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Abstract
Gameplay under various forms of uncertainty has been widely studied. Feldman et al. [8] studied a
particularly low-information setting in which one observes the opponent’s actions but no payoffs, not
even one’s own, and introduced an algorithm which guarantees one’s payoff nonetheless approaches
the minimax optimal value (i.e., zero) in a symmetric zero-sum game. Against an opponent playing a
minimax-optimal strategy, approaching the value of the game is the best one can hope to guarantee.
However, a wealth of research in behavioral economics shows that people often do not make perfectly
rational, optimal decisions. Here we consider whether it is possible to actually win in this setting if
the opponent is behaviorally biased. We model several deterministic, biased opponents and show
that even without knowing the game matrix in advance or observing any payoffs, it is possible
to take advantage of each bias in order to win nearly every round (so long as the game has the
property that each action beats and is beaten by at least one other action). We also provide a
partial characterization of the kinds of biased strategies that can be exploited to win nearly every
round, and provide algorithms for beating some kinds of biased strategies even when we don’t know
which strategy the opponent uses.
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1 Introduction

Game theory has traditionally assumed all agents are perfectly rational utility maximizers [14],
but behavioral economics shows this assumption is often unsound; people often deviate
from “optimal” behavior in predictable ways, exhibiting behavioral biases such as loss
aversion (exhibiting a higher sensitivity to losses than equivalent gains) and confirmation
bias (interpreting information in a way which favors existing beliefs) [10, 4]. These insights
initiated the study of behavioral game theory, which has demonstrated that people employ
consistent “irrational” strategies in wide-ranging strategic settings (see [3]). Given the
evidence that people often use behavioral strategies in games, it is important to understand
the implications of this in algorithmic interactions (see, e.g., [9, 1, 6, 12]).

In this work, we are interested in the extent to which behavioral biases are vulnerable
to exploitation in competitive games. To study this, we consider symmetric, repeated,
two-player, zero-sum games, and find that even an uninformed opponent who does not know
the game or observe any payoffs can take advantage of a wide variety of biased strategies to
beat the biased player in nearly every round.

The setting we consider here is based on work by Feldman et al. [8]. Gameplay under
various forms of uncertainty is a focus of much research interest; for example, the bandit
setting, in which a player observes payoffs after each round but not the opponent’s play,
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18:2 Winning Without Observing Payoffs

has been widely studied (see [2, 5]). Feldman et al. introduced a complementary setting,
in which the player observes the opponent’s play but no payoffs. No assumptions are made
about the opponent, who may have full knowledge of the game. In particular, Feldman et
al. consider symmetric, two-player, repeated games. They introduce a “copycat” algorithm
which guarantees a payoff approaching the value of the game, which is the best bound
one could hope to achieve against an opponent playing a minimax-optimal strategy. For a
symmetric zero-sum game, the value of the game is zero, so their algorithm guarantees a
payoff approaching zero in that case. The Copycat algorithm basically works by ensuring
that for any pair of actions a1 and a2, the number of rounds in which the uninformed player
plays a1 and the opponent plays a2 is not very far from the number of rounds in which the
player plays a2 and the opponent plays a1. In this way, the uninformed player is able to
achieve roughly the value of the game without knowing (or learning) anything about payoffs.

The setting introduced by Feldman et al. [8] is a particularly interesting setting in which
to study behavioral bias, because it allows us to consider to what extent one can exploit an
opponent’s biases when the opponent’s behavior is essentially the only information one has.
We consider the same basic setting, with a few additional restrictions. Like Feldman et al.,
we consider repeated, two-player, zero-sum, symmetric games in a setting where one does not
have a priori knowledge of the game matrix and does not observe payoffs, but does observe
the opponents actions. We also assume the opponent is deterministic and plays according
to some behaviorally-biased strategy. For simplicity, we consider games where payoffs are
limited to {1, 0, -1} (just wins, ties and losses). We assume no action is unbeatable and each
action beats at least one other action.

There are two technical components to beating a biased opponent in this setting: one
needs to learn to predict the opponent’s actions, and one needs to learn a best response to
those actions the opponent plays. We note that it is not sufficient to just be able to predict
accurately. For example, one natural idea which does not work (even if one is willing to take
exponential time) is to simply find the lexicographically first game matrix consistent with all
the opponent’s actions so far and their behavioral strategy, and then play a best response to
the action predicted by that game matrix. It is possible that two game matrices, M1 and
M2, could be consistent with the opponent’s play, but playing best responses with respect
to M1 could result in losing most rounds (and tying in the remaining rounds) if the true
game matrix is M2. We show such an example in section 3.

We model several deterministic, behaviorally-biased opponents, and show how to exploit
each bias to win nearly every round. We also give a partial characterization of the kinds of
behavioral strategies we can exploit in general, and show that in some cases, we can also
win nearly every round against a biased opponent even if we do not know which behavioral
strategy they use.

This work highlights the danger of using behaviorally-biased strategies in competitive
settings. We might expect that, while such strategies are not minimax optimal, some seemingly
reasonable ones might do well enough, particularly against an uninformed opponent. However,
our work shows that some behavioral biases can be exploited even by a player without prior
knowledge of the game matrix entries who does not observe payoffs.

2 Setting

We consider two-player, repeated games with the following properties:
Symmetric
Zero-sum
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Payoffs are limited to {1, 0, −1} (representing win, tie, and loss respectively)
Each action beats at least one other action
Each action loses to at least one other action

▶ Definition 1 (Permissible Game). We refer to a game with the above properties as a
permissible game for convenience.

Note that a symmetric game with n actions (a1, ..., an) can be represented by an n × n

payoff matrix M , where M [i, j] is the payoff for the row player and −M [i, j] = M [j, i] is the
payoff of the column player when the former plays ai and the latter plays aj .

We consider how well we can do without knowing the payoff matrix M or even observing
payoffs when playing against a behaviorally-biased opponent who does know M . Our goal
will be to win nearly every round.

2.1 Models of behaviorally-biased opponents
We assume all opponents know the payoff matrix and play a deterministic, behaviorally-biased
strategy. The following are the particular biased adversaries we consider here:

Myopic Best Responder

The opponent plays a best response to our last action. If there are multiple best responses
to our last action, we assume the opponent breaks ties according to some fixed but unknown
order over actions. On the first round, since there is no previous action, we assume the
opponent plays the first action in that ordering.

This is our simplest opponent, who just assumes that tomorrow will be exactly like today.

Gambler’s Fallacy

The opponent plays a best response to our “most overdue” (least-frequently-played) action.
This opponent is motivated by the Gambler’s Fallacy, in which one assumes an event which
hasn’t happened as often as expected is “overdue” and is more likely to occur (for example,
when tossing a fair coin, the belief that Tails is more likely following a series of Heads).

If there are multiple best responses to our “most overdue” action, or if there are multiple
“most overdue” actions the opponent might try to counter (for example, at the start of the
game when all actions are equally “overdue” since they have all been played zero times), the
opponent breaks ties using a fixed but unknown order over actions.

Win-Stay, Lose-Shift

The opponent continues to play the same action following a win, and switches to a new
action following a loss. We consider two variants of this strategy: one in which the opponent
behaves as if a tie is a win, continuing to play the same action after tying, and one in which
the opponent behaves as if a tie is a loss, switching actions after tying.

We assume that when the opponent shifts actions, they shift to the action immediately
following the current action in some fixed but unknown order over actions. In the first round,
we assume the opponent plays the first action in that ordering.

Win-stay lose-shift was initially proposed as an early algorithm for bandit problems
by Robbins [15]. There is also some empirical research indicating that people may play
rock-paper-scissors according to an approximate version of this strategy: Wang et al. [19]
observed that players are more likely to play the same action again after winning, and more
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18:4 Winning Without Observing Payoffs

likely to shift to the next action in the sequence rock-paper-scissors following a loss. More
broadly, win-stay lose-shift has been proposed as a potential explanation for the evolution of
cooperative behavior [13].

This strategy can also be viewed as similar to the hot-hand fallacy, in which one believes
an action which has just won is having a “hot streak” and is more likely to win in the future,
and conversely believes an action which has just lost is having a “cold” streak and is more
likely to lose in the future.

Follow the Leader

The opponent plays the best action in retrospect, where the best action in retrospect is
the action that would have achieved the highest net payoff against our history of play. If
multiple actions are tied for the highest payoff, the opponent breaks ties using some fixed
but unknown order over actions. In the first round, when there is no history to choose based
on, the opponent plays the first action in that ordering.

It has been hypothesized that irrational strategic behavior may be explained by agents
playing a misspecified or simplified version of a game rationally [7]. The above strategy is
reasonable for an opponent who erroneously models our play as stochastic. In online learning,
this strategy is called Follow-the-Leader or FTL (see [16]).

We also consider a limited-history variant of this opponent, in which the the opponent
only considers the last r rounds, where r > 0.

Highest Average Payoff

The opponent plays the action that has achieved the highest average payoff over the times
they have played it. We assume the opponent initializes the average payoff of each action as
0. If multiple actions are tied for the highest average payoff, the opponent breaks ties using
some fixed but unknown order over actions.

This is a reasonable strategy for an opponent who believes our play is stochastic, in
which case its actions can be viewed as coins with various biases. It also corresponds to a
well-known reinforcement learning algorithm, epsilon-greedy Q-learning, with ϵ = 0 (see [17]).

3 Preliminaries and Intuition

While the strategy of playing action i against action j roughly as many times as we play
action j against action i (for all i, j) employed by the Copycat algorithm in Feldman et
al. [8] is sufficient to roughly tie in a symmetric zero-sum game, we’d like to go further and
win nearly every round. To do this, we will learn to predict the opponent’s actions and
learn best responses to those actions the opponent plays. It turns out that predicting the
opponent’s actions is the “easy” part, and the main challenge will be learning best responses.
We discuss each of these at a high level below.

Predicting the Opponent’s Actions

It is possible to learn to predict any of our opponents’ actions using a simple halving
algorithm (see [11]). Recall that in our setting, an opponent’s choice of action is deterministic
and induced by their known biased strategy, their unknown ordering over actions, and the
unknown game matrix. For a given behavioral bias, consider all possible pairs including a
game matrix and an ordering over actions. Predict the opponent’s next action by taking the
majority vote over the predictions corresponding to these pairs. Whenever this produces an
incorrect prediction, eliminate all pairs that did not correspond to a correct prediction. Each
time a mistake is made, at least half of the remaining pairs must have predicted incorrectly,
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so at least half of the remaining pairs are eliminated. Clearly, this algorithm results in a
finite number of prediction errors. However, it is inefficient: even with our assumption of only
3 possible payoff values, there are roughly 3n2 possible game matrices, and for each game
matrix, there are n! orderings over actions to consider. We will give more efficient prediction
algorithms for each of the opponents we introduced above by taking further advantage of
their specific strategies.

Learning Best Responses

It may seem like being able to predict generally is sufficient to learn best responses, but this
is not the case. For example, a general (exponential) algorithm which does not work is to
find the lexicographically first game matrix and action ordering pair consistent with all the
opponent’s actions so far and their behavioral strategy, and then play a best response to the
action predicted by that pair according to the corresponding game matrix. However, even
for the simplest opponent we consider, the Myopic Best Responder, and identical orderings
over actions, there could be two game matrices M and M∗ which are consistent with the
opponent’s play, but playing best responses with respect to M could result in losing most
rounds (and tying in the remaining rounds) if the true game matrix is M∗ (see the example
below). Instead, we will more actively exploit the opponent’s particular strategy to elicit
best responses.

Example: Playing Optimally According to a Consistent Game Matrix and Action
Ordering is Not Sufficient to Win

M∗

R P S R′ P ′ S′

R 0 −1 1 1 0 0
P 1 0 -1 1 1 0
S -1 1 0 0 1 1
R′ -1 -1 0 0 -1 1
P ′ 0 -1 -1 1 0 -1
S′ 0 0 -1 -1 1 0

M

R P S R′ P ′ S′

R 0 −1 1 1 0 -1
P 1 0 -1 -1 1 0
S -1 1 0 0 -1 1
R′ -1 1 0 0 -1 1
P ′ 0 -1 1 1 0 -1
S′ 1 0 -1 -1 1 0

Action Ordering Ω: R, P, S, R’, P’, S’

Suppose we are playing a game M∗ against the Myopic Best Responder, whose ordering
over actions is Ω. Suppose that we predict the Myopic Best Responder’s actions according to
the correct action ordering Ω but a slightly different game matrix M , and play best responses
according to M . Both games are like an expanded version of rock-paper-scissors, in which
the interactions among R, P, S and among R’,P’, S’ respectively are the same as in standard
rock-paper-scissors, but the interactions between those two sets of actions differs between M

and M∗; the differing entries are bolded for convenience. Consider the following sequence of
play, which is consistent with M∗, M , Ω, and the strategy of the Myopic Best Responder,
and optimal according to M :

The sequence shown in the first three rounds will repeat indefinitely as long as we continue
to play the same best responses with respect to M , leading us to lose or tie in every round.

Note that it is possible to construct very similar, larger games in which we lose to the
Myopic Best Responder an arbitrarily large fraction of the time (depending on the number
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18:6 Winning Without Observing Payoffs

Table 1 Our Payoffs Playing Best Responses According to M .

Round 1 2 3 4 5 6 ...
MBR’s Action R S P R S P ...
Our Action S’ P’ R’ S’ P’ R’ ...
Anticipated Payoff (According to M) 1 1 1 1 1 1 ...
Actual Payoff (According to M*) 0 -1 -1 0 -1 -1 ...

of actions in the game), since we only need to tie against the first action in the opponent’s
action ordering to avoid discovering any inconsistency.

4 Strategies for Beating Behaviorally Biased Opponents

4.1 Myopic Best Responder

Algorithm 1 Beat the Myopic Best Responder.

1. Learn best responses: In round r for 1 ≤ r ≤ n + 1:
If r ≤ n, play action ar. Otherwise (in round n + 1), play an arbitrary action.
If r > 1, record the opponent’s action as a best response to our action in round r − 1.

2. In round r = n + 2, ...:
Predict the opponent’s action as the recorded best response to our action in round
r − 1.
Play the recorded best response to the predicted action.

▶ Theorem 2. Playing Algorithm 1 against the Myopic Best Responder in a permissible
game (Definition 1) results in winning every round after the first n + 1 rounds.

Proof. The Myopic Best Responder plays a best response to our previous action, so we
record a correct best response to each action during the first n + 1 rounds. The Myopic
Best Responder always plays the same best response (the first one in its action ordering)
following any given action, so we correctly predict the action it will play from round n + 2
onward. Therefore we win every round from round n + 2 onward, since we correctly predict
the opponent’s action and play a valid best response to it. ◀

4.2 Gambler’s Fallacy Opponent

Algorithm 2 Beat the Gambler’s Fallacy Opponent.

1. Learn a best response to an: For the first n rounds, play action ar during round r. Record
the opponent’s action in round n as a best response to action an, call it BR(an).

2. Learn a best response to BR(an): During the next n rounds (n < r ≤ 2n), play each of
the n actions in any order as long as BR(an) is last. Record the opponent’s action in
round 2n as a best response to BR(an), call it BR(BR(an)).

3. Get the opponent to play BR(an): During the next n − 1 rounds (2n < r < 3n), play
each action except for an.

4. For r ≥ 3n, play BR(BR(an)).

▶ Theorem 3. Playing Algorithm 2 against the Gambler’s Fallacy opponent in a permissible
game (Definition 1) results in winning every round from round 3n onward.



A. Blum and M. Dutz 18:7

Proof. Recall that the Gambler’s Fallacy opponent plays the best response to our “most
overdue” (least-frequently-played) action. During round n, an is the most overdue action
since it is the only unplayed action, so the opponent’s action in round n, BR(an), is a valid
best response to an. During round 2n, BR(an) is the most overdue as every other action
has been played twice while it has been played once, so the opponent’s action in that round,
BR(BR(an)), is a valid best response to it. During round 3n, an is the most overdue since
all other actions have been played three times while it has been played twice. Since the
Gambler’s Fallacy opponent always plays the same best response to a given action and it
previously chose BR(an) as its best response to an, it will play BR(an). Since we play
BR(BR(an)), which we showed above is a best response to BR(an), we win round 3n. Now,
note that an and BR(BR(an)) cannot be the same action: that would imply that BR(an)
both beats and is beaten by an. Therefore, an remains the “most overdue” action, and the
opponent will play BR(an) again in the next round. We therefore win every round from
round 3n onward by always playing BR(BR(an)), as the opponent continues to play BR(an)
as long as we do so. ◀

4.3 Win-Stay, Lose-Shift Opponent
Recall that the Win-Stay Lose-Shift opponent plays the same action immediately following a
win, and switches to the next action in its action ordering immediately following a loss. The
Tie-Shift variant of this opponent treats a tie like a loss and shifts, and the Tie-Stay variant
treats a tie like a win and stays.

4.3.1 Variant: Tie-Shift

Algorithm 3 Beat the Tie-Shift Variant of Win-Stay, Lose-Shift Opponent.

1. Learn the opponent’s action ordering: Repeat the following n-1 times:
Play each action in succession until the opponent switches actions.
Record the order the opponent plays actions as its action ordering.

2. Learn best responses: For 1 ≤ i ≤ n:
Play action ai until the opponent plays any action twice in a row, or until the opponent
has played every action once.
Afterward, record the opponent’s last action as a best response to ai.

Note: in the final round of this step, we play an and the opponent plays a best response
to an, so the opponent will repeat their action in the next round.

3. Play the recorded best response to the opponent’s last action.
4. For all remaining rounds:

Predict the opponent’s next action as the action following their last-played action in
the recorded action order (looping around if at the end).
Play the recorded best response to the predicted action.

▶ Theorem 4. Playing Algorithm 3 against the Tie-Shift variant of the Win-Stay Lose-Shift
opponent in a permissible game (Definition 1) wins all but at most 2n2 − 2n + 1 rounds.

Proof. In the first phase, we record the correct action ordering: the opponent starts by
playing the first action in their action ordering and always shifts to the next action in the
ordering, so by observing n − 1 shifts we observe all n actions in the correct order. Because
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18:8 Winning Without Observing Payoffs

we play each action in succession against the opponent’s current action, they are guaranteed
to shift after at most n − 1 rounds, since their action must tie with itself and lose to at least
one other action.

Now, we claim that we learn a best response to each action in phase 2. Proof: For each
action ai, we observe an action the opponent plays twice in response to it or we observe that
the opponent plays each action once in response to it. If the opponent plays the same action
twice, the opponent’s action beats ai because the opponent only repeats the same action
immediately following a win. If the opponent has played every action once against our action,
ai must not have been beaten by any of the first n − 1 actions played by the opponent, since
the opponent shifted after playing each of those against ai. Since each action must be beaten
by at least one other action, the opponent’s last action must beat ai. Therefore, we correctly
record an action which beats each action ai. In our setting, where there is only one payoff
value corresponding to a win, any action which beats ai is a best response to ai.

In the final round of phase 2, we played an and the opponent played a best response
to an. Therefore the opponent will repeat their action again in the next round, since they
stay following a win, and we win that round by playing the recorded best response to their
repeated action in phase 3.

At the start of phase 4, we correctly predict the opponent’s next action: we know we won
the last round, so we know that the opponent will shift to the next action in its action order
(which we have recorded correctly, as shown above). We showed above that we correctly
recorded a best response to each action, so we win by playing the recorded best response to
the predicted action. At the start of the next round, the same conditions hold (and will hold
after each round), so we will win all subsequent rounds.

Phase 1 (the process of learning the action ordering) requires n − 1 rounds, each of which
could incur up to n − 1 losses or ties (each action loses to at least one action), for n2 − 2n + 1
losses or ties overall. Phase 2 (the process of learning best responses) requires n rounds, and
each can incur up to n losses or ties (note that there can only be up to 2 losses per round
however, since the opponent would repeat its action in that case and the round would end),
for n2 losses or ties overall. We always win during the remaining phases, so the total number
of losses or ties is bounded by 2n2 − 2n + 1. ◀

4.3.2 Variant: Tie-Stay
The main difference in beating the Tie-Stay variant compared to the Tie-Shift variant is that
we can find a best response to each action by simply playing each action in succession until
the opponent switches, since they only switch following a loss. For the algorithm, theorem
and proof see A.1 in the Appendix.

4.4 Follow-the-Leader Opponent
Recall that the Follow-the-Leader opponent plays the best action in retrospect, defined as
the action that would have achieved the highest payoff against our entire history of play. For
this opponent, our strategy will be to learn a best response to each action, and then use the
well-known ellipsoid algorithm to predict the opponent’s actions while playing best responses
to the predicted actions.

Using Ellipsoid for Prediction

We use ellipsoid to find a point M ′ in n2-dimensional space roughly corresponding to the
game payoff matrix M (each of the coordinates of M ′ approximates a payoff value). We
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have variables m′
ij for each coordinate of M ′ representing the payoff of ai against aj , and

coefficients cj denoting the number of times we have played aj (with i, j ∈ [n]). We can then
use M ′ to predict the opponent’s best action in retrospect: ai where i is arg maxi

∑
j cjm′

ij .
The ellipsoid algorithm requires implementing a separation oracle that returns a violated

constraint each time the algorithm makes a mistake. In this case, the oracle is inherent to
the opponent’s play: whenever a prediction error is made, the net score of the action the
opponent played against our entire history must be greater than or equal to the net score
of the action we predicted. However, to avoid separately handling ties and the opponent’s
unknown action ordering, we need these inequalities to be strict. Without loss of generality,
we assume there are tiny values added to each true payoff value such that there is a slightly
higher payoff for tied actions earlier in the opponent’s action ordering. These values should
be small relative to any actual payoff differences and inversely proportional to the number of
rounds so that they cannot accumulate over time to outweigh any actual payoff differences.
Given this assumption, whenever the opponent actually played ai∗ and we predicted ai′ , we
observe that

∑
j∈[n] cjm′

i∗j >
∑

j∈[n] cjm′
i′j .

Algorithm 4 Beat the Follow-the-Leader Opponent.

1. Learn Best Responses: For 1 ≤ i ≤ n:
If i ̸= n, play action ai 3i−1 times. Otherwise, play ai 3i−1 + 1 times.
Record the opponent’s action in round immediately after playing ai for the 3i−1th
time as a best response to ai.

2. In all remaining rounds:
Predict the opponent’s next action using the estimate of the game matrix produced by
the ellipsoid algorithm, breaking ties arbitrarily.
Play the recorded best responses to the predicted action.

▶ Theorem 5. Playing Algorithm 4 against the Follow-the-Leader opponent in a permissible
game (Definition 1) wins all but O(3n + n4 log(nr)) rounds over r rounds of play.

Proof. First, we show we correctly record a best response to each action in phase 1 of the
algorithm. The high level idea is that we learn a best response to each action ai by playing
each action enough times in a row that the opponent must play an action which beats
it (which, in our setting with only a single payoff value corresponding to a win, is a best
response). Note that such an action must exist since in a permissible game, each action is
beaten by at least one other action. Let BR(ai) denote the best response to ai that the
opponent will eventually play. For any action b which does not beat ai, the highest possible
payoff over our entire history would be achieved if b beat every action in our history besides
ai, and tied against ai. Meanwhile, the lowest possible score for BR(ai) would be if BR(ai)
lost to every action in our history besides ai (while of course winning against ai). It is also
possible that b precedes BR(ai) in the opponent’s action ordering, so we need to play ai

enough times that the lowest possible score of BR(ai) is strictly greater than the highest
possible score of any such action b. To achieve this, we need to play ai twice as many times
as the total number of previous rounds (to equalize the worst-case scores of −1 that BR(ai)
got in all previous rounds with b’s +1s) plus 1 (to break the tie in case b precedes BR(ai) in
the opponent’s action ordering). When doing this for each action in succession, we should
therefore play the first action 1 time, second 3 times, followed by 9, 27, etc., which is 3i−1

times for the ith action as indicated in the algorithm. Note that we play an one extra time
to allow observation of BR(an) in the following round, before moving on to phase 2.
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In first phase, there are
∑

i 3i−1 + 1 = 3n−1
2 + 1 rounds, so it incurs at most that many

losses or ties. Then, since we correctly recorded best responses, we only tie or lose during
phase 2 if the ellipsoid algorithm makes a prediction mistake. The ellipsoid algorithm makes
at most O(n4 log(nr)) mistakes, where r is the total number of rounds played (see A.3 in the
Appendix for proof), so the total number of losses or ties is bounded by O(3n+n4 log(nr)). ◀

Note that while the bound on the number of losses and ties we incur is exponential, the
runtime can be considered efficient since choosing which action to play in each round is
efficient; this is an improvement over the simple general prediction algorithm we considered
in section 3, which requires considering an exponential number of game matrices to choose
which action to play in a single round. We also consider a limited-history variant of the
Follow-the-Leader opponent below, against which we can achieve a polynomial bound on
losses and ties.

4.4.1 Variant: Limited History

Recall that the Limited History variant of the Follow-the-Leader opponent plays the action
that would have achieved the highest net payoff against the last r rounds of our play. We can
use an almost identical algorithm to beat this variant, except that we can force the opponent
to play a best response to any action ai by playing ai just r times. This allows us to beat
this variant with a polynomial bound on ties and losses. For the full algorithm, theorem,
and proof, see the A.2 in the Appendix.

4.5 Highest Average Payoff Opponent

The Highest Average Payoff opponent plays the action that has achieved the highest average
payoff over the times they have played it. We discuss this opponent in A.4.

5 Generalizing

5.1 Other Behaviorally-Biased Strategies

A natural question to ask is, what kinds of behaviorally-biased strategies can we exploit to
win nearly every round of a permissible game (Definition 1)? Clearly, if we can predict the
opponent’s actions and learn best responses to those actions the opponent plays, we can
achieve this goal.

Predicting the Opponent’s Actions

Given any deterministic strategy, we can predict the opponent’s actions using a simple
halving algorithm as described in Section 3 (note that if the strategy uses an deterministic
tie-breaking mechanism other than a fixed ordering over actions, a small modification is
required: the algorithm should simply use each such possible tie-breaking mechanism instead
of each possible action order). Using this algorithm, if there are t potential tie-breaking
mechanisms, the number of losses and ties as a result of failing to predict correctly is bounded
by log(3n2

t) which is O(n2 + log(t)).
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Learning Best Responses

The more challenging question is which deterministic strategies we can exploit to learn best
responses for any action the opponent might play. Note that we cannot do this for every
deterministic strategy; consider a very simple opponent who always plays the same action a.
In this case, the opponent’s play does not reveal any information about a best response to a.

One sufficient condition which many natural behavioral strategies may have is that after
we play an action “enough” times, the opponent will eventually play a best response to it.
“Enough” needs to be some number we can determine; for example, a constant c, or some
multiple b of the number of previous rounds r, beginning with b when there are no previous
rounds. Then we can simply play each action in succession “enough” times, observing the
opponent’s action in the following round, to learn a best response to each action. In this
case, the bound on the number of losses or ties during the process of learning best responses
would be cn + 1 or b(b + 1)n−1 + 1, respectively (assuming we learn best responses at the
start of the game).

Note that not every reasonable behavioral strategy has this property; several of the biased
opponents we discussed earlier do not: the Gambler’s Fallacy opponent, the Tie-Stay variant
of Win-Stay Lose-Shift opponent, and the Highest Average Payoff opponent.

5.2 Exploiting an Unknown Strategy from a Known Set of Strategies
Another natural extension is to consider the scenario where we know the opponent uses some
strategy from a known set of deterministic strategies H, but we don’t know which one.

Predicting the Opponent’s Actions

We can once again predict generally, using essentially the same halving algorithm discussed
just above in 5.1: to start we simply enumerate all possible game matrix and strategy pairs,
where in this case we can consider each general strategy paired with a particular action
order or other tie-breaking mechanism to be a distinct strategy. The number of losses
and ties incurred while learning to predict this way is bounded by log(3n2 |H|), which is
O(n2 + log(|H|)).

Learning Best Responses

The challenge, again, is to learn best responses. Generally, any time we can use the same
algorithm to learn best responses given any strategy in H, this extension is trivial. For
example if all strategies in H have the natural property discussed above (in 5.1) that after
we play an action “enough” times, the opponent will eventually play a best response to it,
we can use the same algorithm from 5.1 to learn best responses (using the maximum value
required by any strategy as “enough”).

If it is not possible to use the same algorithm to learn best responses given any strategy
in H, it might instead be possible to first distinguish between strategies which need different
best-response algorithms, and then learn best responses. As a very simple example, if we
know the opponent uses one of the Tie-Stay variant or the Tie-Shift variant of the Win-Stay,
Lose-Shift strategy, we cannot use the strategy mentioned above because the Tie-Stay variant
does not have the property in question. However, we can distinguish between the two
strategies by checking whether the opponent “stays” after we play the same action as it
(since a permissible game is symmetric, this must be a tie. We can check this within n

rounds by playing the same action a until either the opponent switches to playing a, or stays
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on some other action b. If the opponent stays on b, we can then play b to check their tie
behavior). Then, knowing our opponent’s strategy, we can use the corresponding algorithm
from Section 4.3 to learn best responses (and in this case, to predict efficiently as well).

Note, however, that it is not always possible to distinguish between deterministic strategies.
As a simple example, consider playing a 3-action game against either the Myopic Best
Responder, who plays a best response to our last action, or another opponent, call them
Myopic Worst Responder, who plays a worst response to our last action. No matter how we
play, the Myopic Best Responder with respect to rock-paper-scissors behaves identically to
the Myopic Worst Responder with respect to a reverse version of rock-paper-scissors where
the wins and losses are switched. Since both games are possible, we cannot distinguish
whether the opponent is playing Myopic Best Response or Myopic Worst Response. Moreover,
best responses with respect to one scenario are worst responses with respect to the other.

6 Future Work

In future work, it would be interesting to further characterize which behaviorally-biased
strategies can be exploited to win nearly every round without observing payoffs. In that
vein, one clear next step would be to explore the exploitability of behaviorally-motivated
probabilistic strategies. In the probabilistic setting it may not be possible to win even most
of the time; for example, probabilistic strategies could be regret-minimizing, in which case
the best we can hope to achieve is the minimax value of the game. However, we could aim to
get bounds on our performance relative to the best possible strategy given full information
about the game matrix, payoffs, and the opponent’s strategy. Another direction would be
considering more complex games, for example exploring extensive-form games.
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A Appendix

A.1 Win-Stay Lose-Shift Variant: Tie-Stay

Algorithm 5 Beat the Tie-Stay Variant of Win-Stay, Lose-Shift Opponent.

1. Learn best responses and the opponent’s action order: Repeat the following n times:
Play each action in succession until the opponent switches from their current action to
a new action.
Record our last action before the switch as a best response to the opponent’s action
before the switch.
Record the order the opponent plays actions as its action ordering (stopping once
we’ve recorded all n actions).

Note: at the end of this step, the opponent will have just played the first action in its
action order, and we will have just played some action a.

2. Get into a state from which we can begin to predict the opponent’s actions: Repeatedly
play action a until the opponent plays the same action, call it b, twice in a row. Note:
the next action the opponent plays will also be b.

3. Play the recorded best response to b.
4. In all remaining rounds:

Predict the opponent’s next action by finding the action immediately following the last
action they played in the action ordering we recorded (looping around if at the end).
Play the recorded best response to the predicted action.

▶ Theorem 6. Playing Algorithm 5 against the Tie-Stay variant of the Win-Stay Lose-Shift
opponent in a permissible game (Definition 1) wins all but at most n2 − n + 2 rounds.

Proof. Recall that the Tie-Stay variant of the Win-Stay Lose-Shift opponent plays the same
action immediately following a win or a tie, and switches to the next action in its action
ordering immediately following a loss. Because each action is beaten by at least one other
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action, the opponent must switch after one of the actions we play in response to its current
action in phase 1 (since we play each action in succession). If the opponent shifts to play a
new action in round r, we won round r − 1, so the best response we record is correct. Since
the opponent always shifts to the next action in its action ordering, over n shifts, they will
shift through every action before finally shifting back to the first action in its action ordering.
Through this process we therefore record a best response to every action, and we record the
correct action ordering in step 1. We play at most n actions in response to each action the
opponent plays to make it shift, and one of them must beat the opponent’s action, so we
incur no more than n(n − 1) losses or ties in this phase.

At the end of the above, the opponent will have shifted back to the first action of their
action ordering. However, we don’t generally know in advance when this shift will occur,
so the action we played (some a) may or may not have been a best response to it and we
therefore can’t be sure whether the opponent will stay or shift. By playing a repeatedly,
the opponent will eventually play some action twice; this will happen within n rounds since
each action is beaten by at least one other action and ties with itself. However, while the
opponent is shifting we must be winning, so we only incur 2 losses or ties here, when the
opponent finally plays some action b twice in a row.

Since we finished round 2 with the opponent tying or winning, they will repeat their
action (b) again in the next round; we win that round by playing the recorded best response
to b (which we showed was correct) in phase 3.

At the start of phase 4, we predict correctly because we won the previous round and
know the opponent will shift to the next action in its order (which we showed we recorded
correctly). We showed earlier that we recorded correct best responses, so we win by playing
the recorded best response to the predicted action. The same conditions hold for every
remaining round, so we win all remaining rounds.

The total the number of losses or ties is bounded by the sum of those in the first two
phases, which is at most n2 − n + 2. ◀

A.2 Follow-the-Leader Variant: Limited History
Recall that the limited-history variant of the Follow-the-Leader opponent plays the action
that would have achieved the highest net payoff against the last r rounds of our play. Note
that we assume r > 0. If r = 0, the opponent would simply play the same action every
round (the first action in their action ordering) regardless of our play. In that case, their
play would not reveal any information about best responses, so the best we could do is tie in
most rounds by playing the same action as the opponent.

We again use the ellipsoid algorithm for prediction, essentially the same way as described
for the unlimited-history variant of this opponent in 4.4. In this case, the inequality we
observe when a mistake is made is only relative to the past r rounds.

Algorithm 6 Beat the Limited-History Variant of the Follow-the-Leader Opponent.

1. Learn Best Responses: For 1 ≤ i ≤ n:
If i ̸= n, play action ai r times. Otherwise, play ai r+1 times.
Record the opponent’s action during round ir + 1 as a best response to action ai.

2. In all remaining rounds:
Predict the opponent’s next action using the estimate of the game matrix produced by
the ellipsoid algorithm, breaking ties arbitrarily.
Play the recorded best responses to the predicted action.
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▶ Theorem 7. Playing Algorithm 6 against the limited-history variant of the Follow-the-
Leader opponent in a permissible game (Definition 1) wins all but O(n4 log(nr) + nr) rounds,
where r is the number of rounds the opponent includes in its limited history.

Proof. First, we prove we correctly record a best response to each action in phase 1 of the
algorithm. After we play any action ai r times in a row, the opponent must play a best
response to ai in the following round: the opponent plays the action which would have been
best over the previous r rounds in which we played ai every time, which must be a best
response to action ai. Since we play each action r times in a row (except an which we play
r + 1 times) and iterate through actions in ascending order, the opponent must play a best
response to ai in round ir + 1. Note that we play an one extra time to allow for observing
the best response in round nr + 1 before moving on to phase 2.

Since there are nr + 1 rounds in phase 1, we can lose or tie at most that many times in
phase 1. Then, since we correctly recorded best responses, we only tie or lose during phase 2
if the ellipsoid algorithm makes a prediction mistake. The ellipsoid algorithm makes at most
O(n4 log(nr)) mistakes, where r is again the history parameter rather than the total number
of rounds played (see A.3 for proof). Therefore, the total number of mistakes is bounded by
O(n4 log(nr) + nr). ◀

A.3 Ellipsoid Mistake Bounds
In general, the ellipsoid algorithm requires up to O(d2 log Router

Rinner
) iterations, where d is the

dimension of the space, Router is the radius of the initial ellipsoid which encompasses the
entire solution space, and Rinner is radius of the largest ellipsoid contained in the feasible
space [18]. In this case, the dimension is n2. Since payoffs are all between -1 and 1, the
solution space is contained in an n2-dimensional ball of radius n. Finally, we will determine
Rinner, which differs between the Follow-the-Leader opponent and the Highest-Average-Payoff
opponent (although we will get overall mistake bounds of the same order in either case). As
noted in 4.4, in order to get strict inequalities, we assume without loss of generality that
there are tiny values added to each true payoff value such that there is a slightly higher
payoff for tied actions earlier in the opponent’s action ordering. Note that we do not actually
add these values, which would require knowledge of the true payoffs and the opponent’s
action ordering; it is sufficient that such values exist. The appropriate values differ based on
the opponent and help us determine Rinner in each case.

Follow-the-Leader Opponent

For the Follow-the-Leader opponent, the values added to each true payoff should be small
relative to any actual payoff differences and inversely proportional to the number of rounds
so that they cannot accumulate over time to outweigh any actual payoff differences. In the
limited history case, they only need to be inversely proportional to the number of rounds
which the opponent considers. More concretely, consider adding 1

ir to the opponent’s payoffs
for playing the ith action in their action ordering (i.e., to all payoffs in the ith row of the
game matrix if the opponent is the row player), where r is the total number of rounds for the
unlimited-history variant or the length of history considered in the limited-history variant.
Then, it’s easy to show that the net score of the best action is at least 1

n2−n higher than
any other action. The solution point could therefore shift up to 1

r(n2−n) (not inclusive) in
any direction without altering the induced predictions, so the feasible space contains an
n2-dimensional ball of radius 1

r(n2−n) − ϵ, for some arbitrarily small ϵ. Overall, then, the
number of iterations required by ellipsoid in this case is bounded by O(n4 log(nr)).
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Highest Average Payoff Opponent

For the Follow-the-Leader opponent, the values look somewhat different because the scores
are averaged as part of the opponent’s strategy. Consider adding 1

ir2 to the opponent’s
payoffs for playing the ith action in their action ordering. It’s easy to verify that the average
score of the best action is at least 1

r2(n2−n) higher than that of any other action. The solution
point could shift up to 1

r2(n2−n) (not inclusive) in any direction without changing the induced
predictions, so the feasible space contains an n2-dimensional ball of radius 1

r2(n2−n) − ϵ, for
some arbitrarily small ϵ. Overall, then, the number of iterations required by ellipsoid in this
case is also bounded by O(n4 log(nr)).

A.4 Highest Average Payoff Opponent
We assume the opponent initializes each action with an average payoff of 0.

For this opponent, our high-level strategy will be to learn a best response to each action,
and then use the well-known ellipsoid algorithm to predict the opponent’s actions while
playing best responses to the predicted actions.

The ellipsoid algorithm will be used in essentially the same way as for the Follow-the-
Leader opponent, in order to find a point M ′ in n2-dimensional space roughly corresponding
to the game payoff matrix M. The main difference is that the inequality we get whenever there
is a mistake will reflect that the opponent makes comparisons between average scores rather
than net scores: whenever a mistake is made (i.e., the opponent actually played some action

ai∗ and we predicted another action ai′), we observe that
∑

j∈[n]
ci∗jm′

i∗j∑
j∈[n]

ci∗j
>

∑
j∈[n]

ci′jm′
i′j∑

j∈[n]
ci′j

,

where cij is the number of rounds during which the opponent played ai and we played aj ,
and m′

ij is the payoff of ai against aj according to M ′. See A.3 for further details.

Algorithm 7 Beat the Highest Average Payoff Opponent.

1. Learn best responses to the first n−1 actions in the opponent’s order: Repeat the following
n − 1 times:

Play each action in succession in ascending order (not starting over when the opponent
switches to a new action, wrapping around from an to a1 if necessary), each up to
as many times as the number of rounds the opponent has played its current action
previously plus 1, until the opponent switches or we’ve played every action once.
Record our last action prior to the switch as a best response to the opponent’s last
action before the switch.

Note: At the end of this round, the opponent will have just played the final action in their
action order, and we will have just played some action a.

2. Learn a best response to the nth action in the opponent’s order: Play each action in
succession in ascending order, starting with the last action we played a and wrapping
around if necessary, each up to 3 times the number of rounds the opponent has played
its current action so far (starting with once when the opponent has not played the nth
action in their order before), until the opponent switches or we’ve played every action
once. Record our last action as a best response to the nth action in the opponent’s order.

3. In all remaining rounds:
Predict the opponent’s next action using the estimate of the game matrix produced by
the ellipsoid algorithm, breaking ties arbitrarily.
Play the recorded best response to the predicted action.
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▶ Theorem 8. Playing Algorithm 7 against the Highest Average Payoff opponent in a
permissible game (Definition 1) wins all but O(4n−1 + n4 log(nr)) rounds.

Proof. First, we show that we correctly record a best response to each of the first n − 1
actions in the opponent’s action order in phase 1 of the algorithm. Recall that the opponent
breaks ties among actions which have the same average payoff using a fixed order over
actions, and denote the ith action in this order as af(i) where f maps an action’s index in
the opponent’s ordering to its index in the game. Due to this tie-breaking strategy, we claim
that the opponent will begin by playing af(1) a number of times, followed by af(2) some
number of times and so on through af(n) some number of times, switching after each of
af(1), ..., af(n−1) exactly when it reaches a negative average payoff. Proof: at the start of the
game, since all actions are initialized with the same average payoff of 0, the opponent will
play af(1). As long as the average payoff of af(1) is non-negative, it at least as good as that
of any other action, so the opponent will continue to play af (1). Once it becomes negative,
the opponent will switch to playing af (2), since all unplayed actions have an average payoff
of 0 and af(2) is the earliest in the opponent’s action ordering. More generally for af (i) when
i > 1, as long as the average payoff of af(i) remains non-negative, it is strictly better than all
actions which precede it in the opponent’s action order (every such action must have reached
a negative average payoff for the opponent to have played af(i) the first time, since af(i) had
an initial average payoff of 0 and is later in the action order). It is also at least as good
as the average payoff of any actions which follow it in the action order (which all have an
average payoff of 0 since they have not yet been played), so the opponent will continue to
play af(i). As soon as the average payoff of af(i) becomes negative, if i < n, the opponent
will switch to the next action in the opponent’s action order, which has not yet been played
and is therefore the earliest action in the opponent’s action order that is tied for the highest
average payoff of 0.

The round preceding such a switch must have been a loss for the opponent: its net payoff
must have gone down during that round for the average payoff to go from non-negative to
negative. We showed that the opponent will proceed through each of the n actions in order
when it switches during phase 1, so as long as we can reliably force the opponent to switch
actions, we correctly record a best response to each of the first n − 1 actions in phase 1.

To force the opponent to switch in phase 1, we play each action sequentially, up to as
many times as the number of rounds the opponent has played its current action previously
plus 1, until the opponent switches: we play the first action 1 time, the second 2 times,
followed by 4, 8, etc. (2i−1 times for the ith action). The net score of the opponent’s current
action is at most the number of times it has played it so far (if it won every previous round),
so if our current action beats it, this would be enough to bring its net score to -1 in the
worst case. Since at least one action beats the opponent’s action, the opponent must switch
after one of the actions we play in this succession. This process of getting the opponent to
switch actions takes at most 2n − 1 rounds total, so there are up to that many losses or ties
per action, for (n − 1)(2n − 1) losses or ties overall in phase 1.

Next, we show we correctly record a best response to af(n) in phase 2. When i = n,
the opponent does not necessarily switch as soon as the average payoff of af(n) becomes
negative; at this point, every action has a negative average payoff, and it is possible that the
average payoff of af(n) becomes negative but remains the highest. However, the opponent
will eventually switch from af(n) if we play an action which beats it enough times: there
must exists some other action a which has an average payoff strictly higher than −1, so as
we play an action which beats af(n) and its payoff approaches −1, it will eventually reach a
lower average payoff than a and the opponent will switch. Suppose this was not the case
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and every other action af(i) for i < n had an average payoff of exactly −1. In that case,
the opponent must have switched away from every action af(i) immediately after the first
round, when it was beaten by the action we played in that round. We play each action in
succession until the opponent switches, not starting over when the opponent switches, so this
must mean the first action we play beat every action af(i) for i < n. However, each action
must tie against at least one action (itself) and lose to at least one, so it is not possible that
a single action beats n − 1 of the n actions.

The lowest possible best payoff for any action besides af(n) would therefore have been
achieved by one tie followed by a loss and switch, for an average payoff of − 1

2 . So in order
to get the opponent to switch from an to the action with the next highest payoff, we need
to make its payoff ≤ − 1

2 in the worst case (since af(n) is the last action in the opponent’s
action order, its average payoff reaching exactly the value of the next-highest average payoff
would cause a switch). In the worst case, if the opponent won every previous round they
played af(n), we would have to play an action which beat it 3 times the number of times
the opponent played it so far to reach a payoff of − 1

2 . This means we play the first action 1
time, the second action 3 times, followed by 12, 48, and so on, which is as indicated in the
algorithm. This requires at most 4n−1 rounds total.

Because the opponent switches from af(n) either when its average payoff goes from
non-negative to negative or from negative to lower, its net score must have decreased before
the switch. Therefore, the round preceding the switch was a loss for the opponent and we
correctly record our action in that round as a best response to af(n).

During phase 1, we incur at most n2n − 2n − n + 1 losses or ties. In phase 2, we incur
at most 4n−1 losses or ties. Then, since we correctly recorded best responses, we only tie
or lose during phase 3 if the ellipsoid algorithm makes a prediction mistake. The ellipsoid
algorithm makes at most O(n4 log(nr)) mistakes (see A.3 for proof). Therefore, the total
number of losses or ties is bounded by O(4n−1 + n4 log(nr)). ◀
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