cannot express the kind of predicates that are interesting for
multicalibration, such as x ∈ S and f(x) = 0.1.

An intriguing question is whether there is a hypothesis class that is indeed powerful
enough to give interesting multicalibration guarantees and is closed under post-processing, but
which admits efficient loss minimization. It is also possible that there exists a no-free-lunch
flavor of result which rules out such a possibility. We leave formalizing and proving such
results to future work.

Risks

We conclude on a cautionary note. There is a risk that this and other similar work will
be misinterpreted as “fairness/multicalibration comes for free if you just optimize loss in
DNNs” but that is not a valid conclusion for multiple reasons. First of all, multicalibration
is only one notion of fairness. It is particularly applicable in settings where and the groups
of interest are identifiable from x. Multicalibration cannot protect groups of concern that
are not identifiable from x, e.g., race is a complex feature that may not be explicitly coded
or perfectly computable from existing features, and the protection gets weaker for smaller
groups.

If a practitioner was given an explicit set of protected groups whose accuracy is to be
prioritized, they ought to consider all steps in the machine learning pipeline and not just
optimization: they might adjust their architectures, collect additional data, or expand the
feature set so as to increase the family of protected subgroups and performance on those
groups. For instance, explicitly investigating multicalibration may lead to discovering certain
groups on which it is hard to achieve good calibration, which requires a different type of
learning architecture, better datasets or more informative features.
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A Correlation between Majority Functions

We restate and prove Lemma 14.

▶ Lemma 14. For any odd positive integers m and k satisfying k ≤ m,

E[MAJ(x1, . . . , xk)MAJ(x1, . . . , xm)] > 2
π

·
√
k

m
,

where the expectation is over (x1, . . . , xm) drawn uniformly at random from {−1, 1}m.5

Proof. For any S ⊆ {1, . . . ,m}, we define

M̂AJk(S) := E[MAJ(x1, . . . , xk)
∏
i∈S

xi].

By the Plancherel theorem,

E[MAJ(x1, . . . , xk)MAJ(x1, . . . , xm)] =
∑

S⊆{1,...,m}

M̂AJk(S)M̂AJm(S).

It is easy to verify that if S is not a subset of {1, . . . , k}, then M̂AJk(S) = 0. Also, by
calculating the Fourier coefficients of the majority function [47] (see Section 5.3 in [41]), we
have M̂AJk(S)M̂AJm(S) ≥ 0 for any S ⊆ {1, . . . , k}. Therefore,

E[MAJ(x1, . . . , xk)MAJ(x1, . . . , xm)] ≥
k∑
i=1

M̂AJk({i})M̂AJm({i})

= k
((

k−1
(k−1)/2

)
/2k−1

) ((
m−1

(m−1)/2
)
/2m−1

)
> k

√
2
πk

√
2
πm

= 2
π

√
k

m
.

Here we use the fact that for any odd positive integer k,(
k−1

(k−1)/2

)
/2k−1 = 1 × 3 × · · · × (k − 2)

2 × 4 × · · · × (k − 1) =
√

1
k

·
(1

2 · 3
2 · 3

4 · 5
4 · · · · · k − 2

k − 1 · k

k − 1

)
>

√
1
k

· 2
π

,

where the last inequality follows from the Wallis product formula for π. ◀

B Generalization to Any Proper Loss

In our main results (Theorems 2, 3, 4, 9, 11), we show that multicalibration can be achieved
by loss minimization over many predictor families. While we present these results using
the squared loss, in this section we show that they can be generalized to any proper loss
function satisfying basic regularity conditions, including the cross-entropy loss used widely

5 The constant 2/π cannot be improved because in the limit where k, m → ∞,
√

k/m → ρ ∈ (0, 1),
using the central limit theorem one can show that E[MAJ(x1, . . . , xk)MAJ(x1, . . . , xm)] → (2/π) arcsin ρ.
Also, it is easy to show that E[f(x1, . . . , xk)MAJ(x1, . . . , xm)] is maximized when f = MAJ among all
f : {−1, 1}k → [−1, 1] (see e.g. Lemma 13 in [18]).
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in neural network training. The main technical tool we use to establish this generalization is
Theorem 19 below from the work of [4]. Theorem 19 generalizes the loss reduction lemma
(Lemma 7) to general proper loss functions.

We first formally define proper loss functions. A loss function ℓ takes as input a binary
outcome y ∈ {0, 1} and a prediction value v ∈ [0, 1], and outputs a real number ℓ(y, v) ∈ R.
A proper loss function is defined as follows:

▶ Definition 16 (Proper loss). Let V ⊆ [0, 1] be a non-empty interval. We say a loss function
ℓ : {0, 1}×V → R is proper if for every v ∈ V , it holds that v ∈ arg minv′∈V Ey∼Ber(v)[ℓ(y, v′)].

One can easily verify that the squared loss ℓsq(y, v) = (y − v)2 is a proper loss function over
V = [0, 1], and the cross-entropy loss ℓxent(y, v) = −y ln v − (1 − y) ln(1 − v) is a proper loss
function over V = (0, 1).

Given input x ∈ X , a neural network trained to minimize the expected cross-entropy loss
usually first computes a logit t ∈ R, from which the final prediction v ∈ (0, 1) is obtained
through the sigmoid transformation σ by v = σ(t) := 1/(1 + e−t). Given this relationship
between v and t, the cross-entropy loss on v is the same as the logistic loss ℓlogistic on t:

ℓxent(y, v) = ℓlogistic(y, t) := ln(1 + et) − yt. (11)

Therefore, instead of considering the cross-entropy loss of the final prediction v, we can
equivalently consider the logistic loss of the logit t. This allows us to avoid complication
caused by the sigmoid transformation and focus just on the ReLU network producing the
logit.

The following lemma generalizes this correspondence between the cross-entropy loss and
the logistic loss to any proper loss:

▶ Lemma 17 (see [4]). Let V ⊆ [0, 1] be a non-empty interval. Let ℓ : {0, 1} × V → R be a
proper loss function. For every v ∈ V , define dual(v) := ℓ(0, v) − ℓ(1, v). Then there exists a
convex function ψ : R → R such that

ℓ(y, v) = ψ(dual(v)) − y dual(v) for every y ∈ {0, 1} and v ∈ V . (12)

We can additionally ensure that ψ(t1)−ψ(t2)
t1−t2 ∈ [0, 1] for any distinct t1, t2 ∈ R. If ψ is

differentiable, then ∇ψ(t) ∈ [0, 1] for every t ∈ R, and ∇ψ(dual(v)) = v for every v ∈ V ,
where ∇ψ denotes the derivative of ψ.

A proof of Lemma 17 can be found in the work of [4]. It is based on a connection between
proper loss functions and conjugate pairs of convex functions studied by [45, 43, 44, 7].

In Lemma 17, we say dual(v) is the dual prediction corresponding to a prediction value
v ∈ V . When ℓ is the cross-entropy loss ℓxent, the dual prediction dual(v) is exactly the logit t
corresponding to the prediction v. For any proper loss ℓ, Lemma 17 identifies a corresponding
convex function ψ : R → R. We define a dual loss function ℓ(ψ) : {0, 1} × R → R such that

ℓ(ψ)(y, t) = ψ(t) − yt for every y ∈ {0, 1} and t ∈ R. (13)

This definition of a dual loss function is essentially the definition of the Fenchel-Young loss
in the literature (see e.g. [11, 5]). Equation (12) implies the following for any v ∈ V and the
corresponding t = dual(v):

ℓ(y, v) = ℓ(ψ)(y, t). (14)
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This generalizes (11) where ℓxent is a special case of the proper loss ℓ, and ℓlogistic is exactly
the dual loss ℓ(ψ) for the function ψ obtained from Lemma 17. A loss function ℓ(ψ) satisfying
the relationship in (14) has been referred to as a composite loss (see e.g. [7, 42]).

Using Lemma 17 and (14), to study a general proper loss ℓ, it suffices to consider a convex
function ψ obtained from Lemma 17 and the dual loss ℓ(ψ) defined in (13). The dual loss
ℓ(ψ) depends on the dual prediction t, so instead of predictors f : X → [0, 1], it is more
convenient to consider dual predictors g : X → R that output dual predictions g(x) ∈ R.
We consider the following definition of multicalibration for a dual predictor g. Note that
by Lemma 17, we can recover a prediction v ∈ V from its dual prediction t = dual(v) by
v = ∇ψ(t), assuming that ψ is differentiable.

▶ Definition 18 (Multicalibration for dual predictors). Let ψ : R → R be a differentiable
function satisfying ∇ψ(t) ∈ [0, 1] for every t ∈ R. Let γ > 0 and C be a class of auditor
functions c : X × R → [−1, 1]. For a dual predictor g : X → R, define f : X → [0, 1] by
f(x) = ∇ψ(g(x)). We say g is (C, γ)-multicalibrated or (C, γ)-MC if for all c ∈ C,∣∣∣E(x,y)∼D

[
c
(
x, g(x)

)
·
(
y − f(x)

)] ∣∣∣ ≤ γ. (15)

We can now state the theorem below which generalizes the loss reduction lemma (Lemma 7)
to general proper loss functions. For λ ≥ 0, we say a differentiable function ψ : R → R is
λ-smooth if |∇ψ(t1) − ∇ψ(t2)| ≤ λ|t1 − t2| for every t1, t2 ∈ R. For the cross-entropy loss,
the corresponding function ψ is given by ψ(t) = ln(1 + et) and it is (1/4)-smooth.

▶ Theorem 19 (Proper loss reduction from multicalibration violation [4]). Let ψ : R → R be
a differentiable function satisfying ∇ψ(t) ∈ [0, 1] for every t ∈ R. For λ ≥ 0, assume that
ψ is λ-smooth. For a dual predictor g : X → R, define f : X → [0, 1] by f(x) = ∇ψ(g(x)).
Consider an auditor function c : X × R → [−1, 1]. For a distribution D over X × {0, 1},
define β ∈ [−1, 1] by

β := E(x,y)∼D
[
c
(
x, g(x)

)
·
(
y − f(x)

)]
.

Define a new dual predictor g′ : X → R such that g′(x) = g(x) + (β/λ)c(x, g(x)). Then,

E(x,y)∼D ℓ
(ψ)(y, g′(x)) ≤ E(x,y)∼D ℓ

(ψ)(y, g(x)) − β2/(2λ).

We omit the proof of Theorem 19 as it can be found in the work of [4]. We now use Theorem 19
to generalize Theorem 3 to general proper loss functions. Our proof of Theorem 3 relies
on the basic fact that the squared loss is bounded in [0, 1], but many proper loss functions
including the cross-entropy loss do not have a similar boundedness property. Nevertheless,
we can still generalize Theorem 3 by making a weaker assumption about the loss function.
For the cross-entropy loss ℓxent and its corresponding dual loss ℓ(ψ) (the logistic loss), the
following holds if we choose t0 = 0 and B = ln 2:

ℓ(ψ)(y, t0) ≤ ℓ(ψ)(y, t) +B for every y ∈ {0, 1} and t ∈ R, (16)

because ℓ(ψ)(y, t0) = ln 2 when t0 = 0, and ℓ(ψ)(y, t) ≥ 0 for every y ∈ {0, 1} and t ∈ R. For
a general dual loss ℓ(ψ), the assumption that (16) holds for some t0 ∈ R and B ∈ R≥0 is a
weaker assumption than boundedness.

Assuming (16), we can extend our main result Theorem 3 to general proper loss functions
in Theorem 20 below. For a distribution D over X × {0, 1} and a class G of dual predictors
g : X → R, we say g ∈ G is ε-loss-optimal w.r.t. a dual loss ℓ(ψ) if

E(x,y)∼D[ℓ(ψ)(y, g(x))] ≤ inf
g′∈G

E(x,y)∼D[ℓ(ψ)(y, g′(x))] + ε.
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▶ Theorem 20 (Generalization of Theorem 3 to any proper loss). Let D be a distribution over
X × {0, 1}. Let ψ : R → R be a differentiable function satisfying ∇ψ(t) ∈ [0, 1] for every
t ∈ R. For λ ≥ 0, assume that ψ is λ-smooth. Assume that (16) holds for some t0 ∈ R and
B ∈ R≥0. Let C be a class of functions c : X × R → [−1, 1]. Let G0,G1, . . . be families of
dual predictors g : X → R satisfying G0 ⊆ G1 ⊆ · · · and that the constant function g(x) = t0
belongs to G0. For some positive integer k, assume that for every nonnegative integer n,
every g ∈ Gn, every c ∈ C, and every β ∈ [−1/λ, 1/λ], the composed dual predictor g′ defined
below satisfies g′ ∈ Gn+k:

g′(x) = g(x) + βc(x, g(x)) for every x ∈ X . (17)

Then for every α > 0, for all but at most Bk/α choices of n ∈ Z≥0, for any ε > 0, every
ε-loss-optimal g ∈ Gn w.r.t. ℓ(ψ) is

(
C,

√
2λ(α+ ε)

)
-MC.

Theorem 20 can be proved similarly to Theorem 3. Specifically, by (16), we have
E[ℓ(ψ)(y, t0)] ≤ E[ℓ(ψ)(y, g(x))] +B for any dual predictor g : X → R. If we define OPTn to
be the infimum of E[ℓ(ψ)(y, g(x))] over g ∈ Gn, we have

OPT0 ≤ E[ℓ(ψ)(y, t0)] ≤ OPTn +B (18)

by our assumption that the constant predictor g(x) = t0 belongs to G0. Therefore we have
B ≥ OPT0 − OPTn, bounding the total decrease of OPTn as a non-increasing function of n.
We can combine this bound with Theorem 19 to prove Theorem 20. We omit the details.

Using Theorem 20, we can prove a result for neural networks generalizing Theorem 2 to
any proper loss. We use ÑNn to denote the family of all functions f : X → R computable by
an n-node feed-forward network with ReLU activations. We use ÑN

∗
k to denote the family of

all functions c : X × R → [−1, 1] computable by a k-node feed-forward network with ReLU
activations. To make a negative output possible, we allow the output node of a network in
ÑNn and ÑN

∗
k to drop the ReLU transformation.

▶ Theorem 21 (Generalization of Theorem 2 to any proper loss). Let D be a distribution over
X ×{0, 1}. Let ψ : R → R be a differentiable function satisfying ∇ψ(t) ∈ [0, 1] for every t ∈ R.
For λ ≥ 0, assume that ψ is λ-smooth. Assume that (16) holds for some t0 ∈ R and B ∈ R≥0.
Then for every k ∈ Z>0 and every α > 0, for all but at most B(k + 1)/α choices of n ∈ Z>0,
for any ε ∈ (0, 1), every ε-loss-optimal g ∈ ÑNn w.r.t. ℓ(ψ) is

(
ÑN

∗
k,

√
2λ(α+ ε)

)
-MC.

The proof of Theorem 21 is analogous to Theorem 2. We can similarly generalize Theorems 4,
9, and 11 to any proper loss. We omit the details.
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