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Abstract
Tensor parameters that are amortized or regularized over large tensor powers, often called “asymp-
totic” tensor parameters, play a central role in several areas including algebraic complexity theory
(constructing fast matrix multiplication algorithms), quantum information (entanglement cost and
distillable entanglement), and additive combinatorics (bounds on cap sets, sunflower-free sets,
etc.). Examples are the asymptotic tensor rank, asymptotic slice rank and asymptotic subrank.
Recent works (Costa–Dalai, Blatter–Draisma–Rupniewski, Christandl–Gesmundo–Zuiddam) have
investigated notions of discreteness (no accumulation points) or “gaps” in the values of such tensor
parameters.

We prove a general discreteness theorem for asymptotic tensor parameters of order-three tensors
and use this to prove that (1) over any finite field (and in fact any finite set of coefficients in any
field), the asymptotic subrank and the asymptotic slice rank have no accumulation points, and (2)
over the complex numbers, the asymptotic slice rank has no accumulation points.

Central to our approach are two new general lower bounds on the asymptotic subrank of tensors,
which measures how much a tensor can be diagonalized. The first lower bound says that the
asymptotic subrank of any concise three-tensor is at least the cube-root of the smallest dimension.
The second lower bound says that any concise three-tensor that is “narrow enough” (has one
dimension much smaller than the other two) has maximal asymptotic subrank.

Our proofs rely on new lower bounds on the maximum rank in matrix subspaces that are obtained
by slicing a three-tensor in the three different directions. We prove that for any concise tensor, the
product of any two such maximum ranks must be large, and as a consequence there are always two
distinct directions with large max-rank.
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1 Introduction

Tensor parameters that are amortized or regularized over large tensor powers, often called
“asymptotic” tensor parameters, play a central role in several areas of theoretical com-
puter science including algebraic complexity theory (constructing fast matrix multiplication
algorithms [11, 5], and barriers for such constructions [2, 14]), quantum information (en-
tanglement cost and distillable entanglement [56, 54]), and additive combinatorics (bounds
on cap sets [53], sunflower-free sets [46], etc.). Examples are the asymptotic tensor rank
(famous for its connection to the matrix multiplication exponent), the asymptotic sub-
rank, and the asymptotic slice rank. These asymptotic tensor parameters are of the form

˜F (T ) = limn→∞ F (T⊠n)1/n for some integer-valued function F (e.g. tensor rank, subrank or
slice rank), where ⊠ denotes the Kronecker product of tensors. The computation of these
parameters, which in some applications is the main goal and in others is done to bound other
parameters of interest, has turned out to be very challenging, and many questions about
them are open despite much interest.

The fundamental question whether the matrix-multiplication exponent ω equals 2 is
closely related to the question whether asymptotic tensor rank is integral-valued. Contrary
to matrix rank, some asymptotic tensor parameters may indeed take non-integral values.
For instance, the asymptotic slice rank of the W -tensor (which appears in the study of
sunflower-free sets) equals 2h(1/3) ≈ 1.88 [52], where h is the binary entropy function, and
the asymptotic slice rank of the cap set tensor (which appears in the study of arithmetic
progression-free sets or cap sets) is known to be the non-integral value ≈ 2.755 over the finite
field F3 [31, 53, 39, 52].

This raises the fundamental question, for a given function F , what values ˜F (T ) can take
when varying T over all tensors of order three with arbitrary dimensions (over any fixed
field). More generally, what is the structure (geometric, algebraic, topological, etc) of the set
of values

{˜F (T ) : T ∈ Fn1 ⊗ Fn2 ⊗ Fn3 , n1, n2, n3 ∈ N}?

Does ˜F (T ) have accumulation points, that is, are there non-trivial sequences of tensors
T1, T2, . . . such that ˜F (Ti) converges? Or is it discrete? What “gaps” are there between the
possible values? Even when F is a finite field, the answers to these questions are a priori not
clear at all.

In this paper we prove discreteness of asymptotic tensor rank, asymptotic subrank
and asymptotic slice rank in several regimes. This means that the values of each of these
parameters have no accumulation points. In fact, the proof of discreteness of asymptotic
tensor rank (over any finite field or finite coefficient set in any field) follows from a simple
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argument. Using that same simple argument, together with several new results about tensors,
we obtain discreteness for the other parameters. In particular, as a core ingredient, we prove
a new result about diagonalizability of tensors. This comes in the form of a lower bound
on the asymptotic subrank that relies only on the dimensions of the tensor (as opposed
to the well-known laser method for fast matrix multiplication, which relies on much more
information about the tensor). As another core ingredient we prove new results about matrix
subspaces and their max-rank and min-rank. In particular, we prove that the max-ranks of
the matrix spaces obtained by slicing a tensor in the three different directions are strongly
related, in such a way that at least two of them must be large.

Our discreteness results show that there is a surprising rigidity in the asymptotic behaviour
of tensors. The discreteness of the above parameters gives rise to the phenomenon of “roun-
ding” or “boosting” (upper or lower) bounds on them to the next possible value (although
making this effective requires more knowledge of the possible values than just knowing
discreteness). The discreteness of asymptotic tensor rank1 implies, for instance, that the
asymptotic rank of the matrix multiplication tensor is bounded away from (or equal to)
the asymptotic tensor rank of any other tensor. In particular, the matrix multiplication
exponent ω is an isolated point among the exponents of all bilinear maps. If such a tensor is
“close enough” to the matrix multiplication tensor, its exponent must “snap” to ω. Similar
statements hold for the other asymptotic parameters. In the context of combinatorial
applications, this may moreover lead to limitations for the asymptotic slice rank to improve
on existing results.

Before stating our results in detail, we will first discuss the various asymptotic ranks,
their applications and context.

Matrix multiplication and asymptotic tensor rank

Determining the computational complexity of matrix multiplication is a fundamental problem
in algebraic complexity theory. This complexity is controlled by the famous matrix multipli-
cation exponent ω, which is defined as the infimum over nonnegative real numbers τ such
that any two n × n matrices can be multiplied using O(nτ ) arithmetic operations [11, 5].
The naive matrix multiplication algorithm gives the upper bound ω ≤ 3. In 1969, Strassen
proved that ω ≤ 2.81 [49]. Since then, using many different techniques, the best upper bound
has been brought down to ω ≤ 2.371552 [42, 3, 30, 58]. There is a tantalizing possibility
(and many have conjectured) that ω = 2, and routes have been proposed that aim to prove
this [19, 18, 20, 7, 8]. It is just as intriguing to consider the possibility that ω > 2 and ω

giving rise to a new fundamental constant, and there has been much work on this lower
bound direction as well [12, 41].

Not only can we currently not determine the value of ω, or decide whether ω = 2 or ω > 2,
there is a much more relaxed problem that we cannot solve. Indeed ω is naturally described in
terms of tensors as the logarithm of the asymptotic tensor rank of the matrix multiplication
tensor ⟨2, 2, 2⟩ ∈ F4 ⊗ F4 ⊗ F4, that is ω = log ˜R(⟨2, 2, 2⟩), and thus ω > 2 is equivalent to

˜R(⟨2, 2, 2⟩) > 4. The following much more relaxed problem is open:

▶ Problem 1 ([11, Open Problem 15.5]). Prove that there is a tensor T ∈ Fn ⊗ Fn ⊗ Fn with

˜R(T ) > n.

1 Here we work in the regime where we fix the field to be any finite field, or we use any finite set of
coefficients in any field.
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It is possible that for every concise tensor T ∈ Fn ⊗ Fn ⊗ Fn we have ˜R(T ) = n (which
would in particular imply ω = 2) and that the image of ˜R over all tensors is simply N. This
naturally leads to the (very general) question: What is the structure (geometric, algebraic,
topological, etc) of the set

S = {˜R(T ) : T ∈ Fn1 ⊗ Fn2 ⊗ Fn3 , n1, n2, n3 ∈ N}?

Is there anything we can prove about S without resolving Problem 1 or determining ω? Not
much is known.

One known structural result is that S is closed under applying any univariate polynomial
with non-negative integer coefficients [57, Theorem 4.8]. This statement applies in fact more
generally, and in particular also to asymptotic subrank and asymptotic slice rank. This thus
says that S has “many” elements.

Our discreteness result says that S does not have “too many” elements, and for asymptotic
tensor rank over a finite field2 the proof is surprisingly simple. Here is a sketch: Let T1, T2, . . .

be any sequence of tensors such that Ti ∈ Fai ⊗Fbi ⊗Fci and such that ˜R(Ti) takes infinitely
many values. We may assume that every Ti is concise, meaning it does not fit into any
smaller tensor space. Then ˜R(Ti) ≥ max{ai, bi, ci}. Since by assumption F is finite, there are
only finitely many tensors per format ai × bi × ci, so the set of triples {(ai, bi, ci) : i ∈ N} is
infinite. In particular, max{ai, bi, ci} is unbounded, and so ˜R(Ti) is unbounded and cannot
converge, which proves the claim.

While this argument is very simple, a much more subtle argument and new technical
results will be needed to deal with the other tensor parameters that we consider.

Asymptotic subrank and asymptotic slice rank
Besides tensor rank, there are many other notions of rank of a tensor that play a role
in applications, for instance the subrank, slice rank, analytic rank [35, 43, 17], geometric
rank [40], and G-stable rank [26]. We will focus here on the asymptotic subrank and
asymptotic slice rank. The subrank was introduced by Strassen [50] in the study of matrix
multiplication algorithms. The subrank Q(T ) is the size of the largest diagonal tensor that
can be obtained from T by taking linear combinations of the slices in the three different
directions (i.e. “Gaussian elimination” for tensors). The slice rank was introduced by Tao [53]
to give a tensor proof of the cap set problem after the first proof of Gijswijt and Ellenberg [31].
The slice rank SR(T ) is the smallest number of tensors with flattening rank one whose sum is
T . Tao proved that Q(T ) ≤ SR(T ). Recent works have shown that analytic rank, geometric
rank [16, 17], and G-stable rank [26] are all equal to slice rank, up to a multiplicative constant.
These results imply that the asymptotic versions of these parameters are all equal to the
asymptotic slice rank, warranting our focus on it.

Slice rank method in combinatorics. The proof of the longstanding cap set problem [53, 48]
(and other related results [46]) can be thought of as upper bounding the independence number
of powers of a hypergraph, by constructing a tensor that “fits” on the hypergraph and then
computing the slice rank of the powers of the tensor, that is, the asymptotic slice rank ˜SR(T ).
Knowing (the structure of) the set

S = { ˜SR(T ) : T ∈ Fn1 ⊗ Fn2 ⊗ Fn3 , n1, n2, n3 ∈ N}

2 Or in fact over any finite set of coefficients coming from an arbitrary field.
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thus gives information on what bounds one can prove on the size of combinatorial objects
using the slice rank method. One of our main results is that asymptotic slice rank is discrete,
not only over every finite field, but even over the complex numbers. The latter crucially
requires a result from [15] that characterizes asymptotic slice rank in terms of representation-
theoretic objects called moment polytopes. In fact it is known by now that the four smallest
value in S are 0, 1, ≈ 1.88, 2, ≈ 2.68 (see next section) and our result says that also the larger
values are discrete.

Matrix multiplication barriers. Besides the aforementioned combinatorial problems, the
asymptotic subrank and asymptotic slice rank appear in several “barrier results” for matrix
multiplication algorithms [2, 14, 7]. Matrix multiplication algorithms are usually constructed
by a reduction of matrix multiplication to another bilinear map, and these barrier results say
what properties that intermediate bilinear map must have to obtain certain upper bounds
on ω, or to reach ω = 2. These properties can be phrased in terms of asymptotic subrank
or asymptotic slice rank. In particular, the barrier of [14] states that to reach ω = 2, an
intermediate tensor T must have ˜R(T ) = ˜Q(T ), which has led to further research to find
tensors with large asymptotic subrank [6]. Our discreteness result says that asymptotic
subrank is discrete over every finite field. We do not get this result over the complex
numbers because the analogous representation-theoretic ingredient from above is missing
here. Intriguingly, it is possible that

S = {˜Q(T ) : T ∈ Fn1 ⊗ Fn2 ⊗ Fn3 , n1, n2, n3 ∈ N}

equals the analogous set for asymptotic slice rank, that is, the following is open:

▶ Problem 2. Prove that asymptotic slice rank equals asymptotic subrank.

We do as a side-result prove a new relation between asymptotic subrank and asymptotic slice
rank (which we will discuss in more detail in the next section).

Previous work on discreteness of asymptotic ranks
Several works, among which some very recent ones, have investigated notions of discreteness
in the values of tensor parameters.

Strassen [51, Lemma 3.7] proved that for any k-tensor T over any field, the asymptotic
subrank (and, as a consequence of his method, also the asymptotic slice rank) of T is equal
to 0, equal to 1, or at least 22/k. This result established the first “gaps” in asymptotic
tensor parameters. Costa and Dalai [23] proved that, for any k-tensor T over any field, the
asymptotic slice rank of T is equal to 0, equal to 1 or at least 2h(1/k) where h is the binary
entropy function3. Christandl, Gesmundo and Zuiddam [13] extended the result of Costa
and Dalai by proving that, for any k-tensor T over any field, the asymptotic subrank and
asymptotic partition rank of T are equal to 0, equal to 1 or at least 2h(1/k) (which is a tight
bound). Additionally, they prove that for any 3-tensor T over any field, the asymptotic
subrank and asymptotic slice rank of T are equal to 0, equal to 1, equal to 2h(1/3) ≈ 1.88
or at least 2. Gesmundo and Zuiddam [34] extended this result by proving that the next
possible value after 2 is ≈ 2.68.

3 The binary entropy function is defined for p ∈ (0, 1) by h(p) = −p log2 p − (1 − p) log2(1 − p) and
h(0) = h(1) = 0.

ITCS 2024
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Blatter, Draisma and Rupniewski [10] proved that for any function on k-tensors, over
any finite field, that is normalized and monotone the set of values that this function takes
is well-ordered. The asymptotic subrank and asymptotic slice rank4 are examples of such
functions. This means that the values of any such function do not have accumulation points
“from above”, but leaves open the possibility that there are accumulation points “from below”.

Christandl, Vrana and Zuiddam [15] proved that the asymptotic slice rank over the
complex numbers takes only finitely many values on tensors of any fixed format, and thus
only countably infinite many values in general. This is done by characterizing the asymptotic
slice rank as an optimization over the moment polytope of the tensor and using the result
that there are only finitely many such polytopes per tensor format.

Blatter, Draisma and Rupniewski [9] proved that for any “algebraic” tensor invariant over
the complex numbers the related asymptotic parameter takes only countably many values.
This implies in particular that the asymptotic subrank, asymptotic slice rank, asymptotic
geometric rank, and asymptotic partition rank (all over the complex numbers) take only
countably many values.

New results
In this paper:

We prove two general lower bounds on the asymptotic subrank of concise tensors that
depend only on the dimensions of the tensor. The first says that the asymptotic subrank
of any concise tensor is at least the cube-root of its smallest dimension. The second says
that the asymptotic subrank of any “narrow enough” tensor (meaning that one dimension
is much smaller than the others) is maximal.
We use those lower bounds to prove that over any finite set of coefficients in any field the
asymptotic subrank has no accumulation points (i.e., is discrete). We moreover prove
that over any finite set of coefficients and over the complex numbers the asymptotic slice
rank has no accumulation points. A much simpler argument gives that the asymptotic
rank is discrete over any finite set of coefficients.
As a core ingredient for the above, we prove optimal relations among the maximal rank
of any matrix in the span of the slices of a tensor, when considering slicings in the three
different directions.
With similar techniques, we prove an upper bound on the difference between asymptotic
subrank and asymptotic slice rank.

1.1 Discreteness of asymptotic tensor parameters
We will now discuss our results in more detail. We begin with some basic definitions (which
we discuss in more detail in the Preliminaries subsection in the full version of the paper). Let
F be any field. Let T ∈ Fn1 ⊗ Fn2 ⊗ Fn3 be an order-three tensor over F with dimensions
(n1, n2, n3). The subrank of T , denoted by Q(T ), is the largest number r such that there
are linear maps Li : Fni → Fr such that (L1 ⊗ L2 ⊗ L3)T =

∑r
i=1 ei ⊗ ei ⊗ ei. In other

words, the subrank measures how much a tensor can be diagonalized. The flattenings of T

are the elements in (Fn1 ⊗ Fn2) ⊗ Fn3 , Fn1 ⊗ (Fn2 ⊗ Fn3) and Fn2 ⊗ (Fn1 ⊗ Fn3), obtained
by naturally grouping the tensor legs of T . We say T has slice rank one if at least one of

4 Over finite fields, since we do not know whether the limit limn→∞ SR(T⊠n)1/n exists in general, when
we say asymptotic slice rank we will mean lim infn→∞ SR(T⊠n)1/n.



J. Briët, M. Christandl, I. Leigh, A. Shpilka, and J. Zuiddam 20:7

the flattenings has rank one. The slice rank of T , denoted by SR(T ) is the smallest number
r such that T is a sum of r tensors with slice rank one. The asymptotic subrank of T is
defined as ˜Q(T ) = limn→∞ Q(T⊠n)1/n where ⊠ is the Kronecker product on tensors. The
limit exists and equals the supremum by Fekete’s lemma, since Q is super-multiplicative.
The asymptotic slice rank of T we define as ˜SR(T ) = lim infn→∞ SR(T⊠n)1/n. (Over the
complex numbers, it is known that the liminf can be replaced by a limit. Over other fields,
however this is generally not known.)

1.1.1 Discreteness of asymptotic slice rank and asymptotic subrank
We prove discreteness (no accumulation points) for the asymptotic slice rank and asymptotic
subrank, in several regimes, as follows.

▶ Theorem 3. Over any finite set of coefficients in any field, the asymptotic subrank and
the asymptotic slice rank each have no accumulation points.

Theorem 3 improves the result of Blatter, Draisma and Rupniewski [10] that the asymp-
totic subrank and asymptotic slice rank over any finite field have no accumulation points
“from above”, that is, have well-ordered sets of values. Indeed our result rules out all
accumulation points (so also those “from below”).

▶ Theorem 4. Over the complex numbers, the asymptotic slice rank has no accumulation
points.

Theorem 4 improves the result of Blatter, Draisma and Rupniewski [9] and Christandl,
Vrana and Zuiddam [15] that the asymptotic slice rank over the complex numbers takes only
countably many values. Our result is indeed strictly stronger, as countable sets may a priori
have accumulation points.

Our results shed light on the recent results of Costa and Dalai [23] and Christandl,
Gesmundo and Zuiddam [13] that found gaps between the smallest values of the asymptotic
slice rank and asymptotic subrank, and answers positively (in some regimes) the question
stated in [13] asking whether the values will always be “gapped”.

Besides the above, we prove discreteness theorems over arbitrary fields for two sub-classes
of all tensors. Namely we consider the class of oblique tensors, which are the tensors whose
support in some basis is an antichain, and the tight tensors, whose support in some basis
can be characterized by algebraic equation (details in the full version of the paper). The set
of tight tensors is a strict subset of the set of oblique tensors, which is a strict subset of all
tensors. Both classes originate in the work of Strassen [50, 51, 52]. Examples of tight tensors
include the well-known matrix multiplication tensors. Tight tensors also play a central role
in the laser method of Strassen to construct fast matrix multiplication algorithms. Our
discreteness theorems in these regimes are as follows.

▶ Theorem 5. Over any field, on tight tensors, the asymptotic subrank and asymptotic slice
rank (which are equal) have no accumulation points.

▶ Theorem 6. Over any field, on oblique tensors, the asymptotic slice rank has no accumu-
lation points.

1.1.2 General discreteness theorem
We prove the above discreteness theorems as an application of a general discreteness theorem
that we discuss now. This general theorem gives discreteness for real-valued tensor parameters
that satisfy several conditions. To describe these conditions we need the notion of equivalence

ITCS 2024
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of tensors. We say two tensors S ∈ Fn1 ⊗Fn2 ⊗Fn3 and T ∈ Fm1 ⊗Fm2 ⊗Fm3 are equivalent
if there are linear maps Ai : Fni → Fmi such that (A1 ⊗ A2 ⊗ A3)S = T and there are linear
maps Bi : Fmi → Fni such that (B1 ⊗B2 ⊗B3)S = T . A tensor T ∈ Fn1 ⊗Fn2 ⊗Fn3 is called
concise if the three flattenings obtained by grouping two of the three tensor legs together, in
the three possible ways, each have maximal rank. This means essentially that T cannot be
embedded into a smaller tensor space.
▶ Theorem 7. Let F be any field. Let C be any subset of tensors over F such that for every
T ∈ C there is an S ∈ C that is concise and equivalent to T . Let f : C → R≥0 be any function
such that

(i) f does not change under equivalence of tensors
(ii) f(T ) ≥ ˜Q(T ) for every T ∈ C
(iii) For every n1, n2, n3 ∈ N, f takes finitely many values on C ∩ (Fn1 ⊗ Fn2 ⊗ Fn3)
(iv) For every n1, n2, n3 ∈ N, f(T ) ≤ mini ni for every T ∈ C ∩ (Fn1 ⊗ Fn2 ⊗ Fn3).

Then the set of values that f takes on C has no accumulation points.
We make some remarks on condition (iii) of Theorem 7. When applying Theorem 7 to a

given real-valued function f on tensors, it will depend very much on the regime we are working
in whether condition (iii) is non-trivial or not. In particular, over finite fields, condition (iii)
is trivial, because then Fn1 ⊗Fn2 ⊗Fn3 contains only finitely many elements. Another trivial
situation is when f takes only integral values, as there are only finitely many integers between
0 and mini ni (in this case the conclusion of the theorem is also trivial). However, when f is
not integral (say f is the asymptotic slice rank or asymptotic subrank) and the field is not
finite (say F is the complex numbers) condition (iii) can be very non-trivial. For instance,
our application of Theorem 7 to asymptotic slice rank over the complex numbers (leading to
Theorem 4) relies on the representation-theoretic characterization of this parameter in terms
of moment polytopes [15] and a result from invariant theory that there are only finitely many
such polytopes per choice of (n1, n2, n3).

Our proof of Theorem 7 relies mainly on new lower bounds on the asymptotic subrank ˜Q(T )
of concise tensors T , which we will discuss next. Intuitively, these lower bounds will ensure
(using condition (ii)) that for any infinite sequence of tensors Ti the value of f(Ti) gets
“pushed up” so much that it either cannot converge, or eventually becomes constant (when
mini ni is bounded).

1.2 Lower bounds on asymptotic subrank
Having discussed our discreteness theorems, we will now discuss two results that are central
in the proof of the discreteness theorems, and of independent interest. These results are
about lower bounds on the asymptotic subrank.

The general goal of these results, in the context of the proof of the general discreteness
theorem, is to establish that if we have a sequence of tensors Ti ∈ Fai ⊗ Fbi ⊗ Fci for i ∈ N
such that the set of triples {(ai, bi, ci) : i ∈ N} is infinite, then the asymptotic subrank of
these tensors must be either unbounded, or eventually constant and integral. We will discuss
this in detail in the proof of the general discreteness theorem.

1.2.1 Previous work
Strassen [52] building on the work of Coppersmith and Winograd [22] introduced a method to
prove (optimal) asymptotic subrank lower bounds for a subclass of structured tensors called
“tight” tensors. This method formed an integral part of the laser method for constructing
fast matrix multiplication algorithms, and similar ideas have also been applied in the context
of additive combinatorics [39].
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1.2.2 Concise tensors have large asymptotic subrank
For concise tensors T we prove a cube-root lower bound on the asymptotic subrank ˜Q(T ) in
terms of the smallest dimension of the tensor.

▶ Theorem 8. Let T ∈ Fn1 ⊗ Fn2 ⊗ Fn3 be concise. Then ˜Q(T ) ≥ (mini ni)1/3.

We emphasize that Theorem 8 does not rely on any special structure of the tensor T ,
unlike previous methods like the laser method that rely on T being “tight”.

We do not know whether the lower bound (mini ni)1/3 in Theorem 8 is optimal. The
best upper bound we know is from an example of a concise tensor T ∈ Fn ⊗ Fn ⊗ Fn such
that ˜Q(T ) = 2

√
n − 1 (Strassen’s null-algebra [52, p. 168], see some details in the full version

of this paper).
Alternatively, Theorem 8 can be phrased without the conciseness condition if we replace

the dimension ni by the flattening rank R(Ti), as follows: Let T be any tensor. Then

˜Q(T ) ≥ (mini Ri(T ))1/3.
For symmetric tensors we can prove the following stronger bound. (In fact, we can prove

this stronger bound for a larger class of tensors which we call “pivot–matched”, as we will
explain in the full version of the paper). We recall that a tensor T =

∑
i,j,k Ti,j,k ei ⊗ej ⊗ek ∈

Fn ⊗ Fn ⊗ Fn is called symmetric if permuting the three tensor legs does not change the
tensor, that is, for every (i1, i2, i3) ∈ [n]3 and every permutation σ ∈ S3 it holds that
Ti1,i2,i3 = Tiσ(1),iσ(2),iσ(3) .

▶ Theorem 9. Let T ∈ Fn ⊗ Fn ⊗ Fn be concise and symmetric. Then ˜Q(T ) ≥ n1/2.

We do not know whether the lower bound n1/2 in Theorem 9 is optimal.
Again, alternatively, Theorem 9 can be phrased without conciseness if the dimension n is

replaced by the flattening rank R1(T ) (for symmetric tensors the three flattening ranks are
equal): Let T ∈ Fn ⊗ Fn ⊗ Fn be symmetric. Then ˜Q(T ) ≥ R1(T )1/2.

1.2.3 Narrow tensors have maximal asymptotic subrank
Theorem 8 implies that if n1, n2 and n3 all grow, and T ∈ Fn1 ⊗ Fn2 ⊗ Fn3 is any concise
tensor, then ˜Q(T ) must also grow. This leaves open what happens in the regime where one
of the ni is constant. We will consider the “narrow” regime where n3 = c is constant, and
one of the dimensions n1, n2 is large enough. Here we prove that the asymptotic subrank is
maximal, that is, matches the upper bound c.

▶ Theorem 10. For every integer c ≥ 2 there is an N(c) ∈ N such that for every n1, n2 with
max{n1, n2} > N(c) and every concise tensor T ∈ Fn1 ⊗ Fn2 ⊗ Fc we have ˜Q(T ) = c.

Moreover, for the case c = 2 we prove with a direct construction that N(2) = 2 and that
asymptotic subrank can be replaced by subrank.

▶ Theorem 11. Let n1, n2 > 2. Let T ∈ Fn1 ⊗ Fn2 ⊗ F2 be concise. Then Q(T ) = 2.

1.2.4 Lower bound on asymptotic subrank in terms of slice rank
Besides the aforementioned bounds on the asymptotic subrank, we use some of the same
methods to prove a lower bound on the asymptotic subrank in terms of the asymptotic slice
rank.

Slice rank was introduced by Tao [53]. He proved that for every tensor T we have
SR(T ) ≥ Q(T ). The gap between SR(T ) and Q(T ) can be large, namely for generic
tensors T ∈ Fn ⊗ Fn ⊗ Fn (over algebraically closed fields F) it is known that SR(T ) =
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n while Q(T ) = Θ(
√

n) [28]. It is, however, not known whether there can be a large
gap between SR(T⊠m) and Q(T⊠m) when m is large. In particular, it is possible that
limn→∞ Q(T⊠n)1/n = limn→∞ SR(T⊠n)1/n. Strassen’s work implies this equality for the
subset of tight tensors [52]. Over the complex numbers, the limit limn→∞ SR(T⊠n)1/n is
also known to exist and has a characterization in terms of moment polytopes [15].

We prove the following:

▶ Theorem 12. Suppose the limit ˜SR(T ) = limn→∞ SR(T⊠m)1/m exists. Then

˜Q(T ) ≥ ˜SR(T )2/3.

Our proof of Theorem 12 consists of proving that the border subrank of the third power
of T is bounded from below in terms of the slice rank of T , and applying a field-agnostic
Flanders-type lower bound on the max-rank of Haramaty and Shpilka [36].

1.3 Max-rank and min-rank of slice spans
Our lower bounds on asymptotic subrank discussed in the previous subsection rely on results
we prove about the ranks of elements in the span of the slices of a tensor. These may be of
independent interest and we discuss some of them here.

1.3.1 Max-ranks of slice spans
Our proof of Theorem 8 relies (among other ingredients) on the notion of the max-rank
of matrix subspaces, and the relation between max-ranks of matrix subspaces obtained by
slicing a tensor in the three possible directions.

For any matrix subspace A ⊆ Fn1 ⊗ Fn2 , we let max-rank(A) denote the largest matrix
rank of any element of A. To any tensor T ∈ Fn1 ⊗ Fn2 ⊗ Fn3 we may associate three matrix
subspaces A1 ⊆ Fn2 ⊗ Fn3 , A2 ⊆ Fn2 ⊗ Fn3 and A3 ⊆ Fn2 ⊗ Fn3 , obtained by taking the
span of the slices of T in each of the three possible directions. We denote the max-ranks of
these spaces by Qi(T ) = max-rank(Ai), for i ∈ [3]. We prove that for a concise tensor T the
max-ranks Qi(T ) cannot all be small, in the following sense.

▶ Theorem 13. Let T ∈ Fn1 ⊗ Fn2 ⊗ Fn3 be concise. Let i, j, k ∈ [3] be distinct. Suppose
that |F| > nk. Then Qi(T ) Qj(T ) ≥ nk.

We have explicit examples of families of tensors (provided later) that show how Theorem 13
is essentially optimal:

For every n that is a square, there is a concise tensor T ∈ Fn ⊗ Fn ⊗ Fn such that for
all i we have

√
n ≤ Qi(T ) ≤ 2

√
n (see the tensor in the full version of the paper). In

particular, for all i ̸= j we have n ≤ Qi(T ) Qj(T ) ≤ 4n.
For every n, there is a concise tensor T ∈ Fn ⊗ Fn ⊗ Fn such that Q1(T ) = Q3(T ) = n

and Q2(T ) = 2, so that Q2(T ) Q3(T ) = 2n (Strassen’s null algebra [52, p. 168]).
For every c and for every n that is a multiple of c, there is a concise tensor T ∈ Fn⊗Fn⊗Fn

such that Q1(T ) = n, Q2(T ) ≤ c+1 and Q3(T ) ≤ n/c+1 (by a generalisation of Strassen’s
null algebra, see the full version of this paper). In particular, Q2(T ) Q3(T ) ≤ (c+1)

c n+c+1.

It follows from Theorem 13 (by a straightforward argument) that Qi(T ) must be large
for at least two directions i, in the following sense:

▶ Corollary 14. Let T ∈ Fn1 ⊗Fn2 ⊗Fn3 be concise. There are distinct ℓ1, ℓ2 ∈ {1, 2, 3} such
that Qℓ1(T ) ≥ (maxi ni)1/2 and Qℓ2(T ) ≥ (mini ni)1/2.
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From Corollary 14 we can prove a preliminary asymptotic subrank lower bound ˜Q(T ) ≥
(mini ni)1/4, using the (easy to prove) fact that ˜Q(T )2 ≥ Qi(T ) Qj(T ) for any distinct
i, j ∈ [3]. Proving our stronger cube-root lower bound ˜Q(T ) ≥ (mini ni)1/3 of Theorem 8
requires slightly more work.

Work on max-rank (and its relation to dimension) goes back to Dieudonné [29], Me-
shulam [44] and [32]. Another relevant line of work here is on commutative and non-
commutative rank, which has established strong connections between max-rank and non-
commutative rank [21, 33, 27].

1.3.2 Min-ranks of slice spans

Our proof of Theorem 10 relies on a careful analysis of the min-rank of matrix subspaces,
the relation to subrank and the behaviour of min-rank under powering.

For any matrix subspace A ⊆ Fn1 ⊗ Fn2 , we let min-rank(A) denote the smallest matrix
rank of any nonzero element of A. We prove several properties of the min-rank, of which we
give a rough outline here (for the precise description we see the full version of the paper):

If the slices of a tensor have large min-rank, then the tensor has large subrank.
Any concise tensor has a slice of large rank.
If a matrix subspace has large max-rank, then we can transform the subspace in a natural
fashion such that it has large min-rank and all elements are diagonal.
Min-rank is super-multiplicative under tensor product, as long as at least one of the
matrix subspaces is diagonal.

A careful combination of the above ingredients leads to a proof of Theorem 10.
The min-rank has been investigated before in several different contexts. Amitsur [4] used

min-rank to characterize properties of rings of operators. Meshulam and Semrl [45] used
the min-rank to study properties of operator spaces. In quantum information the rank is
a measure of entanglement. Spaces of bipartite states which are all entangled are spaces
of matrices over the complex numbers with min-rank strictly greater than 1. They were
investigated in [55] and [47]. In [38] a slightly different angle was taken, analysing random
subspaces. It was shown that most random subspaces have almost maximal min-rank, which
was used for superdense coding in [1], and was summarised in [37]. Generalising both of these
lines of work, in [25] the question of dimension versus min-rank was addressed as number
of qubits versus guaranteed entanglement in a subspace of states, and their construction is
used in a follow-up paper [24] to show there are counterexamples to the additivity of p-Rényi
entropies, for all p ≤ p0 for some small constant p0 < 1, utilising the fact that the 0-Rényi
entropy is the min-rank.

This is an extended abstract. The full version can be found at:
https://arxiv.org/abs/2306.01718
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