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Abstract
Suppose we are given an n-node, m-edge input graph G, and the goal is to compute a spanning
subgraph H on O(n) edges. This can be achieved in linear O(m + n) time via breadth-first search.
But can we hope for sublinear runtime in some range of parameters – for example, perhaps O(n1.9)
worst-case runtime, even when the input graph has n2 edges?

If the goal is to return H as an adjacency list, there are simple lower bounds showing that
Ω(m + n) runtime is necessary. If the goal is to return H as an adjacency matrix, then we need
Ω(n2) time just to write down the entries of the output matrix. However, we show that neither of
these lower bounds still apply if instead the goal is to return H as an implicit adjacency matrix,
which we call an adjacency oracle. An adjacency oracle is a data structure that gives a user the
illusion that an adjacency matrix has been computed: it accepts edge queries (u, v), and it returns
in near-constant time a bit indicating whether or not (u, v) ∈ E(H).

Our main result is that, for any 0 < ε < 1, one can construct an adjacency oracle for a spanning
subgraph on at most (1 + ε)n edges, in Õ(nε−1) time (hence sublinear time on input graphs
with m ≫ n edges), and that this construction time is near-optimal. Additional results include
constructions of adjacency oracles for k-connectivity certificates and spanners, which are similarly
sublinear on dense-enough input graphs.

Our adjacency oracles are closely related to Local Computation Algorithms (LCAs) for graph
sparsifiers; they can be viewed as LCAs with some computation moved to a preprocessing step,
in order to speed up queries. Our oracles imply the first LCAs for computing sparse spanning
subgraphs of general input graphs in Õ(n) query time, which works by constructing our adjacency
oracle, querying it once, and then throwing the rest of the oracle away. This addresses an open
problem of Rubinfeld [CSR ’17].
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1 Introduction

A sparsifier of a graph G is a smaller graph H that approximately preserves some important
structural properties of G. Examples include spectral sparsifiers, flow/cut sparsifiers, spanners,
preservers, etc. Let us focus for now on the computation of a particularly simple kind of
sparsifier, which we call a sparse spanning subgraph:
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19:2 Spanning Adjacency Oracles in Sublinear Time

Sparse Spanning Subgraph (SSS):
Input: An n-node, m-edge, undirected graph G = (V, E) and ε > 0.
Output: An edge-subgraph H on at most (1 + ε)n edges that spans G.

An SSS is a slightly relaxed version of a spanning forest,1 and so this problem can be
solved in linear O(m+n) time via breadth-first search (BFS). We might wonder for a moment
whether linear runtime for this basic algorithm is optimal. Especially for denser input graphs,
we might dream of sublinear-time algorithms, which try to discover one of the many valid
spanning subgraphs without even reading most of the input graph. Can we solve SSS in, say,
O(n1.9) worst-case time, even when the input graph has Θ(n2) edges?

Unfortunately, the canonical answer is no: we cannot hope to solve SSS without reading at
least a constant fraction of the input graph. The counterexamples generally work by planting
a cut edge into an otherwise-random graph. For example, in a lower bound construction
from [16, 23], we construct G from two node-disjoint random graphs G1, G2 on n/2 nodes
each, which include each possible edge independently with probability 1/2, plus a single “cut
edge” e connecting a random node from G1 to a random node from G2. We absolutely must
take e in the spanning subgraph H, but we need to scan essentially the entire input graph
just to find e.

? ?
e

The starting point of this paper is that the cut-edge lower bound, while formidable, is
actually a bit restricted in scope: it does not quite apply in all graph representation models.
We explain this next.

1.1 Adjacency Oracles and Algorithms for SSS
There are two popular ways to represent graphs:
1. First, the adjacency list representation is an array of arrays. If we index into an

adjacency list L with a node v, then L[v] returns a list of the neighbors of v in some
arbitrary order.2

2. Second, the adjacency matrix representation is an n× n matrix, which holds a 1 or
0 in each position (u, v) to represent whether (u, v) is or is not an edge in the graph.

The cut-edge lower bound for SSS shows that we cannot hope to return a spanning
subgraph H as an adjacency list in sublinear time. For adjacency matrices, the situation
is even worse: it takes Ω(n2) time just to fill out the entries of the matrix, so no sublinear
algorithms are possible. However, this paper will consider a tweak on the adjacency matrix
model:

1 An edge-subgraph H spans a graph G if it has the same connected components as G. A spanning forest
of G is any forest that spans G, i.e., it is the union of spanning trees for each connected component of G.

2 We assume for this discussion that the list is given in a form where we can check its length (corresponding
to deg(v)) and where we can query a random neighbor, both in Õ(1) time.
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▶ Definition 1 (Adjacency Oracles). An implicit adjacency matrix for a graph G, which we
will call an adjacency oracle, is a data structure that, on query (u, v), deterministically
returns a bit in Õ(1) time3 indicating whether or not (u, v) ∈ E(G).

The determinism in queries is essential to force the oracle to be history-independent; that
is, the graph G that the oracle represents must be fixed at the end of the construction phase,
and it may not depend on the order in which the oracle receives queries. The point of the
adjacency oracle model is that it is not constrained by the Ω(n2) output size lower bound
– the data structure could, in principle, have ≪ n2 bits – and for more subtle reasons, it
escapes the cut-edge lower bound as well. The hard part of the cut-edge lower bound is
scanning to find the cut edge e, but when we build an adjacency oracle it is the user who
does the hard work of pointing out the edge e. In other words, an adjacency oracle needs
to quickly recognize that the cut-edge e is necessary for the spanning subgraph when it is
received at query time, but this is potentially an easier task than proactively discovering e

at preprocessing time.
Given this, we can now reopen the question of whether BFS is the most efficient algorithm

to solve SSS, when we allow the output subgraph to be represented by an adjacency oracle.
Our first main result is that, in fact, it is not.

▶ Theorem 2 (Adjacency Oracles for SSS).
(Upper Bound) For any 0 < ε < 1 and n-node input graph, there is a randomized
algorithm that solves SSS with high probability in Õ(nε−1) time, where the output subgraph
H is returned as an adjacency oracle.
(Lower Bound) However, no algorithm as above can run in O(n1−δ) time, for any
constant δ > 0.

As a point of clarification, we assume that the input graph G is received in all useful forms,
i.e., as both an adjacency list and an adjacency matrix/oracle. The adjacency oracle for H is
allowed access to the adjacency oracle for G, so that if queried with an edge (u, v) /∈ E(G) it
can quickly say NO. However, we note that this is the only way in which our adjacency oracles
use access to G, and so they still works in a slightly stronger model where the adjacency
oracle for H may not access G in any way but the user promises a priori to only query the
oracle with edges from E(G).

This model, in which we obtain sublinear algorithms by providing near-constant-time
oracle query access to the output (and where these queries may access the input), is the
typical one in sublinear algorithms. It is sometimes called a solution oracle, and it has been
used previously as a paradigm for sublinear algorithms for vertex cover, dominating set,
maximum matching, independent set, and others [30, 9, 22, 31]. It is also analogous to the
model used for Local sparsifier algorithms, which we will discuss in detail shortly. Indeed,
the lower bound part of Theorem 2 uses a graph construction and analysis developed in the
context of Local sparsifier algorithms for most of its heavy lifting [23, 16].

1.2 Adjacency Oracles for k-Connectivity Certificates
A natural generalization of a sparse spanning subgraph is a k-connectivity certificate:

▶ Definition 3 (k-Connectivity Certificates). Given a graph G, a subgraph H is a k-connectivity
certificate if, for any edge set F ⊆ E(G), |F | ≤ k − 1, the connected components of G \ F

and H \ F are identical.

3 Here and throughout the paper, Õ(·) notation hides polylog(n) factors.
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19:4 Spanning Adjacency Oracles in Sublinear Time

The following are two equivalent definitions of k-connectivity certificates often used in
the literature.

For any integer r and any cut C in G of size r, the size of C in H is at least min{k, r}.
For any integer r and nodes s, t that are r-connected in G, they are at least min{k, r}-
connected in H.

A 1-connectivity certificate is the same as a spanning subgraph, and in this sense the problem
of constructing sparse k-connectivity certificates generalizes SSS. For this reason, we refer to
the problem as k-SSS, with 1-SSS and SSS identical. The size bounds for k-connectivity
certificates also extend those for spanning forests:

▶ Theorem 4 ([21]). Every n-node graph G has a k-connectivity certificate H of size
|E(H)| ≤ k(n− 1).

We show:

▶ Theorem 5 (Adjacency Oracles for k-Connectivity Certificates). For any ε > 0, n-node input
graph G, and k = Õ(1), there is a randomized algorithm that with high probability computes
an adjacency oracle for a k-connectivity certificate H ⊆ G of size |E(H)| ≤ (1 + ε)kn, and
which runs in Õ(nε−1) time.

1.3 Adjacency Oracles vs. Local Sparsifier Algorithms
We will temporarily pause discussion of our results to discuss their relationship to Local
Computation Algorithms (LCAs) for graph sparsifiers, which are the conceptually closest
prior work to ours. LCAs were introduced in a classic paper by Rubinfeld, Tamir, Vardi, and
Xie [28]. The high-level goal is to design an algorithm which, on input (X, i), computes the
ith part of the output associated to input X, ideally in sublinear time. Interesting LCAs have
been discovered for many problems, such as graph coloring, SAT solving, graph sparsifiers,
etc. [2, 29, 30, 7, 10, 17, 18, 26, 20, 19]; for more, see the survey of Levi and Medina [13].

An LCA algorithm for SSS would have input (G, ε, e), where e ∈ E(G), and it would
return either YES or NO in such a way that for any fixed (G, ε) the set of edges e to which
the algorithm says YES form a valid solution to SSS. As in our setting, the input graph G

is typically given to an LCA as both an adjacency list and an adjacency oracle. The main
technical difference between adjacency oracles and LCAs for SSS is essentially whether the
focus is placed on preprocessing or query time. That is:

LCAs do not allow any centralized preprocessing before answering queries (G, ε, e) (with
the minor exception that they typically allow shared randomness across queries). On the
other hand, adjacency oracles for SSS allow centralized preprocessing, and the goal of
the problem is to minimize this preprocessing time.
Adjacency Oracles insist on Õ(1) query time in order to provide the illusion that we are
indexing into an adjacency matrix. On the other hand, for LCAs the query time may be
much larger, and the goal of the problem is to minimize this query time.

Thus, adjacency oracles might be viewed as an investigation of the extent to which a
preprocessing phase can improve the query time for LCAs. These differences are enough to
formally separate the two models. Levi, Ron, and Rubinfeld [16] proved that any LCA for
SSS requires Ω(n1/2) query time. Together with Theorem 2, this implies a strong separation,
i.e., LCAs cannot achieve Õ(1) query time as in the adjacency oracles of Theorem 2 (which
bypass the lower bound of [16] due to their use of centralized preprocessing). An even
stronger form of this lower bound was later proved by Parter, Rubinfeld, Vakilian, and
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Yodpinyanee [23]. There is also a natural way to interpolate between the adjacency oracle
and LCA models – allowing super-constant preprocessing and query time and investigating
the tradeoff between them – but we will leave this as a possible direction for future work.

The optimal runtime of LCAs for SSS is a fascinating open problem; we refer to the
excellent survey of Rubinfeld [27] for an in-depth presentation. In particular, this survey
highlights the following two open questions:

▶ Open Question (cf. [27], Problem 1). It is known that every graph with constant maximum
degree or high expansion has an LCA for SSS in O(n) query time [16, 14, 12, 15]. Is there
an LCA algorithm for SSS that works on any sparse input graph (O(n) edges), and which
runs in o(n) query time?

▶ Open Question (cf. [27], Section 4). Rubinfeld writes that “nothing is known [about LCAs
for SSS] when there is no bound on the maximum degree of the input graph.” Subsequent
work [4, 23, 12] discovered algorithms for general graphs of maximum degree ∆ with query
complexity Õ(n2/3·poly∆), but this is still nontrivial only when ∆ is a small-enough polynomial
in n.

Our new adjacency oracles partially address these questions:

▶ Corollary 6. There is an LCA for SSS that runs in Õ(nε−1) query time. (This algorithm
works for any input graph.)

Proof. On query (u, v), use Theorem 2 to construct an adjacency oracle for SSS in Õ(nε−1)
time (using a shared tape of random bits across all possible queries). Then query the
adjacency oracle on (u, v) and return the result. ◀

Corollary 6 positively addresses the latter open question. Although it does not resolve
the former open question, it may shed light on a way forward: (1) our algorithm does not
use the assumption that the input graph is sparse, and (2) our algorithm performs the same
Õ(n) work for each query, to compute the adjacency oracle, and then only the last Õ(1)
steps where the adjacency oracle is accessed differ between queries. It seems unlikely that the
optimal LCA for SSS would be so query-independent, and so perhaps improved LCAs could
be achieved by exploiting knowledge of the query (u, v) at an earlier stage of the construction.

Our adjacency oracle upper bounds for SSS and k-SSS are not technically similar to
prior work on LCAs. However, the rest of this work connects to the LCA literature at a
technical level as well, and draws on several clever constructions and techniques developed
in the context of LCAs. In particular, our lower bound for SSS adjacency oracles uses the
lower bound construction from [16] as a black box, and our results on adjacency oracles for
spanners (which we discuss next) draw on ideas used in LCAs for graph spanners [4].

1.4 Adjacency Oracles for Graph Spanners
Besides sparse spanning subgraphs, one can more strongly ask for spanners, which preserve
approximate distances rather than just connectivity.

▶ Definition 7 (Spanners [25, 24]). Given a graph G, a k-spanner is an edge-subgraph H

satisfying distH(s, t) ≤ k · distG(s, t) for all nodes s, t ∈ V .

We show the following two results for computing spanners:

▶ Theorem 8 (Adjacency Oracles for 3-Spanners). For any n-node input graph, there is a
randomized algorithm that with high probability computes an adjacency oracle for a 3-spanner
H of size |E(H)| = Õ(n3/2), and which runs in Õ(n3/2) time.

ITCS 2024



19:6 Spanning Adjacency Oracles in Sublinear Time

▶ Theorem 9 (Adjacency Oracles for 5-Spanners). For any n-node input graph, there is a
randomized algorithm that with high probability computes an adjacency oracle for a 5-spanner
H of size |E(H)| = Õ(n4/3), and which runs in Õ(n3/2) time.

Both of these results are proved only for unweighted input graphs. The sizes of these
3- and 5-spanners are optimal, up to hidden log factors, and can be viewed as sublinear
computation for input graphs on ≫ n3/2 edges.

The reason that we have results for 3- and 5-spanners, but not spanners of higher stretch,
is due to a common technical barrier. These results follow a construction strategy of Baswana
and Sen [5], based on hierarchical clustering; 3- and 5-spanners can be achieved using only
one level of clustering, while higher-stretch spanners of optimal size require two or more
levels of clustering. We are able to optimize the first cluster assignment step, but it is unclear
how to achieve sublinear time cluster assignment for depth 2 and beyond.

Nonetheless, by introducing edge-sampling to the algorithm of Baswana and Sen,we
show a construction for higher-stretch spanners, with a parameter ρ controlling the tradeoff
between size and preprocessing time. Our algorithm runs in a factor of 1/ρ less than linear
time Õ(m) time by incurring a factor of ρ2 edges over the optimal size (as usual, this
optimality is conditional on the girth conjecture [6]).

▶ Theorem 10 (Adjacency Oracles for (2k − 1)-spanners). For any n-node, m-edge input
graph and k = Õ(1), there exists a randomized algorithm that with high probability computes
an adjacency oracle for a (2k− 1)-spanner H of size |E(H)| = Õ(n1+1/kρ2), and which runs
in Õ(n + m/ρ) time.

Our construction leaves open the question of whether adjacency oracles of optimal size
spanners can be computed in sublinear time.

▶ Open Question. For k > 3, is there a randomized algorithm that computes the adjacency
oracle of an Õ(n1+1/k) size (2k − 1)-spanner in polynomially subquadratic time?

This roughly mirrors a difficulty faced in the corresponding local spanner algorithms,
where optimal results were recently achieved for 3- and 5-spanners in a nice paper by Arviv,
Chung, Levi, and Pyne [4], but where results for higher-stretch spanners are considerably more
restricted in scope. Indeed, [4] is also based on Baswana-Sen clustering, and it introduces a
helpful degree-bucketing technique that we adapt and refine for our setting.

2 Spanning Adjacency Oracles

2.1 Adjacency Oracles for Sparse Spanning Subgraphs
We now construct our adjacency oracle for the problem SSS, defined in the introduction.

Preprocessing Algorithm

We first describe the data structures that we create in the construction of the adjacency
oracle. We will use three data structures:

Any kind of set data structure, to represent the edges added to the subgraph H during
preprocessing. This data structure only needs to support insertions and queries (checking
whether or not an edge (u, v) has been previously inserted to E(H)) in Õ(1) time each.
Many data structures are available that achieve this behavior, e.g., a self-balancing binary
search tree suffices.
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We use a union-find data structure to maintain connected components {Ci}. Initially,
each node is in its own connected component, but we will iteratively merge components
throughout the algorithm. This requries Õ(n) total time.
Another data structure is used to perform a particular edge-sampling step in preprocessing;
it will be easier to describe this in Lemma 11 following our description of the algorithm
itself.

We will say that a node v is “in bucket b” at a moment in the algorithm if the connected
component Cv containing v currently has size 2b ≤ |Cv| < 2b+1. So, initially every node is in
bucket 0, and nodes may be promoted to higher buckets when their components are merged
with other components.

SSS Adjacency Oracle Preprocessing

Let b ← 0. This is an incremental counter that marks the current bucket we are
processing.
While b < log n:

Let Eb ⊆ E(G) be the set of edges for which at least one of the two endpoints
is in bucket b. Choose an edge (u, v) ∈ Eb uniformly at random. (Taking a
uniform-random sample from Eb in Õ(1) time is nontrivial; we address this in
Lemma 11 below.)
Let u be the endpoint of the sampled edge (u, v) that is in bucket b. If v is
currently in a different connected component than u, and also v is in a bucket
b′ ≥ b, then we call this sample a success. Otherwise, if u, v are in the same
component or if b′ < b, then we call this sample a failure.
∗ If the sample is a failure, do nothing.
∗ If the sample is a success, add the edge (u, v) to H, and merge the connected

components containing u and v. Note that this increases the bucket of v (and
possibly also the bucket of u), and so it changes the set of nodes in bucket b,
and therefore also the set of edges in Eb.

Repeat until we have cε−12b log2 n failure events in a row (where c > 0 is a
sufficiently large absolute constant that we leave implicit). Then set b← b + 1,
i.e., we move on to analyzing the next bucket.

We will address the step of sampling uniformly from Eb, drawing from similar work on
dynamic weighted sampling [8].

▶ Lemma 11. For each bucket index b, we can maintain a data structure that allows us to
sample uniformly from the edges currently in Eb in Õ(1) time with high probability,4 using
Õ(n) total update time.

Proof. First we describe the creation and maintenance of the data structure. When we begin
analyzing bucket index b, we first scan all nodes and make a list of the nodes in bucket b as
well as their degrees. We sort these nodes into log n groups {Γ1, . . . , Γlog n} by their degrees:
group Γi contains the nodes in bucket b whose degree falls in the range [2i, 2i+1). We will
also maintain the sum of node degrees in each group, which we will write as deg(Γi). It takes
Õ(n) time to create these groups at the beginning of our analysis of bucket b, and as nodes
leave bucket b due to connected component merges, we can straightforwardly remove them
from the corresponding group and update our size and degree counts in Õ(1) time per node.

4 Here and throughout the paper, “high probability” means probability ≥ 1 − 1/nc for an absolute
constant c > 0.

ITCS 2024



19:8 Spanning Adjacency Oracles in Sublinear Time

Now we describe the sampling algorithm. We execute the following process:
Choose a group Γi with probability proportional to deg(Γi), i.e., deg(Γi)/

∑
j deg(Γj).

Choose a node u ∈ Γi uniformly at random. With probability deg(u)/2i+1 we accept u

and move on to the next step; otherwise, repeat this step, selecting a new node u ∈ Γi

uniformly at random.
Choose an edge (u, v) incident to the node u selected in the previous step, uniformly at
random. Then, check whether the other endpoint v is in bucket b. If not, return (u, v) as
the sampled edge. If so, then with probability 1/2 return (u, v) as the sampled edge, and
with probability 1/2 go back to the beginning of the entire sampling process and repeat
from scratch.

Note that we accept our node sample in the second step with probability at least 1/2,
and so with high probability we repeat this step at most Õ(1) times. Similarly, in the third
step we return an edge with probability at least 1/2, so with high probability we restart the
entire sampling process only Õ(1) times. Together, this implies that each sample runs in
Õ(1) time with high probability.

Finally, we argue that this process selects a uniform-random edge from Eb. Let E∗
b be

the set of oriented edges (u, v) ∈ E(G) such that the first node u is in bucket b (if v is also
in bucket b, then we have both (u, v), (v, u) ∈ E∗

b ). Notice that the first two steps of the
sampling procedure, combined with the first part of the third step, select a uniform-random
oriented edge from E∗

b . This is because we select a node u with probability proportional to
deg(u) (the number of edges in E∗

b that start with u), and then we select a uniform-random
edge incident to u.

This means that an edge (u, v) with both u, v in bucket b is twice as likely to be selected
in the third round as an edge with only u in bucket b, since such an edge is represented twice
(once with each orientation) in E∗

b . The third step resamples these edges with probability
1/2, so after this step is applied, all edges in Eb are equally likely to be sampled. ◀

We are now ready to verify the runtime of the preprocessing algorithm:

▶ Lemma 12. The above preprocessing algorithm can be implemented to run in Õ(nε−1)
time (with high probability).

Proof. The union-find data structure has total update time Õ(n). We can record the edges
added to H in Õ(1) time each by tracking these edges using any kind of set data structure;
we can have at most n− 1 success events (since each success event causes two components to
be merged), and so this takes Õ(n) time in total.

We next control the number of samples that we take for each of the log n choices of bucket
index b. At the beginning of a round with bucket index b, there are at most n/2b components
in bucket b, since each component has size at least 2b. Each success event causes at least one
component to leave the bucket. There are at most Õ(ε−12b) failure events between success
events. Thus, we sample at most Õ(nε−1) times per bucket index.

Finally, by the previous lemma we can sample from Eb in Õ(1) time with high probability,
by paying Õ(n) additional runtime per bucket index. ◀

We next look ahead to the step where we bound the number of edges in the subgraph H

represented by our adjacency oracle. The following property of the preprocessing algorithm
will be helpful:

▶ Lemma 13. With high probability, each time we finish processing a bucket b (i.e. just
before we set b← b + 1), there are at most εn/ log n edges (u, v) ∈ E(G) with the property
that u is in bucket b, v is in a different connected component than u, and the bucket b′ of v

satisfies b′ ≥ b.
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Proof. Let Yb be the event that the lemma statement holds for bucket index b. Our first
goal is to bound

Pr [Yb | Y1 and . . . and Yb−1] .

To do so, we again let E∗
b be the set of oriented edges (u, v) with u in bucket b. We sort

these edges into three types:
We say that (u, v) is a success edge if v is in a bucket b′ ≥ b, and u, v are in different
connected components. (That is, sampling a success edge causes a success event, and the
goal of this lemma is to bound the number of success edges.)
We say that (u, v) is a descending edge if v is in a bucket b′ < b.
We say that (u, v) is an internal edge if u, v are in the same connected component.

The number of internal edges can be bounded as∑
X component in bucket b

|X|2 ≤ n

2b
·
(
2b+1)2

= O
(
n · 2b

)
.

To bound the number of descending edges (u, v), note that each such edge would be a success
edge for a smaller bucket index if we considered it with reversed orientation (v, u). Since we
have conditioned on Y1, . . . , Yb−1, we assume that the lemma statement holds for all bucket
indices i < b, we can bound the number of descending edges as∑

i<b

εn

log n
≤ εn.

So, if there are currently at least εn/ log n success edges for bucket b, then each time we
sample an edge (u, v) the probability that it causes a success event is at least

Θ
(

εn

2b · n log n

)
= Θ

(
ε

2b · log n

)
.

So by standard Chernoff bounds and by choice of large enough constant c, with probability
at least 1− 1/n100, if we sample cε−12b log2 n edges we will have at least one success event.
Since (conservatively) we will have at most n2 edges recorded over the course of the algorithm
and hence O(n2) periods of samples between successes, by a union bound, with probability at
least 1−1/n98 we will not have cε−12b log2 n failure events in a row while ≥ εn/ log n success
edges for bucket b still exist. Assuming this event occurs, since we only move on to the
next bucket b + 1 following cε−12b log2 n failure events in a row, it must be that < εn/ log n

success edges remain.
To finish the proof, it now remains only to assemble the previous probability calculations.

We bound

Pr[Y1 and . . . and Ylog n] = Pr[Y1] · Pr[Y2 | Y1] · · · · · Pr[Ylog n | Y1 and . . . and Ylog n−1]

≥
(
1− 1/n98)log n

≥1−Θ
(
1/n97)

. ◀

The Query Algorithm

The query algorithm is relatively simple. As discussed in the introduction, this algorithm is
phrased in the stronger model where the query algorithm may not access the input graph G,
but the user promises to only give edges (u, v) ∈ E(G) as queries. When we receive an edge
query (u, v), we process it as follows.

ITCS 2024
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SSS Adjacency Oracle Query
If (u, v) was recorded by the set data structure as one of the edges added to E(H)
during preprocessing, then answer YES.
Else if u, v are in different connected components according to the union-find data
structure, then answer YES.
Else answer NO.

▶ Lemma 14. The set of edges to which the adjacency oracle answers YES spans the input
graph G.

Proof. There are two kinds of edges to which the oracle answers YES. Some are the edges
added to E(H) during preprocessing. By construction, these edges span each individual
connected component in the data structure at the end of preprocessing. The query algorithm
will then answer YES to all additional edges in E(G) between these connected components,
and the lemma follows. ◀

▶ Lemma 15. With high probability, the query algorithm will only answer YES to at most
(1 + ε)n edges in total.

Proof. First, the edges added to E(H) during preprocessing form a forest, so there are at
most n− 1 such edges. Second, by Lemma 13, with high probability, for each bucket b there
are at most εn/ log n edges between the connected components discovered in preprocessing
that have one endpoint in bucket b and the other endpoint in a bucket b′ ≥ b. Summing
over the log n buckets, the number of edges between connected components is at most
log n · εn

log n = εn. Thus, the oracle says YES to at most (n − 1) + εn ≤ (1 + ε)n edges in
total. ◀

Alternate Proof Using Random k-Out Orientations

After this paper was initially released, we realized that our adjacency oracle for SSS can
also be proved as a corollary of a nice recent paper by Holm, King, Thorup, Zamir, and
Zwick [11]. Their main result is the following structural theorem:

▶ Theorem 16 ([11]). Let G be any undirected unweighted graph, and let H be a random
edge-subgraph obtained by selecting k edges incident to each node uniformly at random and
including them in H. Then, if k ≥ c log n for a constant c, then the expected number of edges
between connected components of H is O(n/k).

It follows that we can construct an adjacency oracle that realizes Theorem 2 by sampling
k = Õ(1) many edges incident to each node and memorizing a spanning forest of the resulting
subgraph H. There will be O(n/k)≪ εn many edges between components, and the rest of
the proof follows by the same analysis as above. In fact, our proof above can be interpreted
as an alternate proof of a result similar to the theorem of [11]: one can argue that with high
probability, our algorithm will query only Õ(1) many edges incident to each vertex, and we
have proved that ≤ O(εn) edges then go between the discovered connected components. Our
proof is qualitatively different from the one in [11]; subjectively it is a bit simpler, but it
loses several log factors that are optimized out in this prior work.

2.2 Adjacency Oracles for Sparse k-Connectivity Certificates
Our method for constructing adjacency oracles for sparse spanning subgraphs also extends
to k-connectivity certificates. Recall that an edge subgraph H ⊆ G is a k-(edge) connectivity
certificate of G if, after deleting any (k − 1) edges in H from both G and H, the connected
components of H and G are the same. Then, there is a simple generalization of SSS.
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Sparse k-Connectivity Certificate (k-SSS):
Input: An n-node undirected graph G = (V, E), and ε > 0.
Output: An edge-subgraph H on at most (1+ε)kn edges that forms a k-connectivity
certificate of G.

(We recall from the introduction that 1-SSS and SSS are the same problem.) Due to
space constraints, we will defer our construction and analysis to the full version of the paper.

3 Spanning Adjacency Oracle Lower Bounds

In this section we show two lower bounds. First we show that no algorithm with o(n1−ε)
preprocessing time can compute a spanning subgraph adjacency oracle on a linear number of
edges. This lower bounds hold even when the adjacency oracles have access to the adjacency
list and adjacency oracle of the input graph. This is the weaker model from the introduction.

Second, we show that no randomized algorithm with o(n) preprocessing time can output
a spanning subgraph adjacency oracle on even o(n2) edges in general. The caveat for this
stronger result is that it applies in a slightly weaker model: we assume that the adjacency
oracle does not have access to the adjacency oracle or adjacency list of the input graph.
Rather, we assume we are instead promised that each edge query received by the adjacency
oracle is a query of an edge from G. This is the stronger model from the introduction.

3.1 Lower Bounds in the Weaker Model
In this section we show a close to linear lower bound on the preprocessing time of any
algorithm computing an O(n)-size spanning subgraph adjacency oracle with high probability.
We appeal to a construction from [23] in the setting of Local Computation Algorithms (LCAs)
for spanners.

▶ Theorem 17. For all absolute constants δ > 0, any algorithm that computes an O(n)-
size spanning subgraph adjacency oracle with probability at least 2/3 must take Ω(n1−δ)
preprocessing time.

Proof. Fix δ > 0. From the proof of Theorem 1.3 of [23], there exists a family of random
nδ/4-regular graphs on nδ/2 nodes such that any local computation algorithm outputting
an o(n3δ/4) edge spanning subgraph with probability at least 2/3 requires at least Ω(nδ/4)
queries of the graph. One important property of this family is that the randomly generated
graph is connected with high probability.

Now, let our input graph be drawn from the family of disjoint unions of n1−δ/2 copies of
graphs independently generated from this family. A spanning subgraph of any graph from
this family is the disjoint union of spanning subgraphs on each connected component.

Consider any algorithm running in o(n1−δ) preprocessing time which computes a spanning
subgraph adjacency oracle with probability at least 2/3. At least half of the connected
components must be unvisited during preprocessing. Hence, queries of edges from those
connected components amount to running a local computation algorithm for those subgraphs
with Õ(1) queries. Then, from the result of [23], since Õ(1) = o(nδ/4) and the algorithm
computes a spanning subgraph adjacency oracle with probability at least 2/3, these connected
components must contribute Ω(n1+δ/4) edges to the spanning subgraph induced by the
adjacency oracle. This implies the desired result. ◀
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A possible objection to Theorem 17 is that the constructed hard instances are not
connected. It turns out that it is relatively simple to get the same lower bound while
also assuming connected input graphs. After generating the random connected component
subgraphs {Ci} as in Theorem 17, introduce a single auxiliary node r and connect it to one
node in each Ci chosen at random. This leaves the asymptotic average degree unchanged.
Since the Ci’s are themselves connected with very high probability, the resultant graph formed
after adding these edges is connected with high probability. Observe that any spanning
subgraph of an input graph from this family is exactly spanning subgraphs of the Ci’s
connected by the newly introduced star of edges around r. Although one node in each Ci

are now degree nε/4 + 1, this information does not distinguish between nodes in the induced
subgraph of Ci (e.g., see the proof of Theorem 1.3 in [23]). Hence, the same analysis as in
Theorem 17 applies.

3.2 Lower Bounds in the Stronger Model
In this section we show that any algorithm that computes an o(n2)-size spanning subgraph
adjacency oracle with high probability must take Ω(n) preprocessing time. However, the
caveat is that this lower bound holds under the algorithmic model where queries to the
adjacency oracle only have access to information stored during preprocessing. Namely,
they do not have access to the adjacency oracle and adjacency list of the underlying graph
accessible previously during preprocessing. We are also promised that every query of the
spanning adjacency oracle is a query of an edge that exists in the initial graph. (Without this
promise, the family of random spanning trees on n nodes yields the lower bound trivially.)
Notably, our algorithms provide upper bounds in this model as well.

▶ Theorem 18. Any algorithm that with constant probability computes an o(n2)-size spanning
subgraph adjacency oracle (without the oracle maintaining access to the input graph after
preprocesssing) must take Ω(n) preprocessing time.

Proof. Suppose that we are promised that our input graph will be two disjoint n/2-cliques
joined by one random cut edge. The input graph is sampled by uniformly selecting a partition
of [n] into two parts of size n/2 and then selecting a pair of nodes between the two parts
uniformly at random. It suffices to prove the result for this restricted set of input graphs.

Now, note that every degree oracle access will return n/2− 1 except for queries to the
endpoints of the random cut edge. That is, degree queries only reveal whether or not a
vertex is an endpoint of the cut edge. Moreover, since the graph is two cliques joined by a
cut edge, adjacency queries amount to revealing an additional node in a single clique. Every
such query can be viewed as revealing the clique assignment of a node (since in reality it
reveals at most that much information). In particular, adjacency queries do not reveal any
information about the location of the endpoints of the cut edge unless they actually involve
one of those endpoints.

Then, for any f(n) = o(n), we may assume that in any f(n) preprocessing time algorithm,
the preprocessing phase amounts to revealing the clique assignment of f(n) random nodes in
each clique (since it reveals at most that many) and checking whether each of these nodes
are an endpoint of the cut edge. In particular, with probability at least 1−Θ( f(n)

n ) neither
endpoint of the cut edge appears in a query.

Next, consider the subgraph induced by the unqueried nodes. With probability at least
1−Θ( f(n)

n ), it is composed of two cliques of size Θ(n) connected by a cut-edge. In particular,
queries to the data structure formed by the f(n) preprocessing time reveal nothing beyond
this about the unqueried nodes. Assume that the cut edge is in this induced subgraph.
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On a query of the cut-edge, the data structure must return YES with at least constant
probability (with the randomness here from preprocessing). If it returns NO, then the graph
induced by the adjacency oracle is not spanning. However, none of the queried edges can
be distinguished by the preprocessing data structure and, by the randomness of the graph
input, any algorithm that treats the edge queries differently is equivalent to one that treats
all edge queries identically. (The protocols are averaged over the random graph inputs since
the cut-edge has an equal probability of being any of the edges between nodes not queried in
preprocessing.) However, there are Ω(n2) edges with both endpoints unqueried. Hence, the
graph underlying the adjacency oracle will have Ω(n2) edges, implying the desired result. ◀

4 Constructing Adjacency Oracles for 3-spanners

First, as a warm-up, we outline the construction of the adjacency oracle for approximately
regular graphs. Then we extend the construction to general graphs.

4.1 Approximately Regular Graphs
In this section, we will assume that all vertices in the input graph G(V, E) have degree within
a constant factor C of D. We will generalize this to graphs of arbitrary degree in the next
part. The following algorithm is phrased in the stronger model where the query algorithm
may not access G, but we are promised that only edges from E(G) will be queried. (Recall
that if the query algorithm may access G, then this promise is not necessary, since we can
first check whether the queried edge is in E(G) and answer NO if not.)

Preprocessing Algorithm

If D ≤ n0.5, we can use the input graph itself as our adjacency oracle: that is, we can simply
answer YES to every query. Otherwise, we construct the data structure for our adjacency
oracle as follows:

3-Spanner Adjacency Oracle Preprocessing (Approximately Regular Setting)
Iterate over each v ∈ V and, independently with probability 100C log n

D , initialize a
new cluster Cv, for which v is the cluster center.
For all cluster centers c in an arbitrary order, loop over the edges (c, w) incident to
c and check whether w is currently assigned to a cluster. If w is not assigned to a
cluster, set its cluster membership to be the cluster centered at c and record the
edge (c, w).
For each v ∈ V , sample 100Cr log n incident edges uniformly (where 1 ≤ r ≤ CD is
a parameter to be specified later). For each edge (v, w), if w is in a different cluster
than v and v has no edges recorded to w’s cluster, record that v is adjacent to w’s
cluster, and record the edge (v, w).

We can implement our data structure with:
An array, indexed by v ∈ V , with cell corresponding to v storing a set data structure
supporting Õ(1) time insertions and queries (for checking whether or not v is adjacent to
a given cluster).
Another set data structure supporting Õ(1) time insertions and queries (for checking
whether a given edge is recorded).
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By the Chernoff bound, with high probability Õ(n/D) cluster centers are selected in the
first step. Then, the second step takes Õ(n) time since each vertex is of degree at most CD.
Since checking whether a vertex v is adjacent to a given cluster takes Õ(1) time using a
dictionary, then the third step takes Õ(nr) time. In total, this preprocessing takes Õ(nr)
time. An important feature of the construction is that all vertices will belong to a cluster:

▷ Claim 19. With high probability, every vertex v ∈ V is assigned to a cluster in our
algorithm.

Proof. Fix v ∈ V . Let Xu be the indicator random variable for vertex u ∈ N [v] (the closed
neighborhood of v) being selected as a cluster center. Then, if

∑
Xu ≥ 1, v will be clustered.

Since v has degree at least D/C, the expectation of this sum is at least

D

C
· 100C

D
· log n = 100 log n.

Then, by the Chernoff bound, since the Xu’s are independent, the probability that the sum
of the Xu’s is less than one is at most

1− exp
(
−100 log n

4

)
= 1− 1/n25.

Then, by the union bound, all vertices are then clustered with high probability. ◁

In the following, we will assume that this high-probability event occurs, and that all
nodes are clustered.

Query Algorithm

On query (s, t), the adjacency oracle responds as follows (with YES meaning that the
underlying 3-spanner has edge (s, t) and NO meaning that it does not have the edge):

3-Spanner Adjacency Oracle Query (Approximately Regular Setting)
If the edge (s, t) was recorded in preprocessing, output YES.
Else if s, t are in different clusters, and we did not record an edge from s to the
cluster containing t, and we did not record an edge from t to the cluster containing
s, output YES.
Otherwise, output NO.

We can straightforwardly check which case holds in Õ(1) time. We next observe correctness
of the spanner:

▷ Claim 20. The subgraph H ⊆ G induced by the adjacency oracle is a 3-spanner of the
input graph G.

Proof. By standard reductions [3, 1], it suffices to verify that for each edge (s, t) ∈ E(G) for
which the oracle responds NO to the query (s, t), there exists an s⇝ t path of length ≤ 3 of
edges to which the oracle responds YES. There are two cases in which the oracles responds NO:

First, suppose that s, t are in the same cluster and that neither s nor t are the center c of
this cluster (otherwise we would record the edge (s, t)). Then we record edges (s, c) and
(c, t), so s→ c→ t forms a 2-path in H.
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Second, suppose that s is adjacent to the cluster of t via some recorded edge (s, x). Let c

be the center of the cluster of t. Then, we record each edge in the 3-path s→ x→ c→ t.
(This also handles the case in which c = t, in which case the above path is a 2-path of
recorded edges.) The case in which t is adjacent to the cluster of s via a recorded edge
follows analogously. ◁

▷ Claim 21. With high probability, the total number of edges in the subgraph induced by
the adjacency oracle is Õ(n2/r).

Proof. With high probability by the Chernoff bound, there are Õ(n/D) clusters. We assume
this event occurs in the following analysis. We consider the cases in which the the adjacency
oracle says YES:

The oracle says YES to all recorded edges. The number of recorded edges between cluster
centers and vertices is O(n) since each vertex belongs to at most one cluster. The number
of sampled edges that we record is at most Õ(n2/D), since there are n vertices, Õ(n/D)
clusters, and we record at most one edge from each vertex to each cluster. Note that,
since we sample Õ(r) edges from each vertex, we may assume that r is at most the max
degree O(D), so this bound is Õ(n2/r).
The oracle also says YES to some non-recorded edges (u, v), so long as u, v lie in different
clusters and we have not recorded an edge from u to the cluster of v, or vice versa. In
order to bound these edges, we make two observations:

The number of vertex-cluster pairs is at most Õ(n2/D) with high probability.
Fix a vertex-cluster pair, (v, X). If r ≥ D

100 log n , we sample all edges in G the edge-
sampling step, so if there are any edges between v and X then one will be recorded
in pre-processing. Otherwise, assume r < D

100 log n and suppose that v has x edges to
X in G. Since deg(v) ≤ C ·D, each edge incident to v is sampled with probability at
least 100Cr log n

CD = 100r log n
D . The expected number of sampled edges from v to X is

then at least 100rx log n
D . So, if x ≥ D/r, then, by the Chernoff bound, one of these x

edges will be sampled with probability at least

1− exp
(
−100 log n

4

)
= 1− 1/n25.

Note that the indicator random variables for whether each edge incident to v is selected
are actually not independent. Nonetheless, they are negatively correlated and the
Chernoff bound still applies to negatively correlated random variables. Union-bounding
over each vertex-cluster pair, at least one of the edges will be sampled for all vertex-
cluster pairs (v, X) with x ≥ D/r with probability at least 1− 1/n23. So, with high
probability, the maximum number of edges added in this case is

Õ

(
n2

D
· D

r

)
= Õ(n2/r).

Applying the union bound then yields the result. ◁

▶ Theorem 22. With high probability the above construction yields an adjacency oracle for
a 3-spanner of G with Õ(n2/r) edges, in Õ(nr) preprocessing time.

We can set the parameter r to be any value between 1 and CD. In particular, we have
the following.
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▶ Corollary 23. By setting r = n0.5, with high probability the above construction yields an
adjacency oracle for a 3-spanner of G with Õ(n1.5) edges, in Õ(n1.5) preprocessing time.

Namely, for D = ω(n0.5), this algorithm computes an adjacency oracle of an optimal size
3-spanner of G in sublinear time.

4.2 Extending to General Graphs
To extend the previous algorithm to general graphs G(V, E), we will create log n copies of
the previous query data structure with each corresponding to a “bucket” of possible node
degrees. On the query of a edge, we will pass the query to all of the data structures and
return YES if any data structure returns YES, or NO if all data structures return NO. The idea
is that the data structure that correctly guesses the minimum degree of the endpoints of the
edge will ensure the 3-spanner stretch property for this edge. For vertices of especially low
degree, e.g., less than n0.5, we will just always say YES to the edge. Note that these buckets
are not guessing the degree of both endpoints of each edge (u, v) being queried, but rather,
the minimum degree between u, v. In this sense, we are not directly reducing to the previous
analysis. Nonetheless, the high-level idea for each bucket data structure mirrors that of the
approximately regular case.

Let us overview the technical reasons why we need to take this bucketing approach. The
issue is that there is a tension between sampling enough cluster centers to ensure that each
node is clustered, and the number of edges added at query time (which were not recorded in
preprocessing). If we attempt the previous algorithm: for a graph with minimum degree δ, we
need to sample Õ(n/δ) many cluster centers, and so there would be Õ(n2/δ) vertex-cluster
pairs. On the other hand, we can afford to sample Õ(n0.5) edges per node; for a graph
with average degree D, this means that each edge is included with probability roughly
D/n0.5. Following the analysis from before, we would add Ω(n3/2D/δ) total edges, which is
suboptimal for graphs with D ≫ δ.

But, if we instead handle edges with the minimum degree endpoint of degree ℓ in some
data structure where we sample only Õ(n/ℓ) cluster centers, both endpoints will be clustered
with high probability. Moreover, for a given vertex-cluster pair (v, X) where v is degree ℓ

and X is a cluster from the data structure with Õ(n/ℓ) cluster centers, there can only be
Õ(ℓ/n0.5) unrecorded edges added per pair involving v. Otherwise, by an analysis similar to
Claim 21 we would have sampled one with high probability. Handling the edges in this way
then circumvents the previous conflict to yield the desired Õ(n3/2) edges.

Formally, we partition the interval [n0.5, n] into O(log n) buckets of the form
[2kn0.5, 2k+1n0.5) for k ∈ {0, 1, . . . , (log n)/2 − 1}. For each non-empty bucket with lower
bound ℓ there is a corresponding data structure. We describe the preprocessing and query
algorithms for each individual data structure and describe how to combine these parametrized
data structures to create the 3-spanner adjacency oracle.

Preprocessing Algorithm

For each non-empty bucket with lower bound ℓ, we construct its corresponding data structure
as follows. The preprocessing is almost exactly as in the case of approximately D-regular
graphs except using ℓ instead of D in the number of sampled cluster centers and C = 2. We
also include a run-time optimization in the cluster assignment step that will be especially
valuable when we extend these ideas to 5-spanners. We assume that the average degree D of
the graph is at least n0.5 or else we just return the graph as the adjacency oracle. We can
check whether this is the case in O(n) time.
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3-Spanner Adjacency Oracle Preprocessing
Iterate over each v ∈ V and, independently with probability c log n

ℓ , initialize a
distinct cluster for v and assign it as its cluster’s cluster center (where c > 0 is a
sufficiently large absolute constant we will leave implicit).
Now we assign nodes to clusters.

If ℓ ≥
√

D, loop over each neighbor of each cluster center and assign nodes to the
first cluster center they are found to be adjacent to, recording the respective edge.
Otherwise, if ℓ <

√
D, for all v ∈ V , iterate over its neighbors in a random order

and assign it to the cluster of the first neighboring cluster center found, recording
the corresponding edge.

For all v ∈ V , sample cr log n of its incident edges. For each (v, w) sampled, if w

is in a different cluster than v, record the edge (v, w) and that v is adjacent to w’s
cluster. Additional edges from v to w’s cluster are then ignored.

We can implement each data structure using the same data structures as in the approx-
imately regular case (array and set data structures).

Note that each degree is between 0 and n. The sum of the degrees of the sampled cluster
centers is cnD log n

ℓ in expectation. Then, since the cluster centers are sampled independently,
the average degree of the cluster centers is at most ρD with probability at least

1− exp
(
−ρcnD log n

2nℓ

)
= 1− n−cρD/(2ℓ)

by the Chernoff bound (for independent, bounded, and non-negative random variables),
where ρ = max(5, ℓ/D). The Chernoff bound used here arises from the standard Chernoff
bound for independent random variables in [0, 1] via dividing each random variable by their
uniform bound (in this case n, since each cluster center has degree at most n). Then, for c a
sufficiently large constant, with high probability the first case of the cluster assignment step
takes Õ( n

ℓ · ρD) time. When max(5, ℓ/D) = ℓ/D, this is Õ(n). Otherwise, this is Õ(nD/ℓ).
The second case of the second step takes Õ(nℓ) time with high probability. Namely, for

nodes of degree at least ℓ, by the Chernoff bound, with high probability it takes checking at
most ℓ random neighbors to find a cluster center and terminate. We can then union bound
over all vertices to get the result for all vertices with high probability.

Hence, with high probability, the total preprocessing time over all data structures will be

Õ(n min(D/δ,
√

D) + nr),

where δ := max(δ(G), n1/2). The variable δ corresponds to the order of the lower bound
of the first bucket we instantiate. Note that the second step is somewhat different than in
the approximately regular case in that we do not check all of the neighbors of v. This is
a runtime optimization for graphs without a worst-case gap between average degree and
minimum degree, but does not change the fact that all sufficiently high degree vertices will
be clustered.

Query Algorithm

On the query of an edge (s, t), we query all O(log n) data structures and return YES if any
data structure returns YES. Otherwise we return NO. On query (s, t), the data structure
corresponding to lower bound ℓ responds as follows.
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3-Spanner Adjacency Oracle Query
If min(deg(s), deg(t)) < n0.5, output YES.
Else if the edge (s, t) was recorded, output YES.
Else if s or t is unclustered or min(deg(s), deg(t)) > 2ℓ output NO.
Else if s and t are in the same cluster or s or t have a recorded edge to the cluster of
the other, output NO.
Otherwise, output YES.

Each query can be made in Õ(1) time. (If we do not assume that the oracle has access to
the input graph, we can store the degrees of each node in linear time during preprocessing.)
Observe that the oracle behavior is identical to that in the case of approximately D-regular
graphs except for the degree-checking conditions.

Intuitively, for an edge with minimum degree endpoint in the bucket [ℓ, 2ℓ), the data
structure corresponding to ℓ will handle the 3-spanner property for that edge. We observe
that the endpoints of the edge will be clustered in that data structure:

▷ Claim 24. With high probability, for all bucket lower bounds ℓ, each vertex of degree at
least ℓ is clustered in the data structure corresponding to ℓ.

Proof. For ℓ ≥
√

D, this follows from the Chernoff bound and the union bound via a proof
nearly identical to the proof of Claim 19.

For ℓ <
√

D, let v ∈ V be a vertex with deg(v) ≥ ℓ. For each u ∈ N [v], where N [v] is
the closed neighborhood of v, create an indicator random variable Xu for u being selected
as a cluster center. The variables are independent, and their sum has expectation at least
c log n. Hence, by the Chernoff bound, the probability that the sum is at least 1 is at least
1− n−c/4, yielding the desired result after union bounding over all v ∈ V ◁

Now we can show that the subgraph H ⊆ G induced by the adjacency oracle is indeed a
3-spanner of the input graph G.

▶ Lemma 25. With high probability, the subgraph H ⊆ G induced by the adjacency oracle is
a 3-spanner of the input graph G.

Proof. Let (s, t) ∈ E(G) with min(deg(s), deg(t)) ∈ [ℓ, 2ℓ). If ℓ < n0.5, (s, t) ∈ E(H) since
every data structure outputs YES. Otherwise, consider the data structure corresponding to
lower bound ℓ. Both s and t are clustered with high probability by Claim 24. We consider
the two applicable NO cases and verify that the distance between s and t in the induced graph
is at most 3.

Again, it suffices to verify that for each edge (s, t) ∈ E(G) for which the oracle responds
NO to the query (s, t), there exists an s⇝ t path of length ≤ 3 of edges to which the oracle
responds YES.

Suppose that s and t are in the same cluster in the data structure corresponding to ℓ (say
centered at x). We cannot have s = x or t = x because then (s, t) was recorded and the
data structure outputs YES. The oracle responds YES to each edge in the path s→ x→ t

since they are the edges recorded from s and t to their cluster center.
Now, suppose that s and t belong to distinct clusters and an edge was recorded from s to
the cluster of t (centered at x), with the edge being (s, u) for u in the cluster centered at
x. Then, the data structure will respond YES to each edge in the path s→ u→ x→ t.
In particular, the data structure responds YES to edges (u, x) and (x, t) since they are the
edges recorded from u and t to their cluster centers. The data structure also responds
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YES to (s, u) since that edge was recorded in the edge sampling step. (Note that it is
possible that u = x or x = t. In either of those cases, the path is of length 2 and is still
composed of edges contained in H.) ◀

Finally, we bound the number of edges in the graph induced by the oracle.

▶ Lemma 26. With high probability, the number of edges in the graph induced by the oracle
is Õ(n2/δ + n2/r).

Proof. We first bound the number of edges added in each YES case of the data structure
corresponding to bucket with lower bound ℓ. We will use that, with high probability, the
number of clusters is Õ(n/ℓ) and assume that this event holds in the below.

If δ is the minimum degree of G, then the first YES case does not add any edges. Otherwise,
it adds O(n1.5) edges. Hence, this case adds at most O(n2/δ) edges.
Each vertex is adjacent to at most one cluster center and has at most one edge to each
cluster. Hence, the second YES case adds at most Õ(n2/ℓ) = Õ(n2/δ) edges, using the
assumption of Õ(n/ℓ) clusters.
In the final YES case, one of the endpoints is of degree at most 2ℓ. We can bound the
number of edges added in this case by bounding the number of unsampled edges added
from vertices of degree at most 2ℓ. The number of pairs of vertices of degree at most 2ℓ

and clusters is Õ(n2/ℓ). If r ≥ 2ℓ
c log n , we will sample all edges for each vertex of degree

at most 2ℓ and no edges will be added from this case. Otherwise, assume r < 2ℓ
c log n .

For such a given vertex-cluster pair (s, X), if s has more than ℓ/r edges to vertices
in X, then the expected number of sampled edges from s to vertices in X is at least
ℓ
r ·

r
2ℓ · c log n = (c log n)/2. Hence, as in Claim 21, by the Chernoff bound (for negatively

correlated random variables) and the union bound, with high probability, for each vertex
cluster pair (s, X) with s without an edge recorded to X and s of degree at most 2ℓ, s

has at most ℓ/r edges added to X. Hence, the total number of edges added in this case
is Õ(n2/r) with high probability.

Union bounding over all O(log n) data structures, for large enough c, these bounds hold for
all data structures with high probability. Then, the number of total edges in the underlying
graph of the oracle is at most a log n factor greater than Õ(n2/δ + n2/r) which is still
Õ(n2/δ + n2/r). ◀

Union bounding all high probability bounds and choosing an appropriate c (say 200), this
yields the following.

▶ Theorem 27. With high probability the subgraph H ⊆ G induced by the adjacency oracle
is a 3-spanner of G with Õ(n2/δ + n2/r) edges. The oracle can be constructed in Õ(nr +
n min(D/δ,

√
D)) time, for parameter r and δ = max(n1/2, δ(G)), where δ(G) is the minimum

degree of a vertex in G.

We have the following corollary.

▶ Corollary 28. By setting r = n0.5, with high probability the above construction yields an
adjacency oracle for a 3-spanner of G with Õ(n1.5) edges, in Õ(n1.5) preprocessing time.

5 Adjacency Oracles for 5-spanners and Beyond

In this work, we extend our adjacency oracles for 3-spanners to stretch 5 and beyond.
Although the basic clustering technique is the same, some additional technical ideas are
needed to execute the stretch analysis for larger stretch values. Due to space constraints we
have deferred this to the full version of the paper.
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