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Abstract
Entanglement is a quantum resource, in some ways analogous to randomness in classical computation.
Inspired by recent work of Gheorghiu and Hoban, we define the notion of “pseudoentanglement”, a
property exhibited by ensembles of efficiently constructible quantum states which are indistinguishable
from quantum states with maximal entanglement. Our construction relies on the notion of quantum
pseudorandom states – first defined by Ji, Liu and Song – which are efficiently constructible
states indistinguishable from (maximally entangled) Haar-random states. Specifically, we give a
construction of pseudoentangled states with entanglement entropy arbitrarily close to log n across
every cut, a tight bound providing an exponential separation between computational vs information
theoretic quantum pseudorandomness. We discuss applications of this result to Matrix Product
State testing, entanglement distillation, and the complexity of the AdS/CFT correspondence. As
compared with a previous version of this manuscript (arXiv:2211.00747v1) this version introduces a
new pseudorandom state construction, has a simpler proof of correctness, and achieves a technically
stronger result of low entanglement across all cuts simultaneously.
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1 Introduction

Randomness is a resource in classical computation and cryptography, and the theory of
pseudorandomness plays a central role in the study of this resource. Entanglement plays an
analogous role and is a central resource in quantum information and computation. Inspired by
the definition of pseudorandomness, and recent work of Gheorghiu and Hoban [15], we define
the notion of pseudoentanglement. Informally we say that an ensemble of quantum states is
pseudoentangled if the states are efficiently constructible and have small entanglement but
are indistinguishable from quantum states with maximal entanglement.

The study of quantum pseudoentanglement is closely related to the concept of quantum
pseudorandom states introduced by Ji, Liu and Song [19]. Pseudorandom states are ensembles
of quantum states which can be prepared by efficient quantum circuits, yet which masquerade
as Haar-random states, even to arbitrary poly-time quantum algorithms using an arbitrary
polynomial number of copies of the state. While such a strong form of pseudorandomness
is impossible in the information-theoretic setting [8], Ji, Liu and Song showed it is possible
to construct such states in a computational setting using post-quantum cryptography – in
particular using any quantum secure pseudorandom function, a standard cryptographic
primitive [39]. This notion has many applications in cryptography [5, 23], complexity
theory [22], and quantum gravity [6, 21].

In this paper we give a new family of pseudorandom quantum states which have low
entanglement rank (and therefore entropy) across every cut. A simple swap test argument
shows that any pseudorandom quantum state must necessarily have ω(logn) entanglement
entropy across any cut [19]. It was an open question to exhibit pseudorandom quantum
states which saturate this entanglement entropy lower bound. Here we give a construction
that is optimal and achieves entanglement entropy arbitrarily close to logn across every cut.
This should be contrasted with information theoretic notions of pseudorandomness, such
as unitary t-designs, which require entanglement entropy Ω(n) across each cut1 , and con-
sequently our results obtain an exponential separation between computational vs information
theoretic quantum pseudorandomness. Moreover, since by definition pseudorandom states
are indistinguishable from Haar random states, which have maximal entropy across every
cut, this ensemble of states is also pseudoentangled.

The construction of the pseudoentangled family is quite simple to describe. Let S ⊆ {0, 1}n
be a pseudorandom subset of superpolynomial support |S| = s(n), and f : {0, 1}n → {0, 1} a
PRF. Then we prove that the state∑

x∈S
(−1)f(x) |x⟩

is pseudorandom. The Schmidt rank across any cut is bounded by s(n) and therefore the
entanglement entropy is bounded by log s(n), and for s(n) to be superpolynomial it is only
necessary for the entanglement entropy to grow faster than logn. Showing that this family

1 This is true in expectation for t ≥ 2 [12, 33] and becomes more concentrated as t = 4 and higher [25, 11].
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of quantum states is efficiently preparable and pseudorandom therefore establishes that it
is indistinguishable from the maximally entangled Haar random states, and is therefore a
pseudoentangled family of states.

▶ Theorem 1 (Pseudorandom states with low entanglement across all cuts (Informal)). For any
function f(n) = ω(logn), there exists ensembles of pseudorandom states with entanglement
entropy Θ(f(n)) across all cuts of the state simultaneously 2.

We note that a previous version of this result appeared on the arXiv with identification
number arXiv:2211.00747v1 and as a contributed talk at QIP 2023. Our prior construction
was based on the random phase state construction of [19, 7], and we showed it is possible
to decrease the entanglement to any f(n) = ω(logn) across a single fixed cut, which we
include in [1]. It turns out it is possible to generalize our prior construction to have low
entanglement with respect to additional cuts. We achieve this by repeatedly using the
same technique to reduce the entanglement across certain cuts without accidentally blowing
up the entanglement across other cuts. While this allows us to produce, for example, 1D
pseudorandom states with “pseudo-area law” scaling of entanglement (i.e., the entanglement
of any cut is upper bounded by A · poly log(n) where A is the area of the cut when the qubits
are arranged on a line) which we prove in [1], the technique requires a careful choice of cuts
and does not give us the ability to reduce entanglement across all cuts. Compared to that
result, our current construction introduces a new pseudorandom state construction, has a
simpler proof of correctness, and achieves a technically stronger result of low entanglement
across all cuts simultaneously. As we will show, the pseudo-area law scaling of entanglement
allows us to prove strong property testing lower bounds, such as for testing Matrix Product
States.

1.1 Applications
Given the central role played by pseudorandomness in classical computer science, we expect
that the notion of pseudoentanglement will shed new light on our understanding of quantum
entanglement. Here we scratch the surface by providing some initial applications.

First, our main result implies new lower bounds in property testing. For example, suppose
one wishes to tell if an n-qubit state has a Matrix Product State (MPS) description of bond
dimension k, or is far from any such state? This is the “MPS-testing” problem. Soleimanifar
and Wright [34] recently showed MPS testing requires Ω(

√
n) copies of the state in an

info-theoretic sense. We show that MPS testing requires Ω
(√
k
)

copies of the state, either in
info-theoretic or computational settings, as a corollary of our low-entropy PRS construction.
While incomparable to the Soleimanifar-Wright bound, this is a stronger lower bound in
the regime of high bond dimension k – so is saying that it gets more and more difficult to
determine if a state is an MPS as the bond dimension grows. We describe this application in
more detail in Section 3.3.

Another classic property testing problem is to estimate the Schmidt rank of many copies
of an unknown quantum state [27]. While it is known that in general this is a difficult
problem [10], prior lower bounds for this problem have relied on input quantum states
which are not efficiently constructible. Our work implies that Schmidt rank testing remains
intractable in the setting where states are efficiently constructible, and gives analogous

2 Technically, this is across all cuts of the state where one size of the partition is of size Ω(f(n)), as the
statement is trivially false otherwise.
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lower bounds for a number of related property testing/tomography problems, such as
estimating the largest Schmidt coefficients of an unknown state (see Section 4). In addition,
our pseudoentanglement construction can be used to prove lower bounds on entanglement
distillation protocols for extracting entanglement from Haar random states via the Schur
transform (see Section 3.1).

Finally our work has applications to quantum gravity theory. A central theme of quantum
gravity is that entanglement is related to the geometry of general relativity, through dualities
such as the AdS/CFT correspondence. The construction of pseudoentangled states within
these theories might give additional evidence that the duality maps must be exponentially
difficult to compute [6], which was also part of Hoban and Gheorghiu’s motivation for their
work [15]. We discuss this further in Section 3.4.

1.2 A formal definition of pseudo-entanglement
We now proceed to define pseudoentanglement. A pseudoentangled state ensemble (PES)
with gap f(n) vs. g(n) consists of two ensembles of n-qubit states |Ψk⟩ , |Φk⟩ indexed by a
secret key k ∈ {0, 1}poly(n), with the following properties:

Given k, |Ψk⟩ (|Φk⟩, respectively) is efficiently preparable by a uniform, poly-sized
quantum circuit.
With probability at least 1 − 1

poly(n) over the choice of k, the entanglement entropy across
every cut of |Ψk⟩ (|Φk⟩, respectively) is Θ(f(n)) (Θ(g(n)), respectively)
For any polynomial p(n), no poly-time quantum algorithm can distinguish between the
ensembles ρ = Ek

[
|Ψk⟩ ⟨Ψk|⊗p(n)

]
and σ = Ek

[
|Φk⟩ ⟨Φk|⊗p(n)

]
with more than negligible

probability. That is, for any poly-time quantum algorithm A, we have that

|A(ρ) − A(σ)| ≤ 1
negl(n)

Our definition is inspired by prior work of Gheorghiu and Hoban [15], who implicitly
considered a similar notion. In our language, [15] showed that PES ensembles exist with gap
n vs n− k for any k = O(1), based on LWE. Our main result improves this construction to
the maximum gap possible:

▶ Corollary 2 (High gap pseudoentangled states (informal)). There exists a pseudoentangled
state ensemble (PES) with entanglement gap Θ(n) vs ω(logn) across all cuts simultaneously,
which is simultaneously a pseudorandom state ensemble, assuming there exists any quantum-
secure OWF.

In contrast to Gheorghiu and Hoban’s result, we achieve the maximum possible entan-
glement gap, which is agnostic to the choice of quantum-secure OWF, applies to all cuts
simultaneously, and simultaneously maintain indistinguishability from the Haar measure3.
We similarly show our state can be instantiated in logarithmic depth.

2 Main result

In this section, we will prove our main result, Theorem 1. To do this we first construct a
pseudorandom quantum state with optimally low entropy across any cut. As discussed, this
is the strongest possible notion of pseudoentanglement for a pseudorandom state ensemble,
matching the lower bound established by Ji, Liu, and Song [19].

3 One can indeed show [15]’s construction is not itself a pseudorandom state ensemble, as we describe
in [1]
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We then show how to tune the entanglement entropy of our construction to achieve a
pseudorandom state with entanglement entropy Θ(f(n)) across each cut, for any function
f = ω(log(n)).

2.1 The subset phase state construction
For particular choices of S and a binary phase function f : {0, 1}n → {0, 1}, our pseudorandom
state will have the following form.

|ψf,S⟩ = 1√
|S|

∑
x∈S

(−1)f(x) |x⟩ . (1)

Let us call states that are denoted by (1) “subset phase states”. Our next arguments are as
follows.

Efficient preparation: We show how to efficiently prepare subset phase states, when
the subset and phases are chosen pseudorandomly, using appropriate quantum–secure
pseudorandom functions and permutations.
Proof of statistical closeness: First, we will show that if |S| = 2ω(logn), and if f is
randomly chosen in (1), then polynomially many copies of the corresponding density
matrix are close in trace distance to polynomially many copies of a Haar random state.
Qualitatively, this result means that a randomly chosen subset phase state is statistically
close to a Haar random state, even with polynomially many copies.
Proof of computational indistinguishability: Then, we will show that conditioned
on a cryptographic conjecture, we can efficiently prepare pseudorandom subset phase
states that are computationally indistinguishable to a random subset phase state.
The proof of security will hinge on a sequence of hybrids.
Analysis of pseudoentanglement: We will have a discussion on how our construction
can be made to achieve the desired optimally low pseudoentanglement properties across
any cut.
Tight tunability: Finally, we will discuss how to tightly tune the entanglement of our
construction by varying the size of the subset.

2.2 Notations
We will use TD(· , ·) to denote the trace distance between two density matrices. Use Permt

to denote the set of all permutations among t items. For any subset S ⊆ {0, 1}n and any
σ ∈ Permt, we define

PS(σ) :=
∑

x1,...,xt∈S
|xσ−1(1), . . . , xσ−1(t)⟩ ⟨x1, . . . , xt| . (2)

Then,

ΠS,t
sym = 1

t!
∑

σ∈Permt

PS(σ) (3)

is the projector onto the symmetric subspace of (CS)⊗t.
There are two sources of randomness in the subset phase state: randomness in choosing

the subset and randomness in choosing the phase. To simplify notations, we use |ψS⟩ to
denote the subset phase state defined in Eq. (1) with a random phase function and a fixed
subset S, |ψf ⟩ to denote the subset phase state with a random subset and a fixed phase

ITCS 2024
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function, and |ψ⟩ to denote the subset phase state where both the components are chosen at
random. Sometimes, when the choice of the subset is specified by a function p, as we will see
in the very next section, we slightly modify the notation in Eq. (1) and use |ψf,p⟩ to denote
such an ensemble.

In the next section, we will show that we can efficiently instantiate these states using
pseudorandom functions and permutations. We will reference this section later, in our final
proof of the pseudorandom and pseudoentangled properties of these states.

2.3 Efficiently preparing the state
Let p be sampled uniformly at random from a family of quantum–secure pseudorandom
permutations P with

P = {p : [2n] → [2n]} (4)

and f be sampled uniformly at random from a family of quantum–secure pseudorandom
functions F with

F = {f : [2n] → {1,−1}}. (5)

Let us suppose we know f , p and p−1. We will give a recipe of how to efficiently prepare the
state:

|ψf,p⟩ = 1√
2k

∑
x∈{0,1}k

(−1)f(p(x0⊗(n−k))) |p(x0⊗(n−k))⟩ (6)

The steps are as follows:

Start with |0n⟩.
Let the size of the subset S be 2k for some integer k ≤ n.
Apply H⊗k ⊗ I⊗(n−k) to |0n⟩.
We get the state

1√
2k

∑
x∈{0,1}k

|x0⊗(n−k)⟩ , (7)

where x0⊗(n−k) means we pad n− k zeros to to end of x to get an n-bit string.
We apply p to this state to get

1√
2k

∑
x∈{0,1}k

|x0⊗(n−k)⟩ |p(x0⊗(n−k))⟩ . (8)

Finally, we apply the inverse of p, denoted by p−1, to un-compute the first register. We
get

1√
2k

∑
x∈{0,1}k

|p(x0⊗(n−k))⟩ . (9)

Observe that if p were sampled from the set of truly random permutations, then this
process would output a subset set state 1√

2k

∑
x∈S

|x⟩ uniformly at random from all subset

states with size 2k.
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Finally, we construct a phase oracle using the description of f to get the state
1√
2k

∑
x∈{0,1}k

(−1)f(p(x0⊗(n−k))) |p(x0⊗(n−k))⟩ . (10)

Note that if P were a truly random permutation family and f a truly random phase
function, then the output distribution of this process is exactly the uniform distribution
over subset phase states with |S| = 2k.

2.4 Proof of statistical closeness to Haar random states
We will prove that polynomially many copies of a subset phase state, where both the subset
and the phases have been chosen at random, are statistically close to polynomially many
copies of a Haar random state. More formally, we establish the following theorem.

▶ Theorem 3. For any t < K ≤ 2n, it holds that

TD
(

E
S with |S|=K, f

[
|ψf,S⟩ ⟨ψf,S |⊗t

]
, E
|ϕ⟩←H (CN )

[
|ϕ⟩ ⟨ϕ|⊗t

])
< O

(
t2

K

)
,

where |ψf,S⟩ is defined in (1). That is to say,

TD
(

E
S with |S|=K, f

[
|ψf,S⟩ ⟨ψf,S |⊗t

]
, E
|ϕ⟩←H (CN )

[
|ϕ⟩ ⟨ϕ|⊗t

])
<

1
poly(n) ,

for K = 2ω(logn), any polynomially bounded t, and any poly(n), where H (CN ) denotes the
ensemble of Haar random states in the Hilbert space with dimension N = 2n.

The proof can be found in [1], and uses techniques from representation theory to represent a
random subset phase state ensemble as a “truncated” projector onto the symmetric subspace,
where the truncation depends on the size of the subset. Then, using standard facts, we
compute its statistical distance from the Haar random ensemble.

2.5 Proof of computational indistinguishability
In this section, we will prove the following theorem.

▶ Theorem 4. Consider an ensemble of subset phase states |ψf,p⟩ given by

|ψf,p⟩ = 1√
2k

∑
x∈{0,1}k

(−1)f(p(x0⊗(n−k))) |p(x0⊗(n−k))⟩ , (11)

where p is sampled uniformly at random from a family of quantum–secure pseudorandom
permutations P with

P = {p : [2n] → [2n]}

and f is sampled uniformly at random from a family of quantum–secure pseudorandom
functions F with

F = {f : [2n] → {1,−1}}.

Then, (11) defines an ensemble of pseudorandom quantum states, with the secret key K being
the description of f , p, and p−1, where p−1 is the inverse permutation of p.

Note that the efficient preparability of the states in (11) follow from Section 2.3. The rest
of the proof will be a security analysis: to prove that this construction is computationally
indistinguishable from Haar random states. Finally, in a separate section, we will analyze
the entropy of this state ensemble.

ITCS 2024
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2.5.1 Security analysis
In this subsection, we prove the following proposition.

▶ Proposition 5. The ensemble of subset phase states defined in (10) is computationally
indistinguishable from Haar random states, with the secret key being the description of f and
p, when |S| = 2ω(logn).

Proof. Note that f is oracle indistinguishable from a random function rf , from an analysis
in Section B.2.3 of [1]. Additionally, by definition, p is oracle indistinguishable from a truly
random permutation rp. Moreover, again by definition, the oracle indistinguishability result
holds even when the adversary is given access to the inverse of the permutation. That is, no
adversary can distinguish between (p, p−1) and (rp, r

−1
p ) when given black box access and

promised one of these is the case.
So, when given access to three black boxes, promised to either (f, p, p−1), or (rf , rp, r

−1
p ),

no polynomial time adversary, with query access, can distinguish between these two cases.
Now, the following sequence of hybrids completes the proof.

Hybrid 0. This is the case where the adversary is given polynomially many copies of the
state

|ψf,p⟩ = 1√
2k

∑
x∈{0,1}k

(−1)f(p(x0⊗(n−k))) |p(x0⊗(n−k))⟩ . (12)

Hybrid 1. This is the case where the adversary is given polynomially many copies of the
state

|ψR,r⟩ = 1√
2k

∑
x∈{0,1}k

(−1)rf (rp(x0⊗(n−k))) |rp(x0⊗(n−k))⟩ . (13)

This is computationally indistinguishable from Hybrid 0 because, otherwise, we can effi-
ciently distinguish between (f, p, p−1) and (rf , rp, r

−1
p ) when given black box access, by using

the unknown black box to prepare polynomially many copies of a state that has to be either
(12) or (13).

Hybrid 2. The adversary is given polynomially many copies of a Haar random state. This
is indistinguishable from Hybrid 1 from Theorem 3. ◀

2.6 Entanglement entropy of pseudorandom subset phase states
Let |ψf,p⟩ be a pseudorandom subset phase state and let

ρf,p = |ψf,p⟩⟨ψf,p|.

To prevent cluttering notations, we will drop f and p from the subscript of ρ and take them
to be implicit whenever we use the symbol, unless otherwise stated. Let S be the size of
the subset defined by p and let S(·) be the von Neumann entanglement entropy of a density
matrix.

For an n–qubit state |ψ⟩, let (X,Y) be any partition of the n qubits. Then, for reduced
density matrices ρX and ρY, let the von Neumann entropy, for each, be denoted by S(ρX:Y).

The following statements are immediate.



S. Aaronson et al. 2:9

▶ Corollary 6. For any cut (X,Y) of n qubits, such that |X| + |Y| = n,

S(ρX:Y) = O(log |S|).

Proof. The proof follows trivially from noting that the rank of the density matrix ρ is at
most |S|, as it is a density matrix corresponding subset state over a subset of size |S| and
has, at most |S| linearly independent rows or columns. ◀

▶ Corollary 7. For |S| = 2poly logn, for any cut (X,Y) of n qubits, such that |X| + |Y| = n,

S(ρX:Y) = Θ(poly logn). (14)

Proof. The upper bound follows from Corollary 6 and the lower bound follows from the
SWAP test, as described in [1]. ◀

This shows that when |S| = 2poly logn, we get optimally low pseudoentanglement across
every cut, no matter what the spatial geometry is. We will now see a way of tuning the
entanglement entropy by varying the size of the subset.

2.7 Tuning the entanglement entropy of the random subset phase state
construction

By varying the size of the subset, we can tune the entanglement entropy of our random
subset phase state construction. However, since the SWAP test lower bound of Ω(logn) is
no longer tight for these cases, we need a different way of proving a tight lower bound. For
that, we will consider a very specific form of the pseudorandom phase function.

This is what we will motivate and discuss in the next parts. Before that discussion, just
for convenience of analysis, we will define a pseudorandom matrix.

2.7.1 Pseudorandom matrices for subset phase states
Let a given subset be S, a subset state |ψf,S⟩, and a given partition (X,Y), where |X| = m

and |Y| = n − m. Let us write the reduced density matrix across the partition X. Let
|S| = 2k.

ρX = 1
2k

 ∑
i∈{0,1}m,j∈{0,1}n−m,ij∈S

∑
k∈{0,1}m,l∈{0,1}n−m,kl∈S

(−1)f(i,j)+f(k,l) Tr2(|i⟩ |j⟩ ⟨k| ⟨l|)


= 1

2k

 ∑
i,k∈{0,1}m,j∈{0,1}n−m,ij∈S,kj∈S

(−1)f(i,j)+f(k,j) |i⟩ ⟨k|

 (15)

= 1
2k

 ∑
i,k∈{0,1}m,j∈{0,1}n−m,ij∈S,kj∈S

Bi,jBk,j |i⟩ ⟨k|

 (16)

= 1
2k

 ∑
i,k∈{0,1}m,j∈{0,1}n−m,ij∈S,kj∈S

Bi,jBk,j |i⟩ ⟨j|j⟩ ⟨k|

 (17)

= 1
2k

 ∑
i∈{0,1}m

∑
j∈{0,1}n−m,ij∈S

Bi,j |i⟩ ⟨j|

 ∑
j∈{0,1}n−m

∑
k∈{0,1}m,kj∈S

Bk,j |j⟩ ⟨k|

 (18)

= 1
2k

BBT, (19)

ITCS 2024



2:10 Quantum Pseudoentanglement

where we define a pseudorandom matrix BX:Y,f as follows.

BX:Y,f,i,j = f(i, j) when ij ∈ S, i ∈ {0, 1}m, j ∈ {0, 1}n−m

= 0 otherwise.
(20)

When the context is clear, we drop the corresponding subscripts from our notation, which
we have done in (16), (17), (18), and (19).

2.7.2 Tuning the entanglement entropy

For tuning the entanglement entropy, we will consider an ensemble of pseudorandom subset
phase states |ψf,p⟩, where f is chosen as

f(i) := h(q(i)), (21)

where h is uniformly drawn from a 4-wise independent function family

H = {h : [2n] → {1,−1}},

and q is uniformly drawn from Q – a quantum-secure pseudorandom permutation (PRP)
family – where

Q = {q : [2n] → [2n]}.

Note that by a simple hybrid argument, f is computationally indistinguishable from a truly
random function: so, it is both pseudorandom and 4-wise independent. This is proven in
detail in [1]. We will now prove the following theorem.

▶ Theorem 8. Let ω(logn) ≤ k ≤ n and let |S| = 2k. Consider a cut (X,Y) of n qubits,
such that |X| + |Y| = n and |X|, |Y| ≥ k. Let the pseudorandom phase function satisfy (21).
Then, with high probability over the choice of the state,

S(ρX:Y) = Θ(k).

Proof. The upper bound follows from Corollary 6. For the lower bound, we will use the
inequality,

S(ρX:Y) ≥ − log
(∣∣∣∣∣∣∣∣ 1

2kBX:YBX:Y
T
∣∣∣∣∣∣∣∣
F

)
, (22)

where BX:Y is the pseudorandom matrix corresponding to the partition (X,Y). (22) can be
derived by Jensen’s inequality. Hence, it suffices to lower bound the quantity

log
(∣∣∣∣∣∣∣∣ 1

2kBX:YBX:Y
T
∣∣∣∣∣∣∣∣
F

)
.

In this proof, for simplicity, we prove the statement for partitions of size n/2. Note that the
same proof follows for any other partition, just by changing the dimensions of the matrix
BX:Y.
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Having fixed the partition, let us drop the subscripts from B, to avoid any redundant
notational clutter. Note that,

E
[∥∥∥∥ 1

2kBB
T
∥∥∥∥2

F

]

= 1
22kE

[∥∥BBT∥∥2
F

]
= 1

22k

2k/2∑
i=1

2n/2∑
j=1

E


2n/2∑
l=1

Bil ·Bjl

2


= 1
22k

2n/2∑
i=1

E


2n/2∑
l=1

Bil ·Bil

2
+ 1

22k

2n/2∑
i̸=j,i,j=1

E


2n/2∑
l=1

Bil ·Bjl

2


= 1
22k

2n/2∑
i=1

E

2n/2∑
l=1

Bil

+ 2

 2n/2∑
l ̸=l′,l,l′=1

Bil ·Bil′

+

1
22k

2n/2∑
i̸=j,i,j=1

E


2n/2∑
l=1

Bil ·Bjl

2


≤ 1
22k

(
2k + 2n/2+1 · 2n ·

(
2k

2n

)2)
+ 1

22k

2n/2∑
i ̸=j,i,j=1

2n/2∑
l=1

E
[
(Bil ·Bjl)2

]
≤ 1

2k−1 + 2n

22k 2n/2 22k

22n

≤ 1
2k/2−1 ,

where we have used the fact that because f is 4–wise independent, conditioned on any choice
of S we have

E


2n/2∑
l=1

Bil ·Bjl

2
 =

2n/2∑
l=1

E
[
(Bil ·Bjl)2

]

≤ 2n/2 22k

22n .

Finally, by the Markov’s inequality, we have

Pr
[∥∥∥∥ 1

2kBB
T
∥∥∥∥2

F

> 2−k/4

]
≤ 21−k/2. (23)

Therefore,

Pr
[∥∥∥∥ 1

2kBB
T
∥∥∥∥
F

> 2−k/8
]

≤ 21−k/2. (24)

Hence, the proof follows. ◀

2.8 Instantiating our constructions using low depth circuits
A natural question to ask is how we can explicitly construct our two pseudorandom states.
Note that pseudorandom functions, 4-wise independent functions, and pseudorandom per-
mutations can be instantiated using one-way functions [38, 20]. So, our pseudorandom states
can also be instantiated using quantum-secure one-way functions.
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Moreover, we can instantiate our states using low-depth circuits. This is discussed in
detail in Section 2.8 of [1].

3 Applications

In this section, we will describe the applications of our construction.

3.1 Low entanglement pseudorandom states imply inefficient entropy
distillation protocols

In this section, we will discuss connections between our pseudorandom state constructions
and entanglement distillation.

Consider m copies of an uknown d-dimensional quantum state |ψ⟩. Consider a bipartition
(A,B) of the qubits in |ψ⟩. Let ρA and ρB be the reduced density matrix across each
bipartition, and, to avoid clutter of notation, let S(ρ) = S(ρA) = S(ρB) be the von Neumann
entropy across each bipartition. Then we know, due to previous results:

▶ Lemma 9 ([17, 16]). Given an unknown |ψ⟩⊗m, there is an LOCC protocol, which runs in
poly(n) time, to get at least p EPR pairs, where

p ≥ m (S(ρ) − η(δ) − δ log d) − 1
2d(d+ 1) log(m+ d), (25)

with probability at least

1 − exp
(

−nδ2

2

)
(n+ d)d(d+1)/2

,

where η(·) is the binary entropy function.

The protocol involves applying a Schur transform to |ψ⟩⊗m and then measuring in the
standard basis. Note that the Schur transform can be efficiently implemented in poly(n, log d)
time, using [24], up to inverse exponential precision. A trivial upper bound to p is S(ρ) – one
cannot distill more EPR pairs than the amount of distillable entanglement entropy present,
which, for pure states, is equal to the von Neumann entropy S(ρ) [18]. However, distilling all
of the distillable entanglement entropy is non-trivial and the upper bound could potentially
be very loose.

Note that when d = 2n, and m = poly(n), the RHS in (25) is negative, for any value of
S(ρ). Hence, the lower bound on p is vacuous as p ≥ 0. Tighter lower bounds to p are not
known. So, the distillation protocol could essentially terminate without generating a single
EPR pair.

We will sketch an argument that for any efficient distillation protocol, working with
polynomially many copies of |ψ⟩, the lower bounds on p are unlikely to be too tight. At
a high level, our sketch would show that assuming a cryptographic conjecture, no efficient
entanglement distillation protocol, working with polynomially many copies of an unknown
quantum state, can guarantee a distillation of more than polylogarithmically many EPR
pairs.

▶ Proposition 10. For an unknown quantum state |ψ⟩⊗m with m = poly(n), d = 2n, and for
a bipartition where each side has Ω(n) qubits, there is no efficient distillation protocol such
that the number of EPR pairs produced p = ω(poly log S(ρ)) with non-negligible probability,
assuming the existence of quantum secure one-way functions.
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Proof. Assume the contrapositive. Choose a bipartition of size n/2 4. For a Haar random
state, S(ρ) = Θ(n) [30]. Consequently, we can distill between ω(poly logn) to O(n) EPR
pairs from this state. However, we can distill between ω(log(logn)) to O(poly logn) EPR
pairs from our low entropy pseudorandom state (where the entropy is taken to be poly logn
across the chosen bipartition.) So, just by looking at the number of EPR pairs, we can
distinguish between these two states, which breaks the pseudo-entanglement proof. ◀

3.2 Applications to property testing: An overview
To motivate our results, consider the two following tasks.

▶ Task 1. Efficiently estimate the largest t eigenvalues of an n qubit mixed state ρ ∈ C2n×2n

to ϵ = 1
2O(poly log n) in additive error, starting from ρ⊗m.

▶ Task 2. Efficiently estimate whether the Schmidt rank of an n qubit pure state |ψ⟩ is at
most 2O(poly logn), across an equipartition of qubits, starting from |ψ⟩⊗m.

Note that for Task 1, when t = ω(poly(n)), by a Holevo bound, m = ω(poly(n)). For
t = O(poly(n)), there could potentially be algorithms for which m is polynomially bounded.
However, from the collision bound from quantum query complexity [3],

m = 2Ω(poly logn)/3, (26)

for both Task 1 and Task 2. Here is the proof sketch. Consider two states,

|ψf ⟩ = 1√
2n

∑
x∈{0,1}n

|x⟩ |f(x)⟩ ,

and

|ψg⟩ = 1√
2n

∑
x∈{0,1}n

|x⟩ |g(x)⟩ ,

where f is a random 1-to-1 function, and g is a random 2n−poly logn-to-1 function. Then, if m
does not satisfy (26), this violates the quantum collision lower bound from query complexity
between a 1-to-1 and a 2n−poly logn-to-1 function [3]. However, even though the proof holds,
note that neither |ψf ⟩ or |ψg⟩ has a polynomial sized circuit description.

Our pseudorandom constructions allow us to boost the lower bound in (26) to states that
have an efficient description 5.

3.2.1 Lower bound on eigenvalue estimation for efficiently preparable
states

▶ Task 3. Efficiently estimate the largest t eigenvalues of an n qubit mixed state ρ ∈ C2n×2n

to ϵ = 1
2O(poly log n) in additive error starting from ρ⊗m with high probability, where it is

promised that ρ has a polynomial sized circuit description 6.

4 A similar argument works for any bipartition where each side has size Ω(n).
5 Although not explicitly studied, previous pseudoentangled state constructions [15] also imply such lower

bounds, but for inverse exponentially small ϵ or exponentially large Schmidt rank. So, our lower bounds
are stronger.

6 The circuit is allowed to have trace-out gates.
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▶ Lemma 11. For Task 3 with ϵ = 1
2O(poly log n) and t = O(poly(n)), assuming the existence

of quantum secure one-way functions

m = ω (poly(n)) .

Proof. Follows from the security of our pseudoentanglement construction. If we can per-
form Task 3 with O (poly(n)) copies, it means we can distinguish our high-entanglement
pseudorandom state from our low-entanglement pseudorandom state. ◀

▶ Remark 12. Note that an upper bound for Task 3 is given in [29]. They show

m = O
(
t2/ϵ2

)
.

For ϵ = 1
2O(poly log n) and t = poly(n),

m = 2O(poly logn).

3.2.2 Lower bound on estimating the Schmidt rank for efficiently
preparable states

▶ Task 4. Efficiently estimate whether an n qubit pure state |ψ⟩ has Schmidt rank at most
2O(poly logn), across an equipartition of qubits, starting from |ψ⟩⊗m with high probability,
where it is promised |ψ⟩ has a polynomial sized circuit description.

▶ Lemma 13. For Task 4, assuming the existence of quantum secure one way functions,
m = ω (poly(n)).

Proof. Follows from the security of our pseudoentanglement construction. If we can efficiently
determine whether a state has Schmidt rank at most r for r = 2O(poly logn), with polynomially
many copies of |ψ⟩, then we can use that algorithm to distinguish our high-entanglement pseu-
dorandom state, which has Schmidt rank 2Ω(n), from a tunable-entanglement pseudorandom
state, which has Schmidt rank 2O(r) 7. ◀

▶ Remark 14. Note that an upper bound for Task 4, of m = O(r), is proven in [10]. So,
when r is superpolynomially large, m is also superpolynomially bounded.

3.3 Improved lower bound for testing matrix product states
Note that pseudorandom states have interesting connections to the learnability of matrix
product states, as discussed in [1]. Using pseudoentanglement, we can make these connections
much stronger. Specifically, optimally quasi–area law pseudoentanglement means an improved
lower bound to the number of copies required to test a matrix product state.

We show that it is difficult to test if a state is an n–qubit MPS with bond dimension r,
or far from such a state, using fewer than Ω(

√
r) copies of the state, in either information-

theoretic or computational settings.

7 Although our entropy calculations are based on von Neumann entropy, we implicitly also have upper
and lower bounds for another entropy measure – the logarithm of the Schmidt rank, which, by virtue of
our construction, is just the logarithm of the rank of the high entropy matrix A in B.2.4 or the tunable
entropy matrix B in B.4 of [1] From there, we can get corresponding bounds on the Schmidt rank of
our constructed states.
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3.3.1 Previous work
This problem was previously studied in a very recent work by [34], who proved a lower bound
of Ω(

√
n). The lower bound on [34] had no dependence on r. The authors also prove an upper

bound of O(nr2): so, their bounds are significantly loose when r is at least superpolynomially
large.

3.3.2 Definitions
First, we will introduce some definitions.

▶ Definition 15 (Matrix product state, [34, Definition 1]). A quantum state |ψ⟩ ∈ Cd1 ⊗· · ·⊗Cdn

consisting of n qudits is a matrix product state with bond dimension r if it can be written as

|ψ1,...,n⟩ =
∑

i1∈[d1],...,in∈[dn]

Tr
[
A

(1)
i1

· · ·A(n)
in

]
· |i1 · · · in⟩ ,

where each matrix A(i)
j is an r×r complex matrix, for i ∈ [n] and j ∈ [di]. We write MPSn(r)

for the set of such states, or more simply MPS(r) when the dependency on n is clear from
the context.

Further, for any state |ϕ⟩ ∈ Cd1 ⊗ · · · ⊗ Cdn , the distance of |ϕ⟩ to the set MPS(r) is
defined as

Distr(|ϕ⟩) = min
|ψ⟩∈MPS(r)

√
1 − | ⟨ψ|ϕ⟩ |2. (27)

[34] also introduced the concept of MPS(r) tester.

▶ Definition 16 (MPS(r) tester). An algorithm A is a property tester for MPS(r) using
m = m(n, r, δ) copies if, given δ > 0 and m copies of |ψ⟩ ∈ Cd1 ⊗· · ·⊗Cdn , it acts as follows.

(Completeness) If |ψ⟩ ∈ MPS(r), then

Pr
[
A accepts given |ψ⟩⊗m

]
≥ 2

3 .

(Soundness) If Distr(|ψ⟩) ≥ δ, then

Pr
[
A accepts given |ψ⟩⊗m

]
≤ 1

3 .

3.3.3 Our results
Following the language of Definition 16, [34] showed that an MPS(r) tester using m =
O(nr2/δ2) copies of the unknown state |ψ⟩ can be constructed, while any MPS(r) tester
must use at least Ω(n1/2/δ2) copies of |ψ⟩.

In this work, we show that this lower bound can be improved to order Ω(
√
r), which may

scale exponentially in terms of n. In particular, we prove the following theorem.

▶ Theorem 17. Following the language of Definition 16, for any r ≤ 2n/8 and δ ≤ 1√
2 ,

testing whether a state |ψ⟩ ∈ C⊗n, is in MPS(r) requires Ω
(√
r
)

copies of |ψ⟩.

Before proving the theorem, we first state some useful results.
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▶ Fact 1 ([37]). For any state |ψ⟩ ∈ C⊗n and any partition of the state into two parts A
and B, we denote

χA(|ψ⟩) := rank(ρA), ρA(|ψ⟩) := TrB(|ψ⟩ ⟨ψ|)

and

χ(|ψ⟩) := max
A

χA(|ψ⟩),

where the maximum is taken over all possible partitions. Then,

|ψ⟩ ∈ MPS(χ(|ψ⟩)).

▶ Lemma 18 (Young-Eckart Theorem, [13]). Consider a bipartite state |ψ⟩ ∈ Cd1 ⊗ Cd2 with
d1 ≥ d2 and let

|ψ⟩ =
d2∑
i=1

√
λi |ai⟩ |bi⟩

be its Schmidt decomposition, where λ1 ≥ · · · ≥ λd2 . Then,

Distr(|ψ⟩) =

√√√√1 −
r∑
i=1

λi.

Equipped with Fact 1 and Lemma 18, we are now ready to prove Theorem 17.

Proof of Theorem 17. Note that any MPS(r) tester defined in Definition 16 can distinguish
with success probability at least 2/3 between any two ensembles of quantum states, one only
containing matrix product states with bond dimension at most r, the other only containing
states whose distance to MPS(r) is at least 1√

2 . In this proof, we explicitly construct such
two ensembles and demonstrate that any quantum algorithm having less than O(

√
r) copies

of a state |ψ⟩ cannot determine with success probability 2/3 which of the two ensembles |ψ⟩
is in, thus establishing an Ω(

√
r) lowerbound for MPS testing.

We use Er to denote the ensemble of subset phase states with subset size r and random
phase. Quantitatively,

Er :=
{

|ψf,S⟩
∣∣ |S| = r

}
,

where |ψf,S⟩ is defined in (1). Observe that for any partition of any subset phase state
|ψf,S⟩ into two parts A and B, the rank of the corresponding reduced density matrix
ρA := TrB(|ψ⟩ ⟨ψ|) is upper bounded by r. Then by Fact 1, we have

Er ⊆ MPS(r).

Next, we construct an ensemble of quantum states that are far from MPS(r). Specifically,
we consider the ensemble Ephase consisting of phase states with random phases,

Ephase := {|ψf ⟩} , |ψf ⟩ = 1
2n
∑
x

(−1)f(x) |x⟩ .

For any cut (A,B) of n qubits such that |A| = |B| = n/2, by calculations in Section B.2 of [1]
and Markov’s inequality, we know that

Pr
|ψf ⟩←Ephase

[
∥ρA:B∥F ≤ 1

2n/4

]
≥ 1 − 2−n/4.
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That is to say, if we uniformly randomly select a state |ψf ⟩ from Ephase, with probability at
least 1 − 2−n/4, its Schmidt decomposition

|ψf ⟩ =
d2∑
i=1

√
λi |ai⟩ |bi⟩

satisfies
d2∑
i=1

λ2
i ≤ 2−n/4,

where λ1 ≥ · · · ≥ λd2 . By Cauchy’s ineuqality,
r∑
i=1

λi ≤
√
r · 2−n/4 ≤ 2−n/8 ≤ 1

2 .

Then by Lemma 18, we have

Pr
|ψf ⟩←Ephase

[
Distr(|ψf ⟩) ≥ 1√

2

]
≥ 1 − 2−n/4. (28)

We define E ′phase to be the set of phase states that are at least 1/
√

2-far from MPS(r). In
particular,

E ′phase :=
{

|ψf ⟩
∣∣∣Distr(|ψf ⟩) ≥ 1√

2

}
.

Based on (28), we have

TD
(

E
|ψ⟩←E′

phase

[
|ψ⟩ ⟨ψ|⊗t

]
, E
|ϕ⟩←Ephase

[
|ϕ⟩ ⟨ϕ|⊗t

])
≤ 2−n/4

for any t. Further, since

TD
(

E
|ψ⟩←Ephase

[
|ψ⟩ ⟨ψ|⊗t

]
, E
|ϕ⟩←H (CN )

[
|ϕ⟩ ⟨ϕ|⊗t

])
< O

(
t2

2n

)
,

we can derive that

TD
(

E
|ψ⟩←E′

phase

[
|ψ⟩ ⟨ψ|⊗t

]
, E
|ϕ⟩←H (CN )

[
|ϕ⟩ ⟨ϕ|⊗t

])
< O

(
t2

2n/4

)
,

where H (CN ) denotes the ensemble of Haar random states in the Hilbert space with
dimension N = 2n. Moreover, by Theorem 3,

TD
(

E
|ψ⟩←Er

[
|ψ⟩ ⟨ψ|⊗t

]
, E
|ϕ⟩←H (CN )

[
|ϕ⟩ ⟨ϕ|⊗t

])
< O

(
t2

r

)
,

which further leads to

TD
(

E
|ψ⟩←Er

[
|ψ⟩ ⟨ψ|⊗t

]
, E
|ϕ⟩←E′

phase

[
|ϕ⟩ ⟨ϕ|⊗t

])
< O

(
t2

2n/4

)
+O

(
t2

r

)
< O

(
t2

r

)
.

Hence, any quantum algorithm distinguishing between Er and Ephase′ with Ω(1) success
probability requires at least t = Ω(

√
r) copies of the unknown state, which is also the lower

bound for MPS testing. ◀
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▶ Remark 19. By using appropriate security conjectures and appropriate cryptographic
primitives to efficiently instantiate our pseudorandom functions – for example, by one–way
functions which are secure upto subexponential time against quantum adversaries 8 – we can
get the same lower bounds as in Theorem 17 in the computational setting, when the matrix
product state under consideration is guaranteed to have an efficient description.

3.4 Applications to quantum gravity
Another application of our result is to quantum gravity. The AdS/CFT correspondence [26]
is one of the leading candidates for a theory of quantum gravity. It postulates a duality
between a theory of quantum gravity in anti-de Sitter space (AdS) and simple quantum
mechanical theory (namely, a conformal field theory (CFT)). The AdS/CFT “dictionary”
maps states in one theory to the other, and through this dictionary observables and states
are mapped from one theory to the other. In this way one can study properties of quantum
gravity via studying a simpler quantum mechanical system. This has led to a series of
remarkable results connecting quantum gravity with topics in quantum information such as
quantum error correction [4], quantum tensor networks [31], the Eastin-Knill Theorem [14],
and quantum circuit complexity [35]. There has even the suggestion that future quantum
computers might shed light into quantum gravity [9, 28].

Recently, Bouland, Fefferman and Vazirani [6] showed that the AdS/CFT dictionary
might be exponentially complex to compute, even for a quantum computer. This stands in
sharp contrast to other dualities in computer science, such as LP and SDP duality, which
are efficiently computable. Their argument used the fact that certain information about
the geometry of the gravitational theory – in particular information about the interior of
a wormhole – seems to be pseudorandomly scrambled in the quantum theory, in a manner
analogous to a block cipher such as DES. Therefore efficient computation of the dictionary
to reconstruct wormhole interiors allows one to break certain forms of cryptography, which
is not believed to be tractable for quantum computers. Their result seems to challenge the
quantum Extended Church-Turing thesis, i.e. the conjecture that all physical processes are
efficiently simulable by a universal quantum computer.

The arguments of [6] require the presence of a black hole. It is natural to ask if similar
arguments might show the dictionary might be exponentially complex in more general
gravitational geometries. Indeed, Susskind [36] has suggested this might not be possible, i.e.
that without black holes (and outside of the event horizon of black holes) the dictionary is
easy to compute.

A potential starting point to investigate this issue is the more general connection between
entanglement and geometry in AdS/CFT. It is believed that in AdS/CFT, the entanglement
entropy between certain regions of the quantum theory is directly proportional to certain geo-
metrical quantities in the gravity theory (namely, the shortest geodesic between corresponding
boundary points in the spacetime), up to small corrections, via the Ryu-Takanayagi formula
[32]. Therefore the entanglement entropy of CFT is directly connected to the geometry.

It is natural to ask if this connection between entanglement and geometry already implies
the dictionary is exponentially hard to compute. If so this would provide complementary
evidence to [6] for the exponential complexity of the dictionary, and potentially remove the
need for a black hole in those arguments. This was precisely the suggestion of Hoban and
Gheorghiu in their construction of what we call pseudoentanglement [15]. By showing that

8 One way functions based on LWE are conjectured to have this property.
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entanglement entropy is exponentially difficult to compute, even on average, they argued
this was evidence for the exponential complexity of the dictionary. Their work left open
many future directions to further develop this argument. Most salient is whether or not it is
possible to create pseudoentanglement within the subset of holographic states, i.e. states for
which the AdS/CFT dictionary is well-defined. Such states exhibit many atypical features,
for example sub-volume law (but super-area law) entanglement, which are not properties of
Hoban and Gheorghiu’s construction.

Our result strengthens the case for this argument, as we show that it is possible to
construct pseudorandomness or pseudoentanglement with subvolume law entanglement. This
is a necessary but not sufficient condition to construct pseudorandomness and pseudoentan-
glement within the domain of validity of AdS/CFT, and therefore paves the way to potentially
constructing pseudoentanglement with holographic entanglement structures. More speculat-
ively, we believe the “tunable” nature of our construction might be useful for constructing
pseudoentanglement with varying geometries, which might form the basis of a future challenge
to the quantum ECT without the presence of black holes. We leave further development of
this argument to future work.

Finally, we note this line of argument is complementary to very recent work of Aaronson
and Pollack [2], who showed that given as input a list of entropies of a CFT state obeying
certain conditions, that there is an efficient algorithm to produce a bulk state with the
corresponding entropies. In contrast, our work shows that it is difficult to produce the
list of entanglement entropies given as input a quantum state. If our argument could be
made holographic, this might show the difficulty of the dictionary stems from the ability of
quantum states to hide their entanglement entropies.

4 Future directions

We close with some natural future directions that are left open by this work.
1. A natural question left open in this work is to understand the importance of the random

phases in our subset phase state construction. That is, consider states of the form:

|ψS⟩ = 1√
|S|

∑
x∈S

|x⟩ (29)

Are these states pseudorandom and pseudoentangled if S ∈ {0, 1}n is a pseudo-randomly
chosen subset of appropriate size? Note that this is similar to the construction in Section
2 which we discussed in this paper without the pseudorandom phases.

2. Do other families of quantum states achieve tightly tuned pseudoentanglement across
any cut? We discuss two variants in [1], where we prove a pseudo–area law scaling of
entanglement. However, we only prove an upper bound on the entanglement entropy: It
remains to see if our upper bound is tight.

3. Finally, are there further applications of pseudoentanglement to cryptography, complexity
theory, and quantum computing?
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