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Abstract
We consider the problem of decoding corrupted error correcting codes with NC0[⊕] circuits in the
classical and quantum settings. We show that any such classical circuit can correctly recover only a
vanishingly small fraction of messages, if the codewords are sent over a noisy channel with positive
error rate. Previously this was known only for linear codes with large dual distance, whereas our
result applies to any code. By contrast, we give a simple quantum circuit that correctly decodes the
Hadamard code with probability Ω(ε2) even if a (1/2 − ε)-fraction of a codeword is adversarially
corrupted.

Our classical hardness result is based on an equidistribution phenomenon for multivariate
polynomials over a finite field under biased input-distributions. This is proved using a structure-
versus-randomness strategy based on a new notion of rank for high-dimensional polynomial maps
that may be of independent interest.

Our quantum circuit is inspired by a non-local version of the Bernstein-Vazirani problem, a
technique to generate “poor man’s cat states” by Watts et al., and a constant-depth quantum circuit
for the OR function by Takahashi and Tani.
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21:2 Noisy Decoding by Shallow Circuits with Parities

1 Introduction

Error correcting codes (ECCs), formally introduced in Shannon’s celebrated work [28], protect
digital signals from noise. An ECC is a map E : Σk → Σn, for a finite alphabet Σ and
positive integers n ≥ k, with the property that any message x ∈ Σk can be decoded from
the codeword E(x) even if the codeword is partially corrupted. If too many errors occur,
however, recovering the original message may become impossible. In such cases one can
instead resort to list decoding, an influential idea proposed in seminal works of Elias [10]
and Wozencraft [39], which aims to give a small list of messages whose codewords are close
to the received (corrupted) codeword. Complexity considerations appear naturally in this
context, as encoding and decoding ideally allow for reliable communication with limited
computational resources; they also appear because of the fundamental role played by ECCs
in computational complexity itself (see e.g., [34] for a survey).

1.1 Error models
In the error model considered by Shannon [28], a codeword is corrupted according to some
random process. A natural such process is given by the symmetric channel: for each
coordinate of the codeword independently, the channel either transmits it unchanged with
some probability ρ, or replaces it with a uniformly random element of Σ with probability 1−ρ.
We refer to ρ as the bias of the channel.1 If Z ∈ Σn is distributed according to the random
outcome of the symmetric channel with bias ρ applied to a codeword E(x), we write
Z ∼ Nρ

(
E(x)

)
. In this model the goal is to correctly decode a corrupted codeword with

good probability over the noise.
The combinatorial worst-case error model of Hamming [18] instead assumes that the

codeword is corrupted arbitrarily on at most some δ ∈ [0, 1) fraction of coordinates. We
will refer to δ as the error parameter. In this setting, the number of errors that can be
tolerated depends on the minimal Hamming distance between any pair of distinct codewords,
or minimal distance of the code, denoted dE . Since the Hamming ball of diameter dE − 1
around any point y ∈ Σn contains at most one codeword, a message can be retrieved if fewer
than dE/2 errors have occurred.

If more errors occur, faithful decoding is no longer possible and list decoding enters
the picture. For δ ∈ [0, 1) and positive integer L, a code is (δ, L)-list decodable if for
any point y ∈ Σn, the Hamming ball of radius δn centered around y contains at most L

codewords. It is well known that any (δ, L)-list decodable code satisfies L ≥ Ω(1/ε2) when
δ = (1 − ε)(1 − |Σ|−1) [17]. If fewer than a δ-fraction of codeword coordinates are corrupted,
then a random element from this list will give the correct message with probability at
least 1/L.

1.2 Circuits
A well-studied problem is that of decoding corrupted ECCs by constant-depth circuits
with n inputs, k outputs and size poly(n), for example in the context of black-box hardness
amplification [31, 35, 36]. Two classes of such circuits are AC0, consisting of unbounded-fan-in
AND, OR and NOT gates, and the class NC0, consisting of arbitrary bounded-fan-in gates;
without loss of generality, we may assume that the fan-in of any gate in NC0 is at most two.

1 In this model, each coordinate is thus corrupted with probability (1 − ρ)(1 − |Σ|−1), which is usu-
ally referred to as the error rate. For our purposes, however, the bias will be a more convenient
parameterization.
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The extensions of these classes where unbounded-fan-in parity gates are added to the
gate sets are denoted by AC0[⊕] and NC0[⊕], respectively. These are proper extensions since
parity cannot be computed by AC0 circuits and NC0 is a proper subset of AC0 (see [1]). An
important distinction is that the outputs of NC0 circuits depend on only a constant number
of coordinates of the input, whereas the outputs of NC0[⊕] circuits can depend on the whole
input. The classes AC0 and NC0[⊕] are incomparable since NC0[⊕] cannot compute the
n-bit AND function; indeed, NC0[⊕] circuits can compute only constant-degree polynomials
over F2 (see Section 3), whereas AND has degree n.

We also consider the quantum counterparts of the above circuit classes, denoted QX,
where X is one of the classes discussed above; these classes were first introduced by Moore [22]
and Moore and Nilsson [23]. Thus, QNC0 is the class of constant-depth quantum circuits
containing arbitrary one- and two-qubit gates, while QNC0[⊕] includes unbounded-fan-in
parity gates acting on superpositions. In contrast with their classical analogues, the classes
QNC0[⊕] and QAC0 are known to be equivalent [15, 20, 22].2

1.3 Quantum advantage
The above-mentioned classes of quantum circuits recently enjoyed renewed interest in the
context of provable separations between quantum and classical complexity classes.

One of the principal challenges in quantum computing is to determine for which types of
problems quantum computers offer a significant advantage over classical ones. Celebrated
examples of practical importance, such as Shor’s algorithm for integer factoring [29], require
quantum computers of a vastly larger scale than currently available. Moreover, formally
proving classical hardness of factoring appears to be beyond the scope of currently-available
techniques. Constant-depth circuits form an attractive computational model, as they will
likely be easier to implement in practice and, from the perspective of complexity theory,
provide one of the few settings currently amenable to provable lower bounds.

A recent series of works, starting with a breakthrough of Bravyi, Gosset and König [4],
considered the relative power of shallow quantum circuits. For instance:

The 2D-Hidden Linear Function problem can be solved exactly in QNC0 while any AC0

circuit succeeds with exponentially small probability under a certain input distribution [2];
this strengthened the main result of [4] showing that this problem separates QNC0 from
NC0 in the worst case.
The Relaxed Parity Halving problem can be solved exactly in QNC0 while any AC0

circuit succeeds with probability at most 1
2 + exp(−nε) under the uniform distribution [2].

The Parallel Parity Bending problem can be solved with probability 1 − o(1) by a
QNC0/qpoly circuit while any AC0[⊕]/rpoly succeeds with probability at most O(n−ε) [2].
The problem of simulating correlations obtained from measuring graph states QNC0 and
NC0, even in the average-case [11].
The 1D-Magic Square problem separates noisy QNC0 circuits from NC0 [5].

Similar separations based on other relational and sampling-based problems were proven in
[9, 16, 38]. A common feature of all these problems is that they were specifically designed to
prove separations between shallow quantum and classical circuits.

2 In addition, the works of Moore showed that these classes are all equivalent to QAC0[q], the class QAC0

with additional modulo-q gates. For an integer q > 1, a modulo-q gate evaluates to 1 if the sum of
its inputs equals 0 mod q and evaluates to 0 otherwise. Classically, the classes AC0[p] and AC0[q] are
incomparable if p and q are powers of distinct primes [26, 30].

ITCS 2024
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We instead consider the problem of decoding a corrupted error-correcting code, which
arises naturally in computer science. This problem is well studied in the context of classical
complexity theory, where shallow circuits endowed with parity gates are also considered; see
Sections 2.2 and 2.3 for further discussion.

1.4 The Hadamard code
A basic but important example of an ECC is the Hadamard code, which encodes k-bit messages
into codewords of length n = 2k and is given by the F2-linear map H(x) = (⟨x, y⟩)y∈Fk

2
, where

⟨x, y⟩ = yTx. This code has minimal distance n/2 and is (1/2 − ε, O(1/ε2))-list decodable
for any ε ∈ (0, 1/2], which is known to be optimal for any code [17].

Under the symmetric channel, the Chernoff bound implies that unique decoding of the
Hadamard code is possible with high probability for any constant bias ρ > 0.3 This is due
to the fact that, with high probability, the Hamming ball of radius (1/4 − ρ/4)n around a
corrupted version of a codeword C contains no other codewords than C itself.

For the worst-case Hamming model, Goldreich and Levin [12] famously gave an efficient
list decoding algorithm for the Hadamard code that runs in time poly(k, 1/ε), for error
parameter δ = 1/2 − ε. For fixed ε > 0, their algorithm gives a probabilistic AC0 circuit
that, on input length n, correctly returns the original message with probability Ω(1).

2 Our results

Here we consider the following problem. Let E : Fk
2 → Fn

2 be a (binary) error correcting
code. Given a map ϕ : Fn

2 → Fk
2 representing some decoding procedure, we wish to bound

the probability of correct message retrieval:

Pr
[
ϕ

(
E(x) + Z

)
= x], (1)

where x ∈ Fk
2 is some message and Z ∈ Fn

2 is an error string. We consider two scenarios, one
classical and one quantum.

2.1 Classical setting
In the first scenario, ϕ represents an NC0[⊕] circuit, x is uniformly distributed and Z ∼ Nρ(0),
so that E(x) + Z is a random codeword corrupted according to the binary symmetric channel
with bias ρ. Our main result in this setting says that (1) tends to zero, for any ρ ∈ [0, 1) and
any code:

▶ Theorem 1 (Impossibility of decoding by NC0[⊕]). For any ρ ∈ [0, 1), d ∈ N and ε ∈ (0, 1],
there is a k0 = k0(d, ρ, ε) ∈ N such that the following holds. Let k ≥ k0 and n be positive
integers, E : Fk

2 → Fn
2 be any map and ϕ : Fn

2 → Fk
2 be a map computable by an NC0[⊕]

circuit of depth at most d. Then, for a uniformly distributed x ∈ Fk
2 and Z ∼ Nρ(0), we have

that

Pr
[
ϕ

(
E(x) + Z

)
= x] < ε.

In particular, this theorem shows that no NC0[⊕] circuit can correctly decode more
than an ε-fraction of codewords with probability higher than ε over the noise distribution,
if the messages are long enough depending on ε, the error rate (1 − ρ)/2 > 0 and the

3 This even holds for any code over a large enough alphabet, as shown in [27].
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depth of the circuit. As a consequence of Yao’s minimax principle [41] and the Chernoff
bound, it follows that any probabilistic NC0[⊕] circuit will also fail (with high probability)
to correctly decode any binary ECC in the worst-case Hamming model, for any constant
error parameter δ ∈ (0, 1/2].

We note that the decay we obtain on the probability (1) of correct message retrieval as
a function of the message length is extremely slow, making Theorem 1 a qualitative result
rather than quantitative. Nevertheless, we conjecture that the true decay of this probability
is exponential in the message length k; this would clearly be optimal, as can be seen by
taking a constant map ϕ which always returns some fixed message. In Section 7 of the full
version [7] we provide some evidence to support this conjecture.

2.2 Quantum setting
In the second scenario, we consider the worst-case Hamming model with constant-depth
quantum circuits. Our main result in this setting is an explicit QNC0[⊕] circuit capable of
decoding the Hadamard code.

▶ Theorem 2 (Decoding Hadamard with QNC0[⊕]). There is a family of QNC0[⊕] circuits
(Cn)n∈N such that the following holds. Let k ∈ N, n = 2k and ε ∈ (0, 1/2]. Then, for any
y ∈ Fn

2 and any x ∈ Fk
2 satisfying d

(
y, H(x)

)
≤ ( 1

2 − ε)n, on input y the circuit Cn returns x

with probability Ω(ε2).

We note that the bound Ω(ε2) obtained in the theorem is optimal, since in general there
can be Θ(ε−2) messages x ∈ Fk

2 satisfying d
(
y, H(x)

)
≤ ( 1

2 − ε)n. This bound is non-trivial
only when ε = Ω(1/

√
n), as there are n possible messages.

As a simple corollary of Theorem 2, we obtain a similar result for the problem of list
decoding the Hadamard code.

▶ Corollary 3. There is a family of QNC0[⊕] circuits (Cn)n∈N such that the following holds.
Let k ∈ N, n = 2k and ε ∈ [1/

√
n, 1/2]. Then, on any input y ∈ Fn

2 , with probability 1 − ε

the circuit Cn returns a list L(y) of size O(ε−2 log(1/ε)) which contains every x ∈ Fk
2 with

d
(
y, H(x)

)
≤ ( 1

2 − ε)n.

Proof. For a large enough constant C > 0, consider Cε−2 log(1/ε) parallel instances of the
circuit from Theorem 2. This gives a list L(y) of the claimed size such that any message
x ∈ Fk

2 satisfying d
(
y, H(x)

)
≤ ( 1

2 − ε)n appears in L(y) with probability at least 1 − ε3.
Since there are at most O(1/ε2) such messages, it follows from the union bound that with
probability at least 1 − O(ε) every such message appears in L(y). ◀

▶ Remark 4. Note that the circuits obtained in this corollary also output several messages
whose codewords differ from the input y in more than ( 1

2 − ε)n coordinates; this differs from
the usual notion of the list decoding problem, which aims to output a list of all messages
x ∈ Fk

2 with d
(
y, H(x)

)
≤ ( 1

2 −ε)n and none other. One can also solve the usual list decoding
problem for the Hadamard code using QNC0[⊕] circuits, by making use of MAJORITY gates
(and more general threshold gates) to prune the obtained list. We omit the details, as they
are not so relevant for us.

As a consequence of Theorem 1 and Theorem 2, we conclude that the problem of list
decoding the Hadamard code separates the complexity classes NC0[⊕] and QNC0[⊕]; this
holds for any positive error parameter δ > 0. The task of proving quantum advantage for a
natural problem such as list decoding was the original motivation for the present work.

ITCS 2024
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In the high-error regime where the parameter δ approaches the information-theoretic
limit of 1/2 (which is relevant for hardness amplification), a stronger separation follows by
combining Theorem 2 with a result of Sudan showing hardness of noisy decoding by AC0[⊕]
circuits (see Corollary 7 below).4 To state this separation theorem precisely, we consider the
following problem:

List-Hadamard problem. Let ε : N → (0, 1] be a function. For each dyadic number n = 2k

we define the problem LHn(ε) as follows: given y ∈ Fn
2 , output a list of at most n/4 elements

in Fk
2 containing every x ∈ Fk

2 satisfying d
(
y, H(x)

)
≤

( 1
2 − ε(n)

)
n.

The most general form of our quantum advantage result is given by the following theorem:

▶ Theorem 5 (Quantum-vs-classical separation). For any constant δ ∈ (0, 1
2 ), list decoding the

Hadamard code with error parameter δ separates QNC0[⊕] from NC0[⊕]. Moreover, for any
(log n)/

√
n ≤ ε(n) ≤ 1/(log n)ω(1), the list-Hadamard problem LHn(ε) separates QNC0[⊕]

from AC0[⊕].

2.3 Related results and discussion
Both the problem of decoding corrupted ECCs and the problem of proving quantum-versus-
classical separations of complexity classes are well studied, and there are several results in
the literature related to the results presented here.

The main strength of our Theorem 1 is that it holds for any code and for any positive
error rate. Complementary results are known for restricted classes of codes, and also for
when the error rate tends to 1/2. We will now expand on some of these results.

A code E : Fk
2 → Fn

2 is t-wise independent if, for any t-subset of coordinates S ⊆ [n]
and a uniformly random X ∈ Fk

2 , the restriction E(X)|S is uniformly distributed over FS
2 .

Many codes have this property; for instance, the dual code of a linear code of distance d is
(d − 1)-wise independent. Under the same noise model considered here, Lee and Viola [21],
using earlier work of Viola [37], showed that NC0[⊕] circuits cannot distinguish a corrupted
uniformly random codeword of an ω(1)-wise independent linear code from a uniformly random
element of Fn

2 . Note that this problem is formally easier than (list) decoding.
Their result does not cover the Hadamard code, however, as it is not even 3-wise

independent. Indeed, the Hadamard code is also easy to distinguish, as it contains the
sub-code (x1, x2, x1 + x2). Since the parity of these three bits is always zero, the parity under
noise is biased towards zero and therefore easily distinguished from the parity of a random
string.

In the very-high-error regime where the error rate approaches the information-theoretic
limit of 1/2 (which is relevant for hardness amplification), stronger results are also known.
For instance, Sudan (see [36, Section 6.2]) showed that list decoding with error parameter
1/2 − ε requires probabilistic AC0[⊕] circuits to have size exp(poly(1/ε)). Below we state
his result when restricted to the Hadamard code, which is done for concreteness and better
clarity; as can be easily seen from its proof, one could instead consider any other ECC.

▶ Theorem 6 (MAJORITY from list-Hadamard). Let C be a probabilistic circuit that solves the
list-Hadamard problem LHn(ε) with probability at least 3/4. There exists a (deterministic)
oracle AC0 circuit D of size poly(n, 1/ε) which, when given oracle access to C and the ability
to fix its random bits, computes MAJORITY on Ω(1/ε) bits.

4 The same separation of complexity classes can also be obtained by combining other previously-known
results; see Section 2.3 for a discussion.
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This result can be readily deduced from Sudan’s arguments exposed in [36, Section 6.2]. As
a corollary, the circuit lower bound for MAJORITY due to Razborov [26] and Smolensky [30]
gives the following (known) hardness result for list decoding the Hadamard code.

▶ Corollary 7 (Hardness of list-Hadamard). If ε(n) ≤ 1/(log n)ω(1), then the list-Hadamard
problem LHn(ε) cannot be solved by a probabilistic AC0[⊕] circuit with probability Ω(1).

Combining this corollary with our QNC0[⊕] circuits for list-Hadamard given in Corollary 3,
we obtain the second separation of complexity classes stated in Theorem 5.

The existence of the quantum circuits of Theorem 2 and Corollary 3 also follows from
the Goldreich-Levin algorithm and the surprising fact that MAJORITY can be computed
by a QNC0[⊕] circuit [20, 32].5 However, whereas the circuit based on the Golreich-Levin
algorithm depends on the error parameter ε (which influences the size of the MAJORITY
gates), our quantum circuit is constructed independently of ε. Moreover, a key enabling
sub-routine in the Høyer-Špalek circuit for MAJORITY [20] is the powerful quantum fan-out
gate (see below for further details). In our circuit for Corollary 3, we construct this gate
explicitly using only classical parity gates and single- and two-qubit gates; these gates are
native to many quantum architectures and as such, may give an easier way to implement
quantum fan-out. In the opposite direction, one can use the ideas behind the proof of
Theorem 6 to show that our quantum circuit from Corollary 3 also gives a QNC0[⊕] circuit
for MAJORITY, albeit not exact (the details are given in the full version [7, Appendix A.2]).

Finally, quantum list-decoding of classical error correcting codes was also studied in [40].
The model considered there consists of a faulty quantum circuit that implements the encoding,
which differs from our setting.

2.4 Future directions
We conjecture that the correct rate of decay in Theorem 1 is exponential in the message
length, as suggested by the results we obtain in the high-characteristic setting (exposed in
the full version [7, Section 7]). This raises several intriguing questions related to notions of
rank for tensors and polynomial maps [6].

Our results leave open the problem of decoding more general classes of error correcting
codes by shallow quantum circuits, or by efficient quantum algorithms. A particular class of
interest consists of low-degree Reed-Muller codes, which generalize the Hadamard code.

A related question is if the problem of distinguishing random corrupted codewords of some
code from uniformly random strings gives similar separations of the quantum and classical
complexity classes considered here. For example, Lee and Viola [21] proved NC0[⊕]-hardness
of distinguishing ω(1)-wise independent codes. Is there a QNC0[⊕] distinguisher for such a
code?

3 Techniques

To establish our main results, we use techniques from two different areas. Broadly speaking,
Theorem 1 builds on ideas from higher-order Fourier analysis [33, 19], while Theorem 2
(unsurprisingly) uses ideas from quantum computing [24].

5 The above-mentioned classical hardness of MAJORITY thus also implies a separation between AC0[⊕]
and QNC0[⊕], showing that despite its simplicity, the latter class of quantum circuits is remarkably
powerful.

ITCS 2024
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3.1 Polynomial equidistribution

The proof of Theorem 1 uses the basic observation that any function Fn
2 → Fk

2 that is
computable by an NC0[⊕] circuit can be given by a collection of k constant-degree polynomials
over F2 in n variables. Indeed, any gate with fan-in d implements a function Fd

2 → F2 and
any such function can be represented by a d-variable polynomial of total degree at most d.
Degree is multiplicative under composition and composition occurs only between different
layers of the circuit. Since the parities amount to addition in F2 and NC0 circuits have
constant depth, the total degree of the output is bounded.

We will therefore study the distribution of polynomial maps under biased input distribu-
tions. We will do so in a slightly more general setting over arbitrary finite fields of prime
order.6 For a prime p, let Fp denote the finite field with p elements. For ρ ∈ [0, 1], an
Fp-valued random variable Z is ρ-biased if with probability ρ it equals 0 and with probability
1 − ρ it is uniformly distributed over Fp. Note that this corresponds to the noise Nρ(0) added
by the symmetric channel when the alphabet is Fp.

A mapping ϕ : Fn
p → Fk

p is a polynomial map if there exist polynomials f1, . . . , fk ∈
Fp[x1, . . . , xn] such that ϕ = (f1, . . . , fk). The degree of ϕ is the maximal degree among
the fi. To prove Theorem 1, it thus suffices to prove the following result.

▶ Theorem 8 (Impossibility of decoding by polynomial maps). For any d ∈ N and ρ, ε ∈ (0, 1)
there exists an integer k0 = k0(p, d, ρ, ε) such that the following holds. Let k ≥ k0 and n

be integers, ϕ : Fn
p → Fk

p be a polynomial map of degree at most d and E : Fk
p → Fn

p be an
arbitrary function. Then

Prx∈Fk
p,Z∼Nρ(0)

[
ϕ

(
E(x) + Z

)
= x

]
≤ ε.

Studying the distribution of polynomial maps in many variables over a finite field falls
within the purview of additive combinatorics. In the “unbiased” situation where Z is
uniformly distributed there are powerful tools from higher-order Fourier analysis that can
be used to study the distribution of ϕ(Z). In particular, Green and Tao [14] proved that
if ϕ is “regular” (random-like), then ϕ(Z) is approximately uniformly distributed over Fk

p.
This implies that the probability of the event {ϕ(E(x) + Z) = x} considered is small for
every x. A “regularity-type” lemma proved in [14] shows that one can “force” ϕ to be regular
by restricting it to a partition defined by sufficiently many polynomial equations of degree
less than the degree of ϕ. However, these techniques cause the size of the polynomial map ϕ

considered to blow up considerably, and are only effective if k is an extremely slowly growing
function of n.

In order to deal with this issue, and to adapt these results to the case where Z is no
longer uniform but biased, we employ a dichotomy often used in additive combinatorics that
studies the “pseudorandom” case of regular maps separately from the “structured” case of
maps that carry a certain algebraic structure. This is done by defining and studying a new
notion of rank for (high-dimensional) polynomial maps, which we call the analytic rank,7
and which measures how well-equidistributed the values taken by the considered map are.

6 The restriction to prime order is done for notational reasons and for ease of exposition. Our arguments
can be readily adapted to the case of non-prime finite fields.

7 A very similar notion of rank was defined for multilinear forms by Gowers and Wolf [13], who coined
the term analytic rank. We use the same name to highlight the similarity between our two notions,
which are relevant for distinct types of mathematical objects.
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In the pseudorandom case, a key tool we use is a new random restriction result for
high-rank polynomial maps proved in a companion paper [6]. We use this to show that the
distribution of values taken by a high-rank polynomial map will be close to uniform even
under a biased input distribution. This implies that the event considered in the theorem has
very low probability for any fixed x, in which case we can conclude by averaging.

In the structured case we deal instead with polynomial maps of low rank, whose values are
in a sense poorly distributed. Results from higher-order Fourier analysis then imply that they
can be determined by “few” lower-degree polynomial maps (plus a few extra polynomials); by
a simple Fourier-analytic argument we can reduce the analysis of a low-rank polynomial map
to those lower-degree maps which specify it, making it amenable to an inductive argument.

3.2 Building the quantum circuit
The quantum circuit of Theorem 2 is inspired by a distributed version of the Bernstein-
Vazirani algorithm [3]. Given a corrupted Hadamard codeword H(x), this single-query
quantum algorithm returns x with probability Ω(ε2). The distributed version describes an
entangled strategy for a particular non-local game [8] consisting of n players who, when given
unique coordinates of H(x), must each return an element of Fk

2 . They win if and only if
the sum of their answers equals x. It turns out that by sharing an n-partite GHZ state of
local dimension 2k, they can simulate the Bernstein-Vazirani algorithm and achieve the same
success probability. We then turn this entangled strategy into a quantum circuit that only
uses single and two-qubit gates and classical parity gates. For this we use two constant-depth
sub-routines, one for preparing GHZ states and another for the quantum fan-out gate [25],
which implements the map |x⟩|y1⟩ . . . |yn⟩ 7→ |x⟩|y1 ⊕ x⟩ . . . |yn ⊕ x⟩.

To generate the GHZ state, we use a poor man’s cat state [2], which is a GHZ state with
some of its qubits flipped. We correct this poor man’s cat state to a GHZ state by flipping
qubits based on parity computations. The input for these parity computations follows from
the procedure that generates the poor man’s cat state.

To implement the quantum fan-out gate, we use ideas from distributed quantum computing.
These ideas use GHZ states and classical parity gates together with single and two-qubit gates.
With the quantum fan-out gate, we also obtain the quantum parity gate, by conjugating the
quantum fan-out gate with Hadamard gates.

Part of the circuit is applying phase-flips, conditional on the bits of the corrupted codeword.
To do this, we use quantum fan-out gates in a circuit, exponential in size in k to correctly
apply the phase-flips [32].

The depth of the list-decoding circuit is constant, whereas the circuit size is O(n2 log n).
We also show how to reduce this complexity to O(n log n log log n), while increasing the depth
by only a small constant number. We do this by preparing a state on ⌈log(k + 1)⌉ qubits.
Evaluating an OR on this newly prepared state yields the same result as evaluating an OR
on the original k qubits [20]. Applying the same exponential size circuit as before on this
newly prepared state indeed gives the reduced circuit size.
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